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Hillslope Evólution by Diffusive Processess:. The Problem of Equilibrium 

and the Effects of Climatic,and Tectonic Changes 

ABSTRACT 

by 

Nelson Ferreira Fernandes 

The convex hilltops of soil-mantled landscapes have been attributed to the 

action of diffusive (slope-dependent) processes like creep, rainsplash, and biogenic 

activity. Although many models based on the diffusion equation have been 

proposed, little is known about the effects of climatic and tectonic oscillations on the 

convex form. Such oscillations are expected to impose changes on the transport rates 

and/ or the incision rates at the base of the hillslopes. I specifically focus on how 

equilibrium convex hillslope profiles respond, both in terms of form and sediment 

flux, to one-step and cyclic oscillations in the diffusion coefficient or incision rate. 

Numerical and analytical solutions of the one-dimensional diffusion-type 

equation are obtained for initially convex hillslopes evolving under diffusion 

coefficient and incision rate values derived from field measurements. One-step 

changes, either in the diffusion coefficient or in the downcutting rate, are then 

imposed and the time required for the new equilibrium condition to be attained 

(relaxation time) is estimated. By characterizing the time-scale of morphological 

adjustments of these convex hillslopes, and consequently their relaxation times, we 

can determine whether the hilltop convexities that we observe in the field today 

represent equilibrium or relict forms. ln addition, the effects of climatic and tectonic 

oscillations on diffusive hillslopes are modeled by imposing cyclic changes, in either 

the diffusion coefficient or in the incision rate, in the form of steps, sine waves, and 

180-constrained oscillations.

Two-fold step changes in the diffusion coefficient or in the downcutting rate 

result in relaxation times of approximately 70 thousand years and one million years, 
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for 25 m and 100 m long hillslopes, respectively. The time-scale of such 

morphological adjustments varies depending on whether the hillslope profile is 

tending to increase or decrease its curvature through time. Toe new equilibrium 

condition is first developed at the base of the hillslope and then propagates upslope. 

A dimensionless graph is presented which allows the estimation of the relaxation 

time of convex hillslopes from estimates of diffusion coefficient, incision rate, 

magnitude of change, and hillslope length. Such a graph could be used in field 

studies. Step and sine oscillations in the diffusion coefficient cause the sediment flux 

from the hillslope to eventually oscillate around the initial equilibrium value, which 

is set by the downcutting rate. When these oscillations happen in the downcutting 

rate, the sediment flux oscillates around a new equilibrium value located mid-way 

between the lower and upper equilibrium values, associated with the minimum and 

maximum imposed downcutting rates, respectively. The sediment flux is shown to 

be in phase with 180-based oscillations in the diffusion coefficient whil� cumulative 

effects are observed when these oscillations take place in the incision rate. 

Because the relaxation times estimated here are much longer than the 

frequency of the climatic oscillations observed in the last few million years, I argue 

that most of the convex hilltops of soil-mantled landscapes are likely to represent 

forms that are far from being truly time-independent morphologies. The results also 

suggest that these convex hilltops represent forms that, once formed, are difficult to 

be perturbed with modest, but reasonable, variations in the diffusion coefficient or 

in the incision rate. Consequently, these convex hilltops may represent, at least for 

the case of long hillslopes, forms that developed before the climatic ª�_::cto�c 

oscillations that took place during the Quatemary. /41,Jll(1,1n 2 · ��
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INTRODUCTION 

This dissertation consists of two chapters and four appendices dealing 

with the question of how convex hillslope profiles evolve under the action of 

diffusive processes, like creep, rainsplash and biogenic activity, and under a 

specified incision rate at the base of the profile. ln Chapter 1, numerical 

experiments are carried out in order to quantify the time-scale of morphological 

adjustments of these convex profiles in response to step-changes in the diffusion 

coefficient or in the baselevel downcutting rate. The relaxation time of these 

hillslopes for a variety of imposed changes is estimated and the possibility that, 

under field conditions, an equilibrium condition be attained is discussed. 

1 

ln Chapter 2, the effects of climatic and tectonic-induced oscillations on 

convex hillslope profiles evolving by diffusive processes are investigated. A 

variety of step, sine and l8Q-based oscillations in the diffusion coefficient or in 

the downcutting rate are imposed to equilibrium diffusive hillslope profiles. The 

effects of these externa! oscillations on the morphology of the profiles and on the 

flux of sediments from the hillslopes to the channels are analyzed. The sensitivity 

of the convex hilltops of soil mantled landscapes to Quaternary oscillations in 

climate and tectonics is discussed. 
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Chapter 1 

HILLSLOPE EVOLUTION BY DIFFUSIVE PROCESSES: 

THE TIME SCALE FOR EQUILIBRIUM ADJUSTMENTS 
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ABSTRACT 

Diffusive processes such as creep, rainsplash and biogenic transport, 

especially in areas where overland flow is unimportant, play a major role in 

controlling the development of convex hilltops on soil-mantled landscapes. 

Although many diffusion-based models have been proposed, little attention has 

been given to the effects of changing transport rates and boundary conditions. ln 

this paper we specifically focus on the time-scale of morphological adjustments 

of convex hilltops in response to one-step changes in the diffusion coefficient or 

in the incision rate at the base of the hillslope. If we assume that climatic and/ or 

tectonic shifts will impose corresponding systematic changes in these two 

parameters, which will consequently lead to adjustments in the hillslope form 

towards a new equilibrium condition, then the estimation of such relaxation 

times may allow us to define whether the hilltop convexities that we observe in 

the field today represent equilibrium or relict forms. 

We use numerical and analytical solutions of the one-dimensional 

diffusion equation to explore whether hilltop convexities can be in equilibrium 

with contemporary climate and local channel incision rates. An initial 

equilibrium profile is formed using a diffusive sediment transport and specified 

lowering rate at the base of the hillslope. A step change in either the diffusion 

coefficient or in the lowering rate is then imposed and the time for the hillslope 

to reach equilibrium with the new condition (relaxation time) is determined. 

Importantly, values of hillslope length, diffusion coefficient and lowering rate are 

all based on field observations. Two-fold changes in the diffusion coefficient or in 



the baselevel downcutting rate result in relaxation times around 70 thousand 

years and one million years for 25 m and 100 m long hillslopes, respectively. 
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The new equilibrium condition is first developed at the base of the profile 

and it then propagates upslope. The time-scale of such morphological 

adjustments varies substantially depending on whether the hillslope is tending to 

increase or decrease its convexity from its initial value through time. A 

dimensionless graph, which may be useful in field studies, is developed which 

can be used to estimate the relaxation time for any combination of diffusion 

coefficient, lowering rate and hillslope length. By comparing the relaxation times 

estimated here with the frequency of the climatic oscillations observed in the last 

few million years we argue that most of the convex hilltops observed in the field 

today are likely to represent forms that are far from being truly time-independent 

morphologies. 

INTRODUCTION 

Most hilltops in soil mantled landscapes are convex. This form has been 

attributed to the work of processes such as soil creep, rainsplash and 

discontinuous surface runoff (see review in Carson and Kirkby, 1972; 

Summerfield, 1991; Selby, 1993). Mathematical models of hillslope evolution 

show that the convexity depends on both the hillslope transport process and the 

rate of incision at the base of the hillslope (e.g., Armstrong, 1980, 1987; Ahnert, 

1987a, 1988). Applications of these models to the field raise, however, a number 

of questions related to the generation and maintenance of hilltop convexities. A 



5 

major issue is whether these convex hillslopes actually represent equilibrium 

forms and if not, whether we can define how far from equilibrium they are. Are 

the hilltop curvatures observed in the field today associated with specific dimatic 

conditions or do they reflect the integral of the climatic changes and uneven rates 

of river incision over the last hundreds of thousands or even millions of years? If 

equilibrium is obtained, does it first occur at the base of the hillslope and 

propagate towards the divide or does it propagate downslope? 

For modeling purposes, hillslope evolution can be thought of as controlled 

by the competing processes of advective (Lowenherz, 1991) and diffusive 

transport. Advective transport (sediment movement by water driven processes) 

tends to be unstable and forms channels and valleys, while diffusive transport 

(sediment movement due to surface gradient) tends to fill in valleys and is 

argued to predominate on hillslopes (e.g., Kirkby, 1971; Smith and Bretherton, 

1972; Ahnert, 1976; Armstrong, 1976; Loewenherz, 1991; Willgoose et al., 1991; 

Howard, in press). 

Since the original theoretical investigations carried out by Culling (1960, 

1963, 1965), modeling of landform evolution by a slope-dependent sediment 

transport law has been widely used at all scales of landscape analysis, from short 

hillslope profiles to entire mountain ranges. Culling recognized that a slope­

dependent transport law, when combined with the conservation of mass 

equation for landscape erosion, leads to an equation analogous to Fick's Law of 

Diffusion, hence the reference to this process as diffusion. Subsequently, Kirkby 

(1971) demonstrated that for certain boundary conditions (i.e., both the divide 

and the base level fixed horizontally) hillslope profiles develop towards a 
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"characteristic form" which depends only on the processes' type and rate, and not 

on the initial morphology. He showed that diffusive sediment transport 

processes, like creep and rainsplash, smooth the landscape and that a convex 

hillslope profile would be the characteristic form resulting from their action. Such 

results supported the qualitative ideas raised much earlier by Davis (1892) and 

Gilbert (1909), who associated convex hilltops with the geomorphic work of soil 

creep. 

Although the concept argued by Kirkby (1971) and Smith and Bretherton 

(1972), that specific transport laws generate characteristic forms is useful, 

inheritance of initial conditions, unsteadiness in boundary conditions and 

sediment transport processes may lead to misleading intE:rpretations. It has been 

argued that in these hillslope models the imposed boundary conditions are as 

important as the operating processes in controlling the resulting hillslope profile 

(e.g., Armstrong, 1987; Parsons, 1987). Armstrong (1987), for example, showed 

that even slopes eroding according to one transport law can develop convex, 

concave or convexo-concave forms depending on the imposed boundary 

conditions. Furthermore, Dunne (1991) argued that convex hillslope profiles can 

be generated by sheetwash, a non-diffusive process, when rainstorms are short 

relative to the time of concentration of runoff. 

It is well demonstrated theoretically that certain hillslope profiles when 

evolving long enough under a constant process and a constant downcutting rate 

at the base of the slope tend towards an equilibrium form (e.g., Hirano, 1975; 

Armstrong, 1980,1987; Ahnert, 1987a, 1988). After this stage is achieved, hillslope 

morphology will be kept approximately constant through time (time-
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independent morphology) and such condition will be sustained as long as the 

downcutting rate and the erosional processes are kept constant. This general 

notion of equilibrium was implicit in Gilbert's classical laws (1877, p. 115-124) 

and, specifically for hillslopes, in his law of the slope (Gilbert, 1909, p. 345). Hack 

(1960, 1975) explicitly elaborated these ideas stating that an equilibrium 

condition, in which all the elements of the topography are downwasting at the 

sarne time, will eventually be attained by landscapes evolving under constant 

uplift rates and under constant climatic-driven geomorphic processes. Although 

field evidence supporting the existence of such equilibrium condition is rare, 

some examples have recently become available in the literature (e.g., Pavich, 

1989; Reneau and Dietrich, 1991; Monaghan et al.,1992). Many authors argued, 

however, that the development of equilibrium landforms is not the norm and 

that landforms must be considered as palimpsests of forms shaped during 

different climatic conditions (e.g., Thornbury, 1969; Arnett, 1971; Twidale, 1976; 

Bloom, 1978; Budel, 1980). Other arguments against the development of such 

equilibrium morphologies are based on the nonlinear behavior of some 

geomorphic systems (see review in Phillips and Renwick, 1992). 

Under natural field conditions, however, even when it is assumed that the 

interna! and externa! forces remained approximately constant for a certain period 

of time, it is also fundamental to take into consideration the relaxation time of the 

hillslope system, i. e., the time required for a new equilibrium condition to be 

attained after a perturbation in the system (e.g., Howard, 1965, 1988; Chorley and 

Kennedy, 1971; Allen, 1974; Thomes and Brunsden, 1977; Brunsden and Thomes, 

1979; Brunsden, 1980; Ahnert, 1987a, 1988; Hardisty, 1987). Such time­

independent morphology can only be attained when the input parameters to the 
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hillslope system described above remain approximately constant for a period 

longer than the hillslope's relaxation time. The recognition of the importance of 

the system's relaxation time to characterize the dynamic equilibrium stage brings 

another complicating factor to mathematical models of hillslope evolution, i. e., 

the necessity to consider evolution in terms of a real temporal scale. However, 

with the exception of Ahnert (1987a, 1987b, 1988), none of the models discussed 

above characterized the evolution of hillslope profiles in terms of actual time 

scales. 

Toe main objective of this paper is to define the relaxation time of 

equilibrium convex hillslopes to perturbations in the diffusion coefficient or in 

the lowering rate at its lower boundary. A major issue to be investigated here is 

the variation of relaxation time with the magnitude and direction of the changes 

in the diffusion coefficient or in the baselevel downcutting rate. While some 

authors suggested that the relaxation time might depend on the direction of the 

change (e.g., Chorley and Kennedy, 1971; Allen, 1974; Renwick, 1985) others 

argued, at least for the case of changes in the diffusion coefficient, that the 

relaxation time is not a function of such polarity (e.g., Koons, 1989). 

We will examine the relaxation time for one-step changes in the diffusion 

coefficient and baselevel downcutting rate using a one-dimensional numerical 

model. ln order to make our results relevant to real landscapes we use hillslope 

lengths, diffusion coefficients and lowering rates based on field data. 

Furthermore, to make our findings useful in field work, we have developed a 

dimensionless graph which can be used to determine relaxation times based on 

estimates of changes in the diffusion coefficient and baselevel lowering rates. We 
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first review diffusive hillslope evolution theory, then describe our method of 

numerical modeling and then present the obtained results. The time-scale of 

morphological adjustments will be used to estimate the relaxation time of convex 

hillslopes in response to changes in the externa! parameters. 

HILLSLOPE EVOLUTION BY DIFFUSIVE PROCESSES 

Although some of the assumptions behind the idea of hillslope evolution 

by diffusive transport processes were implicitly stated by Gilbert (1877, 1909) and 

Davis (1892), it was only after the work of Culling (1960) that the underlying 

mathematical relationships were fully described. Shortly after, analytical 

solutions for a number of boundary and initial conditions describing simple 

geomorphologícal situations became available (Culling,1963,1965; Hirano, 1968). 

The diffusion theory when applied to the evolution of hillslope profiles 

under transport-limited conditions (Gilbert, 1877; Culling, 1963; Kirkby, 1971) 

assumes a slope-dependent transport law in the form of (1) which states that soil 

flux ( q5), in terms of mass per unit width of slope [M/LT], is directly 

proportional to hillslope gradient 

(1) 

where z is elevation, x is distance from the divide, and K is a constant of 

proportionality. 
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A transport law with a slope dependence in the form expressed by (1) has 

been widely accepted, both explicitly and implicitly, as accounting for transport 

processes like creep (e.g., Davison, 1888; Culling, 1963; Schumrn, 1967; Kirkby, 

1967, 1971, 1985; Gossmann, 1976; Armstrong, 1976, 1980, 1987; Ahnert, 1976, 

1987a; Nash, 1980a, 1980b; Band, 1985), rainsplash (e.g., De Ploey and Savat, 

1968?; Kirkby, 1971; Dunne, 1980, 1991; Band, 1985), biogenic activity (e.g., 

Dietrich et al., 1987) and frost heave (e.g., Schumm, 1967). However, field 

evidence supporting a transport law in the form above is still rare. More recently, 

field measurements of the concentrations of cosmogenic lOBe along vertical 

profiles in soil-mantled hillslopes (McKean et al., 1993) provided empirical 

evidence for such a linear slope dependent transport law for soil creep. 

(2) 

Combining (1) with the continuity equation 

_ àz _J__ ôq8

ôt Pb ôx ' 

where pb is the mass density of the soil and t is time, yields

(3) --=-- -K-êJz l a ( àzJ 
êJt Pb êJx àx . 

If we assume K to be constant along the hillslope profile we end up with a 1-D 

homogeneous diffusion-type equation 



11 

(4) 

where D, in fact a diffusion coefficient with units of [L2 /T], is set equal to K/ Pb. 

ln words, it states that the change in elevation with time is proportional to the 

hillslope curvature. Although assuming K as constant along the profile seems to 

be reasonable for short hillslope (e.g., 20-100 m long) with an "homogeneous" soil 

mantle, its usage on longer hillslopes with significant variations in bedrock 

geology, soil properties and vegetative cover along the profile may not be 

a ppropria te. 

