

Projeto de Final de Curso

Caracterização da Forma de Partículas com Vistas à Interação Partícula-Fluido

Alunos:

João Monnerat Araújo R. de Almeida Pedro Nothaft Romano Yuri Carvalho

Orientador:

Prof. Ricardo Pires Peçanha, Ph. D.

Junho de 2013

CARACTERIZAÇÃO DA FORMA DE PARTÍCULAS COM VISTAS À INTERAÇÃO PARTÍCULA-FLUIDO

João Monnerat Araújo R. de Almeida Pedro Nothaft Romano Yuri Carvalho

Projeto de Final de Curso submetido ao Corpo Docente da Escola de Química, como parte dos requisitos necessários à obtenção do grau de Engenharia Química.

Aprovado por:

Prof.^a Heloísa Lajas Sanches, D.Sc., UFRJ

Prof. Nei Pereira Jr., Ph. D., UFRJ

Thainá Menezes de Melo, M.Sc., COPPE/UFRJ

Orientado por:

Prof. Ricardo Pires Peçanha, Ph. D., UFRJ

Rio de Janeiro, RJ - Brasil Junho de 2013

Almeida, João Monnerat Araújo Ribeiro

Carvalho, Yuri

Romano, Pedro Nothaft

Caracterização da Forma de Partículas com Vistas à Interação Partícula-Fluido/João Monnerat Araújo R. de Almeida, Pedro Nothaft Romano, Yuri Carvalho. Rio de Janeiro: EQ/UFRJ, 2013.

x, 83 p.; il.

(Monografia) – Universidade Federal do Rio de Janeiro, Escola de Química, 2013 Orientador: Ricardo Pires Peçanha

1. Fatores de forma 2. Forma de partícula. 3. Esfericidade. 4. Interação Partícula-Fluido 5. Velocidade terminal 6. Monografia. (Graduação EQ/UFRJ). 7. Ricardo Pires Peçanha. I. Caracterização da Forma de Partículas com Vistas à Interação Partícula-Fluido.

AGRADECIMENTOS

Gostaríamos de agradecer ao professor Ricardo Pires Peçanha pela orientação, incentivo e apoio durante todas as etapas da elaboração do projeto, contribuindo de forma incomensurável para nosso desenvolvimento acadêmico e pessoal.

Gostaríamos de agradecer à professora Verônica Maria de Araújo Calado por ceder o viscosímetro, sem o qual o trabalho não poderia ter sido concluído.

Gostaríamos de agradecer à toda equipe da Escola de Química da UFRJ por ter construído um sólido conhecimento acadêmico ao longo de todo o período de graduação.

Finalmente, gostaríamos de agradecer às nossas Famílias por todo o esforço, compreensão e apoio necessários para alcançarmos mais essa etapa na vida.

Resumo do Projeto de Final de Curso apresentado à Escola de Química como parte dos requisitos necessários para a obtenção do grau de Engenheiro Químico.

CARACTERIZAÇÃO DA FORMA DE PARTÍCULAS COM VISTAS À INTERAÇÃO PARTÍCULA-FLUIDO

João Monnerat Araújo R. de Almeida Pedro Nothaft Romano Yuri Carvalho

Junho, 2013

Orientador: Prof. Ricardo Pires Peçanha, Ph. D.

A interação partícula-fluido está presente em diversos processos da engenharia química que envolvem sistemas particulados. Tal fenômeno está diretamente ligado à força de arraste que o fluido exerce sobre a partícula que, dentre outros fatores, depende da forma da partícula. Daí a relevância dos chamados fatores de forma para descrever as características morfológicas das partículas. Devido à importância dos fenômenos partícula-fluido nas operações unitárias, existem na literatura algumas correlações empíricas para estimar a velocidade terminal de partículas, utilizando como parâmetros fatores de forma e características da partícula e do fluido.

A esfericidade é um fator de forma largamente utilizado área de engenharia química e tem ampla difusão na literatura. Um dos objetivos do presente trabalho foi avaliar a qualidade da esfericidade como um fator de forma descritivo da interação partícula-fluido. Dessa forma, partículas de mesma densidade, esfericidade e diâmetro característico tiveram suas velocidades terminais determinadas em diversos líquidos. Baseando-se em correlações presentes na literatura, que utilizam como parâmetro a esfericidade, tais partículas (de mesma densidade, esfericidade e diâmetro característico) deveriam apresentar a mesma velocidade terminal. Além de avaliar a esfericidade, o presente trabalho propõe e avalia uma outra abordagem com relação ao uso de fatores de forma na descrição da interação partícula-fluido. A partir dessa nova abordagem foram desenvolvidas novas correlações simples para o cálculo de velocidades terminais, utilizando novos fatores de forma que junto com a esfericidade descrevem melhor o fenômeno da interação partícula-fluido.

Palavras-chave: fatores de forma, forma de partícula, esfericidade, interação partículafluido, velocidade terminal.

INDICE	
CAPÍTULO I – INTRODUÇÃO	1
CAPÍTULO II – FUNDAMENTOS TEÓRICOS	3
II.1 CARACTERIZAÇÃO DE PARTÍCULAS II.1.1 Tamanho de Partícula II.1.2 Importância da Forma II.1.3 Fatores de Forma II.2 INTERAÇÃO PARTÍCULA-FLUIDO	3 7 8 11
CAPÍTULO III - MATERIAIS E MÉTODOS	14
 III.1 EQUIPAMENTOS III.2 LÍQUIDOS TESTADOS III.3 PARTÍCULAS TESTADAS III.3.1 Confecção das Partículas III.3.2 Determinação da densidade relativa das partículas III.3.3 Caracterização e classificação das partículas III.4 CORRELAÇÕES EMPÍRICAS PARA C_D E RE_P 	14 17 18 18 18 21 22 31
CAPÍTULO IV - RESULTADOS E DISCUSSÃO	
$IV.1 - DIAGRAMAS C_D X Re_{P}IV.2 - NOVAS CORRELAÇÕES PARA C_D E RE_{P}$	34 39
CAPÍTULO V – CONCLUSÕES E SUGESTÕES	45
V.1 – Conclusões V.2 – Sugestões	45
REFERÊNCIAS BIBLIOGRÁFICAS	47
APÊNDICE A – DADOS PARA ENSAIOS COM ÁGUA DESTILADA	48
APÊNDICE B – DADOS PARA ENSAIOS COM SOLUÇÃO DE GLICERINA	57
APÊNDICE C – DADOS PARA ENSAIOS COM ÓLEO MINERAL	66
APÊNDICE D – DADOS CORRELACIONADOS PARA ÁGUA DESTILADA	75
APÊNDICE E – DADOS CORRELACIONADOS PARA SOLUÇÃO DE GLICERINA	78
APÊNDICE F – DADOS CORRELACIONADOS PARA ÓLEO MINERAL	81

ÍNDICE

LISTA DE ILUSTRAÇÕES

Figura II.1 – Diâmetro da Área Projetada	5
FIGURA II.2 – DIÂMETRO DE FERET	6
FIGURA II.3 – DIÂMETRO DE MARTIN	6
FIGURA II.4 - PARTÍCULAS DE MESMA FAIXA GRANULOMÉTRICA, FORMAS DIFERENTES	8
FIGURA II.5 – PARTÍCULA NÃO REENTRANTE (A) E PARTÍCULA REENTRANTE (B)	9
FIGURA II.6 – PARTÍCULAS CÔNCAVAS E CONVEXAS	10
FIGURA II.7 – PARTÍCULA COM ESFERA CIRCUNSCRITA	10
FIGURA II.8 – FORÇAS ATUANTES NA INTERAÇÃO PARTÍCULA-FLUIDO	11
FIGURA II.9 – CORRELAÇÃO C _D , Re _p e ϕ (Haider e Levenspiel)	13
FIGURA III.1 – CUBA UTILIZADA NOS ENSAIOS	15
FIGURA III.2 – PARTÍCULA CRUZANDO LINHA AUXILIAR	16
FIGURA III.3 – EXEMPLO DO PROCEDIMENTO DE CONFECÇÃO DE PARTÍCULAS	19
FIGURA III.4 – EXEMPLO DE DESENHO UTILIZANDO O SKETCHUP	19
FIGURA III.5 – PARTÍCULAS REENTRANTES E NÃO REENTRANTES	20
FIGURA III.6 – EXEMPLO DE MEDIDA DA MAIOR DIMENSÃO DA PARTÍCULA ATRAVÉS DO <i>SketchUp</i>	. 20
FIGURA III.7 – PARTÍCULAS DO GRUPO A	22
FIGURA III.8 – PARTÍCULAS DO GRUPO B	23
FIGURA III.9 – PARTÍCULAS DO GRUPO C	23
FIGURA III.10 – PARTÍCULAS DO GRUPO D	24
FIGURA III.11 – PARTÍCULAS DO GRUPO E	24
FIGURA III.12 – PARTÍCULAS DO GRUPO F	25
FIGURA III.13 – PARTÍCULAS DO GRUPO G	25
FIGURA III.14 – PARTÍCULAS DO GRUPO I	26
FIGURA III.15 – PARTÍCULAS DO GRUPO J	. 26

FIGURA III.16 – PARTÍCULAS DO GRUPO K
FIGURA III.17 – PARTÍCULAS DO GRUPO L
FIGURA III.18 – PARTÍCULAS DO GRUPO M
FIGURA III.19 – PARTÍCULAS DO GRUPO N
FIGURA IV.1 – $C_D \propto Re_P \operatorname{\acute{A}GUA}$
FIGURA IV.2 – $C_D \times Re_P$ GLICERINA
FIGURA IV.3 – $C_D \propto Re_P OLEO$
$FIGURA IV.4 - C_D X Re_P VISÃO GERAL$
FIGURA IV.5 – RESULTADOS EXPERIMENTAIS X CORRELAÇÕES DE COELHO E MASSARANI
FIGURA IV.6 - RESULTADOS EXPERIMENTAIS X CORRELAÇÕES DE COELHO E MASSARANI (Ampliação)
FIGURA IV.7 - RESULTADOS EXPERIMENTAIS X NOVA CORRELAÇÃO
FIGURA IV.8 - RESULTADOS EXPERIMENTAIS X NOVA CORRELAÇÃO (AMPLIAÇÃO) 42
FIGURA IV.9 – VISÃO GERAL DOS DADOS EXPERIMENTAIS E DAS CORRELAÇÕES
FIGURA IV.10 – VISÃO GERAL DOS DADOS EXPERIMENTAIS E DAS CORRELAÇÕES. (Ampliação)

LISTA DE TABELAS

TABELA III.1 – PROPRIEDADES DOS FLUIDOS TESTADOS 18
TABELA III.2 – DENSIDADE RELATIVA DOS MATERIAIS UTILIZADOS
TABELA III.3 – CARACTERÍSTICAS DAS PARTÍCULAS
TABELA III.4 – CORRELAÇÕES DE COELHO & MASSARANI (1996) COM BASE NOS DADOSDE PETTYJOHN & CHRISTIANSEN (1948)
TABELA A.1 – VELOCIDADES TERMINAIS PARA OS ENSAIOS COM ÁGUA DESTILADA 49
TABELA A.2 – CÁLCULO DE C _D e Re _p para a água destilada 55
TABELA B.1 – VELOCIDADES TERMINAIS PARA OS ENSAIOS COM SOLUÇÃO DE GLICERINA
TABELA B.2 – CÁLCULO DE C_D e Re_p para a solução de glicerina
TABELA C.1 – VELOCIDADES TERMINAIS PARA OS ENSAIOS COM ÓLEO MINERAL
TABELA C.2 – CÁLCULO DE C _D e Re _p para o óleo mineral
TABELA D.1 – DADOS CORRELACIONADOS PARA ÁGUA DESTILADA
TABELA E.1 – DADOS CORRELACIONADOS PARA SOLUÇÃO DE GLICERINA
TABELA F.1 – DADOS CORRELACIONADOS PARA ÓLEO MINERAL

NOMENCLATURA

LETRAS LATINAS

Símbolo	Descrição	Dimensão
A _p	Área Projetada da Partícula	L²
C _D	Coeficiente de Arraste	Adimensional
d#	Diâmetro de Peneira	L
d _a	Diâmetro de Área Projetada	L
$d_{\rm C}$	Diâmetro de Perímetro	L
d _D	Diâmetro de Arrasto	L
$d_{\rm F}$	Diâmetro de Ferret	L
d_{M}	Diâmetro de Martin	L
d_p	Diâmetro de Volume	L
d_{ql}	Diâmetro de Queda Livre	L
ds	Diâmetro de Superfície	L
d _{st}	Diâmetro de Stokes	L
d_{sv}	Diâmetro de Superfície-Volume ou de Sauter	L
Fa	Força de Arraste	MLT ⁻²
F _c	Força de Campo	MLT ⁻²
F _e	Força de Empuxo	MLT ⁻²
ICON	Índice de Convexidade	Adimensional

IEC	Índice da Esfera Circunscrita	Adimensional
m _{fdes}	Massa de Fluido Deslocado	М
m _p	Massa da Partícula	М
Re _p	Reynolds de Partícula	Adimensional
S _p	Área Superficial da Partícula	L²
v _f	Velocidade do Fluido	LT^{-1}
V _{fdes}	Volume de Fluido Deslocado	L^3
V _p	Volume da Partícula	L^3
v _p	Velocidade da Partícula	LT ⁻¹
v _t	Velocidade Terminal	LT ⁻¹

LETRAS GREGAS

Símbolo	Descrição	Dimensão
μ	Viscosidade do Fluido	$ML^{-1}T^{-1}$
ф	Esfericidade	Adimensional
$ ho_{f}$	Densidade do Fluido	ML ⁻³
$ ho_p$	Densidade da Partícula	ML ⁻³

CAPÍTULO I – INTRODUÇÃO

Na indústria, inúmeros processos envolvem a interação entre partículas sólidas e fluidos. Como exemplos é possível citar: os processos de separação sólido-gás, sólidosólido, sólido-líquido e fluidização. O projeto, a avaliação e a simulação de equipamentos onde ocorrem tais interações partícula-fluido dependem fundamentalmente da força de arraste que o fluido exerce sobre a partícula. Dessa forma, para projetar, simular ou avaliar um equipamento desses é necessário saber calcular ou estimar essa força de arraste com base em características do fluido e da partícula.

Em processos envolvendo partículas sólidas, a caracterização das partículas é uma das etapas iniciais e de maior importância para uma operação eficiente. Esta caracterização não se restringe somente a parâmetros inerentes as partículas como densidade, tamanho e forma. Faz-se necessário também conhecer o comportamento dinâmico da partícula na interação com o fluido como, por exemplo, a velocidade terminal e o coeficiente de arraste.

Dada a importância de conhecer os comportamentos dinâmicos como velocidade terminal e coeficiente de arraste, faz-se necessário estimar esses parâmetros a partir de dados mais simples. Existem na literatura diversas correlações empíricas utilizadas de forma a prever a velocidade terminal de partículas a partir de características tanto do fluido como da partícula como, por exemplo, a densidade do fluido, a densidade da partícula, a viscosidade do fluido, o diâmetro característico da partícula e sua forma.

A caracterização da forma de partículas é muitas vezes uma tarefa subjetiva e complexa e, portanto, faz-se necessário o uso dos chamados fatores de forma, dentre os quais a esfericidade proposta por Wadell (1932) recebe notório destaque sendo largamente utilizada e difundida.

O presente trabalho pretende avaliar a eficácia da esfericidade como fator de forma na interação partícula-fluido, incluindo na análise partículas que apresentem reentrâncias, onde acredita-se que tal fator de forma apresente limitações. Além disso, o trabalho tem como objetivo apresentar uma abordagem simples e eficaz de como tratar

o problema de caracterização da forma de partículas, apresentando novas correlações empíricas para predição da velocidade terminal baseadas nas correlações presentes na literatura e em outros fatores de forma além da esfericidade.

Para tanto, foram confeccionados diversos grupos de partículas, onde partículas do mesmo grupo são constituídas do mesmo material, possuem mesmo diâmetro característico e mesma esfericidade e, portanto, deveriam apresentar mesma velocidade terminal de acordo com as correlações mais utilizadas. Foram realizados 1.155 ensaios em três fluidos diferentes em uma cuba de acrílico feita sob encomenda.

CAPÍTULO II – FUNDAMENTOS TEÓRICOS

II.1 Caracterização de Partículas

A caracterização completa de uma dada partícula requer a medição e a definição de características da partícula como: tamanho, forma, densidade e morfologia de superfície. Como as partículas de interesse normalmente possuem formas irregulares e são diferentes na sua morfologia de superfície, existem diversas maneiras e técnicas para a caracterização das mesmas (Wen-Ching Yang, 2003). Algumas das técnicas mais comumente utilizadas serão apresentadas a seguir.

II.1.1 Tamanho de Partícula

O tamanho de partícula pode ser descrito por uma ou mais dimensões lineares definidas apropriadamente de forma a caracterizar uma partícula individual (Wen-Ching Yang, 2003). Diversos tipos de diâmetros equivalentes serão apresentados a seguir:

- Diâmetro de Volume (d_p) :

É definido como o diâmetro da esfera que possui o mesmo volume que a partícula. Pode ser representado pela equação II.1.

$$d_p = \left(\frac{6V_p}{\pi}\right)^{1/3} \tag{II.1}$$

onde V_p é o volume da partícula.

- Diâmetro de Superfície (d_s):

É definido como o diâmetro da esfera que possui a mesma área superficial da partícula. Pode ser representado pela equação II.2.

$$d_s = \left(\frac{S_p}{\pi}\right)^{1/2} \tag{II.2}$$

onde S_p é a área superficial da partícula.

- Diâmetro de Superfície-Volume ou de Sauter (d_{sv}) :

É definido como o diâmetro da esfera que possui a mesma razão entre área superficial e volume que a partícula. Pode ser representado pela equação II.3.

$$d_{sv} = \frac{6V_p}{S_p} \tag{II.3}$$

- Diâmetro de Peneira $(d_{\#})$:

É definido como a menor abertura quadrada em uma peneira que permite a passagem da partícula.

- Diâmetro de Stokes (d_{stk}):

É definido como o diâmetro de queda livre da partícula no regime de Stokes. Pode ser representado pela equação II.4.

$$d_{stk} = \sqrt{\frac{18\mu v_t}{(\rho_p - \rho_f)g}} \tag{II.4}$$

Onde v_t é a velocidade terminal da partícula, μ é a viscosidade do fluido e $\rho_p \ e \ \rho_f$ são as densidades da partícula e do fluido, respectivamente.

- Diâmetro de Queda Livre (d_{ql}) :

É definido como o diâmetro da esfera que possui a mesma densidade e mesma velocidade terminal que a partícula em um fluido de mesma densidade e viscosidade. Na região onde a lei de Stokes é válida o diâmetro de queda livre é igual ao diâmetro de Stokes. - Diâmetro de Arrasto (d_D) :

É definido como o diâmetro da esfera que possui a mesma resistência ao movimento que a partícula em um fluido de mesma densidade e viscosidade, onde ambas movem-se a uma mesma velocidade.

- Diâmetro do Perímetro (d_c) :

É definido como o diâmetro de um círculo que possui o mesmo perímetro que a projeção da partícula em um plano.

