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”Failure is not an option.”

Arnold Schwarzenegger
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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

OTIMIZAÇÃO DAS DIMENSÕES E POSIÇÃO DO MOONPOOL DE UM

NAVIO-SONDA EM MAR ALEATÓRIO UTILIZANDO ALGORITMO

GENÉTICO

Lucas do Vale Machado

Dezembro/2020

Orientador: Antonio Carlos Fernandes

Programa: Engenharia Oceânica

Apresenta-se, nesta tese, um método para efetuar a otimização de um perfil

de moonpool (dimensões e posicionamento no casco), minimizando movimentos da

água no interior do moonpool ou movimentos da embarcação, para um navio-sonda

em operação, quando em mar de proa (β = 180.0°), para uma onda regular ou um

mar aleatório.

O estudo é dividido em duas etapas. Na primeira é feito um estudo anaĺıtico e

numérico do movimento da água no interior do moonpool, com intuito de entender a

f́ısica do fenômeno e conhecer os parâmetros para realização do objetivo da tese. Na

segunda etapa, utiliza-se um algoritmo de otimização, conhecido como Algoritmo

Genético (AG), para efetuar a otimização do perfil em si.

Na primeira parte, baseando-se em trabalho conhecido na literatura, uma

equação para o movimento da água no interior de um moonpool retangular é deduzida

e dela é posśıvel tirar coeficientes hidrodinâmicos importantes como frequência nat-

ural e amortecimento cŕıtico. Atráves de análises numéricas feitas com código com-

ercial em CFD (Computational Fluid Dynamics), algumas observações são feitas

sobre a dinâmica desse movimento com relação ao movimento do corpo. Além do

mais, é realizado um estudo para implementação de amortecimento viscoso artifi-

cal em um código de teoria potencial com uso de uma espécie de tampa numérica

no moonpool. O objetivo principal da primeira parte é calcular o amortecimento

viscoso para implementação na teoria potencial na segunda parte.

Na segunda parte, é mostrada a implementação do Algoritmo Genético (AG)

com a utilização de um código desenvolvido para a tese. Resultados mostram a

capacidade do algoritmo de encontrar perfis que obedecem os critérios estabelecidos

pelo usuário. Outro fator observado é um forte acoplamento entre movimentos de

afundamento da embarcação com movimentos da água no moonpool. Com isso, é

posśıvel otimizar o moonpool para utilização como amortecedor de movimentos da

embarcação.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

MOONPOOL DIMENSIONS AND POSITION OPTIMIZATION WITH

GENETIC ALGORITHM OF A DRILLSHIP IN RANDOM SEAS

Lucas do Vale Machado

December/2020

Advisor: Antonio Carlos Fernandes

Department: Ocean Engineering

In this work, we present a method to optimize the moonpool profile (its dimen-

sions and position in the hull), minimizing water motion inside moonpool or motions

of the ship, for a specific drillship hull in operation condition, when in head seas (β

= 180.0°), for both a regular wave or a random sea.

The study approach is divided in two main parts. In the first part is presented

an analytical and numerical study of the water motion inside moonpool with the

aim to understand the physics of the phenomenon and define the parameters for the

main goal achievement. In the second part, an optimization algorithm known as

Genetic Algorithm (GA) is used for the moonpool optimization.

For the first part, based on previous known work in literature, an equation for the

water motion inside a rectangular moonpool is deduced and from that it is possible to

get important hydrodynamic coefficients as natural frequency and critical damping.

From commercial CFD (Computational Fluid Dynamics) software analysis, some

observation are done about the relative motion between the vessel and the water

motion inside moonpool. Furthermore, it is done a study for implementation of

an artificial viscous damping in a potential theory code using a lid technique. The

main goal of the first part is to calculate the viscous damping in order to use in the

potential theory at the second part.

The optimization procedures using the in-house software created for this thesis

and applies Genetic Algorithm (GA) is the main topic in second part. Results reveal

the algorithm ability to find profiles that follows the optimization requirements

defined by the user. Another interesting factor observed is the coupling between

vessel’s heave motion and the water motion inside moonpool. Thereby, it is possible

to find an optimum profile that acts as a damper of vessel motions.

vii



Contents

List of Figures xi

List of Tables xvi

List of Symbols xviii

List of Abbreviations and Acronyms xxvii

1 Introduction 1

1.1 Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Goals and Contributions . . . . . . . . . . . . . . . . . . . . 4

1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Water Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 Natural Frequency - Resonance . . . . . . . . . . . . . . . . . 8

1.4.3 Moonpool Optimization . . . . . . . . . . . . . . . . . . . . . 10

1.5 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Ship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 Moonpool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Theoretical Background 15

2.1 Potential Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Hydrodynamic Formulation . . . . . . . . . . . . . . . . . . . 15

2.1.2 Wave Body Interaction . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Free Surface Elevation . . . . . . . . . . . . . . . . . . . . . . 19

2.1.4 Artificial Viscous Damping . . . . . . . . . . . . . . . . . . . . 19

2.2 Computational Fluid Dynamics (CFD) . . . . . . . . . . . . . . . . . 20

2.2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



2.2.5 Volume of Fluid Method (VOF) . . . . . . . . . . . . . . . . . 49

2.2.6 Verification and Validation (V&V) . . . . . . . . . . . . . . . 52

2.3 Genetic Algorithm (GA) . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Analytical Approach 57

3.1 Water Motions Inside of Moonpool . . . . . . . . . . . . . . . . . . . 57

3.2 Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Hydrodynamic Coefficients - Decay test . . . . . . . . . . . . . . . . . 62

4 Numerical Approach 65

4.1 CFD Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.3 Turbulence Model . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.4 Physical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Water Motions Inside of Moonpool . . . . . . . . . . . . . . . . . . . 86

4.2.1 Numerical Decay Test . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Numerical Forced Heave Oscillation Test . . . . . . . . . . . . 90

4.2.3 Numerical Regular Wave with Captive Vessel Test . . . . . . . 94

4.2.4 Numerical Regular Wave for Freely Floating Vessel Test . . . 96

4.3 Potential Theory Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.1 Ships Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.2 Moonpool - Free Surface Elevation (FSE) . . . . . . . . . . . . 111

4.3.3 Artificial Viscous Damping . . . . . . . . . . . . . . . . . . . . 112

5 Moonpool Optimization 116

5.1 Genetic Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Fitness Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.1 Ocean-Wave Spectrum . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Drillship Mesh Generator for Potential Theory - DMGPT . . . . . . . 121

5.5 Genetic Algorithm at UFRJ - GAUFRJ . . . . . . . . . . . . . . . . 121

6 Results and Discussions 123

6.1 Regular Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1.1 Optimization of Free Surface Elevation . . . . . . . . . . . . . 123

6.1.2 Optimization of Vessel Heave Motion . . . . . . . . . . . . . . 126

6.2 Random Sea - Case Study . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.1 Optimization of Free Surface Elevation . . . . . . . . . . . . . 129

6.2.2 Optimization of Vessel Heave Motion . . . . . . . . . . . . . . 131

ix



7 Conclusions and Future Work 135

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 139

A Equation of Motion for the Moonpool in a Floating Vessel 148

x



List of Figures

1.1 Piers and derricks at Summerland, California, 1901. (LEFFLER et al.

[1]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Breton Rig 20 - Submersible rated for 20-ft water depths. (OFF-

SHORE MAGAZINE [2]) . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Water motion in a) piston mode and b) sloshing mode. (Adapted
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5.4 Wave record analysis (JOURNÉE and MASSIE [11]) . . . . . . . . . 119

5.5 a) Graphical User Interface and b) Command Line Interface of

DMGPT software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 a) Graphical User Interface of GAUFRJ software and b) setup of the

fitness criterion and the project name . . . . . . . . . . . . . . . . . . 122

5.7 Option for changing limits of moonpool dimensions or to modify the

number of optimization parameters (genes).a) How to access and b)

the setup window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.1 Objective History - Regular wave of 0.731rad/s - Fitness criteria:

Free Surface Elevation. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Generation Statistics - Regular wave of 0.731rad/s - Fitness criteria:

Free Surface Elevation. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Comparison of RAOs between optimum and default moonpool - Reg-

ular wave of 0.731rad/s - Fitness criteria: Free Surface Elevation. . . 125

xiv



6.4 Objective History - Regular wave of 0.731rad/s - Fitness criteria:

Vessel Heave Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Generation Statistics - Regular wave of 0.731rad/s - Fitness criteria:

Vessel Heave Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6 Comparison of RAOs between optimum and default moonpool - Reg-

ular wave of 0.731rad/s - Fitness criteria: Vessel Heave Motion. . . . 127

6.7 JONSWAP spectrum representing ocean for case study - HS = 2.0m

and TP = 8.6s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.8 Objective History - JONSWAP spectrum (HS = 2.0m and TP = 8.6s)

- Fitness criteria: Free Surface Elevation. . . . . . . . . . . . . . . . . 129

6.9 Generation Statistics - JONSWAP spectrum (HS = 2.0m and TP =

8.6s) - Fitness criteria: Free Surface Elevation. . . . . . . . . . . . . . 129

6.10 Comparison of heave a) RAO and b) response spectrum between op-

timum and default moonpool - JONSWAP spectrum (HS = 2.0m and

TP = 8.6s) - Fitness criteria: Free Surface Elevation. . . . . . . . . . 130

6.11 Comparison of free surface elevation a) RAOs and b) response spec-

tra between optimum and default moonpool - JONSWAP spectrum

(HS = 2.0m and TP = 8.6s) - Fitness criteria: Free Surface Elevation. 131

6.12 Objective History - JONSWAP spectrum (HS = 2.0m and TP = 8.6s)

- Fitness criteria: Vessel Heave Motion. . . . . . . . . . . . . . . . . . 132

6.13 Generation Statistics - JONSWAP spectrum (HS = 2.0m and TP =

8.6s) - Fitness criteria: Vessel Heave Motion. . . . . . . . . . . . . . . 132

6.14 Comparison of heave RAO and response spectrum between optimum

and default moonpool - JONSWAP spectrum (HS = 2.0m and TP =

8.6s) - Fitness criteria: Vessel Heave Motion. . . . . . . . . . . . . . . 133

6.15 Comparison of free surface elevation RAOs and response spectra be-

tween optimum and default moonpool - JONSWAP spectrum (HS =

2.0m and TP = 8.6s) - Fitness criteria: Vessel Heave Motion. . . . . . 133

7.1 a) Numerical analysis and b) experimental test of outflow vortices in

decay test inside a cylinder done in LOC facilities. . . . . . . . . . . . 137

A.1 The control volume Ω with surface dΩ of rectangular shaped moonpool.149

xv



List of Tables

1.1 Main particulars of the generic vessel fKN1 and vessel fKN2 (w/

default moonpool). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Values of constants in Spalart-Allmaras model. . . . . . . . . . . . . . 30

2.2 Values of constants in κ-ε model. . . . . . . . . . . . . . . . . . . . . 31

2.3 Values of constants in κ-ω model. . . . . . . . . . . . . . . . . . . . . 32

2.4 Values of constants in Shear Stress Transport (SST) κ-ω model. . . . 34

4.1 Dimensions of the three domains generated as a function of barge LOA. 67

4.2 Hydrodynamic coefficients and relative variations for domain study. . 69

4.3 PQ Analysis of hydrodynamic coefficients for domain study. . . . . . 70

4.4 Properties of decay grid for different refinements (rgrid ≈ 1.3). . . . . 73

4.5 Hydrodynamic coefficients and relative variations for mesh study. . . 73

4.6 Calculations of discretization error - Grid Convergence Index of each

mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Boundary conditions of turbulence parameters. . . . . . . . . . . . . . 76

4.8 Hydrodynamic coefficients and relative variations for turbulence anal-

ysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 Boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.10 Physical modeling general setup. . . . . . . . . . . . . . . . . . . . . . 84

4.11 Solution controls with relaxation factors. . . . . . . . . . . . . . . . . 86

4.12 Properties of grid for no cutout moonpool. . . . . . . . . . . . . . . . 87

4.13 Hydrodynamic coefficients for cutout analysis. . . . . . . . . . . . . . 89

4.14 Analytical calculation of natural frequencies according to previous

works (Section 1.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.15 Properties of grid for forced heave oscillation test. . . . . . . . . . . . 92

4.16 Main particulars of models fKN1 and fKN2 and dimensions of do-

mains generated as function of ship LOA,model. . . . . . . . . . . . . . 97

4.17 Properties of grid for freely floating vessel test. . . . . . . . . . . . . . 98

4.18 Boundary conditions for freely floating vessel test. . . . . . . . . . . . 101

4.19 Physical modeling general setup for freely floating vessel test. . . . . . 101

xvi



4.20 Undamped natural periods of fKN1 and fKN2. . . . . . . . . . . . . . 110

6.1 Optimum moonpool particulars - Regular wave of 0.731rad/s - Fit-

ness criteria: Free Surface Elevation. . . . . . . . . . . . . . . . . . . 125

6.2 Comparison of wave probe RAO values between optimum and de-

fault moonpool - Regular wave of 0.731rad/s - Fitness criteria: Free

Surface Elevation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Optimum moonpool particulars - Regular wave of 0.731rad/s - Fit-

ness criteria: Vessel Heave Motion. . . . . . . . . . . . . . . . . . . . 127

6.4 Comparison of heave RAO values between optimum and default

moonpool - Regular wave of 0.731rad/s - Fitness criteria: Vessel

Heave Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Optimum moonpool particulars - JONSWAP spectrum (HS = 2.0m

and TP = 8.6s) - Fitness criteria: Free Surface Elevation. . . . . . . . 130

6.6 Optimum moonpool particulars - JONSWAP spectrum (HS = 2.0m

and TP = 8.6s) - Fitness criteria: Vessel Heave Motion. . . . . . . . . 132

xvii



List of Symbols

A Cross-sectional area of the moonpool, p. 8, 9, 59, 61

B Vessel’s breadth moulded - Beam, p. 13, 97

BCrit Critical damping coefficient, p. 59, 69, 73, 80, 89, 90, 136

Beq Equivalent linearized damping coefficient, p. 59, 67, 69, 73, 80,

89, 90, 136

Bl Linear damping coefficient, p. 57–60, 63, 70, 150, 151

Bq Quadratic damping coefficient, p. 57–60, 63, 70, 150, 151

Bs Linear damping coefficient for the vessel, p. 60

CS Surface of control volume, p. 22

CV Control volume, p. 22

CV Volume of control volume, p. 22

C+ Constant, p. 38, 39

D Depth moulded, p. 13, 97

Ek Kinetic energy, p. 61

Ep Potential energy, p. 61

F Excitation force on ship, p. 18

Fwh Wave force exciting relative motion, p. 57, 60, 151

Fwz Wave force exciting vessel’s heave, p. 60

GCIkll Grid convergence index between mesh k and l, p. 55, 74

H Wave height, p. 23, 82, 101

xviii



Jn0 Function of moonpool’s length and breadth - Sloshing, p. 9,

10

K Stiffness coefficient, p. 59

Ks Stiffness coefficient for the vessel, p. 60

Kxx Gy-radius around X axis, p. 13, 97

Kyy Gy-radius around Y axis, p. 13, 97

Kzz Gy-radius around Z axis, p. 13, 97

L′ Distance between wave probes, p. 68, 89, 111

LOA Vessel’s length overall, p. 13, 66, 67, 97

LPP Vessel’s length between perpendiculars, p. 13, 97

M Mass, p. 61, 63

Mas Added mass for the vessel, p. 60

Ma Added mass, p. 57–63, 69, 73, 80, 89, 150, 151

Ma Mach number, p. 28

Ms Mass of vessel, p. 60

N Number of cells, p. 53

P Moonpool’s position - Measured from transom, p. 13, 97, 125,

127, 130, 132

Pjk Stress tensor, p. 148–150

RAODoF Response Amplitude Operator of DoF motion, p. 18

RAOdegree Response Amplitude Operator of degree motion, p. 119

Sz (ωf ) Response spectrum, p. 119

S0 Bottom boundary, p. 16, 19

SB Body boundary, p. 16, 19

SF Free surface boundary, p. 16

SMx Source term of momentum in x -component, p. 21

xix



SMy Source term of momentum in y-component, p. 21

SMz Source term of momentum in z -component, p. 21

SM Moonpool surface boundary, p. 19

SΨ Source term, p. 22

SΨ Source term of Ψ property, p. 22

S∞ Unbounded surface, p. 16, 19

Sζ (ωf ) Wave spectrum, p. 119

Sm Source term for mass, p. 21

Sm Source term of mass, p. 21

T Period, p. 23, 82, 101

Td Damped natural period, p. 62

WPBow Wave probe at moonpool closer to bow, p. 68, 70, 89

WPMiddle Wave probe at center of moonpool, p. 68, 89

WPStern Wave probe at moonpool closer to stern, p. 68, 89

X (t) Vessel motion, p. 18

∆ζn Free surface elevation decrement of nth extreme value (Time

series), p. 63, 64

∆ship Weight displacement of ship, p. 13, 97

Γ Diffusion coefficient, p. 22

Ω Volume of control, p. 57, 148, 149

Ψ Generic tensor, vector or scalar function, p. 22, 27, 148

α Cutout angle, p. 11, 13, 57, 61, 86, 97, 125, 127, 130, 132

αq Volume fraction of qth phase, p. 49

v̄ Steady mean of velocity vector, p. 28

p̄s Steady mean static pressure, p. 27

β Wave heading, p. 4, 10, 107, 111, 114, 115

xx



δ Logarithmic decrement, p. 62, 63, 67

δij Kronecker delta, p. 28

D

Dt
Material derivative, p. 148

η Damping ratio, p. 59, 62, 63, 89

~∇φ Flow velocity - Gradient of velocity potential, p. 15, 16, 19,

149

~∇ Nabla operator, p. 148

κ Turbulent kinetic energy per unit mass, p. 28, 29

λ Wavelength, p. 82, 100

λn Wavelength of nth piston mode, p. 9

µ Dynamic viscosity, p. 21, 26

µt Eddy viscosity, p. 28

∇ship Volume displacement of ship, p. 13, 97

ν Kinematic viscosity, p. 28

νt Kinematic eddy viscosity, p. 29, 33

ω00 Natural frequency - Piston mode, p. 9

ωd Damped natural frequency, p. 59, 62, 89

ωf Angular frequency, p. 119

ωn0 Natural frequency - Sloshing mode (n-order), p. 9

ωn Natural frequency, p. 8, 9, 59, 62, 63, 69, 73, 80, 89, 90

u Steady mean velocity in x -component, p. 27–29, 39

vj Steady mean of velocity vector in jth direction - Index notation,

p. 28

v Steady mean velocity in y-component, p. 27, 28

w Steady mean velocity in z -component, p. 27, 28

φ Velocity potential, p. 15–17, 19, 149, 150

xxi



φdif Diffraction velocity potential, p. 17

φinc Incicident velocity potential, p. 17

φrad Radiated velocity potential, p. 17

ρ Specific density, p. 15, 16, 21, 22, 26, 28, 29, 148–150

ρair Specific density of air, p. 149

ρw Specific density of water, p. 9, 57–60, 149–151

τij Reynolds stress tensor, p. 28, 29

τw Wall shear stress, p. 38

θ Phase in motion, p. 18

θ0 Function of moonpool’s length and breadth - Sloshing, p. 10

ν̃ Kinematic eddy viscosity parameter, p. 29

ΦDoF Amplitude of the rotation of DoF, p. 18

ε Dissipation parameter at damping zone, p. 19, 113, 114

εkl Function of the key variable for GCI method, p. 54

ϕ Key variable of the simulation, p. 54

ϕklext Extrapolated variable of the simulation between mesh k and l,

p. 54, 55, 74

ϕk Key variable of the simulation on the kth grid, p. 54, 55, 74

B Damping matrix, p. 18

K Stiffness matrix, p. 18

Ma Additional mass matrix, p. 18

M Inertia matrix, p. 18

X Motion vector of ship, p. 18

~n Outward-pointing unit normal surface vector, p. 16, 19, 22,

148

~v Velocity vector, p. 15, 16, 19, 21, 22, 148

xxii



~x Vector position, p. 16

ζa Wave amplitude, p. 18

ζfs Free surface elevation, p. 19

ζm Mean of free surface elevation of nth extreme value (Time se-

ries), p. 63, 64

ζn Free surface elevation of nth extreme value (Time series), p.

62, 63

ah Added mass coefficient, p. 9

b Moonpool’s breadth, p. 9, 57–61, 149–151

bb Moonpool’s breadth on bottom, p. 13, 97, 125, 127, 130, 132

bd Moonpool’s breadth on deck, p. 13, 97, 125, 127, 130, 132

c Characteristic linear dimension, p. 26

d Draft, p. 8, 9, 13, 57–60, 83, 97, 149–151

dΩ Surface of control, p. 148, 149

d′ Added draft, p. 8

dhz Added mass interaction coefficient between heave and absolute

moonpool motion, p. 57, 60, 151

dzh Added mass symmetric interaction coefficient between heave

and absolute moonpool motion, p. 60

ekla Approximate relative error between mesh k and l, p. 54, 55,

74

eklext Extrapolated relative error between mesh k and l, p. 55, 74

ehz Damping interaction coefficient between heave and absolute

moonpool motion, p. 57, 60, 151

ezh Damping symmetric interaction coefficient between heave and

absolute moonpool motion, p. 60

f3 Function of moonpool’s length and breadth - Piston, p. 9

fi Body force vector in the ith direction, p. 148

xxiii



g Gravity acceleration, p. 8, 9, 16, 19, 23, 57–60, 82, 101, 149–

151

h(t) Free surface elevation, p. 57, 58, 60, 62, 83, 149–151

hcoarse Representative cell size - Coarse mesh, p. 54

hdepth Water depth, p. 23, 82, 101

hfine Representative cell size - Fine mesh, p. 54

hgrid Representative cell size, p. 53

hk Representative cell size - Mesh k, p. 54
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Chapter 1

Introduction

This chapter presents a brief historical background and motivation, also the goals

of this thesis as well as a general literature review. The geometry of the ship under

consideration and a default moonpool is shown in Section 1.5. The organization of

the thesis is also presented

1.1 Brief History

The first oil well drilled dates back 1859 (previously it was dug) in Pennsylvania

(USA). This onshore well is known as Drake’s well because it was named after Edwin

Laurentine Drake, the first man to successfully drill for oil. In 1987 offshore drilling

began at Summerland Oil Field in Santa Barbara County, California (USA), using

a pier to support a land rig as it is shown in Figure 1.1.

Figure 1.1: Piers and derricks at Summerland, California, 1901. (LEFFLER et al.
[1])

Only in the early 1930s happened the first “on-water” drilling in the swamps

of Louisiana using rectangular shallow-draft barges. Therefore, with the need of
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drilling other wells offshore, in 1947, a Tender Assist Drilling (TAD) unit was used

in the Gulf of Mexico in only 16 feet of water. Then, in 1949, posting a lattice steel

structure above a barge, John T. Hayward designed The Breton Rig 20 (Figure 1.2),

a submersible rated for just 20 feet of water. It is considered the first submersible

used offshore and it has some stability issues but fortunately did not flip.

Figure 1.2: Breton Rig 20 - Submersible rated for 20-ft water depths. (OFFSHORE
MAGAZINE [2])

Few years later, Hayward and Alden J. ”Doc” Laborde founded the Ocean

Drilling & Exploration Company (ODECO) and they built Mr. Charlie (1954),

submersible designed to handle the stability problem. At that time, the population

in California coast close to Summerland (Figure 1.1) raised strong objection for

building any new permanent offshore platform as long as it was creating a visual

pollution and could cause natural disasters. A consortium created by 4 companies,

Continental, Union, Shell and Superior Oil and irreverently named the CUSS group,

commissioned the Submarex, a drilling ship. They converted a patrol boat by adding

a drilling rig (M.V. Submarex), but some engineering problems convinced they to

not use for exploratory wells. At least they could learn a lot about stability, moor-

ing, and drilling that the group began design on CUSS 1, a purpose-built drilling

vessel. This vessel was launched in 1961 and had no self-propulsion, so tugs were

needed in order to position it on a site and then moorings would hold it in place.

CUSS 1 performed succesfully in waters up to 350 feet and started a new class of

exploratory drilling options, floating platforms called Drillship.

This history background is traced in more detail by LEFFLER et al. [1].
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1.2 Motivation

Drillship is a merchant vessel for use in exploratory offshore drilling. A conven-

tional drillship has a opening in the hull from the deck to baseline in order to give

passage to the drill pipe. This opening is called moonpool and it has effects on the

vessel when it is sailing or when waves are approaching the vessel in the operating

mode, at zero speed. Unlike a ship which spends much of its working life moving

between ports, a drillship spends much of its working life stationary over a well,

maintaining its position. It may utilize their mooring lines and anchors or use their

Dynamic Positioning (DP) system (ship’s computer-controlled system on board to

automatically maintain a vessel’s position and heading by using its own propellers

and thrusters).

Thus, it is highly important to consider the moonpool effects when the ship is

operating, as they may cause increase in the ship’s motions or even increase the water

motion inside the moonpool. Some specific operations have strict operability criteria

and often a drillship is waiting on operational window to perform these operations,

such as lowering a BOP (Blowout Preventer) or X-tree (equipment that provides flow

control on well) through the splash zone (region of contact of the equipment with

free surface). Depending on the moonpool design and the sea state, the operation

needs to be delayed as the motions become large and the water flows over the edge

of the moonpool, compromising safety for the ship, its crew, its sensitive equipment

and also generating high costs, mostly for downtime caused by moonpool inactivity.