At steady-state, the change in elevation with time ( 2Jz/2Jt) is constant and

can be assumed to be equal to the landscape lowering rate and to the baselevel 
downcutting rate at the bottom of the hillslope ( B d). Substituting ( B d) in the

diffusion-type equation, yields 

(5) 

(6) 
B (2J2zJ J = àx2 = hillslope curvature.

Integrating (6) once with respect to x , yields 

(7)
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a linear relationship between hillslope gradient and distance from the divide. For 

flat divides (q =0), the slope of this line, Bd / D, equals the hillslope curvature

developed at steady-state. Dietrich et al. (1987) noticed that where the long-term 

lowering rate of a hillslope can be estimated one can solve equation (7) for the 

diffusion coefficient. This approach was successfully used (Dietrich et. al., in 

prep.) to estimate diffusion coefficient values for a number of convex hillslopes in 

Marin County, near San Francisco-CA (Figure 1). 

Toe diffusion-type equation has been widely used to model the evolution 

of many different geomorphological systems along a great variety of spatial and 

temporal scales. Applications included modeling the evolution of hillslope 

profiles (e.g., Culling, 1960, 1963, 1965; Hirano, 1968, 1975, 1976; Kirkby, 1971; 

Gossmann, 1976_; Trofimov and Moskovkin, 1976, 1983, 1984; Armstrong, 1980, 

1987), the evolution of mountain blocks (e.g., Koons, 1989; Anderson and 

Humphrey, 1989), the morphologic dating of fault scarps and wave-cut 

sediments (e.g., Nash, 1980a, 1980b, 1984; Colman and Watson, 1983; Mayer, 

1984; Hanks et al., 1984; Hanks and Wallace, 1985; Andrews and Hanks, 1985; 

Hanks and Schwartz, 1987; Hanks and Andrews, 1989), the morphologic dating 

of late-glacial terrace scarps (e.g., Pierce and Colman, 1986), the evolution of 

glacial moraines (e.g., Anderson and Humphrey, 1989; Bursik, 1991), the 

stratigraphic development of nonmarine foreland basins (Jordan and Flemings, 

1989); the evolution of longitudinal river profiles (e.g., Culling, 1960; Begin et al., 

1981; Begin, 1988; Trofimov and Moskovkin, 1983), and the aggradation of valley 

bottoms (e.g., Wyrwoll, 1988). 
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In models like the one discussed here, the erosional constant (D) plays a 

major role in controlling the general evolution of the initial hillslope profile. 

Therefore, the assessment of reliable, field-related values for the diffusion 

coefficient is a major step towards a reasonable simulation of how hillslope 

profiles evolve, in space and in time, when submitted to diffusive-type processes. 

Field-oriented methods, based on a variety of techniques, have resulted in a 

number of estimates of the diffusion coefficient on the hillslope scale (Table I). 

Most of the available values come from estimates based on the morphologic 

dating of fault scarps and wave-cut sediments (e.g., Nash, 1980a, 1980b, 1984; 

Hanks et al., 1984; Rosenbloom and Anderson, in press). 

METHODS 

The evolution of hillslope profiles under diffusive processes was modeled 

here by solving (4), through both numerical and analytical methods, for a 

number of field-based initial and boundary conditions. A number of analytical 

solutions for conditions very similar to the ones simulated here have been 

presented by Culling (1960; 1963, 1965), Hirano (1968), Carson and Kirkby (1972) 

and Trofimov and Moskovkin (1983, 1984). They were based on analogies to the 

transference of heat by conduction (Carslaw and Jaeger, 1959) and on chemical 

diffusion (Crank, 1975). The analytical solution z(x,t) for the situation described 

in Figure 1 takes the form of 



(8) 

where 

(9) 

(10) 
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The step-by-step development of this solution, including the definition of all the 

parameters above, is presented in Appendix 1. 

Although the analytical solutions are helpful to the understanding of the 

general behavior of the system to be modeled, numerical solutions were used 

here in most of the simulations because of their greater flexibility in handling 

more complex field-oriented initial and boundary conditions. Details about the 

finite-differences scheme used to obtain the numerical solution and the program 

used to implement it are in Appendices 2 and 3, respectively. 
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We have concentrated our experiments on the one-dimensional evolution 

of hillslopes under transport-limited conditions (Gilbert, 1877; Culling, 1963; 

Kirkby, 1971), i.e., at any time there will be soil available to be transported by the 

erosional process (see Figure 2). As argued by many authors (e.g., Howard, 1988; 

Koons 1989) although the one-dimensional analysis is clearly not sufficient to 

model the evolution of large areas, such as, entire drainage basins, it can be very 

helpful in defining the relative importance of the physical parameters involved in 

the problem. The assumption of transport-limited conditions clearly limits the 

applicability of the obtained results to hillslopes developed on unconsolidated 

sediments, on deep weathering profiles, or on soil-mantled areas where the 

surface lowering rate and the bedrock lowering rate are approximately the sarne. 

Diffusion coefficient values estimated by the methods previously 

described (see Table I) varied from 4 x 10-4 m2/yr to about 400 x 10-4 m2/yr. ln 

trying to stay dose to the values estimated in the field but also assuming that 

higher values can probably exist, we have used in the simulations diffusion 

coefficient values varying from 4 to 4000 (x 10-4 m2/yr). The diffusion coefficient 

is maintained constant during the simulations. 

Hack (1960) suggested that under constant geomorphic processes, a 

dynamic equilibrium morphology would develop in areas undergoing constant 

uplift rates. For modeling purposes we approximated such condition by 

imposing a constant rate of baselevel downcutting (Bct) at the bottom of the 

hillslope (boundary condition at the base of the hillslope). Although Figure 2 

suggests that the lower boundary condition is a channel, this is not required. 
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Hill top convexities are cornmonly bordered downslope by straight, landslide­

dominated profiles. ln our model the lower boundary condition is just an incision 

rate by what ever process occurs there. Landsliding, episodic upslope migration 

of knickpoints (e.g., Seidl and Dietrich, 1992) and periodic debris flows in 

channels will cause this incision to be unsteady at smaller time intervals, hence 

by holding the lower boundary condition constant (or by changing it an then 

holding it constant) we are modeling the time-averaged effect of these episodic 

erosional events. 

Compilations obtained for a variety of climatic conditions, relief 

characteristics, and bedrock geology, suggest that denudation rates may vary 

between 10-6 m/yr and 10-3 m/yr (e.g., Saunders and Young, 1983; Milliman and 

Meade, 1983; Young and Saunders, 1986). More recently estimates based on the 

accumulation rate of colluvium inside hollows (Reneau, 1988; Reneau et al., 1989) 

and on bedrock-to-soil conversion rates obtained from the accumulation of 

cosmogenic isotopes in the soil (Pavich, 1989; Monagham et al., 1992) resulted in 

values also inside this range. Based on these values we imposed in our 

simulations baselevel downcutting rates (Bct) varying from -10-s m/yr to -10-2

m/yr (the negative sign denotes incision) which represent one order of 

magnitude above both the minimum and maximum field-estimated values. 

The simulations to be presented here used as initial condition convex 

hillslopes 25 m and 100 m long. These lengths were selected because we believe 

that models like the one used here are more appropriate to the study of hilltop 

convexities and short hillslopes. Longer hillslopes, when evolving towards an 

increase in final hillslope curvature, may develop gradients far above the limiting 
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stability angle (Carson, 1971) of the material and will require, as done by other 

authors (e.g., Anderson and Humphrey, 1989; Anderson, in press), the 

incorporation of a landslide term in the transport law described by (1). Hillslope 

lengths were kept constant during the entire simulation andfor most of the 

experiments we started with a constant hillslope curvature (Bd/D) of-0.025 m-1 

which is a typical value for convex hilltops in Marin County, California (see 

Figure 1). Such initial morphology is assumed to be a reasonable approximation 

of certain hillslopes in the field that have already developed a constant curvature 
[ ( ·,J2z/ax2 ) =constam] at some previous equilibrium condition, and are then

experiencing a new climatic and/ or tectonic regime. New externai conditions are 

represented in the model by changes in Dor Bd which will, if the model is 

allowed to run to equilibrium, lead to a new constant hillslope curvature value 

CBd/D). The computed time to equilibrium then defines the relaxation time. 

RESULTS 

Evolution Towards Equilibrium 

Figure 3 shows a 25 m long convex hillslope evolving under diffusive 

processes for 100 Ka (thousand of years). The initial profile has a constant 

curvature of 0.025 m-1 and it is assumed to represent some previous equilibrium 

morphology obtained, for example, under the combination of a baselevel 

downcutting rate of -10-4 m/yr (Bd1) and a diffusion coefficient of 40 x 10-4 

m2/yr. Figure 3A presents the morphological response (plotted for each 10 Ka 

interval) associated with a 2-fold increase in the baselevel downcutting rate. 



Oearly, the hillslope profiles evolve towards an equilibrium condition which is 

shown here by the development of a time-independent morphology by around 

90 Ka. For each simulation like this one we computed the spatial and temporal 

variations in slope (Figure 3B), curvature (Figure 3C) and erosion rate (Figure 

3D). By integrating with respect to distance each one of the time tines in Figure 

3D we obtained a plot of the variation of the sediment flux (Qt), for the entire 

hillslope, with time (Figure 3E). 
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As expected from the theoretical analysis presented before (see Equation 

7), the hillslopes in this experiment become steeper with time, driven by a greater 

absolute ratio Bct/D, in other words, by a greater imposed final hillslope 

curvature. Consequently, both hillslope curvature and erosion rate increase with 

time towards constant values along the entire profile. The total sediment flux 

increases asymptotically to its new equilibrium value (Qtss), such that 

(13) Qtss = - Bct x L 

where Qtss is in m2/yr, Bct is in m/yr and L, the hillslope length, is in meters. 

This brings our discussion to the question of how we defined equilibrium 

in our experiments. We followed a criterion similar to the one used by Ahnert 

(1987a, 1987b, 1988) which was to assume that the temporal variation in the 

erosion rate is a good approximation of the degree of approach to equilibrium. 

Because of the asymptotic behavior of Qt we have approximated the equilibrium 

condition by the moment in which the total sediment flux (Qt) attains 90% of its 

value at the steady state condition (Qtss), which is defined by (8). For the 



conditions simulated in Figure 3, 90% of the sediment flux at steady state was 

obtained at 90 Ka (Figure 3E). This amount of time can be thought of as an 

estimate of the relaxation time (Rt) of the hillslope system in response, in this 

case, to a 2-fold increment in the absolute baselevel downcutting rate (Bct), 
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Figure 4 shows a similar experiment where, instead, we imposed a 2-fold 

increase in the diffusion coefficient on an equilibrium hillslope. ln this case, the 

response was a general tendency to flatten the profiles (Figures 4A and 4B), 

driven by a smaller final hillslope curvature. As expected, both hillslope 

curvature and erosion rate (Figures 4C and 4D) decrease with time towards new 

equilibrium values which are approximately constant along the entire hillslope. 

The total sediment flux (Figure 4E) decreased asymptotically with time towards 

steady state and 90% of its value was obtained after 70 Ka, defining the relaxation 

time of the hillslope system associated with a 2-fold increment in the diffusion 

coefficient. 

The Relaxation Time of Hillslope Profiles 

ln order to estimate the relaxation time of diffusional hillslopes over a 

wide range of diffusion coefficients and baselevel downcutting rates, we set up a 

series of numerical experiments in which we started with convex hillslopes 

already in equilibrium and we then introduced one-step changes (up or down) in 

D or Bct. Each change was maintained until the new equilibrium condition was 

attained. ln these experiments there is no reaction time (Chorley and Kennedy, 

1971; Allen, 1974), i. e., the hillslopes immediately start to respond to the imposed 
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changes of input. In this paper, the terrns step-up and step-down changes in D or 

Bd will refer to the absolute values of this parameters. 

Figure 5 shows the response of the total sediment flux (Qt) associated with 

one-step up (Figure SA) and with one-step down changes (Figure SB) in the 

diffusion coefficient, while the baselevel downcutting rate was kept constant. For 

each one of these two situations we imposed 2-fold and 10-fold changes in D and 

the results were plotted until the moment when the new equilibrium condition 

was attained. Thus the end of each one of the Qt lines in Figure 5 represents an 

estimate of the relaxation time of the hillslope profile associated with each one of 

the imposed changes. For step-up changes (Figure SA), in which we increased 

the magnitude of the imposed change, from 2-fold to 10-fold, relaxation time 

decreased from about 70 Ka to 30 Ka. For step-down changes (Figure SB), in 

which we increased the magnitude of the change, the associated relaxation time 

increased from 165 Ka to 1275 Ka, approximately. 

Toe results associated with one-step changes in baselevel downcutting 

rate (Figure 6) showed that, for both step-up (Figure 6A) and step-down changes 

(Figure 6B), the relaxation time increased when we increased the magnitude of 

the change. As in the case of changes in D, the relaxation time was longer for 

step-down changes in Bct than for step-up changes. While changes in D resulted 

in a peak in the sediment flux immediately after the change, the response 

associated with changes in Bct was more subtle. 

Figure 7 summarizes the results obtained for one-step increases (right 

side) and one-step decreases (left side) in the diffusion coefficient for 25 m and 
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100 m long hillslopes over a wide range of imposed changes. The initial condition 

was the sarne one used in the experiments presented in Figures 5 and 6, i.e., a 

convex hillslope developed at equilibrium by the combination of a baselevel 

downcutting rate of - 10-4 m/yr and a diffusion coefficient of 4 x 10-3 m2/yr. 

These figures show that the longer the hillslope, the longer the relaxation time 

associated with any specific change. A 2-fold change in the diffusion coefficient 

gives relaxation times around 70 Ka for 25 m long hillslopes and around 1.0 Ma 

(million of years) for 100 m long hillslopes. For one-step increases greater than a 

2-fold, the relaxation time decreases when we increase the magnitude of the

change. For step-down changes, the relaxation time increases when we increase 

the magnitude of change. 

A similar analysis was carried out to estimate the relaxation times 

associated with one-step changes in the baselevel downcutting rate (Figure 8). 

The initial condition was the sarne as before. The results show that there is a 

great dependency of the relaxation time on the baselevel downcutting rate for 

changes smaller than a 2-fold. For greater changes (both increases and decreases), 

the relaxation time is much less sensitive to changes in the baselevel downcutting 

than it is for changes in the diffusion coefficient. Two-fold changes in the 

baselevel downcutting rate for 25 m and 100 m long hillslopes give relaxation 

times around 100 Ka and 1.5 Ma, respectively. 
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Relaxation Time and Final Relief 

In this section we analyze how the relaxation time of hillslope profiles is 

related to the magnitude of the final relief (Fr), i.e., the relief obtained at the 

equilibrium condition. Here, relief means the difference in elevation between the 

hilltop and the base of the hillslope and the results refer to profiles 25 m long. It 

is common in diffusive problems to specify the time by the dimensionless 

quantity (D t) / L2, which is known as the Fourier number (e.g., Carslaw and 

Jaeger, 1959). Based on this, Anderson (in press) argued that the time scale for the 

approach to steady state in a problem similar to the one simulated here would be 

well approximated by the ratio 

(14) L2 / D.

In the sarne way, some authors have shown that the steady-state relief for the 

convex profiles simulated here is expressed by 

(15) 

(e.g., Carson and Kirkby, 1972, p. 299; Anderson, in press). 

Figure 9 and Figure 10 compare some of our results for the relaxation time 

and final relief, obtained by solving the time-dependent problem given by (4), 

with the values obtained if one uses the respective steady-state equations 

described above. The plots in these two figures show the amount of time 

required to attain equilibrium and the amount of relief developed at such 
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condition for each imposed change. Figure 9 shows such relationships when the 

direction of the change is towards an increase in hillslope curvature (in absolute 

values), i.e., resulting from an increase in the absolute value of Bct (plots 9A and 

9B) or from a decrease in D (plots 9C and 9D) while Figure 10 shows the sarne 

relationships for changes towards a decrease in hillslope curvature. Toe results 

presented in these two figures suggest that while the relief at equilibrium 

estimated by (15) is similar to the numerical solution (the 10% difference is 

related to the cri teria we used in the definition of equilibrium here), the use of 

(14) as an approximation for the relaxation time of convex hillslope profiles is not

valid, especially for changes smaller than a 2-fold. Such result was expected 

because there is not a Bct term in (14), resulting in a constant relaxation time 

along the entire range of changes in Bct. 