- Diâmetro da Área Projetada (d_a):

É definido como o diâmetro da esfera que possui a mesma área projetada que a partícula quando vista em uma direção perpendicular ao plano de maior estabilidade da partícula. Um exemplo encontra-se na Figura II.1.

Figura II.1 – Diâmetro da Área Projetada

Fonte: http://www.ctb.com.pt/?page_id=3592

- Diâmetro de Feret (d_F) :

É um diâmetro estatístico que representa o valor médio da distância entre duas linhas paralelas tangentes à projeção da partícula. Um exemplo encontra-se na Figura II.2.

Figura II.2 – Diâmetro de Feret

Fonte: http://www.ctb.com.pt/?page_id=3592

- Diâmetro de Martin (d_M) :

Trata-se também de um diâmetro estatístico que representa a média do comprimento de duas cordas tiradas em duas direções da projeção da partícula, tiradas no ponto em que as áreas da projeção, para um lado e para o outro da corda são iguais. O procedimento é descrito na Figura II.3.

Figura II.3 – Diâmetro de Martin

Fonte: http://www.ctb.com.pt/?page_id=3592

II.1.2 Importância da Forma

É importante quantificar a forma das partículas pois ela está intimamente relacionada com a força de arraste que o fluido exerce sobre ela. Embora seja de suma importância conhecer o comportamento das partículas em um sistema para estudar os fenômenos decorrentes das interações partícula – fluido, existem poucos trabalhos publicados na literatura que abordem sobre a influência da forma nos sistemas particulados.

O problema da utilização da forma como fator determinante no comportamento de sistemas particulados está justamente na subjetividade do que seria a forma em termos paramétricos. Vários parâmetros foram estudados na literatura como uma maneira de descrever a forma: perímetros, áreas, volumes, comprimentos, etc. Nos estudos anteriores realizados no assunto, buscou-se um fator adimensional que correlacionasse parâmetros de forma e que discriminasse bem a interação partícula-fluido, ou seja, partículas com mesmo fator de forma teriam a mesma velocidade terminal de queda, o que significa mesmo Reynolds de partícula e mesmo coeficiente de arraste. Diversos parâmetros sobre a forma de partículas foram levados em consideração na busca de um fator, porém o fator de forma mais utilizado nas correlações entre o número de Reynolds e o coeficiente de arraste é a esfericidade de Wadell (1932). Nos estudos de Mendel (1972), por exemplo, foi abordada a diferenciação de partículas por suas quinas e arestas como denunciadores de um modelo de forma.

A Figura II.4 mostra partículas que estão na mesma faixa granulométrica, porém com formas diferentes.

Figura II.4- Partículas de mesma faixa granulométrica, formas diferentes. Fonte: http://thumbs.dreamstime.com/z/parede-de-tijolo-da-pedra-da-forma-irregular-16494633.jpg

II.1.3 Fatores de Forma

Na procura por fatores de forma que pudessem descrever bem as influências da forma na interação partícula-fluido, foram desenvolvidos diversos fatores considerando diferentes indicadores de reentrâncias, aproximação de esferas, quinas, etc. Entre vários fatores de forma podemos citar:

- Elongação: A razão entre o comprimento e a largura de uma partícula, sendo o comprimento a maior medida da partícula e a largura a maior medida perpendicular ao comprimento.

- Circularidade: A razão entre o perímetro da esfera de mesma área projetada que a partícula em sua configuração mais estável e o perímetro da área da partícula.

- Esfericidade: Significa o quanto a forma da partícula é similar à forma de uma esfera através de uma relação com a área superficial esférica. Para dado volume, a esfera é o sólido geométrico com menor área superficial e é normalmente relacionada com condições ótimas de escoamento. A lei de Stokes refere-se ao arraste sobre uma partícula esférica movendo-se relativamente a um fluido em baixas velocidades caracterizando regimes laminares, baixos números de Reynolds. Calcula-se a esfericidade como sendo a razão entre a área superficial da esfera de mesmo volume que a partícula e a área superficial da partícula, por isso, seu valor varia de 0 a 1. A esfericidade foi desenvolvida pelo geólogo Wadell (1932) e é o fator de forma mais

conhecido e utilizado até hoje. A esfericidade está presente na literatura nas correlações entre o coeficiente de arraste e Reynolds de partícula.

Os fatores de forma ICON e IEC apresentados a seguir, foram introduzidos em projeto de final de curso defendido recentemente no âmbito da Escola de Química/UFRJ (Mendes e Melo, 2011).

- ICON: O índice de convexidade é a razão entre o menor volume acrescentado à partícula que a torna convexa e o volume da partícula. Partículas convexas, ou não reentrantes, possuem ICON igual a zero. Uma partícula é dita côncava ou reentrante, ICON diferente de zero, se ela pode ser transpassada pela mesma reta mais de uma vez. Exemplos de partículas convexas e côncavas encontram-se na Figura II.5 a seguir.

Figura II.5 – Partícula não reentrante (a) e partícula reentrante (b)

A figura II.6 a seguir ilustra o procedimento para tornar uma partícula côncava em convexa.

Figura II.6 – Partículas Côncavas e Convexas

- IEC: O índice da esfera circunscrita é a razão entre o volume da esfera que circunscreve a partícula e o volume da partícula. Por isso, para partículas muito convexas, o valor de IEC é alto, já para partículas reentrantes, o valor de IEC se torna baixo. O valor de IEC para partículas esféricas é, por definição, igual a 1. Um exemplo de uma partícula com a esfera circunscrita encontra-se na Figura II.7.

Figura II.7 – Partícula com esfera circunscrita

II.2 Interação Partícula-Fluido

Através da análise das forças que atuam em uma partícula sólida em movimento num fluido, identificam-se três forças atuando na partícula: as forças de campo, de arraste e de empuxo. As forças atuantes, suas direções e sentidos estão representados na Figura II.8.

Figura II.8 – Forças atuantes na interação partícula-fluido

A força do campo gravitacional é dada por

$$F_c = m_p. a = \rho_p V_p g \tag{II.5}$$

onde ρ_p é a densidade da partícula, V_p é o volume da partícula e g é a aceleração da gravidade.

A força de empuxo é dada por

$$F_e = m_{fdes} a = \rho_f V_{fdes} g = \rho_f V_p g \tag{II.6.}$$

onde ρ_f é a densidade o fluido, V_{fdes} é o volume do fluido deslocado e m_{fdes} é a massa de fluido deslocado.

A força de arraste é dada pela equação II.7.

$$F_a = \frac{1}{2} \rho_f A_p C_D (v_f - v_p)^2$$
(II.7)

onde A_p é uma característica da partícula, C_d é o coeficiente de arraste, v_f é a velocidade do fluido e v_p é a velocidade da partícula.

A força resultante sobre a partícula pode ser descrita por

$$F_r = F_c - F_a - F_e = \rho_p V_p g - \frac{1}{2} \rho_f A_p C_D (v_f - v_p)^2 - \rho_f V_p g$$
(II.8)

Considerando-se que a partícula esteja em movimento uniforme (sem aceleração), ou seja, em velocidade terminal, e que a velocidade do fluido é zero, a equação II.8 se reduz a:

$$0 = -\frac{1}{2}\rho_f A_p C_D (-v_t)^2 - (\rho_f - \rho_p) V_p g$$
(II.9)

Rearranjando, tem-se:

$$C_{D} = \frac{2(\rho_{p} - \rho_{f})V_{p}g}{\rho_{f}A_{p}v_{t}^{2}}$$
(II.10)

Considerando-se que $A_p = \frac{\pi}{4}d_p^2$ e que $V_p = \frac{\pi}{6}d_p^3$:

$$C_D = \frac{4(\rho_p - \rho_f)d_pg}{3\rho_f v_t^2} \tag{II.11}$$

Sabe-se que o coeficiente de arraste é função do número de Reynolds da partícula que é dado pela seguinte equação (no caso em que $v_p = v_t$ e $v_f = 0$):

$$Re_p = \frac{d_p v_t \rho_f}{\mu} \tag{II.12}$$

onde μ é a viscosidade do fluido.

As Figuras II.9 e II.10 representam o diagrama $C_D \ge Re_p$ em escala log-log para diferentes esfericidades e formatos de partícula ($d_{sph} = d_p$, $u = v_t$).

Figura II.9 – Correlação C_D , $Re_p e \phi$ (Haider e Levenspiel)

Fonte: Haider e Levenspiel, 1989.

CAPÍTULO III - MATERIAIS E MÉTODOS

III.1 Equipamentos

Para a realização dos experimentos, utilizou-se uma cuba de acrílico feita sob encomenda (Casa do Acrílico, Rio de Janeiro – RJ). A cuba possui formato de um paralelepípedo e tem como dimensões 30 cm de largura, 30 cm de comprimento e 100 cm de altura. Além disso, a mesma possui uma tampa constituída do mesmo material, de forma a impedir o depósito de poeira e a entrada de contaminantes no fluido. Introduziu-se uma torneira na parte inferior da cuba, de forma a possibilitar a drenagem do líquido. O aparato conta também com uma tela afixada em um molde quadrado de acrílico com linhas de nylon presas nas extremidades, permitindo a inserção e a retirada da tela do interior da cuba. As partículas testadas, ao atingirem o fundo da cuba ficam retidas na tela o que permite o seu posterior recolhimento sem a necessidade de esvaziar a cuba. A foto do aparato utilizado encontra-se na Figura III.1.

Figura III.1 – Cuba utilizada nos ensaios

Utilizou-se também uma pinça com o intuito de realizar a imersão das partículas no fluido sem causar turbulências e a inserção de bolhas de ar. Para auxiliar a aferição dos tempos de queda das partículas, foram traçadas sobre o acrílico nove linhas horizontais com espaçamento de 10 cm entre as mesmas na parte frontal e nove na parte traseira da cuba, permitindo ao operador alinhar a visão às linhas frontal e traseira, evitando assim possíveis efeitos de paralaxe, sobre as medidas. Além disso, foi utilizado um termômetro de mercúrio com precisão de 0,5^oC para o monitoramento da temperatura do fluido durante os testes, possibilitando a determinação da densidade e

viscosidade do fluido, elementos essenciais para o cálculo do número de Reynolds (Re_p) e coeficiente de arraste (C_D).

Utilizou-se uma câmera digital de alta definição (Nikon D5100) com capacidade de filmar trinta quadros por segundo para registrar a queda das partículas no fluido. Em seguida, foi feita a análise dos vídeos no software específico *Windows Movie Maker* que realiza a reprodução da filmagem quadro a quadro, permitindo ao operador determinar o tempo de queda entre duas linhas auxiliares consecutivas com precisão de 1/30 s, ou seja, o tempo que a partícula leva para percorrer uma distância de 10 cm. O método apresentado quando comparado com a medição do tempo de queda das partículas utilizando simplesmente um cronômetro manual, permite reduzir drasticamente os erros inerentes à dificuldade do operador em determinar o tempo exato que a partícula cruza a linha auxiliar em velocidade real e ao seu tempo de resposta. Um exemplo da técnica utilizada encontra-se na figura III.2.

Figura III.2 – Partícula cruzando linha auxiliar

As análises das filmagens permitiram concluir que as partículas encontravam-se em velocidade terminal na faixa compreendida entre as linhas auxiliares três e sete. A partir dessa conclusão, os valores de velocidade compreendidos entre essa faixa nos cinco experimentos foram adicionados no software *Statistica* 7 onde foi utilizada a função *"Recode Outliers"* para retirar possíveis *outliers* e em seguida a função *"Basic Statistics"* para obter-se a média e o desvio padrão dos dados experimentais.

O resumo do procedimento geral para determinação da velocidade terminal das partículas é descrito a seguir. Primeiramente submerge-se a partícula no fluido com auxílio da pinça, com cuidado para não inserir bolhas de ar e causar turbulências. Em seguida, a partícula é liberada e o operador acompanha a queda com a filmadora até a mesma chegar ao fundo da cuba. A partícula é então recolhida com o auxílio da rede e o ensaio é repetido cinco vezes para cada partícula. A próxima etapa é a análise dos vídeos no computador de forma a determinar o intervalo de tempo que a partícula leva pra percorrer a distância entre as linhas auxiliares. Em seguida, os dados são lançados no *Statistica 7* e, finalmente obtém-se os valores de velocidade terminal para cada partícula em cada fluido.

III.2 Líquidos testados

Os líquidos testados no presente trabalho foram água destilada (LADEQ/UFRJ), solução aquosa de glicerina bi-destilada (Casa Wolff, Higienópolis, Rio de Janeiro - RJ) e óleo mineral grau técnico (Qbex, Duque de Caxias, Rio de Janeiro – RJ).

As densidades dos fluidos na temperatura dos ensaios foram obtidas com o auxílio de um balão volumétrico. As viscosidades foram medidas em viscosímetro. A Tabela III.1 contém os dados obtidos para as temperaturas dos testes realizados.

Fluido	Temperatura (⁰ C)	Viscosidade (cP)	Densidade (g/cm ³)
Solução Glicerina	25,5	8,50	1,15
Óleo	27,5	14,00	0,85
Água	25,5	0,88	1,00

Tabela III.1 – Propriedades dos fluidos testados

III.3 Partículas testadas

III.3.1 Confecção das Partículas

Para a confecção das partículas a serem testadas, utilizaram-se diferentes tipos de borrachas escolares, alumínio e também foram encomendadas partículas usinadas de acrílico confeccionadas pelo mesmo fabricante da cuba. As partículas foram subdivididas em treze grupos, onde, em cada grupo, todas possuíam mesma massa, volume e área superficial, ou seja, mesma esfericidade. No total, foram confeccionadas 77 partículas que foram testadas em ensaios em quintuplicata em três líquidos, totalizando 1.155 ensaios.

De forma a criar grupos com a mesma esfericidade, utilizou-se um estilete para cortar a borracha em uma ou mais partes que foram coladas com *Superbonder* em posições diferentes da inicial de forma a manter a mesma área superficial e, portanto a mesma esfericidade. O procedimento pode ser melhor visualizado na figura III.3.

Figura III.3 – Exemplo do procedimento de confecção de partículas

Deve-se ressaltar que o uso de estilete afiado faz com que as perdas referentes ao corte sejam totalmente desprezíveis, o que pôde ser comprovado através da pesagem das partículas, em balança analítica, antes e após o corte, onde as mesmas apresentaram praticamente a mesma massa. Da mesma forma, a massa de cola adicionada para unir as partes da borracha mostrou-se totalmente desprezível. Após a confecção das partículas, todas foram pesadas em balança analítica e eventuais discordâncias entre as massas foram corrigidas lixando-as cuidadosamente até que todas as partículas de um mesmo grupo apresentassem mesma massa.

Com o intuito de facilitar o cálculo dos fatores de forma, a visualização e confecção das partículas, todos os grupos foram desenhados no software *SketchUp 8*, conforme ilustrado na figura III.4.

Figura III.4 – Exemplo de desenho utilizando o SketchUp

O software possui em seu portfólio uma função para calcular o volume de qualquer sólido desenhado, o que se mostrou particularmente útil para a determinação

dos volumes dos sólidos côncavos e convexos de forma a calcular o índice de convexidade (ICON). Além disso, o programa se mostrou extremamente funcional para a visualização e desenho dos sólidos convexos, conforme ilustrado na figura III.5.

Figura III.5 – Partículas reentrantes e não reentrantes

Outra função que foi largamente utilizada no programa, foi a função "*Tape Measure Tool*" que permite medir a distância entre dois pontos e, dessa forma, auxiliou na determinação da maior dimensão da partícula para posterior cálculo do índice da esfera circunscrita (IEC), apresentado anteriormente. Um exemplo do procedimento realizado encontra-se na figura III.6.

Figura III.6 – Exemplo de medida da maior dimensão da partícula através do SketchUp

III.3.2 Determinação da densidade relativa das partículas

A densidade relativa dos materiais constituintes das partículas foi determinada através de um picnômetro utilizando-se como padrão a água. O processo de enchimento do picnômetro foi realizado escorrendo-se lentamente o líquido pela parede do mesmo, de forma a evitar a formação de bolhas de ar. Pode-se demonstrar que a densidade relativa dos sólidos é dada pela seguinte equação:

$$\mathbf{d}_{s \circ l i d o / \acute{a} g u a} = \frac{\rho_{s \circ l i d o}}{\rho_{\acute{a} g u a}} = \frac{m_2 - m_1}{(m_4 - m_1) - (m_3 - m_2)} \tag{III.1}$$

Onde $\rho_{sólido}$ é a densidade do sólido, $\rho_{água}$ é a densidade da água, m_1 é a massa do picnômetro vazio, m_2 é a massa do picnômetro com o sólido, m_3 é a massa do picnômetro com sólido e água e m_4 é a massa do picnômetro com água.

Os resultados obtidos encontram-se na Tabela III.2.

Material	₽sólido/água
Acrílico	1,19
Alumínio	2,44
Borracha Cinza Redonda	1,32
Borracha Laranja	1,44
Borracha Mercur Branca	1,88
Borracha Mercur Verde	1,70
Borracha Preta	1,17

Tabela III.2 – Densidade relativa dos materiais utilizados

III.3.3 Caracterização e classificação das partículas

Com o auxílio do software *SketchUp 8*, determinou-se para todas as partículas o valor dos fatores de forma utilizados no presente trabalho (Esfericidade, ICON e IEC). Além disso, com os dados obtidos através da pesagem das partículas em balança analítica e da determinação da densidade relativa com a técnica de picnometria, foi possível construir a tabela III.3 que descreve as "características" de cada partícula. As partículas foram subdivididas em grupos, representados por letras, e numeradas para diferenciação entre as partículas pertencentes ao mesmo grupo.

As fotografias de todas as partículas testadas no presente trabalho encontram-se nas figuras III.7 a III.19.

