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CONTORNO SUBSTITUTIVO PARA PROBLEMAS DE POISSON EM
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As formulações não conformes do método dos elementos finitos aplicam-se a
situações em que malhas conformes têm um custo computacional siginificativo, a
ponte de inviabilizar sua avaliação. Nestas a descrição geométrica de um domínio não
necessariamente corresponde à descrição geométrica do mapeamento de um contorno
físico. Têm o potencial de encurtar a etapa de pré-processamento ao viabilizar
a inserção de modelos geométricos analíticos, modelos CAD, sem necessariamente
utilizar-se formulações isogeométricas, ou de imagens tomográficas.

Este trabalho apresenta os resultados de uma implementação, utilizando o frame-
work libMesh, de uma formulação disponível para problemas de Poisson, referida
como Contorno Deslocado. Nesta é definido um contorno substitutivo, conveniente
e suficientemente próximo do original, no qual os campos (funções escalares ou
vetoriais) são representados por uma expansão de Taylor (de primeira ordem) na
região removida. A expansão é então utilizada na composição das condições do
novo contorno, que são por fim aplicadas de forma fraca, utilizando-se a abordagem
de Nitsche. Dois conjuntos de casos são examinados e seus resultados comparados
com suas respectivas soluções analíticas. A taxa de convergência é então avaliada,
validando o resultado reportado pelo propositor da formulação.
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The non-conformal finite elements formulations applicable to situations in which
the computation of conformal meshes are significantly expensive, up to a point where
a problem might be redered unfisible.

The embedded finite element method is one approach to diminish the mesh
generation burden in finite element analysis. It consists of dealing with a description
of a boundary that does not necessarily match the problem’s physical boundary. It
can potentially shrink the workflow giving the opportunity of immediately inputting
a CAD geometry or tomographic image into a simulation, without necessarily using
isogeometric elements or performing substantial preprocessing.

This work presents an implementation of the recently proposed embedded formu-
lation for Poisson problems in the general purpose library libMesh. In the formula-
tion, the boundary condition is shifted and enforced weakly by a Nitsche approach,
and is referred as Surrogated Boundary. This is accomplished provided the surrogate
boundary is close enough to the physical boundary so a Taylor expansion can be
used to describe the chopped off region. This approach provides a significant compu-
tational relief compared to the alternative of adaptative point integration selection,
especially when dealing with complex domains where the total point-locating opera-
tions’ cost can be significantly high. The reported convergence rate is also examined.
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Chapter 1

Introduction

The unfitted methods is a broad term that encompasses a collection of numeri-
cal methods’ formulations that are dedicated to solve problems where the mapped
geometry of a physical body does not match the contour of the grid or mesh put
in place to represent it. Though having its main application in fluid mechanics and
fluid structure interaction problems, they are also applicable to other physics.

They are suitable to be used in situations where the mesh generation is such a
burden that might even render a problem unsolvable. On the other hand it has been
reported [1] that most of the time spent on simulation is on geometry manipulation
or mesh generation. As an attempt to cut the intermediate steps between a model
conception and its simulation, by adopting B-splines, NURBS or T-splines as base
functions, traditionally used as CAD surfaces, the isogeometric formulations is then
proposed [2]. An equivalent result might be achieved by using the same functions
merely as geometric description in a unfitted method. Regardless on the motivation,
whenever geometric manipulation or the mesh generation becomes an issue, either
for the manual labor required or the computational cost, the unfitted methods should
be considered.

Although frequently used interchangeably, the terms immersed and embedded
can be distinguished, separating the unfitted methods in two mains categories. This
distinction is made by Main and Scovazzi [3, 4] grouping as immersed the set of
formulations that prescribes the discretization of a problem in the entirety of a
mesh, that usually is defined as a regular region of the cartesian space, bounding
the domain under evaluation and its defining boundary. Conversely the embedded
formulations are the ones that removes the elements or cells that are not part of the
domain, entirely or, depending on the formulation, partially.

Among the immersed formulations is the pioneer work of Peskin [5] and the level-
set methods [6]. On these formulations the enforcement of the boundary condition
is done by applying an equivalent force field that can be interpreted as a penalty
function.
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Within the embedded formulations are the methods derived from the XFEM
[7] formulation with boundary condition enforced by Nitsche’s method [8]. On this
approach, by enriching the approximation space by mean of a discontinuous func-
tion it is possible to correctly represent the boundary. The conjunction of the two
techniques is examined by Hansbo and Hansbo [9] for a diffusion problem in a discon-
tinuous domain. One of the challenges imposed by this approach is the complexity
of correctly detecting the boundary interception in a element.

Still on the embedded category, an interesting approach, designated as Finite
Cell Method, is developed for solid mechanics [10] and turbulent flow [11] problems.
In this approach the boundary condition representation is achieved by removing
elements that lies outside of the geometry under evaluation and also by adopting
an adaptive integration scheme on the elements crossed by the boundary. The
downside of this technique is the point by point location evaluation, that can be
computationally expensive depending on the size of the problem, the number of
integration points used and the complexity of the geometry. In its implementation
a ray trace algorithm is used, but it is not necessarily the only solution. A review
of this method is done by Schillinger [12].

Finally in the embedded set of formulations, grouped in the approximate domain
methods, is the Shifted Boundary Method. The boundary condition is shifted and
enforced weakly by Nitsche approach, and then referred as surrogated boundary.
Its full development and analysis can be found on its original publication [3], here
being reported just its final statement. The Nitsche formulation is also implemented
as a reference solution and is used to evaluate the quality of the shifted boundary
formulation. The surrogate boundary has to be close enough to the true boundary,
so that a Taylor expansion can be used to describe the chopped off region.

The implementation is done in the framework libMesh [13] and takes advantage
of the subdomain functionality, after geometric evaluations, to segregate the ele-
ments crossed by the true boundary, its neighbors inside the domain, composing the
surrogate boundary, and the inner and outer elements. The two geometric shapes
used to compose the evaluated geometries are circles and spheres.

The remainder of this work is organized as follows. The next section presents
briefly the Shifted Boundary Method. Chapter 3 shows the obtained results and the
observed convergence for the sets of two and three-dimensional evaluated problems.
It then ends with a summary of our main findings and suggestions for future works.

Nitsche’s approach was developed in the context of the minimization problem
and the application to the finite element method was done by [14].
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Chapter 2

Mathematical Formulation and
Analysis

In the context of the Finite Element methods an engineering problem is studied
by the mathematical branch called Functional Analysis. The properties of a distance
function, an intuitive notion lent from the physical world, is used to define what is
called a norm ‖ · ‖, a real-valued function, over a vector space W , as is presented
in appendix A.

An engineering problem can then be abstracted as: Find u ∈ W such that

a(u, v) = f(v), ∀v ∈ V, (2.1)

where W and V are vector spaces equipped with its own norms, a is a continuous
bilinear form on W × V , and f is a continuous linear form on V . W is called the
solution space and V is called the test or trial space. Both spaces are assumed as
Hilbert or Banach spaces.

By the definition proposed by Hadamard [15], a problem is well posed if it admits
a unique solution and is stable, meaning the solution is controlled by the data in some
norm. Two important results are usually used to assert well-posedness, the Lax-
Milgram Lemma and the Banach-Nečas-Babuška theorem, presented in appendix
A. The first is a sufficient condition for well-posedness and the second gives the
necessary and sufficient condition.