The influ�nce of final relief on relaxation time helps explain the 

differences between Figures 7 and 8 and the dependency of relaxation time on 

whether diffusivity and lowering rate are increasing or decreasing. Increases in 

Bct or decreases in D will cause the mean slope to increase for a given fixed 

hillslope length, hence the final equilibrium relief must increase. Development of 

relief takes time, therefore increasing relief is associated with increasing 

relaxation time. Because of the increasing transport caused by increasing Bct, 

however, the rate of increase of relaxation time with increasing Bct declines with 

increasing Bct changes. Large decreases in diffusivity, initially slow the erosion 

down and it is not until the mean slope is sufficiently steepened that equilibrium 

is reached, so large decreases in diffusivity mean large increases in relaxation 

time. 



24 

On the other hand, a decrease in Bd or increase in D will decrease the 

mean slope and hence the final relief, but the relaxation time response is not the 

sarne. The larger the decrease in lowering rate, the more transport rate 

diminishes and the longer it takes to reach equilibrium. So even though the final 

relief is smaller for larger decreases in Bd, the relaxation time is larger. In 

contrast, increasing diffusivity above a factor of 2, while causing the final relief to 

diminish, also causes the sediment transport rate to be initially higher (until the 

slope declines) hence the relaxation time is shorter. 

In sum, then, the larger the change in Bd the longer the relaxation time, 

although the magnitude of increase differs depending on whéther the lowering 

rate is increasing or decreasing. If diffusivity decreases, the relaxation time 

increases, but if it increases, the relaxation time first increases until diffusivity is 

about 2 times the initial value and then it progressively decreases with increasing 

diffusivity. 

Propagation of the Equilibrium Condition 

To investigate how equilibrium develops along a profile, we have plotted 

the relaxation time as a function of distance from the divide on a 100 m long 

hillside for a variety of changes in Bd and in D (Figure 11). The initial condition, a 

convex profile with a curvature of -0.025 m-1, was kept constant in all the 

simulations presented here. Figure 11A shows the results obtained when we 

varied the baselevel downcutting rate and maintained the diffusion coefficient 

constant while Figure 11B shows the opposite situation. A new criterion was 



used to define approximate equilibrium because the total sediment flux 

approach, used until now, would not allow us to define which parts of the 

hillslope profile had already attained equilibrium. ln these experiments, the 

equilibrium condition was arbitrarily defined by the stage in which the hilltop 

develops a convexity that is 90% of the local hillslope curvature at steady-state 

which is known from the new imposed ratio Bct/ D. 
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Toe results show that for the cases presented in both Figure 11A and 

Figure 11B, the relaxation time gets longer the closer to the divide, i. e., showing 

that the equilibrium propagates upslope. This upslope migration starts slowly at 

the base of the profile and then accelerates as the equilibrium gets closer and 

closer to the hilltop. When we compute the lag-time between the achievement of 

the equilibrium at the bottom and at the top of the profile we observe that while 

this amount of time is very similar for the imposed changes in Bct (Figure 11A) it 

may vary significantly for changes in D (Figure 11B). 

Dimensional Analysis 

ln order to clarify the nature of the physical processes being modeled a 

dimensional analysis was carried out by the classical Buckingham's Pi Theorem 

(see for ex., Dym and Ivey, 1980). The basic idea was to make our findings more 

useful in field work by obtaining a dimensionless graph in which the relaxation 

time could be determined based on estimates of changes in diffusivity and 

downcutting rate. One set of three dimensionless parameters [IT1, IT2, IT3] 

obtained from such analysis is: 



(16) 

(17) 

(18) 

I11 = Wi L, 

I12 =

Il3 = 

DRt 

Bd L 
D 
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I 

= Wf L, 

where Wi and Wf are the initial and final hillslope curvatures, respectively. This 

graph allows us to determine the relaxation time based on the hillslope length 

and on estimates of the initial and final values of the diffusivity and incision 

rates. The development of such analysis is fully described in Appendix 4, and a 

non-dimensional graph associated with our problem is presented in Figure 12. 

DISCUSSION 

Estimates of the relaxation time of hillslopes in the geomorphological 

literature are still rare, and comparisons are difficult because of the different 

objectives and criteria used to define this time. The relaxation times estimated 

here for hillslope profiles evolving under diffusive processes ranged from tens of 

thousands of years to a few millions of years. The specific values were controlled 

by the length of the hillslope as well as by the type, magnitude and direction of 

the imposed changes in the inputs. Although the simulations carried out here 

were only associated with the one dimensional evolution under transport-limited 

conditions their results proved to be very helpful in defining the relative 



importance of the parameters controlling the time-scale of morphological 

adjustments of convex hillslopes. 
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Toe fact that the relaxation time increased with the square of the hillslope 

length was expected from the solution of a pure linear diffusive evolution and 

such behavior has been shown by other authors (e.g., Carson and Kirkby, 1972, 

Koons, 1989; Andersen, in press). A different relationship was obtained by Ahnert 

(1987a) who observed that, for hillslopes evolving under slow mass movements, 

the relaxation time increased linearly with increments in the length of the profile. 

Both changes in the diffusion coefficient and in the baselevel downcutting 

rate play important roles in controlling the magnitude of the relaxation time on 

hillslope profiles. For increments smaller than a 2-fold change, the relaxation 

time was shown to be positively correlated with the increasing diffusion 

coefficient. For increments greater than this value it was shown to be negatively 

correlated, and this resulted from the fact that the final relief decreased when we 

increased the magnitude of the change. A similar relationship was observed by 

Ahnert (1987a) for hillslopes shaped by suspended-load wash denudation. He 

showed that the relaxation time was negatively correlated with the intensity of 

denudational process, which in his case was the precipitation. Our results also 

show a positive correlation between the relaxation time and the absolute value of 

the baselevel downcutting rate for increments smaller than a 10-fold. For greater 

increments, the relaxation time was shown to be much less sensitive to changes 

in the baselevel downcutting. Ahnert (1987a) also approached this question and 

although his hillslopes were eroded by different processes he also observed a 



positive correlation between the relaxation time and the rate of baselevel 

lowering (in absolute terrns). 
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The results summarized in Figures 7 and 8 show that the time-scale of 

morphological adjustments following changes in the diffusion coefficient or in 

the baselevel downcutting rate will vary substantially depending on whether the 

absolute value of the hillslope curvature is increasing or decreasing. Although 

such behavior was previously suggested for other geomorphological systems by 

some authors (e.g., Chorley and Kennedy, 1971; Allen, 1974; Renwick, 1985), it 

has not yet been demonstrated for hillslopes. 

Equilibrium condition, for all the simulated cases, first developed at the 

base of the hillslope and then propagated upslope. The upslope migration of 

equilibrium starts slowly and then accelerates. ln his model Ahnert (1987a) also 

observed that near the base of the hillslope the equilibrium is established faster. 

However, he showed that when it moves upslope its progress gets more and 

more retarded. He attributed this change to the decrease in the contributing area 

and, consequently, in the overland flow discharge. 

These results support the idea that hilltop convexities are the segments of 

hillslopes with the longest relaxation time. If we assume that climatic shifts will 

impose corresponding systematic changes in the diffusion coefficient, which will 

consequently lead to morphological adjustments in the hillslope system then the 

hilltop convexities observed in the field today may represent morphologies that 

are far from being equilibrium forms. ln addition, the magnitude and direction of 

the climatic and/ or tectonic change, i.e., towards and increase or decrease in D or 
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Bct values, is shown to play an important role in controlling the amount of time 

required for a new equilibrium condition to be attained. In order to expand these 

results to include the response associated with climatic and/ or tectonic 

oscillations Fernandes and Dietrich (Chapter 2) have set up a series of 

experiments to investigate the time-scale of morphological adjustments of 

hillslope profiles in response to cyclic oscillations in the diffusion coefficient or in 

the baselevel downcutting rate. 

Another interesting point is the difference in the form of the total sediment 

flux curve associated with changes in D and Bct observed in Figures 5 and 6, 

respectively. Although our simulations dealt with very simple conditions in 

terms of transport processes, the fact that step-increases in D result in a peak in 

the sediment flux immediately after the increase suggests that some drainage 

basins may develop extensive aggradation cycles concentrated immediately after 

a climatic-induced increase in the diffusion coefficient. Although step-increases 

in Bct (in absolute terms) result in sediment fluxes greater than the ones 

generated by the sarne amount of changes in D, the associated response is much 

more subtle. This subtlety may allow the channels to transport the sediments 

delivered from the hillslopes, thereby preventing the accumulation of thick 

deposits in the drainage basin. 

An important question that needs to be further addressed is the use of a 

diffusion-based approach to model larger areas, e.g., entire mountain ranges, in 

which major variations in topography, climate, vegetation and bedrock geology 

might occur. As was argued by some authors (e.g., Andersen and Humphrey, 

1989; Koons, 1989; Andersen, in press) there are some important issues that need 
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to be taken into consideration when scaling-up the related parameters which 

result, for example, in defining an effective diffusivity which is much larger than 

the one estimated at the hillslope scale. Another major issue is the use of a 

precipitation gradient for estimate a diffusion coefficient gradient (e.g., Koons, 

1989). Although it may seem very attractive when modeling large-scale features, 

there is still no field evidence supporting the straight application of such 

relationships. As was shown by McKean et al. (1993), spatial variations in 

bedrock geology (e.g., from sandstone to shale) may play the most important role 

in controlling the magnitude of the diffusion coefficient value and seem to 

explain the one order of magnitude increase in D from Marin County to Concord 

(both in California) while annual precipitation is reduced by one half. 

CONCLUSIONS 

For field-constrained values in the diffusion coefficient and in the 

baselevel downcutting rate, 2�fold changes give relaxation times around 70 Ka 

and 1 Ma, for hillslopes 25 m and 100 m long, respectively. The time required for 

such morphological adjustments to be attained following one-step changes in the 

diffusion coefficient or in the baselevel downcutting rate differs depending on 

whether the initial hillslope is tending to increase or decrease its convexity 

through time. 

Step-increases in the diffusion coefficient result in a peak in the sediment 

flux delivered from the hillslopes immediately after the change. This suggests 

that under field conditions some drainage basins may develop aggradation 
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cycles concentrated immediately after a clirnatic-induced increase in the diffusion 

coefficient. 

Because the relaxation times estimated here are much longer than the 

frequency of the climatic oscillations observed in the last few rnillion years, it 

seems likely that most of the convex hillslopes that we see today in the field are 

not true time-independent morphologies despite having well developed smooth 

convexities. This will be especially true for the convex hilltops because they have 

the longest response times of the hillslope system. 
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TABLE I - Estimates of the diffusion coefficient (D). 

D Method Material Climate Source 

(x 10-4 m2 /yr) (*) 

4.4 A alluvium semi-arid Nash (1980b) 

10 A cohesionless semi-arid Hanks et al. 

(1984) 

20 A sands & Nash (1984) 

gravels 
40-60 B coarse soils Medi terranean Dietrich et al. 

(in prep.) 
50 e coarse soils Reneau (1988; 

cited by McKean 
et al., 1993) 

100 A Mediterranean Rosenbloom & 

Anderson 

(in press) 

110 A tempera te Hanks et al. 

(1984) 

120 A wave-cut humid- Nash (1980a) 

bluffs; tempera te 

sandy 

360 D clay-rich McKean et al. 

soils (1993) 

*A= morphological dating; B = hillslope curvature; C = colluvial transport rates;
D = accumulation of lOBe in soils.
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Figure 1 - Estimation of the diffusion coefficient from hillslope convexity at Marin County, 
California. Plot (A) shows the survey of the hillslope curvature while plot (B) presents the change 
in slope with distance from the divide for the sarne hillslope. The site is extensively described 
elsewhere (e. g., Reneau et al., 1984; Black and Montgomery, 1991). Assuming the baselev�l 
downcutting rate (Bct) as approximately equal to the lowering rate, then the slope of this line is 
equal to Bct/D, where D is the diffusion coefficient. Substituting the measured value for Bct in this 
site (Reneau, 1988), a diffusion coefficient of approximately 50 xl0-4 m2/y r is obtained. [modified 
from Dietrich et al. , in prep; data collected by David Montgomery]. 
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Figure 2 - Sketch diagram of the diffusion-based model used in this paper. The initial 
profile is always a hillslope with constant curvature and transport-limited conditions 
prevail during the entire evolution. The evolving profile is submitted to a constant 
diffusive erosional processe and to a constant incision rate at the bottom of the hillslope, 
while the divide remais flat. 
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Figure 3 - Morphological response of an initially convex profile when sumitted to a 2-fold 
increase in the baselevel downcutting rate (from Bdl to Bd2). Toe initial hillslope curvature and 
the diffusion coefficient (kept constant during the entire simulation) are 0.025 m-1 and 40 x 10-4 

m2 /yr, respectively. Figure 3A plots elevation against distance from the divide during 100 Ka 
(thousand of years), with each line representing a 10 Ka interval. Figures 3B, 3C and 3D show the 
temporal variation of slope, convexity and erosion rate against distance from the divide. Figure 3E 
shows the variation of the total sediment flux (Qr)with time until 90% of its value at the steady-

state condition is obtained. 



w 
a. 

o 

"' 

-

'7 

! 
► 
!:: 
>< 
w 

> 
z 

o 
o 

-0.6

-0.4

-0.2

o 

-0.03

-0.02

-0.01

o 

o 

-

g 
z 

o 

� 
> 
w 
..J 

w 

30 

20 

10 

o 

j..__ Ka 
o 

rt22 

o 

80 

10 

D
1 

= 4 x10·3 rrf/yr

D
2 

= 8 x10·
3 rrf/yr

B
d 

= -10"" m/yr

A 

20 

DISTANCE (m) 

íã 

;;. 

! 
w 

1-
< 
a: 

z 

o 

ui 
o 
a: 
w 

íii 
.JI: 

!!! 

1-

o 

10 20 

DISTANCE (m) 

1 

0.8 

0.6 

0.4 

24 

20 

16 

12 

o 

' • 
. ' '

10 20 

DISTANCE (m) 

.. 

'· 
... 
·-..

·--------

TIME (Ka) 

45 

Figure 4 - Morphological response of an initially convex profile when sumitted to a 2-fold 
increase in the diffusion coefficient (from D1 to Dz). Toe initial hillslope curvature and the
baselevel downcutting rate (kept constant during the entire simulation) are 0.025 m-1 and -10-4

m/yr, respectively. Figure 4A plots elevation against distance from the divide during 80 ka, with 
each line representing a 10 ka interval. Figures 4B, 4c and 4d show the temporal variation of slope, 
convexity and erosion rate against distance from the divide. Figure 4e shows the variation of the 
total sediment flux (Qr) with time until 90% of its value at the steady-state condition is obtained. 
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Figure 11 - Relaxation time (Rt) as a function of distance from the divide for hillslopes 100 m 
long. This figure shows how the equilibrium condition propagates along the hillslope when one­
step changes are imposed in the baselevel downcutting rate (Plot 1 lA) and in the diffusion 
coefficient (Plot llB). The initial condition, a convex profile with a curvature of-0.025 m-1, is the
sarne for ali simulations. Bct values are in m/yr while D values are in xl0--4 m2/yr. 
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ABSTRACT 

Convex hilltops are common features on most soil-mantled landscapes. 

Although it is widely recognized that diffusive (slope-dependent) processes are 

generally responsible for the convexity little is known about the influence of 

climatic oscillations and variable boundary incision rates (tectonics) on the shape. 

ln addition, considerable effort has been spent deciphering river and hillslope 

deposits for their climatic and tectonic signature, yet the delayed response of 

hillslopes may tend to decouple the sediment flux rates from changes in externai 

forcing. In this paper we model the effects of climatic and tectonic oscillations that 

took place in the last 500 thousands of years on convex hillslopes evolving by 

diffusive processes. We specifically focus on how equilibrium convex hillslopes 

respond, both in terms of form and sediment flux, to step, sine and 180-

constrained oscillations in the diffusion coefficient or in the downcutting rate at the 

bottom of the profile. 

The hillslope profiles are shown to respond very differently depending on 

whether the imposed oscillations take place in the diffusion coefficient or in the 

incision rate. Step and sine oscillations in the diffusion coefficient cause the total 

sediment flux to eventually oscillate around the initial equilibrium value and the 

shorter the profile, the closer to the equilibrium it will be by the end of each cycle. 