This problem with water flowing onto deck is known as Green Water.

In order to better understand these effects, first of all we need to know how

the water motions happens inside the moonpool and what causes that. The water

motion happens mainly at natural modes of the moonpool: the sloshing mode,

back and forth in between the vertical walls and the piston mode where the water

oscillates vertically, heaving up and down (MOLIN [5]). These motions are shown in

Figure 1.3. Regarding to the circumstances that generates the motions, it originates

from the match between vertical excitation and the natural frequency of the water

column and can be splitted in two components (GAILLARDE and COTTELEER

[6]):

� local vertical accelerations at the bottom of the moonpool;

� pressure differences at the bottom of the moonpool.

As time is a synonym of money, focusing in faster drilling and completion op-

eration, newer generation of offshore rigs, in general, are being designed with dual

activity drilling systems. This concept was created by Transocean Sedco Forex in

the fall of 1995 [23]. Drillships for this purpose have a dual derrick (tall pyramidal
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skeleton that supports the weight of the drill string) and each of it has separate

draw works, top drives, and pipe-handling facilities. While one system is working

the borehole, the other can be raising or lowering a drill pipe in parallel. Hence,

a larger moonpool is needed to fit both derrick and consequently increasing the

unwanted effects.

Figure 1.3: Water motion in a) piston mode and b) sloshing mode. (Adapted from
HAMMARGREN and TÖRNBLOM [3])

Since this Mobile Offshore Drilling Unit (MODU) has a huge importance in

the offshore exploration, the optimization of the moonpool profile for operating

conditions would save a huge quantity of money and time for the companies involved.

1.3 Research Goals and Contributions

The aim of this thesis is to develop a method to optimize the moonpool profile (its

dimensions and position in the hull), minimizing water motion inside moonpool or

motions of the ship, for a specific drillship hull in operation condition, when in head

seas (β = 180.0°), for both a regular wave or a random sea. Also, due to coupling

between water motion inside moonpool and vessel’s heave, another important goal

is to analyze the contribution that moonpool size and position variation can cause

on vessel motion. The moonpool, depending on its characteristics, may be studied

as a vessel motion damper.

In order to accomplish these objectives, a study is necessary in order to under-

stand the physics behind phenomenon. So the first part of this thesis concerns the

analytic and numerical studies of the water motion inside a rectangular moonpool

with cutout angle (trailing wall is angled in relation to ship’s baseline). The specific
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objectives of this part are:

� Analyze the theory to calculate the resonance period of the water motion inside

the moonpool as it can be used as verification of the final results;

� Understand the physical effects of the water motion and the importance of

modeling the viscosity;

The second part concerns to propose an optimization software that uses Genetic

Algorithm (GA) . The specific objectives of this part are:

� Development of a software to create automatic meshes for potential theory

analysis;

� Development of a software to find the optimum moonpool for regular wave or

a random sea (Ocean-Wave Spectrum);

The main importance of the first part is to calculate the viscous damping in

order to use in the potential theory. This work brings two main originality, that

is the deduction of the equation for the rectangle moonpool and the resonance

frequency, also the application of an optimization algorithm for the moonpool shape

and position on a ship.

1.4 Literature Review

1.4.1 Water Motion

FUKUDA [4] wrote one of the first papers published in the topic took place in

the late 1970’s. It was an experimental study and until today is very well referenced.

FUKUDA [4] built four types of model ships with vertical openings, the experiments

were conducted in current at two states, with and without restraint of the ship

motion in sway, and the water surface in the opening and the hull movement were

measured. He did some variation in the size parameters and analyzed the effect on

the moving shapes, as shown in Figure 1.4 it was possible to notice the piston mode

(heaving) and sloshing mode (swaying and surging).

AALBERS [24] wrote a well referenced paper and with important result in the

mid 1980’s. It presents a mathematical model to express the water motion analyti-

cally. AALBERS [24] derived a mathematical model and also did experiments for a

circular moonpool in waves in order to verify the results from the model. With his

model he could show good agreement with the experiments for motion decay for the

moonpool water column, forced heave oscillations, test in regular waves with captive

vessel and even for free floating ship in waves. The mathematical model can be used
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Figure 1.4: Moving shapes of water inside the moonpool. (Adapted from FUKUDA
[4])

to predict the motion behavior with some empirical adjustments for the quadratic

damping.

MOLIN [5] used linearized potential flow theory to also create a model for a barge

of infinite breadth and length with a moonpool inside. Calculations were done for the

two-dimensional (2D) and three-dimensional (3D) case. Figure 1.5 shows the water

shapes for a rectangular moonpool in piston mode, the first longitudinal sloshing

mode and first transverse sloshing mode.

Figure 1.5: Free surface shape in a) piston mode for square moonpool, b) first
longitudinal sloshing mode for a rectangular moonpool (length-to-width ratio of 16)
and c) first transverse sloshing mode for a rectangular moonpool (length-to-width
ratio of 16). (Adapted from MOLIN [5])

Numerical results using Computational Fluid Dynamics (CFD) to solve the flow

inside the moonpool were obtained by GAILLARDE and COTTELEER [6] with the

software ComFLOW. They used the Volume of Fluid (VOF) algorithm and solved
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the incompressible Navier-Stokes equations with a free-surface condition on the free

boundary for the approach in calm water, with the vessel sailing at constant speed

(Figure 1.6). When this article was written, in 2004, they concluded that some

developments should be made to consider CFD simulations a useful design tool for

this purpose. These developments for simulation of stationary case in waves were:

� Introduction of the excitation forces into VOF simulations (excitation being

calculated, for example, in the frequency domain thanks to existing codes);

� Update of ComFLOW program to take into account moving body and inflow

conditions;

� Validation of simulations;

� Comparison with existing techniques and development of a design tool.

This was an effort proposed to be conducted in an upcoming Joint Industry

Project initiated by Maritime Research Institute Netherlands (MARIN), one of the

leading institutes in the world for hydrodynamic research and maritime technology.

Figure 1.6: CFD simulation of calm water moonpool oscillation. (GAILLARDE and
COTTELEER [6])

In 2014, LEE and IM [7] examined the nonlinear fluid characteristics near and

inside a moonpool taking into account the viscosity effect by CFD. Numerical cal-

culations were performed in a 2D moonpool with three wave amplitudes of 1/4, 1/8,

and 1/12 of the draft, and four wave lengths of 1/3, 1/2, 1, and 2 times the ship’s

length between perpendiculars. The work showed a piston mode result, in which the

free surface remains flat (Figure 1.7), and also that the free surface level increases

as the wave length increases.
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Some others papers brought CFD and experimental results to show the motion

inside moonpool. Normally simulations do not take into consideration the full hull

geometry or the vessel is captive in most of the DoFs.

Figure 1.7: Piston mode - Water oscillates up and down while remaining essentially
flat (CFD). (LEE and IM [7])

1.4.2 Natural Frequency - Resonance

Resonance frequencies of the piston mode and the sloshing mode due to the

effect of a moonpool has been extensively researched in literature. The simplest

formula for natural frequency calculation is shown in Equation (1.1) and is formally

presented in FALTINSEN [10].

ωn =

√
g

d
, (1.1)

where ωn is the Natural Frequency [rad/s], g is the gravity acceleration [m/s2] and

d is the draft [m].

In 1977, FUKUDA [4] derived resonance frequencies of the piston mode, similar

to Equation (1.1) but with an added length, as following:

ωn =

√
g

d+ d′
, (1.2)

where d′ is usually called added draft [m].

Researching squared moonpools, FUKUDA [4] expressed the added draft by the

following empirical formula:

d′ = 0.41
√
A, (1.3)

where A is the cross-sectional area of the moonpool [m2].

For a rectangular moonpool, this leads to the following equation for the natural
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frequency:

ωn =

√
g

d+ 0.41
√
bl
, (1.4)

where b is the moonpool’s breadth [m] and l is the moonpool’s length [m].

Meanwhile, NEWMAN [25] also presented an expression for the calculation of

n-order resonance frequency of sloshing mode as shown in Equation (1.5).

ωn =

√
nπg

l
, (1.5)

where n is order of resonance.

As aforementioned, AALBERS [24] derived a mathematical model and the res-

onance frequency of this system is presented in Equation (1.6).

ωn =

√
ρwgA

ρwAd+ ah
, (1.6)

where ρw is the specific density of water [kg/m3] and ah added mass coefficient [kg].

Additionally, in 1985, a master thesis concerned with sloshing motion of water

in a moonpool was published and MADHANI [26] presented the Equation (1.7) for

the natural frequency.

ωn =

√
πg

b
tanh

(
πd

b

)
, (1.7)

MOLIN [5] was not just targeting to calculate the free surface, but also the

natural frequencies. His work presented separated equations for the piston mode

and sloshing mode and also for the 2D and 3D cases. Equation (1.8) is the natural

frequency for 3D piston mode and Equation (1.10) is for the 3D sloshing mode.

ω00 '
√

g

d+ bf3 (b/l)
, (1.8)

where

f3 =
1

π

{
sinh-1

(
l

b

)
+
l

b
sinh-1

(
b

l

)
+

1

3

(
b

l
+
l2

b2

)
− 1

3

(
1 +

l2

b2

)√
b2

l2
+ 1

}
.

(1.9)

ωn0 '
√
gλn

1 + Jn0 tanhλnd

Jn0 + tanhλnd
, (1.10)
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where λn is nth wavelength [m] and

Jn0 =
2

nπ2r

{∫ 1

0

r2

u2
√
u2 + r2

[
1 + (u− 1) cos (nπu)− sin (nπu)

nπ

]
du+

1

sin θ0

− 1

}
,

(1.11)

where r = b/l and tan θ0 = r−1.

1.4.3 Moonpool Optimization

There is a gap on research concerning of optimization algorithm for that case.

PARK et al. [8] did a work in which they studied five different moonpool shapes with

numerical and experimental analysis. These five different moonpool types varied one

from another just by the addition of three damping blocks with different sizes and

position (Figure 1.8.a). The criteria to choose was just based on comparison of

maximum free surface height in results for sea state of maximum drilling condition

and two different wave headings, quartering (βq = 135.0) and heading (βh = 180.0)

sea.

A more recent study was published in 2018 by CHALKIAS and KRIJGER [9],

where a generic hull geometry was used and a rectangular moonpool with a cutout

step (Figure 1.8.b). Optimization criteria was the operability of the vessel (percent-

age of time that the vessel can perform a specific operation in a location not limited

by environmental conditions). Ten different moonpool variations were investigated

with a simple rectangular moonpool and 9 other variations in the cutout step size.

They presented results of the operability index for different nautic zones and the

choice of the optimum profile depend on that. Another interesting remark of this

paper is the investigation of artificial damping to use in potential flow solver by

CFD results.

Figure 1.8: a) Moonpool with block [8] and b) moonpool with a cutout step [9]
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HENRIQUES et al. [27] presented two algorithm for geometry optimization of

a floating oscillating water column (OWC) using WAMIT. One of these algorithms

used is the Differential Evolution (DE), a population-based metaheuristic method

and it is a branch of evolutionary algorithms.

This lack of a research using the concepts of mathematical optimization con-

tributes to the originality and importance of the present thesis.

There is a plenty of other conference papers and journal articles about the moon-

pool topic, also concerning about damping devices and the water motion effects in

moonpool with recess (water above an intermediate work deck and its main pur-

pose is for assembling of drilling equipment and transportation of them to the main

moonpool).

1.5 Geometry

1.5.1 Ship

A generic drillship vessel was used in this work and it is called fKN1. Its main

particulars are presented in Table 1.1. A simple schematic of the hull without

moonpool is also shown in Figure 1.9.

Figure 1.9: Design of fKN1 Ship

1.5.2 Moonpool

Since the optimization algorithm demands trial of multiple profiles and a com-

parison among them, one default moonpool that fits a dual derrick was chosen.

Figure 1.10 shows a schematic view of the default moonpool and Figure 1.11 shows

the generic vessel (called fKN2 ) with this moonpool configuration. Main particulars

of moonpool in fKN2, for loading conditions in operating mode, are presented in

Table 1.1.

It is possible to check that the moonpool take almost 20% of overall length of

the ship. Another important parameter to give attention is the cutout angle (α),
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Figure 1.10: Design and position of the default moonpool

Figure 1.11: Design of fKN2 Ship (Default Moonpool)

that is the value at which the trailing wall is angled in relation to ship’s baseline

(BL) as can be seen in Figure 1.10

1.6 Thesis Organization

This thesis is divided into seven chapters. Chapter 1 is an introduction with a

history background about drillships and moonpools, the goals of this present work

and what has already been studied on the subject. The geometry of the ship and

default moonpool that is going to be used as the standard one for comparisons is

also presented at this introductory chapter.

Chapter 2 presents the theoretical background of this work. Including potential

theory, Computational Fluid Dynamics (CFD) and Genetic Algorithm (GA) .

Chapter 3 shows the analytical results based on theory behind previous works.

In this chapter the analytical calculation of damping values based on dimension

parameters and decay test of a moonpool is an important step for the optimization

as will be seen in following chapters.

Thereafter, in Chapter 4, a numerical analysis using CFD is presented with its
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Table 1.1: Main particulars of the generic vessel fKN1 and vessel fKN2 (w/ default
moonpool).

Description Symbol Magnitude Unit

Length Overall LOA 242.1 m

Length between Perpendiculars LPP 228.0 m

Breadth Moulded B 42.0 m

Depth Moulded D 19.6 m

Design Draft d 12.0 m

Longitudinal CoG LCG 116.50 m

Transversal CoG TCG -0.01 m

Vertical CoG V CG 16.77 m

Weight displacement ∆fKN1 105657 mt

Volume displacement ∇fKN1 103080 m3

Gy-radius around X axis Kxx 16.15 m

Gy-radius around Y axis Kyy 61.79 m

Gy-radius around Z axis Kzz 61.90 m

Moonpool’s length on bottom lb 45.5 m

Moonpool’s length on deck ld 46.2 m

Moonpool’s breadth on bottom bb 14.0 m

Moonpool’s breadth on deck bd 14.0 m

Postion (from transom) P 93.1 m

Cutout angle α 70.05 °

Weight displacement ∆fKN2 97090 mt

Volume displacement ∇fKN2 94721.4 m3

Gy-radius around X axis Kxx 16.56 m

Gy-radius around Y axis Kyy 63.92 m

Gy-radius around Z axis Kzz 64.10 m

respective analysis in order to compare and verify the analytical results of previous

chapter. Also, the potential theory setup is provided with analysis and comparisons

to justify the choices made and with information about a artificial damping that

have to be calibrated against measurements.

Chapter 5 is the beginning of second part of this thesis and provides the back-

ground for the GA parameters (exposed in Chapter 2) to do analysis in the moonpool

optimization problem.

The main findings of this thesis are drawn in Chapter 6 and results for some

known spectra are presented too.
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Finally, in Chapter 7, the conclusions are outlined and also future works as well

as new research topics are presented and discussed.

In addition, all the Bibliography used in this work and an Appendix details the

calculation of the equation of motion inside the moonpool given in Chapter 2.
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Chapter 2

Theoretical Background

This chapter presents all the theoretical background used through this work.

Firstly, Section 2.1 describes the potential theory with information of workaround

to numerically add viscous damping inside moonpool. Additionally, some necessary

theory of the big branch of Computational Fluid Dynamics (CFD) is presented

in Section 2.2. The theory behind the Genetic Algorithm (GA) is discussed in

Section 2.3.

2.1 Potential Theory

2.1.1 Hydrodynamic Formulation

There are two main type of surface forces acting on a floating or submerged

body, that are the viscous forces and the so called potential forces. The latter

is well established by Potential Theory that assumes the fluid as incompressible

(ρ = constant) and irrotational ( ~∇× ~v = 0). Thus, a velocity potential may be

defined as φ and it is a solution for Laplace’s Equation (Equation (2.1)).

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 . (2.1)

The fluid velocity at each point of the flow can be written as,

~v = ~∇φ , (2.2)

The main advantage of potential theory is that the flow calculation is based

on solving an equation for a scalar φ. Despite all simplification in the flow, they

are reasonable for many real applications, such as the case of present work which

considers the motion of a ship in waves.

Velocity potential in Equation (2.1) can be calculated and have unique ana-
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lytical solution when imposing some boundary conditions, i.e., conditions in the

boundary of the fluid region that must be obeyed by the velocity potential φ. This

is called Boundary Value Problem (BVP) and for the specific case of ship motion

these boundaries are the hull (SB), free surface (SF ), bottom (S0) and also an un-

bounded far-field connecting free surface and bottom (S∞ and S−∞). The BVP is

shown in Figure 2.1.a). At free surface (SF ) two conditions have to be satisfied,

a kinematic condition, which establishes that any particle in contact with the free

surface remains on it, and a dynamic condition that imposes the pressure at surface

equals to the ambient pressure. Also there are impermeability conditions (fluid ve-

locity normal to the wall is set to the wall velocity in this direction - zero relative

velocity at vector area direction) at body moving in the fluid SB and outer bottom

boundary S0.

The BVP for small wave amplitude (linearized free-surface condition) can be

written as follows, 

∇2φ = 0 (in fluid domain : z ≤ 0)

∂φ

∂z
+

1

g

∂2φ

∂t2
(on z = 0)

∂φ

∂n
= ~v · ~nB (on SB)

∂φ

∂z
= 0 (on S0) .

(2.3)

Kinematic and dynamic conditions are reorganized in the second equation (at

z = 0) in Equation (2.3) for first-order solution.

Once the velocity is related with the velocity potential by Equation (2.2), know-

ing φ, the pressure field can be calculated using unsteady Bernoulli’s equation,

p (~x, t) = −ρgz − ρ∂φ
∂t
− 1

2
ρ
(
~∇φ
)2

. (2.4)

So, with solution of BVP it is possible to calculate the hydrodynamic pressure

at any point of domain. First term on RHS of Equation (2.4) is the static pressure

and the second is the dynamic pressure. Last term can be neglected for small

perturbations.

The potential used to calculate the dynamic pressure can be divided in two parts,

and considering a linear superposition these parts can be summed to find the total

potential. These two parts are: the exciting wave potential and the radiated potential

as shown in Figure 2.1.b. The exciting wave consist of incident and diffracted

velocity potential. Then, the total velocity potential φ is given by,
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φ = φinc + φdif + φrad , (2.5)

Figure 2.1: a) Boundary Value Problem definition (Adapted from FALTINSEN [10])
and b) superposition of wave loads (Adapted from JOURNÉE and MASSIE [11]).

Incoming waves, responsible for the two excitation potentials (incident and

diffracted), are described by their amplitude, frequency and heading. Wave heading

is defined by the angle between the propagation direction and the positive direc-

tion of the axis Ox, as shown in Figure 2.2.a. Radiation potential is calculated for

each degree of motion, that are surge, sway, heave, roll, pitch and yaw, presented in

Figure 2.2.b.

Figure 2.2: a) Wave headings (BUREAU VERITAS [12]) and b) ship motion with
6 degree of freedom (Adapted from JOURNÉE and MASSIE [11]).

The incident potential is the solution of Equation (2.3) without the body and

it is known analytically, while first-order BVP for radiation and diffraction velocity

potentials are determined using Green’s theorem to derive integral equations on the

body boundary. Then, the integral equation may be solved in a discretized body

surface, for that, a mesh must be created at body surface, and the elements of this

mesh will be called hereafter as panels.

There are some specific commercial software for the solution of the 3D diffraction

and radiation problem for wave-body interactions with years in the market and very

well validated for a large range of cases.
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2.1.2 Wave Body Interaction

Knowing velocity potential allows the calculation of pressure field and conse-

quently forces and moments. Using Newton’s second law for forces and the analo-

gous for angular momentum and torque it is possible to calculate ship’s motions,

(M + Ma) Ẍ + BẊ + KX = F , (2.6)

where

M is the inertia matrix of the body [kg];

Ma is the additional mass matrix coming from radiation solution [kg];

B is the damping matrix coming from the radiation solution [Ns/m];

K is the stiffness matrix coming from the hydrostatic properties of the body

[N/m];

X is the displacement vector of ship [m];

F is the excitation force on ship coming from the Froude-Krylov and diffrac-

tion solution [N ].

It is possible to add some external damping (e.g. viscous damping) and stiffness

(e.g. mooring system or liquid in tanks) adding values to the specific matrix.

Response Amplitude Operator - RAO

Considering that the problem is linear, the response for a regular (monochro-

matic) incident wave is monochromatic, i.e. all the properties varies harmonically

in time with the same frequency. Then, velocity potential varies harmonically, as

does the pressure field and consequently the forces on the body. The displacement

of the body X (t) can be written in following way

X (t) = x cos(ωt+ θ) , (2.7)

where x here is the amplitude of the motion of the ship in a specific degree of motion.

The ratio between the response amplitude xDoF and wave amplitude ζa is a

transfer function called Response Amplitude Operator (RAO), that for all degree of

motion can be given by,

RAOsurge =
xsurge
ζa

, RAOsway =
xsway
ζa

, RAOheave =
xheave
ζa

,

RAOroll =
Φroll
kζa

, RAOpitch =
Φpitch
kζa

, RAOyaw =
Φyaw
kζa

.

(2.8)
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It is important to determine the behavior of a ship when operating at sea. It

must be noticed that at this work the transfer functions of the rotations were made

non-dimensional by dividing the amplitude of the rotations ΦDoF by the amplitude

of the wave slope, kζa, instead of wave amplitude, ζa.

2.1.3 Free Surface Elevation

In this work, the free surface elevation is concerning the relative free surface

elevation, that is the elevation of the water inside moonpool in relation with a frame

of reference attached to the ship. If the objective is to express a relationship with

an inertial reference frame (outside the ship), it will be called absolute free surface

elevation.

It is possible also to calculate the absolute free surface elevation at any point (at

z = 0) considering the dynamic boundary condition aforementioned,

ζfs = −1

g

(
∂φ

∂t

)
, (2.9)

Due to lack of viscous damping, specially inside moonpool, the free surface el-

evation may be overpredicted, so an additional damping is necessary for a proper

calculation.

2.1.4 Artificial Viscous Damping

Tuning damping coefficient inside moonpool is a difficult task [9]. One way to

implement it is to apply a damping region over the whole moonpool for all response

modes and then calibrate.

A panel on the free surface, inside moonpool, is added and it is assumed to

be free with no external force or moment acting on it, so it will not be used for

force calculations but will modify values of diffracted and radiated potential. This

panel on the free surface of moonpool will be hereafter called lid. It is possible to

provide an external damping force on the lid to further increase the damping on the

moonpool free surface motion.

Another approach is the modification of the boundary conditions at panels on

moonpool wall SM . For BVP of diffraction and radiation problem may be written

with an additional ε parameter,
∂φ7

∂n
+
∂φi
∂n

= iεkφ7 (on SM)

∂φj
∂n

= nj + iεkφj (on SM) .

(2.10)
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2.2 Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics is a branch in fluid dynamics for analysis of

systems involving fluid flow, heat transfer and associated phenomena by means of

numerical simulations. This technique is very powerful as it may work with the

fluid governing equations in the full form, i.e. including all the characteristics of

flows that are encountered in the real world and without neglecting any parameter

of the fluid. Differently, for instance, of Euler equations in which the viscosity

and thermal conductivity are neglected or the irrotational flow explained above in

Section 2.1. These governing equations are briefly described in the Section 2.2.1.

Despite it works with full equations, there are some numerical approximations caused

by discretization, and in Section 2.2.2 some turbulence models are presented. Then,

some information about boundary layer, multiphase theory and the methodology to

do a CFD simulation are shown. Last but not least, a discussion on the errors and

uncertainties in CFD modeling is made in section Section 2.2.6 with Verification

and Validation (V&V).

2.2.1 Governing Equations

In fluid dynamics, there are some conservation laws that describe the motion

of it. In the cases studied in this work, the governing equations of the flow are

the continuity equation (conservation of mass) and the Navier-Stokes equation

(conservation of linear momentum). In general, there are two approaches to

deriving these governing equations. One with a fixed point in space and the

fluid properties passing through it (Eulerian approach) and other following fluid

properties as they travel through the flow (Lagrangian approach). Considering

also an imaginary finite closed volume taken within a region of the fluid, let us

define it as control volume and the closed surface that bounds it as a control surface.

Mass Conservation (Continuity Equation)

This conservation law states that the mass of an isolated system does not change

as the system evolves, so mass can be neither created nor destroyed. Considering a

fixed control volume, the net mass flow through boundaries (control surfaces) has

to be numerically equal to the time rate of decrease of mass inside the same control

volume.

Rate of increase of
mass in fluid

element
=

Net rate of flow of
mass into fluid

element
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The mathematical equation in the form of partial differential equation is given

by
∂ρ

∂t
+ ~∇ · (ρ~v) = Sm , (2.11)

where ~v = (u, v, w) is the velocity vector, Sm is the source term of mass [kg/m3s] and

refers to mass added to the continuous phase from the dispersed second phase (for

example, due to vaporization of liquid droplets) or any other kind of mass sources.

Equation derivation is not showed here but it may be easily find in any book

of fluid dynamics. The only assumption about the nature of fluid is that it is con-

tinuum. Therefore, this continuity equation hold in general for three-dimensional,

unsteady (time-dependent), viscous, rotational and compressible flow.