Moreover, the formulation of a bilinear form is a craft, and not always the intro-
duction of an additive term can be directly explained. Frequently it is an iterative
process between a proposition and the desirable properties verification. Any term
addition is licit provided it is demonstrated the added residues can be controlled
and is bounded by the adopted norm defined on that space. This of course comes
with the price of possibly penalizing the convergence which should always be kept
in mind.
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The symmetry of a bilinear form is also a desirable property. It can be used to
assist a norm elaboration, sometimes being the norm itself, and further on, in the
numerical implementation, it leads to a symmetric numerical system to be solve.

The selected problem is restricted to the classical Poisson equation, which is the
diffusive term of the complete transport equation. Although not being a challenge
in itself, the problem is sufficient to test the reported properties of the examined
formulation and to motivate its exploratory implementation.

The Shifted Boundary Formulation is built upon Nitsche’s formulation and both
development are succinctly described hereafter. The consistency, continuity and
coercivity are shown in appendix B.

2.1 Nitsche’s Formulation

The problem’s statement in its strong form, is: find the solution u ∈ C2 (Ω) such
that

−4 u = f, on Ω

u = uD, on ΓD = ∂Ω,
(2.2)

were 4 is the Laplace operator, u the scalar field to be found, f the source term,
Ω a bounded open domain, and ΓD the boundary where Dirichlet condition uD is
prescribed. This statement is referred as strong because the smoothness requirement
is of the same order as the maximum order of its differential operator.

For the sake of notation simplification the integral operators,

(v, w)ω =

∫
ω

vwdω and (v,w)ω =

∫
ω

v ·wdω (2.3)

are defined respectively for scalar and vector operands in a generic domain ω. And
its analogous operators,

〈v, w〉γ =

∫
γ

vwdγ and 〈v,w〉γ =

∫
γ

v ·wdγ, (2.4)

are defined for a subset of these domain’s boundary. The operators are bilinear, as
one can immediately verify, greatly simplifying the performed equation handling.
Naturally the resulting operand should be square integrable and thus restricted to
the L2 space.

The weak formulation of the problem defined in equation 2.2 can be written as,

(∇v,∇u)− 〈v,∇u · n〉ΓD=∂Ω = (v, f)Ω (2.5)

where v is the trial function, and n is the outward pointing normal. The continuity
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requirements for this statement is weakened such that the solution space is assumed
as u ∈ H1(Ω) and the trial space v ∈ H1

0,D(Ω). The classical Galerkin formulation
corresponds to this statement when the approximation spaces and the trial spaces
are finite-dimensional being denoted as V h(Ω) ⊂ H1(Ω) . The nomenclature for
the respective functions is then assumed as uh and wh, where h is the characteristic
length of the space partition, which in the context of finite elements is the mesh.
An analysis of this problem can be found in [16].

A further relaxation of the problem is achieved in Nitsche’s formulation by as-
suming the same space for u and v, meaning now v ∈ H1(Ω) as well, and by adding
the two residues,

−〈∇v · n, u− uD〉ΓD

+η 〈v, u− uD〉ΓD
,

(2.6)

where η is the penalization parameter, and its value is reported further on.
The first term, introduces a variation to the boundary condition that is now

approximately complied, whilst still maintaining consistency, and the second guar-
antees the coercivity of the respective bilinear form.

The formal statement, already in the finite dimensional space, is then: Find
uh ∈ V h(Ω) such that, ∀v ∈ V h,(

∇vh,∇uh
)
−
〈
vh,∇uh · n

〉
ΓD
−
〈
∇vh · n, uh − uD

〉
ΓD

+ η
〈
vh, uh − uD

〉
ΓD

=
(
vh, f

)
Ω
.

(2.7)

This is the formulation implemented and used as reference, along with some specific
analytical solutions.

2.2 The Shifted Boundary Formulation

The formulation development starts by defining a surrogate domain Ω̃ bounded
by Γ̃, the surrogate boundary. The relation (Ω̃ ∪ Γ̃) ⊂ Ω holds and d, defined
bellow, is the displacement vector between the surrogate and the true boundary.
Any surrogate boundary related quantity is then annotated with an over tild as
illustrated in figure 2.1.
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Figure 2.1: True and surrogate boundary with normal, tangent and displacement
vector.

The definition of a map function between the surrogate boundary and the original
one,

M :Γ̃→ Γ

x̃ 7→ x
(2.8)

is necessary so that any quantity can be shifted from one to the other, and properly
taken into account in the new domain. These quantities are refereed as extension.
The extension of an arbitrary function ψ defined on Γ can then be defined on Γ̃ as

ψ (x̃) ≡ ψ (M (x̃)) . (2.9)

For the simple geometries evaluated in this work the closest distance from Γ̃ to
Γ, is the natural mapping choice, and, as a beneficial consequence, the displacement
vector is aligned with the mapped true normal.

The shifted unitary normal vector is then defined as

n (x̃) ≡ n (M (x̃)) , (2.10)

and the displacement vector d as

d = M (x̃)− x̃, (2.11)

which are both independent of the chosen mapping function.
Building upon the previews definitions, it is then possible to evaluate the Taylor

expansion centered at a point of the surrogate boundary, i.e. for x̃ ∈ Γ̃D as

u (x) = u (M (x̃)) = uD (x̃) = u (x̃) +∇u (x̃) · (x− x̃) +O
(
||x− x̃||2

)
0 = u (x̃) +∇u (x̃) · (x− x̃)− uD (x̃) +O

(
||x− x̃||2

) (2.12)
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The equivalent shifted boundary condition is assumed to be a truncated Taylor
expansion, which in practice is a linear approximation, that introduces a second
order error, and is as good as the distance between the two boundaries.

By taking the weak statement (equation 2.5) an equivalent formulation can be
achieved by adding two mutual canceling terms,

(∇v,∇u)Ω−〈v,∇u · n〉ΓD
−〈∇v · d,∇u · n〉ΓD

+〈∇v · d,∇u · n〉ΓD
= (v, f)Ω (2.13)

which in turn, by adding the two Nitche’s terms (equation 2.6) and by applying the
Taylor expansion (equation 2.12) on them, for both u and v, then gives,

(∇v,∇u)Ω̃ − 〈v,∇u · n〉Γ̃D
− 〈∇v · d,∇u · n〉Γ̃D

+ 〈∇v · d,∇u · ñ〉Γ̃D
− 〈∇v · n, u+∇u · d− uD〉Γ̃D

+η 〈v +∇v · d, u+∇u · d− uD〉Γ̃D
= (v, f)Ω̃ ,

(2.14)

where the uD notation is simplified to uD with no loss in clarity. By doing this,
effectively the unfitted boundary condition is further perturbed by the added gra-
dients.