Step and sine changes in the downcutting rate cause the sediment flux to oscillate 

around an equilibrium value located half the way between the lower and upper 

equilibrium values, which are associated with the minimum and maximum 

imposed values of the incision rates, respectively. Although the sediment flux is in 

phase with the 180-based oscillations in the diffusion coefficient, 180-based 
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oscillations in the downcutting rate cause cumulative effects on the response of the 

sediment flux. The results suggest that the convex hilltops of soil mantled 

landscapes, once formed, are forms difficult to be perturbed with modest 

variations in the diffusion coefficient or in the downcutting rate and may, at least 

for the case of long convex hillslopes, represent paleoforms that have been formed 

much before the climatic and tectonic oscillations that took place during the 

Quatemary. 

INTRODUCTION 

Landscapes evolve through diverse geologic materials under the influence 

of varying climate and tectonics. The evolving river system records, although often 

rather obscurely, the influence of varying climate and tectonics through such 

features as strath and fill terraces and in the shape of the longitudinal profile. 

Hillslopes, on the other hand, are harder to read. Colluvial deposits, landslide 

features and fault scarps have been used to explain the influence of varying climate 

and tectonics (see review in Bull, 1991). While these features can be rather 

unambiguous, there remains considerable debate about whether the overall 

morphology of hillslopes, and, specifically, the longitudinal profile is controlled by 

current tectonic and climatic regimes or instead records either a dominant period 

in the past or the integral effect of both climatic and tectonic variations (see review 

in Bloom, 1978; Carson and Kirkby, 1972). 

Many authors have shown that an equilibrium form will eventually be 

developed by hillslope profiles evolving long enough under a constant process and 
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a constant incision rate at the base of the slope (e.g., Hirano, 1975; Armstrong, 

1980, 1987; Ahnert, 1987, 1988; Fernandes and Dietrich, Chapter 1). Such results 

support the general idea of equilibrium that was implicitly stated by Gilbert (1877, 

1909) and that was later refined by Hack (1960, 1975). While over some long time 

scale a "dynamic equilibrium" may be achieved at the large landscape scale, it 

seems unlikely that any particular hillslope in the landscape will experience a 

constant rate of incision at its base or evolve under a steady climate condition. 

Applying these models to the hillslopes in the field raise, however, a 

number of questions regarding the development and maintenance of hilltop 

convexities. A major problem underlying all of them, is the difficulty in estimating 

the relaxation time of hillslopes in response to changes in the externai factors. As 

pointed out by Wolman and Gerson (1978), the effectiveness of a 

geomorphological event can only be fully assessed when one takes into 

consideration not only the return period of such events, but also the relaxation 

time associated with them. Although the return periods of climatic changes during 

the past 3 million years can be estimated from the oxygen isotopic record of deep­

sea sediments (e.g., Shackleton et al., 1988; Ruddiman and Raymo, 1988; Pirazzoli, 

1993), the sarne is still not true for the relaxation time of hillslopes. Because the 

relaxation time of hillslopes is hard to determine empirically, model-based studies 

become essential. 

Some models have been proposed to explore the effects of varying climate 

and basal incision on hillslope morphology. The complex spatial and temporal 

record of variations in the externai factors has been usually approximated by one­

step changes and/ or by long-term step oscillations in the parameters of the models 
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that are assumed to be directly dependent on the climatic and/ or tectonic regimes. 

Toe effects of climatic changes on hillslopes, for example, have been usually 

modeled by imposing periodic step changes on the type of the predominant 

denudation process (e.g., Ahnert, 1988) or by imposing one-step changes in the 

magnitude of the erosional process (see Chapter 1). Similarly, the effects of tectonic 

changes have been approximated by imposing periodic step changes (Ahnert, 

1988) and one-step changes (see Chapter 1) in the rate of downcutting at the base 

of the hillslope. 

ln Chapter 1 we addressed this question by carrying out a number of 

numerical experiments in which one-step changes in the diffusion coefficient or in 

the downcutting rate were imposed on diffusive hillslopes already in equilibrium. 

Because the obtained relaxation times were much longer than the frequency of the 

climatic oscillations observed in the last few million years they suggested that most 

of the convex hillslopes that we see in the field today are unlikely to be truly time­

independent morphologies. ln this paper, we will build upon that study and focus 

on ntodeling the morphological effects of climatic and tectonic oscillations on 

convex hillslopes evolving under diffusive processes. 

Although tectonic changes might happen in the form of pulses, climatic 

changes, at least during the last few million years, have shown to behave in an 

oscillatory way (e.g., Shackleton et al., 1988; Ruddiman and Raymo, 1988; 

Pirazzoli, 1993). For diffusive models, such changes can be assumed to induce 

direct and indirect modifications in the magnitude of the diffusion coefficient 

and/ or the downcutting rate. ln fact, we can expect that the combination of sea 

level and tectonic oscillations will cause the baselevel of hillslope profiles to 
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oscillate. We can also expect that even without sea level oscillation, uplift relative 

to baselevel may be transmitted up network via knickpoint propagation (e.g., Siedl 

and Dietrich, 1992), generating pulses of incision in the hillslopes. Therefore, it is 

important to characterize the time-scale of morphological adjustments of hillslopes 

responding to an oscillatory behavior in such externa! factors. 

Here we explore whether hillslopes evolving by diffusive processes under 

oscillatory climate and baselevel lowering may attain a new average equilibrium 

form reflecting the period and amplitude of oscillation or whether such hillslopes 

are always changing shape in a delayed response to changes in the externa! 

forcing. We examine the influence of hillslope length on this problem and 

distinguish the response due to variations in diffusivity from the response due to 

the changes in baselevel lowering rate. Most of the simulations are started with an 

initially equilibrium hillslope which is then perturbed by changing the diffusivity 

or boundary lowering rate. By plotting the ratio of sediment flux from the hillslope 

to the equilibrium value at the initial condition we can estimate the time-scale of 

morphological adjustments of diffusional hillslopes in response to oscillations in 

climate and tectonics. 

NUMERICAL EXPERIMENTS 

A series of numerical experiments were carried out in order to characterize 

the time-scale of morphological adjustments of one dimensional hillslopes 

evolving under diffusive processes and exposed to oscillations in the externai 

factors. The numerical experiments concentra te on the evolution of hillslopes 
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profiles under transport-lim.ited conditions (Gilbert, 1877; Culling, 1963; Kirkby, 

1971), i.e., the model assumes that at any time there will be soil available to be 

transported by the erosive processes. 

Modeling the evolution of hillslopes by a diffusion-type equation has been 

widely used in geomorphology during the last few decades (e.g., Culling, 1960, 

1963, 1965; Hirano, 1968, 1975, 1976; Kirkby, 1971; Gossmann, 1976; Trofimov and 

Moskovkin, 1976, 1983, 1984; Nash, 1980a, 1980b, 1984; Armstrong, 1980, 1987; 

Colman and Watson, 1983; Mayer, 1984; Hanks et al., 1984; Hanks and Wallace, 

1985; Andrews and Hanks, 1985; Anderson and Humphrey, 1989; Koons, 1989; 

Bursik, 1991). 

Diffusive hillslope models assume that soil flux (q5), in terms of mass per 

unit width of slope [M/LT], for profiles evolving under transport-lim.ited 

conditions (Gilbert 1877; Culling, 1963; Kirkby, 1971), is directly proportional to 

hillslope gradient 

(1) 

in which z is elevation, x is distance from the divide, and K is a constant of 

proportionality. A transport law in this form has been widely accepted as 

accounting for transport processes like creep, rainsplash, biogenic activity, and 

frost heave (see review in Chapter 1). By combining (1) with the continuity 

equation one ends up with a diffusion-type equation 
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(2) 

stating that the change in elevation with time is proportional to the hillslope 

curvature, and in such case, the constant D is a diffusion coefficient with units of 

[L2/T]. 

We used a finite differences scheme to obtain numerical solutions of 

Equation 2 when oscillations in the diffusion coefficient or in the downcutting rate 

are imposed to equilibrium initial profiles. The numerical scheme, as well as, the 

computer program used to implement it, are presented in Appendices 2 and 3, 

respectively. ln Chapter 1 we compiled field-derived estimates of the diffusion 

coefficient available in the geomorphological literature. It is shown that, for the 

hillslope scale, the diffusion coefficient may vary, at least, two orders of magnitude 

(from 4 to 400 x104 m2/yr). A variety of boundary conditions can be imposed on

hillslope profiles evolving under diffusive processes. ln the numerical simulations 

to be presented here, the hillslope profiles will always have flat divides and a 

baselevel downcutting rate (Bd) will be imposed at their bottom (see Figure 1). For 

modeling purposes, this downcutting rate can be approximated by the landscape 

lowering rate, which can be estimated from a variety of methods (see review in 

Chapter 1), 

A variety of initial conditions were considered. We chose to use an 

equilibrium convex profile which has constant curvature. The imposed oscillations 

can then be seen as causing a perturbation about some equilibrium profile and the 
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effect of relaxation time on morphology and sediment discharge can be clearly 

observed. This initial condition would represent a hillslope that had reached 

appro:ximate equilibrium under relatively stable climatic and tectonic conditions 

but then enters into a period of oscillatory conditions. This may be an appropriate 

model for any large scale hilltop conve:xity (longer than 100 m) in which the 

landscape was well developed before the Quaternary, such as in the "half-oranges" 

of southeastern Brazil (e.g., Meis and Moura, 1984; Clapperton, 1993). This model 

could also apply to shorter hillslopes (shorter than 25 m) in which even during the 

full glacial or interglacial, these shorter hillslopes could adjust fully to prevailing 

conditions. ln order to characterize the effects of hillslope length on the time-scale 

of morphological adjustments the simulations were carried out on profiles 25 and 

100 meters long. 

ln most of the numerical experiments to be presented here, the initial profile 

has a curvature of 0.025 m-1 which represents the curvature of the convex hilltops 

observed today in Marin County, California. As discussed in Chapter 1, such 

curvature would eventually be developed, for example, on diffusive profiles 

evolving long enough under a diffusion coefficient of 40 x10-4 m2/yr and a 

downcutting rate of 10-4 m/yr. 

The analysis of how diffusive hillslopes respond to imposed oscillations will 

be approached by characterizing the temporal variation of the sediment flux from 

the entire hillslope profile. As argued by Howard (1988), such a criterion seems to 

be a good index to characterize the approach to equilibrium. As discussed in 

Chapter 1, the total sediment flux for equilibrium diffusional hillslopes can be 

easily determined, and such criterion was used by them in order to characterize 
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the relaxation time of hillslopes evolving by diffusive processes. For each 

simulation, we will plot the total sediment flux (Qt), usually in m2/Ska, against 

time, and such response will be then compared to the imposed oscillations in the 

diffusion coefficient or in the downcutting rate. For some simulations, we will also 

plot the hillslope profiles obtained at specific time intervals after the beginning of 

the experiments. 

Three sets of numerical experiments were done, in which, for each case, 

either the diffusion coefficient or the downcutting rate was varied. ln the first 

group of simulations we imposed step oscillations, in the second sine oscillations, 

while in the third we imposed oscillations that follow the 180 isotopic record of 

deep-sea sediments. 

1) Step Oscillations

ln this group of simulations we imposed step changes in the diffusion 

coefficient from 40 (initial condition) to 80 xl0-4 m2/yr or in the downcutting rate 

from 10-4 (initial condition) to 2 xlQ-4 m/yr. Between twenty and thirty changes 

(up and down) were imposed to the initial equilibrium profile and each change 

was maintained for 40 ka (thousand of years). 

2) Sine Oscillations

We imposed sine oscillations in the diffusion coefficient or in the 

downcutting rate in which the oscillations had a 40 ka and a 80 ka periodicity. 

These values were chosen because they approximate the periods of the oscillations 
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observed in the 18Q record of deep sea sediments for the last 2.5 Ma B.P. (e.g., 

Ruddiman and Raymo, 1988). Toe amplitudes of the imposed oscillations for the 

diffusion coefficient case were 40 xl0-4 m2/yr and 80 xl0-4 m2/yr, representing 2-

fold and 3-fold changes with respect to the initial condition value. For the 

downcutting rate, we imposed sine oscillations with amplitudes of 10-4 m/yr and 2 

xl0-4 m/yr representing, again, 2-fold and 3-fold changes with respect to the initial 

value. Each simulation lasts for about 500 ka. 

3) Oscillations Based on the 18.Q Record of Deep Sea Sediments

ln this group of experiments we imposed oscillations in the diffusion 

coefficient or in the downcutting rate similar to the pattern of oscillations observed 

in the 18Q r_ecord of deep sea sediments. The 180 isotopic curve compiled in 

Summerfield (1991; fig. 17.3) was digitized for the last 500 ka with a 5 ka interval 

(see Figure 2) and then interpolated for every 50 years, which was the time for each 

iteration in the main program. Two sub-groups of experiments were carried out 

depending on whether the climatic changes were assumed to imply changes in the 

diffusion coefficient or in the downcutting rate. 

3.1) 180 Changes Interpreted as Changes in the Diffusion Coefficient 

Run 3.A - This simulation sets the diffusion coefficient for today to be greater than 

it was 20 ka ago. The amplitude of the changes observed in the 180 record during 

the last 500 ka (Figure 2) is assumed to represent changes in the diffusion 

coefficient of the order of 20 xl0-4 m2 /yr (Figure 3a). Toe diffusion coefficient at 
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the beginning of the simulation (500 Ka ago) is arbitrarily set to be 40 xl0-4 m2 /yr. 

This value, combined with the imposed constant incision rate of 10-4 m/yr, allows 

us to have an equilibrium initial condition represented by a convex hillslope with a 

curvature of 0.025 m-1. We carry this simulation for 100 m long hillslopes (Run 

3.Al) and 25 m long hillslopes (Run 3.A2).

Run 3.B - As in run 3.A, it assumes that the diffusion coefficient today is greater 

than it was 20 ka ago. However, it now assumes that the range of the changes 

observed in the l8Q record during the last 500 ka (Figure 2) is of the order of 40 

x104 m2/yr (Figure 3b). The initial condition is the sarne as in Run 3.A. We carry 

this simulation for 100 m long hillslopes (Run 3.B1) and 25 m long hillslopes (Run

3.B2).

Run 3.C -This run sets the diffusion coefficient for today to be smaller that it was 

20 ka ago. The range of the changes in 180 record is assumed to represent changes 

in the diffusion coefficient of the order of 40 x104 m2/yr (Figure 3c). The initial 

condition is the sarne as in the two previous runs. We carry this simulation for 100 

m long hillslopes (Run 3.Cl) and 25 m long hillslopes (Run 3.C2).

3.2) 180 Changes Interpreted as Changes in the Downcutting Rate 

Run 3.D - The downcutting rate was set to be greater during glacial periods (e.g., 

20 ka B.P.) than it is today. The amplitude of the changes observed in the l8Q 

record during the last 500 ka (Figure 2) is assumed to represent changes in the 

downcutting rate of the order of 104 m/yr (Figure 4a). The downcutting rate at the 
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beginning of the simulation (500 Ka ago) is arbitrarily set to be 104 m/yr. This 

value, combined with the imposed diffusion coefficient of 40 x104 m2/yr, allows 

us to have an equilibrium initial condition represented by a convex hillslope with a 

curvature of 0.025 m-1. We carry this simulation for 100 m long hillslopes (Run

3.01) and 25 m long hillslopes (Run 3.02).

Run 3.E - Toe sarne as run 3.D, with the only difference that the range of the 

changes in the 180 record is assumed to represent changes in the downcutting rate 

of the order of 2x104 m/yr (see Figure 4b). We carry this simulation for 100 m long 

hillslopes (Run 3.El) and 25 m long hillslopes (Run 3.E2).

These two runs (3.D and 3.E) may be considered as good analogies for 

diffusive hillslopes evolving in drainage basins dose to coasts. ln such areas, 

higher incision rates are expected to be associated with periods of low sea-levels; 

and vice-versa. 

RESULTS 

Step Oscillations 

Figures 5 and 6 show the temporal response of the total sediment flux (Qt) 

to step-wise changes in the diffusion coefficient (between 40 and 80 x104 m2/yr) 

for hillslopes 100 m and 25 m long, respectively. ln both cases, the initial condition 

is a convex profile with a curvature of 0.025 m-1 and the equilibrium value for the 

total sediment flux is plotted in these figures as an horizontal dashed line. The 
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baselevel downcutting rate (Bct) was kept constant during the entire experiment 

(104 m/yr) and each change in the diffusion coefficient was maintained for 40 ka. 