Linear Momentum Conservation (Navier-Stokes Equations)

This principle is the Newton’s second law applied in a fixed fluid volume of

control. It states that the sum of forces acting on the volume control is equal to the

time rate of change of momentum.

Rate of increase of
momentum of fluid

element
=

Sum of forces on
fluid element

Then, considering a Newtonian fluid (viscous stresses are proportional to the

rates of deformation), we have the following mathematical equation,

∂ρu

∂t
+ ~∇ · (ρu~v) = −∂ps

∂x
+ ~∇ ·

(
µ~∇u

)
+ SMx ,

∂ρv

∂t
+ ~∇ · (ρv~v) = −∂ps

∂y
+ ~∇ ·

(
µ~∇v

)
+ SMy ,

∂ρw

∂t
+ ~∇ · (ρw~v) = −∂ps

∂z
+ ~∇ ·

(
µ~∇w

)
+ SMz ,

(2.12)

where ps is the static pressure [Pa], µ is dynamic viscosity [Pa.s] and SMx, SMy,

SMz are the momentum source terms [kg/m2s2].

Again, no other assumption besides that the fluid is continuum and that it is a

Newtonian fluid.

Equations for conservation of angular momentum and for conservation of energy

are not described as they are not part of this work scope, since the first is used for

solution of a polar fluid [28] (e.g. blood) flow and the second when temperature is

being taking into consideration.

Solution of the partial differential equations (Equations (2.11) and (2.12)) in a
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computer-based simulation requires discretization, that is the process of transfer-

ring continuous functions, models, variables, and equations into discrete counter-

parts. Several methods of discretization are available nowadays, but the most used

for fluid simulation is the Finite Volume Method (FVM). This method is based in

the solution over discrete fixed control volumes ensuring the conservation of fluxes

through it, so it uses the conservative form (divergence form) of governing equations

(Equation (2.13)).

Introducing a general variable Ψ, the conservative form of all fluid equations can

usefully be written in the following form:

∂ρΨ

∂t
+ ~∇ · (ρΨ~v) = ~∇ ·

(
Γ ~∇Ψ

)
+ SΨ , (2.13)

where Γ is the diffusion coefficient and SΨ is the source term. This is called transport

equation of Ψ property [29]. It is important to notice that the second term of LHS

is a convective term while the first term in the RHS is a diffusive term.

Setting Ψ equal to 1, u, v or w and selecting appropriate values for diffusion coef-

ficient Γ and source term SΨ the transport equation turns into conservative equation

of mass (Equation (2.11)) and linear momentum for each direction (Equation (2.12)).

The FVM requires the control volume integration of Equation (2.13). Integrating

over a 3D control volume (of volume CV and surface CS) and also in respect to

time t, the most general integrated form of the transport equation can be recast as∫
∆t

∂

∂t

(∫
CV

ρΨdV

)
dt+

∫
∆t

∫
CS

~n · (ρΨ~v) dAdt =

∫
∆t

∫
CS

~n ·
(

Γ ~∇Ψ
)
dAdt+

∫
∆t

∫
CV

SΨdAdt ,

(2.14)

Boundary Conditions

Governing equations are a system of partial differential equations that describe

the motion of a fluid and following the idea of well-posed problem introduced by

Jacques Salomon Hadamard [30], this set of equations are solved with the govern-

ing equations (Equations (2.11) and (2.12)) and auxiliary (initial and boundary)

conditions.

In transient problems the initial values of all the flow variables need to be spec-

ified at all solution points in the flow domain.

In the spatial domain also there is a need to specify a condition for each boundary.

Every code has it own set of options and particularities but it is possible to list the

most common and important ones for this work [14]:

� Velocity Inlet - Defines the velocity and scalar properties of the flow at inlet
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boundaries;

� Pressure Outlet - Defines the static pressure at flow outlets (and also other

scalar variables, in case of backflow);

� Wall - It bounds fluid regions. In viscous flows, there is the option of no-slip

condition or to model a slip wall by specifying shear (free slip - zero shear);

◦ Stationary - Fixed wall;

◦ Moving - Used to specify the translational or rotational velocity of the

wall;

� Symmetry - Used when the physical geometry of interest, and the expected

pattern of the flow solution, have mirror symmetry.

When computing results for a multiphase flow, it is required to specify the phase

region in each boundary and all additional parameters for each fluid. Some commer-

cial CFD solvers provides a specific setup for open channel flow. It allows simulation

of free surface between the flowing fluid and fluid above it and also regular/irregular

waves, for analyzing wave kinematics and wave impact loads on moving bodies [31].

When it is set, some conditions for the primary and secondary phase are defined at

the boundaries, for instance, the hydrostatic pressure (setting gravity vector), free

surface level and bottom level according to a reference level.

Through Velocity Inlet boundary condition, the wave definition must be given.

There are multiple possibilities of wave theory to simulate surface gravity waves,

mentioning a few of them:

� Linear Airy - Simplest and most useful of all wave theories. Assume that

wave height is small compared to the wave length or wave depth;

� Higher Order Stokes - High steepness finite amplitudes waves operating in

intermediate to deep depth range (Nonlinear);

� Higher Order Cnoidal/Solitary - Cnoidal displays long flat troughs and

narrow crests of real waves in shallow waters while in the limit of infinite

wavelength it describes a solitary wave, with a single hump, having no troughs

(Nonlinear);

� Long/Short-crested Wave Spectrums - Random waves based on a wave

energy distribution function (Nonlinear).

Figure 2.3 shows a chart with the validity of each theory, in which H is the wave

height [m], g is the gravity [m/s2], T is period [s] and hdepth is the water depth

[m]. Also, it is possible to observe a physical illustration for the behavior of wave
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theories. The spectrum is a summation of different wave frequencies and it physical

illustration is a random wave.

Figure 2.3: Limits of validity and physical illustration of various wave theories
(Adapted from MÉHAUTE [13]).

As expected, the most complex and higher the order of a theory, more grid

refinement and, therefore, more computational resource it requires for a proper

solution of the flow.

There is also a possibility to define a numerical wave beach (Figure 2.4) to

suppress numerical reflection near the Pressure Outlet boundary for wave dampening

by adding a damping sink term in the momentum equation

Figure 2.4: Numerical beach sketch (ANSYS, INC. [14]).

At boundaries it is also important to specify the transportation of turbulence

quantities. This is shown with more details in Section 2.2.2
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2.2.2 Turbulence Modeling

Many, if not most, flows in practical engineering shows an unstable behavior

in which the measurement of a physical quantity change continuously with time

(Figure 2.5). Turbulent flows are characterized by this random and chaotic variation

of flow quantities. Laminar flows, on the other hand, present a smooth behavior with

adjacent layer of fluid sliding past each other in an orderly fashion [29] and they are

fully described in Section 2.2.1.

Figure 2.5: Typical measurement in turbulent flow.

REYNOLDS [15] did a famous experiment in a horizontal pipe immersed in a

tank filled with water (Figure 2.6). Intake of the pipe is fitted with a trumpet

mouthpiece, in order to avoid the formation of vortices along its edges. By varying

the velocity of the flow inside the tube and introducing a colored tracer, he was able

to provide an image of the velocity field (Figure 2.6). When the flow is laminar the

tracer creates a straight line (Figure 2.6.a), increasing speed the regime becomes

turbulent and the tracer spread over the pipe (Figure 2.6.b) showing a random and

chaotic behavior as aforementioned. Illuminating the flow by a spark, the tracer

shows swirls (eddies) formed by elongated filaments that become finer and finer

(Figure 2.6.c)), until they mix completely with the surrounding fluid. A property

of a turbulent flow is often labeled by eddy.

Previously that experiment, STOKES [32] came with the concept of a dimension-

less number to predict the fluid flow. Then, REYNOLDS [15] proposed the relation

of inertial and viscous forces (Equation (2.15)) and based the experiment afore-

mentioned in variation of it. This dimensionless number was named after Reynolds

just in 1908, where SOMMERFELD [33] referred to the R number as the Reynolds

number.
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Figure 2.6: Schematic overview of the experimental setup and visualization con-
ducted by Osborne Reynolds (Adapted from REYNOLDS [15]). a) Laminar flow,
b) turbulent flow and c) turbulent flow seen in detail.

Re =
inertial forces

viscous forces
=
ρvc

µ
. (2.15)

Furthermore, as CFD deals with temporal and spatial discretizations, it is im-

portant to have knowledge of turbulence scales. These scales range from above by

the dimensions of the flow field and from below by the diffusive action of molecular

viscosity. The largest turbulent eddies extract energy from the mean flow by a pro-

cess called vortex stretching. The larger eddies scales are determined by the same

order as the velocity and length scale of mean flow. It is considered the integral tur-

bulence length scale. The intermediate range of scales is called the inertial subrange

and theTaylor microscale resides in a wavelength range between the large eddies,

and the small eddies. Smallest scale present within a flow is called Kolmogorov

microscale and it is the scale at which energy is dissipated by molecular viscosity.

The energy spectrum of turbulence is shown in Figure 2.7 with the logarithm of

turbulent kinetic energy by wavenumber (log (E (k))× log (k)). The region of each

scale and the direction of energy cascade, i.e. the transfer of energy from large scales

of motion to the small scales until dissipation by viscosity, is also presented.

It is not possible to solve the instantaneous equations in smallest scales directly

for most engineering applications. As the Reynolds numbers (Re) typically pre-

sented in real cases have very chaotic turbulent solutions, it is necessary to model

the influence of these scales. Most of the time, in engineering applications we are

interested in mean or integral quantities, so it is necessary to deduct the governing

equations for the mean flow based in classical procedure of REYNOLDS [34] to filter

out all, or at least, parts of the turbulent spectrum.

26



Figure 2.7: Energy spectrum of turbulence (Energy cascade).

Time average of a flow property Ψ is defined as follows:

Ψ̄ ≡ 1

∆t

t0+∆t∫
t0

Ψdt , (2.16)

Reynolds decomposition defines a flow property, for instance v, as the sum of a

steady mean component v and a time varying fluctuating component v′ (Figure 2.5).

Then, for a 3D variable value, for instance the velocity components (u, v, w) and the

static pressure ps, the momentary value is defined with Reynolds decomposition by:

u (x, y, z, t) = ū (x, y, z) + u′ (x, y, z, t) ,

v (x, y, z, t) = v̄ (x, y, z) + v′ (x, y, z, t) ,

w (x, y, z, t) = w̄ (x, y, z) + w′ (x, y, z, t) ,

ps (x, y, z, t) = p̄s (x, y, z) + p′s (x, y, z, t) ,

(2.17)

where ū, v̄, w̄ and p̄s denotes the time-averaged values and u′, v′, w′ an p′s are devia-

tions from the expectation value (or fluctuations). Analogously the decomposition

may be used for other variables like density and temperature.

By definition, time average of a fluctuating quantity is zero. There are some other

rules for time averaging that will be not exposed here but may be easily found in

a good turbulence book. For a compressible flow, density weighted time averaging

(Favre averaging [35]) is convenient, but as BRADSHAW et al. [36] stated that

small density fluctuations do not appear to affect the flow significantly, specifically
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for the Mach number Ma presented in this work, it will not be considered here the

compressible equations. Due to that, applying time average in the incompressible

Equations (2.11) and (2.12) yields to

~∇ · v̄ = 0 , (2.18)

∂u

∂t
+ ~∇ · (uv̄) =− 1

ρ

∂p̄s
∂x

+ ν ~∇ ·
(
~∇u
)

+
1

ρ

[
∂(−ρu′2)

∂x
+
∂
(
−ρu′v′

)
∂y

+
∂
(
−ρu′w′

)
∂z

]
,

∂v

∂t
+ ~∇ · (vv̄) =− 1

ρ

∂p̄s
∂y

+ ν ~∇ ·
(
~∇v
)

+
1

ρ

[
∂
(
−ρu′v′

)
∂x

+
∂(−ρv′2)

∂y
+
∂
(
−ρv′w′

)
∂z

]
,

∂w

∂t
+ ~∇ · (wv̄) =− 1

ρ

∂p̄s
∂z

+ ν ~∇ ·
(
~∇w
)

+
1

ρ

[
∂
(
−ρu′w′

)
∂x

+
∂
(
−ρv′w′

)
∂y

+
∂(−ρw′2)

∂z

]
,

(2.19)

where v̄ is the steady mean velocity vector, given also by Reynolds decomposition.

These are the Reynolds-Averaged Navier-Stokes (RANS) equations. Comparing

Equations (2.18) and (2.19) to incompressible Equations (2.11) and (2.12), respec-

tively, reveals new terms in the last three terms of the RHS. The Reynolds stress

tensor are defined as τij ≡ −ρv′iv′j and, due to its symmetry, it brings six additional

unknown in the time-averaged momentum equation. System cannot be closed as it

presents more unknown than equations and this is known as the closure problem.

For closing the system of equations, an approximation of Reynolds stress tensor

(models of the first order) or approximation of unknowns in transport equations for

Reynolds stresses (models of the second order) must be modeled. BOUSSINESQ

[37] proposed the concept of eddy viscosity relating the turbulence stresses to the

mean rates of deformation. The Reynolds stress tensor is given by its constitutive

relation:

τij ≡ −ρv′iv′j = µt

(
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3
ρκδij , (2.20)

where µt is the turbulent or eddy viscosity [Pa.s], κ = 1
2

(
u′2 + v′2 + w′2

)
is the

turbulent kinetic energy per unit mass [J/m] and δij is the Kronecker delta. Equa-

tion (2.20) is known as Boussinesq hypothesis.

The second term on the RHS is to assure that summation of normal stresses

(tr(τij)) gives the correct result, as −ρ
(
u′2 + v′2 + w′2

)
= −2ρκ, and without the

term would be zero after applying continuity equation Equation (2.18). In some

turbulence models the turbulent kinetic energy is not calculated and the constitutive
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relation is presented neglecting this last term. SPALART and ALLMARAS [38]

affirmed that this has no major effect in thin shear flows and the addition is an

approximation in any case. A specific commercial CFD solver (Fluent) solver manual

states that when the turbulent kinetic energy per unit mass is not calculated, the

last term in Equation (2.20) is also ignored [31]. Therefore, it does not necessarily

require the determination of κ to make use of the eddy viscosity formulation, the

main objective is then to determine the eddy viscosity only.

Eddy viscosity is associated with an increase of fluid resistance to deformation,

in other words, the turbulence causes an apparent increase on fluid viscosity. Some

turbulence models are based on the boussinesq hypothesis in the use of eddy viscosity

concept.

Despite Equations (2.18) and (2.19) shown here do not take compressibility into

consideration, the following models can consider that with a different constitutive

relation between stress and strain rate for a Newtonian fluid [39] with addition of

the term −2
3
µt

∂vk
∂xk

in RHS of Equation (2.20) [39].

Mixing Length Model

It is a zero-equation model, as there is no new transport equation needs to be

solved in this model. Attempt to describe momentum transfer by the stresses within

a Newtonian fluid boundary layer by means of simple algebraic formulae for eddy

viscosity as function of position. PRANDTL [40] assumed that the kinematic eddy

viscosity is given by

νt = l2m

∣∣∣∣∂u∂y
∣∣∣∣ ∴ τxy = τyx = ρl2m

∣∣∣∣∂u∂y
∣∣∣∣ ∂u∂y , (2.21)

The mixing length lm depends on the nature of the flow and, in general, is space

dependent. It is a very easy to implement and cheap model, but as Prandtl itself

stated: ”only a rough approximation”[41]. It is incapable of describing recirculation

and separation [29].

Spalart-Allmaras

Spalart–Allmaras model [38] is an one-equation model, differently than previ-

ously model, it solves a transport equation for the kinematic eddy viscosity parameter

ν̃. The turbulent viscosity is then calculated as

µt = ρν̃fν1 . (2.22)
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Transport equation of kinematic eddy viscosity parameter ν̃ is given by

∂ρν̃

∂t
+ ~∇ · (ρν̃v̄) =

1

σν
~∇ ·
[

(µ+ ρν̃) ~∇ν̃ + Cb2ρ

(
∂ν̃

∂xi

)2
]

+Gν̃ − Yν̃ + Sν̃ ,

Gν̃ = Cb1ρν̃S̃ , Yν̃ = Cw1ρ

(
ν̃

κywall

)2

fw ,

S̃ ≡ S +
ν̃

κ2y2
wall

fν2 , S ≡
√

2ΩijΩij , Ωij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
,

fν1 =

(
ν̃
ν

)3(
ν̃
ν

)3
+ C3

ν1

, fν2 =

(
1−

ν̃
ν

1 + ν̃
ν

fν1

)
,

fν3 = g

[
1 + C6

w3

g6 + C6
w3

] 1
6

, g = r + Cw2

(
r6 − r

)
, r ≡ ν̃

S̃κ2y2
wall

(2.23)

where Gν̃ is the production of turbulent viscosity, Yν̃ is the destruction of turbulent

viscosity that occurs in the near-wall region due to wall blocking and viscous damp-

ing, and Sν̃ a source term of the viscosity parameter. Also, there is ywall that is the

distance from the wall, S is a scalar measure of the deformation tensor and Ωij is

the mean rate-of-rotation tensor.

Model constants are as follows:

Table 2.1: Values of constants in Spalart-Allmaras model.

σν = 2/3 κ = 0.4187 Cb1 = 0.1355 Cb2 = 0.622 Cν1 = 7.1

Cw1 =
Cb1
κ2

+
1 + Cb2
σν

Cw2 = 0.3 Cw3 = 2.0

This model presents a stable behavior with good convergence. It was tuned

for external aerodynamic flow giving good performance in boundary layers with

adverse pressure gradients, mainly predicting stalled flows. It was not tuned for

industrial flows, so it produces relatively larger errors for some free shear flows [31]

and lacks sensitivity to transport processes in rapidly changing flows [29].

Standard κ-ε Model

Standard κ-ε model [42] is considered one of the simplest models and it is very

well established in industry. It is a two-equation model, and the eddy viscosity is

computed as follows:

µt = ρCµ
κ2

ε
, (2.24)

where Cµ is a constant, κ is the turbulent kinetic energy and ε is the rate of viscous

dissipation of turbulent kinetic energy.

The transport equation of each quantity is given below in Equation (2.25) with
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all parameters necessary (considering the assumption of ideal gas).

∂ρκ

∂t
+ ~∇ · (ρκv̄) = ~∇ ·

[
µt
σκ
~∇κ
]
− ρε+Gκ +Gb − YM + Sκ ,

∂ρε

∂t
+ ~∇ · (ρεv̄) = ~∇ ·

[
µt
σε
~∇ε
]

+ C1ε
ε

κ
(Gκ + C3εGb)− C2ερ

ε2

κ
+ Sε ,

Gκ = µtS
2 , S ≡

√
2SijSij , Sij =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
,

Gb = −gi
µt
ρPrt

∂ρ

∂xi
, C3ε = tanh

∣∣∣v
u

∣∣∣ ,
(2.25)

where Gκ is the generation of turbulence kinetic energy due to the mean velocity

gradients, Gb is the generation of turbulence kinetic energy due to buoyancy, YM

is the contribution of the fluctuating dilatation in compressible turbulence to the

overall dissipation rate (not in the scopes of this work) and Sκ, Sε are source terms

of kinetic energy and of dissipation rate, respectively. Prt is the turbulent Prandtl

number for energy (default value in the solver of this work Prt = 0.85 [31]) and

gi is the component of the gravitational vector in the ith direction. The degree to

which ε is affected by the buoyancy is determined by the constant C3ε. In the solver

used in this work [31], this constant is calculated according to the relation above

(Equation (2.25)) [43], where v is the component of the flow velocity parallel to the

gravitational vector and u is the component of the flow velocity perpendicular to the

gravitational vector. So it becomes 1 for buoyant shear layers for which the main

flow direction is aligned with the direction of gravity. For buoyant shear layers that

are perpendicular to the gravitational vector, it will become zero [31].

Model constants of Equation (2.25) are as follows:

Table 2.2: Values of constants in κ-ε model.

σκ = 1.00 σε = 1.30 Cµ = 0.09 C1ε = 1.44 C2ε = 1.92

It is the most widely validated turbulence model [29] and also it has excellent

performance for many industrially relevant flows. However, it is known to have

poor performance in important cases such as unconfined flows, curved boundary

layers, rotating flows and flows in non-circular ducts [29]. In summary, its near-wall

performance is unsatisfactory for boundary layers with adverse pressure gradients

[14].

Standard κ-ω Model

This an empirical model that also attempts to predict turbulence based on eddy

viscosity concept using transport equations for the turbulence kinetic energy (κ)
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and, now, the specific dissipation rate (ω) [44], defined as

µt = a∗ρ
κ

ω
, ω ≡ 1

β∗∞

ε

κ
, (2.26)

where a∗ is a coefficient that damps the turbulent viscosity causing a low-Reynolds

number correction [31].

The two transport equations, without considering compressibility effects, are

described as follows:

∂ρκ

∂t
+ ~∇ · (ρκv̄) = ~∇ ·

[
µ+

µt
σκ
~∇κ
]

+Gκ − Yκ + Sκ ,

∂ρω

∂t
+ ~∇ · (ρωv̄) = ~∇ ·

[
µ+

µt
σω

~∇ω
]

+Gω − Yω + Sω ,

Gκ = µtS
2 , Gω = α

ω

κ
Gκ , S ≡

√
2SijSij , Sij =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
,

α =
α∞
α∗

(
α0 +Ret/Rω

1 +Ret/Rω

)
, α∗ = α∗∞

(
α∗0 +Ret/Rκ

1 +Ret/Rκ

)
, Ret =

ρκ

µω
,

Yκ = ρβ∗i fβ∗κω , Yω = ρβifβω
2 ,

fβ∗ =


1 χk ≤ 0

1 + 680χ2
κ

1 + 400χ2
κ

χk > 0
, fβ =

1 + 70χω
1 + 80χω

,

χκ ≡
1

ω3

∂κ

∂xj

∂ω

∂xj
, χω =

∣∣∣∣ΩijΩjkSki

(β∗∞ω)3

∣∣∣∣ ,
β∗i = β∗∞

(
4/15 + (Ret/Rβ)4

1 + (Ret/Rβ)4

)
,

(2.27)

where Gκ represents the generation of turbulence kinetic energy due to mean veloc-

ity gradients, Gω represents the generation of specific dissipation rate, Yκ and Yω

represent the dissipation of κ and ω due to turbulence, respectively. Sκ and Sω are

source terms of kinetic energy and of specific dissipation rate.

In Table 2.3, the constants of this model are presented.

Table 2.3: Values of constants in κ-ω model.

σκ = 2.0 σω = 2.0 βi = 0.072 β∗∞ = 0.09

α∗0 = 0.024 α∗∞ = 1.0 α0 = 1/9 α∞ = 0.52

Rκ = 6 Rω = 2.95 Rβ = 8

Comparing with the previous model, the ω-equation offers advantages relative

to the ε-equation as it is better predicting adverse pressure gradient boundary layer

flows and separation. The downside is a relatively strong sensitivity of the solution
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depending on the freestream values of and outside the shear layer.

Shear Stress Transport (SST) κ-ω Model

SST is also considered a two equation model that combines the κ-ω turbulence

model and κ-ε turbulence model such that the κ-ω is used in the inner region of

the boundary layer and switches to the κ-ε in the outer region at free shear flow

[45, 46]. For improved performance in flows with adverse pressure gradients and

wake regions, eddy viscosity is obtained by a limiter to the formulation

µt = ρ
κ

ω

1

max

[
1

a∗
;
SF2

a1ω

] ,
F2 = tanh

(
arg2

2

)
, arg2 = max

[
2

√
κ

0.09ωydist
;

500µ

ρy2
distω

]
,

(2.28)

where ydist is the distance to the next surface.

The transport equations are slightly different from previous model, with the

addition of a cross-diffusion term Dω in ω-equation. For compressible flows,

∂ρω

∂t
+ ~∇ · (ρωv̄) = ~∇ ·

[
µ+

µt
σω

~∇ω
]

+Gω − Yω +Dω + Sω ,

Gω = α
α∗

νt
Gκ , Yκ = ρβ∗i κω , Yω = ρβiω

2 ,

σκ =
1

F1/σκ,1 + (1− F1) /σκ,2
, σω =

1

F1/σω,1 + (1− F1) /σω,2
,

α∞ = F1α∞,1 + (1− F1)α∞,2 , βi = F1βi,1 + (1− F1) βi,2 ,

α∞,1 =
βi,1
β∗∞
− κ2

σω,1
√
β∗∞

, α∞,2 =
βi,2
β∗∞
− κ2

σω,2
√
β∗∞

,

Dω = 2 (1− F1) ρ
1

ωσω,2

∂κ

∂xj

∂ω

∂xj
, F1 = tanh

(
arg4

1

)
,

arg1 = min

[
max

( √
κ

0.09ωydist
;

500µ

ρy2
distω

)
;

4ρκ

σω,2D+
ω y

2
dist

]
,

D+
ω = max

[
2ρ

1

σω,2

1

ω

∂κ

∂xj

∂ω

∂xj
; 10−10

]
,

(2.29)

where is a blending function is the positive portion of the cross-diffusion term (AN-

SYS, INC. [31] formulas presented here has some terms slightly different of the one

presented in MENTER [46] original paper). The blend of the two previous models

together (κ-ω and κ-ε), the standard κ-ε model has been transformed into equations

based on κ and ω, which leads to the introduction of a cross-diffusion term Dω.