Figura III.7 – Partículas do grupo A

Figura III.8 – Partículas do grupo B

Figura III.9 – Partículas do grupo C

Figura III.10 – Partículas do grupo D

Figura III.11 – Partículas do grupo E

Figura III.12 – Partículas do grupo F

Figura III.13 – Partículas do grupo G

Figura III.14 – Partículas do grupo I

Figura III.15 – Partículas do grupo J

Figura III.16 – Partículas do grupo K

Figura III.17 – Partículas do grupo L

Figura III.18 – Partículas do grupo M

Figura III.19 – Partículas do grupo N

Tabela III.3 – Características das Partículas

Grupo	Partícula	Área superficial Partícula (cm ²)	Volume da Partícula (cm ³)	d _p (cm)	Área superficial da Esfera (cm ²)	Esfericidade	Volume do sólido Convexo (cm ³)	ICON	Maior dimensão (cm)	Volume da esfera circunscrita (cm ³)	IEC
	1						0,625	0,2500	1,871	3,43	0,1458
	2						0,625	0,2500	1,871	3,43	0,1458
А	3	4,5	0,5	0,9847	3,0465	0,6770	0,625	0,2500	1,658	2,39	0,2095
	4						0,708	0,4160	1,732	2,72	0,1838
	5						0,708	0,4160	1,601	2,15	0,2327
	1 (U)						3,000	1,0000	3,640	25,25	0,0594
	2 (H)						3,000	1,0000	3,640	25,25	0,0594
В	3 (L)	12,5	1,5	1,4202	6,3369	0,5070	3,000	1,0000	4,637	52,20	0,0287
	4 (S)						3,375	1,2500	4,950	63,51	0,0236
	5 (J)						3,188	1,1253	4,100	36,09	0,0416
	1						5,667	0,4168	3,464	21,76	0,1838
	2						5,000	0,2500	3,742	27,44	0,1458
С	3	18	4	1,9695	12,1859	0,6770	5,667	0,4168	3,202	17,19	0,2327
	4						5,000	0,2500	3,317	19,11	0,2093
	5						5,000	0,2500	3,742	27,44	0,1458
	1						1,060	0,0600	1,732	2,72	0,3676
	2						1,000	0,0000	1,732	2,72	0,3676
D	3	6	1	1,2407	4,8360	0,8060	1,130	0,1300	1,732	2,72	0,3676
	4						1,185	0,1850	1,536	1,90	0,5270
	5						1,123	0,1230	1,732	2,72	0,3676
	1						1,465	11,2083	2,501	8,19	0,0147
	2						3,007	24,0583	3,015	14,35	0,0084
	3						2,559	20,3250	3,606	24,55	0,0049
	4						2,240	17,6667	2,569	8,88	0,0135
F	5	12.2	0.12	0.6120	1 1765	0.0964	2,117	16,6417	3,606	24,55	0,0049
	6	12,2	0,12	0,0120	1,1705	0,0504	1,444	11,0333	3,606	24,55	0,0049
	7						2,210	17,4167	2,929	13,16	0,0091
	8						2,194	17,2833	2,739	10,76	0,0112
	9						0,120	0,0000	3,606	24,55	0,0049
	10						0,593	3,9417	3,233	17,69	0,0068
	1						0,236	0,0727	1,141	0,78	0,2829
	2						0,252	0,1455	1,141	0,78	0,2829
F	3	2,56	0,22	0,7490	1,7624	0,6884	0,276	0,2545	1,374	1,36	0,1620
	4						0,276	0,2545	1,298	1,15	0,1921
	5						0,316	0,4364	1,131	0,76	0,2904

Grupo	Partícula	Área superficial Partícula (cm ²)	Volume da Partícula (cm ³)	d _p (cm)	Área superficial da Esfera (cm ²)	Esfericidade	Volume do sólido Convexo (cm ³)	ICON	Maior dimensão (cm)	Volume da esfera circunscrita (cm ³)	IEC
	1						0,463	1,1045	1,550	1,95	0,1692
	2						0,450	1,0455	1,205	0,92	0,3602
G	3	3,367	0,33	0,8574	2,3094	0,6859	0,398	0,8091	1,205	0,92	0,3602
	4						0,490	1,2273	1,374	1,36	0,2430
	5						0,490	1,2273	1,298	1,15	0,2882
	1						1,750	0,2681	2,264	6,08	0,2271
	2						2,020	0,4638	2,264	6,08	0,2271
	3						1,870	0,3551	2,598	9,18	0,1503
	4						1,980	0,4348	2,264	6,08	0,2271
	5	9	1.38	1,3813	5 9943	0.6660	1,960	0,4203	2,291	6,30	0,2192
	6	5	1,50	1,5015	3,3343	0,0000	1,960	0,4203	2,693	10,23	0,1349
	7						1,830	0,3261	2,179	5,42	0,2547
	8						2,040	0,4783	2,345	6,75	0,2044
	9						1,880	0,3623	2,739	10,76	0,1283
	10						1,750	0,2681	2,449	7,69	0,1794
	1						5,667	0,4420	3,464	21,76	0,1806
	2						5,000	0,2723	3,742	27,44	0,1432
J	3	18,8	3,93	1,9579	12,0433	0,6406	5,000	0,2723	3,317	19,11	0,2057
	4						5,000	0,2723	3,742	27,44	0,1432
	5						5,000	0,2723	3,742	27,44	0,1432
	1						5,320	0,3869	3,181	16,85	0,2276
	2						5,277	0,3757	3,159	16,51	0,2324
К	3	18,454	3,836	1,9422	11,8505	0,6422	5,700	0,4859	3,052	14,89	0,2577
	4						5,815	0,5159	3,238	17,78	0,2158
	5						5,425	0,4142	3,202	17,19	0,2232
	1						20,000	0,1765	5,745	99,26	0,1713
	2						27,167	0,5980	6,403	137,46	0,1237
L	3	50	17	3,1902	31,9730	0,6395	20,000	0,1765	5,745	99,26	0,1713
	4						25,667	0,5098	5,831	103,81	0,1638
	5						24,000	0,4118	6,164	122,65	0,1386
	1						0,040	0,2500	0,748	0,22	0,1460
	2						0,040	0,2500	0,748	0,22	0,1460
M	3	0,72	0,032	0,3939	0,4874	0,6770	0,040	0,2500	0,663	0,15	0,2097
	4						0,032	0,0000	0,849	0,32	0,0999
	5						0,045	0,4063	0,640	0,14	0,2331
	1						0,363	0,4180	1,386	1,39	0,1836
	2						0,320	0,2500	1,327	1,22	0,2092
	3						0,320	0,2500	1,497	1,76	0,1457
N	4	2,88	0,256	0,7878	1,9497	0,6770	0,363	0,4180	1,281	1,10	0,2326
	5						0,363	0,4180	1,200	0,90	0,2829
	6						0,320	0,2500	1,400	1,44	0,1782
	7						0,320	0,2500	1,497	1,76	0,1457

Com as velocidades terminais das partículas, as densidades das partículas e dos líquidos, as viscosidades dos fluidos e o d_p , calculou-se os valores de $Re_p e C_D$ através das equações

$$C_D = \frac{4d_p(\rho_s - \rho)g}{3\rho v_t^2} \tag{II.11}$$

$$Re_p = \frac{d_p v_t \rho}{\mu} \tag{II.12}$$

Em seguida, com os valores de Re_p e C_D obtidos para cada partícula, representou-se a relação entre C_D e Re_p para cada fluido e depois para todos os fluidos em conjunto.

III.4 Correlações Empíricas para C_D e Re_p

Existem na literatura correlações para C_D e Re_p que permitem prever a velocidade terminal de partículas. A Tabela III.4 mostra correlações obtidas por Coelho & Massarani (1996) a partir dos dados experimentais de Pettyjohn & Christiansen (1948) para partículas isométricas, isto é, partículas esféricas ou na forma de poliedros regulares (tetraedro, cubo, octaedro, icosaedro e dodecaedro) (Massarani, 2002).

Tabela III.4 – Correlações de Coelho & Massarani (1996) com base nos dados de Pettyjohn & Christiansen (1948)

Correlação	n	Valor Médio e Desvio Padrão
$c_D = \left[\left(\frac{24}{K_1 R e} \right)^n + K_2^n \right]^{1/n}$	0,85	$\frac{(c_D)_{\exp}}{(c_D)_{\rm cor}} = 1,00 \pm 0,13$
$Re = \left[\left(\frac{K_{1}c_{D}Re^{2}}{24} \right)^{-n} + \left(\frac{c_{D}Re^{2}}{K_{2}} \right)^{-n/2} \right]^{-1/n}$	1,2	$\frac{(R_e)_{\rm exp}}{(R_e)_{\rm cor}} = 1,00 \pm 0,10$
$Re = \left[\left(\frac{24}{K_1(c_D / Re)} \right)^{n/2} + \left(\frac{K_2}{c_D / Re} \right)^n \right]^{1/n}$	1,3	$\frac{(Re)_{\rm exp}}{(Re)_{\rm cor}} = 1.00 \pm 0.14$

$$0,65 < \phi \le 1 \ e \ Re < 5 \times 10^4$$

$$Re = \frac{D_P U \rho_F}{\mu}, \ c_D Re^2 = \frac{4}{3} \frac{\rho_F (\rho_S - \rho_F) b D_P^3}{\mu^2}, \ c_D / Re = \frac{4}{3} \frac{(\rho_S - \rho_F) \mu b}{\rho_F^2 U^3}$$

 $K_1 = 0,843 \log_{10}(\phi/0,065), \ K_2 = 5,31 - 4,88\phi$

Fonte: Massarani, 2002.

Vale observar que tais correlações e a maioria das presentes na literatura, aplicam-se somente a partículas isométricas e preveem um mesmo valor de velocidade terminal para partículas que possuam a mesma esfericidade, mesmo d_p , e mesma densidade.

Dessa forma, baseando-se nas correlações obtidas por Coelho & Massarani e nos dados experimentais obtidos no presente trabalho, procurou-se obter novas correlações que pudessem ser utilizadas para estimar a velocidade terminal de partículas isométricas e também de partículas não isométricas com reentrâncias. Para tanto, fez-se o uso de mais dois fatores de forma além da esfericidade, o ICON e o IEC apresentados anteriormente.

Finalmente, foi resolvido um problema de otimização utilizando o *Solver* do programa *Microsoft Excel*, tendo como função objetivo o módulo da diferença relativa entre os valores de velocidade terminal obtidos experimentalmente e os valores previstos pelo novo modelo. Em seguida os resultados foram comparados com os previstos pelas correlações de Coelho & Massarani (1996) e com os resultados experimentais. A função objetivo encontra-se na equação III.2.

$$F.O. = \left| \frac{v_{texp} - v_{tmod}}{v_{texp}} \right|$$
(III.2)

CAPÍTULO IV - RESULTADOS E DISCUSSÃO

IV.1 – Diagramas C_D x Re_p

Os gráficos $C_D \ge Re_p$ para os ensaios com água destilada, solução aquosa de glicerina e óleo mineral encontram-se nas figuras IV.1, IV.2 e IV.3, respectivamente. Todas as tabelas contendo os dados de velocidade terminal e outros necessários para o cálculo de $C_D = Re_p$ estão dispostas nos Apêndices A, B e C. Nos diagramas foi traçada, para fins de balizamento, a curva correspondente à esfera lisa de acordo com a recente correlação desenvolvida por Morrison (Michigan Technological University, 2012):

$$C_D = \frac{24}{Re} + \frac{2.6(\frac{Re}{5.0})}{1 + (\frac{Re}{5.0})^{1.52}} + \frac{0.411(\frac{Re}{263.000})^{-7.94}}{1 + (\frac{Re}{263.000})^{-8.00}} + (\frac{Re^{0.80}}{461.000})$$

A figura IV.1 a seguir representa os resultados para os experimentos realizados em água destilada a 25,5°C.

Figura IV.1 – C_D x Re_p Água

Todas as partículas foram avaliadas no ensaio utilizando água destilada, atingindo uma faixa de Re_p mais elevada, variando entre valores de 100 e 10000. Já os valores obtidos para C_D ficaram compreendidos em uma faixa entre 1 e 100.

Os resultados mostram notada dispersão entre os pontos correspondentes a partículas pertencentes ao mesmo grupo. Essa dispersão ocorreu porque partículas com mesma esfericidade, densidade e diâmetro característico atingiram velocidades terminais diferentes nos testes realizados. Esse resultado reforça a ideia de que a esfericidade sozinha não é um bom fator de forma quando se está interessado em interação partícula-fluido. Sendo assim, partículas com a mesma esfericidade não necessariamente irão interagir da mesma maneira com o fluido.

Outra observação interessante é que as partículas que apresentam menores valores de esfericidade como, por exemplo, o grupo E, apresentaram maior dispersão quando comparados com partículas que possuem valores mais elevados de esfericidade como, por exemplo, o grupo D.

A figura IV.2 representa os resultados para os experimentos realizados em solução aquosa de glicerina a 25,5°C.

Figura IV.2 – C_D x Re_p Glicerina

Neste fluido foram analisadas todas as partículas excetuando-se o grupo B, pois este é constituído de um material que apresenta densidade muito próxima a do fluido impedindo a sua análise no mesmo.

No ensaio, foram atingidas faixas de valores de Re_p mais baixas que no ensaio com água destilada alcançando-se valores compreendidos entre 10 e 1000. A faixa de valores de C_D foi bastante próxima a do ensaio anterior.

Novamente foi observada a dispersão entre os pontos correspondentes a partículas do mesmo grupo, ratificando o grande desvio com relação ao comportamento previsto pelas correlações empíricas presentes na literatura que utilizam como fator de forma único a esfericidade.

A figura IV.3 a seguir representa os resultados para os experimentos realizados em óleo mineral a 27,5°C.

Figura IV.3 – C_D x Re_p Óleo

No ensaio utilizando-se óleo mineral, a faixa de valores de C_D e Re_p foi bastante semelhante à do ensaio com solução de glicerina. Mais uma vez foi observada uma maior dispersão dos pontos referentes a grupos de menor esfericidade quando comparados a grupos que apresentam maiores valores de esfericidade.

No referido ensaio, podemos observar novamente, valores de C_D e Re_p distintos para partículas do mesmo grupo, embora essa diferença seja ligeiramente mais sutil frente aos outros experimentos.

Uma visão geral com todos os dados experimentais obtidos pode ser encontrada na figura IV.4 a seguir.

Figura IV.4 – C_D x Re_p Visão Geral

Os experimentos realizados tiveram valores de Re_p compreendidos numa faixa entre 10 e 10000, enquanto os de C_D variaram de valores pouco abaixo de 1 até valores próximos a 100.

Com base nos resultados experimentais foi possível observar que partículas que possuem baixa esfericidade (grupo E) apresentam variações em seus valores de velocidades terminais mais marcantes quando comparadas com partículas de esfericidade mais elevada (grupo D). Entretanto, todos os grupos apresentaram dispersões significativas.

A partir das correlações envolvendo C_D , Re_p e ϕ largamente encontradas na literatura, os valores de velocidade terminal para partículas que possuem mesma esfericidade, mesmo d_p e que sejam constituídas do mesmo material deveriam ser iguais. Entretanto, ao analisarem-se os resultados obtidos, pode-se observar que isto não ocorre, indicando que, para as partículas analisadas no presente trabalho a esfericidade não é um bom fator de forma para determinação da velocidade terminal.

IV.2 – Novas Correlações para C_D e Re_p

A partir da resolução do problema de otimização, chegou-se às seguintes correlações baseadas nos dados experimentais do presente trabalho e nas correlações de Coelho & Massarani.

$$K1 = 0,111754 \log_{10} \left(\frac{IEC}{0,009}\right) \left(\frac{\rho_s}{\rho_l}\right)^{0,715811}$$

 $K2 = [10,15683 - 9,689551(\phi^{0,710244}) - 0,761911(1 + ICON^{0,931225})] \left(\frac{\rho_s}{\rho_l}\right)^{-0,22}$

$$Re_{p} = \left[\left(\frac{K1C_{D}Re_{p}^{2}}{24} \right)^{-n} + \left(\frac{C_{D}Re_{p}^{2}}{K2} \right)^{\frac{-n}{2,01086496}} \right]^{\frac{-1}{n}}$$

n = 2,82576

Vale lembrar que as correlações acima são válidas para valores de $\phi \ge 0,64$.

Após o cálculo do valor de Re_p da forma descrita acima, é fácil chegar aos valore de v_t e C_D através das equações descritas anteriormente. As figuras IV.5 e IV.6 a seguir mostram os gráficos de C_D x Re_p comparando os resultados obtidos experimentalmente com as correlações desenvolvidas por Coelho e Massarani (1996).

Figura IV.5 - Resultados Experimentais x Correlações de Coelho e Massarani

Figura IV.6 - Resultados Experimentais x Correlações de Coelho e Massarani (Ampliação)

Pode-se observar que as correlações desenvolvidas por Coelho & Massarani predizem uma mesma velocidade terminal e, portanto, um mesmo valor para $C_D e Re_p$, para partículas que possuem mesma esfericidade, mesmo d_p e mesma densidade. Comparando-se com os dados experimentais obtidos percebe-se que isso não é o que ocorre na prática, pois partículas que possuem mesma esfericidade, mesmo d_p e mesma densidade podem apresentar velocidades terminais diferentes, indicando que somente a esfericidade não é um bom fator de forma para determinação da velocidade terminal de partículas.

A nova correlação desenvolvida fez uso de 3 fatores de forma para descrever de forma mais fiel a interação partícula-fluido. Esses fatores são a esfericidade, o ICON e o IEC. As figuras IV.7 e IV.8 a seguir mostram os gráficos de $C_D \ge Re_p$ comparando os resultados obtidos experimentalmente com as novas correlações desenvolvidas fazendo o uso dos 3 fatores de forma, conforme descrito anteriormente.

Figura IV.7 - Resultados Experimentais x Nova Correlação

Figura IV.8 - Resultados Experimentais x Nova Correlação (Ampliação)

Pode-se observar que os valores obtidos com a nova correlação desenvolvida se ajustam aos dados experimentais de uma melhor forma que a correlação de Coelho & Massarani. Além disso, a correlação desenvolvida prevê valores de velocidade terminal diferentes para partículas de mesma esfericidade o que está de acordo com os dados experimentais.

As figuras IV.9 e IV.10 mostram uma visão geral dos resultados experimentais e das duas correlações.

Figura IV.9 - Visão geral dos dados experimentais e das correlações.

Figura IV.10 – Visão geral dos dados experimentais e das correlações. (Ampliação)

CAPÍTULO V – CONCLUSÕES E SUGESTÕES

V.1 – Conclusões

A partir dos resultados experimentais obtidos para a velocidade terminal das partículas testadas no presente trabalho, conclui-se que partículas que possuem mesma esfericidade, mesmo d_p e mesma densidade, porém formas diferentes, não necessariamente apresentam a mesma velocidade terminal, o que vai de encontro com o previsto por diversas correlações presentes na literatura.

Observou-se que a dificuldade da esfericidade em representar de forma fiel a forma da partícula e, portanto, em prever a sua velocidade terminal, é mais marcante em valores baixos de esfericidade. Entretanto, mesmo em valores altos, ou seja, próximos da unidade, tal fator de forma apresenta limitações. Partículas com reentrâncias significativas também apresentaram comportamentos mais desviados em relação aos esperados com base na esfericidade.

De forma a tentar prever de forma mais acurada o comportamento de partículas na interação partícula-fluido, utilizou-se outros dois fatores de forma em conjunto com a esfericidade, o ICON e o IEC. Obteve-se sucesso em construir uma nova correlação para predição da velocidade terminal que envolvesse esses três fatores com base nas correlações já existentes de Coelho e Massarani, que fazem uso somente da esfericidade.

Tal correlação apresentou resultados de predição de velocidade terminal significativamente mais condizentes com os resultados experimentais quando comparados com a correlção de Coelho e Massarani, inclusive predizendo velocidades terminais diferentes para partículas de mesma esfericidade o que está de acordo com os resultados experimentais.

A princípio, as correlações de Coelho e Massarani são válidas somente para partículas isométricas, porém como a literatura é escassa em relação a correlações apropriadas para partículas reentrantes, as mesmas acabam sendo utilizadas também para partículas não isométricas. No presente trabalho foram testadas tanto partículas reentrantes quanto convexas e a correlação desenvolvida descreveu bem os resultados experimentais obtidos nas condições do presente trabalho.