As expected, Qt increases with increases in the diffusion and decreases with 

decreases in the diffusion coefficient. Toe equilibrium value, in terms of sediment 

flux, does not vary with the diffusion coefficient. In fact, although the flux 

increases or decreases immediately in response to changes in diffusivity, the 

sediment flux tends, with time, to go back to its equilibrium value. 

For 100 m long hillslopes (Figure 5), we plot two curves for the sediment 

flux response. Qt-1 plots the response if we had just imposed the first one-step 

change in the diffusion coefficient and had maintained it for the entire simulation 

This is similar to the results for one-step changes presented before (Fernandes and 

Dietrich, Chapter 1). Qt -2 shows the response associated with the oscillations in 

the diffusion coefficient. This curve oscillates about the general equilibrium value 

but it does not come dose to it because, as shown in Chapter 1, the relaxation time 

(Rt) of this long hillslope, is much longer than the frequency of the oscillations in 

the diffusion coefficient imposed in these experiments. For the 25 m long case 

(Figure 6), because the relaxation time is very similar to the frequency of the step 

oscillations, Qt nearly reaches the equilibrium values between step changes. Hence, 

for hillslopes 25 m long, by the end of each change the sediment flux attains values 

very dose to (about 85%) the equilibrium value. 

Toe response of Qt to step-wise changes in the downcutting rate for 

hillslope profiles 100 m long is presented in Figure 7. The diffusion coefficient was 

kept constant during the entire experiment and, again, each step lasted for 40 ka. 

Notice that by imposing oscillations in the downcutting rate we are also changing 



the equilibrium value for the total sediment flux. Lines A and B in Figure 7 

represent such equilibrium values for the lower (initial) and upper values, 

respectively, of the imposed downcutting rate. 

68 

Toe general response for step-oscillation in the incision rate, in terms of 

sediment flux, is very different from the one observed for step-oscillations in the 

diffusion coefficient. Spikes on the sediment flux happen at the beginning of each 

new cycle and result from the fact that the hillslope curvature, at that point in the 

evolution, is not in equilibrium with the new imposed conditions. After the spike, 

the sediment flux slowly tends to an equilibrium condition until a new imposed 

cycle happens. The results show that Qt tends to oscillate around an intermediate 

equilibrium value in terms of sediment flux, which is located half the way between 

the equilibrium values for the upper and lower imposed downcutting rates. 

Sine Oscillations 

Figures 8 through 15 show a series of numerical experiments in which we 

imposed sine oscillations in the diffusion coefficient. The effects of the hillslope 

length, the period, and the amplitude of these oscillations on the sediment flux 

were analyzed. Figure 8 shows the response of hillslope profiles 100 m long to sine 

oscillations in the diffusion coefficient. Such oscillations had a periodicity of 40 ka 

and an amplitude of 40 xl0-4 m2/yr, resulting from changes in the diffusion 

coefficient from 40 xl0-4 m2/yr to 80 xl0-4 m2/yr. Toe sediment flux curve follows 

very closely the changes in the diffusion coefficient and a lag time can not be 

observed. Similar to what we observed for step changes in the diffusion coefficient 
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on 100 m long hillslopes (Figures 5), the oscillation sediment flux slowly 

approaches the equilibrium value (dashed line). The sarne general trend is 

observed when we double the period of the oscillations while keeping the rest the 

sarne (Figure 9). The response of the sediment flux when such step oscillations 

have an amplitude of 80 xl0-4 m2/yr, resulting from changes in the diffusion 

coefficient from 40 xl0-4 m2/yr to 120 xl0-4 m2/yr, are presented in Figures 10 and 

11. As one might have expected, although the amplitude of the response in the

sediment flux increases, the general behavior displayed before is not affected by 

the increment in the amplitude of the oscillations. 

Figures 12 through 15 show experiments similar to the ones described above 

but now for hillslope profiles 25 m long. In general, these curves show the sarne 

trends that were observed for 100 m long profiles. The main difference, as was also 

observed for step changes in the diffusion coefficient, is that the sediment flux 

curve approaches the equilibrium value faster than it did on 100 m long profiles. In 

addition, the time required for the sediment flux curve to attain the stage of 

constant oscillatory movement around the equilibrium value seems to be not 

affected by changes in the amplitude of the oscillation (compare Figure 12 to 14, 

and Figure 13 to 15) but it decreases when we increase the periodicity of the 

oscillations (compare Figure 12 to 13, and Figure 14 to 15). 

Figures 16 through 19 show the response of hillslopes when sine oscillations 

in the downcutting rate are imposed to them. We carried out these simulations for 

similar conditions, in terms of periods, amplitudes and hillslope lengths, to the 

ones previously discussed for sine oscillations in the diffusion coefficient. With the 

exception of the spikes immediately after the change, the sediment flux, in general, 
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shows a behavior similar to the one observed for step changes in the downcutting 

rate. As expected, the spikes disappear when the changes are imposed slowly. 

Again, the sediment flux tends to oscillate around a new equilibrium value, which 

is located half the way between the lower and upper equilibrium values for the 

imposed downcutting rates. As expected, such new stage of "oscillatory 

equilibrium" is attained much faster on shorter profiles. A major difference is the 

fact that a lag time between the imposed change and the response in terms of 

sediment flux now exists. ln addition, when we increase the period of the 

oscillations in the downcutting rate both this lag time and the amplitude of the 

oscillations in the sediment flux increase. 

Oscillations Based on the il.O Record 

As we described before, in this set of experiments we impose oscillations in 

the diffusion coefficient or in the downcutting rate that are based on the 18() 

isotopic record of deep sea sediments. Figure 2 shows the original 180 curve and 

Figure 3 presents the three different interpretations of this record as climatically­

driven changes in the diffusion coefficient. ln the sarne way, Figure 4 shows how 

such oscillations were transformed into changes in the downcutting rate. 

Figures 20 through 29 show the results obtained when diffusive hillslope 

profiles, 100 m and 25 m long, evolve under the oscillations in the diffusion 

coefficient and in the downcutting rate. For each case we plot the imposed 

oscillation in the diffusion coefficient or in the downcutting rate (a); in the middle, 
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the evolution of the associated hillslope profile with time (b); and at the bottom, 

the resulting changes in the total sediment flux (e). 

Figures 20 and 23 show the response of hillslope profiles 100 m and 25 m 

long, respectively, when evolving under relatively small oscillatory conditions in 

the diffusion coefficient (as given in Figure 3a). Figures 20b and 23b show that the 

changes in the diffusion coefficient of the order of the ones assumed by Scenario A 

do not generate significant changes in equilibrium hillslope profiles during the 

simulated time. ln addition, the total sediment flux (Figures 20c and 23c) behaves 

in phase with the imposed oscillations during the entire experiments. 

Figures 21 and 24 present the results for profiles 100 m and 25 m long, 

respectively, when the changes in the diffusion coefficient are larger (see Figure 

3b). Because the range of the imposed changes in the diffusion coefficient is twice 

as big as the previous Runs, the effects of such oscillations on the hillslope profiles 

are clearly observed (see Figures 21b and 24b). Most of the visible changes happen 

along the mid and upper parts of the profile. At the bottom of the hillslopes, the 

imposed oscillations in the diffusion coefficient are not felt because of the 

dominance of the boundary condition in setting the local erosion rate, and the 

profiles evolve very dose to a dynamic equilibrium stage, basically controlled by a 

constant rate of downcutting. 

The plots presented in Figures 22 and 25 show the results for Runs 3.Cl and 

3.C2, for hillslopes 100 m and 25 m long, respectively. The effects of the oscillations

in the diffusion coefficient on the hillslope profiles (Figures 22b and 25b) can be 

observed farther downslope than the ones related to Scenario B. The final 
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morphology, both in terms of hillslope curvature and amount of soil removed, is 

very different from the one obtained at the end of the simulation under Run 3.B. In 

addition, a lag time exists between the imposed change and the response of the 

sediment flux. 

Figures 26 through 29 present the experiments in which oscillations in the 

downcutting rate, described by Runs 3.D and 3.E, are imposed to equilibrium 

diffusive hillslopes. Toe resulting profiles associated with Run 3.D (see Figures 26b 

and 28b) show that the changes in the downcutting rate affect only the bottom of 

the hillslope, where they are imposed. Such changes are quickly smoothed by the 

diffusive processes and are not observed in the upper segments, where the profiles 

evolve in a condition very dose to dynamic equilibrium. Another interesting result 

is presented by the response of the total sediment flux (see Figures 26c and 28c). 

Toe resulting curves are much smoother than the imposed changes and 

cumulative effects are clearly observed. A similar trend is observed when the 

oscillations in the incision rate follow Run 3.E (see Figures 27 and 29). ln none of 

the cases does the total sediment flux attains a value smaller than its initial one. 

Toe changes towards smaller values of the downcutting rate are less effective in 

generating a decrease in the total sediment flux resulting, for both hillslopes 100 m 

and 25 m long, in a cumulative increment in the total sediment flux with time. 

DISCUSSION 

Toe response of diffusive hillslope profiles evolving under cyclic changes 

varies significantly according to the type and magnitude of the imposed 
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oscillations, and to whether such oscillations affect the diffusion coefficient or the 

downcutting rate. As suggested by many authors (e.g., Hirano, 1975; Brunsden, 

1980; Renwick, 1985; Ahnert, 1988; Howard, 1988), an equilibrium condition will 

not be attained when cyclic changes, in which the duration ofthe cycles is smaller 

than the relaxation time of the profile, are imposed to hillslopes. The shorter the 

hillslope profile is, the closer to such equilibrium value the sediment flux will be 

by the end of each oscillation. 

When step oscillations are imposed to the incision rate, the sediment flux 

eventually oscillates around an intermediate equilibrium value which is located 

half the way between the upper and lower equilibrium values. Ahnert (1987, 1988), 

although using a more complex model and a different criterion to define the 

approach to the equilibrium condition (he used relief instead of sediment flux), 

obtained similar results. These results support the idea that when hillslopes evolve 

under long term step or sine fluctuations, in which the duration of the cycles is 

smaller than the relaxation time of the profiles, the morphology will eventually 

oscillate around an equilibrium form 

The amount of time required for the sediment flux curve to attain the stage 

of constant oscillatory movement around the equilibrium value on hillslopes 

evolving under step and sine oscillations in the diffusion coefficient increases with 

the length of the hillslope. This was already shown, although for one-step changes, 

by the dimensionless analysis carried out by Fernandes and Dietrich (Chapter 1). 

The time to attain this stage of constant oscillatory movement, specifically for the 

case of sine oscillations, seems to be insensitive to changes in the amplitude of the 

imposed changes, but it decreases when we increase the period of the oscillations. 
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Sine oscillations in the incision rate lead to results similar to the ones 

described above for the case of changes in the diffusion coefficient. The main 

difference is the absence of the spikes in the sediment flux immediately after the 

change. ln addition, there is a lag time between the imposed oscillations in the 

downcutting rate and the associated response in the sediment flux. Moreover, both 

this lag time and the amplitude of the oscillations in the sediment flux curve 

increase when we increase with the period of the imposed oscillations. 

The sediment flux response to oscillations in the diffusion coefficient that 

are driven by the 180 record is in phase with the diffusivity variations, and does 

not vary with the hillslope length. The resulting morphological effects associated 

with such oscillations are only observed in the upper and mid parts of the hillslope 

profile. The slope near the channel is governed by the incision rate. 

The response to 180-based oscillations in the downcutting rate differs from 

that for diffusivity. Although the sediment flux tends, in general, to oscillate in 

response to the changes in the incision rate, the response is smoother and has a 

smaller amplitude than it had for changes in the diffusion coefficient. In addition, 

it never attains a value smaller than the initial (equilibrium) one, generating a 

cumulative increment in the sediment flux with time. ln relative terms, the shorter 

the hillslope, the greater such cumulative effects will be. The morphological effects 

of such changes in the incision rate are only observed at the bottom of the hillslope 

profiles. Toe hilltops seem to be not affected by such oscillations in the incision 

rate, and evolve, as argued by Ahnert (1987, 1988), in a condition very dose to a 

typical dynamic equilibrium (Hack, 1960, 1975). 
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CONCLUSIONS 

Modeling of profile and sediment flux response of an initially equilibrium 

convex profile to modest (but probably realistic) variations in diffusivity and 

boundary incision rates about the equilibrium values reveals that the hillslope 

form may undergo small changes even though the sediment flux from the hillslope 

may vary substantially. Sediment flux lags the variation in incision but closely 

follows that due to diffusivity variation. Periodic changes in diffusivity act across 

the entire hillslope but have the largest effect dose to the divide, whereas such 

changes of incision rate at the base of the hillslope affect most strongly the hillslope 

adjacent to the channel but have small influence near the divide. These results do 

depend, however, on the assumption that all sediment arriving at the base of the 

slope is removed. 

Because the sediment flux from convex hillslopes responds distinctly 

between oscillations in the diffusion coefficient and in the downcutting rate, it may 

offer better constraints to our ability in reading the sediment record of thick 

alluvial fills in the field, helping to sort out the effects that Quaternary climatic and 

tectonic oscillations left in the landscape. Climatic changes may be expected to 

affect, at the sarne time, both the diffusion coefficient and the incision rate. 

Consequently, more field studies are urged to focus on the question of how the 

diffusion coefficient and the downcutting rates are affected when climatic changes 

take place. 
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Toe results suggest that the convex hilltops of soil mantled landscapes, once 

formed, represent morphological features difficult to be perturbed with modest 

variations in the diffusion coefficient or in the downcutting rate. Although short 

(<~25 m) convex hillslopes may have been formed by diffusive processes since the 

late Pleistocene, longer convex profiles (>~ 100m) may represent paleoforms that 

have been formed much before the climatic and tectonic oscillations that took place 

during the Quaternary. 
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Figure 1 - Sketch diagram of the diffusion-based model used here. The initial 
morphology is always a convex-up profile with constant curvature and transport-limited 
conditions are assumed during the entire evolution. The profile evolves under a constant 
diffusion coefficient (D) and a constant incision rate (Bd) at the bottom of the hillslope, 
while the divide is kept flat (slope zero). Although such incision rate is shown here as 
river incision, other processes like landsliding can play a similar role (from Chapter 1). 
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for every Ska (modified from Summerfield, 1991, figure 17.3). 
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Figure 4 - Two interpretations of the 180 oscillations (see Figure 2) as changes in the 
downcutting rate: Run 3.D (a), and Run 3.E (b). ln ali the graphs we plot the changes in 
the diffusion coefficient with time from the beginning of the experiment. See text for the 
explanation of how these 3 curves were derived from Figure 2. 
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Figure 5 - Temporal response of the total sediment flux (Qt) to step-wise oscillations in 
the diffusion coefficient (D). The hillslopelrofile is 100 m long and the diffusion
coefficient changes from 40 to 80 (xl0-4 m /yr), and vice-versa. Qt-2 shows the response 
of the sediment flux to the oscillations while Qt -1 shows the response of the sediment 
flux if we had imposed just the first step-change (and had sustained it for the entire 
simulation). The downcutting rate is kept constant (104 m/yr), and the horizontal 
dashed line in the middle of the plot is the equilibrium value for the total sediment flux. 
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the diffusion coefficient (D). The hillslope profile is 25 m long and the diffusion 
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equilibrium value for the total sediment flux. 



100 

90 

-
80 

LO 
70 ....... 

N 

E 
....., 

c:l· 
60 

50 

LO LO 1.1") 

LI") ,- (Y') 1.1") 

m N (Y') V 
1 t t t 

o o o o 
m .... ('Y') 1.1") 

N ('Y') V 

Time 

,-. 1-, ,-, 1 ,-• 
1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 

1 I 1 1 1 1 1 I 1 1 1 1 1 

,_, ,_, ,_, ,_, ,_, ,_, ,_

LI") LI") LI") LI") 

r--- m .... (Y') 

LI") t..D ClJ m 
1 1 t 

o o o o 
r--- m ,- ('Y') 

LO <.O co m 

(ka) 

87 

o:, 

2 
e. 

......... 

>< 
.... 