Terms not shown in Equation (2.29) are identical in Equation (2.27), including the

transport of κ.
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In Table 2.4, the constants of this model are presented.

Table 2.4: Values of constants in Shear Stress Transport (SST) κ-ω model.

σκ,1 = 1.176 σω,1 = 2.0 σκ,2 = 1.0 σω,2 = 1.168

a1 = 0.31 βi,1 = 0.075 βi,2 = 0.0828

It has been designed to avoid the freestream sensitivity of the standard κ-ω

model, by combining elements of the ω-equation and the ε-equation. In addition,

the SST model has been calibrated to accurately compute flow separation from

smooth surfaces. It is typically somewhat more accurate in predicting the de-

tails of the wall boundary layer characteristics than the Spalart-Allmaras model [14].

Reynolds Stress Model (RSM)

It is the most complex classical turbulence model [29]. It is a second-order closure

model that abandon the isotropic eddy viscosity hypothesis and closes the RANS

equations by solving transport equations for the Reynolds stresses, together with an

equation for the dissipation rate. It means that for 2D it requires 5 more equations

while for 3D seven additional transport equations are solved. RSM accounts for the

effects of streamline curvature, swirl, rotation, and rapid changes in strain rate in

a more rigorous manner, so it has greater potential to give accurate predictions for

complex flows. The modeling of some terms is particularly challenging, and often

considered to be responsible for compromising the accuracy, then might not always

yield results that are clearly superior to the simpler models. There are some cases

where it is recommended. for instance, cyclone flows, highly swirling flows in com-

bustors, rotating flow passages, and the stress-induced secondary flows in ducts [31].

Hybrid RANS-LES Model

It is a hybrid model as it switches between the RANS models to the LES (com-

mented below). It is related with the turbulence scales mentioned above, when the

grid is not fine enough to solve the turbulent length scale (mainly close to solid

boundaries) it is assigned the RANS mode of solution and when turbulent length

scale exceeds the grid dimension the LES is solved.

Detached Eddy Simulation (DES) model is one of the most popular hybrid

RANS-LES models with modification of the Spalart-Allmaras model, and there is

also the Scale Adaptive Simulation (SAS), each one with some particularities. Some

solvers considers the DES acronym for all hybrid RANS-LES models available

[14, 31, 47].

34



Large Eddy Simulation (LES) Model

The Reynolds-Averaged Navier-Stokes equations Equations (2.18) and (2.19)

describe all the scales in the flow when averaging the Navier-Stokes equation

Equations (2.11) and (2.12). However, smaller eddies are nearly isotropic and have

a universal behavior while the larger eddies are more anisotropic and their behavior

are more related with the geometry, boundary conditions and body forces. The

proposition of Large Eddies Simulation is to compute the larger eddies for each

problem with a time-dependent simulation and capture the smaller eddies modeling

it with a compact model. Instead of averaging, LES works filtering the larger eddies

and smaller ones. During this filter procedure, some information related with small

eddies are destroyed and gives rise to Sub-Grid-Scale (SGS) stresses. Then, the

effects of SGS must be modeled. Smagorinsky-Lilly model [48] was used in the first

LES simulation [49] and models the eddy viscosity for these smaller eddies. LES

falls between DNS and RANS in terms of the fraction of the resolved scales.

Direct Numerical Simulation (DNS)

Direct Numerical Simulation is basically the solution of Navier-Stokes equations

completely in space and time. In theory, it means to resolve the whole spectrum

of turbulent scales. Nowadays, it is only possible on small computational grids

and small time steps when Reynolds numbers are low. No modeling is required in

DNS. However, DNS is not feasible for practical engineering problems involving

high Reynolds number flows as the cost becomes prohibitive.

In Figure 2.8, a summary of resolutions and modeling of turbulence scales for

each turbulence model is presented.

Figure 2.8: Turbulence models with respective resolution and modeling for each
scale (Adapted from BAKKER [16]).
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This section equations are mainly from Ansys Fluent manual [31].

Q-Criterion

Much was said about vortices, including the turbulence definition itself can in-

duce the idea of tangle of vortex filaments, and the word eddies also appeared a lot.

However, a real definition of vortex is still lacking. HUNT and MOIN [50] proposed

the definition of Q-Criterion as

Q =
1

2

(
|Ω|2 − |S|2

)
> 0 ,

Sij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, Ωij =

1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
,

(2.30)

where S (shear strain rate) and Ω (vorticity magnitude) are respectively the sym-

metric and antisymmetric parts of the velocity gradient tensor ~∇v.

Boundary Conditions

The information about how happens the transportation of the turbulence quan-

tities when the flow enters the domain at an inlet, outlet (backflow), or far-field

boundary is necessary. Depending on the turbulence model chosen, different pa-

rameters need to be set. There are two ways to inform these, one with a profile of

each turbulence quantity and other by a uniform specification of it. The first is used

to accurately represent a boundary layer or fully-developed turbulent flow known

previously by experiment data or analytical solution. The profile can be used to

describe:

� Turbulent Viscosity - Relation of the turbulence stresses to the mean flow (µt);

� Turbulent Viscosity Ratio - Relation among viscosities (µt/µ);

� Turbulent Kinetic Energy - Turbulent Kinetic Energy (κ);

� Turbulent Dissipation Rate - Turbulent Dissipation Rate (ε);

� Specific Dissipation Rate - Specific Dissipation Rate (ω).

In some situations, it is appropriate to specify a uniform value of the turbulence

quantity in far-field boundaries, for instance. in terms of more convenient quantities

such as:

� Turbulent Intensity - Ratio of the root-mean-square of the velocity fluctuations

to the mean flow velocity;
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� Turbulent Viscosity Ratio - Relation among viscosities (µt/µ);

� Turbulence Length Scale - Physical quantity related to the size of the large

eddies;

� Turbulence Hydraulic Diameter - For fully-developed internal flows.

Once one of the turbulence model aforementioned (Section 2.2.2) is chosen, all

the turbulent quantities related with it need to be specified.

2.2.3 Boundary Layer

Flows near of a wall is significantly affected by the presence of it because of

two conditions, impenetrability and no-slip. However, turbulence is also changed by

the presence of the wall as very close the viscous damping reduces the tangential

velocity fluctuations, while kinematic blocking reduces the normal fluctuations and

at the outer part of the near-wall region the turbulence is rapidly increased by the

production of turbulence kinetic energy due to the large gradients in mean velocity.

Boundary layer is that layer of fluid in the immediate vicinity of a bounding

surface that allows the fluid to transition from the free stream velocity to a velocity of

zero at the wall (No-slip condition). It is where the effects of viscosity are significant

and the behavior of the flow suffers aforementioned issues. The boundary layer can

be laminar or turbulent with a regional transition in between them. In the case of

turbulent boundary layer is important to analyze its structure as it is important for

the mesh generation.

The structure of the turbulent boundary layer shown in Figure 2.9 is divided in

an inner region and an outer region.

Figure 2.9: Asymptotic structure of turbulent boundary layer.
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The inner region is subdivided into three layers. The closest to the wall is where

the viscous influence is greater and it is called viscous sublayer. Above this region

is located the buffer layer where the molecular transport is at the same order of

magnitude as the turbulent transport. The last region in the inner region is the

log-law layer, in which the turbulent stress rules the flow completely. It is a very

important region. The outer region is where the inertial terms rules the flow.

To distinguish the different regions near the wall the concept of wall y+ (Dimen-

sionless wall distance) has been formulated and also for velocity calculation at each

region, the concept of u+, that is a dimensionless velocity. They are both given by,

y+ ≡ ρuτy

µ
, (2.31)

u+ ≡ u

uτ
, (2.32)

where y is the distance from the wall [m], u is the velocity [m/s] parallel to the wall

as a function of y and

uτ =

√
τw
ρ
, (2.33)

is the friction velocity m/s. τw is the wall shear stress [N/m2].

The viscous sublayer exists for 0 < y+ < 5 and within that, the non-dimensional

velocity profile is linear with the distance and can be described as

u+ = y+ , (2.34)

Then, immediately outside the viscous sublayer, is the buffer layer, within 5 <

y+ < 30 and there is no analytical for the velocity profile, but it relies on a curve

fitting with the profile of the next layer.

The log-law layer (30 < y+ < 500) is where viscous and turbulent effects are

both important and the relationship between u+ and y+ in the region is logarithmic

and given by,

u+ =
1

kcted
ln
(
y+
)

+ C+ , (2.35)

where kcte is the Von Kármán constant and C+ also a constant. It has been de-

termined from many experiments that kcte = 0.41 and C+ = 5.0 for smooth wall

[51].

Outer region, is where the turbulent shear stresses dominate, and the influence

from the wall on the velocity is negligible in this region. It cannot be well represented

using the wall coordinate.

The experimental velocity profile close to the wall for different Re is shown in

Figure 2.10 over a known velocity profile curve (Van Driest profile).
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Figure 2.10: Profiles of longitudinal mean velocity u obtained with hot-wire
anemometry: � - Re = 8100; � - Re = 11500; N - Re = 14800; ◦ - Re = 20600;
Over Van Driest profile (Adapted from CARLIER and STANISLAS [17]).

There are two approaches for modeling the near-wall region:

� Wall function approach - Viscosity affected region (viscous sublayer and buffer

layer) is not calculated and a semi-empirical formula is used to bridge this region to

the fully turbulent region;

� Two layer zonal model approach - Turbulence models are modified to enable

calculation for the viscosity affected region and the mesh must have nodes in the

region.

Wall function is robust, economical and reasonably accurate for most flow simu-

lation and the two-layer zonal approach requires finer mesh resolution and so more

computational resource. On other hand, in the latter the flow pattern in the bound-

ary layer is calculated explicitly. Fluent solver recommends to ensure that around

15 or more nodes cover the boundary layer thickness. The first node closer to the

wall boundary is very important for these approaches. Wall function requires first

grid point in log-law layer (30 < y+ < 500) and for proper use of two layer zonal,

the first grid point must be at y+ ≈ 1. The velocity is parallel close to the wall, so

another recommendation is that is better to use quad/hex mesh (or prism layer in

unstructured mesh) for grid alignment with the flow.

Both approaches produces errors if used outside of their purpose. Due to that,

it is important to analyze the y+ at the no-slip walls when using turbulent models.

If considering wall roughness effects, the value of C+ changes in Equation (2.35),

shifting downward the logarithmic velocity profile (Figure 2.10).
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2.2.4 Methodology

When running a CFD simulation, some procedures are followed.

� Pre-processor : The geometry and physical bounds of the problem is defined,

called Domain. Then, the most important part of the simulation, that is the

mesh generation in order to discretize the space is done. Physical modeling is

defined and also the boundary conditions and initial conditions (for transient

problems).

� Solver : Simulation starts and all the necessary equations are solved iteratively.

� Post-processor : The last step is for analysis and visualization of the resulting

solution.

Some important parameters of solver setup are discussed here. Mainly based on

the commercial solver Fluent of Ansys Inc. [14, 31].

Solver Formulation

There are two solver possibilities, the pressure-based and density-based. Pressure-

based solves the governing equations sequentially, i.e. solution variables are solved

one after another (momentum equations and the pressure-based continuity equation

may be solved coupled). Density-based solves the governing equations of continuity,

momentum, energy and species transport simultaneously and then the governing

equations for additional scalars (including turbulence models) are solved sequen-

tially. Traditionally, the pressure-based solver has been used for incompressible and

mildly compressible flows while the density-based solver was originally designed for

a high-speed compressible flow. Nowadays they can be used for a broader range

of flows, but they still being recommended according to their historical use as may

present more accuracy.

Pressure based solver has two algorithm for the solution of the equation: seg-

regated algorithm and coupled algorithm (Figure 2.11). Segregated, as the name

infers, solves governing equations for the solution variables one after another sepa-

rately, while coupled algorithm solves a coupled system of equations comprising the

momentum equations and the pressure-based continuity equation. Segregated algo-

rithm runs fast and is a good choice for most cases, but the solution convergence is

relatively slow and may have problems with supersonic flows. On other hand, cou-

pled algorithm need more computational resource, like memory, as it solves coupled

equations for pressure and velocities, but the rate of solution convergence signifi-

cantly improves.
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Update properties

Solve sequentially:
u, v, w

Solve pressure-correction
continuity equation

Update mass flux,
pressure and velocity

Solve energy, species,
turbulence and other

scalar quantities

Converged? Stop
YesNo

Segregated Algorithm

Update properties

Solve simultaneously:
system of momentum
and pressure-based

continuity equations

Update mass flux

Solve energy, species,
turbulence and other

scalar quantities

Converged? Stop
YesNo

Coupled Algorithm

Figure 2.11: Pressure-based solution methods

Coupling Algorithm

Every velocity component appears in each momentum equation (Equation (2.12))

and in continuity equation (Equation (2.11)) while pressure term appears in all mo-

mentum equation, but there is no transport equation for pressure (it is calculated

from the equation of state in compressible flow). Then, the pressure must be calcu-

lated in order to use the pressure gradient for velocity calculation from momentum

equations. Coupled algorithm solves the momentum and pressure-based continu-

ity equation together. In segregated algorithm there are some iterative solution

strategies to solve this issue, they are known as predictor-corrector approaches:

� SIMPLE [52] - Stands for Semi-Implicit Method for Pressure Linked Equa-

tions and its iterative process starts with a guess of a pressure field, then

solving the discretized momentum equation to compute the intermediate ve-

locity field. Afterwards the uncorrected mass fluxes at faces are computed and

the pressure correction equation is solved. Correct pressure field is updated

(Under-relaxation factor may be used to avoid divergence). Boundary pressure

corrections are updated also, Correction of face mass fluxes take place and so

the corrected velocities are calculated. Finally, the discretization equation for

others Ψ’s are calculated and the new pressure field is considered as the new
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pressure guess for next iteration until convergence. ;

� SIMPLER [53] - The SIMPLE Revised is an improvement of SIMPLE that

do not use a guessed pressure field but extracts a pressure field from a given

velocity field;

� SIMPLEC [54] - The SIMPLE-Consistent is similar to SIMPLE procedure

with a different expression for the face flux correction;

� PISO [55] - Stands for Pressure Implicit with Splitting of Operators and in-

volves one predictor step and two corrector step. It is considered as a SIMPLE

extension with a further corrector step to enhance it. Then, it is the same

procedure until Step 3 (Figure 2.12) and after a second pressure correction

equation is computed.

Start

Step 1: Solve discretised momentum equations

Step 2: Solve pressure correction equation

Step 3: Correct pressure and velocities

Step 4: Solve all other discretized transport equations

Converged? Stop

Set
p∗ = p, u∗ = u
v∗ = v, w∗ = w

Ψ∗ = Ψ

Initial guess p∗, u∗, v∗, w∗,Ψ∗

u∗, v∗, w∗

p′

p, u, v, w,Ψ∗

Ψ

YesNo

Figure 2.12: SIMPLE algorithm

Relaxation factor is important for cost-effective simulation, in which higher than

unity values are considered over relaxed and the solution converges faster but it
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may lead to oscillatory or even divergent iterative solutions, and a lower value is

considered under relaxed giving more stability to the solution and will cause an

extremely slow convergence.

All of these will eventually converge to the same solution, at least theoretically

they must, the differences are in speed and stability. Coupled algorithm usually

requires fewer iterations to converge and are usually recommended for steady-state

simulations while in transient it has more robustness, especially for large time step

sizes. Segregated methods are faster per iteration, but as just mentioned, requires

more iterations. SIMPLEC is preferred over the SIMPLE because of the increased

under-relaxation that can be applied [31].

Spatial Discretization

Discrete values nodes of each variable may be placed at the centroid of the control

volume (cell-centered method) or on the vertices of the grid (vertex-centered method),

and the sub-volume surrounding the node is the control volume for discretization,

that was already commented in Section 2.2.1. Nevertheless, the face values of the

control volume are required for convection, diffusion and gradient terms calculation

and must be interpolated from node values.

There are some schemes for doing that, for convection terms, with different order

of accuracy.

� First-order upwind scheme [56] - Simplest numerical scheme with first-order

accuracy, where te cell faces quantities are identical to the cell node quantities

(Figure 2.13.a). Cell face is derived from quantities in the cell node upstream,

or “upwind”, relative to the direction of the normal velocity;

� Central differencing scheme - Second-order scheme that defines the cell

face quantity by a linear interpolation between cell centered values (Fig-

ure 2.13.b). There is the possibility to change between central differencing and

first-order upwind depending on convective and diffusive transport in each cell

and this approach is called a hybrid scheme;

� Power-law scheme [53] - Interpolates the face cell value using the exact solu-

tion to a one-dimensional convection-diffusion equation (Figure 2.13.c). It is

a first-order accuracy method;

� Second-order upwind scheme [57] - In this scheme the cell face is calculated

considering two upstream nodes (Figure 2.13.d);

� QUICK scheme [58] - Quadratic Upstream Interpolation for Convective Kine-

matics is a high-order scheme that considers a three-point weighted quadratic
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interpolation fitting a curve through two upstream nodes and one downstream

node (Figure 2.13.e);

� MUSCL scheme [59] - Monotone Upstream-Centered Schemes for Conserva-

tion Laws is a third-order convection scheme that blends central differencing

scheme (Figure 2.13.b) and second-order upwind scheme (Figure 2.13.d).

Figure 2.13: Schemes representation for node P and interpolation at face e (Adapted
from BAKKER [18]). a) First-order upwind scheme, b) central differencing scheme,
c) power-law scheme, d) second-order upwind scheme and e) QUICK

There is an important number to take in consideration when studying spatial

discretization, it is the Peclet number (Pe), given by the ratio between convective

and diffusive transport:

Pe =
Fc
Dd

,

Fc = ρv , Dd =
Γ

δx
,

(2.36)

where Fc represents the convective mass flux per unit area, Dd is the diffusion

conductance at cell faces and δx is cell width.

First order upwind is easier to implement and results in very stable calculations,

but it also very diffusive, gradients tend to be smeared out. It is considered best

scheme to start calculations that are hard to converge. On other hand, central

differencing is more accurate than the first order upwind scheme, but it leads to

oscillations in the solution or divergence if the local Peclet number is larger than 2.

Second-order upwind is more accurate than the first-order upwind scheme, but in
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regions with strong gradients it can result in face values that are outside of the range

of cell values. It is then necessary to apply limiters to the predicted face values, and

this is the more popular numerical schemes because of its combination of accuracy

and stability. QUICK is a very accurate scheme, but in regions with strong gradients,

overshoots and undershoots can occur. Then, QUICK and also third-order MUSCL

discretization schemes may be recommended, for better accuracy, in simulations of

rotating or swirling flows.

Low order of accuracy discretization introduces high level of false diffusion and

higher order gives spurious oscillations when Pe is high, and when used to solve

turbulent quantities, these oscillation may generate unrealistic values. The class of

Total Variation Diminishing (TVD) [60] schemes has been formulated to address this

undesirable behavior of higher-order schemes, adding an artificial diffusion fragment

or adding weighting towards upstream contribution [29].

The discretization of diffusion term in Equation (2.14) is central-differenced and

so it is always second-order accurate [31].

Pressure Interpolation Schemes

The discretization of the pressure value requires special attention, so calculation

of pressures at the faces can be done by one pressure interpolation scheme:

� Linear – Computes face pressure as the average of the pressure values in the

adjacent cells;

� Standard - Interpolates the pressure values at the faces using momentum

equation coefficients;

� PRESTO! - Stands for PREssure STaggering Option and interpolates using

the discrete continuity balance for a “staggered” control volume about the face

to compute the face pressure [61];

� Second Order – Reconstructs the face pressure using a central differencing

scheme;

� Body Force Weighted – Assumes that the normal gradient of the difference

between pressure and body forces (for example, gravity or surface tension

forces) is constant.

Linear must be used only when other options result in convergence difficulties or

nonphysical behavior and Standard has reduced accuracy for flows exhibiting large

surface-normal pressure gradients near boundaries and should never be used when

steep pressure changes are present in the flow, PRESTO! scheme should be used

instead. Also for highly swirling flows and strongly curved domains the PRESTO!
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is recommended. Second Order is used for compressible flows. When body forces

are large body force weighted scheme is the best choice, for instance, high Rayleigh

number (Ra) natural convection or highly swirling flows.

Grid Arrangement - Pressure-Velocity Coupling

The pressure gradient term is the main momentum source term in most flows

of engineering importance, also the momentum and continuity equation are intri-

cately coupled because of velocity components (as discussed previously in Coupling

Algorithm). When pressure is known, the momentum equation discretization fol-

lows the same calculation procedure of any other transported property of flow, but

the pressure variation would be calculated from two alternate grid points and not

adjacent ones, what diminish the accuracy of the solution as the pressure value are

taken from a coarser mesh. Besides that, other issue is wrong calculation because

of this alternate nodes calculation. If we consider for clarification a highly irregu-

lar checkerboard pressure field, the pressure oscillation may generate close to zero

velocities, since the alternate pressure values are everywhere equal, creating a not

properly represented velocity field. There are two possible solution for this problem:

� Staggered grid for velocity components [62]; or

� Co-located grid with Rhie-Chow interpolation [63].

Besides the advantage of no interpolation requirement, staggered grid is very

difficult to implement on unstructured meshes.

Temporal Discretization

Transient simulations require temporal discretization also to integrate the terms

over each time step ∆t. Before describe some possibilities for temporal discretization,

a nondimensional number important must be defined, that is the Courant number

(C), and it relates the length that information travel in the physical space at each

time step with the cell length, given mathematically by

C =
v∆t

δx
, (2.37)

Now, the most common schemes in the literature for the temporal discretization

are:

� First-order explicit scheme - Forward Euler method calculates the state of

the system at a later time from the state of the system at the current time;

� First-order implicit scheme - Contrary to the explicit, backward Euler

finds the solution by solving an equation involving the current state of the
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system and the later one. It yield an implicit set of algebraic equations that

require an iterative solution procedure;

� Second-order implicit scheme - Second-order scheme that includes 3 time

steps for the calculation and take two steps for calculation. It is also called

implicit second order upwind Euler (SOUE);

� Bounded second-order implicit scheme - Similar to the SOUE but for

stability purpose would always ensure the bounds for variables;

Courant-Friedrichs-Lewy (CFL) condition states that the stability of the tem-

poral discretization is related with a maximum Courant number (Cmax). Explicit

scheme is conditionally stable with Cmax = 1, i.e. if the Courant number in any

cell goes higher than unity, it will diverge. In order to use this scheme, if the mesh

is to fine in any region with a considerable flow speed, the time step will have a

maximum value in order to avoid divergence. Stability do not mean accuracy, then

care must be taken when choosing a temporal discretization.

Second order provides more accuracy than first-order but may cause instabilities

or even divergence for the solution. Depending on the simulation, sometimes is

recommended to start it with a first-order and change it to high order after some

time steps. [14] affirms that First Order Implicit formulation is sufficient for most

problems. Bounded Second Order Implicit formulation provides the same accuracy

as the Second Order Implicit but with more stability.

Gradient Computation

Gradients are needed to be calculated not only for integration of the transport

equation given by Equation (2.14) but also for secondary diffusion terms and velocity

derivatives. Fluent provides three options for that,

� Green-Gauss Cell-Based;

� Green-Gauss Node-Based;

� Least Squares Cell-Based.

Green-Gauss Theorem is used to compute the gradient of a scalar Ψ considering

the value of Ψ at the cell face centroid, and it may be computed in a cell-based com-

putation, taking the arithmetic average of the values at the neighboring cell centers

(Green-Gauss Cell-Based) or by the arithmetic average of the nodal values on the

face, that are constructed from the weighted average of the cell values surrounding

the nodes (Green-Gauss Node-Based), providing second-order spatial accuracy. In
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general, node-based gradient is more accurate than the cell-based gradient, partic-

ularly on irregular unstructured meshes. But as always, it comes with a price to

pay in computational cost. Least Squares Cell-Based can be formally calculated in

unstructured meshes using a Taylor series expansion of the property being calcu-

lated about an specific centroid, neglecting terms proportional to the square of the

distance between the node and the face, so it is also a second-order approximation.

The Green-Gauss Node-Based and Least Squares gradient methods accuracy

in irregular unstructured meshes are comparable and both are much more superior

compared to the Green-Gauss Cell-Based gradient. However, Least Squares gradient

is less expensive to compute than the node-based gradient.

Linear System Solution

After all discussion about discretization methods, the application of discretized

scalar transport equation in each node will result in a set of algebraic equations with

a sparse coefficient matrix. There two possibilities to solve this system, by direct

method or iterative method. The last is much more economical for the purpose of

real engineering problems in CFD.

Point-iterative methods are techniques for calculation of the unknowns variable

of the system. Jacobi method is evaluated only considering the previous iteration

values and Gauss-Seidel method uses the already calculated of values of the present

iteration, but both methods converge significantly slower with increasing mesh sizes.

To accelerate solver convergence, it is possible to employ a Multigrid method. Multi-

grid solver uses a sequence of successively coarser grids. Coarse mesh calculations

only accelerate convergence and do not change the final answer, so as expected, the

final solution is obtained for the original mesh.

In Algebraic Multigrid (AMG) method the coarse level equations are generated

without the use of any geometry, no coarse meshes have to be constructed or

stored, and no fluxes or source terms need to be evaluated. The Full-Approximation

Storage (FAS) Multigrid is a geometric technique in which coarse grid cells are

created by agglomerating the cells surrounding a node

Convergence Criteria

After any iteration in the calculation of each node value for a specific variable,

it is possible to calculate the difference between the result of the equation with this

intermediate solution and the exact result with the unknown exact solution. This

difference is the local residual. Calculating the Root Mean Square (RMS) of all local

residual can give an idea if the iterations are converging to or diverging of a ”exact”

solution.