A análise criteriosa dos resultados experimentais e o resultado melhor obtido com a correlação utilizando os três fatores de forma definidos anteriormente quando comparados com a esfericidade isolada, leva a crer que uma nova abordagem simples e que promete melhor resultado na caracterização da forma das partículas consiste em utilizar um novo fator de forma que fosse função da esfericidade, ICON e IEC.

V.2 – Sugestões

Como uma continuação do presente trabalho recomenda-se a utilização de materiais e métodos mais elaborados. Tais modificações poderiam incluir a adição de um sistema de controle de temperatura com uma camisa de resfriamento/aquecimento ao redor da cuba de forma a manter as condições experimentais constantes e sob controle. Seria interessante instalar um sistema de sensores em diferentes regiões da cuba de forma a aumentar ainda mais a precisão das medidas referentes ao tempo de queda das partículas.

Além disso, a construção de uma nova cuba com dimensões um pouco maiores seria interessante no que tange a minimizar ainda mais os efeitos de parede e ao aumento da faixa de estudo do comportamento da velocidade de queda das partículas. A utilização de outros fluidos de diferentes viscosidades e densidades seria válida para aumentar a faixa de Re_p e C_D estudada.

No que se refere às partículas, propõe-se que seja realizado um planejamento experimental de forma a criar grupos de partículas com mesma esfericidade, ICON e IEC separadamente e com faixas desses índices bem distribuídas, de forma a facilitar o desenvolvimento de um novo fator de forma envolvendo tais índices.

Finalmente, acredita-se que ainda há espaço para a melhoria das correlações apresentadas testando outros parâmetros de ajuste que consigam representar de forma melhor ainda a interação partícula-fluido e suas características.

REFERÊNCIAS BIBLIOGRÁFICAS

ALLEN, T. Particle Size Measurement. 3. ed. Londres: Chapman & Hall, 1981.

CAETANO, M. J. L. **Ciência e Tecnologia da Borracha.** Disponível em: http://www.ctb.com.pt/?page_id=3592>. Acesso em: 15 maio 2013.

CHHABRA R. P.; AGARWAL L.; SINHA N. K. Drag on non-spherical particles: an evaluation of available methods. **Powder Technology**, n. 101, p. 288-295, 1999.

HAIDER, O Levenspiel. Drag coefficient and terminal velocity of spherical and non-spherical particles. **Powder Technology**, n.58, p. 63-70, 1989.

HÖLZER, A.; SOMMERFELD, M. New simple correlation formula for the drag coefficient of non-spherical particles. **ScienceDirect: Powder Technology,** n. 184, p. 361-365, 2008.

LOTH, E. Drag of non-spherical solid particles of regular and irregular shape. **ScienceDirect: Powder Technology,** n. 182, p. 342-353, 2008.

MASSARANI, G. Fluidodinâmica em Sistemas Particulados. 2. ed. E-Papers, 2002.

McCABE, W. L.; SMITH J.C.; HARRIOTT, P. Unit Operations of Chemical Engineering. 5. ed. Singapura: McGraw-HiII, Inc., 1993.

MENDES, L. V. R.; MELO T. M. Avaliação da esfericidade como um fator de forma na interação partícula-fluido. Projeto Final – Escola de Química, UFRJ, Rio de Janeiro, 2011.

MORRISON, F. A. **Data Correlation for Drag Coefficient for Sphere.** Department of Chemical Engineering, Michigan Technological University, Houghton, MI, 2013.

PERRY, J. H. Perry's Chemical Engineers Handbook. 8. ed. EUA: McGraw-Hill, Inc., 2008.

PETTYJOHN, E. S.; CHRISTIANSEN, E. B. Effect of Particle Shape as Free-Setting Rates of Isometric Particles. Chemical Engineering Progress, Vol. 43, p. 157-172, 1948.

WADELL, H. **Sphericity and roundness of particles**. Journal of Geology, Vol. 41. p. 310-331, 1932

WEN-CHING YANG et al. **Handbook of Fluidization and Fluid-Particle Systems.** 1. ed. New York, Marcel Dekker Inc., 2003.

APÊNDICE A – DADOS PARA ENSAIOS COM ÁGUA DESTILADA

				Vt (cm/s)				
Partícula	Ponto	1º	2 ⁰	3º	4º	5⁰	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	17,5439	16,3934	17,0940	18,0180	17,5439		
A1	2	18,1818	17,2414	17,6991	19,2308	17,6991	17,7693	0,7418
	3	17,6991	17,3913	18,1818	19,2308	17,3913		
	1	17,6991	17,3913	17,8571	17,0940	16,6667		
A2	2	17,6991	17,3913	16,6667	17,3913	16,8067	17,3131	0,4727
	3	18,1818	17,3913	16,6667	17,6991	17,0940		
	1	15,7480	16,2602	15,6250	15,3846	15,5039		
A3	2	15,3846	16,0000	14,9254	15,3846	15,6250	15,5041	0,3718
	3	14,9254	15,8730	15,1515	15,2672	15,5039		
	1	21,2766	-	18,3486	19,4175	20,0000		
A4	2	21,2766	-	19,2308	18,8679	20,0000	19,8948	1,1438
	3	21,2766	-	21,2766	18,3486	19,4175		
	1	21,5054	20,6186	-	20,0000	20,8333		
A5	2	20,6186	19,8020	-	19,4175	20,8333	20,2616	0,7499
	3	21,0526	19,6078	-	19,0476	19,8020		
B1	1	10,9290	10,0000	10,3093	9,9502	9,5238		
	2	11,1111	10,1523	10,5263	10,6383	9,8522	10,1013	0,1998
	3	10,3627	10,5263	10,5820	10,7527	10,3093		
	1	10,0000	10,2564	10,1523	9,9502	10,2041		
B2	2	10,4712	10,4167	10,0000	9,8039	10,0000	10,9071	0,7358
	3	10,0000	10,2564	10,2041	10,0000	9,8039		
	1	10,1010	10,7527	12,5000	10,2041	12,9032		
B3	2	10,9290	11,0497	10,7527	9,6618	10,9890	10,9442	0,8288
	3	10,9290	10,8696	10,5263	11,2994	10,6952		
	1	10,1523	11,1111	9,5238	10,2041	9,6154		
B4	2	10,3627	10,3627	10,2041	10,1523	9,5238	10,0835	0,4622
	3	10,4712	10,0000	10,0000	10,3093	9,2593		
	1	10,0000	10,7527	12,5000	10,9890	11,6279		
B5	2	10,2041	10,5263	11,1111	10,8108	11,7647	10,3684	0,4248
	3	10,6952	10,5820	9,6618	10,7527	11,6279		
	1	35,0877	35,0877	36,3636	37,0370	-		
C1	2	33,8983	36,3636	37,0370	35,0877	-	36,2625	1,6091
	3	37,7358	40,0000	35,0877	36,3636	-		
	1	29,8507	30,3030	30,3030	28,9855	29,4118		
C2	2	29,4118	29,8507	29,8507	29,8507	29,8507	29,7595	0,3529
	3	31,7460	29,8507	29,4118	29,8507	29,8507		
	1	34,4828	37,0370	34,4828	36,3636	38,4615		
C3	2	33,3333	35,7143	35,0877	35,0877	34,4828	34,9091	1,5858
	3	33,8983	33,3333	35,7143	33,8983	32,2581		

Tabela A.1 – Velocidades Terminais para os ensaios com água destilada

				Vt (cm/s)				
Partícula	Ponto	1º	2 ⁰	3º	4 ⁰	5º	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	29,4118	30,3030	31,7460	31,7460	31,7460		
C4	2	29,8507	31,2500	31,7460	30,3030	31,2500	31,0880	1,0386
	3	32,2581	30,3030	33,3333	30,3030	30,7692		
	1	28,5714	29,8507	31,7460	33,3333	32,7869		
C5	2	28,5714	32,2581	31,7460	31,7460	31,2500	31,7566	1,9365
	3	33,3333	35,7143	33,3333	29,8507	32,2581		
	1	26,3158	26,6667	26,3158	25,0000	25,3165		
D1	2	26,3158	27,0270	25,3165	24,6914	26,3158	26,1605	0,8923
	3	25,9740	26,3158	27,0270	25,6410	28,1690		
	1	26,6667	25,3165	25,3165	25,6410	25,0000		
D2	2	26,3158	25,3165	26,3158	25,9740	25,0000	25,6195	0,8408
	3	-	25,3165	27,3973	24,0964	25,0000		
	1	25,6410	26,3158	26,3158	26,6667	25,6410		
D3	2	25,0000	25,6410	26,6667	25,6410	25,6410	25,8230	0,6791
	3	25,3165	25,3165	-	24,6914	27,0270		
	1	27,0270	26,6667	25,3165	25,6410	27,3973		
D4	2	26,3158	27,0270	25,9740	26,3158	27,3973	26,4906	0,5875
	3	26,6667	26,3158	26,6667	26,3158	26,3158		
	1	27,0270	26,6667	25,9740	27,3973	-		
D5	2	25,9740	27,0270	26,3158	27,3973	-	26,3363	0,7664
	3	25,6410	25,6410	25,9740	25,0000	-		
	1	7,6923	7,7821	7,9051	7,7821	7,9051		
E1	2	7,4074	7,6923	7,9681	7,8740	7,4627	7,7295	0,2120
	3	7,6046	7,9681	8,0000	7,4906	7,4074		
	1	6,4516	-	6,5147	5,0891	-		
E2	2	4,5147	-	4,5147	-	-	5,3516	0,9099
	3	5,0891	-	5,0251	-	-		
	1	4,2827	4,3384	4,7962	4,2644	4,4346		
E3	2	4,5455	4,5147	4,6620	4,3956	4,5558	4,4658	0,1624
	3	4,5455	4,5351	4,1580	4,4444	4,5147		-
	1	6,3898	6,2696	6,4516	6,2696	6,1538		
E4	2	6,3091	6,5574	6,2500	6,6225	6,2696	6,3964	0,1638
	3	6,3291	6,6667	6,3091	6,6667	6,4309		
	1	5,1282	4,8780	5,1546	5,0761	4,8544		
E5	2	5,0505	5,1680	5,1813	4,9875	5,1282	5,0833	0,1028
	3	5,1282	5,1813	5,1546	5,0761	5,1020		-
	1	4,7962	-	-	-	-		
E6	2	4,7619	-	-	-	-	4,7790	0,0242
	3	-	-	-	-	-		

				Vt (cm/s)				
Partícula	Ponto	1º	2 ⁰	3º	4 ⁰	5⁰	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	4,8193	5,1948	4,9140	5,0633	5,1020		
E7	2	5,1282	5,1546	5 <i>,</i> 0633	5,2770	5,2910	5,1045	0,1335
	3	5,0761	5,0505	5,0125	5,3050	5,1151		
	1	5,9524	6,1350	6,0241	5,9880	6,1728		
E8	2	6,1350	6,2500	6,1538	5,9701	6,1350	6,1291	0,1051
	3	6,2696	6,2696	6,2305	6,1350	6,1162		
	1	3,9604	4,0816	4,2194	4,0080	-		
E9	2	3,9920	4,1237	4,0900	4,0241	-	4,0593	0,0714
	3	4,0323	4,1068	4,0000	4,0733	-		
	1	5,9172	5,5556	5,9524	5,8824	5,7971		
E10	2	5,7971	4,4543	5,7637	5,9524	5,7637	5,8162	0,1465
	3	5,7971	5,6022	5,6497	6,0790	5,9172		
	1	11,1111	11,1111	11,8343	11,4943	11,2360		
F1	2	11,1732	11,4286	11,5607	11,5607	11,3636	11,3693	0,2638
	3	11,2994	10,8696	11,8343	11,2994	11,3636		
	1	10,9890	11,4286	11,7647	11,1732	11,9760		
F2	2	11,6279	11,4943	11,4943	11,3636	11,1732	11,4400	0,2940
-	3	11,4943	10,9290	11,6279	11,7647	11,2994		
	1	12,5000	12,1212	11,5607	11,9048	12,1951		
F3	2	12,4224	12,4224	11,9048	11,6279	11,9760	11,9901	0,3436
	3	11,3636	12,3457	11,8343	11,9760	11,6959		
	1	11,6959	12,2699	12,6582	12,9032	11,7647		
F4	2	11,9760	12,6582	12,5000	13,0719	11,1732	12,2839	0,6117
	3	11,8343	12,5786	12,7389	13,0719	11,3636		
	1	13,1579	13,8889	13,5135	13,6986	13,7931		
F5	2	13,2450	13,5135	13,5135	13,4228	13,3333	13,3803	0,2778
	3	13,2450	12,9870	13,3333	13,0719	12,9870		
	1	12,5000	12,2699	12,6582	12,8205	12,7389		
G1	2	13,0719	11,9760	12,7389	13,0719	12,5786	12,7081	0,3048
	3	12,7389	12,8205	13,1579	12,8205	12,6582		
	1	13,8889	14,2857	13,7931	15,0376	13,6986		
G2	2	13,7931	14,1844	13,4228	14,4928	13,9860	14,0616	0,3942
	3	13,8889	14,4928	14,0845	13,8889	13,9860		
	1	14,2857	14,4928	14,2857	14,5985	14,8148		
G3	2	14,1844	14,4928	14,2857	14,4928	15,0376	14,4354	0,2895
	3	13,8889	14,3885	14,0845	14,4928	14,7059		
	1	16,6667	18,8679	17,3913	19,4175	18,6916		
G4	2	16,6667	18,1818	17,5439	20,4082	19,4175	18,2744	1,1778
	3	16,8067	17,5439	17,8571	19,6078	19,0476		

				Vt (cm/s)				j j
Partícula	Ponto	1º	2 ⁰	3º	4 ⁰	5⁰	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	17,0940	17,6991	17,3913	18,5185	17,5439		
G5	2	16,8067	17,6991	17,8571	18,5185	17,6991	17,6373	0,4587
	3	17,3913	17,2414	17,5439	17,6991	17,8571		
	1	14,5985	13,6054	15,1515	14,5985	10,9890		
1	2	14,4928	13,3333	14,7059	13,9860	13,6054	14,1338	0,5639
	3	14,2857	13,3333	14,2857	14,2857	13,6054		
	1	15,0376	16,6667	17,0940	16,2602	17,0940		
12	2	15,3846	16,0000	16,6667	16,1290	16,2602	16,1148	0,5941
	3	15,6250	16,2602	15,7480	15,7480	15,7480		
	1	14,2857	13,6986	14,5985	13,6054	12,5000		
13	2	13,0719	13,3333	14,5985	12,9032	12,6582	13,3269	0,7985
	3	11,9760	-	13,5135	12,5000	13,3333		
	1	14,5985	14,4928	14,7059	14,5985	14,5985		
14	2	14,9254	14,8148	15,2672	14,5985	14,9254	14,8335	0,2544
	3	15,1515	14,8148	14,7059	15,0376	15,2672		
	1	14,5985	14,5985	15,6250	15,5039	15,0376		
15	2	14,4928	13,8889	15,1515	14,2857	14,2857	14,5956	0,5410
-	3	13,9860	14,9254	14,1844	14,0845	14,2857		
	1	14,2857	15,0376	14,5985	14,3885	14,7059		
16	2	14,5985	14,9254	14,2857	14,1844	15,0376	14,5226	0,3707
	3	14,9254	14,2857	14,7059	13,9860	13,8889		
	1	14,9254	15,7480	14,7059	16,0000	16,1290		
17	2	15,2672	15,5039	14,4928	15,0376	15,3846	15,2973	0,6062
	3	15,0376	15,8730	14,7059	14,3885	16,2602		
	1	15,7480	15,8730	15,6250	16,5289	14,9254		
18	2	15,1515	15,3846	16,0000	16,6667	15,3846	15,7078	0,6567
	3	14,7059	14,8148	16,6667	16,3934	15,7480		
	1	18,8679	17,6991	15,7480	18,8679	16,5289		
19	2	18,0180	17,0940	16,1290	17,5439	17,0940	17,2831	0,8828
	3	17,5439	16,6667	16,8067	17,5439	17,0940		
	1	14,5985	14,9254	17,0940	14,2857	15,3846		
110	2	14,2857	13,6986	17,0940	13,8889	17,2414	15,1060	1,2939
	3	14,5985	14,1844	15,0376	13,6054	16,6667		
	1	16,9492	18,1818	16,1290	16,9492	17,6991		
J1	2	15,8730	18,1818	16,2602	16,6667	16,6667	16,8490	0,7775
	3	15,8730	17,5439	16,2602	16,2602	17,2414		
	1	-	14,7059	14,3885	14,5985	-		
J2	2	-	14,2857	14,4928	15,0376	-	14,6391	0,2871
	3	-	14,4928	14,5985	15,1515	-		

				Vt (cm/s)				
Partícula	Ponto	1º	2 ⁰	3º	4 ⁰	5º	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	15,3846	15,7480	14,8148	15,3846	-		
J3	2	14,9254	15,1515	14,3885	15,5039	-	15,0478	0,4094
	3	14,5985	15,0376	14,5985	15,0376	-		
	1	13,9860	14,2857	13,6054	14,7059	-		
J4	2	13,8889	14,2857	15,3846	15,0376	-	14,6635	0,6863
	3	14,5985	15,3846	15,8730	14,9254	-		
	1	15,3846	14,5985	14,3885	14,4928	14,7059		
J5	2	14,5985	14,2857	14,8148	16,1290	15,1515	14,9320	0,5994
	3	14,5985	14,5985	14,7059	16,2602	15,2672		
	1	15,3846	15,7480	17,2414	16,1290	17,3913		
K1	2	16,5289	15,8730	20,4082	19,0476	15,3846	16,8877	1,7885
	3	15,3846	14,8148	18,8679	19,6078	15,5039		
	1	15,0376	15,5039	15,7480	16,5289	15,7480		
К2	2	16,2602	18,0180	16,6667	15,6250	18,1818	16,6098	1,4166
	3	17,5439	19,0476	15,1515	15,0376	19,0476		
	1	16,6667	16,2602	16,2602	14,7059	16,1290		
КЗ	2	15,6250	16,2602	16,6667	16,1290	15,6250	16,2152	0,6583
	3	15,8730	17,5439	16,2602	17,0940	16,1290		
	1	15,0376	15,2672	16,2602	16,5289	14,5985		
К4	2	15,8730	15,3846	16,3934	17,0940	15,7480	15,7906	0,6640
	3	16,2602	15,1515	15,3846	15,7480	16,1290		
	1	18,0180	15,2672	16,6667	15,7480	15,7480		
K5	2	16,2602	14,5985	17,3913	14,7059	15,0376	15,7979	1,1413
	3	16,5289	14,7059	17,0940	14,4928	14,7059		
	1	20,0000	24,0964	24,3902	20,8333	21,9780		
L1	2	19,6078	23,2558	23,8095	21,5054	22,2222	21,7611	1,6528
	3	20,2020	21,2766	22,9885	19,4175	20,8333		
	1	21,5054	22,9885	21,7391	25,3165	21,9780		
L2	2	20,6186	23,8095	21,5054	22,2222	22,2222	22,2024	1,3985
	3	20,8333	24,3902	21,2766	20,4082	22,2222		
	1	22,4719	21,0526	21,0526	22,4719	21,2766		
L3	2	21,9780	21,7391	22,2222	21,2766	20,8333	21,6883	0,5289
	3	21,9780	22,2222	21,5054	21,7391	21,5054		
	1	22,4719	21,2766	22,9885	21,7391	20,0000		
L4	2	21,2766	20,2020	22,7273	23,2558	19,4175	21,6153	1,1974
	3	22,2222	20,2020	22,4719	22,4719	21,5054		
	1	20,6186	21,5054	21,2766	20,0000	20,8333		
L5	2	20,6186	20,8333	20,0000	20,6186	21,7391	20,8056	0,8243
	3	20,6186	20,0000	19,4175	21,2766	22,7273		