1 

o 
3 
....... 
� 
.., 
.._,, 
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the downcutting rate (Bct), The hillslope profile is 100 m long and the downcutting rate 
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diffusion coefficient (D). The hillslope profile is 100 m long and the diffusion coefficient 
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of 40 ka and an amplitude of 40 xlQ-4 m2/yr. The downcutting rate is kept constant 
(10-4 m/yr), and the horizontal dashed line in the bottorn plot is the equilibrium (initial) 
value for the total sedirnent flux. 
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Figure 9 - Temporal response of the total sediment flux (Qt) to sine oscillations in the 
diffusion coefficient (D). The hillslope profile is 100 m long and the diffusion coefficient 
oscillates between 40 and 80 (xl0-4 m2/�r). The imposed oscillations have a periodicity
of 80 ka and an amplitude of 40 xl0-4 m /yr. The downcutting rate is kept constant 
(10-4 m/yr), and the horizontal dashed line in the bottom plot is the equilibrium (initial) 
value for the total sediment flux. 
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Figure 11 - Temporal response of the total sediment flux (Qt) to sine oscillatíons ín the 
diffusion coefficient (D). The hillslope _profile is 100 m long and the diffusion coefficient 
oscillates between 40 and 120 (x104 m2 / ;:r). The imposed oscillations have a periodicity
of 80 ka and an amplitude of 80 x104 m /yr. The downcutting rate is kept constant 
(104 m/yr), and the horizontal dashed line in the bottom plot is the equilibrium (initial) 
value for the total sediment flux. 
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Figure 12 -Temporal response of the total sediment flux (Qt) to sine oscillations in the 
diffusion coefficient (D). The hillslope profile is 25 m long and the diffusion coefficient 
oscillates between 40 and 80 (xl0-4 m2 /r). The imposed oscillations have a periodicity
of 40 ka and an amplitude of 40 xlQ-4 m /yr. The downcutting rate is kept constant 
(l0-4 m2 /yr), and the horizontal dashed line in the bottom plot is the equilibrium (initial) 
value for the total sediment flux. 
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Figure 13 - Temporal response of the total sediment flux (Qt) to sine oscillations in the 
diffusion coefficient (D). The hillslope profile is 25 m long and the diffusion coefficient 
oscillates between 40 and 80 (xlQ-4 m2 /�r). Toe imposed oscillations have a periodicity
of 80 ka and an amplitude of 40 xl0-4 m /yr. The downcutting rate is kept constant 
(l0-4 m/yr), and the horizontal dashed line in the bottom plot is the equilibrium (initial) 
value for the total sediment flux. 
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Figure 14 - Temporal response of the total sediment flux (Qt) to sine oscillations in the 
diffusion coefficient (D). The hillslope _profile is 25 m long and the diffusion coefficient 
oscillates between 40 and 120 (xl o-4 mL 9:r). Toe imposed oscillations have a periodicity 
of 40 ka and an amplitude of 80 xlQ-4 m /yr. The downcutting rate is kept constant (l0-4 
m/yr), and the horizontal dashed line in the bottom plot is the equilibriurn (initial) value 
for the total sediment flux. 
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Figure 15 - Temporal response of the total sediment flux (Qt) to sine oscillations in the 
diffusion coefficient (D). The hillslope firofile is 25 m long and the diffusion coefficient
oscillates between 40 and 120 (x104 m /iir). The imposed oscillations have a periodicity
of 80 ka and an amplitude of 80 xlQ-4 m /yr. The downcutting rate is kept constant 
(10-4 m/yr), and the horizontal dashed line in the bottom plot is the equilibrium (initial) 
value for the total sediment flux. 
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Figure 16 - Temporal response of the total sediment flux (Qt) to sine oscillations in the 
downcutting rate (Ba). The hillslope profile is 100 m long and the downcutting rate
oscillates between 1.0 and 2.0 (x104 m/yr), resulting in an amplitude of 1o-4 m/yr. The 
imposed oscillations have a periodicity of 40 ka (top) and 80 ka (bottom). The diffusion 
coefficient is kept constant (40 x1Q-4 m2/yr), and the horizontal lines in both plots
represent the equilibrium values for the sediment flux associated with the lower (B) and 
upper (A) dm-,.--ncutting rates. 
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Figure 17 -Temporal response of the total sediment flux (Qt) to sine oscillations in the 
downcutting rate (Bd), The hillslope profile is 100 m long and the downcutting rate 
oscillates between 1.0 and 3.0 (x104 m/yr), resulting in an amplitude of 2.0 xlã-4 m/yr. 
The imposed oscillations have a periodicity of 40 ka (top) and 80 ka (bottom). The 
diffusion coefficient is kept constant (40 x104 m2/yr), and the horizontal Unes in both 
plots represent the equilibrium values for the sediment flux associated with the lower 
(B) and upper (A) downcutting rates.
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Figure 18 -Temporal response of the total sedirnent flux (Qt) to sine oscillations in the 
downcutting rate (Bd). The hillslope profile is 25 m long and the downcutting rate 
oscillates between 1.0 and 2.0 (x104 m/yr), resulting in an amplitude of 104 m/yr. The 
irnposed oscillations have a periodicity of 40 ka (top) and 80 ka (bottom). The diffusion 
coefficient is kept constant (40 x104 m2/yr), and the horizontal lines in both plots 
represent the equilibrium values for the sedirnent flux associated with the lower (B) and 
upper (A) downcutting rates. 
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Figure 19 - Temporal response of the total sediment flux (Qt) to sine oscillations in the 
downcutting rate (Bd). The hillslope profile is 25 m long and the downcutting rate 
oscillates between 1.0 and 3.0 (x104 m/yr), resulting in an amplitude of 2.0 x104 m/yr. 
The imposed oscillations have a periodicity of 40 ka (top) and 80 ka (bottom). The 
diffusion coefficient is kept constant (40 x104 m2 /yr), and the horizontal lines in both 
plots represent the equilibrium values for the sediment flux associated with the lower 
(B) and upper (A) downcutting rates.
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Figure 20 - Response of 100 rn long hillslope profiles to the 18O-based oscillations in 
the diffusion coefficient (Run 3.A1). Plot (a) shows the irnposed changes in the diffusion 
coefficient against time frorn the beginning of the sirnulation. Plot (b) presents the 
associated rnorphological response for every 40 ka. Plot (e) shows the temporal variation 
in the total sedirnent flux (Qt) - left, and in the ratio of its value over the sedirnent flux at 
equilibriurn (Qt55) - right. 
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Figure 21 - Response of 100 m long hillslope profiles to the 18O-based oscillations in 
the diffusion coefficient (Run 3.Bl). Plot (a) shows the imposed changes in the diffusion 
coefficient against time from the beginning of the simulation. Plot (b) presents the 
associated morphological response for every 40 ka. Plot (e) shows the temporal variation 
in the total sediment flux (Qt) - left, and in the ratio of its value over the sediment flux at 
equilibrium (Qts5) - right. 
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Figure 22 - Response of 100 rn long hillslope profiles to the 180-based oscillations in 
the diffusion coefficient (Run 3.C1). Plot (a) shows the irnposed changes in the diffusion 
coefficient against time frorn the beginning of the sirnulation. Plot (b) presents the 
associated rnorphological response for every 40 ka. Plot (e) shows the temporal variation 
in the total sedirnent flux (Qt) - left, and in the ratio of its value over the sedirnent flux at 
equilibriurn (Qt55) - right. 



103 

70 S! 
ÔxydOS := 

(') 

50 

... 

30 

3 
� 
'< 

10 -

480 400 320 240 160 80 o 

Time (ka) 

20 o 

- 10 

.§. 
o 

e: 
o 

1; -1 O

-20 400 
jjj 

440ka 

-30

-40

o 5 10 15 20 25 

Dlstance (m) 

22 

oxydOS 1.6 

ãi' 
18 

1.4 
� 

-ºlt) 
1.2 

14 
E o
-

ir 

o-
•

10 0.8 

0.6 
6 

o 8 o 8 o 8 o o 1/) 1/) 1/) 1/) 
o-V "' "' N N - 1/) 

.;, .;, .;, .;, .;, .;, .;, .;, .;, 
-V OI -V OI -V OI � 

O> 
"' "' N N - -

Time (Ka) 

Figure 23 - Response of 25 m long hillslope profiles to the 18O-based oscillations in the 
diffusion coefficient (Run 3.A2) Plot (a) shows the imposed changes in the diffusion 
coefficient against time from the beginning of the simulation. Plot (b) presents the 
associated morphological response for every 40 ka. Plot (e) shows the temporal variation 
in the total sediment flux (Qt) - left, and in the ratio of its value over the sedirnent flux at 
equilibrium (Qt55) - right. 
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Figure 24 - Response of 25 m long hillslope profiles to the 18O-based oscillations in the 
diffusion coefficient(Run 3.B2). Plot (a) shows the imposed changes in the diffusion 
coefficient against time from the beginning of the simulation. Plot (b) presents the 
associated morphological response for every 40 ka. Plot (e) shows the temporal variation 
in the total sediment flux (Qt) - left, and in the ratio of its value over the sediment flux at 
equilibrium (Qts5) - right. 
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Figure 25 - Response of 25 m long hillslope profiles to the 180-based oscillations in the
diffusion coefficient (Run 3.C2). Plot (a) shows the irnposed changes in the diffusion 
coefficient against time from the beginning of the sirnulation. Plot (b) presents the 
associated morphological response for every 40 ka. Plot (e) shows the temporal variation 
in the total sedirnent flux CQt) - left, and in the ratio of its value over the sedirnent flux at 
equilibrium CQt55) - right. 
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Figure 26 - Response of 100 rn long hillslope profiles to the 180-based oscillations in
the downcutting rate (Run 3.01). Plot (a) shows the imposed changes in the incision rate 
against time from the beginning of the sirnulation. Plot (b) presents the associated 
morphological response for every 40 ka. Plot (e) shows the temporal variation in the total 
sedirnent flux (Qt) - left, and in the ratio of its value over the sedirnent flux at 
equilibriurn (Qt55) - right. 
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Figure 27 - Response of 100 rn long hillslope profiles to the 18O-based oscillations in 
the downcutting rate (Run 3.El). Plot (a) shows the irnposed changes in the downcutting 
rate against time from the beginning of the simulation. Plot (b) presents the associated 
morphological response for every 40 ka. Plot (e) shows the temporal variation in the total 
sediment flux (Qt) - left, and in the ratio of its value over the sediment flux at 
equilibriurn (Qt55) - right. 
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Figure 28 - Response of 25 m long hillslope profiles to the 18O-based oscillations in the 
downcutting rate (Run 3.D2). Plot (a) shows the imposed changes in the downcutting 
rate against time from the beginning of the simulation. Plot (b) presents the associated 
morphological response for every 40 ka. Plot (e) shows the temporal variation in the total 
sediment flux (Qt) - left, and in the ratio of its value over the sediment flux at 
equilibrium (Qt55) - right. 
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Figure 29 - Response of 25 m long hillslope profiles to the 180-based oscillations in the 
downcutting rate (Run 3.E2). Plot (a) shows the imposed changes in the downcutting 
rate against time frorn the beginning of the simulation. Plot (b) presents the associated 
morphological response for every 40 ka. Plot (e) shows the temporal variation in the total 
sediment flux (Qt) - left, and in the ratio of its value over the sedirnent flux at 
equilibriurn (Qt55) - right. 
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APPENDIX 1 

Analytical Solution 

We want to find the analytical solution of the following problem: 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

az 
= D a

2z
at ax2

b.c.

i.c.

ª
z
l -o

ax (O,t) -
z(L, t) = Bctt 
z(x,O) = f(x) 

o< X< L; o< t 

System 1 

111 

where Bct and D are constants, x is distance, t is time, z is elevation, and f(x) is a
polynomial. 

Consider the following systems of equations: 

(1.5) 

(1.6) 

(1.7) 

dU = 

D
a2

u 

at ax2 

b.c. ªu
i = º

ax (O,t) 

u(L,t) = O 
(1.8) i.c. u(x,O) = f(x) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

av = 0a2v
at ax2 

b.c. av
l = o

dx (O,t) 

v(L, t) = Bctt 
i.c. v(x,O) = O

o< X< L; o< t 

o< X< L; o< t 

System li 

System Ili 



1 12  

Assume we can find solutions to  II and III, say u and v respectively. Then, by
putting 
(1.13) Z == U + V , 

we obtain a solution to System I. 

Indeed, the formula 

a a
2 

Af=-f-D-f
at ax2 

defines a linear operator A. Since u solves II and v solves m, with z = u + v, we have 

Az = A(u+v)= Au+Av = 0+0= O. 

Hence, Az=0 and therefore �z = D ª
2
2 z. Thus eq. (1.1) is satisfied. Note that 

at ax 

Since 

auj o
àx (O,t) 

= 

ªvi =º
àx (O,t) 

and 

j_l is linear, it follows that
àx (O,t) 

�z l = O. Hence eq. (1.2) is also satisfied. 
oX (0,t) 

To check that z satisfies eq. (1.3), note that since u(L,t)=0 and v(L,t)=Bctt, 
z(L,t)=Bdt. Similarly, one sees that eq. (1.4) is satisfied for x when t=0. Hence, the
problem reduces to the determination of solutions to systems II and m. 

Toe solution of System II will be obtained by the method of Separation of
Variables. and is straightforward. One obtains the following expression for u: 

(1.14) ( t)- � [(2n+1)7tX] -Dt(2n+1)2
1e

2/4L2

u x, - LJ Cn cos ---- e 
n=O 2L 

which is the unique solution of our problem when 



(1.15) 2 fiL f( ) (2n + 1)7CX d Cn = - X COS---- X

. L O 2L 

113 

Combining eqs. (1.14) and (1.15), we get our solution for System II 

(1.16) ( ) 2� [(2n+1)1tx] -Dt(2n+1)2 1t2/4L2
Ji

Lf( )  (2n+1)1tx d u x,t = - "-' cos ---- e . x cos--�- ,
Ln;;;O

2L O 2L 

Toe problem stated by System II appears in many textbooks on PDE's (e.g. Bleecker and Csordas, 1992, p. 159) and the solution above was first presented in a geomorphological context by Culling (1963, p. 146, eq. 38). 
Solution of System Ili 

Now we need to find the solution v(x,t) of System ili. Define 
(1.17) 
(1.18) 

(1.19) 
(1.20) 
(1.21) 

(1.22) 

Then 

7tX w(x, t) = -Bd t cos- and L 
F(x,t ) = -[ D (�r +f] w(x, t )

Suppose q, is a solution to IV: 
Aq, = F o < X < L; o < t 
b.c. ê)q,l = Oê)x {O,t}q,(L,t ) = O 
i.c. q,(x,O) = O.

(1.23) V= w+ q> 

System IV 

is a solution to m. To see this, note that an easy computation shows that 
(1.24) Aw=-F 



hence 

Av = Aw + Acp = -F + F = O, 

reducing the problem to finding the solution to IV. 
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We will solve System IV - and hence System III - by applying Duhamel's Principle 
(see for ex., Bleecker and Csordas, 1992, p.174). Essentially, Duhamel's Principle says the 
following: 

Suppose that for each t:::: O we solve the following initial boundary problem 

(1.25) 

(1.26) 

(1.27) 
(1.28) 

� a2v -=D-
at ax2 

b.c. �1 -O
ax (O,t) 

'lf(L, t) = O

o< X< L; 't < t 

i.c. 'lf(x, t) = F(x, t)
(for all t) 
(t = t) 

System V. 

[Note that this gives a parameterized family of functions 'V(x,t ;t)] 

Then, by putting 

(1. 29) cp(x, t) = J� 'lf(x, t ; t) dt,

we obtain a solution to System IV. This reduces the problem to solving System V for each 
't � o.

To this end, put 

(1.30) l;=t-'t. 

Then, 

(1.31) (A'Jf) (t) = O for t > t, if 

(1.32) (A'lf) (l;) = O for l; > O 

and 



(1.33) 'Jl(x, t)lt='t = F(x,'t) if
(1.34) 'Jl(x,c;)li;=o = F(x,'t).

(1.35)

Hence, we obtain as before

where

� [
(2n + 1)7tX] ç'Jf(x,ç) = 4" Fn('t) cos --- ec 

n=O 2L 

(1.37) c=-D[� (n+ �)f 
Combining Eqs. (1.17) and (1.18) gives

Then Fn, for each value of 't, becomes

which gives

Eq. (1.35) can be written as
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and consequently 

(1.44) <p(x, t) = J/' ca{ 7( n + �)] 
(
-l�

n+l 

[ n �� 
+ n � �J • 

Putting 

(1.46) 

* J� [ e-a (1+Dt (�r) ] dt

(-1t+l

[ 
1 1 ] 

a =-----'--B
ct 

--+--
n 

7t 1 3 
n-- n+-

2 2 

, we get 

(1.48) <p(x, t) = I ªn é
1 

cos[ 7( n + �)] •

* [-1 ( -ct l) �t -ct � ( -ct l)]- e - - - e - - e - , or
e e c2 
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(1.49) cp(x, t) = i an cos[ 7( n + �)] (-:) [ri t+(1-e
<1) ( 1 + �) l

and this is the solution of System IV. 
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By putting cp(x,t) back into Eq. (1.23), we get the solution v(x, t) of System III 

(1.50) v(x, t) =(-Bct t cos 7)+ i ªn cos[ 7( n+ �)] •

• (1)[rit+(1-ect)(1+�)] 

We can now use Eq. (1.13) to obtain the solution z(x, t) 

7tX 

- Bd t cos­
L 

and this is the final solution of the problem stated by System I. 