The convergence criteria may be based on minimum residual (RMS of all residual
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or maximum local residual) value for each equation being solved and/or a maximum

number of iteration and/or variation of a specific quantity of interest in the solution.

Monitoring integrated quantities such as force, drag, or average temperature can

give the idea if a simulation already converged once the monitor point values have

”flattened out”.

2.2.5 Volume of Fluid Method (VOF)

First of all, the concept of phase needs to be discussed. From the thermodynamic

point of view, a phase refers to solid, liquid or vapor state of matter. However, when

we talk about CFD modeling the concept is broader. Phase in CFD is more related

to the morphology of the flow than just the state of matter.

There are other interesting and important definitions when analysing different

phases in CFD, for instance mutlicomponent × multiphase, or disperse × contin-

uous and eulerian × lagrangian approach and they will be briefly commented for

enlightenment purpose of the choices in the work.

When modeling a flow with two phases, the miscibility between them becomes

important, so when analyzing substances that mix in a microscopic scale it should

be used the multicomponent modeling, for instance, water and ethanol simulation.

But when modeling two substances that mix in macroscopic scale it should be used

the multiphase model.

Depending on the morphology of the interface between the phases, they can be

considered disperse or continuous. When one phase is uniformly mixed in another

continuous phase, as they may appear a quasi-homogeneous mixture or emulsion,

this phase is considered dispersed. In other words, a phase is disperse if it occupies

disconnected regions of space. The dispersed phase can also be classified in diluted

or dense, depending on the concentration of the particles in the continuous phase.

However, when phases exists in continuous regions where all elements of each phase

is connected it is said that the multiphase flow is continuous.

Eulerian and Lagrangian concept was already defined in Section 2.2.1. It is

related with how the parameters are analyzed in the solution. Eulerian the volume

is fixed while Lagrangian tracks a specific volume.

Simulation of a ship in waves or of water motion inside a moonpool is a simulation

of free surface flow with two phases, air and water, and so a multiphase, continuous

and eulerian technique must be chosen. A very well known and widely used technique

in literature for this purpose is the Volume of Fluid (VOF) [64]. It is a surface-

tracking model used when the position and shape of the interface is of interest. In

this model, just a single set of momentum equations is shared by the fluids and

another transport equation must be solved for the phase volume fraction αq in the
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cell, that is defined as the ratio of volume of qth fluid inside the cell by the cell volume

(areas in 2D). Each additional phase in the model require a new volume fraction

variable and the summation of all volume fractions in a cell has to be equal 1. That

statement is logical as long as each cell volume must be full of all the phases of the

problem, with no void region, neither it can have more volume of fluid than its own

volume. Based on the local value of volume fraction that appropriate properties and

variables are assigned to each control volume within the domain.

As aforementioned, a single set of momentum equation is solved throughout

the domain, and the resulting velocity field is shared among the phases, respecting

dependency on the volume fractions of all phases through the properties ρ and

µ. Surface tension and wall adhesion are modeled with an additional source term

in momentum equation. For turbulent flows, also only a single set of turbulence

transport equations is solved.

Transport equation of the volume fraction is similar to Equation (2.13) without

diffusion term and considering a mass transfer between phases. Primary phase

do not need a transport equation and it is solved considering the constraint just

commented, that the summation of all volume fractions is equal to 1, but for each

new phase added a new transport equation must be solved.

Interface Tracking

According to the definition of the volume of fluid variable, if a cell has a volume

fraction αq = 0, then the cell is empty of qth fluid and when αq = 1 the cell is full of

qth fluid. However, if the values lies within a range 0 < αq < 1 the cell contains the

interface between the qth fluid and one or more other fluids.

Avoiding smearing of this interface is mandatory for a correct representation,

so transport equation must be solved without excessive diffusion. Upwind schemes

are unsuitable because of their diffusive nature and central differencing schemes are

unbounded and often give unphysical results [31]. Choosing the volume fraction

discretization schemes depends on the interface regime that will be modeled, if it is

a sharp interface or a dispersed (when the phases are interpenetrating). Considering

the sharp interface that is the case of this thesis, the spatial discretization methods

for treating VOF can be roughly divided into three categories:

� Donor-Acceptor – Identify one cell as donor of an amount of fluid and other

as the acceptor of the same amount, preventing diffusion. Amount of fluid that

can be convected is limited by the minimum of two values: the filled volume

in the donor cell or the free volume in the acceptor cell. Interface orientation

is either horizontal or vertical;

� Higher Order Schemes - Convective transport equation is discretized with
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higher order or blended differencing scheme. Include the Compressive Inter-

face Capturing Scheme for Arbitrary Meshes (CICSAM) and High Resolution

Interface Capturing (HRIC);

� Line Techniques - It is a geometric reconstruction scheme, representing the

interface between fluids using a linear approach. It assumes that the interface

between two fluids has a linear slope within each cell, and uses this linear

shape for calculation of the advection of fluid.

CICSAM and HRIC are based in the Normalized Variable Diagram (NVD).

CICSAM is a blend of two other schemes, one is a variation of QUICK. HRIC

presents a nonlinear blend of upwind and downwind differencing. In Fluent solver

there is also a Compressive scheme with a slope limiter that is used to blend between

a first and second order or a second order and compressive scheme.

Fluent also has a Geo-Reconstruct scheme in the Line Technique category that

represents the interface between fluids using Piecewise Linear Interface Calculation

(PLIC) approach based in YOUNGS [65] work.

A representation of the interface tracking is shown in Figure 2.14.

Figure 2.14: Interface tracking schemes (Adapted from BAKKER [19]).

In cases where large velocity differences exist between the phases, the accuracy

of the velocities computed near the interface can be adversely affected. The ratio of

viscosity between fluid at interface also may lead to convergence difficulties. CIC-

SAM is suitable for flows with high ratios of viscosities, more than 103, between the

phases.
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CICSAM and HRIC are highly dependent on Courant number (Equation (2.37)),

becoming incresingly diffusive with higher C. This is explained by the fact that both

schemes tends to upwind for high Courant numbers, increasing the total numerical

diffusion of interface.

The Compressive scheme provides better accuracy compared with CICSAM and

HRIC for most cases and, when used with the second order implicit time scheme,

the Compressive scheme produces quite a sharp interface [14].

Geo-Reconstruct is the most accurate scheme in Fluent solver, but is more com-

putationally expensive than the others.

2.2.6 Verification and Validation (V&V)

As CFD became popular and the computers were getting more powerful, with

more memory and speed, more companies started to invest and focus the attention

on this branch. However, there are some potential consequences of wrong decisions

made on the basis of CFD and, besides the time savings and the enhanced under-

standing of analyzed engineering problem, the CFD application can only be justified

on the basis of its accuracy and level of confidence in its results [29].

First of all, it is necessary a definition for error and uncertainty as long as

these are the key terms in the context of trust and confidence in CFD modeling.

American Institute of Aeronautics and Astronautics (AIAA) [66] gives the following

well accepted definition:

� Uncertainty: A potential deficiency in any phase or activity of the modeling

process that is due to the lack of knowledge;

� Error: A recognizable deficiency in any phase or activity of modeling and

simulation that is not due to lack of knowledge.

There are three recognized sources of numerical errors :

◦ Roundoff error;

◦ Iterative convergence error;

◦ Discretization error.

There are yet other causes of error like coding errors due to ’bugs’ in the software

or user errors that are simply caused by software misusing. These are not so easy

to measure but may be avoided by a qualified user with a well validated code.

Whereas for the numerical uncertainties there are two main sources:

◦ Input uncertainty;

− Domain geometry;
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− Boundary conditions;

− Fluid properties.

◦ Physical model uncertainty.

− Validity of submodels;

− Simplifying assumptions.

The concern of V&V is to develop rigorous methods to quantify the level of

confidence assessing the accuracy of the computational simulation. AIAA [66] also

defined these two terms, as follows:

� Verification: process of determining that a model implementation accurately

represents the developer’s conceptual description of the model and the solution

to the model;

� Validation: the process of determining the degree to which a model is an

accurate representation of the real world from the perspective of the intended

uses of the model.

A summary of these definition is wisely given by ROACHE [67], who called the

verification as ’solving the equations right’ while validation is ’solving the right equa-

tions’. It means that verification quantifies the errors and the validation quantifies

the uncertainties.

Verification

Verification assessment for roundoff error demands running the simulation in

different level of machine accuracy (single precision and double precision) and itera-

tive convergence error can be quantified changing the residuals convergence criteria

of discretized flow equations.

For discretization errors, that are related with the temporal and spatial deriva-

tives, there are some well-known methods for calculation. One very recommended

method for discretization error estimation is the Richardson extrapolation (RE)

method and it has large acceptance, being recommended by editorial policy of jour-

nal [68] and also it is in the International Towing Tank Conference (ITTC) Recom-

mended Procedures and Guidelines [69]. In this work, the Grid Convergence Index

(GCI) method is used, it is based in RE and follows the recommendation mentioned

before.

The first step is to define a representative cell size hgrid. In a 3D mesh is given

by:

hgrid = 3

√√√√ 1

N

N∑
i=1

(∆Vi) , (2.38)
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where ∆Vi is the volume of the ith cell [m3], and N is the total number of cells used

for the computations.

The discretization error is related with the spatial but also temporal discretiza-

tion, and so it is related with the size of the temporal mesh. Temporal mesh can be

seen as 1D mesh, in which, solution time are nodes and time step are the distance

between each successive node. A representative cell size in temporal discretization

is related with time step average of the transient solution.

Then, the next step is to create a set of at least three grid with successive level

of mesh refinement. However, it is desirable that the grid refinement ratio rgrid

(Equation (2.39)) between two successive meshes is greater than 1.3 [68] (or
√

2 in

ITTC Procedures [69])

rgrid =
hcoarse
hfine

> 1.3 , (2.39)

where hcoarse is one level of a coarser mesh, and hfine is the successive finer one.

Defining the representative cell size of the three meshes as h1 < h2 < h3, also

respective grid refinement ratio as r21 = h2/h1, r32 = h3/h2 and running simulations

in each to determine the values of target quantities (ϕ), important to the objective

of the simulation study. It is possible to calculate the apparent order (pg) of the

method in Equation (2.40)

pg =
1

ln(r21)

∣∣∣∣ln ∣∣∣∣ε32

ε21

∣∣∣∣+ qg (pg)

∣∣∣∣ , (2.40)

where ε32 = ϕ3 − ϕ2, ε21 = ϕ2 − ϕ1, ϕk denoting the solution on the kth grid and

qg (pg) = ln

(
r
pg
21 − s
r
pg
32 − s

)
, (2.41)

s = sgn

(
ε32

ε21

)
, (2.42)

in which sgn is the signum function, an odd mathematical function that extracts

the sign of a real number.

Apparent order pg is an iterated function, i.e. it is a function pg −→ pg, and can

be solved using fixed-iteration point. Then, the extrapolated value (ϕklext) can be

calculated by:

ϕ21
ext =

r
pg
21ϕ1 − ϕ2

r
pg
21 − 1

. (2.43)

Similarly, it is possible to calculate ϕ32
ext.

Relative errors are computed using Equations (2.44) and (2.45).

e21
a =

∣∣∣∣ϕ1 − ϕ2

ϕ1

∣∣∣∣ , (2.44)
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e21
ext =

∣∣∣∣ϕ21
ext − ϕ1

ϕ21
ext

∣∣∣∣ , (2.45)

where e21
a is the approximate relative error and e21

ext is the extrapolated one.

The GCI now can be defined as:

GCI21
fine =

1.25e21
a

r
pg
21 − 1

. (2.46)

Likewise, the GCI32
medium can be calculated using the same apparent order (pg).

This calculated parameter is the respective value error due the discretization error

and as explained before does not take into consideration other modeling errors

Validation

Validation assessment, as aforementioned, determines if the computational sim-

ulation agrees with physical reality. It requires comparison of CFD results with

high-quality experimental results.

2.3 Genetic Algorithm (GA)

Before further discussion on definition and mechanics of genetic algorithm, it is

interesting to clarify the goals of optimization. Expressing it in a simplified way, it

is a process to find the best element following certain criterion in a set of available

alternatives. Mathematically consists of maximizing or minimizing a real function

by systematically varying the input from a set of allowable values.

Genetic Algorithm are search and optimization algorithms based on the concept

of Darwin’s theory of evolution. It became popular in the early 1970’s through

the work of HOLLAND [70]. It is a metaheuristic and naturally inspired algorithm

belonging to the class of Evolutionary Algorithms (EA).

It combines the idea of survival of fittest with randomized information exchange

[71]. The algorithm is presented in a flowchart below (Figure 2.15). A set of individ-

uals forms a population that is the initial generation and according to a fitness goal

the fittest of these forms a new generation with some random variation (crossover

and/or mutation). Then, the fittest of these are chosen for the process repetition.

Each individual are composed of genes that describe their behavior and these genes

suffer modifications when creating a new creature, a offspring. When selecting the

fittest creatures, the fittest genes will then be selected.

To create a new set of creatures for a new generation, two approaches may

be used, crossover or mutation (Figure 2.16). The former consists of a offspring

production by swapping genes from both parents. On other hand, mutation happens

when some genes randomly are modified, besides parents genetic code. The crossover
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Initialize Population (Gen = 0)

Evaluate Fitness

Stop Condition

Selection Crossover and/or Mutation

Output Results

Figure 2.15: Flowchart of Genetic Algorithm

is necessary to keep the genes that are possibly related with the fittest result on the

new offspring while mutation is good to introduce variation in the population and

by that a new overriding gene value may be found.

Figure 2.16: Crossover and mutation operations in genetic algorithm [20].

Genetic algorithms are different from other optimization procedures in four ways

[71]:

� Use information of objective function, not derivative or auxiliary knowledge;

� They use probabilistic transition rules, not deterministic ones;

� Work with a coding of the parameter set, not the parameter themselves;

� Search from a population of points, not a single point.

At Chapter 5 these definition of individual, population, genes, crossover and

mutation will be clarified for the specific purpose of the thesis.
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Chapter 3

Analytical Approach

Optimization of design with respect to relative motion is possible but first is

necessary to understand more the physics behind the excitation mechanism of the

water column in moonpool and also it is important to describe a way to calculate

the effective viscous damping, since throughout this work it becomes evident the

need to adjust this parameter for further calculations. This chapters brings in Sec-

tion 3.1 an original analytical description of the water motion inside moonpool for

a rectangular moonpool. Also, following a known recommended practice report [72]

from a international classification society (DNV), deduce the calculation of resonant

period and added mass of the moonpool characteristics used in this work. Then, in

Section 3.3 the hydrodynamic coefficients that will be used for the numerical results

analysis throughout this thesis.

3.1 Water Motions Inside of Moonpool

Mathematical model for the water oscillation in the rectangle shaped moonpool

is derived in this thesis using conservation of momentum in a control volume Ω

(Figure 3.1) inside moonpool and deduction is shown in Appendix A. For simplicity,

the cutout angle is considered as a right angle (α = 90°). More consideration about

it are discussed through this work.

Equation of relative motion of water inside moonpool h(t) is given by:

[ρwbl (d+ h) +Ma] ḧ+Blḣ+Bqḣ|ḣ|+ ρwgblh+

[dhz + ρwbl (d+ h) +Ma] z̈h + [ehz +Bl] żh + ρwgblzh

= Fwh ,

(3.1)

in which:

h(t) is the free surface elevation [m];

zh is heave motion of ship [m];
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b is moonpool’s breadth [m];

l is moonpool’s length [m];

d is draft [m];

g is gravity acceleration [m/s2];

ρw is specific density of water [kg/m3];

Ma is added mass [kg];

Bl is linear damping coefficient [kg/s];

Bq is quadratic damping coefficient [kg/m];

dhz is the added mass interaction coefficient between heave and absolute

moonpool motion [kg];

ehz is the damping interaction coefficient between heave and absolute moon-

pool motion [kg/s];

Fwh is the wave force exciting relative motion h(t) [N ].

Figure 3.1: The control volume Ω with surface dΩ of rectangular shaped moonpool.

First line of Equation (3.1) describes the motion of water inside the moonpool

while the second line describes the interaction with ship’s heave motion. The non-

linear term Bqḣ|ḣ| is the damping due to friction and vortex generation and it is

researched in more details by KNOTT and FLOWER [73].

Decay

In a decay test, the Equation (3.1) can be written as:

[ρwbl (d+ h) +Ma] ḧ+Blḣ+Bqḣ|ḣ|+ ρwgblh = 0 . (3.2)
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The natural frequency (ωn) of water oscillation in a rectangle shaped moonpool,

assuming that the damping is small, can be calculated as shown in Equation (3.3).

ωn =

√
ρwgbl

ρwbld+Ma

. (3.3)

In a real decay test of water inside moonpool, a viscous damper is added to

the model and this outputs a force that is proportional to the velocity of the mass

as shown previously in Equation (3.2). This equation is nonlinear and cannot be

solved analytically. Higher damping prevents the system from oscillation, and that

happens when system has reached the point of critical damping. The value of this

critical damping is given by:

BCrit = 2
√
K (ρwbld+Ma) , (3.4)

where K is the stiffness coefficient and in the piston mode is

K = ρwgA = ρwgbl . (3.5)

The relation between system damping and the critical damping is defined as

damping ratio (η):

η ≡ system damping

critical damping
=

Beq

BCrit

=
Bl +

8

3π
ωnξaBq

2
√
K (ρwbld+Ma)

, (3.6)

where Beq is the equivalent linearized damping [kg/s] at a particular amplitude

ξa [m] of the free surface elevation in the moonpool at which damping decay is

calculated.

The frequency at which a system tends to oscillate in this case is called the

damped natural frequency (ωd). The damped natural frequency is less than the

undamped natural frequency, but for many practical cases the damping ratio (η)

is relatively small and hence the difference is negligible (η = 0.1 - Damped natural

frequency is only 1% less than the undamped). Damped natural frequency is given

by:

ωd = ωn
√

1− η2 . (3.7)

By considering Equation (3.2) it is possible to calculate natural frequency (ωn),

added mass (Ma), linear damping (Bl) and viscous pressure damping (Bq - Quadratic

damping) fitting solution with an experimental data. In Section 3.3 it is shown a

way to calculate these coefficients with a test result.
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Forced Heave Oscillation

Turning now to a forced heave oscillation test, there is the ship motion (zh) but

no wave exciting force (Fwh = 0) to take into consideration, so the Equation (3.1)

can be written as:

[ρwbl (d+ h) +Ma] ḧ+Blḣ+Bqḣ|ḣ|+ ρwgblh =

= − [dhz + ρwbl (d+ h) +Ma] z̈h − [ehz +Bl] żh − ρwgblzh .
(3.8)

Since the hydrodynamic parameters of moonpool are obtained from a decay test

using Equation (3.2) and it is assumable that these quantities are constant in the

frequency range considered, the forced heave test may be used for the dhz ehz values

calculation.

Regular Waves - Captive Vessel

If regular wave with captive vessel (zh = 0) is considered, then the equation of

motion is described as:

[ρwbl (d+ h) +Ma] ḧ+Blḣ+Bqḣ|ḣ|+ ρwgblh = Fwh , (3.9)

Freely Floating Vessel

Last but not least, the coupled equation of motion for the freely floating vessel,

neglecting the coupling with other motions than heave, is given by:

[ρwbl (d+ h) +Ma] ḧ+Blḣ+Bqḣ|ḣ|+ ρwgblh+

[dhz + ρwbl (d+ h) +Ma] z̈h + [ehz +Bl] żh + ρwgblzh

= Fwh ,

(3.1 Rev.)

[Ms +Mas] z̈h +Bsżh +Kszh + dzh(z̈h + ḧ) + ezh(żh + ḣ) +

= Fwz ,
(3.10)

where

MS is mass of vessel [kg];

Mas is added mass for the vessel [kg];

Bs is linear damping coefficient for the vessel [kg/s];

Ks is stiffness coefficient for the vessel [kg/s2];

dzh is the added mass symmetric interaction coefficient between heave and

absolute moonpool motion [kg];

ezh is the damping symmetric interaction coefficient between heave and

absolute moonpool motion [kg/s];
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Fwh is the wave force exciting vessel’s heave [N ].

3.2 Energy Conservation

Considering the law of energy conservation that gives,

d (Ek + Ep)

dt
= 0 , (3.11)

where Ek is the kinetic energy [J ] and Ep is the potential energy [J ].

Following DNV GL [72] and applying Equation (3.11) to the water motion in a

moonpool similar to default moonpool (Figure 1.10) with draft d = 12.0 the breadth

of moonpool constant, but letting the length on bottom be equal to lb, the cutout

angle equal to α and A (z) as the cross-sectional are of moonpool at z, that is

the vertical distance measurement from the free surface, pointing upward, we can

calculate the following relation for resonance period,

Tn =
2π
√
g

√
(λmp − 12) (ln (λmp)− ln (λmp − 12)) +

A (0)

A (−12)
kmp
√
A (−12) , (3.12)

where λmp = lb tan (α), A (0) = b (lb − 12/ tan (α)), A (−12) = blb and kmp is a pa-

rameter within 0.45 and 0.47 for rectangular moonpools with aspect ratios between

0.4 and 1.0 [72].

The mass plus added mass (M +Ma) of the system may also be calculated as,

M +Ma = ρA (0)

[
(λmp − 12) (ln (λmp − 12)− ln (λmp − 24)) +

A (0)

A (−12)
kmp
√
A (−12)

]
.

(3.13)

Also, added mass for vertical oscillation can be expressed as,

Ma = ρkmpA (−12)
√
A (−12) . (3.14)

Equations (3.12) to (3.14) are calculated considering the law of energy conserva-

tion (Equation (3.11)), so it neglects any loss due to viscosity effects, but they are

important for a calculation of the resonant period and added mass of moonpool just

considering the geometry information.
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3.3 Hydrodynamic Coefficients - Decay test

Hydrodynamic coefficients, namely natural frequency, added mass and damping

coefficients, are important for the analysis of this work. It could be seen in previous

Sections that these coefficients need to be calculated for the moonpool. A decay

test is probably the simplest way to calculate these coefficients.

With results data of decay test is possible to calculate mean peak-to-peak (or

mean of the zero up-crossing) damped period Td and calculate the natural damped

frequency:

ωd =
2π

Td
. (3.15)

As previously mentioned, ωn ≈ ωd.

Using Equation (3.3), it is possible to calculate the added mass Ma.

Logarithmic Decrement

Then, for the calculation of damping coefficients, it is necessary to analyze the

time trace of the free surface in the moonpool from the decay tests. Denoting ζn

as the absolute value of free surface elevation of nth extreme value. The Figure 3.2

below shows a typical time trace for a decay test for a weakly damped system with

both linear and quadratic damping components.

Figure 3.2: Time trace of a decay calculation

In an underdamped system (η < 1) the logarithmic decrement δ may be used for

damping coefficients calculation [74]. It represents the rate at which the amplitude

of a free-damped vibration decreases and can be obtained from Equation (3.16).

δ ≡ 1

ni
ln
ζ1

ζn
∴ ln

ζ1

ζn
= δni . (3.16)
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Damping ratio (η), defined in Equation (3.6), can be found by solving:

η =
δ√

4π2 + δ2
. (3.17)

Using Equation (3.17) in Equation (3.6), it is possible to calculate the equivalent

linearized damping Beq.

PQ Analysis

Other procedure for damping coefficients, is to compute the dissipated energy

during a number of cycles, commonly referred to as the energy method, and as long

as it does not require to fit a function, it is generally considered as more reliable

and robust. Hereafter this analysis is called PQ Analysis. Another advantage of

this method, is that it can be used for the calculation of the linear, quadratic and

even higher order damping.

The so-called Extinction Curve expresses the decrease of ζn as a function of mean

elevation (ζm) [75]. Describing this curve as a two degree polynomial:

∆ζn = pζm + qζ2
m , (3.18)

where

∆ζn = ζn−1 − ζn , (3.19)

ζm = [ζn−1 + ζn] /2 . (3.20)

The coefficients p and q are called extinction coefficients and the relation between

these coefficients and damping coefficients can be found integrating the motion inside

moonpool (Equation (3.2)), over the time period for a cycle and then equating the

energy loss due damping to work done by restoring moment [76]. The result is given

by:

∆ζn =
πζm

(M +Ma)ωn

(
Bl +

8

3π
ωnζmBq

)
. (3.21)

Substitution of Equation (3.21) into Equation (3.18) and after some algebraic

manipulations, the linear and quadratic damping are calculated as follows:

Bl =
(M +Ma)ωn

π
p , (3.22)

Bq =
3

8
(M +Ma) q . (3.23)
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Figure 3.3: PQ Analysis plot (JAOUËN et al. [21])

Equation (3.18) may be rewritten in the slope-intercept form of a linear equation,

∆ζn
ζm

= qζm + p . (3.24)

At this manner, it is noticeable that if the damping is purely quadratic, i.e. p = 0,

the data points in the decrement plot all fall on a straight line crossing origin and

the slope is a measure of the quadratic damping. Pure linear damping, i.e. q = 0,

means that the decrement is amplitude-independent and leads to a horizontal line

in the decrement plot (Figure 3.3).