By using the decomposition,

∇uh · ñ =
(n · ñ)

‖d‖
∇uh · d +

(
∇uh · τi

)
τi · ñ (2.15)

and the approximation

∇uh · τi ≈ ∇uD · τi (2.16)

the problem can then be stated as

(∇v,∇u)Ω̃ − 〈v +∇v · d,∇u · ñ〉Γ̃D

+

〈
∇v · d, (n · ñ)

‖d‖
∇u · d + (∇uD · τi) τi · ñ

〉
Γ̃D

−〈∇v · ñ, u+∇u · d− uD〉Γ̃D

+η 〈v +∇v · d, u+∇u · d− uD〉Γ̃D
= (v, f)Ω̃

(2.17)

Which finally leads its formal statement: Given the discrete subspace V h (Ω) ⊂
H1 (Ω), where V h is the space of piecewise continuous functions (typically of poly-
nomial base) find uh ∈ V h (Ω) , such that ∀wh ∈ V h (Ω),
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ah
(
uh, vh

)
=lh

(
vh
)

ah
(
uh, vh

)
=
(
∇vh,∇uh

)
Ω̃
−
〈
vh +∇vh · d,∇uh · n

〉
Γ̃D

−
〈
∇vh · n, uh +∇uh · d

〉
Γ̃D

+

〈
∇vh · d, (n · ñ)

‖d‖
∇uh · d

〉
Γ̃D

+η
〈
vh +∇vh · d, uh +∇uh · d

〉
Γ̃D

lh
(
wh
)

=
(
vh, f

)
Ω̃
−
〈
∇vh · ñ, uD

〉
Γ̃D

−
〈
∇vh · d, (∇uD · τi) τi · ñ

〉
Γ̃D

+ η
〈
vh +∇vh · d, ud

〉
Γ̃D

(2.18)

The penalization parameter η is defined as α
h⊥

where h⊥ is the perpendicular
characteristic length and the used α is the estimation taken as α = 5(p + 1) where
p is the order of the polynomial base of the approximation space, which for the first
order elements used in this work is taken as α = 10.

The proved analytical convergence rate by Main and Scovazzi [3] is of order 1.5,
but the original publication also reports optimal second-order convergence rate in
their numerical experiments, leaving open the speculation that the proved rate might
be a lower bound and liable to sharper estimations.
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Chapter 3

Numerical Implementation

The current chapter describes how the standard libMesh workflows is adapted so
the Surrogate Boundary can be implemented. It does not intend to show in detail
how the implementation works, but rather serve as a guideline to reproduce the
work. For a detailed description on libMesh classes, it is recommended to check its
documentation and source code [17]. It also describes how the geometry is handled,
in this case the purpose is to serve as a baseline for the discussion in the Conclusion
and Future Works chapter, and its value relies more on the insight it provokes than
in the implementation itself.

3.1 libMesh implementation

Although flexible, the basic work flow generally implemented in libMesh is pre-
sented in figure 3.1. The particular parts which are specific to the Surrogate Bound-
ary are colored in yellow, and is better detailed further on.

Figure 3.1: Basic libMesh flowchart.
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The execution begins by evaluating the command line input that is basically
a path to a file in which all the model information is referenced. This file, besides
some meta-model-information, points to a set of files containing the mesh to be used
(conformal or a background), and a set of files that describes the geometry. Each
shape has an equivalent implemented class to which the input parsing is delegated.
This is done so the geometry management is abstracted out from the main program
workflow.

Besides the input handling, other aspects like parsing if a node is inside or out-
side, or if an element is inside, crossed by or outside the geometry, the distance and
projection of a point onto a geometry, normals and tangents vectors evaluation, and
the associated boundary condition (Neumman or Dirichlet), and, when available,
the analytical solution, are also implemented in the geometry class.

As an illustration, the representation of a spherical shell or an annulus can be
done with only one geometry class, by excluding the interior and including the
exterior of the smaller sphere or circle, and by inverting the selection in the bigger
ones. This seminal implementation of a boolean operation onto a B-rep (boundary
representation) of a solid model is scalable and can be qualified, by adopting the
jargon, embarrassingly parallel. The only synchronization point would be the final
geometry composition where the distance, projection point, normal and tangents
vectors, or any other necessary quantity, would have to be selected out among all its
respective basic geometric shape. Each quantity is a parallelization problem in itself
and its implementation should be judiciously evaluated for the target architecture.

Figure 3.2: Building equation system detailed.

At the system building phase, a variable and its subdomains are simultaneously
added to a system, as illustrated in figure 3.2. At this point the added variable is
implicitly associated to a subdomain list. For the proposed formulation only two
subdomains are necessary for each physics, one for the inner element and the other
for the surrogate boundary elements. For coupling two domains, as in a multi-physics
approach, another set of disjoint subdomains also would have to be defined.
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Before assembling the equation system, an implicit call to an initialization
method is performed. At this point the element’s subdomain evaluation is done,
by using the basic geometry class which was described before. The initialization
method is shown in figure 3.3 and is one of the critical sessions in the implementa-
tion, meaning albeit exploratory, a significant amount of execution time is spent at
this stage.

Figure 3.3: Equation system initialization.

The call to restrict the solver to an specific subdomain list is implemented by
the framework, and is where the non used degrees of freedom are removed from the
equation system. The attempt to use the adaptive mesh refinement infrastructure
offered by the framework was done at this point by both calling the routine in
between refinements and at the end of a set of refinement iterations. Regardless of
the initialization parameter used [17] the execution was dropped by an unhandled
exception. This is further explained in chapter 5.

The equation system assemblage is also implicitly done and is the formulation’s
core, where the equation system is effectively built. This is done by using the
iterators offered by the framework which are automatically available for the entire
mesh and the applied subdomains. The elements evaluation is firstly done for the
inner elements and then for the surrogate ones. This phase is depicted in figure
3.4 and the expression "regular term" refers to the terms present in both inner
and surrogate elements. The calculation is split just as a mean to rationalize the
implementation, and was not done having optimization as the main objective.
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Figure 3.4: Equation system assemblage.

The remaining operations shown in the diagram depicted in figure 3.1 have no
specific implementation for the surrogate boundary formulation and so they are not
described here, the framework documentation is enough to reproduce the implemen-
tation. The only specific detail left is the error evaluation that is done by calling the
analytical solution for the tested cases, and are found in appendix C. This evaluation
is done internally by the framework and is performed at the integration points, as
described on chapter 4.

3.2 Geometry Evaluation

The basic geometric quantities necessary for the element matrix evaluation are
similarly evaluated for the 2D and the 3D models, and its basic components are
illustrated in figure 3.5.

The mapping of a point x̃ in the surrogate boundary to a point x in the original
boundary is made by stretching the vector dC,x̃ onto the original boundary so the
displacement can be evaluated. By defining dC,x̃ = x̃ −C, were C is the center of
the circle or sphere, the displacement from the surrogate boundary to the original
one is evaluated as

d = dC,x̃

(
r

‖ dC,x̃ ‖
− 1

)
. (3.1)

The normal vector is co-linear to dC,x̃ and can be trivially evaluated by normal-
izing the later.
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Figure 3.5: Geometric evaluation.

As for the tangent vector, in the two-dimensional case, it is the result of the cross
product of the normal vector n with a vector perpendicular to the plane in which
the problem is defined. For the three-dimensional case an artifice is used so they
can be uniquely defined, first a modified normal vector is introduced by changing
the original’s coordinate order, say for each

nT = {n1, n2, n3}

we have

nTm = {n2, n1, n3}.

This guarantees that both vector are never co-linear. The first tangent vector is
then evaluated as

τ1 = n× nm

and the second as

τ2 = τ1 × n.

Although trivial, these evaluations are made for every integration point and so
have a significant weight in the execution time.
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Chapter 4

Results

Two sets of cases are evaluated for both implemented formulations: Nitsche’s and
the Shifted Boundary. The first set comprises of six conformal meshes representing
an annular geometry and six two-dimensional background meshes of equivalent ele-
ment size. For the second set, five conformal meshes representing a spherical shell
and five equivalent three-dimensional background meshes as well. Both cases are
identically defined, as shown in table 4.1, where re is the external radius, ri the
inner radius, ue the prescribed Dirichlet boundary condition in the external circle
or sphere, ui in the inner circle or sphere, and f the source term, as defined before.
The similarity of both cases is kept only for convenience.

