
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
INSTITUTO DE COMPUTAÇÃO

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

DANIEL KIYOSHI HASHIMOTO VOUZELLA DE ANDRADE

From Combinators to Concatenative and Back Again

RIO DE JANEIRO
2024

DANIEL KIYOSHI HASHIMOTO VOUZELLA DE ANDRADE

From Combinators to Concatenative and Back Again

Trabalho de conclusão de curso de gradua-
ção apresentado ao Instituto de Computação
da Universidade Federal do Rio de Janeiro
como parte dos requisitos para obtenção do
grau de Bacharel em Ciência da Computa-
ção.

Orientador: Prof. Hugo Musso Gualandi

RIO DE JANEIRO
2024

CIP - Catalogação na Publicação

Elaborado pelo Sistema de Geração Automática da UFRJ com os dados fornecidos
pelo(a) autor(a), sob a responsabilidade de Miguel Romeu Amorim Neto - CRB-7/6283.

H348f
Hashimoto Vouzella de Andrade, Daniel Kiyoshi
 From Combinators to Concatenative and Back Again
(Indo e Voltando de Combinadores para
Concatenativo) / Daniel Kiyoshi Hashimoto Vouzella
de Andrade. -- Rio de Janeiro, 2024.
 39 f.

 Orientador: Hugo Musso Gualandi.
 Trabalho de conclusão de curso (graduação) -
Universidade Federal do Rio de Janeiro, Instituto
de Computação, Bacharel em Ciência da Computação,
2024.

 1. Cálculo Concatenativo. 2. Lógica Combinatória.
3. Programação Tácita. 4. Programação Point-free. 5.
Linguagens de Pilha. I. Musso Gualandi, Hugo,
orient. II. Título.

DANIEL KIYOSHI HASHIMOTO VOUZELLA DE ANDRADE

From Combinators to Concatenative and Back Again

Trabalho de conclusão de curso de gradua-
ção apresentado ao Instituto de Computação
da Universidade Federal do Rio de Janeiro
como parte dos requisitos para obtenção do
grau de Bacharel em Ciência da Computa-
ção.

Aprovado em 06 de Fevereiro de 2024

BANCA EXAMINADORA:

Prof. Hugo Musso Gualandi
Instituto de Computação – UFRJ

Prof. Daniel Chicayban Bastos
Instituto de Computação – UFRJ

Prof. Hugo de Holanda Cunha Nobrega
Instituto de Computação – UFRJ

Prof. João Antonio Recio Paixão
Instituto de Computação – UFRJ

“Any sufficiently advanced technology
is indistinguishable from magic.”

Arthur C. Clarke

RESUMO

A programação tácita ou point-free é um estilo de programação que evita nomear va-
riáveis, através do uso de combinadores para compor funções menores. Dois modelos
de programação tácita são o cálculo concatenativo e a lógica combinatória. O cálculo
concatenativo está relacionado às linguagens de programação baseadas em pilha, estas
usadas em diversos contextos, incluindo bytecode para máquinas virtuais e sistemas
embarcados. A lógica combinatória é um modelo computacional aplicativo mais seme-
lhante ao cálculo lambda. Ambos estes modelos tácitos são frequentemente comparados
entre si. Os combinadores elementares da lógica combinatória são comumente casados
com instruções de manipulação de pilha: por exemplo, C se parece com o swap, e W se
parece com o dup. Neste trabalho, nós generalizamos esta conexão para todos os combi-
nadores e todos os programas de pilha. Nós descrevemos três algorítmos que convertem
de ummodelo tácito para o outro. O primeiro algorítmo traduz qualquer combinador da
lógica combinatória para uma expressão do cálculo concatenativo usando ou a estratégia
de redução call-by-name ou a call-by-value. O segundo algorítmo é especializado para
um subconjunto de combinadores que recebe uma função callback como seu primeiro
argumento. Ele produz programas de pilha menores e mais intuitivos. Por último, o
terceiro algorítmo é uma versão reversa do segundo, e converte qualquer programa de
pilha de volta para uma expressão da lógica combinatória. Como nossos algorítmos
preservam a ordem da redução, nós mostramos que cada modelo é capaz de simular o
outro.

Palavras-chave: linguagens de programação; programação tácita; programação point-
free; cálculo concatenativo; linguagens de pilha; lógica combinatoria.

ABSTRACT

Tacit or point-free programming is a programming stylewhich avoids named variables, by
using combinators to compose smaller functions. Two models of tacit programming are
concatenative calculus and combinatory logic. The concatenative calculus is related to
stack-based languages, who are used in various contexts, including bytecode for virtual
machines and embedded systems. Combinatory logic is an applicative computation
model more similar to the lambda calculus. These two tacit models are frequently
compared to each other. The elementary combinators of combinatory logic are often
paired to stack-manipulation instructions: for instance, C looks similar to swap, andW is
similar to dup. In this work, we generalize this connection to all combinator expressions
and stack programs. We describe three algorithms to convert between the two tacit
models. The first translates any combinatory logic expression into a concatenative
expression using either the call-by-name or the call-by-value evaluation order. The
second algorithm is specialized to a subset of combinators that receives a callback
function as the first argument. It produces shorter and more intuitive stack programs.
Lastly, the third algorithm is a backwards version of the second one, converting any
concatenative calculus program back to a combinatory logic expression. Because our
algorithms preserve the reduction order, we show that each model is able to simulate
the other.

Keywords: programming languages; tacit programming; pointfree programming; con-
catenative calculus; stack languages; combinatory logic.

SUMÁRIO

1 INTRODUCTION . 7
1.1 THE PROBLEM . 8
1.2 SUMMARY . 9

2 LAMBDAS AND COMBINATORS 10
2.1 LAMBDA CALCULUS . 10
2.2 COMBINATORY LOGIC . 11
2.3 FROM LAMBDA CALCULUS TO COMBINATORS 13

3 CONCATENATIVE CALCULUS . 15
3.1 CONCATENATIVE FUNCTIONS . 16
3.2 REACHING DEEPER INTO THE STACK 18
3.3 EQUATIONAL REASONING . 20

4 FROM ARBITRARY COMBINATORS TO CONCATENATIVE . . . 22
4.1 THE CALL-BY-NAME CONVERSION 22
4.2 THE CALL-BY-VALUE CONVERSION 24

5 FROM REGULAR COMBINATORS TO CONCATENATIVE 27
5.1 EQUIVALENCE OF GENERAL AND DIRECT VERSIONS 28
5.2 REGULAR COMBINATORS . 30
5.3 REGULAR BY CONSTRUCTION COMBINATORS 30
5.4 REGULAR CONVERSION . 33

6 BACK FROM CONCATENATIVE TO COMBINATORS 34
6.1 FROM FIRST-ORDER CONCATENATIVE TO COMBINATORS 34
6.2 PUSHING VALUES . 35
6.3 HIGHER-ORDER STACK PROGRAMS 36

7 CONCLUSION . 38
7.1 FUTURE WORK . 38

BIBLIOGRAPHY . 39

7

1 INTRODUCTION

Tacit programming, also known as point-free programming, is a programming style
that avoids naming variables and intermediary values. It focuses on combining smaller
functions in different ways to construct bigger functions. One could think about it as
building functions using pipelines and similar techniques. This style may be used to
make code easier to read or to make the data flow more explicit.

The simplest tool for tacit programming is function composition. For instance, instead
of h(x) = f(g(x)), we could say h = f ◦ g without mentioning x. Function composition
appears in many languages and contexts. One of the most common examples is Unix
shell, which permits piping one program’s output into another program’s input without
naming a variable or a temporary file (Listing 1).

Haskell is another interesting language example for tacit programming, because its
standard library includes several higher-order combinator functions, such as flip, on
and function composition. For instance, in Listing 2 we use these combinators to define a
function isSameLength that tests whether the lengths of two strings are the same, without
naming any variables.

APL (IVERSON, 1962) and other Iversonian array languages, such as J and BQN,
heavily encourage tacit programming. They feature several operators designed for
tacit programming. A customary example is the function for computing the average
of a list. In J, this averaging function is written +/ % #. This is close to the intuitive
english definition: “the sum (+/) divided (%) by the length (#) of the list (the unnamed
argument)”.