References 

Bleecker, D. and Csordas, G. , Basic Partial Differential Equations, Van Nostrand 

Reinhold, New York, 676p., 1992. 

Culling, W. E. H., Soil creep and the development of hillside slopes. J. Geol., 71, 

127-161, 1963.



118 

APPENDIX 2 

Numerical Analysis 

We want to find a numerical solution z(x,t) of Equation 2.1 

(2.1) 

an one dimension, transient, diffusion-type equation, where z is the elevation, x 

is the distance from the divide, D is the diffusion coefficient, and t is the time. 

Such solution will be obtained here by Finite Differences through a method 

generally known as the Explicit Method. A more careful development of this 

solution can be found in many books that treat numerical solutions of parabolic 

equations (e.g., Burden and Paires, 1989). 

We can consider our domain (x,t) as shown in Figure 1. Toe boundary 

conditions are represented by u(a,t) = ua and u(b,t) = Ub, while the initial 

condition is shown as u(x,0) = u0•
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00 
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Figure 1 - General scheme of the problem. 

Basically, the numerical procedure consists of starting with the initial 

condition (known values) and advancing the solution through time. For each 

increment in time, we need to take into consideration the values defined for the 

boundary conditions. 

Suppose the solution u(x,t) was obtained until a time j and now we want 

to obtain the solution at the next time step, say j+ 1. The finite difference scheme 

related to this problem is represented in Figure 2. In other words, we know the 

values of all points at time j (for example, points B, C, and D) and we want to 

obtain the value of a point at time j+ 1 (point A, for example). 
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j+1 A 

j 
B e D 

j-1

k-1
k 

k+1 

Figure 2 - Finite differences grid of the Explicit Method used here. 

By representing ª
22

2 , in Equation 2.1, by a central difference, and �z by
dX ot 

a forward difference we have: 

(2.2) 

(2.3) 

(2.4) 

ê)2z u(x + 1, t)-2u(x, t) + u(x-1, t)
ax2 = �2

ê)z u(x, t + 1)-u(x, t)
êJt 

= 
ôt 

Substituting into Equation 2.1 yields 

u(x, t+ 1)-u(x, t) _ D u(x + 1, t)-2u(x, t) + u(x-1, t) 
ôt 

- �2 ' 



and writing in terms of the subscripts used in Figure 2 (k for x-steps, and j for
time-steps) we get

(2.5) 
uk,j+l -uk,j _ D llk+l,j -2uk,j + uk-1,j

ôt - �2 
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Since all those values of u with subscript j are known, the only unknown
value in Equation 2.5 is the point u(k,j+ 1). Solving Equation 2.5 for this value,
yields

(2.6) D(ôt) 
( )uk,j+l = uk,j + (�)2 Uk+l,j - 2uk,j + uk-1,j 

By looking carefully to Equation 2.6, we can notice that the unknown
value was represented in Figure 2 by point A. In other words, Equation 2.6 uses
the values of points B, C, and D, which are known, to obtain the solution at point
A. This method is called Explicit because the unknowns can be explicitly
determined form Equation 2.6.

(2.7)

where

(2.8) 

If D, ôt, and � are constants, we can write

R= D(ôt)
(ôx)2 
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Equations 2.7 and 2.8, together with the boundary conditions, can then be 

used in a computer program (see Appendix 3) to obtain the solution for ali points 

in the region of interest. 

Toe Explidt Method used here has the advantage of being fairly simple. 

However, to avoid instability problems, it requires that 

(2.9) �t � (.1x
)

2

2D 
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APPENDIX 3 

Computer Programs 

The general nurnerical solution obtained in Appendix 2 was implemented 

through a series of FORTRAN programs in order to model the evolution of 

hillslope profiles by diffusive processes. Here, we will present only the principal 

programs used in the analysis presented in Chapters 1 and 2. One should notice 

that many small changes were introduced to these basic programs in order to 

accommodate the variety of hillslope lengths, diffusion coefficients, downcutting 

rates, boundary condition types, etc, used in all the simulations carried out. The 

output of these programs is a matrix in which the rows are distance from the 

divide and the columns are the elevation at various user-defined times. 

The output of these programs was inputted into a WINGZ spreadsheet, in 

which a script was written to perform a variety of analysis on the data generated 

by the FORTRAN programs. Such analysis included the computation, for every 

user-defined time,of the slope, curvature, erosion rates and total sediment flux. 

Both the FORTRAN programming and the WINGZ calculations were carried out 

in a SunSparcstation. 

The basic programs that will be presented here are: 

Program RT40 - general program for one-step changes in the diffusion

coefficient or in the downcutting rate, presented in Chapter 

1. Similar programs were used to model hillslope evolution



under step oscillations (see Chapter 2) in the diffusion 

coefficient or in the incision rate. 
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Program SINEDl0 - general program used when sine oscillations were imposed 

to the diffusion coefficient (see Chapter 2). 

Program SINERD26 - general program used when sine oscillations were imposed 

to the downcutting rate (see Chapter 2). 

Program OXYD07 - general program used when 18Q-based oscillations were 

imposed to the diffusion coefficient (see Chapter 2). Notice 

that this program reads the file in which the change in the 

diffusion coefficient with time is stored. 

Program OXYRD06 - general program used when 180-based oscillations were 

imposed to the downcutting rate (see Chapter 2). Notice 

that this program reads the file in which the change in the 

downcutting rate with-time is stored. 



PROGRAM RT40 
e 
e uses the convexity at steady state as the initial condition 
e 
e this program solves the diffusion equation lJT=l)'tUXX 
e for dynamic boundary conditions using the explicit method 
e 
e L =  100m 
e 
e inputs: D, diffusivity value (m2/yr) 
e N, number of x-subintervals 
e H, x-step for each iteration 
e K, time-step for each iteration 
e Xl-X3, x-interval (m) 
e X2, mid-point of the interval (m) 
e P(T), Ieft boundary condition 
e Q(T), right boundary condition 
e W, convexity at steady state (with the negative sign) 
e F(X), function expressing initial conditions at the pos. side 
e TMAXI - (20 ka) 
e TMAXF - (1960 ka)

e DELTAT - (20 ka)

e 

e output: numerical solution at T=TMAX where TMAXI<TMAX<TMAXF, following 
e the time increment DELTAT. 
e 
e 
e 

e 

e 

e 

COMMON U(0:900), V(0:900) 
REAL D,H,K,RX,T,P,QF,RD,W 
DIMENSION ARRA Y(S0,99) 
INTEGER N,I,TIME, TMAXI, TMAXF 
DATA T,Xl,X2X3/0,-100,0,100/ 

P(T) = - 85 - (RD * T) 
Q(T) = - 85 - (RD * T)

F(X) = 40 + (( W /2) * (X**2)) 

PRINT *, 'ENTER THE CONVEXITY@ STEADY STA TE WITH THE MINUS SIGN' 
READ *, W 
PRINT *, 'ENTER RIVER DOWNCUTTING V ALUE 1N m/yr' 
READ*, RD 
PRINT *, 'ENTER THE DIFFUSMTY V ALUE 1N m2/yr' 
READ*, D 
PRINT *, 'ENTER THE NUMBER OF X-SUBINTERVALS ANO TIME STEPS' 
READ *, N, K 
H = (X3 - Xl) / N 

e testing stability condition 
e 

IF (K .GT. ((H**2)/(2*O))) THEN 
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--- - --- -- - -- -

e 

e 

PRINT "', 'STABILTIY CONDmON W AS NOT SA TISFIED' 
ENDIF 

R =D "' K/(H"'"'2) 
PRINT "', 'ENTER TMAXI, TMAXF, DELTAT 
READ "', TMAXI, TMAXF, DELTAT 
L=l 

e SET INITIAL CONDffiON 
DO 10 I = 0,N 

e 

e 
e 
e 
e 
e 

e 
e 
e 
e 

e 
e 
e 

e 
e 
e 
e 

e 

X=X l +l "' H 
V(I) = F(X) 

10 CONTINUE 

15 

30 

SET THE OUTER LOOP TO DEFINE THE MAXIMUM TIME FOR WHICH THE 
SOLUTION WILL BE OBTAINED 

DO 20 TIME = TMAXI, TMAXF, DELTAT 

FINITE DIFFERENCE FUNCTION TO SOLVE THE UNKNOWNS U(I) 
AT T=K+l USING V(I) KNOWN AT T=K 

DO 30 I = 1, N-1 
U(I)=V(I) + R"'(V(I+l)- 2"'V(I) + V(I-1)) 

CONTINUE 

INCREASE TIME BY K 

T =T+K 

OBT AIN THE V ALUES OF U(0) AND U(N), USING THE BOUNDARY 
CONDmON, TO COMPLETE THE ARRAY U(I) AT T=K+l 

U(0) = P(T) 

U(N) =Q(T) 

e WRITE U OVER V TO PREPARE FOR NEXT STEP 

e 

00401 =0,N 
V(I)=U(I) 

40 CONTINUE 

e IF T IS LESS THAN TIME, T A KE A TIME STEP 
e 

IF (ABS (TIME - T) .GT. K/ 4) GO TO 15 
e 
e assign the first column 
e 

IF (ABS (TIME - TMAXI) .LT. K/ 4) THEN 
OOS0J =0,N 
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X=Xl+J*H 

ARRA Y(J,L)=X 

50 CONTINUE 

ENDIF 

e 

e assigning the elevation values 
e 

L=L+l 

0060J=0,N 
ARRAY(J,L)=U(J) 

60 CONTINUE 
20 CONTINUE 

OPEN(l, FILE='rt40.dat') 

0070J=0,N 
WRITE(l,130) (ARRAY(J,L), L=l,99) 

70 CONTINUE 

130 FORMAT(99Fl5.6) 
END 

127 



PROGRAM SINEDl0 
e 
e 

e uses the convexity at steady state as the initial condition 
e 
.e used to compute the relaxation time Rt 
e 
e this prograrn solves the diffusion equation lJT=l)'tlJXX 
e for dynamic boundary conditions using the explicit method 
e 

e use sine changes in the diffusion coefficient 
e 

e the user defines the period and the amplitude of 
e the oscillation 
e 

e L=25 m 
e 
e inputs: D1, smaller diffusivity value (m2/yr) 
e D2, greater diffusivity value (m2/yr) 
e D(T), sine function of the diff. coeffic.; it defines 
e the new diff. coeffic. at each time step. 
e RD baselevel downcutting (m/yr) 
e A, amplitude = (D2-D1) / 2 
e PER, period of the sine function 
e AF, angular frequency = (2*pi)/PER 
e N, number of x-subintervals 
e H, x-step for each iteration 
e K, time-step for each iteration 
e Xl-X3, x-interval (m) 
e X2, mid-point of the interval (m) 
e P(T), left boundary condition 
e Q(T), right boundary condition 
e W, convexity at steady state (with the negative sign) for 
e the initial condition 
e F(X), function expressing initial conditions at the pos. side 
e TMAXI- (user-defined) 
e TMAXF - (user-defined) 
e DELTAT - (user-defined)c 
e output: numerical solution at T=TMAX where TMAXI<TMAX<TMAXF, following 
e the time increment DELTAT. 
e 
e 

e 

e 

COMMON U(0:900), V(0:900) 
REAL D,H,K,R,X,T,F,Dl,D2,RD,W,PER,A,AF 
DIMENSION ARRA Y(S0,300) 
INTEGER N,I,TIME, TMAXI, TMAXF 
DATA T,Xl,X2,X3/0,-25,0,25/ 

e function defining the boundary conditions 
e 
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P(T) = 12.1875 - (RD * T) 
Q(T) = 12.1875 - (RD "'T) 

e 
e 
e function defining the oscillating diffusion coefficient 

· C 

D(T)= ( (A *SIN( (APT)-(Pl/2)) )+(D1 +A)) 
e 
e 
e function defining the initial condition 

F(X) = 20 + (( W /2) "' (X**2)) 
e 
e 
e function defining the R value for each time step 
e 

R(T) = D(T) "' K/ (H**2) 
e 
e 

e 

e 
e 

PRINT "', 'ENTER THE CONVEXI1Y@ STEADY STATE WITH THE MINUS SIGN' 
READ *, W 
PRINT *, 'ENTER THE PERIOD OF THE SINE FUNCTION, 1N YEARS' 
READ "',PER 
PRINT *, 'ENTER THE SMALLER ANO GREATER DIFF. COEFF. V ALUES 1N m2/yr' 
READ *, D1, D2 
PRINT *, 'ENTER THE RIVER OOWNCUTTING 1N m/yr' 
READ *,RD 
PRINT *, 'ENTER THE NUMBER OF X-SUBINTERV ALS ANO TIME STEPS' 
READ "',N,K 
PI= 4 "' ATAN(l.) 
H = (X3 - Xl) / N 

AF = (2"'PI) / PER 
A = (D2-D1) / 2 

e testing stability condition 
e 

e 
e 

e 

IF (K .GT. ((H**2)/(2*D1))) THEN 
PRINT *, 'STABILI1Y CONDmON W AS NOT SA TISFIED WITH D1' 
ENDIF 
IF (K .GT. ((H**2)/(2*D2))) THEN 
PRINT *, 'ST ABILI1Y CONDmON W AS NOT SA TISFIED WITH D2' 
ENDIF 

PRINT *, 'ENTER TMAXI, TMAXF, DELTAT' 
READ *, TMAXI, TMAXF, DELTAT 
L=l 

e SET INmAL CONDmON 
DO 101=0,N 
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10 
e 
e 

·e
e
e
e

e 
e 
e 
e 

15 

30 
e 
e 
e 

e 
e 

e 
e 

e 

e 

X= Xl + I ,. H 
V(I) = F(X) 

CONTINUE 

SET THE OUTER LOOP TO DEFINE THE MAXIMUM TIME FOR WHICH THE 
SOLUTION WILL BE OBTAINED 

DO 20 TIME = TMAXI, TMAXF, DELTAT 

FINITE DIFFERENCE FUNCTION TO SOLVE THE UNKNOWNS U(I) 
AT T=K+l USING V(I) KNOWN AT T=K 

DO 30 I = 1, N-1 
U(I)=V(I) + R(T)lt(V(I+l)-2,.V(I) + V(I-1)) 

CONTINUE 

INCREASE TIME BY K 

T = T + K

OBT AIN THE V ALUES OF U(0) ANO U(N), USING THE BOUNDARY 

CONDmON, TO COMPLETE THE ARRA Y U(I) AT T=K+ 1 

U(0) = P(T) 
U(N) =Q(T) 

e WRITE U OVER V TO PREPARE FOR NEXT STEP 

e 

0040 I = O, N 

V(I) = U(I) 

40 CONTINUE 

e IF T IS LESS THAN TIME, T AKE A TIME STEP 
e 

IF (ABS (TIME - T) .GT. K/ 4) GO TO 15 
e 
e assign the first column 
e 

IF (ABS (TIME -TMAXI) .LT. K/ 4) THEN 
0050 J = 0,N 
X=Xl+J,.H 
ARRA Y(J,L)=X 

50 CONTINUE 
ENDIF 

e 

e assigning the elevation values 
e 

L=L+l 
0060J=O,N 
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ARRAY(J,L)=U(J) 

60 CONTINUE 

20 CONTINUE 

OPEN(l, FILE='sineDl0.dat') 

D070]=0,N 
WRITE(l,130) (ARRAY(J,L), L=l,300) 

70 CONTINUE 

130 FORMAT(300F15.6) 

END 
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PROGRAM SINERD26 
e 
e 
e uses the convexity at steady state as the initial condition 
e 