Table 4.1: Annulus and Spherical Shell definition.

Properties

ui = 34 ri = 0.5

ue = 13 re = 1.0

f = 0

The meshes are increasingly denser so that the accuracy of the solution can be
compared. The error evaluation is performed for all cases by projecting the analyti-
cal solution onto the evaluated mesh, case by case. By doing this the comparison is
performed in the same solution space available for the space partition under evalua-
tion, leaving only error component perpendicular to it. The L2 and H1 error norms
are evaluated for every group case and plotted in a graph where its convergence rate
can be inferred. Its suitability as a global quality measure of an approximation is
discussed later on chapter 5.

A regular mesh would be the first option to be used with the surrogate boundary
formulation, or even, with any other embedded formulations, mainly for its ease of
generation. Nevertheless, as the comparison with conformal meshes is intended, and
the mesh generators publicly available are easy enough to be used with simple ge-
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ometries, adopting unstructured meshes in both cases do not adds much complexity
to the work and introduces no loss in the intended evaluation.

Finally, the chosen cases are simple enough so its analytical solution can be
evaluated as reference, but they are sufficient to infer the convergence rate of the
evaluated method.

4.1 Annulus evaluation

As for the annulus geometry, the six conformal meshes is shown in figure 4.1.
The images shows increasingly denser meshes and gives an insight on the magnitude
of the change in the average element size, up to a point where it is not possible to
distinguish the elements in the presented scale. For the mesh generation the max-
imum and minimum heights are limited to a range, guaranteeing an homogeneous
distribution and good ratio factor for the elements.

(a) mesh 1 (b) mesh 2 (c) mesh 3

(d) mesh 4 (e) mesh 5 (f) mesh 6

Figure 4.1: Annular domain, conformal meshes.

The equivalent set of background meshes used with the Shifted Boundary formu-
lation is shown in Figure 4.2. For each case, the average element size approximately
matches its conformal pair. The images do not highlight the edges of the elements,
but they can be distinguished by its color. The depicted colors group the elements
according to their classification, being red the elements crossed by the boundary
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and so, removed from the problem; light blue, the elements inside the domain; and
light pink the elements inside the domain neighboring the removed ones. This last
group composes the surrogate boundary and are the only elements in which the
formulation specific terms is calculated. The circumference of the original boundary
is superposed, in white, and can be promptly noted in the first four cases.

The dark blue elements are all removed from the problem, and they are a display
of how much an adaptive mesh refinement, equipped with some geometric criterion,
can rationalize computational resources. An attempt to implement it in the adopted
framework version was done, but a necessary unimplemented feature rendered it
impossible. Adapting the framework itself would then be necessary, more on this in
the conclusion chapter.

From these images it is possible to notice how the surrogate domain gradually
converges to the desired geometry. This is referenced as geometry conversion, and
is measured as the ratio between the area of both domains A(Ω̃)/A(Ω). It is also
possible to notice that, since the surrogate domain area never reaches the original
domain, the measure of the red elements is a good hint of the asymptotic error .

(a) mesh 1 (b) mesh 2 (c) mesh 3

(d) mesh 4 (e) mesh 5 (f) mesh 6

Figure 4.2: Subdomain evaluation, annular domain.

The resulting scalar field for the conformal cases can be seen in Figure 4.3. The
mesh is not highlighted because in the denser cases it would prevent from visualizing
the solutions, nevertheless the increasing resolution can be noted by the boundary
shape. It is possible to notice the quick convergence when from case 3 onward, no
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significant difference can be noticed. The convergence to the expected distribution
is shown further on. Generally, for an engineering purpose, this would already be
a good enough result, but since the objective is to generate more data points to be
analyzed the simulation is performed through out all the proposed meshes.

(a) mesh 1 (b) mesh 2 (c) mesh 3

(d) mesh 4 (e) mesh 5 (f) mesh 6

Figure 4.3: Resulting field for the conformal formulation, annular domain.

The resulting scalar field for the Shifted Boundary formulation can be seen in
Figure 4.4, where it is possible to notice the immediate alike distribution even
on the courser cases. At the surrogate boundary it is also possible to see along
its jagged facets the tendency to match the resulting distribution in the equivalent
region of the original domain, indicating the proposed boundary approximation is
appropriate. Two circles are plotted as reference, they represent the original domain
contour. The approximate solution convergence increases along with the geometric
convergence.
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(a) mesh 1 (b) mesh 2 (c) mesh 3

(d) mesh 4 (e) mesh 5 (f) mesh 6

Figure 4.4: Shifted boundary formulation, annular domain.

The analytical solution used as the reference for every error evaluation presented
in the following is

u (r(x)) = (ui − ue)
ln (r(x)/re)

ln (ri/re)
+ ue, (4.1)

where, r(x) = (x2 + y2)
1
2 , and its gradient is

∇u(x) = (ui − ue)
re

ln (ri/re)

1

(x2 + y2)

{
x

y

}
. (4.2)

Its full development can be found in Appendix C.
The relative error evaluation, depicted in figure 4.5, was performed in the post-

processing phase by applying the analytical solution as nodal data, effectively rep-
resenting its projection to the adopted mesh. This approach is subtly different from
the error norms evaluation which is performed in the simulation phase, and the an-
alytical solution is evaluated in the integration point. Nevertheless the error plot is
useful as a qualitative picture of the error distribution.

The result has a quite homogeneous error distribution, with its maximum values,
ranging from 10−2 down to 10−6, concentrated around the boundaries. This error
feature can be explained firstly due to the geometric conversion, since rectilinear
edges of an element needs to be small enough to fit the proposed geometry, and
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secondly due the non-consistent nature of Nitsche’s formulation. Nevertheless the
results are as good as expected, and, generally, for an engineering purpose, correct.
These features are highlighted only for comparison reasons.

(a) mesh 1 (b) mesh 2 (c) mesh 3

(d) mesh 4 (e) mesh 5 (f) mesh 6

Figure 4.5: Relative error on conformal formulation, smaller annular domain.

As for the relative error in the Shifted Boundary formulation, the error has
also an homogeneous distribution characteristics, as good as the substitutive mesh
approximation, ranging from 10−2 down to 10−5. Its maximum is also closer to the
boundary, in this case due to the linear approximation introduced.

(a) mesh 1 (b) mesh 2 (c) mesh 3

Figure 4.6: Relative error on shifted boundary formulation, annular domain (con-
tinue).
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(d) mesh 4 (e) mesh 5 (f) mesh 6

Figure 4.6: Relative error on shifted boundary formulation, annular domain.

The radial sampling of the resulting scalar field can be seen in Figure 4.7a for
the conformal formulation and in 4.7b for the Shifted Boundary. The effect of the
geometric convergence can be noticed, in the conformal cases, by the spread of the
prescribed boundary value at the radius extremes, i.e. r = 0.5 and r = 1.0, and in
the Shifted Boundary cases by the valueless chopped off region, just as expected.
Nevertheless quick conversion can be noticed in both cases, and the results begins to
get indistinguishable, aside from the removed region, from the third mesh refinement
onward. The analytical solution is plotted in red, in both graphs, and can not be
distinguished in the line clutter of the denser meshes’ results.

(a) Conformal (b) Shifted Boundary

Figure 4.7: Radial sampling of u and uh on annular domain.