Depending on the order of damping desired to calculated, the order of Equa-

tion (3.18) can be increased and also a term of the third order is added in the

damping force changing Equation (3.21). At this present work we are worried just

with linear and quadratic damping, so the two degree polynomial is enough.

64



Chapter 4

Numerical Approach

In this chapter, Section 4.1 brings CFD analysis with domain and mesh study,

also the turbulence modeling in comparison with laminar results and the general

setup with boundary and initial conditions (setup and verification stage). The re-

sults gathered from simulations can be seen in Section 4.2. Concluding this chapter,

some information about the potential theory setup are presented and also the vis-

cosity importance in the calculation of ship motion and also of the free surface

elevation inside moonpool (Section 4.3). This last section is crucial for the next

chapter objectives, as the optimizer presented is based on potential theory solver.

4.1 CFD Setup

All the simulations in this work was done using a commercial CFD software

bundle (Ansys CFD), that includes preprocessor (DesignModeler and Meshing -

Ansys Workbench), FVM solver (Fluent) and postprocessor (CFD-Post) software

(Section 2.2.4).

Concerning with quality of CFD, some procedures must be done as domain inde-

pendence study and mesh refinement study. In this work, simulations for decay test

and also for some others configurations were executed. Particularly, results of decay

test are more important for the damping coefficients calculation, so these studies

were conducted specifically for that simulation. The other simulations are just at

the end a comparison with analytical as additional resource. Without experiments

no validation can be done. However, with a good agreement among CFD results

and analytical, we can trust more in the latter to do damping analysis.

4.1.1 Domain

Geometry of a barge with the default moonpool is used for decay test and other

tests that will be shown in Section 4.2. Its design with main particulars are shown
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in Figure 4.1.

Figure 4.1: Design of the barge for CFD tests with default moonpool.

A rectangular shaped domain as presented in Figure 4.2 (half domain) is used

for all the following simulations, except for the Numerical Regular Wave for Freely

Floating Vessel Test, but further details on this are given in Section 4.2.4.

Figure 4.2: Main particulars of domain (Cut in symmetry plane).

Then, three different size of that domain are created for the size dependence

analysis and are shown in Figure 4.3. Domain’s dimensions, as a function of model’s

LOA (length overall), with respective number of elements are presented in Table 4.1.

The mesh inside of each domain is created from the previously smaller mesh in

a way that almost none variation would occur in the pre-existing mesh and just

the domain size is analyzed at that study. Then, it is performed in a region with

hexahedra elements by adding more hexahedra following the increase ratio of neigh-

boring cells. It is noticeable that the variation of number of elements between the

Medium size and the Small size is greater than the difference between Big size and

Medium, that is due the fact that as it getting farther of the barge, the mesh tend to

increase it element size as long as the gradients are smaller and also it can be used as

an artifice to add an artificial dispersion so the flow fits outlet boundary condition
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Figure 4.3: Three different domains for the size domain study (Cut in symmetry
plane).

Table 4.1: Dimensions of the three domains generated as a function of barge LOA.

Small Medium Big

Fore 0.5 1.0 1.5

Aft 1.0 2.0 3.0

Half Width 1/3 2/3 1.0

Depth 1/3 2/3 1.0

Height 1/8 1/4 1/2

Number of Elements 809631 971001 1041342

previously. This artifice must be used cautiously because downstream results may

change substantially the main result data in the analysis.

Domain Size Study

The result parameters that are of most concern are the hydrodynamic coefficients

of default moonpool. Three wave probes were located inside moonpool and it location

are presented in Figure 4.4. They are distributed horizontally in relation to the

length at the top part of moonpool, that is opened to atmosphere.

The free decay time trace of Wave Probe Bow is shown in Figure 4.5 and it is

used as an example to describe the theory. It is possible to calculate mean peak-

to-peak period and with that compute the damped natural frequency. Knowing the

last and using Equation (3.3), the added mass can be determined.

In order to calculate the equivalent linearized damping Beq, the logarithmic

decrement δ is calculated for each domain. According to Equation (3.16), δ can

be found considering the angular coefficient of best fitting line (trend line) of peak

data in the plot lnζ1/ζn × ni. The logarithmic decrement plot of the time trace in

Figure 4.5 is shown in Figure 4.6.
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Figure 4.4: Locations of probes in the moonpool (CFD) - L′ = 10.15m

Figure 4.5: Time trace from decay test - Default moonpool - WPBow.

Then, using Equations (3.6), (3.16) and (3.17) and considering average off all

three wave probes, the results are computed. The summary of all hydrodynamic

coefficients for each domain size and the relative variation of each coefficient in

relation to one step smaller domain is presented Table 4.2.

For the quadratic and linear damping coefficients calculation, the results were

analyzed using the PQ method, explained above (Section 3.3). Figure 4.7 presents

PQ analysis of previous cited time trace (Figure 4.5).

After analyzed all domain size, it is noticeable that the PQ analysis method does

not capture the physical behavior, as the damping is negative in most of wave probes

at different domain size. The average of all three wave probes are used to derive the
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Figure 4.6: Logarithmic decrement plot - Default moonpool - WPBow.

Table 4.2: Hydrodynamic coefficients and relative variations for domain study.

ωn

[rad/s]
Ma

[kg]
Beq

[kNs/m]
BCrit

[kNs/m]

Small 0.531 1.305× 107 7.607× 105 2.180× 107

Medium 0.536 1.271× 107 8.833× 105 2.162× 107

Big 0.537 1.264× 107 9.599× 105 2.158× 107

Medium - Small 0.83 % -2.68 % 13.88 % -0.84 %

Big - Medium 0.18 % -0.56 % 7.97 % -0.18 %

final p and q values for each size domain and then the damping. In Table 4.3, the

calculated results are presented for all of them.

According to what is shown, it is noticeable that the Small domain would already

be enough for calculation of natural frequency and the parameter directly related

with it, like added mass and critical damping. When considering the results of

equivalent damping, there is a variation that may be considerable, so the Medium

size would be a better choice due that.

The results taken from PQ analysis, linear damping and quadratic damping, did

present a non physical behavior with negative damping. Besides the significant vari-

ation, it has also shown an oscillatory convergence, as the values slightly increased

from the Small to Medium and then had a significant decrease to the Big size. Based

on this, the PQ analysis is considerable to not bring good results for this decay test.

More details are given below in Section 4.2.1.
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Figure 4.7: PQ analysis - Default moonpool - WPBow.

Table 4.3: PQ Analysis of hydrodynamic coefficients for domain study.

p q Bl

[kNs/m]
Bq

[kNs2/m2]

Small -0.127 0.211 −4.363× 105 1.598× 106

Medium -0.141 0.223 −4.851× 105 1.685× 106

Big -0.087 0.184 −3.010× 105 1.399× 106

4.1.2 Mesh

Different meshes are used in this work, depending on the simulation. First of all,

a structured mesh (regular connectivity for each node - grid points can be mapped

into a matrix) was created (Figure 4.8) and some issues took place. For a structured

3D mesh, all the elements are hexahedra and besides the better convergence and

higher resolution, there are some drawbacks. In addition to the fact that it is

hard and time consuming to generate a mesh like this, some specific quality issues

were faced in this work, one is that as long as it is necessary to refine closer to

moonpool, the elements far of it presented bad smoothness (rate of change in the

magnitude of adjacent element volumes) with less efficient mesh distribution (fine

resolution in areas of less importance) and there is a drawback also with aspect

ratio (ratio of longest to the shortest side in a cell) far of moonpool, due the need of

an anisotropic mesh for discretization of free surface region and moonpool outflow

region (Figure 4.8). Dedicating extra time for the mesh generation these issues may

be improved, but since hybrid meshes are already very well accepted and proven to
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bring also good results, they are used at this work.

Figure 4.8: Structured Mesh (Hexahedron only - 942120 Elements).

Hybrid meshes are unstructured meshes that contains a structured portion with

hexahedra elements and an unstructured portion with any possible element that a

solver might be able to use. It is important to know that besides the definition of

mesh topology, Fluent is an unstructured solver, so it does not map the grid points

into a matrix even for structured meshes [14]. It gives more versatility to the code.

So, the topology definition in this work is just to inform about the mesh elements.

Another reason for choosing a hybrid unstructured grid is that Forced Heave Os-

cillation Test (Section 4.2.2) has body motion, and in that case tetrahedra elements

are much easier to setup and they are also more versatile as they accept higher time

step (time between each iterative solution).

Mesh for Numerical Decay Test is shown in Figure 4.9 and is the same mesh

used in Numerical Regular Wave with Captive Vessel Test (Section 4.2.3). It has a

prismatic layer for boundary layer calculation and it is also used for better resolution

of the free surface close to the barge, as this region presents tetrahedra elements.

Outside of this closer region of the barge, hexahedra elements are used with a better

control of the mesh quality as the element sizes are not directly connected with the

element sizes close to moonpool. Inside moonpool it was possible to use hexahedra

elements as well.

Mesh of Numerical Regular Wave for Freely Floating Vessel Test simulation is

shown in Section 4.2.4.

There is a big concern about numerical uncertainty and errors in CFD and some

introductory ideas about it are described in Section 2.2.6. Following guidelines about

mesh convergence study, three successive level of meshes refinement was set and are

shown in Figure 4.10.
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Figure 4.9: Mesh elements (Medium mesh).

Figure 4.10: Volume size of elements in different mesh refinements close to moonpool.
a) Fine mesh, b) medium mesh and c) coarse mesh. (Side view - Y = 0.0).

This refinement is done considering a general global refinement by the same

factor as long as it is necessary to not change the elements distribution. Use of

geometrically similar cells are preferable [68], so every region that in Figure 4.9 is

kept with the same elements as can be seen in Figure 4.10. In Table 4.4 a summary
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of the variation between meshes are shown.

Table 4.4: Properties of decay grid for different refinements (rgrid ≈ 1.3).

Coarse Medium Fine

Hexahedron 112767 321474 754148

Tetrahedron 170951 373487 913869

Prism 155420 276040 494680

Representative cell size 3.73 2.86 2.19

Number of Elements 439138 971001 2162697

Mesh Convergence Study

Proceeding with same idea of the domain size study (Section 4.1.1), target quan-

tities of interest are the hydrodynamic coefficients and they also are analyzed for

the mesh refinement study.

Wave probes are located in same position shown in Figure 4.4 and free decay

of each mesh was used to compute natural frequency, added mass and damping

coefficients, using also the logarithmic decrement method to calculate equivalent

one.

Then, the Table 4.5 is built with all target quantities and relative variation

among the successive refinement levels.

Table 4.5: Hydrodynamic coefficients and relative variations for mesh study.

ωn

[rad/s]
Ma

[kg]
Beq

[kNs/m]
BCrit

[kNs/m]

Coarse 0.535 1.275× 107 8.529× 105 2.164× 107

Medium 0.536 1.271× 107 8.833× 105 2.162× 107

Fine 0.534 1.282× 107 9.033× 105 2.168× 107

Medium - Coarse 0.1 % -0.31 % 3.44 % -0.1 %

Fine - Medium -0.27 % 0.84 % 2.21 % 0.27 %

For more confidence in the results, it is possible to estimate the discretization

error and the GCI method is chosen. In this work, just spatial discretization error

is analyzed, so the simulations were run at the same time step.

The grid refinement ratio rgrid is approximately equal to 1.3 [68] (Table 4.4),

being a little more conservative then ITTC [69] recommendation of
√

2. Using

(Equations (2.38) to (2.46)) for GCI proper calculation, all the respective variables

calculated are shown in Table 4.6 below.
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Table 4.6: Calculations of discretization error - Grid Convergence Index of each
mesh.

ωn

[rad/s]
Ma

[kg]
Beq

[kNs/m]
BCrit

[kNs/m]

r21 1.303

r32 1.306

ϕ3 0.535 1.275× 107 8.529× 105 2.164× 107

ϕ2 0.536 1.271× 107 8.833× 105 2.162× 107

ϕ1 0.534 1.282× 107 9.033× 105 2.168× 107

pg 3.776 3.788 1.613 3.787

ϕ32
ext 0.536 1.269× 107 9.405× 105 2.161× 107

ϕ21
ext 0.534 1.288× 107 9.405× 105 2.171× 107

e32a 0.096 % 0.305 % 3.565 % 0.096 %

e21a 0.266 % 0.847 % 2.263 % 0.266 %

e32ext 0.056 % 0.178 % 6.078 % 0.056 %

e21ext 0.153 % 0.478 % 3.952 % 0.152 %

GCI32medium 0.07 % 0.221 % 8.377 % 0.07 %

GCI21fine 0.191 % 0.605 % 5.259 % 0.19 %

According to what is shown in Tables 4.5 and 4.6, it is noticeable that the three

simulated cases present close results when considering frequency, added mass and

critical damping. Equivalent damping also did not present much variation from

mesh to other, but when calculating the GCI, Medium mesh has a higher value

than Fine as expected. An oscillatory convergence may be noted, but due the low

variation in the results, this not caused disturbance. The recommendation would

be to create a coarser mesh and analyze again the variation.

In analogous way to the experimental uncertainty, it is possible to use error bars

to show profiles of variables after GCI calculation. In Figure 4.11 the extrapolated

free surface level of decay results for the WPBow from the three grids is presented

with error bars at each time solved. The local order of accuracy pg calculated from

Equation (2.40) ranges from 0.0021 to 30.120, with a global average of 7.496. There

were a few of spurious points that were excluded from that extrapolated solution

chart.

As more it advances in time, more the error increases, that is probably due to

the cumulative error and also may be associated with the neglected contributions

due to the high-order terms.

In zoomed region of Figure 4.11 it is possible to observe that the discretization

error bar increases closer to zero and that is expected as the absolute value of
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error do not decrease to zero, so the relative tends to increase. Another interesting

observation is that at peaks and troughs the extrapolated values presents a dispersive

behavior and at these unusual solutions the error also increases.

Figure 4.11: Extrapolated solution, with discretization error bars computed - Default
moonpool - WPBow.

4.1.3 Turbulence Model

Laminar flows as the previously analyzed, consider the viscosity, but there are

some instabilities that may increase into a random and chaotic variation of flow

properties. In that case, the flow is turbulent and modeling it may improve the

result quality, representing better the flow real behavior.

In Fluent there are plenty of possibilities of turbulence models. Nowadays, two-

equations models are the most used in literature and for commercial purposes, as

they can bring very good results with less computational resource than LES, or a

hybrid RANS-LES (DES), or even the RSM, that is a RANS seven-equations model.

More information about these models are in Section 2.2.2.
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WILCOX [39] states that ”an ideal model should introduce the minimum amount

of complexity while capturing the essence of the relevant physics”. It implies that

the ideal model depend on how much detail is needed in the simulation. A very im-

portant consideration in decay test is the presence of vortices at the in and outflow

of water in the borders of moonpool, as these vortices are related with damping and

consequently the energy loss of oscillation [73]. The zero and one equation models

described in this work are too simple for the purpose as they lack of effectiveness

in separation (mixing length) and in rapidly changing pressure gradients (Spalart-

Allmaras). Considering two equations models, κ-ε has the drawback of insensitivity

to adverse pressure gradients and boundary layer separation, while κ-ω has rela-

tively strong sensitivity of the solution depending on the freestream values of κ and

ω outside the shear layer, generally not being recommended for use by the solver

manual itself [14]. In this work, the Shear stress transport (SST) κ-ω is the chosen

model. It is a two equation model that combines the necessary advantages of κ-ω

turbulence model and κ-ε turbulence model. The first is important inside the moon-

pool, where predicting adverse pressure gradient boundary layer flow and separation

is necessary and the latter helps convergence in the free shear flow.

Turbulent flows are significantly affected by the presence of walls and near-wall

modeling significantly impacts the fidelity of numerical solutions [31]. Fluent pro-

vides a y+-insensitive wall treatment, which lets the application of model inde-

pendent of the near-wall grid resolution as it blends automatically from a viscous

sublayer formulation (two layer zonal model approach) to a logarithmic formulation

(wall function approach) based on y+ values. The low-Re is used for y+ < 1 while

it reverts to a wall function formulation when y+ > 1. In Section 2.2.3, more is

discussed on the topic.

Boundary conditions definitions are the same of the laminar decay and will be

presented further, but some turbulent parameters must be set and are shown below

in Table 4.7.

Table 4.7: Boundary conditions of turbulence parameters.

Decay - κ-ω SST

Pressure Outlet

Top Intensity and Viscosity Ratio
Turbulent Intensity (Tµ) = 5%

Viscosity Ratio (µt/µ) = 10

Wall Roughness

Ship and Moonpool Standard
Roughness Height (m) = 0.0
Roughness Constant = 0.5
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In Pressure Outlet boundary, the backflow was set for definition of turbulent

intensity (Tµ) and turbulent viscosity ratio (µt/µ) and in No-Slip Wall it was set

for a smooth wall.

More information about other boundary conditions parameters and values are

discussed in Table 4.9.

Initial conditions also are the same of laminar decay and the turbulent parame-

ters initialization is done by default, where turbulent parameters are initialized with

constant values (domain averaged).

The mesh used for the turbulent simulation is the same used for the laminar

results in Medium refinement. After finished, the contour of y+ at no-slip walls of

moonpool could be drawn and it is shown in Figure 4.12 considering one full period

of oscillation.

Figure 4.12: One period oscillation for y+ contour at moonpool walls.

Values of y+ are very far of the region of a good discretization of it. Some regions

have values greater than 15000, at some time steps, what is a clear demonstration

that the refinement for the boundary layer calculation is not well done.

In order to solve this issue, the distribution of nodes inside the moonpool was

changed without change the quantity of nodes. This redistribution aims to bring
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the nodes closer to the wall, improving the quality of calculation on the boundary

layer. In other hand, as the number of nodes is not changing, the refinement in the

geometrical center of the moonpool becomes coarser. In Figure 4.13 the comparison

between the previous mesh and the refined in boundary layer is presented.

Figure 4.13: Refinement closer to the wall by nodes position redistribution. a)
Previous mesh and b) refined at boundary layer

The y+ of the simulation using this new mesh and following the same setup

aforementioned is shown in Figure 4.14.

Figure 4.14: One period oscillation for y+ contour at moonpool walls (New refined
mesh at wall).
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This mesh is not bringing a perfect y+ refinement yet but it is a more satisfactory

result than the previously one, keeping the mesh size and without losing much quality

with high aspect ratio and smoothness (change in neighbor elements size).

Considering this new mesh, another interesting plot for a period oscillation is

concerning the vortical structures at moonpool edges. In Section 2.2.2 the q-criterion

definition for vortices calculation. So, in Figure 4.15 the q-criterion is drawn for one

full period of oscillation.

Figure 4.15: One period oscillation with velocity vector and vortical structure (Q-
criterion).

Eddy shedding at the boundary is related with the loss of kinetic energy in the

moonpool [73]. Observing Figure 4.15 and also following time steps of simulation

it could be observed that the leading edge of moonpool (right angle edge) has more

significance in this loss as the shedding are more strong and developed at this region.

Results of the target quantities are shown in Table 4.8. Laminar results are

considering the Medium size domain with the Medium refinement, same domain
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and mesh used for the turbulent simulations.

Table 4.8: Hydrodynamic coefficients and relative variations for turbulence analysis.

ωn

[rad/s]
Ma

[kg]
Beq

[kNs/m]
BCrit

[kNs/m]

Laminar 0.536 1.271× 107 8.833× 105 2.162× 107

κ-ω SST 0.535 1.281× 107 8.871× 105 2.167× 107

κ-ω SST - Laminar -0.24 % 0.75 % 0.42 % 0.24 %

Less than 1% of variation for all parameters is a very satisfactory CFD compar-

ison. Probably an even better discretization of the boundary layer (y+ < 1) could

give more confident when affirming that the turbulence modeling for this simulation

is negligible, as long as walls are the main source of vorticity, near wall modeling is

very important in turbulence.

4.1.4 Physical Setup

Boundary Conditions

Boundary conditions definition depends on which test is being analyzed. In Fig-

ure 4.16, the boundary condition for the decay, forced heave oscillation and regular

wave with captive vessel test are presented. More information of each boundary

condition can be seen in Section 2.2.1.

Figure 4.16: Boundary conditions of a) decay test, b) forced heave oscillation and
c) regular wave with captive vessel (Cut in symmetry plane).
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In Fluent, there is a open channel condition in which model the effects of a

free surface between the flowing fluid and fluid above it, that is the air in this

work. It is also possible to configure a open channel wave boundary condition for

wave definitions. Another important condition that may be applied in the outlet

boundary is a Numerical Wave Beach, explained with more details in Section 2.2.1.

Depending on the turbulence model chosen, there is also a need to set the respective

parameters at the boundaries. Summary of all boundary conditions is presented in

Table 4.9 below.

Table 4.9: Boundary conditions.

Decay
Forced
Heave

Captive
Vessel

Open Channel X X

Open Channel Wave BC X

Water Depth Depth : 112m

Numerical Beach Length : 125m

Wall Pressure Outlet Velocity Inlet

Front
Free Slip

Free Surface
Level

First Order Airy
Height: 2.5m

Length: 214.43m

Wall Pressure Outlet Pressure Outlet

Back
Free Slip

Free Surface
Level

Free Surface
Level

Pressure Outlet Pressure Outlet Pressure Outlet

Top Free Surface
Level

Free Surface
Level

Free Surface
Level

Wall Wall Wall
Bottom

Free Slip Free Slip Free Slip

Wall Pressure Outlet Wall

Portside and Starboard
Free Slip

Free Surface
Level

Free Slip

Wall Wall Wall

Ship and Moonpool
No Slip

No Slip
6 DoF

Rigid Body
No Slip

When defining a Pressure Outlet condition with Free Surface Level method, there

is a need to input the Free Surface Level and Bottom Level, both in meters from

the origin. Then, the pressure profile is calculated automatically based on previous

definition of fluid phases, its respective density and also the gravity vector.

The motion of the barge in the Forced Heave is a sine motion with height of
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2.5m and frequency of 0.536rad/s, as it is the natural frequency computed in the

Numerical Decay simulation with the Medium size and refinement mesh. In Fluent

is necessary to create a function in C programming language that is called User-

Defined Function (UDF) for motion setup. The velocity of the barge in the UDF is

given by:

v3 = 0.67 cos (0.536t) . (4.1)

In the Numerical Regular Wave with Captive Vessel, the wave is simulated using

the First Order Airy with wave height H = 2.5m and wave length λ = 214.43m.

The wave height is based on the same magnitude of the motion inside of moonpool in

Numerical Decay test and also the motion of the barge in the Force Heave Oscillation

test. Wave length was chosen based on the theory of short gravity waves (wavelength

is short relative to the depth of the water hdepth > λ/2) and also for frequency match

with other tests.

ω =
√
gk =

√
g

2π

λ
=

√
9.81

2π

214.43
∴ ω = 0.536rad/s . (4.2)

Based on Figure 2.3 and calculating chart parameters for that simulation:

H

gT 2
=

2.5

9.81 · 11.722
= 0.0019 &

hdepth
gT 2

=
112

9.81 · 11.722
= 0.083 . (4.3)

It falls in the Stokes 2nd order region. Despite this, the First Order Airy was

chosen for a preliminary simplified study.

The Numerical Beach condition to suppress numerical reflection near the outlet

boundary needs the input of a start and end points that are the limits of the damping

zone. It is defined as uni-directional beach with end point in the Back surface and

the distance to the start point is given in Table 4.9 (Length).

Most of the simulations run in this work used Laminar Viscous Model, so no

specific boundary condition for turbulence models must be set. The case shown in

Section 4.1.3 has better description of turbulent boundary conditions configuration

for the specific simulation.
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Initial Condition

Initial condition for all simulations is simply a flat free surface with both phases

(air and water) at rest. The only difference is for Numerical Decay test, that the

free surface is with a h (0) = 3m (initial height) inside of moonpool.

Figure 4.17: Initial condition of Decay test.

General Setup

The solver needs the input of which equations and how they gonna be solved.

These parameters are discussed in more detail in Section 2.2.4. Table 4.10 shows

the main parameters set for almost all simulations done in this work. The exception

is the Numerical Regular Wave for Freely Floating Vessel Test, but more detailed

are given in Section 4.2.4.

Fluent solver has both single-precision and double-precision versions and the

double is chosen seeking for more accuracy in the solution. By default, this solver

used in this work stores discrete values of all the scalar at the cell centers, including

pressure and velocity values, using the same mesh. Then, it uses a co-located scheme

that require more interpolation but is easier to implement for any unstructured mesh.

All simulation are incompressible, so the pressure-based solver is the chosen one

for all of them with segregated algorithm, as they present low speed and segregated

is preferred in this case for a faster overall solution with less computational cost.

Coupling algorithm PISO is preferred as it is highly recommended for all transient

flow calculations [14].

As discussed in Section 4.1.3, κ-ω SST was chosen for a comparison with Lami-

nar. All simulations, besides the comparison one, was run using Laminar flow setup,

as long as it was shown that this provides similar results with less equations to be

solved.

Concerning the pressure interpolation scheme, either the PRESTO! or body force

weighted schemes should be used and only these schemes are made available in Fluent

solver when VOF multiphase model is set.
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Table 4.10: Physical modeling general setup.