					Vt Final (am (a)			
Partícula	Ponto	1º	2 ⁰	3º	4º	5º	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	-	13,6986	14,1844	14,3885	14,1844		
M1	2	-	14,1844	14,3885	14,2857	14,7059	14,2926	0,3259
	3	-	13,7931	14,7059	14,2857	14,7059		
	1	14,0845	14,7059	14,5985	15,0376	14,5985		
M2	2	14,5985	14,4928	14,7059	14,7059	14,5985	14,6814	0,2605
	3	14,8148	14,3885	14,9254	15,1515	14,8148		
	1	15,8730	15,5039	16,6667	16,2602	15,0376		
M3	2	15,5039	15,3846	11,0497	16,5289	15,0376	15,1308	1,7669
	3	15,8730	15,7480	10,9290	16,5289	15,0376		
	1	14,3885	16,0000	14,9254	14,4928	14,7059		
M4	2	13,3333	15,7480	14,5985	13,7931	14,1844	14,5346	0,9499
	3	13,6054	16,5289	14,2857	13,2450	14,1844		
	1	17,5439	-	17,0940	16,8067	16,9492		
M5	2	17,2414	-	17,6991	16,3934	16,8067	16,9955	0,4387
	3	16,6667	-	17,3913	16,2602	17,0940		
N1	1	23,8095	23,8095	24,0964	22,9885	23,8095		
	2	22,4719	25,0000	24,0964	21,9780	23,2558	23,4348	1,1551
	3	22,2222	23,8095	25,9740	22,2222	21,9780		
	1	21,2766	20,8333	21,2766	20,4082	20,4082		
N2	2	21,2766	20,0000	21,5054	20,6186	20,6186	20,9705	0,6784
	3	21,5054	21,5054	21,7391	19,6078	21,9780		
	1	20,0000	20,4082	20,4082	20,6186	21,5054		
N3	2	20,4082	20,8333	20,2020	20,2020	21,0526	20,6576	0,4887
	3	21,2766	20,2020	21,5054	20,4082	20,8333		
	1	24,3902	26,6667	25,3165	23,5294	24,3902		
N4	2	25,3165	25,9740	25,6410	25,9740	23,8095	25,0565	0,9580
	3	25,9740	25,0000	25,0000	29,4118	23,8095		
	1	25,6410	25,3165	25,0000	25,0000	24,3902		
N5	2	25,0000	23,8095	25,3165	24,3902	25,9740	24,9038	0,8666
	3	23,8095	23,8095	26,3158	23,8095	25,9740		
	1	19,6078	19,2308	-	20,4082	19,6078		
N6	2	19,8020	19,4175	-	20,0000	19,8020	19,8253	0,3890
	3	20,4082	20,0000	-	20,2020	19,4175		
	1	21,0526	20,0000	19,8020	21,7391	21,0526		
N7	2	20,6186	19,8020	20,2020	21,2766	21,5054	20,7679	0,6827
	3	20,8333	21,7391	21,2766	20,6186	20,0000		

Partícula	Vt (cm/s)	ρ _{líquido} (g/cm³)	ρ _{sólido} (g/cm ³)	μ (Poise)	C _D	Rep
A1	17,7693	0,997	1,437	0,0088	1,80	1974,00
A2	17,3131	0,997	1,437	0,0088	1,89	1923,32
A3	15,5041	0,997	1,437	0,0088	2,36	1722,36
A4	19,8948	0,997	1,437	0,0088	1,43	2210,12
A5	20,2616	0,997	1,437	0,0088	1,38	2250,87
B1	10,1013	0,997	1,166	0,0088	3,09	1618,43
B2	10,9071	0,997	1,166	0,0088	2,65	1747,54
B3	10,9442	0,997	1,166	0,0088	2,63	1753,48
B4	10,0835	0,997	1,166	0,0088	3,10	1615,58
B5	10,3684	0,997	1,166	0,0088	2,94	1661,22
C1	36,2625	0,997	1,700	0,0088	1,38	8056,84
C2	29,7595	0,997	1,700	0,0088	2,05	6612,00
C3	34,9091	0,997	1,700	0,0088	1,49	7756,13
C4	31,0880	0,997	1,700	0,0088	1,88	6907,16
C5	31,7566	0,997	1,700	0,0088	1,80	7055,73
D1	26,1605	0,997	1,437	0,0088	1,05	3661,57
D2	25,6195	0,997	1,437	0,0088	1,09	3585,84
D3	25,8230	0,997	1,437	0,0088	1,07	3614,32
D4	26,4906	0,997	1,437	0,0088	1,02	3707,77
D5	26,3363	0,997	1,437	0,0088	1,03	3686,16
E1	7,7295	0,997	2,440	0,0088	19,37	533,62
E2	5,3516	0,997	2,440	0,0088	40,42	369,46
E3	4,4658	0,997	2,440	0,0088	58,04	308,31
E4	6,3964	0,997	2,440	0,0088	28,29	441,58
E5	5,0833	0,997	2,440	0,0088	44,80	350,93
E6	4,7790	0,997	2,440	0,0088	50,68	329,93
E7	5,1045	0,997	2,440	0,0088	44,42	352,40
E8	6,1291	0,997	2,440	0,0088	30,81	423,14
E9	4,0593	0,997	2,440	0,0088	70,25	280,24
E10	5,8162	0,997	2,440	0,0088	34,22	401,53
F1	11,3693	0,997	1,316	0,0088	2,42	960,64
F2	11,4400	0,997	1,316	0,0088	2,39	966,62
F3	11,9901	0,997	1,316	0,0088	2,18	1013,09
F4	12,2839	0,997	1,316	0,0088	2,08	1037,92
F5	13,3803	0,997	1,316	0,0088	1,75	1130,56
G1	12,7081	0,997	1,316	0,0088	2,22	1229,15
G2	14,0616	0,997	1,316	0,0088	1,81	1360,07
G3	14,4354	0,997	1,316	0,0088	1,72	1396,22
G4	18,2744	0,997	1,316	0,0088	1,07	1767,54

Tabela A.2 – Cálculo de $C_{\rm D}$ e $Re_{\rm p}$ para a água destilada

Partícula	Vt (cm/s)	ρ _{líquido} (g/cm ³)	ρ _{sólido} (g/cm ³)	μ (Poise)	C _D	Rep
G5	17,6373	0,997	1,316	0,0088	1,15	1705,92
11	14,1338	0,997	1,193	0,0088	1,78	2202,45
12	16,1148	0,997	1,193	0,0088	1,37	2511,15
13	13,3269	0,997	1,193	0,0088	2,00	2076,71
14	14,8335	0,997	1,193	0,0088	1,62	2311,48
15	14,5956	0,997	1,193	0,0088	1,67	2274,41
16	14,5226	0,997	1,193	0,0088	1,69	2263,04
17	15,2973	0,997	1,193	0,0088	1,52	2383,75
18	15,7078	0,997	1,193	0,0088	1,44	2447,72
19	17,2831	0,997	1,193	0,0088	1,19	2693,19
I10	15,1060	0,997	1,193	0,0088	1,56	2353,94
J1	16,8490	0,997	1,193	0,0088	1,78	3721,57
J2	14,6391	0,997	1,193	0,0088	2,35	3233,44
J3	15,0478	0,997	1,193	0,0088	2,23	3323,72
J4	14,6635	0,997	1,193	0,0088	2,34	3238,82
J5	14,9320	0,997	1,193	0,0088	2,26	3298,14
К1	16,8877	0,997	1,193	0,0088	1,75	3700,14
К2	16,6098	0,997	1,193	0,0088	1,81	3639,23
КЗ	16,2152	0,997	1,193	0,0088	1,90	3552,78
К4	15,7906	0,997	1,193	0,0088	2,01	3459,75
К5	15,7979	0,997	1,193	0,0088	2,00	3461,36
L1	21,7611	0,997	1,193	0,0088	1,73	7831,61
L2	22,2024	0,997	1,193	0,0088	1,67	7990,43
L3	21,6883	0,997	1,193	0,0088	1,75	7805,42
L4	21,6153	0,997	1,193	0,0088	1,76	7779,12
L5	20,8056	0,997	1,193	0,0088	1,90	7487,72
M1	14,2926	0,997	1,880	0,0088	2,23	635,11
M2	14,6814	0,997	1,880	0,0088	2,12	652,39
M3	15,1308	0,997	1,880	0,0088	1,99	672,36
M4	14,5346	0,997	1,880	0,0088	2,16	645,86
M5	16,9955	0,997	1,880	0,0088	1,58	755,22
N1	23,4348	0,997	1,880	0,0088	1,66	2082,71
N2	20,9705	0,997	1,880	0,0088	2,07	1863,70
N3	20,6576	0,997	1,880	0,0088	2,14	1835,89
N4	25,0565	0,997	1,880	0,0088	1,45	2226,84
N5	24,9038	0,997	1,880	0,0088	1,47	2213,26
N6	19,8253	0,997	1,880	0,0088	2,32	1761,92
N7	20,7679	0,997	1,880	0,0088	2,11	1845,69

APÊNDICE B – DADOS PARA ENSAIOS COM SOLUÇÃO DE GLICERINA

				Vt (cm/s)					
Partícula	Ponto	1º	2 ⁰	3º	4º	5⁰	Vt Final (cm/s)	Desvio	
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão	
	1	13,6054	13,6986	13,6054	13,5135	13,7931			
A1	2	13,6986	13,6054	13,6054	13,3333	13,3333	13,5274	0,1577	
	3	13,3333	13,3333	13,3333	13,6054	13,5135			
	1	13,1579	13,3333	13,1579	13,6054	13,9860			
A2	2	12,5000	12,9870	13,3333	13,3333	13,3333	13,2538	0,3536	
	3	12,9870	12,9032	13,1579	13,6986	13,3333			
	1	12,2699	12,5000	12,2699	11,9760	12,0482			
A3	2	12,5786	12,2699	11,9760	11,7647	11,9760	12,1805	0,2599	
	3	12,5000	12,1212	11,7647	12,2699	12,4224			
	1	15,2672	14,2857	14,8148	14,9254	14,8148			
A4	2	15,3846	14,5985	14,7059	14,7059	15,0376	14,7447	0,3944	
	3	15,1515	13,8889	14,2857	14,5985	14,7059			
	1	15,7480	14,9254	14,3885	14,3885	14,2857			
A5	2	15,8730	14,9254	14,0845	14,5985	15,0376	14,8795	0,6752	
	3	16,2602	14,5985	13,8889	15,1515	15,0376			
C1	1	29,4118	27,7778	27,7778	28,1690	29,4118			
	2	28,9855	28,5714	26,3158	27,7778	28,9855	28,1701	0,9368	
	3	28,5714	31,7460	27,0270	27,0270	28,5714			
	1	24,3902	24,0964	25,6410	25,3165	25,6410			
C2	2	23,8095	24,6914	24,6914	25,0000	25,0000	24,7065	0,6357	
	3	24,0964	24,0964	24,0964	24,3902	25,6410			
	1	29,8507	30,3030	29,4118	30,3030	29,8507			
C3	2	29,8507	29,4118	28,5714	28,5714	30,7692	29,6998	0,9193	
	3	30,3030	29,4118	28,5714	28,5714	31,7460			
	1	25,0000	25,3165	25,9740	27,7778	26,6667			
C4	2	25,0000	26,3158	25,0000	28,1690	27,0270	26,2010	1,1412	
	3	25,0000	25,0000	25,9740	27,3973	27,3973			
	1	26,6667	26,3158	25,6410	25,9740	28,5714			
C5	2	27,0270	26,6667	25,9740	25,3165	26,3158	26,2001	0,4579	
	3	26,3158	25,9740	26,6667	25,9740	25,9740			
	1	21,2766	20,0000	20,0000	19,8020	19,0476			
D1	2	19,6078	20,0000	20,6186	20,0000	19,4175	19,9081	0,5557	
	3	19,6078	19,4175	19,4175	20,4082	20,0000			
	1	20,6186	20,2020	21,9780	25,0000	21,7391			
D2	2	21,9780	19,8020	21,5054	22,9885	20,2020	20,9502	0,9516	
02	3	20,4082	19,8020	21,0526	20,6186	20,4082			
	1	20,6186	19,0476	22,2222	20,0000	20,6186			
D3	2	20,0000	19,6078	22,2222	21,0526	20,6186	20,4370	1,1236	
	3	18,8679	19,2308	20,6186	22,2222	19,6078			

Tabela B.1 – Velocidades Terminais para os ensaios com solução de glicerina

Partícula	Ponto	1º	2 ⁰	<u>3</u> ⁰	4 ⁰	5⁰	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
D4	1	22,2222	20,6186	20,6186	22,2222	21,0526	21,1778	0,9188
	2	23,2558	20,2020	20,8333	20,6186	20,6186		
	3	20,8333	19,8020	21,9780	21,0526	21,7391		
	1	20,0000	-	20,6186	20,2020	22,2222	19,9202	0,4872
D5	2	19,4175	-	20,0000	19,4175	20,8333		
	3	19,6078	-	19,6078	19,4175	20,0000		
	1	4,5455	-	-	5,0000	-	_	-
E1	2	-	-	-	-	-		
	3	-	-	-	-	-		
	1	3,5088	-	3,9216	4,2553	4,2827	3,9545	0,2086
E2	2	3,8462	-	3,7453	3,9448	4,0816		
	3	4,0241	-	3,9216	3,9216	4,0000		
	1	3,2415	3,4130	3,3727	4,1322	4,0816	3,6852	0,2573
E3	2	3,5907	3,5524	3,4662	3,8986	3,7951		
	3	3,7736	3,7244	3,5651	3,8241	3,8462		
	1	4,6838	4,7170	5,0891	5,4201	6,5147	5,2820	0,5160
E4	2	4,9505	5,0505	4,8780	5,1414	6,1350		
	3	5,1680	5,2219	5,0761	5,3191	5,8651		
	1	3,3557	3,4247	3,6101	3,7037	4,6189	3,7152	0,2162
E5	2	3,7037	3,5907	3,5907	3,5842	4,1929		
	3	3,9448	3,8241	3,8241	3,7951	3,8685		
	1	2,9985	3,1250	3,1250	3,3333	3,8462	3,2677	0,1389
E6	2	3,3557	3,2787	3,2415	3,2787	3,4483		
	3	-	3,4483	-	3,3898	3,1898		
E7	1	4,0241	4,1152	4,4444	5,0891	5,2356	4,5868	0,3653
	2	4,4150	4,2194	4,3197	4,7281	5,0761		
	3	4,7281	4,3478	4,5767	4,6512	4,8309		
E8	1	3,3727	3,6232	3,6101	4,1322	4,6512	3,9514	0,3074
	2	3,7951	3,8241	3,8168	3,8911	4,2827		
	3	4,0241	3,9920	4,1152	4,0080	4,1322		
E9	1	2,7548	2,8818	3,1104	3,3727	3,6430	3,2266	0,2207
	2	3,1104	3,0769	3,1546	3,2787	3,3501		
	3	3,3670	3,2258	3,3333	3,3898	3,3501		
E10	1	4,6512	4,8426	5,0378	5,7143	5,6497	5,1750	0,3152
	2	5,0000	4,8780	4,9628	5,4054	5,4945		
	3	5,1680	5,0000	5,0891	5,2219	5,5096		
F1	1	7,6923	7,9365	8,0645	8,2988	8,4746	7,8655	
	2	7,4906	7,6628	7,7220	7,8431	8,2645		0,3227
	3	7,4349	7,6923	7,5758	7,6336	8,1967		

Partícula	Ponto	1º	2 ⁰	<u>3</u> ⁰	4 ⁰	5⁰	Vt Final (cm/s)	Desvio
	ļ	Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
F2	1	7,4074	7,5188	7,6046	8,0000	8,1967	7,5848	0,3022
	2	7,2202	7,4074	7,3801	7,7821	8,0000		
	3	7,2993	7,2993	7,3529	7,4906	7,8125		
	1	7,3260	7,3260	7,6046	7,8740	8,8106	7,7348	0,4877
F3	2	7,4349	7,3260	7,6336	7,6923	8,6957		
	3	7,4906	7,5758	7,4074	7,4906	8,3333		
F4	1	8,0972	8,2305	7,5758	7,4906	8,0972	7,7683	0,2943
	2	8,0000	8,0000	7,3801	7,5472	7,7519		
	3	8,0645	7,8125	7,3260	7,5472	7,6046		
	1	8,4034	8,6580	8,9286	9,2166	9,2166	8,7309	0,3070
F5	2	8,3333	8,6957	8,6580	8,9286	9,0909		
	3	8,3333	8,5106	8,5470	8,4746	8,9686		
	1	8,8106	8,8106	9,4340	10,0000	9,2166		0,1965
G1	2	8,8889	9,0909	9,1743	9,4340	9,0909	9,1126	
	3	9,0498	9,2166	9,0909	9,2593	9,0090		
	1	10,6383	10,5820	10,8108	11,8343	11,1111	10,7426	0,2741
G2	2	10,4167	10,4712	11,1732	11,1732	10,8696		
	3	10,3627	10,5820	10,5820	10,6952	10,9290		
	1	9,9502	10,4167	10,1523	10,6383	10,9290	10,3162	0,2787
G3	2	10,1523	10,3627	10,1010	10,4712	10,5820		
	3	10,1523	10,2041	9,8522	10,4167	10,3627		
	1	10,6952	10,8696	11,4286	11,9048	11,8343	10,9986	0,5101
G4	2	10,4167	10,6383	10,9290	11,3636	11,5607		
	3	10,3627	10,3627	10,7527	11,0497	10,8108		
	1	10,3627	10,4167	11,1111	11,6279	10,9890	10,6015	0,4305
G5	2	10,1523	10,3093	10,5263	11,0497	10,6952		
	3	10,1523	10,1523	10,2564	10,6952	10,5263		
11	1	4,2553	4,2373	4,8426	5,0378	5,3619	4,4174	0,4561
	2	4,0000	3,9216	4,3197	4,5147	4,9505		
	3	3,9448	3,8610	4,1667	4,2283	4,6189		
12	1	6,1162	5,3908	5,8309	6,1162	6,2500	5,4985	0,4347
	2	5,2632	5,0891	5,2632	5,4945	5,8824		
	3	5,0378	4,9383	5,0891	5,2219	5,4945		
13	1	4,9628	5,3050	5,5556	5,8824	6,0060	5,2087	0,4387
	2	4,6948	4,8426	5,0761	5,4054	5,6818		
	3	4,6512	4,6948	4,8780	5,0891	5,4054		
14	1	5,0505	5,3050	5,5096	6,0423	6,1728	5,2883	0,4798
	2	4,7847	4,8662	5,0378	5,5096	5,9347		
	3	4,7847	4,7281	4,9140	5,1282	5,5556		