The resulting L2 error norm is plotted in logarithmic scale in Figure 4.8. The
conformal formulation is shown in green and the Shifted Boundary formulation,
refereed as embedded, is show in blue. It is possible to notice a similar slope on
both adjusted lines, and indeed, the resulting coefficients indicates a second order
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convergence for both of them. It is also possible to notice that the two lines are
approximately parallels but not co-linear, this is due to the asymptotic characteristic
of the Shifted Boundary formulation.

Figure 4.8: L2 error norms on annular domain.

The same arrangement is done for the H1 error norm, displayed in Figure 4.9, log
scale, colors arrangement and linear regressions were performed in the same manner.
The first order convergence rate is compatible with the obtained results for the L2

norm, additionally an approximate co-linearity for both formulations’ results was
observed.

The linear regression adjusts the data to the curve,

y = axp ⇒ log y = p log x+ log a (4.3)

and the resulting coefficients is displayed in plots. The regression is used just as a
tool to draw the line over the generated data. This is most noticeable in the three
dimensional cases, as shown further on. For the annulus cases, effectively, the first
two points are ignored.
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Figure 4.9: H1 error norms on annular domain.

Table 4.2 shows, for the conformal cases, the evaluated metrics of plot 4.8 and
4.9. The height hmax is taken as the maximum of the three heights among all
elements, and the ratio A/Atot is a measure of the geometric convergence, being A
as the area of the mesh and Atot is the annulus area.

Table 4.2: Evaluated metrics on annulus, conformal formulation.

hmax A/Atot L2 norm H1 norm

0.175711 0.998139 0.337824 9.59381
0.115835 0.999981 0.112937 5.89528
0.0718044 0.999879 0.0448224 3.62171
0.0388709 0.999989 0.0107932 1.8468
0.0130827 0.999998 0.000999904 0.57555
0.00354168 0.999998 6.17829e-05 0.144027

The same result, now for the Shifted Boundary formulation, is presented in Table
4.3. In this case A is the area of the selected elements to represent the surrogate
domain, i.e. the surrogate boundary and the inner elements. By examining the
ratio A/Atot one can notice the poor domain representation of the first meshes,
nevertheless the presented results shows error distributions similar to its conformal
equivalents testifying the robustness of the examined fomulation.
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Table 4.3: Evaluated metrics on annulus, shifted boundary formulation.

hmax A/Atot L2 norm H1 norm

0.0035797 0.557276 1.35667 7.3595
0.184551 0.726799 0.502674 5.26401
0.114021 0.825934 0.197801 3.31077
0.0792705 0.911809 0.0506092 1.67893
0.0382151 0.971010 0.00531394 0.56309
0.0129658 0.992859 0.000358381 0.143651

4.2 Spherical shell evaluation

As for the spherical shell the visualization is not as easy as in the two-dimensional
cases, and only the inspection of selected features is possible when not dealing with
a virtual model. Besides that, the examined meshes does not get as denser as in
the previous examined cases due to the computational limitations of the available
resources for this work. Nevertheless the results are satisfactorily in accordance with
what is claimed in the formulation proposition.

The resulting field for the five conformal meshes are shown in figure 4.10. The
result is presented in a cutted section of the domain. It is possible to notice the
decreasing element size as its surface get more spherical as it decreases. The resulting
field shows a smooth distribution in accordance with the expected one.
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(a) mesh 1 (b) mesh 2 (c) mesh 3

(d) mesh 4 (e) mesh 5

Figure 4.10: Conformal formulation, spherical shell domain.

The equivalent set of results is shown for the shifted boundary formulation in
figure 4.11. The displayed volumes are a half volume section of the already filtered
surrogate and inner elements. Although in the first two cases, the mesh coarseness
is such that it shows no resemblance to the proposed geometry, it is still possible
to see the gradient in the expected direction. For the remaining cases the results
improves as the mesh gets denser, as expected.

(a) mesh 1 (b) mesh 2 (c) mesh 3

Figure 4.11: Shifted boundary formulation, spherical shell domain (continue).
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(d) mesh 4 (e) mesh 5

Figure 4.11: Shifted boundary formulation, spherical shell domain.

The analytical solution used as reference for this set of cases is

u (r(x)) =
(uiTi − ueTe)

(ri − re)
− rire
r(x)

(Ti − Te)
(ri − re)

, (4.4)

where, r(x) = (x2 + y2 + z2)
1
2 , and its gradient is

∇u(r(x)) = (Ti − Te)
rire

(ri − re)
1

r(x)3


x

y

z

 . (4.5)

Besides the error field not being evaluated in these cases, the analytical results
are useful for the radial sampling of the resulting scalar field, displayed in figure
4.12. The effect of the coarser meshes on the geometrical convergence can be seen
in both formulations, with only the denser meshes displaying a satisfactory result.
The spread, at the radius extremes, of the boundary condition values applied to the
conformal cases can be seen in figure 4.12a, along with the last three meshes show-
ing a reasonable convergence to the expected solution. For the shifted boundary
formulation, the gap between the original boundary and the surrogate one is more
pronounced than in the two-dimensional case, and an offset to the expected distri-
bution can be noticed in the coarser meshes. The before mentioned correct gradient
direction can be clearly seen, and the convergence to the expected distribution is
reached in the denser meshes as well.
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(a) Conformal (b) Shifted boundary

Figure 4.12: Radial sampling of u and uh on spherical shell domain.

The L2 error norm evaluation is displayed in figure 4.13, with its resulting co-
efficients that indicates the expected second order convergence rate, and displaying
the same parallel behavior.

Figure 4.13: L2 error norms on spherical shell domain.

Due to the poor representation of the coarser meshes, only the three denser ones
were selected for the convergence rate evaluation, but all data points are plotted. A
linear regression is performed in the same way as before, adjusting variance to craft
a tenable convergence line.

26



The H1 error norm evaluation is displayed in figure 4.14 and indicates conver-
gence of first order as expected.

Figure 4.14: H1 error norms on spherical shell domain.

Table 4.4 shows the same set of evaluated metrics for the conformal formulation,
with the geometry convergence being defined as the ratio of the mesh volume and
the original geometry volume. The selected results are within the limit of 1% of
volume deviation.

Table 4.4: Evaluated metrics on spherical shell, conformal formulation.

hmax V/Vtot L2 norm H1 norm

0.238373 0.972481 2.15471 32.0635
0.1915 0.986101 0.688466 20.103
0.129608 0.994988 0.569275 15.7567
0.0755911 0.998300 0.234023 10.044
0.0199158 0.999893 0.0168134 2.58831

Table 4.5 shows the same metrics for the shifted boundary formulation. The
geometry convergence are of an order of magnitude different from the conformal
formulation, with the first selected point having a volume deviation superior to 40%.
The best result, which is close to indistinguishable from the analytical solution, as
shown in 4.12b, has a volume deviation of more than 10%. This result show the
robustness of the examined formulation.
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Table 4.5: Evaluated metrics on spherical shell, shifted boundary formulation.

hmax V/Vtot L2 norm H1 norm

0.253706 0.085764 1.70056 7.60359
0.186363 0.351510 3.40168 14.1826
0.129608 0.582493 2.25445 14.0146
0.0735193 0.759903 0.76407 9.07175
0.0333763 0.890532 0.171322 4.35821
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Chapter 5

Conclusions and Future Works

The conclusions and future works suggestions offers some reflections on the re-
sults and the implementation experience, and are considered as valuable as the
obtained results. Its main focus is to serve as a stepping stone for the next ones who
wishes to venture into the Surrogate Boundary formulation.