Another tacit language group are the stack-based languages. These languages use
reverse polish notation: the arguments come before functions. A stack-shuffling com-
binator, such as swap and dup, can be inserted between the arguments and the function
to reorder or change the arguments. For instance, 10 10 + could be written as 10 dup +,

ls | grep '.pdf$' | sed 's/\. pdf$//' | less

Listing 1 – A shell pipeline example that lists PDF filenames

ghci > isSameLength = isEqual `on ` length

ghci > -- Alternative definition:

ghci > -- isSameLength xs ys = isEqual (length xs) (length ys)

ghci > isSameLength "hello" "world"

True

ghci > isSameLength "tacit" "programming"

False

Listing 2 – Higher order combinators in Haskell

8

flip f x y # Haskell

x f passive y # J

y x swap f # Stack languages

Listing 3 – Three different ways of building f y x

which can be tacitly factored into dup +.
Stack-based computing is common in lower level languages, often appearing as

bytecode for virtual machines, such as Java’s JVM, Erlang’s BEAM, and Web Assembly1.
There are also stack-based languages designed for humans. Some of the earliest are
FORTH (MOORE; LEACH, 1970; RATHER; COLBURN; MOORE, 1996) and Postscript.
Joy introduces a higher order aspect to stack-based programming, with the notion of
quotations (THUN, 1994; THUN; THOMAS, 2001). Factor is one of the many languages
inspired by Joy and introduces dynamic typing (a great improvement from mere arity
checking), object orientation and other features (PESTOV; EHRENBERG; GROFF, 2010).
Cat and Kitten introduce static type checking and type inference. The concatenative
programming community created a wiki to catalog these and other concatenative lan-
guages2. The term concatenative was coined recently, appearing around Joy’s creation
time.

1.1 THE PROBLEM

We are interested in the different manifestations of tacit programming. In particular,
we want to relate the applicative higher-order approach (used by Haskell and J) to
the concatenative approach (of stack languages). In Listing 3, we illustrate this by
comparing how these languages swap arguments of a function. We want to be able to
say that flip and passive are analogous to swap, and also we would like to extend this
analogy to bigger programs with more combinators.

To study this connection, we will need formal models for the applicative and con-
catenative setting. To model stack languages we will employ the concatenative calculus
of Thun and Kerby (THUN, 1994; KERBY, 2002). This theory will be explained in
Chapter 3.

The main model for the applicative setting is combinatory logic. It was started in the
beginning of the twentieth century by Schönfinkel, who highlighted the advantages of
eliminating variables from logic (SCHÖNFINKEL, 1924). Inspired by that, Curry and
others further developed combinatory logic into a formal logic system without variables
(CURRY et al., 1958). Curry’s tradition of combinatory logic features the higher-order
functions B, C, K, S, W , I , which perform elementary operations, such as composition,
reordering, etc. We will cover combinatory logic in Chapter 2.
1 and my personal favorite: uxn/varvara with tal language
2 https://concatenative.org/

https://concatenative.org/

9

The analogy of swapping arguments in three different notations, previously discussed
in Listing 3, leads to some questions. The combinator C is a function similar to Haskell’s
flip, which is in turn related to swap, but what about the others? As we will see later, K
is analogous to zap and W to dup. But what about B and I? What about non-elementary
combinators, such as S, BC(BC) and B(BS)B? Can we properly describe how they
relate to stack combinators? More concretely, canwe look at a combinatory logic program
and understand it as a concatenative calculus program, and vice-versa?

To address those questions, we will produce algorithms to convert from one theory
to the other and vice-versa. For example, in combinatory logic, the combinator BCW

maps f x y to f y y x. As we will see in Chapter 2, the evaluation of BCW f x y reduces
toW f y x and finally to f y y x. First, x and y swapped places, then y was duplicated.
This behaves similarly to swap dup from stack languages.

But we are not merely interested in the final result. For instance, the combinator
BCC is a weird identity function. It maps f x y to f x y by swapping x and y twice,
back to where they started. Therefore, we may not convert it to the no-op identity
function. We would prefer swap swap, thus preserving the reductions steps. In technical
terms, we want the conversion to map every input into an output with the following
property: each reduction step in the input side have a matching step in the output side.
If the input-output pair has this property, we say that the output is a simulation of the
input. Observe that the number of reduction steps for the input may be smaller than the
number of steps in the output.

1.2 SUMMARY

The remainder of this work is organized as follows: in Chapter 2, we review the
lambda calculus and combinatory logic. We show the notation we will use and an
algorithm to translate from lambda calculus to combinatory logic. In Chapter 3, we
describe the concatenative calculus. In Chapter 4, we present our first conversion from
combinatory logic to concatenative calculus. It accepts any combinatory logic expression,
but its output is hard to read. In this chapterwe also discuss the call-insertion problem. In
Chapter 5, we present the second algorithm, specialized to convert regular combinators
to concatenative calculus. Its output is more idiomatic than the general algorithm. In
Chapter 6, we go in the opposite direction, converting from concatenative calculus back
to combinatory logic. We also extend the algorithm to work with improper combinators
(proper combinators are defined in Section 2.2). In Chapter 7, we discuss our final
conclusions and ideas for future work.

10

2 LAMBDAS AND COMBINATORS

In this chapter, we will briefly revisit lambda calculus and combinatory logic and
take the opportunity to establish a notation we will use for them. The concatenative
calculus will be introduced more slowly and with more details in the next chapter.

2.1 LAMBDA CALCULUS

The lambda calculus is a minimalist logic and computation system, based on func-
tion definition and function calls. A lambda calculus’s expression is defined by the
grammar in Figure 1. Variables are denoted by lowercase roman letters (a, b, c, . . .),
represented in the grammar by v. Function applications are denoted by juxtaposing two
expressions. Lambda functions have a variable (its argument) and an expression (its
body). An expression is either a variable, a function application, or a lambda function
and parenthesis may be used to disambiguate an expression. Expressions are denoted
by uppercase roman letters (N , P , Q, . . .).

On top of that, it is usual to add three rules to ease reading: application associates to
the left; lambdas extend as far to the right as possible; a lambda with many variables
means many lambdas with one variable. We show those rules in Figure 2.

Computation is achieved by β-reducing expressions. A reducible expression (redex)
is an application where the left sub-expression is a lambda. The β-reduction reduces a
redex to the body of the lambda on the left with its argument substituted by the sub-
expression on the right. One expression, might contain more than one redex, in which
case one must choose which to reduce first. In Figure 3, we show two possible reduction
sequences from the same starting expression, each line is separated by a β-reduction.

There are many strategies for choosing which redex to β-reduce first (or if we want
to reduce a redex or stop), each having different advantages and disadvantages. Call-
by-name evaluation order always reduces the first outermost redex. It was shown on

E := Expressions
v variables

| E E application
| λ v . E lambda

Figure 1 – Lambda calculus

x y z = (x y) z
λ x . x y = λ x . (x y)
λ x y . x = λ x . λ y . x

Figure 2 – Abbreviations

11

(λ x y . x) a ((λz . c) b)
(λ y . a) ((λz . c) b)
a

(a) Call-by-name

(λ x y . x) a ((λz . c) b)
(λ y . a) ((λz . c) b)
(λ y . a) c
a

(b) Call-by-value

Figure 3 – Reduction strategies

(λ x . (λ y . y x)) y z
(λ y . y y) z (∗)
z z

(a) Bad evaluation

(λ x . (λ y . y x)) y z
(λ x . (λ a . a x)) y z (⋆)
(λ a . a y) z
z y

(b) Good evaluation

Figure 4 – α-renaming

the left (Figure 3a). Call-by-value evaluation order always fully reduces the argument
before applying it to a lambda. It was shown on the right (Figure 3b).

Sometimes, an expression cannot be reduced because name conflicts might change
the meaning of the expression. In such cases, we can α-rename a lambda to continue to
reduce. The α-rename changes the names of variables without affecting its meaning. We
show an example of this in Figure 4. On the left (Figure 4a), there is an illegal reduction,
marked with a (∗). This reduction is illegal because it changes the meaning of the
argument y: before, it was a free variable; after, it turned into a variable bound by a inner
lambda. On the right (Figure 4b), there is a correct reduction, α-renaming was applied
on the line marked with a (⋆). These variable scoping and renaming complications
motivate combinatory logic, which avoids the usage of variables.

Lastly, η-reduction is a simplification done to a lambda that receives an argument
and only applies that argument to a function. For example, (λ x . N x) can be η-reduced
to N . For those who want to learn more about lambda calculus, a good reference is
Barendregt (BARENDREGT et al., 1984).

2.2 COMBINATORY LOGIC

The combinatory logic is another minimalist model of logic and computation. It
was created to not require variables and therefore avoid issues with variable scoping
and substitution. Compared to lambda calculus, it does not have lambdas. It defines
functions by combining and composing smaller functions.

A pure combination is a mathematical function that receives some variables and
returns an expression that combines them using application. Variables may appear more
than once or be ignored. The functions in Figure 5 are pure combinations. Everything

12

B f g x := f (g x)
C f x y := f y x
K x y := x

S f g x := f x (g x)
W f x := f x x

I x := x

Figure 5 – Pure combinations

E := Expressions
B | C | K | S | W | I base combinator

| E E application

Figure 6 – Combinators

that appears to the right of the := are variables that appear on the left side of the equation.
A combinator is an implementations of a combination. Syntactically, a combinator

expression can be a base combinator or an application of two combinators (Figure 6).
Combinators are traditionally written in uppercase letters. Function applications are
denoted by juxtaposing two expressions, the same way as lambda calculus.