Partícula	Ponto	1º	2 ⁰	<u>3</u> ⁰	4 º	5⁰	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
15	1	4,6404	4,9628	4,9140	5,4348	5,8309	4,8179	0,4638
	2	4,3384	4,5455	4,5455	4,9505	5,4054		
	3	4,3573	4,3103	4,3478	4,6083	5,0761		
	1	4,7962	5,0000	5,4054	5,5096	5,9347	4,9801	0,4633
16	2	4,4743	4,6083	4,7962	5,0378	5,5556		
	3	4,4150	4,4444	4,6189	4,8426	5,2632		
	1	5,0000	5,2632	5,4945	5,8140	6,1162	5,2377	0,4362
17	2	4,6512	4,9261	5,1282	5,3619	5,7637		
	3	4,6512	4,7962	5,0000	5,0891	5,5096		
	1	4,5872	4,8426	5,1282	5,6022	5,8309	4,8229	0,4980
18	2	4,3478	4,4444	4,5767	4,8780	5,4496		
	3	4,2827	4,2918	4,4053	4,5872	5,0891		
	1	5,6022	5,6657	6,0606	6,1162	6,3291	5,6082	0,4098
19	2	5,2770	5,3191	5,5096	-	6,1162		
	3	5,0891	5,1282	5,3191	-	5,8824		
	1	-	5,3476	6,1920	5,9701	5,7143	5,3775	0,6879
110	2	-	4,7619	5,8140	5,3476	-		
	3	-	4,3860	5,7637	-	-		
	1	6,0606	6,7114	7,2464	7,6923	7,6046	6,7251	0,6161
J1	2	5,7637	6,4103	6,6225	7,2202	7,0423		
	3	5,6497	6,3694	6,5147	6,8259	7,1429		
	1	5,5096	6,3091	6,5574	7,0423	6,8027	6,0871	0,5373
J2	2	5,2219	5,8140	6,0606	6,3291	6,5359		
	3	5,2493	5,6980	5,8651	6,0606	6,2500		
	1	5,1282	6,1728	6,2893	7,1942	7,4074	6,0629	0,7804
J3	2	4,8077	5,8824	5,7803	6,5789	6,8259		
	3	4,8077	5,7637	5,6657	6,2500	6,3898		
J4	1	5,7803	6,3898	6,6667	7,4074	6,6667	6,2453	0,4812
	2	5,7143	6,0606	6,1162	6,7568	6,3898		
	3	5,6497	5,8309	5,9347	6,3091	6,0060		
J5	1	-	6,1920	6,6225	7,0671	7,4627	6,4049	0,5209
	2	-	5,8824	6,0606	6,5147	6,8027		
	3	-	5,7971	5,8824	6,0606	6,5147		
К1	1	5,4795	6,0060	6,3898	6,3898	5,7637	5,6716	0,4691
	2	4,9751	5,5556	5,7143	6,1162	5,4945		
	3	5,1414	-	5,4795	5,9347	5,1813		
К2	1	5,6497	6,0606	6,3492	7,0671	5,7971	5,7165	0,3424
	2	5,2219	5,7143	5,8824	6,3091	5,5096		
	3	5,4054	5,5556	5,4795	5,7637	5,3333		
				Vt (cm/s)				
-----------	-------	-----------------	------------	-----------	------------	---------	-----------------	--------
Partícula	Ponto	1º	2 ⁰	3º	4 ⁰	5º	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	5,7637	5,9347	6,6007	6,8259	5,9347		
КЗ	2	5,3619	5,6657	6,2696	6,8027	5,5556	5,8804	0,5368
	3	5,1680	5,4054	5,5556	6,0423	5,3191		
	1	5 <i>,</i> 4945	5,8140	6,3291	6,0423	5,6022		
K4	2	5,2219	5,4645	5,6497	-	5,3050	5,4149	0,2219
	3	5,0891	5,2219	5,4795	-	5,2219		
	1	5,1151	5,6657	5,9524	6,5359	5,4496		
К5	2	4,8780	5,2632	5,4054	5,8824	5,0761	5,3237	0,5034
	3	4,7619	5,0378	-	5,3050	4,9140		
	1	7,8125	9,3897	10,3093	8,1967	8,8889		
L1	2	7,6923	8,2305	9,3897	7,9051	8,4388	8,4495	0,7562
	3	7,7821	8,0000	8,7336	8,1301	7,8431		
	1	8,4034	7,4074	8,9286	8,5837	9,0909		
L2	2	7,4627	6,8966	8,2988	7,8740	8,8496	7,9424	0,7414
	3	7,2202	6,9686	7,5188	7,2993	8,3333		
	1	7,9051	9,5238	8,4746	8,8496	10,1010		
L3	2	7,3260	8,0000	7,2993	7,9051	9,8522	8,2139	0,9875
	3	7,4906	7,6046	6,9930	7,2993	8,5837		
	1	7,4349	8,2305	8,8106	8,6957	8,6957		
L4	2	6,9930	7,4074	8,0000	8,0000	7,6923	7,8013	0,5947
	3	6,9686	7,5758	7,2464	7,5758	7,6923		
	1	-	8,0000	9,0498	8,2305	9,0909		
L5	2	-	7,6046	8,3333	8,7719	8,8496	8,3448	0,5324
	3	-	7,4074	8,1301	8,4388	8,2305		
	1	10,6952	10,8696	10,9290	10,8696	11,1111		
M1	2	10,0000	10,1523	10,5263	10,5263	11,0497	10,5313	0,4218
	3	9,8522	9,8039	10,5263	10,3627	10,6952		
	1	10,5263	10,8696	11,1111	11,1111	10,7527		
M2	2	10,3627	10,5263	10,6952	10,8696	10,6952	10,6269	0,2911
	3	10,1523	10,2041	10,3627	10,5263	10,6383		
	1	11,3636	11,7647	11,7647	12,1951	11,9760		
M3	2	11,0497	11,3636	11,4286	11,6279	11,7647	11,4745	0,3692
	3	10,8696	11,1111	11,1111	11,3636	11,3636		
	1	11,2360	11,1111	11,2994	11,3636	11,3636		
M4	2	10,7527	10,8696	10,9290	10,9890	11,1732	10,9881	0,2872
M4	3	10,3627	11,1111	10,6952	10,6952	10,8696		
	1	11,5607	12,0482	12,1951	12,5000	11,5607		
M5	2	11,4943	11,5607	11,7647	12,2699	11,4286	11,6900	0.3970
	3	11,1111	11,2994	11,4286	11,7647	11,3636		-

				Vt (cm/s)				
Partícula	Ponto	1º	2º	3º	4º	5º	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	19,4175	20,0000	20,0000	19,6078	20,0000		
N1	2	20,0000	20,0000	19,6078	19,8020	20,0000	19,7421	0,3302
	3	20,0000	20,0000	19,0476	19,4175	19,2308		
	1	17,6991	18,0180	18,1818	19,4175	18,6916		
N2	2	17,2414	18,0180	18,0180	19,2308	18,1818	18,1159	0,6565
	3	17,0940	17,8571	17,6991	18,6916	17,6991		
	1	18,1818	18,1818	18,6916	22,2222	19,2308		
N3	2	18,1818	18,1818	18,3486	21,5054	19,2308	19,0582	1,4552
	3	18,1818	17,6991	18,1818	21,5054	18,3486		
	1	20,8333	19,6078	19,8020	20,6186	20,0000		
N4	2	21,0526	19,0476	19,4175	20,0000	19,6078	19,9695	0,8956
	3	22,2222	19,0476	18,8679	20,0000	19,4175		
	1	20,0000	19,8020	20,2020	17,5439	20,0000		
N5	2	19,4175	19,4175	19,6078	17,6991	20,0000	19,2669	0,9706
	3	19,4175	19,6078	19,0476	17,2414	20,0000		
	1	17,2414	17,6991	17,8571	18,8679	18,1818		
N6	2	17,5439	17,5439	17,6991	18,1818	18,8679	17,9449	0,5052
	3	17,6991	17,6991	17,3913	18,5185	18,1818		
	1	18,1818	18,1818	18,1818	18,1818	17,8571		
N7	2	18,1818	18,0180	18,1818	17,6991	17,6991	18,0318	0,2044
	3	18,0180	18,1818	18,1818	17,2414	17,6991		

Partícula	Vt (cm/s) P _{líquido} (g/cm ³)		ρ _{sólido} (g/cm ³)	μ (Poise)	C _D	Re _p
A1	13,5274	1,148	1,437	0,0850	1,77	179,87
A2	13,2538	1,148	1,437	0,0850	1,85	176,23
A3	12,1805	1,148	1,437	0,0850	2,19	161,96
A4	14,7447	1,148	1,437	0,0850	1,49	196,05
A5	14,8795	1,148	1,437	0,0850	1,46	197,84
C1	28,1701	1,148	1,700	0,0850	1,56	749,13
C2	24,7065	1,148	1,700	0,0850	2,03	657,02
C3	29,6998	1,148	1,700	0,0850	1,40	789,81
C4	26,2010	1,148	1,700	0,0850	1,80	696,76
C5	26,2001	1,148	1,700	0,0850	1,80	696,74
D1	19,9081	1,148	1,437	0,0850	1,03	333,51
D2	20,9502	1,148	1,437	0,0850	0,93	350,97
D3	20,4370	1,148	1,437	0,0850	0,98	342,37
D4	21,1778	1,148	1,437	0,0850	0,91	354,78
D5	19,9202	1,148	1,437	0,0850	1,03	333,71
E1	-	1,148	2,440	0,0850	-	-
E2	3,9545	1,148	2,440	0,0850	57,58	32,68
E3	3,6852	1,148	2,440	0,0850	66,31	30,45
E4	5,2820	1,148	2,440	0,0850	32,28	43,65
E5	3,7152	1,148	2,440	0,0850	65,24	30,70
E6	3,2677	1,148	2,440	0,0850	84,33	27,00
E7	4,5868	1,148	2,440	0,0850	42,80	37,90
E8	3,9514	1,148	2,440	0,0850	57,67	32,65
E9	3,2266	1,148	2,440	0,0850	86,49	26,66
E10	5,1750	1,148	2,440	0,0850	33,62	42,76
F1	7,8655	1,148	1,316	0,0850	2,32	79,55
F2	7,5848	1,148	1,316	0,0850	2,50	76,71
F3	7,7348	1,148	1,316	0,0850	2,40	78,22
F4	7,7683	1,148	1,316	0,0850	2,38	78,56
F5	8,7309	1,148	1,316	0,0850	1,88	88,30
G1	9,1126	1,148	1,316	0,0850	1,98	105,49
G2	10,7426	1,148	1,316	0,0850	1,42	124,36
G3	10,3162	1,148	1,316	0,0850	1,54	119,43
G4	10,9986	1,148	1,316	0,0850	1,36	127,33
G5	10,6015	1,148	1,316	0,0850	1,46	122,73
11	4,4174	1,148	1,193	0,0850	3,68	82,39
12	5,4985	1,148	1,193	0,0850	2,38	102,55
13	5,2087	1,148	1,193	0,0850	2,65	97,15
14	5,2883	1,148	1,193	0,0850	2,57	98,63

Tabela B.2 – Cálculo de C_{D} e $Re_{p}\, para a solução de glicerina$

Partícula	Vt (cm/s)	ρ _{líquido} (g/cm³)	ρ _{sólido} (g/cm ³)	μ (Poise)	C _D	Re _p
15	4,8179	1,148	1,193	0,0850	3,10	89,86
16	4,9801	1,148	1,193	0,0850	2,90	92,89
17	5,2377	1,148	1,193	0,0850	2,62	97,69
18	4,8229	1,148	1,193	0,0850	3,09	89 <i>,</i> 95
19	5,6082	1,148	1,193	0,0850	2,29	104,60
I10	5,3775	1,148	1,193	0,0850	2,49	100,30
J1	6,7251	1,148	1,193	0,0850	2,25	177,79
J2	6,0871	1,148	1,193	0,0850	2,75	160,92
J3	6,0629	1,148	1,193	0,0850	2,77	160,29
J4	6,2453	1,148	1,193	0,0850	2,61	165,11
J5	6,4049	1,148	1,193	0,0850	2,48	169,33
K1	5,6716	1,148	1,193	0,0850	3,14	148,74
K2	5,7165	1,148	1,193	0,0850	3,09	149,91
К3	5,8804	1,148	1,193	0,0850	2,92	154,21
K4	5,4149	1,148	1,193	0,0850	3,45	142,00
K5	5,3237	1,148	1,193	0,0850	3,57	139,61
L1	8,4495	1,148	1,193	0,0850	2,33	363,97
L2	7,9424	1,148	1,193	0,0850	2,63	342,12
L3	8,2139	1,148	1,193	0,0850	2,46	353,82
L4	7,8013	1,148	1,193	0,0850	2,73	336,04
L5	8,3448	1,148	1,193	0,0850	2,38	359,46
M1	10,5313	1,148	1,880	0,0850	2,96	56,01
M2	10,6269	1,148	1,880	0,0850	2,91	56,52
M3	11,4745	1,148	1,880	0,0850	2,49	61,03
M4	10,9881	1,148	1,880	0,0850	2,72	58,44
M5	11,6900	1,148	1,880	0,0850	2,40	62,17
N1	19,7421	1,148	1,880	0,0850	1,69	210,00
N2	18,1159	1,148	1,880	0,0850	2,00	192,70
N3	19 <i>,</i> 0582	1,148	1,880	0,0850	1,81	202,73
N4	19,9695	1,148	1,880	0,0850	1,65	212,42
N5	19,2669	1,148	1,880	0,0850	1,77	204,95
N6	17,9449	1,148	1,880	0,0850	2,04	190,88
N7	18,0318	1,148	1,880	0,0850	2,02	191,81

APÊNDICE C – DADOS PARA ENSAIOS COM ÓLEO MINERAL

				Vt (cm/s)				
Partícula	Ponto	1º	2 ⁰	3º	4 ⁰	5⁰	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	24,6914	24,3902	23,2558	23,2558	23,2558		
A1	2	24,6914	24,0964	24,0964	24,6914	24,6914	24,4341	0,7934
	3	24,3902	25,6410	24,3902	25,9740	25,0000		
	1	24,3902	25,0000	22,7273	24,6914	25,0000		
A2	2	24,0964	25,0000	23,8095	24,0964	25,0000	24,6350	0,8010
	3	24,3902	25,0000	24,6914	25,3165	26,3158		
	1	20,8333	22,4719	22,2222	22,2222	22,4719		
A3	2	20,6186	22,7273	22,2222	21,5054	22,2222	22,0239	0,8129
	3	20,6186	22,9885	22,9885	22,2222	-		
	1	25,9740	27,0270	23,5294	25,9740	25,0000		
A4	2	25,3165	25,9740	23,8095	27,3973	26,6667	25,9049	1,3415
	3	25,6410	25,9740	24,6914	28,5714	27,0270		
	1	27,3973	27,0270	27,7778	25,0000	24,6914		
A5	2	27,3973	27,3973	28,9855	24,0964	23,5294	26,2923	1,9415
	3	27,7778	27,3973	28,5714	23,5294	23,8095		
	1	43,4783	40,0000	42,5532	40,0000	42,5532		
C1	2	42,5532	43,4783	43,4783	40,0000	40,0000	42,1366	1,6442
	3	44,4444	42,5532	40,0000	43,4783	43,4783		
	1	39,2157	38,4615	35,7143	37,0370	37,7358		
C2	2	37,7358	38,4615	37,0370	37,0370	37,7358	37,4336	1,0325
	3	37,7358	37,7358	35,0877	37,7358	37,0370		
	1	48,7805	45,4545	41,6667	42,5532	44,4444		
C3	2	46,5116	43,4783	41,6667	41,6667	43,4783	44,1611	2,2978
	3	47,6190	46,5116	42,5532	43,4783	42,5532		
	1	44,4444	40,0000	47,6190	40,0000	43,4783		
C4	2	41,6667	39,2157	40,0000	40,0000	41,6667	40,3704	1,9188
	3	40,0000	39,2157	37,0370	38,4615	40,0000		
	1	41,6667	36,3636	40,0000	42,5532	40,0000		
C5	2	38,4615	35,0877	38,4615	42,5532	39,2157	39,1419	2,3081
	3	39,2157	35,0877	38,4615	40,0000	40,0000		
	1	33,8983	33,3333	33,3333	33,3333	33,3333		
D1	2	35,0877	34,4828	33,8983	32,7869	35,7143	33,8292	1,3053
	3	37,0370	32,7869	31,7460	33,3333	33,3333		
	1	37,7358	42,5532	43,4783	35,0877	40,0000		
D2	2	36,3636	43,4783	42,5532	33,8983	38,4615	39,1455	3,4528
	3	35,7143	42,5532	42,5532	35,7143	37,0370		
	1	35,7143	35,7143	34,4828	35,0877	33,3333		
D3	2	36,3636	35,0877	37,0370	35,0877	33,3333	35,5050	1,2907
	3	37,7358	35,7143	37,0370	36,3636	34,4828		

Tabela C.1 – Velocidades Terminais para os ensaios com óleo mineral

				Vt (cm/s)				
Partícula	Ponto	1º	2 ⁰	3º	4 ⁰	5º	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	35,7143	35,7143	34,4828	33,8983	33,8983		
D4	2	35,0877	34,4828	34,4828	33,8983	34,4828	34,6539	0,6660
	3	34,4828	35,0877	34,4828	33,8983	35,7143		
	1	35,7143	33,3333	37,0370	32,7869	33,3333		
D5	2	33,3333	35,0877	37,7358	33,8983	34,4828	34,6773	2,1037
	3	31,7460	35,7143	39,2157	32,2581	34,4828		
	1	6,8966	7,0423	6,7568	6,8027	7,1429		
E1	2	7,1174	7,2464	6,7340	6,8966	7,2202	7,0004	0,1771
	3	6,9686	7,2464	6,8966	6,8966	7,1429		
	1	5,8824	5,9880	6,0606	6,0606	6,0060		
E2	2	5,8824	6,0060	6,0606	6,0060	6,0060	5,9711	0,0769
	3	5,8824	6,0060	6,0060	5,8824	5,8309		
	1	7,2993	5,8309	5,9524	5,8824	5,8824		
E3	2	7,5758	5,8309	5,9524	5,7803	5,8309	6,1892	0,6659
	3	7,5188	5,8824	5,9524	5,9524	5,7143		
	1	7,7821	8,1301	7,9681	8,0972	8,1967		
E4	2	7,9051	8,3333	7,9051	8,0321	8,1633	8,0288	0,1631
	3	7,6923	8,0972	8,0321	8,0972	8,0000		
	1	5,8824	5,9347	6,2500	6,3091	6,2893		
E5	2	5,8824	6,0060	6,1920	6,3694	6,2500	6,1401	0,1825
	3	5,8824	6,0606	6,1920	6,3898	6,2112		
	1	5,4054	5,3619	5,2632	5,4496	5,3476		
E6	2	5,4054	5,3050	5,3476	5,4645	5,3619	5,3837	0,0574
	3	5,4054	5,3476	5,4054	5,4201	5,4645		
	1	6,5147	6,6007	6,3694	6,3898	6,6007		
E7	2	6,3898	6,5147	6,3091	6,3898	6,7114	6,4854	0,1474
	3	6,4103	6,5789	6,3291	6,3694	6,8027		
	1	6,2305	6,3898	6,0060	6,3694	6,2500		
E8	2	6,2500	6,3898	5,9347	6,3091	6,2500	6,2352	0,1493
	3	6,3898	6,3091	6,0060	6,1350	6,3091		
	1	5,1813	5,4645	5,2632	5,3619	5,4496		
E9	2	5,2219	5,5096	5,2632	5,4945	5,4496	5,3791	0,1247
	3	5,3476	5,4054	5,2083	5,5096	5,5556		
	1	5,4054	7,4906	7,3260	15,0376	7,4906		
E10	2	5,4054	7,5758	7,2993	7,7821	7,5758	6,9764	0,9737
	3	5,3050	7,6046	7,5758	8,0972	7,6628		
	1	16,1290	16,2602	15,7480	16,2602	16,2602		
F1	2	16,6667	15,8730	16,1290	15,7480	16,5289	16,2049	0,3285
	3	16,6667	15,7480	16,6667	16,1290	16,2602		