5.1 Conclusions

The norm’s convergence rate has demonstrated to be quite sensible to how the
elements height choice is made. The analytical convergence rate is done aiming to
evaluate the minimal necessary element height correspondent to the estimated error.
When dealing with a numerical experiment, the used height to fulfill this condition is
necessarily the maximum element’s maximum height. For the analysis this concept
is abstracted out and refereed as the element diameter. A misunderstanding of this
condition, conjugated with partitions containing elements with high form factor, in
some cases only a few of them, and a wide element’s diameter distribution, lead to
misleading conclusions during this study and convergence rates close to unreasonable
or contrary to what was stated. This difficulty was dealt with by restricting the
elements form factor within a deviation of 5% off the characteristic length used by
the mesh generator, and the subsequent correct diameter choice.

The final convergence rate was accordant to the reported one, being of second
order for the L2 norm and of first order for the H1 norm. One can speculate that the
discrepancy to the analytical one, in the original work, of order 1.5 for the L2 norm,
might be related to the fact that the residues introduced by the shifted boundary
formulation is present only in the surrogate elements and, as the elements diameter
diminished, its total area diminishes with an O(h2) rate. The relative weight of this
area might be an important factor as well, meaning that, for geometries with low
∂Γ/Ω ratio its impact is probably low as well. This supposition is supported by the
fact that for the inner elements, both the linear and the bilinear forms are identical
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to its equivalent in Nitsche’s formulation.
The attempt to implement the formulation along with an adaptive mesh refine-

ment scheme was done, but due to an specific limitation in the framework it was
not successful and thus the initially planned scope was reduced. The way libMesh
is implemented (version 0.9.4), by adding an element to a mesh, its nodal values are
evaluated by interpolating its parent’s. When using the subdomains infrastructure
the disabled elements don’t have its nodal values initialized and thus, when an el-
ement is added by including a child of an uninitialized elements a null exception is
thrown. The diagnose was done in conjunction with libMesh’s support team and
by the given answer, it is unlikely that the issue will be addressed in the foreseen
future. Nevertheless the idea of adding a geometric convergence criterion to the
mesh refinement seems promising.

The formulation might not be directly applicable to cases in which the region
close to the boundary is of particular interest or for multi-physics models. A ref-
erence surface can be a mean of projecting the computed values onto the original
geometry for then properly analyzing them, according to the objective. Before
adopting this procedure, it is critical to evaluate its comparable advantage over a
classical conformal mesh approach so the introduced complexity does not fall back
into an equivalent computational intensive model. This would depend a lot on the
nature of the analyzed problem and the adopted implementation strategy.

5.2 Future Works

The implementation of a geometric criterion for an adaptive mesh refinement
scheme is manifestly a next step in applying the formulation in real world problem,
and it is mostly an implementation problem. For that either a refactoring of the
used framework could be done or in a more laborious scope a dedicated implemen-
tation can be done starting from scratch. Smarter detection scheme should also be
elaborated for geometry varying problems.

The option for representing more complex geometries do not necessarily need to
be an unique one, since the geometric evaluations, performed element by element,
are embarrassingly parallel and can be interchanged at will. The option of compos-
ing geometries by combining elementary analytical shapes with Boolean operation
appeals for its simplicity and should be taken as a serious candidate. Other option
would be to adopt facet surfaces, being STL surfaces one of the most popular for-
mats. In this case each facet can be used to define an oriented plane and then a
ray trace algorithm can be used to evaluate the set of internal nodes. Finally the
direct use of any NURBS surface can also be done. In this case the evaluation of
the normal and displacement vectors would have to be carefully evaluated so the
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computational complexity does not supersede the formulation benefits.
Finally the implementation of more complex physics is an obvious demand. Sib-

lings formulations for Stokes, Navier-Stokes and free-surface problems are already
available. For turbulent problems the stability of various Reynolds’ number range
would have to be judiciously evaluated before adopting the formulation. Another
promising application is a fluid-structure interaction problems, where it is possible
to couple a flow to structural elements rigidly connected to its geometric surfaces.
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Appendix A

Definitions

The following definitions and equations are common tools used in the functional
analysis and topology fields. It by no means intend to be a systematic presentation
of the field, but a starting point for those not familiarized with them.

A.1 Inner Product properties

The inner product is a generalization of the dot product, a bilinear function
defined in a Cartesian space. Its operator notation is usually assumed as 〈·, ·〉.
The four properties that defines an inner product are known as the positive-definite
condition and they are,

1. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

2. 〈αv, w〉 = α〈v, w〉

3. 〈v, w〉 = 〈w, v〉

4. 〈v, v〉 ≥ 0 and equals only if v = 0

A.2 Norm properties

A norm is a real valued function which has the following properties:

1. Every vector has positive norm, and only the 0 vector has zero norm,
‖ x ‖≥ 0 and ‖ x ‖= 0⇐⇒ x = 0,∀x ∈ W

2. Scalar multiplication,
‖ αx ‖= |α| ‖ x ‖, ∀α ∈ R, ∀x ∈ W

3. Triangle inequality,
‖ x + y ‖≤‖ x ‖ + ‖ y ‖.
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Whenever an inner product, using the same element as parameters, also fulfills
these properties, i.e. 〈u, u〉 =‖ x ‖2, its is said that the norm is induced by the inner
product. In this case the spaces is both a Banach (a normed space) and a Hilbert
space (an inner product space). For Hilbert spaces the well posedness of a problem
can be assured by means of the the Lax-Milgram theorem and for the Banach space
the Banach-Nečas-Babuška theorem [16].

A.3 Spaces and Norms Definitions

The Sobolev space is defined by

W s
P (Ω) =

{
f ∈ LP (Ω);∀|α| < s, ∂αx f ∈ LP (Ω)

}
, (A.1)

where Ω is an open set of Rd, α = (α1, . . . , αd), |α| = α1 + . . .+αp, and the operator
∂αx f = (∂α1

x1
, . . . , ∂αP

xP
) , with {αi, s} ∈ N and d ∈ N∗.

The norm for such space is defined starting from the p-norm, of an Lp space:

‖ f ‖W s
P (Ω)=

∑
|α|≤s

‖ ∂αx f ‖LP (Ω) . (A.2)

So the space of square integrable functions L2(Ω) can be expressed as L2(Ω) =

W 0
s (Ω) and its norm ‖ f ‖L2,Ω=‖ f ‖0,Ω. The benefit of operating functions in this

space is that the second order p-norm is induced by the inner product and so it is
also a Hilbert space.

A.4 Young Inequality

ab ≤ 1

2

(
a2 + b2

)
, a, b ∈ R (A.3)

A.5 Epsilon Inequality

The ε-inequality can be promptly derived from Young’s inequality as follows(
ε
1
2a
)(

ε−
1
2 b
)
≤ 1

2

[(
ε
1
2a
)2

+
(
ε−

1
2 b
)2
]
, (A.4)

giving for a, b ∈ R,

ab ≤ 1

2

(
εa2 +

b2

ε

)
, ∀ε ∈ R+. (A.5)
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A.6 Cauchy-Schwartz Inequality

Given v, w ∈ V , where V is a vector space equipped with an inner product (·, ·)
and norm ‖ v ‖= (v, v)

1
2 , the inequality

(v, w)2 ≤ (v, v) (w,w)⇒ (v, w) ≤ | (v, w) | ≤‖ v ‖‖ w ‖ (A.6)

holds true and is refereed as Cauchy-Schwartz inequality.
Since the right most terms are scalars, it is possible, by using the ε-inequality,

to compose the following inequality

(v, w) ≤ 1

2

(
ε ‖ v ‖2 +

‖ w ‖
ε

2
)

(A.7)

that is used in the coercivity evaluation.