Similarly to lambda calculus, we can reduce expressions. Below, we apply the defini-
tion of B, K andW , in this order.

B K W x y z ⇒ K (W x) y z ⇒ W x z ⇒ x z z

A proper combinator implements a pure combination. The result only contains
variables, not other combinators. All of the combinators shown in Figure 5 are proper.
An example of a improper combinator is TK, with T x y := y x. The problem is that it
leaves a K in its result.

T K x ⇒ x K

Another improper combinator is Y , the famous fixpoint combinator.

Y f ⇒ f (Y f)

There are many versions of combinatory logic, depending on the chosen set of base
combinators. We could have chosen other bases instead of BCKSWI, such as SKI or
BCKW. BCKSWI is a complete base, which means that all of the other combinators can
be constructed from the base. For example, T = CI and Y = B(WI)(BWB). One of the
smallest complete bases is SK. For instance, B = S(KS)K and I = SKK.

This work less concerned with a small base. We will use BCKWI because each
combinator does only one elementary effect: B composes and groups with parenthesis;
C reorders;K discards;W duplicates; I identifies. That’s opposed to S which is capable
of composing, reordering, duplicating and identifying (with K’s help). The importance
of these effects are discussed by Curry (CURRY et al., 1958). Another motivation for
preferring BCKWI is our goal of relating combinatory logic to stack operations such as
swap, zap, dup.

13

[v] := v

[P Q] := [P] [Q]

[λ x . v] :=

{
K v , if x ̸= v

I , if x = v

[λ x . P x] :=

{
[P] , if x /∈ FV(P)

W [λ x . P] , if x ∈ FV(P)

[λ x . P Q] :=

K [P Q] , if x /∈ FV(P) ∧ x /∈ FV(Q)

B [P] [λ x . Q] , if x /∈ FV(P) ∧ x ∈ FV(Q)

C [λ x . P] [Q] , if x ∈ FV(P) ∧ x /∈ FV(Q)

S [λ x . P] [λ x . Q] , if x ∈ FV(P) ∧ x ∈ FV(Q)

[λ x . λ y . P] :=

{
[λ x . [λ y . P]] , if x ̸= y

K [λ y . P] , if x = y

Table 1 – Conversion from lambda calculus to BCKSWI base

2.3 FROM LAMBDA CALCULUS TO COMBINATORS

In this section, we will show a standard conversion algorithm from lambda calculus
to combinatory logic. More specifically, the algorithm will return a combinator using
BCKSWI base. This conversion will not be used in this work, but it is included to help to
create combinatory expression examples. During this research, it helped with testing
and intuition building. Most of the initial test cases were first lambda expressions, then
converted to combinatory expressions. The algorithm massages a lambda in such way
that η-reduction can be applied.

λ x . f (g x)

λ x . B f g x

B f g

We use [P] to convert the lambda calculus expression P . All the cases are repre-
sented in Table 1, where P and Q are lambda calculus expressions and v is a single
variable. The relation x ∈ FV(P)means that x is a free variable of P , and therefore P
uses the variable x. And x /∈ FV(P)means the opposite: P does not use the variable x.

This conversion splits into many cases in order to make it clearer that all the possible
cases are covered by the conversion algorithm. One might feel intrigued to see K

appearing three times. All of those cases are the same, they could be summarized as

[λ x . P] := K P , if x /∈ FV(P)

14

Using only SKI (another complete basis) would be sufficient for the conversion to
work (CURRY et al., 1958). Recall that a complete base is a set of combinators that can
create any other combinator, or in this case, any lambda function. The inclusion of extra
rules for BCW and η-reduction reduces the size of the converted combinator, in the
general case. The rule that uses aW is less common in the literature.

15

3 CONCATENATIVE CALCULUS

The concatenative calculus is another minimalist model of logic and computation,
based on concatenation/composition of functions. Differently from the others, there is a
distinction from executing functions (programs) and value functions (called quotations).
Because of that, it has two syntaxes, one for instructions and another for values. The
grammars in Figure 7 are a simplification of Kleffner’s (KLEFFNER, 2017) grammars,
replacing arbitrary lambda functions with primitive instructions and removing some
constructions, such as fixpoint, name binding, numbers, and others. The simplification
is made to match the subset of combinatory logic that we are working with.

With this simplification, the only values are quotations, equivalent to functions as
values, represented by programs between square brackets. In the grammar, I⃗ represents
a program: a possibly empty sequence of instructions. In our rules, uppercase variables
(A, B, C, . . .) stand for sequences of instructions. An empty sequence is represented
by ε. Instructions are primitive functions, written in lowercase (swap, zap, dup, . . .) or
values/quotation ([], [swap dup], . . .). Similarly to combinatory logic, we could have
chosen a different set of base instructions.

One way of evaluating a concatenative program is to use a stack-machine. For our
notation, execution steps occur near the vertical bar (|). The next instruction to run is
the first to the right of | and it will manipulate the values on the top of the stack, which
are on the left, nearest to the |.

· · · x1 x0 | i0 i1 · · ·

A push instruction pushes a value onto the stack. It is represented by a quotation
literal. Note that [A]may represent either a push instruction (if on the right side of |)
or a quotation value (if on the left side of |).

· · · x0 | [A] ⇒ · · · x0 [A] |

Instructions affect the top values of the stack and leave the remaining values un-
changed. So, we can write the previous rule in a simpler way, omitting the rest of the
stack. The Table 2 shows the base instructions and a few others below a horizontal rule.

V := Values
[I⃗] quotation

I := Instruction
swap | zap | dup | cons | sons | call | dip base instruction

| V push value

Figure 7 – Concatenative calculus

16

| [A] ⇒ [A] |
y x | swap ⇒ x y |
x | dup ⇒ x x |
x | zap ⇒ |

[A] | call ⇒ | A
x [A] | cons ⇒ [x A] |
x [A] | sons ⇒ [x A] x |
x [A] | dip ⇒ | A x

[B] [A] | cat ⇒ [B A] |
x | unit ⇒ [x] |

x [A] | sip ⇒ x | A x
x [A] | take ⇒ [A x] |
x [A] | cake ⇒ [x A] [A x] |

Table 2 – Concatenative instructions

Some of the instructions in Table 2 are elementary, in an analogous way of elementary
for combinators, each only does one kind of effect on the stack. The effects are: reorder
(swap), duplicate (dup), discard (zap), unquote (call), concatenate (cat), and quote
(unit). Many of those instructions have alternative names: drop and pop for zap; apply
for call; concat and compose for cat; and quote for unit.

An execution startswith a (possibly empty) stack holding the inputs. The instructions
are executed one by one. When there are no more instructions to execute, the (possibly
empty) stack is the output of the execution. For example, let’s run zap unit dup catwith
x, y and z on the stack. By the end, z is untouched; that is fine.

z y x | zap unit dup cat

z y | unit dup cat

z [y] | dup cat

z [y] [y] | cat
z [y y] |

In following chapters, we are going to have many repeated instructions next to each
other. Because of that, we will abbreviate a instruction i repeated n times to in. For
instance, using call as the repeated instruction.

call0 := ε

call1 := call

call2 := call call

call3 := call call call

3.1 CONCATENATIVE FUNCTIONS

Functions from concatenative calculus may use zero or more values from the stack
and leave zero or more values after execution. Note that a push instruction is an example

17

of function that receives zero values. When they are called, they must receive at least
all of their expected arguments. In other words, differently from lambda calculus and
combinatory logic, functions are not automatically curried.

As a consequence of quotations not dequoting by themselves, we need to explicitly
add call instructions to run them. If the called function does not have enough arguments
in the stack the computation gets stuck. For instance, swap needs at least two arguments
to execute. While, in the next example, dup needs only one, but none was given; it got
stuck because of the lack of arguments.

Not stuck

y x | [swap] call

y x [swap] | call
x y |

Stuck

| [dup] call

[dup] | call
| dup

Quotations are not automatically curried, but currying is still possible. The instruction
cons does exactly that, it represents currying in the concatenative world. Another way
of currying is to quote the argument x with unit, and cat it to the function [A].

x [A] | cons
[x A] |

x [A] | swap unit swap cat

[A] x | unit swap cat

[A] [x] | swap cat

[x] [A] | cat
[x A] |

Concatenative functions may receive more arguments then they expect. When it
happens, the extra arguments are not touched. This idea explains semantically what
consing extra values do. In the following example, dup takes one argument, but two
values got curried/consed into it. When the resulting quotation gets called, dup will
leave the second consed value y untouched.

y x [dup] | cons cons call
y [x dup] | cons call
[y x dup] | call

| y x dup

y x | dup
y x x |

The empty sequence of instructions (ε) is the identity function of the concatenative
world. The function ε is similar to dup zap, except that the latter expects one argument
on the stack, while the former expects none. In other words, when there are no values
on the stack, dup zap gets stuck; while ε still works in that case. If, for example, we cat
these identity-like functions with [A] and call the result, ε Awill get stuck on A (same

18

as if we were only running A), while dup zapwill get stuck on dup. This highlights the
relation between composition and concatenation in concatenative languages: composing
with identity is the same as concatenating with empty.