Solver precision Double precision

Node definition Cell-centered method

Grid arrangement Co-located

Solver formulation Pressure-based - Segregated algorithm

Coupling algorithm PISO

Turbulence model Laminar / SST

Pressure
interpolation scheme

Body Force Weighted

Momentum Second order upwind

Turbulent
Kinetic
Energy

Second order upwind
Discretization

scheme
Specific

Dissipation
Rate

Second order upwind

Gradient Computation Least Squares Cell-Based

Multiphase model Volume of Fluid (VOF)

Interpolation
near the interface

Compressive Scheme

Time model Unsteady

Time step Fixed - 0.01 s

Simulation time 10000 Time Steps - 100.0 s

Temporal discretization Second order implicit

Linear system solution Gauss-Seidel - Algebraic Multigrid (AMG)

Convergence criteria
Maximum iteration per time step - 50 or
Maximum RMS for all equations - 10−3

Motion Fixed / Heave oscillation

Reference pressure 1 atm (at free surface level)

Gravity (Z Axis) −9.81 [m/s2]

Fluid
Density
[kg/m3]

Dynamic viscosity
[kg/m.s]

Air 1.18 1.855× 10−5

Water 997.28 8.9× 10−4
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According to ANSYS, VOF cases where body forces dominate and the mesh

deviates largely from orthogonality, the Body Force Weighted scheme is more robust.

Not much information can be found about this scheme in literature.

For spatial discretization schemes, when the flow is not aligned with the mesh,

first order convective discretization increases the numerical discretization error (nu-

merical diffusion). In a unstructured mesh with tetrahedral elements the flow is

never aligned with the mesh, so generally more accurate results are obtained using

the second order discretization. QUICK scheme is only used for quadrilateral and

hexahedral cells and second-order upwind discretization will be applied to all other

cells while MUSCL may be used in all cells, however, in general second-order scheme

is sufficient and the higher order scheme will not provide significant improvements

in accuracy [14].

Least Squares gradient method has good accuracy in irregular unstructured

meshes and is less expensive to compute than the node-based gradient [31].

Multiphase setup, as discussed in Section 2.2.5, for the purpose of simulations

in this work the recommended technique is the Volume of Fluid. Considering the

interpolation near the interface, in Fluent solver, only two options are available for

representation of a sharp interface in a implicit formulation, that are the modified

HRIC and the Compressive scheme. The latter, together with the temporal dis-

cretization chosen, provides good accuracy with a great sharp interface. It was the

one chosen due that.

Time model is unsteady, as the evolution in time is important, with a fixed time

step of 0.01s and enough number of time steps for 100.0s of simulation. The temporal

discretization is implicit as the fine elements close to moonpool would require a very

small time step to use explicit scheme, because of its stability condition of Courant

number below 1. The First Order Implicit formulation is sufficient for most problems

but for improved accuracy, Second Order Implicit is recommended. Bounded Second

Order Implicit provides same accuracy, but would provide better stability, anyway,

all solutions converged using the unbounded second order scheme.

Linear system is solved using Gauss-Seidel, a point implicit linear equation solver

in conjunction with an Algebraic Multigrid (AMG) method. This multigrid method

is particularly attractive for use on unstructured meshes.

Convergence criteria should obey at least one of two requirements, firstly all

scaled residuals should decrease lower than 10−3 (ANSYS, INC. [14] states that the

default convergence criterion is sufficient for most problems), if that does not happen

before 50 iterations, then this time step is over due maximum iterations per time step

limit. It is also set a report interval configuration, that is the number of iterations

that will pass before convergence monitors be analyzed, so at least 2 iterations are

needed to confirm convergence in each time step. It also reduce communication and
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improve parallel performance.

Fixed condition is used for Numerical Decay and Numerical Regular Wave with

Captive Vessel test. In Forced Heave there is body motion with heave oscillation of

the ship following Equation (4.1).

Reference pressure is defined at free surface level as 1atm, the gravity is 9.81m/s2

and the density and dynamic viscosity of air and water phases are shown also in

Table 4.10.

Relaxation factors (Section 2.2.4) used in all simulations are presented in Ta-

ble 4.11 below.

Table 4.11: Solution controls with relaxation factors.

Decay
Forced
Heave

Captive
Vessel

Pressure 0.3 0.5 0.7

Density 1.0 0.8 1.0

Body Forces 1.0 0.8 1.0

Momentum 0.7 0.3 0.3

Volume Fraction 0.5 0.5 0.5

Turbulent Kinetic Energy 0.8 - -

Specific Dissipation Rate 0.8 - -

Turbulent Viscosity 1.0 - -

In the solver manual, it is stated the for most flows, the default under-relaxation

factors do not usually require modification [14], and only if it is observed unstable or

divergent behavior that the user need to perform changes. Anyway, to guarantee a

faster solution, some values variation could be implemented with a stability analysis.

Data exportation was done every other 10 time steps, i.e. every 0.1s simulated

a file with transient result was stored.

4.2 Water Motions Inside of Moonpool

4.2.1 Numerical Decay Test

Two geometries are used for the decay analysis. Both are different moonpool

profiles in the same barge dimensions. One is the cutout geometry (Figure 4.1),

and the domain analyzed at this section is the Medium one created for the default

moonpool presented in Section 4.1.1. Another geometry is a barge that presents a

cutout angle as a right angle (α = 90°). It is called hereafter as no cutout geometry

and it is shown in Figure 4.18. The length of the moonpool in this latter geometry is

based on the length of default moonpool in the free surface level. The motivation to
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simulate this other design is to analyze the difference of the decay behavior due the

presence of the cutout angle. It is presumed that the cutout angle would produce

more horizontal motions and the decay test will present characteristics of piston

mode and sloshing mode simultaneously.

Domain used for no cutout has same dimensions of Medium domain (Table 4.1)

and mesh is based on the specifications used for the Medium mesh. Table 4.12 shows

the quantity of each element in mesh.

Figure 4.18: Design of the barge for CFD tests with no cutout moonpool.

Table 4.12: Properties of grid for no cutout moonpool.

No
Cutout

Hexahedron 333376

Tetrahedron 368316

Prism 271800

Representative cell size 2.86

Number of Elements 973492

Mesh is shown in Figure 4.19 and is pretty similar to the Figure 4.9 used for the

default moonpool.

For means of comparison also, the Figure 4.20 shows elements volume in the

half-domain plane, as it is shown for the default moonpool in Figure 4.10.

Wave probes are displayed with same distribution in the no cutout geometry

considering the constant length of the moonpool itself, as it is shown in Figure 4.21.

As done in other previous analysis (Sections 4.1.1 to 4.1.3), the logarithmic

decrement method was used to calculate the linearized damping inside no cutout

moonpool, based on the result of the wave probes in decay test, and the results in

comparison with the default moonpool is shown in Table 4.13.

According to CFD results shown in Table 4.13, the no cutout geometry has more

damping, probably due the increase in vortex shedding at the other right angle edge

at trailing edge.
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Figure 4.19: Mesh elements for no cutout moonpool.

Figure 4.20: Volume size of elements close to moonpool for no cutout moonpool
(Side view - Y = 0.0).

A new attempt of using the PQ analysis to calculate the linear and quadratic

damping specific for the no cutout geometry was done and once again some nega-

tive damping values appeared. Then, just the logarithmic decrement procedure is

implemented.

Another approach that is interesting now, is to use the analytical Equa-

tions (3.12) to (3.14) from energy conservation, for the calculation of the frequency

and added mass based on each moonpool geometry. Then, for the cutout geometry,

ωn = 0.666rad/s , BCrit = 1.79× 107kNs/m ,

M +Ma = 1.38× 107kg , Ma = 7.75× 106kg .
(4.4)
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Figure 4.21: Locations of probes in the no cutout moonpool (CFD) - L′ = 10.286m

Table 4.13: Hydrodynamic coefficients for cutout analysis.

ωn

[rad/s]
Ma

[kg]
Beq

[kNs/m]
BCrit

[kNs/m]

Cutout 0.536 1.271× 107 8.833× 105 2.162× 107

No cutout 0.526 1.388× 107 1.017× 106 2.204× 107

And for the no cutout,

ωn = 0.649rad/s , BCrit = 1.78× 107kNs/m ,

M +Ma = 1.37× 107kg , Ma = 6.66× 106kg .
(4.5)

There is a big difference between the frequency calculated in CFD and by energy

conservation. Despite the conservation formula do not take viscous damping into

consideration and in numerical result the damped frequency ωd is calculated, the

difference imposes a damping ratio η ≈ 0.6 (Equation (3.7)), that is very high for a

naked moonpool.

Considering also previous works formulas for calculation of the resonant fre-

quency of the water motion in moonpool, presented in Section 1.4.2, and the formula

purposed for the rectangular moonpool (Equation (3.3)), we can perceive that it is

hard to calculate it analytically. These analytical frequency results are shown in

Table 4.14 below.

The previous works formulas do not take in consideration the cutout angle, so

they give the same natural frequency for both geometries used at this work, as the

length at free surface level is also the same for both. The formula purposed at this

work, presented in Equation (3.3), depends on the added mass of the system, then

it is possible to calculate the cutout and the results in Equations (4.4) and (4.5),
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Table 4.14: Analytical calculation of natural frequencies according to previous works
(Section 1.4.2).

ω0

Piston Mode
[rad/s]

ω1

First Sloshing Mode
[rad/s]

Faltinsen (Eq.1.1) 0.904 -

Fukuda (Eq.1.2) 0.670 -

Newman (Eq.1.5) 0.865 1.224

Madhani (Eq.1.7) - 1.477

Molin (Eq.1.8 and Eq.1.10) 0.793 0.803

Cutout No cutout
Machado (Eq.3.3)

0.625 0.649
-

from energy conservation law, was used.

Then, for that purpose of natural frequency calculation, besides counting the

peaks’s time distance, the experimental data in time domain may be displayed

in frequency domain, sometimes called the frequency spectrum, and it allows the

visualization a waveform according to its frequency content. Using Fast Fourier

Transform (FFT), Figure 4.22 is plotted for the cutout and no cutout geometry.

It is possible to observe that for the cutout moonpool there are 3 peaks re-

gions with ω0 ≈ 0.5rad/s, ω1 ≈ 0.61rad/s and ω2 ≈ 0.83rad/s while for the no

cutout it presents a small range of frequency with high magnitude and peak at

ω0 ≈ 0.553rad/s. It is also noticeable a slightly higher difference among wave

probes results in the moonpool with cutout angle due to its asymmetry.

Also, we may notice from Table 4.13 that the Beq ≈ 5% BCrit and that BCrit

may be calculated using Equations (3.4) and (3.14) depending only of the moonpool

profile particulars. That result will be used forward when analyzing the artificial

damping for the potential theory calculations.

4.2.2 Numerical Forced Heave Oscillation Test

This simulation require motion of the vessel in the mesh and that may be per-

formed better with a different mesh than the one shown for the decay test (Fig-

ure 4.9), and it is presented in Figure 4.23. The ship is considered a rigid body

together with the prismatic layer, so they move in conjunction and only tetrahedra

elements deforms. Just the forces in the ship wall are considered for the calculation

of ship’s motion. Due to this configuration that the prismatic layer around the ves-

sel and the hexahedra elements inside the moonpool could not be used for better

resolution. Quantity of each different element are presented in Table 4.15.
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Figure 4.22: Decay data in frequency domain.

Figure 4.23: Mesh elements for forced heave oscillation test.

The elements size inside the mesh was created obeying the same proportion of the

Medium mesh used in decay as they already passed through the whole verification

process. For a comparison it is shown in Figure 4.24 the element volume close to

the moonpool.

The oscillation of the ship was already explained in Section 4.1.4 and given by

Equation (4.1).

Three wave probes were added inside moonpool (Figure 4.4) to measure absolute

water motion inside moonpool. Starting at rest at time t = 0 it is possible to see
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Table 4.15: Properties of grid for forced heave oscillation test.

Forced

Hexahedron 200024

Tetrahedron 1270975

Prism 262000

Representative cell size 2.36

Number of Elements 1732999

Figure 4.24: Volume size of elements close to moonpool for forced heave oscillation
test (Side view - Y = 0.0).

in Figure 4.25 that as the ship moves the water motion starts to be excited in a

counter phase behavior but then it shifts to an almost in phase configuration.

Figure 4.25: Time trace of each wave probe and ship motion in the forced test.

The relative motion of the water inside moonpool may be easily calculated by the
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difference and it is shown in Figure 4.26. We can see that the relative amplitude of

motion reduces as the absolute water motion and the ship decrease the phase value

in between. The cutout wall may be seen as wedge wave-maker inducing sloshing

motion as the vessel heaves up and down. Probably with more simulation time

would be possible to analyze properly this behavior.

Figure 4.26: Time trace of relative water motion inside moonpool in forced test.

Then it is possible to calculate the period of the water motion inside moonpool

by the peak difference and then the angular frequencies are ωbow = 0.570rad/s,

ωmiddle = 0.573rad/s and ωstern = 0.561rad/s, remembering that ships motion fre-

quency is ωship = 0.536rad/s.

Also, a FFT is computed for this relative motion signal and is plotted in Fig-

ure 4.27 below,

Figure 4.27: Forced data in frequency domain.
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The frequency with higher magnitude is ω0 ≈ 0.553rad/s and different from the

moonpool decay, no other frequency has reasonable magnitude.

4.2.3 Numerical Regular Wave with Captive Vessel Test

This simulation use the exactly same Medium domain (Figure 4.3) and the

Medium mesh (Figure 4.10) refinement used in the decay test. As it started in

a flat free surface level, took a longer time for the wave encounter the vessel. A

wave with angular frequency ω = 0.536rad/s based in the natural frequency calcu-

lated in Section 4.2.1 and wave height H = 2.5m was set. Using a wave probe at

inlet is possible to compare the numerical wave with the analytical in Figure 4.28.

Figure 4.28: Numerical and theoretical wave at domain’s inlet.

Proofing that the configuration was set properly for the right analytical wave

generation. However, as long as the initial condition is a flat free surface level, a

90° phase should have been added at inlet to start the generation from the same

condition. Probably it would give more stability to the solution at the beginning

converging faster the first time steps.

Considering also the same position of the three wave probes and same nomen-

clature use for them (Figure 4.4), the data gathered from each is presented in Fig-

ure 4.29.

There is a transient region, but after 200s the wave amplitude inside moonpool

tends to get an average value of 3.457m with slight variation in the subsequently

periods. Then, inside moonpool there is an increase of 2.766 (= 3.457/1.25) of inlet

wave amplitude. Angular frequency analyzing peaks is ω ≈ 0.54rad/s for all probes.

Using wave probes outside the vessel as shown in Figure 4.30, we can notice that

the wave is disturbed by the body and do not have constant amplitude anymore

(blockage effects may also be the reason, but domain size variation would be required

for more proper analysis of the real variation concerning this issue).
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Figure 4.29: Time trace of each wave probe in the regular wave test.

Figure 4.30: a) Position of wave probes outside barge and b) Time trace of outside
wave in the regular wave test.

Considering also the wave data after t = 200s, the average amplitude of the

wave around the barge is 1.6m and angular frequencies are ωbow = 0.539rad/s,

ωmiddle = 0.532rad/s and ωstern = 0.527rad/s

To proceed with a FFT in the wave inside moonpool (Figure 4.29) and outside

(Figure 4.30), the number of data points operated on must be a number that is a
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power of two, so as the time step is 0.1s and the more important range of data are

the last time steps, it was excluded all data before t = 147.6s (= 250.0− 210 · 0.1).

Results are shown in Figure 4.31 and it is observable that the most prominent

angular frequency inside and outside moonpool is ω = 0.552rad/s for all three

probes.

Figure 4.31: Captive vessel data in frequency domain. a) Wave signal inside moon-
pool and b) outside barge

4.2.4 Numerical Regular Wave for Freely Floating Vessel

Test

Different from previous simulations, this simulations considers the model scale of

fKN1 (Figure 1.9) and fKN2 (Figure 1.11). The possibility of a experimental result

for validation led the work to this analysis. Due to that difference of geometry and

scale, other domain, mesh and setup are discussed here also before the results.

Domain

Only one domain size was created and used for both ship geometries. The domain

is shown in Figure 4.32 and in this case the symmetry condition was used, so the

domain is exactly what is presented.

In Table 4.16 the main particulars of domains and ships in model scale are

presented.
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Table 4.16: Main particulars of models fKN1 and fKN2 and dimensions of domains
generated as function of ship LOA,model.

Description Symbol Magnitude Unit

Length Overall LOA,model 1.476 m

Length between Perpendiculars LPP,model 1.391 m

Breadth Moulded Bmodel 0.256 m

Depth Moulded Dmodel 0.120 m

Design Draft dmodel 0.061 m

Longitudinal CoG LCGmodel 0.7031 m

Transversal CoG TCGmodel 0.0 m

Vertical CoG V CGmodel 0.0664 m

Weight displacement ∆fKN1,model 17.820 kg

Volume displacement ∇fKN1,model 0.018 m3

Gy-radius around X axis Kxx,model 0.104 m

Gy-radius around Y axis Kyy,model 0.327 m

Gy-radius around Z axis Kzz,model 0.329 m

Moonpool’s length on bottom lb,model 0.278 m

Moonpool’s length on deck ld,model 0.282 m

Moonpool’s breadth on bottom bb,model 0.085 m

Moonpool’s breadth on deck bd,model 0.085 m

Postion (from transom) Pmodel 0.568 m

Cutout angle αmodel 70.05 °

Weight displacement ∆fKN2,model 17.613 kg

Volume displacement ∇fKN2,model 0.018 m3

Gy-radius around X axis Kxx,model 0.104 m

Gy-radius around Y axis Kyy,model 0.327 m

Gy-radius around Z axis Kzz,model 0.329 m

fKN1 fKN2

Fore 2

Aft 3

Half Width 1.5

Depth 2

Height 2.5

Number of Elements 1839857 1218032
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Figure 4.32: Main particulars of domain for freely floating vessel test with model
ships.

Reader must be aware that the ship is in an ultra reduced scale (1 : 163.9) and

all the measurements done at this Section 4.2.4 is not directly related with the full

scale ship (prototype scale) and some extrapolation calculation would be required.

Mesh

Following the same requirements for mesh creation as expressed in Section 4.2.2,

as long as there is body motion of the ship, it was created with a prismatic layer

for boundary layer calculation and this layer is considered in the motion as a rigid

body together with ship, besides forces calculation for the motion are just calculated

at ship’s wall. Around the ship, there is a box with tetrahedra elements that can

be deformed and out of the edges of this box, hexahedra elements are used for

discretization of the remainder domain. Then, for clarification purpose, Figure 4.33

shows the mesh elements of fKN2 ship and Table 4.17 presents the property of each

grid created. When comparing the representative cell size with previous simulations,

take into consideration the scale difference.

Table 4.17: Properties of grid for freely floating vessel test.

fKN1 fKN2

Hexahedron 774368 205200

Tetrahedron 755419 723082

Prism 310070 289750

Representative cell size 2.676× 10−2 3.071× 10−2

Number of Elements 1839857 1218032
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Figure 4.33: Mesh elements for freely floating vessel test.

Due the difference in geometry, some areas had different refinement than the pre-

vious simulations, for instance bulbous bow and appendages for retractable thrusters

at stern region, and then volume refinement was also done differently. Figure 4.34

give us an idea of mesh distribution and refinement regions.

Figure 4.34: Volume size of elements close to moonpool for freely floating vessel test
(Symmetry plane view).
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Boundary Condition

Boundary conditions are also different as now just half domain is simulated.

The only main difference from previously discussed is the symmetry boundary, it

has the practical benefit of reducing the size of the computational domain and also

to improve the mesh refinement with less elements. This condition assume that

the gradients perpendicular to the plane are equal to zero, then, the requirement of

symmetry is not related only with geometry but also with the dynamical behavior

of flow around the body. That is very reasonable to assume for this simulation that

the flow is symmetrical also. The wake pattern produced across the water surface

is known as Kelvin wake and it was first explained by Lord Kelvin [77] (William

Thomson), within the context of linear potential flow theory. There also countless

works on this topic in literature showing this symmetry of the wake experimentally

[78] and numerically [79].

All defined boundary conditions for this simulation are shown in Figure 4.35 and

Table 4.18 presents the setup of each one.

Figure 4.35: Boundary conditions of freely floating vessel simulation.

As done in Numerical Regular Wave with Captive Vessel test (Section 4.2.3),

the wave was simulated using the First Order Airy. At this model scale, wave

height is Hmodel = 4.0cm and wave length λmodel = 2.00m. Wave length follows the

requirement to use theory of short gravity waves (hdepth,model > λmodel/2).

ω =
√
gk =

√
g

2π

λ
=

√
9.81

2π

2
∴ ωmodel = 5.55rad/s . (4.6)
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Table 4.18: Boundary conditions for freely floating vessel test.

fKN1 fKN2

Open Channel Wave BC X

Water Depth Depth : 1.461m

Numerical Beach Length : 2.2m

Velocity Inlet

Front First Order Airy
Height: 4.0cm
Length: 2.00m

Pressure Outlet
Back and Top

Free Surface Level

Wall
Bottom and Portside

Free Slip

Wall

Ship and Moonpool
No Slip
6 DoF

Rigid Body

Based on Figure 2.3 and calculating chart parameters for that simulation:

H

gT 2
=

0.04

9.81 · 1.132
= 0.0032 &

hdepth
gT 2

=
1.461

9.81 · 1.132
= 0.117 . (4.7)

It is also in the Stokes 2nd order region, but once again the First Order Airy was

chosen for a simplified study.

Initial condition for both ship is the same, flat free surface level at rest with the

ship without trim (difference between the forward and aft drafts [80]) and without

sinkage (steady state lowering of a ship’s position of flotation in the water [80]).

Setup

General setup is similar to previous discussed for others simulations and is pre-

sented in Table 4.10. There are few differences that are shown in Table 4.19 below,

Table 4.19: Physical modeling general setup for freely floating vessel test.

Turbulence model Laminar

Time model Unsteady

Time step Fixed - 0.001 s

Simulation time 20000 Time Steps - 20.0 s

Motion Two degree of freedom (Pitch and Heave)

Release Time 100 Time Steps - 0.1 s
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Ship motion could not be started from the beginning due some numerical insta-

bilities that may cause it to diverge or weird spikes in the motion would appear also

by shock effect. It is possible to configure a release time, that is the time before

calculation of body motion begins, to allow some time for the fluid flow to initialize.

In unsteady model, recommendation is to at least wait for more than 10 time steps

[47]. It was chosen 100 time steps for both simulation. Ramp time is recommended

for a more robust solution by reducing oscillation and it is related with the applica-

tion of forces and moments proportionally during the set interval. It was not used

and solution did not diverge neither presented shock effect.

Relaxation factors for both ships are identical to used in Forced Heave (Ta-

ble 4.11) simulation.

For transient results the data was exported every other 100 time steps, what

gives 0.1s of resolution. Ship’s motion resolution is different and is stored every

other time step, i.e. at each 0.001s.

Results

Following same procedure of Section 4.2.3, a wave probe is added at inlet for

analysis of undisturbed wave generated into the domain. It is shown in Figure 4.36.

Figure 4.36: Numerical and theoretical wave at domain’s inlet for freely floating
vessel.

Now the wave phase is adjusted for starting in free surface level at initial condi-

tion.

Then, it is possible to also visualize the absolute motion inside the moonpool.

Besides it was simulated in model scale, the wave probes are distributed following the

same arrangement as all simulations before (Figure 4.4) with L′ = 6.385cm. Time

trace of wave probes are presented below together with fKN2 motion in heave,

In Figure 4.37 we can observe that after a transient variation from the initial

condition, ship and wave heaving inside moonpool are in phase. Then, the relative
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motion of water inside moonpool may be calculated and it is shown in Figure 4.38.

After 6s relative water motion inside moonpool start to oscillate with an almost con-

stant amplitude (HBow/2 ≈ 0.94cm, HMiddle/2 ≈ 0.88cm and HStern/2 ≈ 0.81cm)

and we can calculate the relation between amplitude inside moonpool and inlet wave

amplitude, that is equal to 0.437 (= 0.875/2.0). For the Numerical Regular Wave

for Freely Floating Vessel Test the same was calculated and we could notice that for

the specific frequency it was simulated, and considered captive vessel, the amplitude

increased inside moonpool and in this present case, amplitude decreased compared

to the wave exciting the motion.

Figure 4.37: Time trace of each wave probe and fKN2 ship motion in heave.

Calculating angular frequency of ship motion and of water motion oscillation

inside moonpool, ate each wave probe, the results are pretty similar and equal to

ω = 5.59rad/s.

Concerning the motion of ship, the CoG heave translation motion was tracked

and also the rotation in pitch of ship as rigid body. In Figure 4.39 the time trace

are shown for the fKN1 and fKN2. It is interesting to notice that the heave motion

amplitude as well the pitch rotation are higher in fKN1.

Figure 4.40 show the pressure field on the wetted surface of each ship. Besides

fKN2 presents higher pressure gradient, the pressure integration over the area (force)

is has greater variation in a period, and that explain the smaller range of motion

for fKN2. The moonpool, at least for the wave frequency and amplitude set in this

simulation, damps the heave and pitch of fKN1.

Average trim position of fKN1 is ≈ 0.55° and sinkage average is ≈ 4.5mm, while

for fKN2 these values are ≈ 0.48° and ≈ 0.4mm.

Also adding three wave probes outside the ship and at same distance from inlet

as the wave probes inside the moonpool, we can conclude at this case that the
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Figure 4.38: Time trace of relative water motion inside fKN2 moonpool in free
floating test.