A.7 Discrete Trace Inequality

The discrete trace inequality is proven by Douglas [18] and is stated here, in its
reduced version, for piecewise linear and globally continuous functions, as a lemma:

‖
(
h⊥
) 1

2 ∇w · v ‖2
0,Γ≤ CI ‖ ∇w ‖2

0,Ω . (A.8)

where h⊥ is the element height as defined before, and CI ∈ R∗+. The inequality

‖
(
h⊥
) 1

2 ∇w · v ‖0,Γ≤ CI ‖ ∇w ‖0,Ω (A.9)

is a corollary and is the one used in the continuity evaluation.

A.8 Auxiliary Inequality

Given six non-negative scalars a, b, c, d, e, f ∈ R+, the inequality

ad+ ae+ db+ be ≤
(
a2 + b2 + c2

) (
d2 + e2 + f 2

)
, (A.10)

is true and is stated for clarity, as it is used as argument for the continuity demon-
stration.
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Appendix B

Bilinear Form Analysis

The well-posednes of the problem is assured provided the Lax-Milgram theorem’s
conditions are verified [16], meaning the bilinear form needs to be coercive and
continuous, as well as consistent. These properties are proved in the original work
[3] and are here after examined.

B.1 Coercivity

Taking the bilinear form stated in equation 2.18 and applying uh in both argu-
ments:

a
(
uh, uh

)
=
(
∇uh,∇uh

)
Ω̃

−〈uh +∇uh · d,∇uh · ñ〉Γ̃D
− 〈∇uh · ñ, uh +∇uh · d〉Γ̃D

+〈∇uh · d, n · ñ
‖ d ‖

∇uh · d〉Γ̃D
+ η〈uh +∇uh · d, uh +∇uh · d〉Γ̃D

.

(B.1)

Using the norms defined in section A.3:

a
(
uh, uh

)
= ‖ ∇uh ‖2

0,Ω̃
−2〈uh +∇uh · d,∇uh · ñ〉Γ̃D

+ ‖
(
n · ñ
‖ d ‖

) 1
2

∇uh · d ‖2
0,Γ̃D

+αh⊥
−1 ‖ uh +∇uh · d ‖2

0,Γ̃D
.

(B.2)

Taking the second term of the left hand side of previous equation and applying
the ε-inequality and Cauchy-Schwartz, as stated in equation A.7, gives

2〈uh+∇uh·d,∇uh·ñ〉Γ̃D
≤
(
εh⊥
)−1 ‖ uh+∇uh·d ‖2

0,Γ̃D
+εh⊥ ‖ ∇uh·d ‖2

0,Γ̃D
. (B.3)

By substituting equation B.3 in B.2 gives

a
(
uh, uh

)
≥ ‖ ∇uh ‖2

0,Ω̃
+
(
α− ε−1

)
h⊥
−1 ‖ uh +∇uh · d ‖2

0,Γ̃D

−εh⊥ ‖ ∇uh · ñ ‖2
0,Γ̃D

+ ‖
(
n · ñ
‖ d ‖

) 1
2

∇uh · d ‖2
0,Γ̃D

.
(B.4)
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By using inequality A.8 on the third term of the right hand side we have,

− εh⊥ ‖ ∇uh · ñ ‖2
0,Γ̃D
≥ −εCI ‖ ∇uh ‖2

0,Ω̃
, (B.5)

that finally gives

a
(
uh, uh

)
≥(1− εCI) ‖ ∇uh ‖2

0,Ω̃

+
(
α− ε−1

)
h⊥
−1 ‖ uh +∇uh · d ‖2

0,Γ̃D

+ ‖
(
n · ñ
‖ d ‖

) 1
2

∇uh · d ‖2
0,Γ̃D
≥ 0,

(B.6)

that is true, since, by definition, every norm is greater or equal to zero, being h⊥ a
positive number; ε is arbitrarily small and also positive, as restricted by inequality
A.4; CI is positive, as assumed by inequality A.8. This leads to the inequalities

(1− εCI) > 0 ⇐⇒ ε <
1

CI(
α− 1

ε

)
> 0 ⇐⇒ α >

1

ε

(B.7)

also being held true. This way, by defining a norm ‖ · ‖2
SB as,

‖ uh ‖2
SB= ‖ ∇uh ‖2

0,Ω̃
+

1

h⊥
‖ uh +∇uh · d ‖2

0,Γ̃

+
n · ñ
d
‖ ∇uh · n ‖2

0,Γ̃
,

(B.8)

the stability is proven by the coercivity argument, since

ah
(
uh, uh

)
≥ CSB ‖ uh ‖2

SB z (B.9)

provided

CSB = min

{
1− εCI , α−

1

ε

}
. (B.10)

B.2 Continuity

The continuity is demonstrated by taking the norm defined in B.8 and demon-
strating that, for the bilinear form stated in 2.18, the inequality

ah
(
uh, vh

)
≤ Cb ‖ uh ‖SB‖ vh ‖SB (B.11)

is true. The inequality is demonstrated by numbering the terms as
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ah
(
uh, vh

)
=
(
∇vh,∇uh

)
Ω̃

1

−
〈
vh +∇vh · d,∇uh · ñ

〉
Γ̃D

2

−
〈
∇vh · ñ, uh +∇uh · d

〉
Γ̃D

3

+

〈
∇vh · d, (n · ñ)

‖d‖
∇uh · d

〉
Γ̃D

4

+
α

h⊥
〈
vh +∇vh · d, uh +∇uh · d

〉
Γ̃D

5

and reasoning about them separately. The norms presented in A.3 are used and can
be recognized by adopted nomenclature.

For the first term, by taking inequality A.6 give(
∇vh,∇uh

)
≤‖ ∇vh ‖0,Ω̃‖ ∇u

h ‖0,Ω̃ . (B.12)

The second term also takes the inequality A.6 giving

〈
vh +∇vh · d,∇uh · ñ

〉
Γ̃D
≤

∣∣∣∣∣
∣∣∣∣∣
√

1

h⊥
(
vh +∇vh · d

)∣∣∣∣∣
∣∣∣∣∣
0,Γ̃

∣∣∣∣∣∣√h⊥∇uh · n∣∣∣∣∣∣
0,Γ̃
, (B.13)

where the terms containing h⊥ are introduced so the inequality A.9 can then be
applied giving

〈
vh +∇vh · d,∇uh · ñ

〉
Γ̃D
≤

∣∣∣∣∣
∣∣∣∣∣
√

1

h⊥
(
vh +∇vh · d

)∣∣∣∣∣
∣∣∣∣∣
0,Γ̃

CI
∣∣∣∣∇uh∣∣∣∣

0,Ω̃
. (B.14)

The same procedure is applied to the third term which then gives

〈
∇vh · ñ, uh +∇uh · d

〉
Γ̃D
≤ CI

∣∣∣∣∇vh∣∣∣∣
0,Ω̃

∣∣∣∣∣
∣∣∣∣∣
√

1

h⊥
(
uh +∇uh · d

)∣∣∣∣∣
∣∣∣∣∣
0,Γ̃

. (B.15)