[ε] [A] | cat call
[ε A] | call

| ε A
| A

[dup zap] [A] | cat call
[dup zap A] | call

| dup zap A

3.2 REACHING DEEPER INTO THE STACK

The instructions shown so far can only access the top two values on the stack. As-
suming that we have three values x, y and z on the stack, how can we, for example, cat x
and z? We could introduce a family of instructions rot in order to access deeper values.
The instruction rotn moves the n-th value to the top of the stack. rot1 does not do much.
rot2 is the same as swap. But with rot3 onwards, we could pull all of wanted values up,
work with them, then put them back down.

x1 | rot1 ⇒ x1 |
x2 x1 | rot2 ⇒ x1 x2 |

x3 x2 x1 | rot3 ⇒ x2 x1 x3 |
xn xn−1 · · · x1 | rotn ⇒ xn−1 · · · x1 xn |

We could implement the rot instructions ourselves in terms of swap, call, cat and
unit. One strategy is to accumulate a quotation which has the stack values with a swap
between them to bubble the desired value up to the top of the stack. For example, let’s
build rot3. We want to put one swap after x and after y. We will start by pushing a []

and we will put x swap inside it with swap unit [swap] cat swap cat. The first part
swap unit [swap] cat swaps x on top of the stack and replaces it with [x swap]. The
second part swap cat swaps out accumulator back to the top and joins it with [x swap].
We can repeat it once more to join [y swap] to our accumulator quotation, resulting in
[y swap x swap]. Finally, we call our quotation and watch z get bubbled up to the top
of the stack.

19

z y x | [] (swap unit [swap] cat swap cat)2 call

z y x [] | (swap unit [swap] cat swap cat)2 call

z y [x swap] | (swap unit [swap] cat swap cat)1 call

z [y swap x swap] | call
z | y swap x swap

z y | swap x swap

y z | x swap

y z x | swap
y x z |

But instead, what if we could magically run A in the middle of the stack? This is
the alternative we will be adopt. We will use the instruction dip for that. One could
describe it as saving the top value (removing it from the stack), running a function,
then restoring the saved value to the top. It might be helpful to think that a quotation
followed by a dip is a single instruction.

x | [A] dip ⇒ | A x

Using dip makes things simpler than using the rot family of instructions or some
unit-catmagic. Also, it will make a nice parallel to the B combinator in the upcoming
chapters. We can use swap and dip to implement rot3 and rot4. rot2 (swap) was used to
implement rot3, rot3 was used to implement rot4 and rotn could be easily implemented
in terms of rotn−1.

rot3 implementation
z y x | [swap] dip swap

z y | swap x swap

y z | x swap

y z x | swap
y x z |

rot4 implementation
z y x w | [rot3] dip swap

z y x | rot3 w swap

y x z | w swap

y x z w | swap
y x w z |

Embracing the idea of unifying a quotation followed by a dip to a single instruction,
we can chain dip instructions to save multiple values at once. This is useful to dig the
stack and work directly in the middle of it. The examples dig the stack to zap the second
or third value.

zap third value
z y x | [[zap] dip] dip

z y | [zap] dip x

z | zap y x

| y x

y x |

zap fourth value
z y x w | [[[zap] dip] dip] dip

z y x | [[zap] dip] dip w
...

y x | w

y x w |

20

We abbreviate those chains of dips with dipn, which saves n values from the stack
before running the quotation. Under this definition, dip0 and call are the same, and dip1

is plain dip.

| [A] dip0 ⇒ | A

x0 | [A] dip1 ⇒ | A x0

xn−1 · · · x0 | [A] dipn ⇒ | A xn−1 · · · x0

The instruction sip is similar to dip, but it leaves a copy of the value on the stack for
the quotation to use. Its definition is in Table 2, and it can be implemented in terms of
dup and dip:

[A] sip = dup [A] dip

sip = [dup] dip dip

The instruction sons, also defined in Table 2, is similar to sip and to cons. Imagine a
cons that keeps a copy of the argument on top of the stack. We did not find the instruction
sons in literature. We invented it to help with the conversions. sons is named after its
similarity with sip and cons and it can be implemented in terms of them:

sons = [cons] sip

3.3 EQUATIONAL REASONING

There are two useful properties of concatenative calculus, namely concatenation
and split. Concatenation property says that you can concatenate two functions to get
a new function and it works like composition. Split property says that a function can
be separated in an instruction boundary to get two functions: one from the start to this
boundary and from the boundary to the end. Kleffner proves that the type systemwhich
he defined preserves those important properties (KLEFFNER, 2017).

Those properties can be used to separate some part of the function, change it for
something equivalent and then stitch them back together. In the following example, the
split property is used twice to isolate the x [A] cons subfunction. We know what the
function x [A] cons does: it takes no arguments from the stack, and pushes [x A].
So, we can swap it for the function that just pushes the quotation and stitch them back
up, the resulting function will do the same thing.

swap dup (x [A] cons) dip

swap dup ([x A]) dip

swap dup [x A] dip

We just used an equivalence that is true by definition. But other non-obvious equiva-
lences can be made. For instance, the following equivalences describe how call, dip and
sip distribute over concatenation.

21

[A B] call ⇔ [A] call [B] call

[A B] dip ⇔ [A] dip [B] dip

[A B] sip ⇔ [A] sip [B] dip

Other equivalences may need extra requirements, such as at least n extra values on
the stack. In this case, these extra arguments remain in the same position by the end
of the function but are needed for the execution to not get stuck. We write the extra
arguments to the left of a vertical bar.

y x swap swap ⇔ ε

x dup zap ⇔ ε

x unit call ⇔ ε

x [] cat ⇔ ε

x [] dip ⇔ ε

x f cons call ⇔ f call

xn · · · x0 rotn
n ⇔ ε

Because this is a reasoning of equivalent functions, not a reasoning of reduction
rules, any equivalence can be used. In the next example, we will use the swap swap ⇔ ε

equivalence. The function dup [A] cons expects one argument and leaves two on the
stack, so we are sure that we use this equivalence. We use split to isolate swap swap

and substitute it with ε. When we try to join all of the parts, we notice that ε disappears
because concatenating a sequence with empty results in the sequence.

dup [A] cons swap swap dip

dup [A] cons (swap swap) dip

dup [A] cons (ε) dip

dup [A] cons dip

If we have that A ⇔ B, can we say that [A] ⇔ [B]? The answer for this
question is not simple and it may vary in different flavors of concatenative worlds
(maybe someone could ask how many instructions there are inside a quotation). But
if the context guarantees that these quotations are only dequoted, the answer is yes.
For instance, it is ok to substitute in [A] dip. For this work, we will always have this
guarantee. We will often use them to use single variables instead of [A]. For example,
if f = [A], we might want to write f call in place of A.

x [A] cons ⇔ [x A] ⇔ [x [A] call] ⇔ [x f call] ⇔ x f cons

22

4 FROM ARBITRARY COMBINATORS TO CONCATENATIVE

Now that we have finished the review of the existing work, we can finally get to the
conversion algorithms between combinatory logic and concatenative calculus. In this
chapter, we describe the first conversion which translates any combinator expression
into an equivalent stack program.

One obstacle is that combinatory logic leaves the reduction order unspecified, while
concatenative calculus is fully deterministic. Because of that, wewill discuss two versions
for this conversion. The first reduces the combinator in call-by-name order. The second
reduces the combinator in call-by-value order. In Figure 8, we show an example that
compares these two orders.

While researching this topic, we discovered that the call-by-name strategy is simpler
and more uniform than the call-by-value counterpart. Because of that, we will show call-
by-name first, in Section 4.1. In Section 4.2, we will show steps towards a call-by-value
conversion.

4.1 THE CALL-BY-NAME CONVERSION

The general algorithm for our call-by-name conversion can be separated in two steps.
First, we translate the input combinatory logic expression to an analogous concatenative
calculus quotation. After this step, every expression turns into a quotation (function).
In the second half, we insert call instructions in order to run the quoted expressions.
We insert one call instruction for each reduction step done by the original combinatory
logic expression.