				Vt (cm/s)				
Partícula	Ponto	1º	2 ⁰	3º	4º	5º	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	15,3846	15,3846	15,5039	15,3846	15,5039		
F2	2	15,5039	15,0376	15,3846	15,0376	16,1290	15,4880	0,3702
	3	15,7480	14,9254	15,7480	15,3846	16,2602		
	1	15,5039	15,3846	15,7480	16,2602	15,8730		
F3	2	15,3846	15,1515	16,1290	15,3846	15,7480	15,6335	0,3776
	3	15,5039	15,0376	16,2602	15,3846	15,7480		
	1	16,6667	15,7480	16,1290	15,3846	16,6667		
F4	2	16,6667	15,8730	16,6667	15,3846	16,8067	16,2055	0,5163
	3	16,6667	15,7480	16,2602	15,7480	16,6667		
	1	17,6991	17,0940	17,0940	17,2414	16,9492		
F5	2	17,0940	16,8067	16,8067	17,2414	16,9492	17,0804	0,3277
	3	16,6667	16,5289	17,2414	17,0940	17,6991		
	1	18,1818	19,2308	18,1818	19,2308	18,8679		
G1	2	18,6916	18,8679	18,1818	19,2308	19,4175	18,8552	0,4686
	3	19,4175	18,8679	18,1818	19,0476	19,2308		
	1	21,2766	22,2222	20,0000	21,2766	20,2020		
G2	2	21,7391	21,7391	20,8333	21,2766	20,2020	21,2113	0,7495
	3	22,2222	22,2222	21,5054	20,8333	20,6186		
	1	20,0000	19,0476	18,8679	20,4082	20,8333		
G3	2	19,6078	19,0476	19,0476	20,0000	20,8333	19,7125	0,7642
	3	18,8679	18,8679	19,2308	20,4082	20,6186		
	1	21,5054	20,4082	21,2766	21,5054	21,0526		
G4	2	22,9885	20,6186	21,7391	21,5054	21,2766	21,3844	0,6301
	3	22,2222	20,8333	21,5054	21,2766	21,0526		
	1	20,8333	21,2766	20,6186	21,2766	21,5054		
G5	2	20,2020	21,2766	21,0526	21,0526	21,9780	21,1984	0,5223
	3	20,6186	21,0526	21,5054	21,5054	22,2222		
	1	22,2222	21,0526	21,5054	22,4719	21,9780		
1	2	23,8095	20,6186	22,2222	23,8095	21,5054	22,4466	1,1977
	3	24,0964	22,2222	22,9885	24,6914	21,5054		
	1	22,2222	25,9740	22,2222	22,4719	22,2222		
12	2	21,5054	25,0000	22,9885	23,8095	22,2222	23,2897	1,5190
	3	22,2222	26,3158	23,2558	24,6914	22,2222		
	1	22,9885	22,2222	20,6186	20,0000	22,2222		
13	2	23,8095	21,9780	21,2766	20,0000	23,2558	21,7281	1,2502
13	3	22,9885	20,8333	21,5054	20,0000	22,2222		1,2502
	1	20,0000	22,9885	23,8095	21,5054	20,8333		
14	2	20,2020	22,2222	22,9885	22,2222	20,0000	21,7688	1,3366
	3	20,6186	23,2558	23,2558	22,2222	20,4082		

Partícula	Ponto	1º	2 ⁰	3º	4 ⁰	5⁰	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	22,2222	24,0964	23,2558	22,9885	22,9885		
15	2	21,9780	23,8095	22,9885	22,9885	25,0000	23,3836	0,8873
	3	20,0000	23,8095	22,9885	23,2558	25,0000		
	1	24,0964	20,6186	21,5054	23,8095	21,2766		
16	2	23,2558	20,8333	20,6186	22,2222	20,0000	21,8490	1,3622
	3	22,9885	21,9780	21,2766	23,2558	20,0000		
	1	21,5054	22,9885	23,8095	21,0526	24,0964		
17	2	22,4719	24,0964	24,3902	22,2222	25,0000	23,4388	1,1649
	3	24,0964	24,0964	24,6914	23,2558	23,8095		
	1	22,9885	22,9885	22,2222	23,8095	22,2222		
18	2	22,9885	22,9885	23,8095	20,6186	22,2222	22,7003	0,9889
	3	23,2558	22,4719	24,0964	20,8333	22,9885		
	1	24,6914	21,2766	21,5054	22,2222	21,0526		
19	2	22,7273	22,2222	21,2766	21,5054	20,0000	21,8968	1,2245
	3	21,5054	22,2222	22,9885	23,2558	20,0000		
	1	19,2308	20,0000	20,6186	21,5054	20,0000		
110	2	20,0000	21,5054	20,6186	21,2766	20,6186	20,8478	0,7980
	3	20,8333	21,2766	21,5054	21,5054	22,2222		
	1	25,9740	24,0964	25,0000	25,9740	25,3165		
J1	2	25,9740	25,0000	25,0000	25,9740	25,0000	25,2206	0,5333
	3	25,0000	25,0000	25,0000	25,0000	25,0000		
	1	25,9740	27,3973	25,9740	24,6914	22,9885		
J2	2	25,0000	27,3973	25,9740	25,0000	22,2222	24,9438	1,6993
	3	24,0964	27,0270	24,0964	24,0964	22,2222		
	1	26,6667	22,2222	25,0000	23,8095	22,9885		
J3	2	23,5294	22,7273	23,2558	20,8333	22,9885	22,7274	1,6248
	3	21,7391	21,5054	20,8333	20,8333	21,9780		
	1	22,9885	25,9740	22,9885	25,0000	22,4719		
J4	2	22,2222	23,8095	22,4719	23,8095	23,2558	22,9385	0,5192
	3	22,9885	22,2222	23,2558	22,9885	22,7273		
	1	25,0000	25,0000	26,6667	25,3165	25,0000		
J5	2	24,3902	23,2558	25,0000	23,5294	22,9885	23,9588	1,3783
	3	24,0964	22,2222	22,4719	22,2222	22,2222		
	1	22,9885	24,0964	24,0964	23,8095	22,4719		
К1	2	23,8095	23,8095	24,0964	22,2222	22,4719	23,4181	0,9336
К1	3	23,8095	25,0000	22,9885	21,5054	24,0964		0,9336
	1	22,9885	24,0964	25,0000	26,3158	23,8095		
К2	2	22,9885	22,2222	25,0000	25,0000	22,4719	23,8984	1,1536
	3	23,2558	23,8095	25,0000	22,9885	23,5294		

				Vt (cm/s)				
Partícula	Ponto	<u>1</u> º	2 ⁰	3º	4 ⁰	5 ⁰	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	23,2558	25,9740	24,0964	24,0964	22,9885		
КЗ	2	25,0000	24,3902	22,9885	24,0964	22,2222	23,9693	1,3144
	3	27,0270	24,0964	22,2222	24,0964	22,9885		
	1	22,9885	22,2222	23,2558	22,7273	22,4719		
K4	2	22,2222	23,8095	22,9885	25,3165	21,7391	23,0644	1,2227
	3	22,9885	24,0964	21,2766	25,6410	22,2222		
	1	21,5054	23,2558	22,7273	22,7273	21,7391		
К5	2	22,2222	21,5054	21,2766	22,4719	20,6186	21,8574	0,7428
	3	21,5054	21,2766	21,5054	22,4719	21,0526		
	1	35,7143	35,0877	35,7143	35,0877	33,3333		
L1	2	32,7869	33,3333	34,4828	30,3030	33,3333	33,0051	1,9632
	3	31,2500	31,7460	31,7460	29,4118	31,7460		
	1	31,2500	33,3333	33,3333	32,7869	31,7460		
L2	2	31,2500	33,3333	33,3333	33,3333	31,7460	32,6004	0,9688
	3	31,7460	33,3333	33,3333	33,8983	31,2500		
	1	29,8507	29,8507	31,7460	30,7692	30,3030		
L3	2	28,5714	30,3030	31,2500	30,3030	31,7460	30,4276	1,0224
	3	28,5714	29,8507	30,3030	31,2500	31,7460		
	1	35,0877	33,3333	33,3333	32,2581	31,7460		
L4	2	32,2581	33,3333	33,8983	32,2581	33,8983	33,2853	0,9653
	3	33,3333	33,3333	33,3333	32,7869	35,0877		
	1	36,3636	33,8983	31,7460	32,7869	36,3636		
L5	2	33,3333	31,2500	31,2500	32,7869	33,8983	32,6783	1,9429
	3	30,3030	29,8507	30,7692	32,7869	32,7869		
	1	13,5135	12,9870	12,5000	13,0719	12,9032		
M1	2	13,3333	13,3333	12,7389	12,7389	12,5786	12,9767	0,3027
	3	13,1579	13,2450	13,0719	12,7389	12,7389		
	1	13,5135	13,5135	12,9870	13,0719	14,2857		
M2	2	13,3333	13,8889	13,0719	12,8205	14,2857	13,5024	0,5305
	3	13,7931	13,7931	12,8205	13,0719	14,2857		
	1	14,4928	14,1844	14,1844	13,7931	14,5985		
M3	2	14,0845	14,0845	13,9860	13,9860	14,3885	14,1738	0,2085
	3	14,0845	14,2857	14,0845	14,0845	14,2857		
	1	13,6054	13,6986	13,6986	12,8205	13,1579		
M4	2	13,6986	13,7931	13,5135	13,2450	13,2450	13,4643	0,2751
M4	3	13,6986	13,6054	13,3333	13,6054	13,2450		
	1	14,5985	14,1844	14,7059	14,4928	13,3333		
M5	2	14,3885	14,1844	14,9254	14,5985	13,1579	14,2597	0.5608
	3	14,5985	14,3885	14,7059	14,3885	13,2450		-

				Vt (cm/s)				
Partícula	Ponto	1º	2º	3º	4º	5º	Vt Final (cm/s)	Desvio
		Ensaio	Ensaio	Ensaio	Ensaio	Ensaio		Padrão
	1	28,1690	27,0270	27,7778	28,1690	27,3973		
N1	2	27,7778	27,0270	28,1690	27,7778	27,3973	27,6820	0,4474
	3	27,3973	27,3973	28,5714	27,3973	27,7778		
	1	27,0270	25,0000	27,3973	26,6667	27,0270		
N2	2	27,0270	25,6410	27,0270	26,6667	26,3158	26,6105	0,6402
	3	27,3973	26,6667	26,3158	26,6667	26,3158		
	1	26,3158	25,9740	26,6667	25,6410	25,9740		
N3	2	26,6667	25,3165	26,3158	25,9740	25,0000	25,9850	0,5496
	3	25,9740	26,3158	26,6667	25,9740	25,0000		
	1	25,9740	30,3030	25,3165	28,9855	28,5714		1,5454
N4	2	26,3158	28,9855	25,6410	28,1690	28,5714	27,7056	
	3	27,0270	29,4118	25,9740	28,1690	28,1690		
	1	28,5714	28,5714	25,9740	29,4118	28,9855		
N5	2	28,1690	28,9855	26,6667	30,3030	28,9855	28,4278	1,1582
	3	28,5714	28,5714	26,6667	29,4118	28,5714		
	1	28,9855	25,6410	29,4118	25,9740	25,9740		
N6	2	28,5714	25,3165	29,8507	25,6410	25,0000	26,9597	1,9454
	3	27,7778	25,3165	30,3030	25,3165	25,3165		
	1	27,0270	26,3158	26,3158	26,3158	27,7778		
N7	2	26,3158	26,3158	26,3158	26,3158	26,3158	26,3692	0,3334
	3	25,9740	25,9740	27,0270	26,6667	25,9740		

Partícula	Vt (cm/s)	ρ _{líquido} (g/cm³)	ρ _{sólido} (g/cm ³)	μ (Poise)	C _D	Re _p
A1	24,4341	0,846	1,437	0,1400	1,51	145,39
A2	24,6350	0,846	1,437	0,1400	1,48	146,58
A3	22,0239	0,846	1,437	0,1400	1,85	131,05
A4	25,9049	0,846	1,437	0,1400	1,34	154,14
A5	26,2923	0,846	1,437	0,1400	1,30	156,45
C1	42,1366	0,846	1,700	0,1400	1,46	501,45
C2	37,4336	0,846	1,700	0,1400	1,85	445,48
C3	44,1611	0,846	1,700	0,1400	1,33	525,54
C4	40,3704	0,846	1,700	0,1400	1,59	480,43
C5	39,1419	0,846	1,700	0,1400	1,70	465,81
D1	33,8292	0,846	1,437	0,1400	0,99	253,61
D2	39,1455	0,846	1,437	0,1400	0,74	293,47
D3	35,5050	0,846	1,437	0,1400	0,90	266,18
D4	34,6539	0,846	1,437	0,1400	0,94	259,79
D5	34,6773	0,846	1,437	0,1400	0,94	259,97
E1	7,0004	0,846	2,440	0,1400	30,75	25,89
E2	5,9711	0,846	2,440	0,1400	42,26	22,08
E3	6,1892	0,846	2,440	0,1400	39,34	22,89
E4	8,0288	0,846	2,440	0,1400	23,38	29,69
E5	6,1401	0,846	2,440	0,1400	39,97	22,70
E6	5,3837	0,846	2,440	0,1400	51,99	19,91
E7	6,4854	0,846	2,440	0,1400	35,83	23,98
E8	6,2352	0,846	2,440	0,1400	38,76	23,06
E9	5,3791	0,846	2,440	0,1400	52,08	19,89
E10	6,9764	0,846	2,440	0,1400	30,96	25,80
F1	16,2049	0,846	1,316	0,1400	2,07	73,34
F2	15,4880	0,846	1,316	0,1400	2,27	70,09
F3	15,6335	0,846	1,316	0,1400	2,23	70,75
F4	16,2055	0,846	1,316	0,1400	2,07	73,34
F5	17,0804	0,846	1,316	0,1400	1,86	77,30
G1	18,8552	0,846	1,316	0,1400	1,75	97,68
G2	21,2113	0,846	1,316	0,1400	1,38	109,89
G3	19,7125	0,846	1,316	0,1400	1,60	102,12
G4	21,3844	0,846	1,316	0,1400	1,36	110,79
G5	21,1984	0,846	1,316	0,1400	1,39	109,82
11	22,4466	0,846	1,193	0,1400	1,47	187,35
12	23,2897	0,846	1,193	0,1400	1,37	194,39
13	21,7281	0,846	1,193	0,1400	1,57	181,35
14	21,7688	0,846	1,193	0,1400	1,56	181,69

Tabela C.2 – Cálculo de C_{D} e $Re_{p}\ para o óleo mineral$

Partícula	Vt (cm/s)	ρ _{líquido} (g/cm³)	ρ _{sólido} (g/cm ³)	μ (Poise)	C _d	Rep
15	23,3836	0,846	1,193	0,1400	1,36	195,17
16	21,8490	0,846	1,193	0,1400	1,55	182,36
17	23,4388	0,846	1,193	0,1400	1,35	195,63
18	22,7003	0,846	1,193	0,1400	1,44	189,47
19	21,8968	0,846	1,193	0,1400	1,55	182,76
110	20,8478	0,846	1,193	0,1400	1,71	174,01
J1	25,2206	0,846	1,193	0,1400	1,65	298,38
J2	24,9438	0,846	1,193	0,1400	1,69	295,10
J3	22,7274	0,846	1,193	0,1400	2,03	268,88
J4	22,9385	0,846	1,193	0,1400	2,00	271,38
J5	23,9588	0,846	1,193	0,1400	1,83	283,45
K1	23,4181	0,846	1,193	0,1400	1,90	274,83
К2	23,8984	0,846	1,193	0,1400	1,82	280,46
К3	23,9693	0,846	1,193	0,1400	1,81	281,29
К4	23,0644	0,846	1,193	0,1400	1,96	270,67
К5	21,8574	0,846	1,193	0,1400	2,18	256,51
L1	33,0051	0,846	1,193	0,1400	1,57	636,22
L2	32,6004	0,846	1,193	0,1400	1,61	628,42
L3	30,4276	0,846	1,193	0,1400	1,85	586,54
L4	33,2853	0,846	1,193	0,1400	1,55	641,62
L5	32,6783	0,846	1,193	0,1400	1,60	629,92
M1	12,9767	0,846	1,880	0,1400	3,74	30,89
M2	13,5024	0,846	1,880	0,1400	3,45	32,14
M3	14,1738	0,846	1,880	0,1400	3,13	33,74
M4	13,4643	0,846	1,880	0,1400	3,47	32,05
M5	14,2597	0,846	1,880	0,1400	3,09	33,94
N1	27,6820	0,846	1,880	0,1400	1,64	131,77
N2	26,6105	0,846	1,880	0,1400	1,78	126,67
N3	25,9850	0,846	1,880	0,1400	1,86	123,69
N4	27,7056	0,846	1,880	0,1400	1,64	131,88
N5	28,4278	0,846	1,880	0,1400	1,56	135,32
N6	26,9597	0,846	1,880	0,1400	1,73	128,33
N7	26,3692	0,846	1,880	0,1400	1,81	125,52