As for the fourth term, by assuming 0 ≤ n · ñ ≤ 1, necessary condition for
inequality A.8, also that ‖d‖/h⊥ ≤ 1, since it is reasonable to assume the distance
will never be greater than the maximum element height, and finally that n = d/‖d‖,
meaning the displacement vector is aligned with the original boundary norm, we
can state that〈

∇vh · d, (n · ñ)

‖d‖
∇uh · d

〉
Γ̃D

≤
〈
h⊥

‖d‖
∇vh · d,∇uh · n

〉
Γ̃D

, (B.16)

which leads to〈
∇vh · d, (n · ñ)

‖d‖
∇uh · d

〉
Γ̃D

≤
〈√

h⊥∇vh · n,
√
h⊥∇uh · n

〉
Γ̃D

, (B.17)

and finally, by using inequality A.9 gives
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〈
∇vh · d, (n · ñ)

‖d‖
∇uh · d

〉
Γ̃D

≤ C2
I ‖∇vh‖0,Ω̃‖∇u

h‖0,Ω̃. (B.18)

As for the last terms assuming a similar procedure, as in the second and third
term, gives

α

〈√
1

h⊥
(
vh +∇vh · d

)
,

√
1

h⊥
(
uh +∇uh · d

)〉
Γ̃D

≤ α

∣∣∣∣∣
∣∣∣∣∣
√

1

h⊥
vh +∇vh · d

∣∣∣∣∣
∣∣∣∣∣
0,Γ̃D

∣∣∣∣∣
∣∣∣∣∣
√

1

h⊥
uh +∇uh · d

∣∣∣∣∣
∣∣∣∣∣
0,Γ̃D

.

(B.19)

Since all five terms have a positive upper boundary, it is possible to invert the
sign of the second and third term, giving the inequality

ah
(
uh, vh

)
≤ ‖ ∇vh ‖0,Ω̃‖ ∇u

h ‖0,Ω̃

+

∣∣∣∣∣
∣∣∣∣∣
√

1

h⊥
(
vh +∇vh · d

)∣∣∣∣∣
∣∣∣∣∣
0,Γ̃

CI
∣∣∣∣∇uh∣∣∣∣

0,Ω̃

+CI
∣∣∣∣∇vh∣∣∣∣

0,Ω̃

∣∣∣∣∣
∣∣∣∣∣
√

1

h⊥
(
uh +∇uh · d

)∣∣∣∣∣
∣∣∣∣∣
0,Γ̃

+C2
I ‖∇vh‖0,Ω̃‖∇u

h‖0,Ω̃

+α

∣∣∣∣∣
∣∣∣∣∣
√

1

h⊥
vh +∇vh · d

∣∣∣∣∣
∣∣∣∣∣
0,Γ̃D

∣∣∣∣∣
∣∣∣∣∣
√

1

h⊥
uh +∇uh · d

∣∣∣∣∣
∣∣∣∣∣
0,Γ̃D

≤Cb ‖ uh ‖SB‖ vh ‖SB .

(B.20)

The right most inequality is placed by mean of argument placed in inequality A.10,
finally proving B.11, provided Cb = max {1 + C2

I , α}.

B.3 Consistency

Whenever the exact solution of a model is applied to an equivalent variational
formulation, the formulation is said to be consistent when its resulting residue is
zero, i.e. for a generic problem defined by a(uh, vh) and l(vh) with an exact solution
u, we have

ah(u, vh)− l(vh) = 0. (B.21)

This mean the error of the projected solution is perpendicular to the space in which
the formulation is defined.

For the surrogate boundary, since the domain varies with the adopted space
partition and is supposed not to match the original one, the consistency is assumed
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to be asymptotic, i.e. it is as small as the partition diameter but never zero, in
other words, for a generic asymptotic formulation applied to a surrogate domain Ω̃

we have

ãh(u, vh)− l̃h(v) = O(hk). (B.22)

This applied to the examined formulation then give,

ãh(u, vh)− l̃h(v) =(∇vh,∇u)Ω̃ −
〈
vh,∇u · ñ

〉
Γ̃D
− (vh, f)Ω̃

−
〈
∇vh · d,∇u · ñ

〉
Γ̃D

−
〈
∇vh · ñ, u+∇u · d− uD

〉
Γ̃D

+
〈 α
h⊥

(vh +∇vh · d), u+∇u · d− uD
〉

Γ̃D

+
〈
∇vh · d, (n · ñ)∇u · n + (τi · ñ)∇u · τi

〉
Γ̃D
,

(B.23)

which by considering the fact that the right hand side on the first line is equivalent
to the classical formulation, so it is consistent, and also that u|ΓD

= uD and that
∇u · d is a second order term, we can state that

ãh(u, vh)− l̃h(v) ≤‖ vh ‖SB O(h2), (B.24)

leading to the conclusion the formulation is asymptotic consistent.
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Appendix C

Analytical Solutions

Both examined cases are an homogeneous diffusive problem

∇2φ(x) = 0 (C.1)

and for the proposed geometries, annulus and spherical shell, they are easier man-
aged on polar and spherical coordinates. The solution for a constant Dirichlet bound-
ary condition is shown bellow.

C.1 Annulus

The diffusive equation in polar coordinates is written as

∇φ(r, θ) =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2
= 0. (C.2)

The boundary condition that defines the problem is

φ(ri, θ) = φi and φ(re, θ) = φe (C.3)

where ri and re are the inner and outer radius, respectively.
By using the separation of variables method one can assume

φ(r, θ) = R(r)T (θ), (C.4)

which gives, by substituting it in equation C.2,

r

R

(
r
dR

dr

)
+

1

T

d2

dθ2
= 0. (C.5)

Since, for the given boundary condition, the resulting scalar field has radial
symmetry, the second term is null leading to an ordinary equation, which after
integrating gives
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φ(r) = A0 +B0 ln r. (C.6)

By using the boundary condition we have

A0 = φi −
(φe − φi)

ln
(
re
ri

) ln ri and B0 =
(φe − φi)

ln
(
re
ri

) , (C.7)

which then results in the final solution

φ(r) = (φe − φi)
ln r/ri

ln re/ri
+ φi. (C.8)

C.2 Spherical Shell

The diffusive equation in spherical coordinate is written as

∇2φ(r, θ, ϕ) =
1

r2

∂

∂r2

(
r
∂2φ

∂r2

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂φ

∂θ

)
+

1

r2sin2θ

∂2φ

∂ϕ2
= 0. (C.9)

The boundary conditions are

φ(ri, θ, ϕ) = φi and φ(re, θ, ϕ) = φe (C.10)

where ri and re are the inner and outer radius, as defined before.
By using the separation of variables method we can assume

φ(r, θ, ϕ) = R(r)Y (θ, ϕ) (C.11)

which gives, by substituting it in equation C.9,

1

R

d

dr

(
r2dR

dr

)
+

1

Y sinθ

∂

∂θ

(
sinθ

∂Y

∂θ

)
+

1

Y sin2θ

∂2φ

∂ϕ2
= 0. (C.12)

As before the problem also has radial symmetry, leading to an ordinary differ-
ential equation resulting in

φ(r) = A0 +
B0

r
, (C.13)

which by utilizing the boundary condition gives

A0 =
φere − φiri
re − ri

and B0 = rire
φe − φi
re − ri

, (C.14)

which leads the final equation

φ(r) =

(
φere − φiri
re − ri

)
−
(
φe − φi
re − ri

)
rire
r
. (C.15)
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