Let’s begin by comparing what the basic combinators and their analogous counter-
parts in concatenative logic. In Figure 9, the left column shows combinatory expressions.
The top one is the initial expression and the bottom one is its result. The right arrow
translates the combinatory expression to our desired stack program. The ⌜α⌟ represents
the translation of the combinator α. Parenthesis on the left translate to quotations on
the right. This is how concatenative calculus implements partial evaluation (currying).

B (B C) K f x y z
B C (K f) x y z
C (K f x) y z
K f x z y
f z y

(a) Call-by-name

B (B C) K f x y z
B C (K f) x y z
C (K f x) y z
C f y z
f z y

(b) Call-by-value

Figure 8 – Different evaluation orders for combinatory logic

23

B f g x ⇒ x g f ⌜B⌟ | calls
f (g x) ⇒ [x g call] f |

C f x y ⇒ y x f ⌜C⌟ | calls
f y x ⇒ x y f |

K x y ⇒ y x ⌜K⌟ | calls
x ⇒ x |

S f g x ⇒ x g f ⌜S⌟ | calls
f x (g x) ⇒ [x g call] x f |

W f x ⇒ x f ⌜W⌟ | calls
f x x ⇒ x x f |

I x ⇒ x ⌜I⌟ | calls
x ⇒ x |

Figure 9 – Intuition for the conversion

⌜B⌟ := [[cons] dip]

⌜C⌟ := [[swap] dip]

⌜K⌟ := [[zap] dip]

⌜S⌟ := [[sons] dip]

⌜W⌟ := [[dup] dip]

⌜I⌟ := [[ε] dip]

⌜α β⌟ := [⌜β⌟ ⌜α⌟ call]

Table 3 – The call-by-name conversion

On the right column, the bottom expression is also the top one’s result. This follows our
goal of simulating every reduction step of the combinatory expression. Remember that
we do not need to be conserned about the amount of reduction steps on the translated
side; it is sufficient for the top expression to be able to reach the bottom one. There is
left to tell how to implement the basic combinators in terms of basic stack instructions
and where calls should be inserted.

In Table 3, we show how to convert combinatory expressions in terms of basic stack
instructions. All of the basic combinators have a dip, which jumps over the f argument
and executes some code on the other arguments. The combinators C, K and W run
swap, zap and dup, respectively. The combinator B introduces parenthesis, grouping
two sub-expressions into one. The way to group the two sub-expressions is to run cons

to introduce a quotation. We do not use call because in call-by-name semantics it is not
the time to run that quotation yet. Something similar happens to S, who also introduces
parenthesis. Here we needed to invent sons, who is analogous to the more famous sip,
in the same way cons is analogous to call.

Our translation for the combinator I runs nothing after the f argument. We remark
that ε is the empty sequence, so [] and [ε] are syntactically the same. One might
have tried to define ⌜I⌟ as plain [], without dip. However, we do not that because I
expects an argument. We do not want to allow I to reduce without one. The chosen
definition with dip also fits the pattern.

Lastly, we come to the rule for function application. We translate the application
⌜αβ⌟ to ⌜β⌟ ⌜α⌟ cons. Similarly to what was done with B, we are partially applying β

to α. However in Table 3, we write the cons as the equivalent [⌜β⌟ ⌜α⌟ call] because

24

(B (B K) C f x y z) ⇒ [z y x f c [k b call] b call] | call4
B (B K) C f x y z ⇒ z y x f c [k b call] b | call call3
(B K) (C f) x y z ⇒ z y x [f c call] [k b call] | call3
B K (C f) x y z ⇒ z y x [f c call] k b | call call2
K (C f x) y z ⇒ z y [x f c call] k | call2
(C f x) z ⇒ z [x f c call] | call1
C f x z ⇒ z x f c | call
f z x ⇒ x z f |

Figure 10 – All the required calls can be inserted at the end

that is already in a quotation form.
Now we turn our attention to the call-insertion issue. We translate expressions to

quotations, but, in concatenative calculus, those quotations will not run until they are
called. Therefore, we need to insert enough calls in the right places to fully evaluate the
translated expression.

In Figure 10, we show an example of call insertion. To reduce clutter, we abbreviate
conversions of the basic combinators: b = ⌜B⌟, c = ⌜C⌟, and so on. On the left column,
we show the reduction steps of B(BK)C. In gray, we added some phantom expressions
with extra parenthesis. They align precisely with the stack programs on the right. If
we only count the actual expressions in black, we have 4 reduction steps. Therefore, we
need to insert 4 calls in the first line. Each actual reduction step inserts one call. The
inserted calls are written in bold. In our call-by-name conversion, all of the calls can go
at the end of the stack program because all unevaluated expressions are represented as
quotations. We remark that some reductions steps were skipped on the right side and
there is no problem. The important property for the simulation is that all steps in the
combinatory side, have a matching step in the concatenative side. This concludes the
call-by-name conversion algorithm.

Our lowercase combinators bckswi are inspired by similar combinators created by
Kerby (KERBY, 2002). One difference is that, in Kerby’s approach, these lowercase com-
binators also dequote the first argument. For instance, in Kerby’s system, [B] [A] k

reduces to A. This avoids the need to insert calls. At first, Kerby’s version might appear
strictly superior to ours. The main reason why we chose to add explicit calls was because
it will allow us to model other reduction strategies, such as call-by-value.

4.2 THE CALL-BY-VALUE CONVERSION

The call-by-value reduction strategy reduces the arguments as much as possible,
before it reduces the function. This poses a problem for us. When an expression has
more than one reduction point, we have to know which one to reduce. For example, in
C(Kfx)yz, should we reduce the C or theK first? Back in the call-by-name version, the

25

B (B C) K f x y z ⇒ z y x f k [c b† call] b | call3 (0)
B C (K f) x y z ⇒ z y x [f k call] c b† | call2 (1)
C (K f x) y z ⇒ z y x f k | call c call1 (2)
C f y z ⇒ z y f c | call1 (3)
f z y ⇒ y z f | (4)

Figure 11 – The need for b and b†

b† := [[call] dip] = [[cons] dip [call] dip]

s† := [[sip] dip] = [[sons] dip [call] dip2]

Figure 12 – Definition of b† and s†

b := [[cons] dip] = [[cons] dip [] dip]

s := [[sons] dip] = [[sons] dip [] dip2]

Figure 13 – Alternative definition of b and s

answer was easy: we always reduce the outermost redex (in this case, C). But in the
call-by-value version, it depends whether the argument is reducible (a redex).

Now we will see how the problem manifests in the conversion procedure. For
instance, consider the combinator B(BC)K, shown in Figure 11. Let’s pay attention to
those B, because they are the ones that potentially creates a reducible sub-expression in
argument position. In line (0), we see that the first B behaves like a cons, because Kf is
not yet reducible. But the second B, in line (1), creates the reducible sub-expression
Kfx. When translating this B to stack instructions it should perform a call, instead of a
cons. Therefore, we need alternative versions of b and s. We will call them b† and s†. As
observed in Figure 12, b† performs a call, and s† performs a sip.

Back to Figure 11, pay attention to the number of calls. As we did before in call-by-
name version, we need to insert one call for each reduction in the combinatory logic site.
But for call-by-value we also count each † as an inserted call. Thus, 3 calls plus one †
matches the 4 reductions on the left. Another way to look at it is that we could define b
and s with a slot to insert a call, shown in Figure 13. In this version, to go from b to b† is
literally to insert a call.

But wait, there is more! Sometimes a reducible sub-expression might reduce more
than once. In those cases, we need to insert a call inside the quotation, so that once
that quotation is called, it has enough call-fuel to reduce all the way. In Figure 14, we
show an example of this. After step (1), the sub-expression CKxy can be reduced twice,
to Kyx then y. By default, b† gives one call worth of fuel for the quotation to reduce.
Thus, to enable the second reduction, we must to insert a second call there, inside the
quotation.

To conclude, the structure of both conversions, call-by-name and call-by-value, are
similar. The difference lies in the call-insertion procedure. The call-by-name version

26

B (B W) (C K) x y z ⇒ z y x [k c call call] [w b† call] b | call3 (0)
B W (C K x) y z ⇒ z y [x k c call call] w b† | call call1 (1)
W (C K x y) z ⇒ z y x k c | call call w call1 (2)
W (K y x) z ⇒ z x y k | call w call1 (3)
W y z ⇒ z y w | call1 (4)
y z z ⇒ z z y | (5)

Figure 14 – b† with reducing multiple times

always inserts calls outside at the end of the program. On the other hand, the call-
by-value version may insert some calls inside, in quotations or as a †. The tricky part
is to know when these internal insertions are required. What we presented needs to
reduce both expressions—combinatory and concatenative—side by side. A possible
alternative could be to introduce a type system and a type-aware conversion, but we
have not investigated that yet.