APÊNDICE D – DADOS CORRELACIONADOS PARA ÁGUA DESTILADA

		Experime	ntal	(Coelho & Ma	ssarani	Nova Correlação		
Particula	CD	Rep	v _t (cm/s)	C _D	Re _p	v _t (cm/s)	CD	Rep	v _t (cm/s)
A1	1,80	1974,00	17,77	2,02	1864,49	16,78	1,84	1950,14	17,55
A2	1,89	1923,32	17,31	2,02	1864,49	16,78	1,84	1950,14	17,55
A3	2,36	1722,36	15,50	2,02	1864,49	16,78	1,84	1950,15	17,55
A4	1,43	2210,12	19,89	2,02	1864,49	16,78	1,72	2020,80	18,19
A5	1,38	2250,87	20,26	2,02	1864,49	16,78	1,72	2020,81	18,19
C1	1,38	8056,84	36,26	2,01	6679,24	30,06	1,68	7312,73	32,91
C2	2,05	6612,00	29,76	2,01	6679,24	30,06	1,80	7055,87	31,76
C3	1,49	7756,13	34,91	2,01	6679,24	30,06	1,68	7312,73	32,91
C4	1,88	6907,16	31,09	2,01	6679,24	30,06	1,80	7055,88	31,76
C5	1,80	7055,73	31,76	2,01	6679,24	30,06	1,80	7055,87	31,76
D1	1,05	3661,57	26,16	1,38	3184,84	22,75	1,03	3681,15	26,30
D2	1,09	3585,84	25,62	1,38	3184,84	22,75	1,09	3586,01	25,62
D3	1,07	3614,32	25,82	1,38	3184,84	22,75	0,98	3790,18	27,08
D4	1,02	3707,77	26,49	1,38	3184,84	22,75	0,93	3879,62	27,72
D5	1,03	3686,16	26,34	1,38	3184,84	22,75	0,98	3779,08	27,00
F1	2,42	960,64	11,37	1,97	1065,84	12,61	1,92	1078,39	12,76
F2	2,39	966,62	11,44	1,97	1065,84	12,61	1,86	1095,83	12,97
F3	2,18	1013,09	11,99	1,97	1065,84	12,61	1,78	1122,37	13,28
F4	2,08	1037,92	12,28	1,97	1065,84	12,61	1,78	1122,40	13,28
F5	1,75	1130,56	13,38	1,97	1065,84	12,61	1,63	1169,59	13,84
G1	2,22	1229,15	12,71	1,98	1302,56	13,47	1,17	1694,50	17,52
G2	1,81	1360,07	14,06	1,98	1302,56	13,47	1,21	1664,80	17,21
G3	1,72	1396,22	14,44	1,98	1302,56	13,47	1,38	1558,47	16,11
G4	1,07	1767,54	18,27	1,98	1302,56	13,47	1,08	1761,74	18,21
G5	1,15	1705,92	17,64	1,98	1302,56	13,47	1,08	1761,77	18,21
11	1,78	2202,45	14,13	2,07	2043,43	13,11	2,00	2080,47	13,35
12	1,37	2511,15	16,11	2,07	2043,43	13,11	1,84	2166,09	13,90
13	2,00	2076,71	13,33	2,07	2043,43	13,11	1,93	2117,62	13,59
14	1,62	2311,48	14,83	2,07	2043,43	13,11	1,86	2152,93	13,82
15	1,67	2274,41	14,60	2,07	2043,43	13,11	1,87	2146,42	13,77
16	1,69	2263,04	14,52	2,07	2043,43	13,11	1,87	2146,39	13,77
17	1,52	2383,75	15,30	2,07	2043,43	13,11	1,95	2105,11	13,51
18	1,44	2447,72	15,71	2,07	2043,43	13,11	1,83	2172,74	13,94
19	1,19	2693,19	17,28	2,07	2043,43	13,11	1,92	2120,76	13,61
110	1,56	2353,94	15,11	2,07	2043,43	13,11	2,00	2080,46	13,35
J1	1,78	3721,57	16,85	2,19	3352,23	15,18	2,07	3442,94	15,59
J2	2,35	3233,44	14,64	2,19	3352,23	15,18	2,21	3336,10	15,10
J3	2,23	3323,72	15,05	2,19	3352,23	15,18	2,21	3336,11	15,10
J4	2,34	3238,82	14,66	2,19	3352,23	15,18	2,21	3336,10	15,10
J5	2,26	3298,14	14,93	2,19	3352,23	15,18	2,21	3336,10	15,10

Tabela D.1 – Dados correlacionados para água destilada

	Experimental			(Coelho & Ma	ssarani	Nova Correlação		
Particula	CD	Re _p	v _t (cm/s)	CD	Re _p	v _t (cm/s)	CD	Re _p	v _t (cm/s)
K1	1,75	3700,14	16,89	2,18	3317,64	15,14	2,11	3376,92	15,41
K2	1,81	3639,23	16,61	2,18	3317,64	15,14	2,11	3369,83	15,38
К3	1,90	3552,78	16,22	2,18	3317,64	15,14	2,03	3441,01	15,71
К4	2,01	3459,75	15,79	2,18	3317,64	15,14	2,00	3460,94	15,80
K5	2,00	3461,36	15,80	2,18	3317,64	15,14	2,08	3394,37	15,49
L1	1,73	7831,61	21,76	2,19	6967,57	19,36	2,32	6777,57	18,83
L2	1,67	7990,43	22,20	2,19	6967,57	19,36	1,98	7332,47	20,37
L3	1,75	7805,42	21,69	2,19	6967,57	19,36	2,32	6777,57	18,83
L4	1,76	7779,12	21,62	2,19	6967,57	19,36	2,05	7208,53	20,03
L5	1,90	7487,72	20,81	2,19	6967,57	19,36	2,12	7076,32	19,66
M1	2,23	635,11	14,29	2,04	664,56	14,96	1,72	723,86	16,29
M2	2,12	652,39	14,68	2,04	664,56	14,96	1,72	723,86	16,29
M3	1,99	672,36	15,13	2,04	664,56	14,96	1,72	723,95	16,29
M4	2,16	645,86	14,53	2,04	664,56	14,96	1,91	685,99	15,44
M5	1,58	755,22	17,00	2,04	664,56	14,96	1,61	748,58	16,85
N1	1,66	2082,71	23,43	2,02	1890,33	21,27	1,62	2111,40	23,76
N2	2,07	1863,70	20,97	2,02	1890,33	21,27	1,74	2036,71	22,92
N3	2,14	1835,89	20,66	2,02	1890,33	21,27	1,74	2036,69	22,92
N4	1,45	2226,84	25,06	2,02	1890,33	21,27	1,62	2111,41	23,76
N5	1,47	2213,26	24,90	2,02	1890,33	21,27	1,62	2111,42	23,76
N6	2,32	1761,92	19,83	2,02	1890,33	21,27	1,74	2036,70	22,92
N7	2,11	1845,69	20,77	2,02	1890,33	21,27	1,74	2036,69	22,92

APÊNDICE E – DADOS CORRELACIONADOS PARA SOLUÇÃO DE GLICERINA

		Experime	ental	C	oelho & M	assarani	Nova Correlação		
Partícula	CD	Rep	v _t (cm/s)	C _D	Rep	v _t (cm/s)	C _D	Rep	v _t (cm/s)
A1	1,77	179,87	13,53	2,18	162,28	12,20	2,00	169,32	12,73
A2	1,85	176,23	13,25	2,18	162,28	12,20	2,00	169,32	12,73
A3	2,19	161,96	12,18	2,18	162,28	12,20	1,96	171,16	12,87
A4	1,49	196,05	14,74	2,18	162,28	12,20	1,85	176,21	13,25
A5	1,46	197,84	14,88	2,18	162,28	12,20	1,82	177,32	13,34
C1	1,56	749,13	28,17	2,04	655,43	24,65	1,69	720,43	27,09
C2	2,03	657,02	24,71	2,04	655,43	24,65	1,81	695,08	26,14
C3	1,40	789,81	29,70	2,04	655,43	24,65	1,69	720,51	27,09
C4	1,80	696,76	26,20	2,04	655,43	24,65	1,81	695,20	26,14
C5	1,80	696,74	26,20	2,04	655,43	24,65	1,81	695,08	26,14
D1	1,03	333,51	19,91	1,47	279,73	16,70	1,07	327,16	19,53
D2	0,93	350,97	20,95	1,47	279,73	16,70	1,13	319,04	19,04
D3	0,98	342,37	20,44	1,47	279,73	16,70	1,01	336,43	20,08
D4	0,91	354,78	21,18	1,47	279,73	16,70	0,96	345,34	20,61
D5	1,03	333,71	19,92	1,47	279,73	16,70	1,02	335,48	20,03
F1	2,32	79,55	7,87	2,34	79,29	7,84	2,55	75 <i>,</i> 89	7,50
F2	2,50	76,71	7,58	2,34	79,29	7,84	2,50	76,71	7,58
F3	2,40	78,22	7,73	2,34	79,29	7,84	2,79	72,50	7,17
F4	2,38	78,56	7,77	2,34	79,29	7,84	2,65	74,39	7,36
F5	1,88	88,30	8,73	2,34	79,29	7,84	2,28	80,22	7,93
G1	1,98	105,49	9,11	2,26	98,63	8,52	1,82	109,89	9,49
G2	1,42	124,36	10,74	2,26	98,63	8,52	1,57	118,59	10,24
G3	1,54	119,43	10,32	2,26	98,63	8,52	1,72	113,10	9,77
G4	1,36	127,33	11,00	2,26	98,63	8,52	1,58	118,18	10,21
G5	1,46	122,73	10,60	2,26	98,63	8,52	1,52	120,55	10,41
11	3,68	82,39	4,42	2,35	103,20	5,53	2,43	101,54	5,44
12	2,38	102,55	5,50	2,35	103,20	5,53	2,28	104,65	5,61
13	2,65	97,15	5,21	2,35	103,20	5,53	2,56	98,91	5,30
14	2,57	98,63	5,29	2,35	103,20	5,53	2,30	104,18	5,59
15	3,10	89,86	4,82	2,35	103,20	5,53	2,33	103,65	5,56
16	2,90	92,89	4,98	2,35	103,20	5,53	2,58	98,45	5,28
17	2,62	97,69	5,24	2,35	103,20	5,53	2,34	103,31	5,54
18	3,09	89 <i>,</i> 95	4,82	2,35	103,20	5,53	2,31	103,94	5,57
19	2,29	104,60	5,61	2,35	103,20	5,53	2,66	97,03	5,20
110	2,49	100,30	5,38	2,35	103,20	5,53	2,52	99,55	5,34
J1	2,25	177,79	6,73	2,34	174,36	6,60	2,20	180,06	6,81
J2	2,75	160,92	6,09	2,34	174,36	6,60	2,36	173,77	6,57
J3	2,77	160,29	6,06	2,34	174,36	6,60	2,32	175,39	6,63
J4	2,61	165,11	6,25	2,34	174,36	6,60	2,36	173,77	6,57
J5	2,48	169,33	6,40	2,34	174,36	6,60	2,36	173,77	6,57

Tabela E.1 – Dados correlacionados para solução de glicerina

	Experimental			0	Coelho & M	assarani	Nova Correlação		
Partícula	C _D	Re _p	v _t (cm/s)	C _D	Re _p	v _t (cm/s)	CD	Re _p	v _t (cm/s)
K1	3,14	148,74	5,67	2,34	172,47	6,58	2,21	177,49	6,77
K2	3,09	149,91	5,72	2,34	172,47	6,58	2,21	177,21	6,76
К3	2,92	154,21	5,88	2,34	172,47	6,58	2,12	181,07	6,90
K4	3,45	142,00	5,41	2,34	172,47	6,58	2,11	181,39	6,92
K5	3,57	139,61	5,32	2,34	172,47	6,58	2,19	178,27	6,80
L1	2,33	363,97	8,45	2,25	369,62	8,58	2,33	363,56	8,44
L2	2,63	342,12	7,94	2,25	369,62	8,58	2,00	392,35	9,11
L3	2,46	353,82	8,21	2,25	369,62	8,58	2,33	363,56	8,44
L4	2,73	336,04	7,80	2,25	369,62	8,58	2,06	386,36	8,97
L5	2,38	359 <i>,</i> 46	8,34	2,25	369,62	8,58	2,14	379,08	8,80
M1	2,96	56,01	10,53	2,53	60,60	11,39	2,78	57,85	10,88
M2	2,91	56,52	10,63	2,53	60,60	11,39	2,78	57,85	10,88
M3	2,49	61,03	11,47	2,53	60,60	11,39	2,49	61,08	11,48
M4	2,72	58,44	10,99	2,53	60,60	11,39	3,41	52,23	9,82
M5	2,40	62,17	11,69	2,53	60,60	11,39	2,33	63,15	11,87
N1	1,69	210,00	19,74	2,15	185,86	17,47	1,68	210,57	19,80
N2	2,00	192,70	18,12	2,15	185,86	17,47	1,79	203,73	19,15
N3	1,81	202,73	19,06	2,15	185,86	17,47	1,81	202,72	19,06
N4	1,65	212,42	19,97	2,15	185,86	17,47	1,67	211,18	19,85
N5	1,77	204,95	19,27	2,15	185,86	17,47	1,66	211,57	19,89
N6	2,04	190,88	17,94	2,15	185,86	17,47	1,80	203,33	19,12
N7	2,02	191,81	18,03	2,15	185,86	17,47	1,81	202,72	19,06

APÊNDICE F – DADOS CORRELACIONADOS PARA ÓLEO MINERAL

		Experime	ental	C	oelho & M	assarani	Nova Correlação		
Partícula	CD	Rep	v _t (cm/s)	CD	Re _p	v _t (cm/s)	CD	Re _p	v _t (cm/s)
A1	1,51	145,39	24,43	2,25	118,91	19,98	1,91	128,99	21,68
A2	1,48	146,58	24,64	2,25	118,91	19,98	1,91	128,99	21,68
A3	1,85	131,05	22,02	2,25	118,91	19,98	1,86	130,85	21,99
A4	1,34	154,14	25,90	2,25	118,91	19,98	1,76	134,43	22,59
A5	1,30	156,45	26,29	2,25	118,91	19,98	1,73	135,55	22,78
C1	1,46	501,45	42,14	2,06	422,49	35,50	1,57	483,83	40,66
C2	1,85	445,48	37,43	2,06	422,49	35,50	1,69	466,76	39,22
C3	1,33	525,54	44,16	2,06	422,49	35,50	1,57	483,93	40,66
C4	1,59	480,43	40,37	2,06	422,49	35,50	1,69	466,94	39,24
C5	1,70	465,81	39,14	2,06	422,49	35,50	1,69	466,76	39,22
D1	0,99	253,61	33,83	1,50	205,77	27,45	1,01	251,18	33,50
D2	0,74	293,47	39,15	1,50	205,77	27,45	1,06	245,03	32,68
D3	0,90	266,18	35,51	1,50	205,77	27,45	0,95	258,18	34,44
D4	0,94	259,79	34,65	1,50	205,77	27,45	0,90	265,28	35,39
D5	0,94	259,97	34,68	1,50	205,77	27,45	0,96	257,47	34,34
F1	2,07	73,34	16,20	2,41	68,00	15,03	2,31	69,39	15,33
F2	2,27	70,09	15,49	2,41	68,00	15,03	2,26	70,17	15,50
F3	2,23	70,75	15,63	2,41	68,00	15,03	2,50	66,72	14,74
F4	2,07	73,34	16,21	2,41	68,00	15,03	2,38	68,35	15,10
F5	1,86	77,30	17,08	2,41	68,00	15,03	2,06	73,51	16,24
G1	1,75	97,68	18,86	2,32	84,86	16,38	1,63	101,11	19,52
G2	1,38	109,89	21,21	2,32	84,86	16,38	1,42	108,32	20,91
G3	1,60	102,12	19,71	2,32	84,86	16,38	1,57	103,14	19,91
G4	1,36	110,79	21,38	2,32	84,86	16,38	1,42	108,47	20,94
G5	1,39	109,82	21,20	2,32	84,86	16,38	1,37	110,48	21,33
11	1,47	187,35	22,45	2,24	151,67	18,17	1,96	162,32	19,45
12	1,37	194,39	23,29	2,24	151,67	18,17	1,82	168,54	20,19
13	1,57	181,35	21,73	2,24	151,67	18,17	1,94	163,24	19,56
14	1,56	181,69	21,77	2,24	151,67	18,17	1,84	167,59	20,08
15	1,36	195,17	23,38	2,24	151,67	18,17	1,85	166,99	20,01
16	1,55	182,36	21,85	2,24	151,67	18,17	1,91	164,58	19,72
17	1,35	195,63	23,44	2,24	151,67	18,17	1,91	164,47	19,71
18	1,44	189,47	22,70	2,24	151,67	18,17	1,82	168,61	20,20
19	1,55	182,76	21,90	2,24	151,67	18,17	1,96	162,49	19,47
110	1,71	174,01	20,85	2,24	151,67	18,17	1,98	161,46	19,34
J1	1,65	298,38	25,22	2,29	253,63	21,44	1,97	273,17	23,09
J2	1,69	295,10	24,94	2,29	253,63	21,44	2,10	264,45	22,35
J3	2,03	268,88	22,73	2,29	253,63	21,44	2,09	265,01	22,40
J4	2,00	271,38	22,94	2,29	253,63	21,44	2,10	264,45	22,35
J5	1,83	283,45	23,96	2,29	253,63	21,44	2,10	264,45	22,35

Tabela F.1 – Dados correlacionados para óleo mineral

	Experimental			0	Coelho & M	assarani	Nova Correlação		
Partícula	C _D	Re _p	v _t (cm/s)	C _D	Re _p	v _t (cm/s)	CD	Re _p	v _t (cm/s)
K1	1,90	274,83	23,42	2,28	250,93	21,38	2,00	268,23	22,86
K2	1,82	280,46	23,90	2,28	250,93	21,38	2,00	267,70	22,81
К3	1,81	281,29	23,97	2,28	250,93	21,38	1,92	273,39	23,30
K4	1,96	270,67	23,06	2,28	250,93	21,38	1,90	274,73	23,41
K5	2,18	256,51	21,86	2,28	250,93	21,38	1,98	269,57	22,97
L1	1,57	636,22	33,01	2,23	533 <i>,</i> 88	27,70	2,18	540,75	28,05
L2	1,61	628,42	32,60	2,23	533 <i>,</i> 88	27,70	1,86	584,71	30,33
L3	1,85	586,54	30,43	2,23	533 <i>,</i> 88	27,70	2,18	540,75	28,05
L4	1,55	641,62	33,29	2,23	533 <i>,</i> 88	27,70	1,92	575 <i>,</i> 03	29,83
L5	1,60	629,92	32,68	2,23	533 <i>,</i> 88	27,70	2,00	564,42	29,28
M1	3,74	30,89	12,98	2,97	34,65	14,56	3,67	31,17	13,10
M2	3,45	32,14	13,50	2,97	34,65	14,56	3,67	31,17	13,10
M3	3,13	33,74	14,17	2,97	34,65	14,56	3,13	33,75	14,18
M4	3,47	32,05	13,46	2,97	34,65	14,56	4,66	27,64	11,61
M5	3,09	33,94	14,26	2,97	34,65	14,56	2,93	34,89	14,66
N1	1,64	131,77	27,68	2,27	112,14	23,56	1,62	132,68	27,87
N2	1,78	126,67	26,61	2,27	112,14	23,56	1,72	128,83	27,06
N3	1,86	123,69	25,98	2,27	112,14	23,56	1,76	127,44	26,77
N4	1,64	131,88	27,71	2,27	112,14	23,56	1,60	133,53	28,05
N5	1,56	135,32	28,43	2,27	112,14	23,56	1,59	134,08	28,17
N6	1,73	128,33	26,96	2,27	112,14	23,56	1,73	128,29	26,95
N7	1,81	125,52	26,37	2,27	112,14	23,56	1,76	127,44	26,77