· e used to compute the relaxation time Rt 
e
e this program solves the diffusion equation UT=D""UXX 
e for dynamic boundary conditions using the explicit method 
e
e use sine changes as boundary conditions 
e
e the user defines the period and the amplitude of 
e the oscillation 
e

e L = 25 m
e

e inputs: D, diffusivity value (m2/yr) 
e RDl, smaller baselevel downcutting (m/yr) 
e RD2, greater baselevel downcutting (m/yr) 
e RD(TI, sine function of the baselevel downcutting; it is used 
e to define the new boundary condition at each time step 
e A, amplitude =  (RD2-RD1) / 2 
e PER, period of the sine function 
e AF , angular frequency = (2,.pi)/PER 
e N, number of x-subintervals 
e H, x-step for each iteration 
e K, time-step for each iteration 
e Xl-X3, x-interval (m) 
e X2, mid-point of the interval (m) 
e P(TI, left boundary condition 
e Q(T), right boundary condition 
e W, convexity at steady state (with the negative sign) 
e F(X), function expressing initial conditions at the pos. side 
e TMAXI - (user-defined) 
e TMAXF - (user-defined) 
e DELTAT - (user-defined) 
e
e output: numerical solution at T=TMAX where TMAXI<TMAX<TMAXF, following 
e the time increment DELTAT. 
e
e 

e 

e 

COMMON U(0:900), V(0:900) 
REAL D,H,K,R,X, T,F,RD1,RD2, W,PER,A,AF 
DIMENSION ARRA Y(S0,300) 
INTEGER N,I,TIME, TMAXI, TMAXF 
DATA T,Xl,x2,X3/0,-25,0,25/ 

e function defining the oscillating boundary condition 
e 
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RD(T)= ((A * SIN((APT}-(Pl/2)))+(RD1 +A)) 
e 
e 
e function defining the initial condition 

FCX> = 20 + « w 12> * cx-2» 
e 
e 

e 

PRINT *, 'ENTER 1HE CONVEXITY@ STEADY STATE Wl1H 1HE MINUS SIGN' 
READ*, W 

e 

e 
e 

PRINT *, 'ENTER 1HE PERIOD OF 1HE SINE FUNCTION, 1N YEARS' 
READ*,PER 
PRINT *, 'ENTER 1HE SMALLER ANO GREATER DOWNCUTTING V ALUE 1N m/yr' 
PRINT •, 'ENTER THE DIFFUSIVITY V ALUE 1N m2/yr' 
READ*, D 
PRINT *, 'ENTER 1HE NUMBER OF X-SUBINTERV ALS ANO TIME STEPS' 
READ*,N,K 
PI = 4 * ATAN(l.) 
H = (X3 - Xl) / N 

AF = (2*PI) / PER 
A =  (RD2-RD1) / 2 

e testing stability condition 
e 

e 

e 

IF (K .GT. ((H** 2)/(2* D))) 1HEN 
PRINT *, 'ST ABILITY CONDITION W AS NOT SATISFIED' 
ENDIF 

R =D ,. K/(H** 2) 
PRINT *, 'ENTER TMAXI, TMAXF, DELTAT' 
READ *, TMAXI, TMAXF, DELTA T 
L=l 

e SET INITIAL CONDITION 
DO 10 I = 0,N 

X= Xl + I* H 
V(I) = F(X) 

10 CONTINUE 
e 
e 
e SET 1HE OUTER LOOP TO DEFINE 1HE MAXI MUM TIME FOR WHICH THE 
e SOLUTION WILL BE OBTAINED 
e 
e 

DO 20 TIME = TMAXI, TMAXF, DELTAT 
e 
e FINITE DIFFERENCE FUNCTION TO SOLVE 1HE UNKNOWNS U(I) 
e AT T=K+l USING V(I) KNOWN AT T=K 
e 
15 DO 30 I = 1, N-1 
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U(I)=V(I) + R"'(V(I+l) - 2"'V(I) + V(I-1)) 
30 CONTINUE 

e 
e INCREASE TIME BY K 
e 

T = T + K 
e 
e OBT AIN THE V ALUES OF U(0) AND U(N), USING THE BOUNDARY 
e CONDffiON, TOCOMPLETETHEARRAY U(I) AT T=K+l 
e 

U(0) = V(0) - (RD(TI,. K) 
U(N) = V(N) - (RD(T) "' K) 

e 
e 
e WRITE U OVER V TO PREPARE FOR NEXT STEP 

00401 = 0, N
V(I) = U(I) 

40 CONTINUE 
e 
e IF T IS LESS THAN TIME, T AKE A TIME STEP 
e 

IF (ABS (TIME - T) .GT. K/ 4) GO TO 15 
e 
e assign the first column 
e 

IF (ABS (TIME - TMAXI) .LT. K/4) THEN 
DOS0 J = 0,N 
X=Xl+J>tH 
ARRA Y(J,L)=X 

50 CONTINUE 
ENDIF 

e 
e assigning the elevation values 
e 

L=L+l 
D060J=0,N 

ARRA Y(J,L)=U(J) 
60 CONTINUE 
20 CONTINUE 

OPEN(l, FILE='sinerd26.dat') 
D070 J=0,N 

WRITE(l,130) (ARRAY(J,L), L=l,300) 
70 CONTINUE 
130 FORMAT(300F15.6) 

END 
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PR(X;RAM OXYD07 
e 
e 
e uses the convexity at steady state as the initial condition 
e 

e used to compute the relaxation time Rt 
e 

e this program solves the diffusion equation UT=D"'UXX 
e for dynamic boundary conditions using the explicit method 
e 

e uses sine oscillations in the diffusion coefficient 
e based on the 18 oxyg. curve 
e 
e this nm uses D=80 for today and D=40 for 15Ka BP 
e 
e it reads these values from an input file 
e 

e the user defines the period and the amplitude of 
e the oscillation 
e 
e the boundary conditions as linearly dependent on time 
e 
e hillslope length=25m 
e 

e inputs: DA, diffusion coefficient value (m2/yr) 
e DI(T), sine function of the diff. coeffic.; it defines 
e the new diff. coeffic. at each time step. 
e RD baselevel downcutting (m/yr) 
e N, number of x-subintervals 
e H, x-step for each iteration 
e K, time-step for each iteration 
e X1-X3, x-interval (m) 
e X2, mid-point of the interval (m) 
e P(T), left boundary condition 
e Q(T), right boundary condition 
e W, convexity at steady state (with the negative sign) for 
e the initial condition 
e F(X), function expressing initial conditions at the pos. side 
e TMAXI - (user-defined) 
e TMAXF - (user-defined) 
e DELT AT - (user-defined) 
e 

e output: numerical solution at T=TMAX where TMAXl<TMAX<TMAXF, following 
e the time increment DELTAT. 
e 

e 

e 

REAL DA,H,K,R,X,T,F,RD,W,TI(l5000),Dl(15000) 
REAL ARRA Y(0:S0JOO),U(0:100),V(0:100) 
INTEGERN,l,TIME, TMAXI, TMAXF, DELTAT 

135 



DATA T ,Xl,)(2, )(3/0,- 25,0, 25/ 
e 
e function defining the boundary conditions 
e 

P(T) = 12.1875 - (RD ,. T) 
Q(T) = 12.1875 -(RD ,. T) 

e 
e 
e function defining the initial condition 
e 

F(X) = 2 0  + (( W /2) ,. (X,.11-2)) 
e 
e 
e function defining the R value for each time step 
e 

R(DA) =DA ,. K/(H,.,. 2) 
e 
e 

OPEN(l,FILE='d(40-80).out') 
e 
e 

PRINT .. , 'ENTER THE CONVEXITY@ STEADY ST ATE WITH THE MINUS SIGN' 
READ ,.,W 
PRINT .. , 'ENTER THE RIVER OOWNCUTTING 1N m/yr' 
READ,.,RD 
PRINT *, 'ENTER THE NUMBER OF X-SUBINTERV ALS AND TIME STEPS' 
READ .. ,N,K 
H = (X 3-Xl) / FLOAT(N) 

e 
e 

PRINT ,., 'ENTER TMAXI, TMAXF, DELTAT' 
READ *, TMAXI, TMAXF, DELTAT 
L=l 

e 
e SET INITIAL CONDmON 

00101= 0,N 
X= Xl + FLOAT(I) ,. H 

V(I) = F(X) 
10 CONTINUE 

e 
e 
e SET THE OUTER LOOP TO DEFINE THE MAXIMUM TIME FOR WHICH THE 
e SOLUTION WILL BE OBTAINED 
e 
e 
e 
e READ THE INPUT FILE 
e 

DO 25 M = 1,9801 
READ(l,,.) TI(M), DI(M) 

25 CONTINUE 
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e 
e 

e 

e 

M=l 

DO 20 TIME = TMAXI, TMAXF, DELTAT 

e FINITE DIFFERENCE FUNCTION TO SOLVE THE UNKNOWNS U(I) 
e AT T=K+l USING V(I)KNOWN AT T=K 
e 
e 
15 DA=Dl (M) 

e 
e 

e 

DO 30 I = 1, N-1 
U(I)=V(I) + R(DA)*(V(l+l ) - 2*V(I) + V(I-1)) 

30 CONTINUE 

e INCREASE TIME BY K 
e 

T =T+ K 
e 

M =M+ l 
e 
e OBT AIN THE V ALUES OF U(0) ANO U(N), USING THE BOUNDARY 
e CONDffiON, TO COMPLETE THEARRAY U(I) AT T=K+l 
e 

e 
e 

U(0) = P(T) 
U(N) =Q(T) 

e WRITE U OVER V TO PREPARE FOR NE XT STEP 

e 

00401 =0, N 
V(I) = U(I) 

40 CONTINUE 

e IF T IS LESS THAN TIME, T A K E  A TIME STEP 
e 

IF (ABS (FLOAT(TIME)-T) .GT. K/4.) GO TO 15 
e 
e assign the first column 
e 

IF (ABS (FLOAT(TIME - TMA XI)) .LT. K/ 4.) THEN 
DOS0 J =0,N 

X=X l+J*H 
ARRA Y(J,L)=X 

50 CONTINUE 
ENDIF 

e 
e assigning the elevation values 
e 

L=L+l 
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0060J=O,N 
ARRAY(J,L)=U(J) 

60 CONTINUE 
20 CONTINUE 

OPEN(2, FILE='oxyd07.dat') 
0070 J=0,N 

WRITE(2,130) (ARRA Y(J,L), L=l,300) 
70 CONTINUE 
130 FORMAT(300F15.6) 

CLOSE(l) 
CLOSE(2) 
END 
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PROGRAM OXYRD06 
e 
e 

e uses the convexity at steady state as the initial condition 
e 

e used to compute the rela:xation time Rt 
e 
e this program solves the diffusion equation UT=D'''lJXX 
e for dynarnic boundary conditions using the explicit method 
e 
e uses the oxygen 18 curve as boundary conditions 
e 
e hillslope length = 25m 
e 

e inputs: D, diffusivity value (rn2/yr) 
e RDI(T), oxyg. 18 deriveci values for the baselevel downcutting; 
e it is used to define the new boundary condition at each time st 
e N, number of x-subintervals 
e H, x-step for each iteration 
e K, time-step for each iteration 
e Xl-X3, x-interval (m} 
e X2, rnid-point of the interval (m) 
e P(TI, left boundary condition 
e Q(T), right boundary condition 
e W, convexity at steady state (with the negative sign) 
e F(X), function expressing initial conditions at the pos. side 
e TMAXI- (user-defineci) 
e TMAXF - (user-defineci) 
e DEL TAT - (user-defineci) 
e 

e output: numerical solution at T=TMAX where TMAXl<TMAX<TMAXF, following 
e the time increment DELTAT. 
e 

e 

e 

e 

e 

e 

REAL D,H,K,R,X, T,F,RD, W, TI(15000) ,RDI(15000) 
REAL ARRA Y(0:50,300),U(0:100),V(0:100) 
INTEGER M,N,l,TIME, TMAXI, TMAXF,DELTAT 
DATA T,Xl,X2,X3/0,-25,0,25/ 

e function defining the initial condition 
F(X) = 20 + (( W /2) "" (X""""2)) 

e 

OPEN(l,FILE='rd{l-3x10-4).out.new') 

e 

e 

PRINT "", 'ENTER THE CONVEXITY@ STEADY ST ATE WITH THE MINUS SIGN' 
READ "", W 
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PRINT "', 'ENTER TIIE DIFFUSIVITY V ALUE IN m2/yr' 
READ "',D 
PRINT "', 'ENTER TIIE NUMBER OF X-SUBINTERV ALS AND TIME STEPS' 
READ "',N,K 
H = (X3 - Xl) / N 

e 
e 
e 
e testing stability condition 
e 

e 

e 

IF (K .GT. ((H"'"'2)/(2"'D))) THEN 
PRINT "', 'STABILITY CONDffiON W AS NOT SATISFIED' 
ENDIF 

R =D "' K/(H"'"'2) 

PRINT "', 'ENTER TMAXI, TMAXF, DELTAT 
READ "', TMAXI, TMAXF, DELT AT 
L=l 

e SET INITIAL CONDITION 
00101 = 0,N 

X=Xl+l"' H  
V(I) = F(X) 

10 CONTINUE 
e 
e 
e 
e READ TIIE INPUT FILE 
e 

e 
e 

DO 25 M = 1,9801 
READ(l,"') TI(M), RDI(M) 

25 CONTINUE 

M=l 

V(0)= 12.1875 
V(N)= 12.1875 

e SET TIIE OUTER LOOP TO DEFINE TIIE MAXIMUM TIME FOR WHICH THE 
e SOLUTION WILL BE OBTAINED 
e 
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e 

00 20 TIME = TMAXI, TMAXF, DELTAT 
e 

e FINITE DIFFERENCE FUNCTION TO SOLVE THE UNKNOWNS U(I) 
e AT T=K+l USING V(I) KNOWN AT T=K 

e 

e 

15 00301=1, N-1 
U(I)=V(I) + R,.(V(l+l ) - 2,.V(I) + V(I-1)) 

30 CONTINUE 

e INCREASE TIME BY K 
e 

T = T+ K

M = M+ l
e 
e OBT AIN THE V ALUES OF U(0) ANO U(N), USING THE BOUNDARY 
e CONDITION, TO COMPLETE THE ARRA Y U(I) AT T=K+l 

RD=RDI(M) 

e 

U(0) = V(0) - (RD * K )  
U(N) = V(N) - (RD ,. K )

e 
e 
e WRITE U OVER V TO PREPARE FOR NEXT STEP 

e 

00401 = 0, N 
V(I) = U(I) 

40 CONTINUE 

e IF T IS LESS THAN TIME, T AKE A TIME STEP 
e 

IF (ABS (TIME - T) .GT. K/ 4) GO TO 15 
e 
e assign the first column 
e 

IF (ABS (TIME - TMAXI) .LT. K/ 4) THEN 

0050 J = 0,N 
X=Xl+J*H 
ARRAY(J,L)=X 

50 CONTINUE 
ENDIF 

e 

e assigning the elevation values 
e 

L=L+l 

0060J=0,N 

141 



ARRAY(J,L)=U(J) 
60 CONTINUE 
20 CONTINUE 

OPEN(2, FILE='oxyrd06.dat') 
0070 J=0,N 

WRITE(2,130) (ARRAY(J,L), L=l,300) 
70 CONTINUE 
130 FORMAT(300F15.6) 

CLOSE(l) 
CLOSE(2) 
END 
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" 

APPENDIX 4 

Dimensional Analysis 

The dimensional analysis carried out in this study was based on a 

technique known as the Buckingham's Pi Theorem (see for ex., Dim and Ivey, 

1980). The variables and fundamental dimensions in our problem are: 

VARIABLE SYMBOL DIMENSION 

Hillslope length L L 

Diffusion coefficient D L2/T 

Baselevel downcutting rate Bd L/T 

Initial curvature Wi 1/L 

Relaxation time Rt T 

[where L is length and T is time]. 
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Because we have 5 variables and 2 dimensions we need 3 dimensionless 

parameters to fully describe the problem. When we choose D and L among the 

derived variables, and permute the remaining 3 variables (Wi, Rt, and Bct) we get 

the following 3 dimensionless groups: 



{4.4) 

(4.5) 

(4.6) 

Solving for the exponents, yields:

{L ➔ 2a2 + b2 = O} II2⇒ 1 o ⇒ ª2 = 1; b2 = -2,'T ➔-a2 + = 

II {L ➔ 2a3 + b3 + 1 = O }
3⇒ 1 

o 
⇒

a3 = -1; b3 = 1.'T ➔-a3 - = 

Putting the exponents back into Eqs. (4.1- 4.3) yields the following
dimensionless parameters:

(4.7) 

(4.8) II2 =D1L-2Rt = DRt
7' 

(4.9) 
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(where Wf is the final hillslope curvature, or the hillslope curvature at the 

equilibrium condition). 
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