27

5 FROM REGULAR COMBINATORS TO CONCATENATIVE

As mentioned in the introduction, in some sense C corresponds to swap and K

corresponds to zap. But how does this correspondence extends to non-elementary
combinators, such as B(BK)C, BC(BC) and B(BS)B? In this chapter, we will tackle
the first direction of this question: how to convert from combinators to stack programs
in a way that complements this correspondence. We will identify that we cannot do
that in the general case, but there is a special subset of combinators which allows us to
translate to smaller and more direct stack programs. This special subset are the regular
combinators, defined in Section 5.2.

We will start with a concrete example: the combinator B(BK)C. In Figure 15,
we show its translation ⌜B(BK)C⌟, using the general call-by-name conversion from
Section 4.1. But observing its evaluation, shown in the left half of Figure 17, we see
that this combinator keeps f in place and only touches the other arguments. Can we
take advantage of this property to make a more direct translation, where we shuffle the
non-f arguments, then follow with an implicit f call? In this case, the stack shuffling
would be only [zap] dip swap, as shown in Figure 16.

Both the general and direct versions of B(BK)C are equivalent and have the same
number of useful elementary operations, namely a single swap and a single zap. But the
general one is less intuitive, because of the conses, calls, quotations and dips used to
carry the f around. The direct one can be simpler because it makes the f implicit. We
can do that because the f argument is a continuation in B(BK)C.

A continuation is a function argument that denotes the remaining of the computation
to be executed; functions that receive a continuation return their result values by passing
them to the continuation instead of just returning them. Continuation-passing style
programs are programs built using only continuations. Direct programs where the
continuation is implicit are shorter and more intuitive than the counterpart in explicit
continuation-passing style. So, in the following sections, we will start naming the
continuation as q instead of f to show that it is special. (We choose q because c and k

were already taken.)
Previously, we promised that our conversions would preserve the reduction steps

of the original combinator. Figure 17 shows that this is still the case for the direct

[[[swap] dip] [[[[zap] dip] [[cons] dip] call] [[cons] dip] call] call]

Figure 15 – General conversion: ⌜B(BK)C⌟

[zap] dip swap

Figure 16 – Direct conversion: |B(BK)C⟩

28

B (B K) C f x y z z y x | [zap] dip swap f call
B K (C f) x y z z y x | [zap] dip swap f call
K (C f x) y z z y | zap x swap f call
(C f x) z z | x swap f call
C f x z z x | swap f call
f z x x z | f call

Figure 17 – The direct conversion |B(BK)C⟩ also preserves reduction steps

q ⌜B (B K) C⌟ call5 general conversion (0)
q [c [[k b call] b call] call] call5 definition of call
q c [[k b call] b call] call call4 definition of call
q c [k b call] b call call4 definition of b call
q c cons [k b call] call4 definition of cons
[q c call] [k b call] call4 definition of call
[q c call] k b call call3 expand b call (1)
[q c call] cons k call3 expand c call
[swap q] cons k call3 expand k call
[swap q] cons [zap] dip call2 cons-dip lemma (2)
[zap] dip [swap q] call call definition of call
[zap] dip swap q call direct conversion
|B (B K) C⟩ q call (3)

Figure 18 – Steps from general version to direct version

conversion. The first B, the outermost one, only touches the continuation f , but not the
other arguments. Now that f is implicit, this step disappears. The second B, the one
inside parenthesis, behaves like a dip, hiding x from the upcoming K. Finally, K zaps y
and C swaps x and z.

5.1 EQUIVALENCE OF GENERAL AND DIRECT VERSIONS

In this section, we will prove that general and direct translations of B(BK)C are
indeed equivalent, via equational reasoning. We will use a three-step strategy, shown in
Figure 18. In the first step, from (0) to (1), we start with the general version, add q to the
left end, and then apply definitions of b, c, k and cons as many times as we can. Because
of the nature of the general conversion, we also need to add a sufficient amount of calls
to the right end to be able to run it. Recall that exponentiation stands for repetition.1

In the second step, from (1) to (2), we expand the abbreviations b, c, k, leaving only
primitive stack operations.

Once we are done simplifying, in line (2), the two interesting stack instructions are
still present: swap q inside a quotation, and [zap] dip towards the end. To arrive at
1 Also, recall that the definitions for instructions may be found in Table 2 at Chapter 3 and definitions

for b, c, k in Table 3 at Section 4.1

29

f cons g dip call ⇔ g dip f call

(a) The equivalence
f cons g dip call add an arbitrary a to the left
a f cons g dip call definition of cons
[a f call] g dip call definition of dip
g call [a f call] call definition of call
g call a f call reverse definition of dip
a g dip f call remove a on the left
g dip f call

(b) The proof

Figure 19 – The cons-dip lemma

f consn g dip call ⇔ g dipn f call

(a) The equivalence

f cons0 g dip call definition of cons0
f g dip call definition of dip
g call f call reverse definition of dip0
g dip0 f call

(b) The base case

f consn+1 g dip call add arbitrary a to the left
a f consn+1 g dip call definition of cons
[a f call] consn g dip call inductive hipothesis
g dipn [a f call] call definition of call
g dipn a f call reverse definition of dip
a [g dipn] dip f call reverse definition of dipn+1

a g dipn+1 f call remove arbitrary a on the left
g dipn+1 f call

(c) The inductive case

Figure 20 – The general cons-dip theorem

our goal, what is left is to move the q all the way to the right. For that, we will use the
cons-dip lemma, which is shown in Figure 19.

We prove the lemma in Figure 19b, using f and g as arbitrary quotations. The
last step of the proof removes the generic a from the left side of the program. This
removal is analogous to η-reduction in lambda calculus. The cons-dip lemma can also
be generalized for any amount of conses. The general cons-dip theorem (Figure 20) can
be proved by induction in the number of conses.

Finally, from (2) to (3), we can continue with the third and last step: move q to
the right side of the program. We use the cons-dip lemma with f = [swap q] and
g = [zap]. After removing one last quotation, the result is the direct version of the

30

stack combinator.

5.2 REGULAR COMBINATORS

Now we will extend what we have done to B(BK)C in the previous section to other
combinators. When can we take the general translation of a combinator and massage it
to its direct version? What kind of combinator does it work with? Which combinators
allows us to fully move q to the right? In a specification level, we want a combinator
whose first argument is a special function q, the continuation, and it results in q applied
to zero or more terms without q. The combinator may reorder, ignore, duplicate and
apply the non-q arguments onto themselves. This kind of combinator is known as a
regular combinator. Let’s see some examples. All of the chosen basic combinators are
regular: q appears only once in the result, in head position.

B q x y = q (x y) S q x y = q y (x y)

C q x y = q y x W q x = q x x

K q x = q I q = q

Some combinators are not regular. For instance, CI , KI , SI and CB are not regular,
because q does not appear in head position, and therefore it is not the continuation. CI ,
SI and WI break the rule because q appears as one of the values. By the way, CI is also
known as T , CB is also known as Q andWI is also known asM .

CI q x = x q

KI q x = x

SI q x = x (q x)

CB q x y = x (q y)

WI q = q q

Lastly, here are some examples of non-elementary regular combinators:

BBB q x y z = q (x y z)

BBC q x y z = q z (x y)

BC(BC) q x y z = q y z x

B(BK)C q x y z = q z x

B(BS)B q x y z = q (x z) (y z)

5.3 REGULAR BY CONSTRUCTION COMBINATORS

In the previous section, the definition for a regular combinator only cares about the
end result of the combinator. This is not sufficient for us: we reiterate that we are still
interested in distinguishing combinators that reach the same result through distinct

31

W (B (B (B C)) K) q x y z
(B (B (B C)) K) q q x y z
(B (B C)) (K q) q x y z
(B C) (K q q) x y z
C (K q q x) y z
(K q q x) z y
q x z y

B C q x y z
C (q x) y z
q x z y

Figure 21 – Reduction steps ofW (B(B(BC))K) and BC

R := Regular by construction combinator
B | C | K | S | W | I basic combinators

| B α B with one argument
| B α β B with two arguments

Figure 22 – Regular by construction combinators

paths. For example, BCC is a roundabout identity function that maps f x y to f x y but
we want to translate it as swap swap, not as a no-op.

In addition to that, we want to avoid the messy cases where a combinator makes a
mess with the continuation q only to clean it up later. This would make it more difficult
to make q implicit. For instance, take W (B(B(BC))K). In Figure 21, we see that it
duplicates q than in a later moment discards one of the copies. To avoid these messy
combinators, we will only accept well-behaved ones, such as BC.

Well-behaved regular combinators never duplicate the continuation q, nor do they
zap it or swap it out of head position. We can create rules for constructing combinators
which only produce well-behaved ones. Let a combinator be regular by construction
if it has one of the forms in Figure 22, where α and β are also regular by construction.
Reducible combinators, such as Kαφ = α and WBα = Bαα, are not considered regular
by construction, even if they reduce to one.

The base cases in Figure 22 are the basic combinators BCKSWI, which are all regular.
We can create larger combinators by using the inductive rules Bα and Bαβ. Let’s begin
with the first, Bα, which serves a similar purpose as dip. The Bαqx = α(qx) does
whatever α does, but, before it, passes the x to q so that α can dig deeper and work on
the latter arguments. Back in our B(BK)C example, this applied to the B in BK, which
turned into [zap] dip.

The Bαβ case composes regular combinators. We have Bαβq = α(βq). Because the
first argument of a regular combinator is a continuation, α(βq) first executes α with
βq as its continuation. This in turn, will run β receiving α’s result and with q as its
continuation. Back in ourB(BK)C example, this case happened to the outsideB, which
arranged to run BK before C.

There are no more cases with B because Bαβγ would be reducible. There are no
cases for KSW either. Kαq = α discards q. and Sαqx = αx(qx) moves q out of head

32

B B B q x y z
B (B q) x y z
B q (x y) z
q (x y z)

B C (B C) q x y z
C (B C q) x y z
B C q y x z
q y z x

B (B S) B q x y z
B S (B q) x y z
B q x z (y z)
q (x z) (y z)

Figure 23 – Examples of well-behaved combinators

W K q
K q q
q

C (C I) q x
C I x q
I q x
q x

S (K S) K q x y
K S q (K q) x y
S (K q) x y
K q y (x y)
q (x y)

Figure 24 – Examples of messy regular combinators

position. Sαβq = αq(βq) andWαq = αqq both duplicate q.
The only combinator left is C. Cαqx = αxq does not work. The only possibility that

might is Cαφq = αqφ. It does whatever α does to q but inserts a new argument φ to αq.
Within this context, φ can be anything. Using this form introduces a new element in the
argument list, which makes it an improper combinator. For now, we will prohibit the
Cαφ case, but we will come back to it in Section 6.2.

All of the examples of non-elementary regular combinators from the last section are
by construction. In Figure 23, we reduce of some of them. Note that q never mixes itself
with the other arguments.

Surely, the definition of regular by construction combinators is more restrictive than
the definition from Section 5.3. As shown previously, that definition allows regular
combinators that break the special treatment of q andfix it in a latter point. We show some
more examples of messy combinators in Figure 24. WK and C(CI) are weird identity
functions. In the middle of evaluation WK duplicates q then immediately discards
one of the copies. C(CI) takes q out of head position, then puts it back. S(KS)K is an
example of the B combinator written using the SK base. It is not regular by construction
because it duplicates q. Many of the SKI combinators exhibit this sort of behavior, where
K discards the thing that S just duplicated.

To finish this section we will make a small diversion about the multiple definitions of
regular combinator. We found two definitions in the literature. The newest one, which is
similar to the one we made in Section 5.2, can be found in Curry’s 1958 treatise (CURRY
et al., 1958). The older definition is the Reguläre Kombinatoren of Curry’s thesis (CURRY,
1930; CURRY, 1932). This definition is syntactic and matches our definition of regular
by construction.

33

|B⟩ := cons |S⟩ := sons |B α⟩ := [|α⟩] dip
|C⟩ := swap |W ⟩ := dup |B α β⟩ := |α⟩ |β⟩
|K⟩ := zap |I⟩ := ε

Table 4 – The regular conversion

5.4 REGULAR CONVERSION

Finally after all of that, we can derive a direct conversion from regular by construction
combinators to concatenative calculus. Given a regular by construction combinator γ,
then |γ⟩ is a sequence of stack instructions analogous to γ. The rules are shown in
Table 4. The |I⟩ case maps to ε, the empty sequence. All the other base cases have a
direct mapping to a single instruction in concatenative calculus. It means that, for these
cases, one reduction step in combinatory logic stands for exactly one reduction step in
concatenative logic. This is what we wanted all along! The translation done in Chapter 4
mapped a single combinator to a quotation with multiple instructions inside.

In the first inductive case, |Bα⟩maps to a dip helper. When reducing that, we will use
one step to push the quotation, another one to run dip, and then the steps that run |α⟩.
And, lastly, we finish it with by pushing the previously saved stack value. This simulates
the reduction of the original combinator which runs B (the dip) before running α. In
the other inductive case, |Bαβ⟩maps to a concatenation, running α first, then β. This
also preserves the original combinator’s reduction order.

At last, we will show some conversion examples of the combinators previously
mentioned in this chapter. Pay attention to B, it has three different meanings in different
contexts. In B(BK)C, the outside B composes BK with C; the inner B translates to a
dip. In BBB, the first B is a composition, while the others are cons. The others base
combinators are simpler: C always translates to swap, and S always translates to sons.

|B (B K) C⟩
|B K⟩ |C⟩
[|K⟩] dip swap

[zap] dip swap

|B B B⟩
|B⟩ |B⟩
cons cons

|B C (B C)⟩
|C⟩ |B C⟩
swap [|C⟩] dip

swap [swap] dip

|B (B S) B⟩
|B S⟩ |B⟩
[|S⟩] dip cons

[sons] dip cons

34

6 BACK FROM CONCATENATIVE TO COMBINATORS

In this chapterwewill introduce three algorithms to translate concatenative programs
back to combinatory logic. The first one converts fromfirst-order concatenative programs
(defined in Section 6.1) to regular combinators. The second one extends the first, to
allow programs that push values to the stack. This extension might produce improper
combinators. The third and last algorithm allows higher order programs, featuring call

and standalone dip. This allows to use concatenative calculus to its full extent, but the
resulting combinators may no longer be regular.

Our algorithms are almost a backwards version of the algorithm from Chapter 5. The
only problem is that the aforementioned conversion is not a bijection: some combinatory
expressions map to the same concatenative program. The blame lies on the composition
done by B, which forms a monoid (it is associative and it has the neutral element).
Associativity is a problem because |B(Bαβ)γ⟩ and |Bα(Bβγ)⟩ both map to |α⟩ |β⟩ |γ⟩.
The combinator I being the neutral element of composition is a problem because |I⟩ = ε.
All of BαI , α and BIα will map to the same term |α⟩. These equivalences are shown in
Figures 25 and 26. To work around this issue, our algorithms will produce an arbitrary
combinator from the equivalence class.

6.1 FROM FIRST-ORDER CONCATENATIVE TO COMBINATORS

The conversion from Chapter 5 only generates a subset of concatenative programs.
In these programs, dip are always preceded by a quotation and quotations are always
immediately followed by a dip. We will say that programs in this subset are first-order.
Their grammar is shown in Table 27. Operations are the non-dequoting instructions or a
quotation followed by dip. A program is a list of operations associated to the right. One
weird choice we made is that this list is not nil-terminated, instead we have separated it
into empty and non-empty programs. The reason is that we do not want the result of

|B (B α β) γ⟩
|B α β⟩ |γ⟩
|α⟩ |β⟩ |γ⟩

|B α (B β γ)⟩
|α⟩ |B β γ⟩
|α⟩ |β⟩ |γ⟩

Figure 25 – B is associative

|B α I⟩
|α⟩ |I⟩
|α⟩ ε
|α⟩

|α⟩
|α⟩
|α⟩
|α⟩

|B I α⟩
|I⟩ |α⟩
ε |α⟩
|α⟩

Figure 26 – I is the neutral element of composition

35

O := Operation
cons | swap | zap | sons | dup base instruction

| [P] dip dip subprogram

N := Non-empty program
| O single operation
| O N restricted concatenation

P := First-order program
ε empty program

| N non-empty program

Figure 27 – First-order concatenative programs

{cons} := B {sons} := S {ε} := I
{swap} := C {dup} := W
{zap} := K {[P] dip} := B {P} {O N} := B {O} {N}

Table 5 – The back-conversion for first-order

our translation to produce an I at the end every time.
The conversion algorithm for first-order concatenative program is described in Table 5.

It is exactly the reverse of Table 4 from Section 5.4. Basic instructions translate to basic
combinators. A dipped quotation becomes a single-argument B. A concatenation
converts to a two-argument B. Because our structural definition of N nests to the right,
the resulting combinator will also nests the Bs to the right. Here is an example:

{zap [dup] dip swap}
B {zap} {[dup] dip swap}
B K (B {[dup] dip} {swap})
B K (B (B {dup}) C)

B K (B (B W) C)

6.2 PUSHING VALUES

In this section, we will introduce a push-value operation, which was missing. This
allows pushing constant values onto the stack, such as numbers and other literals.
Because our calculus does not have numbers, quotations are the only values we have.
Back in the previous section, we only allowed quotations together with a dip, but now
we will allow pushing quotations by themselves. At first, this might not seam that useful
because we do not have a call operation yet. We will add call-like operations in the next
section. However, remember that pushing would also be useful for numbers, if we had
them.

36

(φ {v}) q x y z . . .
q {v} x y z . . .

Figure 28 – Intuition for push operations

{[A]} := T {A}

Table 6 – The back-conversion for push

{call} q α x y z . . .
α q x y z . . .

{dip} q α x y z . . .
α (q x) y z . . .

Figure 29 – Intuition for call and dip

In Figure 28, we show how we want the push operation to behave as a translated
combinator. In the top line, we have the pushing combinator φ parameterized by the
translated value {v}. The instantiated combinator (φ {v}) receives the continuation
q and the remaining stack arguments x, y and z. The desired result should call the
continuation with the value pushed on the top of the stack.

Which combinator is this φ? Observing this reduction rule we can recognize that
our old friend T , also known as CI . (Recall that Tvq = qv.) In Table 6, we add this step
to the conversion algorithm from stack to combinators. Observe that T is not regular,
and Tα is not proper.

6.3 HIGHER-ORDER STACK PROGRAMS

In this section, we will introduce the dequoting operations: call and dip. These are
the concatenative instructions left to translate. It will allow us to build higher-order
programs, when functions are first-class values. It means that we can push them to the
stack and run them in a later opportunity.

In Figure 29, we show how we want call and dip to behave in combinatory logic.
First, let’s observe {call}. The instruction call runs the first argument from the stack. So,
its translation should call the first argument α passing to it the continuation q and the
remaining stack arguments. We can use the combinator T to implement {call}. Note
that this time the T appears by itself, without the parameter v.

The instruction dip gets two arguments from the stack. The top one is the quotation
to run, and the argument below it is the value to be put away for later. dip should
run the quotation, then restore the value. Similarly, its translation should call the first
argument α, but now we pass the continuation q applied to the second argument x
and the remaining stack arguments. Appling x to the continuation is the combinatory
version of restoring the argument. Remember that α is regular combinator. It means that
in the expression α(qx) the combinator α does not touch x and reduces to qx applied to
result of α. We can achieve this with Q (defined as CB), who is in the same family as T .

37

{call} := T
{dip} := Q

Table 7 – The back-conversion for call and dip

B {[A]} {dip} q x
B (T α) Q q x
T α (Q q) x
Q q α x
α (q x)
B α q x
(B α) q x
{[A] dip} q x

Figure 30 – First-order and higher-order dip are equivalent

We show how to fit call and dip into our conversion algorithm in Table 7. Observe
that neither T nor Q are regular. For every thing to run fine we have to promise that the
quotation arguments given to call and dip are in fact regular. Finally, in Figure 30, we
prove that the higher-order definition of dip is compatible with its first-order counterpart
from Section 6.1.

38

7 CONCLUSION

In this work, we highlighted the similarities between two theoretical tacit program-
ming models: combinatory logic and concatenative calculus. We showed two reversible
algorithms to convert between them. The first algorithm can take any combinatory logic
expression and outputs a stack program that simulates the original expression. This
translation results in concatenative programs written in a continuation-passing style
way, with lots of quotation pushing and dequoting. The second algorithm is able to
produce smaller stack programs because it restricts the input side to regular combinators
and takes advantage of their continuation-passing style.

One interesting way of looking at these conversions is how they restrain its input
and output domains. The first conversion’s input domain is the full set of combinators,
but it cannot reach all the possible stack programs in the output domain. Its output is
restricted to explicit continuation-passing style stack programs. Conversely, the second
conversion restrains its input domain to regular combinators but this time the output
domain unrestricted.

During the development of this workwe learned things we did not expect at first. The
first of them is that B has three different interpretations in the concatenative calculus:
cons, dip and composition. We also learned about the subtle problem of call-insertions,
described in Section 4.2. This issue appeared when we tried to work with call-by-value
reduction order. After that, we discovered that call-insertion is much simpler in the
call-by-name setting.

7.1 FUTURE WORK

This work can be expanded in many different directions. The most obvious of them
is to write more formal proofs for the various simulation theorems between combinatory
logic and concatenative calculus.

In Section 4.2, the call-insertion problem for call-by-value semantics was left open. We
still do not have a algorithmic way of knowing whetherB or S will produce a redex in its
sub-expression. Furthermore, how many reduction steps will the sub-expression need
to fully reduce? Possibly, it can be solved by introducing some kind of type information
to the original expression.

In Section 5.3, we introduced rules to construct well-behaved regular combinators,
but a few questions remain to be answered. Given a messy regular combinator, can we
always find a well-behaved equivalent? Can we expand the definition to include more
combinators, such as T and Q? Can we describe a set of rules to construct well-behaved
regular combinators using the SKI base?

39

BIBLIOGRAPHY

BARENDREGT, H. P. et al. The lambda calculus. [S.l.]: North-Holland Amsterdam,
1984. v. 3.

CURRY, H. B. Grundlagen der kombinatorischen logik. American Journal of
Mathematics, JSTOR, v. 52, n. 4, p. 789–834, 1930. This was his PhD thesis.

CURRY, H. B. Some additions to the theory of combinators. American Journal of
Mathematics, JSTOR, v. 54, n. 3, p. 551–558, 1932.

CURRY, H. B. et al. Combinatory logic. [S.l.]: North-Holland Amsterdam, 1958. v. 1.
Regular combinators are discussed in chapter 5.

IVERSON, K. E. A programming language. In: Proceedings of the May 1-3, 1962,
spring joint computer conference. [S.l.: s.n.], 1962. p. 345–351.

KERBY, B. The Theory of Concatenative Combinators. 2002. Published online at
http://tunes.org/~iepos/joy.html. Accessed 05/09/2023.

KLEFFNER, R. A Foundation for Typed Concatenative Languages. Dissertação
(Mestrado) — Northeastern University, Abril 2017.

MOORE, C. H.; LEACH, G. C. Forth–a language for interactive computing. Amsterdam:
Mohasco Industries Inc, 1970.

PESTOV, S.; EHRENBERG, D.; GROFF, J. Factor: A dynamic stack-based programming
language. Acm Sigplan Notices, ACM New York, NY, USA, v. 45, n. 12, p. 43–58, 2010.

RATHER, E. D.; COLBURN, D. R.; MOORE, C. H. The evolution of forth. In: History of
programming languages—II. [S.l.: s.n.], 1996. p. 625–670.

SCHÖNFINKEL, M. Über die bausteine der mathematischen logik. Mathematische
annalen, Springer, v. 92, n. 3-4, p. 305–316, 1924.

THUN, M. von. Mathematical foundations of Joy. 1994. Published online at http://
www.latrobe.edu.au/phimvt/joy/j02maf.html. Archived in 2011 at https://web.archive.
org/web/20111007025556/http://www.latrobe.edu.au/phimvt/joy/j02maf.html. Mirror
available at http://www.kevinalbrecht.com/code/joy-mirror/index.html.

THUN, M. von; THOMAS, R. Joy: Forth’s functional cousin. In: Proceedings of the
17th EuroForth Conference. [S.l.: s.n.], 2001.

http://tunes.org/~iepos/joy.html
http://www.latrobe.edu.au/phimvt/joy/j02maf.html
http://www.latrobe.edu.au/phimvt/joy/j02maf.html
https://web.archive.org/web/20111007025556/http://www.latrobe.edu.au/phimvt/joy/j02maf.html
https://web.archive.org/web/20111007025556/http://www.latrobe.edu.au/phimvt/joy/j02maf.html
http://www.kevinalbrecht.com/code/joy-mirror/index.html

	2010cafde6826d0f04d2b0fd223001adfbca142d5de2f13562dc2112b30a9ff6.pdf
	2010cafde6826d0f04d2b0fd223001adfbca142d5de2f13562dc2112b30a9ff6.pdf
	Folha de aprovação

	2010cafde6826d0f04d2b0fd223001adfbca142d5de2f13562dc2112b30a9ff6.pdf
	Epígrafe
	Resumo
	Abstract
	Sumário
	Introduction
	The problem
	Summary

	Lambdas and Combinators
	Lambda Calculus
	Combinatory Logic
	From lambda calculus to combinators

	Concatenative Calculus
	Concatenative functions
	Reaching deeper into the stack
	Equational reasoning

	From Arbitrary Combinators to Concatenative
	The call-by-name Conversion
	The call-by-value Conversion

	From Regular Combinators to Concatenative
	Equivalence of General and Direct Versions
	Regular Combinators
	Regular by Construction Combinators
	Regular conversion

	Back from Concatenative to Combinators
	From First-order Concatenative to Combinators
	Pushing Values
	Higher-order Stack Programs

	Conclusion
	Future Work

	Bibliography