Figure 4.39: Time trace of relative water motion inside fKN2 moonpool in free
floating test.

wave amplitude decrease (Hwave,fKN1/2 ≈ 1.8cm, Hwave,fKN2/2 ≈ 1.61cm), but

the phases are kept the same and few disturbances are presented. It is shown in

Figure 4.41 the position of wave probes and time traces for each probe and wave

generated for fKN1 and fKN2.

Different from the result presented in Figure 4.30 in Section 4.2.3, the lower

disturbance of wave around the body, even considering motion of it and consequently
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Figure 4.40: One period oscillation variation of pressure field in wetted surface for
fKN1 and fKN2 in free floating test.

Figure 4.41: a) Position of wave probes outside fKN2 and time trace of outside wave
and numerical generated wave at inlet for b) fKN1 and c) fKN2.

the radiation wave generated from it, may be related with the frequency of generated

wave and simulation of other frequencies would give more information about its

relation.

Finally, for a frequency analysis, the FFT can be calculated for ship motions and

water motion inside moonpool. They are all plotted in Figure 4.42
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Figure 4.42: Free floating test data in frequency domain. a) Water motion inside
moonpool, b) heave and c) pitch

As expected and seen from previous simulation, the prominent frequency inside

moonpool is directly related with the exciting frequency. The second small peak is

the double value of the wave frequency and also there is smaller peak that is 3 times

the same frequency.

On the other hand, have and pitch motion of both ships present the same fre-

quency behavior and the moonpool just changed the amplitude of each motion.

It took approximately 18 days to run each free floating ship simulation in a

computer with Windows 10 Professional (64 bits), processor Intel®Core� i7-4790

CPU @ 3.60 GHz, 32 Gb RAM. Depending on simulation, more than 1Tb of hard

disk was required to keep storage of all transient results.

These analysis proof us that the CFD is a great tool for studying the water

motion inside moonpool and the influence of that in the vessel motion. More complex

analysis using this tool would require computational effort beyond available and then

the idea to use an also powerful tool came up, that is the potential theory and it

will be discussed in next section.

4.3 Potential Theory Setup

Were shown in Sections 4.1 and 4.2 some simulations done using CFD. As afore-

mentioned, although it is a very powerful tool if well used, it require a lot of com-

putational resources, also a lot of cautious, sometimes rerun simulations fixing some
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issues, to finally have more confidence in results as commented in Section 2.2.6.

When talking about optimization, as the main goal of this work, plentiful quantity

of geometries have to be inspected in order to find the best one for the purpose that

is being studied. Also, in the specific case of this work, analysis of moonpool in

ocean requires calculation of a broad range of wave frequencies, that is not so easy

to set, due mesh requirements, neither fast to run simulation in CFD. Anyway, it is

useful to comprehend the behavior of water motion inside moonpool and how would

work the mechanisms to damp it.

However, others tools are available with some simplification, for different pur-

poses, but that can be adjusted and used for this work objective. Potential Theory

explained in Section 2.1 do not calculate the flow behavior inside moonpool as CFD

but some important parameter as harmonic free surface elevation inside moonpool

and motion behavior of the ship may be gathered from it. It do not take viscosity

effects into consideration in its formulation, but some artificial viscous damping may

be calibrated for proper analysis of a drillship motion. That is the main reason of

the CFD study done in Section 4.2, to quantify this viscous damping.

Two commercial software for the solution of the potential theory for the wave

diffraction and radiation problem are used in this work. One is WAMIT, devel-

oped by researchers at Massachusetts Institute of Technology, hence the acronym

WaveAnalysisMIT, in 1987. Other is Hydrostar, developed in Bureau Veritas (BV)

since 1991. This simultaneous application provides an indirect way of validation and

also makes the genetic algorithm solver created on this thesis more versatile for the

end-user.

At this section, potential results for fKN1 and fKN2, both at prototype scale, are

presented and also how to add and calibrate the viscous damping inside moonpool

for using it in next part of the thesis, the optimization.

4.3.1 Ships Motions

First of all, two meshes was created for the fKN1 and fKN2 with different

refinements and then RAO for both ships and meshes were calculated, for all 6

DoF, in order to analyze a mesh dependency at the results. Two different heading

for each DoF is plotted, β1 = 90.0 and β2 = 180.0, excpet for Yaw, that β2 = 120.0

since this heading causes greater disturbances at this DoF. These results are shown

in Figure 4.43 for fKN1 and Figure 4.44 for fKN2, using both commercial software

available. Depth is set mathematically as infinity in all simulations.

There are almost no difference between meshes refinement results, being just

noticeable in some resonant peaks. Unlike CFD, the potential theory solver runs

very fast, as it calculates only one scalar in a domain from a surface mesh, and it
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Figure 4.43: RAOs of all degree of motions at different mesh refinement for fKN1.

gives result for a broad range of frequencies and headings in minutes (sometimes

few seconds). Despite this, from one mesh to another there were some minutes of

difference to run the solver, it took almost 1 minute for fKN1 Coarse mesh while for

Fine mesh it took 16 minutes, so it may seem sometimes preferable to use the Fine

mesh to get a ship data as it provides better resolution at resonant peaks, but when

considering the idea of using this solution in a optimization process, that may run

thousands of different profiles, these minutes difference may turn into exhaustive

hours more without necessity. Considering that, the next analyzes will be done with
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Figure 4.44: RAOs of all degree of motions at different mesh refinement for fKN2.

Coarse mesh.

Comparing also results from different solvers, fortunately they do not show con-

siderable dissimilarity, that was expected if both setup was set properly, as long as

both solvers are based in the same theory and they have a very similar calculation

procedure.

Now, we must consider that there are three DoF that has restoring forces, Heave,

Roll and Pitch. Each of these has an associated natural frequency, and they are de-

pendent of mass and restoring coefficients. Undamped natural periods are calculated
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using the following relation,

Tii = 2π

√
Mii +Ma,ii

Cii
. (4.8)

Added mass are calculated at the potential theory solution and restoring coeffi-

cients are given by,

C33 = ρwgAwp , C44 = ρwgV GMT , C55 = ρwgV GML , (4.9)

where GMT is the transverse metacentric height and GML is the longitudinal meta-

centric height.

Then, it is possible to calculate the natural period for fKN1 and fKN2. The

Table 4.20 shows the computed results,

Table 4.20: Undamped natural periods of fKN1 and fKN2.

Heave Roll Pitch

fKN1 10.43 26.36 10.65

fKN2 10.77 22.72 10.63

Another important detail to take into consideration is that a ship has vertical-

longitudinal plane of symmetry, so its motions can be divided into symmetric (surge,

heave and pitch) and anti-symmetric (sway, roll and yaw) components [11]. These

components do not have effect at each other, if ship is not anchored, so two sets of

three coupled equations of motion can be distinguished for ships. For instance, a

vertical perturbation can cause surge, heave and pitch motions, but will not result

in sway, roll or yaw motions. The similar behavior happens with horizontal motion

for the anti-symmetric components.

After analyzed mesh independence and choosing the coarser one, the difference

between RAO of fKN1 and fKN2 may show us the consequences of the moonpool

presence in the general behavior of the ship in operation. Analyzing again Fig-

ures 4.43 and 4.44 for this difference assessment, we can see that in lateral motions

(sway, roll and yaw) the resonant peak changed from 26s (fKN1 ) to 22.5s (fKN2 ).

That are the calculated resonant periods for roll motion in each ship (Table 4.20)

and it happens at the exactly same value for others anti-symmetric components

only, not generating any kind of motion in the symmetric components.

Vertical plane motions (surge, heave and pitch) also have a slight peak for period

around 10s, that is the calculated resonant period of heave and pitch. As expected,

the peak appears in surge as it is one of the symmetric components. Another

difference in vertical motions is a high amplitude resonant period in heave motion

at 8.4s and another, with smaller amplitude, in surge motion at 6.5s.
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4.3.2 Moonpool - Free Surface Elevation (FSE)

The consequence that concerns the industry is not related only with ship motions

but also with the relative free surface elevation inside moonpool. With respect to

operability, these motions may delay the drilling procedure and bring risks also,

whatsoever it means high costs. Due that, it is important to analyze the relative

free surface elevation inside moonpool. Two points were chosen for that calculation

and they are approximately positioned drilling risers locus. Figure 4.45 shows the

position of these wave probes.

Figure 4.45: Locations of probes in the moonpool (Potential Theory). - L′ = 13.72m

Wamit outputs the water motion in relation to the global reference frame while

the Hydrostar already outputs the relative water motion. Then, in Figure 4.46 the

RAO of calculated relative free surface elevation, considering phase difference, at

each wave probe is presented for β1 = 90.0 and β2 = 180.0.

Once again were considered different mesh refinements to see if it would gen-

erate different results for the FSE. Finer mesh shows again better resolution at

resonant peaks but both grids shows the same behavior. Now, we can notice a dif-

ference between Hydrostar and Wamit solvers, the former has three peaks frequency

(0.748rad/s, 0.966rad/s and 1.256rad/s) while the latter has only on big peak at

0.731rad/s. A smaller peak appears at 0.966rad/s and 1.571rad/s. These resonant

peaks are related with the piston and sloshing mode of the default moonpool. Then,

according to undamped potential theory, the piston mode is ≈ 0.71rad/s and first

and second sloshing modes are ≈ 0.966rad/s and ≈ 1.256rad/s. Converting these

frequencies to period, we have piston at 8.85s, first sloshing at 6.5s and second at

5.00s. Comparing once again the difference of ship motion in Figures 4.43 and 4.44,
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Figure 4.46: Free surface elevation inside default moonpool for Wave Probe 1 and
Wave Probe 2 at different mesh refinement and headings. Wamit results (above)
and Hydrostar results (below).

it is possible to see that the resonant periods inside moonpool generates variation in

vertical motions only, as the piston mode period generate a high amplitude in heave

and the first sloshing a slight peak in surge motion. The heave motion is highly

coupled with the moonpool piston mode.

Although the resonant period of lateral motions changed, the variation caused

by moonpool in vertical motions are more important, mainly heave, as new peaks

appears and these are directly related with the resonant frequencies of the water

motion inside moonpool. The heading that produces more vertical motions is β =

180.0° and the lateral motions are prominent just for headings different than that.

So, for optimization it is necessary to be more aware of vertical motions and at

β = 180.0°.

4.3.3 Artificial Viscous Damping

As commented in Section 2.1.3, the proper calculation of the motion inside moon-

pool requires an additional artificial viscous damping. Beside the different nomen-

clature used between solvers, this damping is added with the same procedure. A

panel over the opening, at free surface level is added, Wamit call this as lid and

Hydrostar reference it as zone damping. In Wamit, another two uncoupled degree of

motion are included in the solution for the heave (piston - j = 7) and pitch (sloshing

- j = 8) motion of water inside moonpool and it is possible to add damping coeffi-

cients to this lid. In Hydrostar, the zone damping (herafter called lid also) requires
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a dissipation parameter ε that is given in Equation (2.10).

Lid Position

According both manuals [12, 81], the lid must be added at free surface level.

It was done and a simulation with no additional damping was run to check the lid

influence at the results. Wamit lid position was adjusted using a in-house python

script to find its best position, as the panel at free surface outputted a warning

message: Physical panel in free surface for body=1, and the result without damping

was different than the result without lid. After this lid position correction, the result

plotted in Figure 4.47 could be calculated.

Figure 4.47: Heave and free surface elevation RAO comparison with lid, without
damping, for heading β = 90.0 and β = 180.0 in both solvers.

This procedure is just to show that the lid is just a mathematical tool to include

the viscous damping and the panel for doing that should not alter the final result.

There were some variation between the result without lid and with lid without

damping for high frequency values in Wamit solver.
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Damping Magnitude

To see the variation in damping magnitude, some values were chosen for each

solver. In Wamit a relation with the analytical critical damping (Equation (4.4))

was used, and these values are b77 = 0.01BCrit, b77 = 0.05BCrit, b77 = 0.1BCrit and

b77 = 0.5BCrit, while for Hydrostar they were ε = 0.01, ε = 0.05, ε = 0.1 and

ε = 0.5. This damping variation in RAOs may be seen in Figure 4.48 for Wamit

results and in Figure 4.49 for Hydrostar solver

Figure 4.48: Free surface elevation and heave RAO with damping variation in lid
for heading β = 90.0 and β = 180.0 in Wamit.

As expected by the conclusion previously done, that the water motions inside

moonpool are uncoupled of the anti-symmetric components, the lateral motions did

not change substantially with damping magnitude variation. Also is possible to see

that the dissipation parameter ε is comparable to the percentage of critical damping

calculated previously.

Following the calculated values of damping from CFD approach, we may see that

is approximately 5% of the critical damping (Section 4.2.1). For these values, we

may notice a decrease in amplitude values on resonant peaks but there is almost no

variation of its position neither in the results on other frequencies besides resonant

ones.

114



Figure 4.49: Free surface elevation and heave RAO with damping variation in lid
for heading β = 90.0 and β = 180.0 in Hydrostar.
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Chapter 5

Moonpool Optimization

This chapter is dedicated to the Genetic Algorithm application in the thesis prob-

lem, according to what is explained in Section 2.3. Also briefly show how it is im-

plemented with creation of two software, one for automation of the mesh generation

(Drillship Mesh Generator for Potential Theory - DMGPT) and another for setup

and calculations of genetic algorithm (Genetic Algorithm at UFRJ - GAUFRJ). In

order to clarify the importance of each software and how they are arrange in the

whole picture of optimization process, a diagram is presented in Figure 5.1.

Figure 5.1: Diagram of software integration.

5.1 Genetic Algorithm Parameters

Following the explanation in Section 2.3, an individual is a single ship with a

specific moonpool and the genes of each ship are the particulars that will suffer

variation as we try to optimize. For this work, four moonpool parameters were
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chosen for this variation, so the genes are:

� Length;

� Width;

� Position;

� Trailing Edge Angle.

A certain quantity of ships are created and they form a population. All these ships

are analyzed for a fitness criterion (Section 5.2) and the fittest ones are selected.

From these fittest, new offspring is generated by crossover and mutation of the

aforementioned genes and these are considered the new generation of ships. These

definitions are presented in Figure 5.2.

Figure 5.2: Genetic algorithm definitions on thesis problem.

5.2 Fitness Criteria

The main goal of optimization for this problem is related with the water motion

inside moonpool and from previous result we know that this is hardly dependent of

the frequency of exciting wave. Also, from potential theory results (Section 4.3) we

can conclude that moonpool cause variation in ship vertical motion, mainly heave.

Due the strong coupling between heave and pitch, we must worry with this also. So,

for this work we decided to minimize either:

� Ship’s heave or;

� Ship’s pitch or;

� Relative free surface elevation inside moonpool.
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Any of these may be chosen by the user and the fitness criteria value calculated

will depend on that.

The free surface elevation is calculated always in two points equally spaced from

moonpool wall and from each other at free surface level, like shown in Figure 4.45.

Wave Probe 1 is always the closer to the stern.

The optimization may be run for a regular wave or for a sea spectrum and that is

an user input. If the the former is chosen, the user may choose also the frequency of

this wave and fitness criteria will be given by RAO value for that specific frequency.

The latter requires another input from user, the ocean-wave spectrum, and from that

is possible to calculate a response of the minimization parameter defined previously.

In following section it is described a better explanation on how it is done.

5.2.1 Ocean-Wave Spectrum

When a ship is operating in ocean it is not subjected to just one frequency. Sea

is a train of waves, mainly generated by the interaction between wind and the water

surface, and it is very irregular, as high waves are followed unpredictably by low

waves and vice versa. There is a called superposition principle that states that the

irregular sea can be analyzed as a superposition of many simple regular harmonic

wave components, each with its own amplitude, length, period and direction of

propagation. It may be explained graphically in Figure 5.3.

Figure 5.3: A sum of many simple sine waves make a sea. (PIERSON et al. [22])

As a sea can be study as a superposition of regular sinusoidal waves, it can be

done using Fourier series analysis. With that, is possible to describe the irregular

wave using a Energy Density Spectrum from a measured wave record, as seen in

Figure 5.4.
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Figure 5.4: Wave record analysis (JOURNÉE and MASSIE [11])

There are four main spectrum density known to describe irregular sea:

� Neumann;

� Pierson-Moskowitz;

� Jonswap;

� Bretschneider.

When choosing a ocean-wave spectrum, RAO is not the best choice of optimiza-

tion, so we can calculate a response spectrum. It is given by,

Sz (ωf ) = |RAOdegree|2 · Sζ (ωf ) , (5.1)

where Sz (ωf ) is the response spectrum and Sζ (ωf ) is the wave spectrum. Then, the

fitness criteria in this case is considered the area of this response spectrum and so

the lower area values are considered the fittest. In the software this value is shown

normalized with the value calculated for the default moonpool, i.e., the fKN2. It

means that a value greater than unity is computed for a moonpool profile that

has worse behavior for the specific minimization parameter in the specific ocean

spectrum.

5.3 Solution Algorithm

Then, we decided to create a software to solve the Genetic Algorithm (Genetic

Algorithm at UFRJ - GAUFRJ) specifically for the fKN1 hull with addition of a

moonpool. Software interface and more details are shown in Section 5.5.
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This software can run any of the potential theory solver previously shown in

order to calculate the fitness goals aforementioned. It also do all calculation needed

for the whole algorithm implementation as shown in Figure 2.15.

There is a specific library in Python, called by the acronym DEAP, that has some

defined functions already for calling a genetic algorithm procedure. This library

presents customizable framework, where is possible to create a code for setting the

initialization, fitness evaluation and also how both the mutation and crossover of

new generation formation happens.

The software has a Graphical User Interface (GUI) that is shown in Figure 5.6.

According to information of the number of individuals, the initial generation (Gen-

eration 0) is randomly created, so for each individual four genes are set following

some size limitation rules. In order to run these created ships in the potential theory

solver, a mesh needs to be created, then the software calls another in-house code

(programmed specifically by this thesis) created for the specific purpose of mesh

creation for using in any of the solvers. This software is called Drillship Mesh Gen-

erator for Potential Theory (DMGPT) and more details when running it standalone

are given in Section 5.4.

After the mesh generation, it can be used by potential theory solver and then the

fittest are chosen. The code was created for heading β = 180°. The fitness criteria

is also an input by the user, according to what is described in Section 5.2.

Following user input for probability of crossover and mutation, and depending

on the algorithm chosen also, the routines for newer offspring is called. Crossover

routine chooses two individuals from the number of fittest individuals (µ) selected

from previous generation, called parents, and choose each of offspring four genes

from the parents by equal chances (50% of chance to get from parent 1 or parent

2 ). Mutation routine chooses one individual only of the fittest selected and then

for each gene it may randomly change its value, also following a 50% of probability

to change any gene. It may happen to create an offspring with four new random

created genes (totally different of parents) and it also may create an offspring that

is a clone, i.e., it is exactly the same genetic code of parent. The odds for the clone

generation is just 6.25% (= 50%× 50%× 50%× 50%).

Every generation has new offspring based on the fittest from previous generation.

The idea behind this is that after some generations the optimum moonpool profile

characteristics will appear more often and any mutation may help the solver to

discover if there is any other possible modification that can generate an improvement

in the result. Anyway, information of each individual is kept for comparisons, so

not necessarily the optimum moonpool will be at the last generation.

Both software created were generated planning to solve the case using either

Wamit or Hydrostar. As previously shown, both solvers are powerful for that pur-
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pose and they bring similar results, so the idea was to create a more generic and

accessible Genetic Algorithm software.

5.4 Drillship Mesh Generator for Potential The-

ory - DMGPT

This software was created for this thesis in Visual Basic code an it may be used

with a GUI or by Command Line Interface (CLI), as presented in Figure 5.5. The

former is better for a creation of a simple mesh and the latter is better for automation

process. The user may choose all four genes values, the addition of damping (a

window popup asking the damping magnitude in the GUI), mesh refinement and

also if wants discretization of free surface (required for second order calculations).

Default button modifies the input values for matching the fKN2 ship. Hitting

Generate button it automatically generates two meshes, one for Wamit and other

for Hydrostar, following all the requirements of each solver.

Figure 5.5: a) Graphical User Interface and b) Command Line Interface of DMGPT
software

5.5 Genetic Algorithm at UFRJ - GAUFRJ

The GUI of the GAUFRJ software is shown in Figure 5.6.a. The user must

input the configuration of the genetic algorithm, as number of generations, number

of individuals selected at each generation (it is also the number of initial individuals

- Generation 0), number of children (quantity of new offspring at each generation)

and optional hall of fame, that is the number of fittest profiles that will be presented

in the output file. Besides that, the percentage of crossover and mutation must be

set as the specific algorithm that will be used, the solver and the wave for fitness
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criteria calculation, if it is a regular wave with specified frequency or a ocean-wave

spectrum. Hitting Breed button, the software asks a name for the project and the

fitness goal Figure 5.6.b. When a case is running, below the window appears a blank

area with log information of the process and also a progress bar.

Figure 5.6: a) Graphical User Interface of GAUFRJ software and b) setup of the
fitness criterion and the project name

There is a section Objective History that shows the calculated values for each

ship and present it in a graphic and another section called Moonpool Profile with

design of the moonpool and particulars that is running, and also information of

generation, individual and wave probes position.

In File, there is a option Change Limits (Figure 5.7.a). This open a window

(Figure 5.7.b) where the user can select the limits of each gene and also may lock one

or more particular in order to find optimum moonpool with controlled dimensions.

Figure 5.7: Option for changing limits of moonpool dimensions or to modify the
number of optimization parameters (genes).a) How to access and b) the setup win-
dow.
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Chapter 6

Results and Discussions

The result of some case run with the GAUFRJ are shown in this chapter. Firstly,

in Section 6.1, it will be presented the optimization for a regular wave only, consid-

ering the fitness criteria of minimization of the water free surface elevation inside

moonpool and then the minimization of vessel heave motion. In Section 6.2, the

optimization for a spectrum of a random sea represented by JONSWAP is shown.

It will also follow the approach of a first case minimizing the free surface elevation

and then the vessel heave motion. In these analysis, all four parameters (genes)

included in the code will be used and the limitation of these sizes are just based

on the extent of ship, but as explained in Section 5.5, user limitations to moonpool

size may be applied. The idea is to deal with the most possible variety of moonpool

design in order to show the behavior of the optimizer finding the best solution.

6.1 Regular Wave

6.1.1 Optimization of Free Surface Elevation

For this case, it was chosen the piston mode natural frequency computed previ-

ously for the fKN2 ship, that is 0.731rad/s. The idea is to find the profile that would

give the minimum water motion inside the moonpool for the specific frequency that

causes the higher response in default moonpool. The calculation was setup for 10

generations with the 20 fittest individuals selected at each to breed the 50 new off-

spring of ships. The percentage chosen for crossover is 70% and for mutation 30%.

These values was a initial guess and they provided good results in the optimization.

It used Wamit as solver and it took 3 hours and 40 minutes to run this solution with

520 (= 20 (initialization) + 10× 50) possible different profiles.

The GAUFRJ generates various outputs. The most important one brings the

information of each individual created with its moonpool characteristics (genes) and

the calculated fitness criteria value. Figure 6.1 shows the variation of fitness criteria
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for each individual.

Figure 6.1: Objective History - Regular wave of 0.731rad/s - Fitness criteria: Free
Surface Elevation.

Software also calculates the mean and the standard deviation of the fitness crite-

ria normalized value at each generation. This result is shown in Figure 6.2. We can

observe that the fitness criteria mean tends to values lower than one, that implies in

an average result better than default moonpool (as the criteria is already normalized

with that case) for that generation individuals.

Figure 6.2: Generation Statistics - Regular wave of 0.731rad/s - Fitness criteria:
Free Surface Elevation.

As generation evolves, each population tends to be with more individuals with

lower water motion, but it also mean that new offspring generated by mutation may

cause more discrepancies in the results. This is a possible explanation of why the

standard deviation in the 8th generation increases and also the fitness criteria mean

increases together.

From the final results we can get the optimum moonpool and its particulars are

given in Table 6.1. This optimum profile appeared for the first time in simulation
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at the 7th generation and it kept showing up until the 10th generation.

Table 6.1: Optimum moonpool particulars - Regular wave of 0.731rad/s - Fitness
criteria: Free Surface Elevation.

Description Symbol Magnitude Unit

Moonpool’s length on bottom lb 43.5 m

Moonpool’s breadth on bottom bb 27.9 m

Moonpool’s breadth on deck bd 27.9 m

Postion (from transom) P 105.02 m

Cutout angle α 92.62 °

Using Wamit is now possible to calculate the water motion inside moonpool and

also heave motion for comparison with the default moonpool and the comparison is

shown in Figure 6.3.

Figure 6.3: Comparison of RAOs between optimum and default moonpool - Regular
wave of 0.731rad/s - Fitness criteria: Free Surface Elevation.

The setup at this section was done for calculation of the water lower relative

amplitude motion inside moonpool for a regular wave with frequency 0.731rad/s.

At this frequency, the RAO calculated in the wave probes are given in Table 6.2 and

we may notice that the motion is just approximately 21% of the default.

From Figure 6.3 is noticeable that ship heave motions and also motion inside

moonpool in general increases for other frequencies, but the optimization for the

specific purpose of a regular wave with known frequency and just considering the

water motion inside moonpool was properly achieved.
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Table 6.2: Comparison of wave probe RAO values between optimum and default
moonpool - Regular wave of 0.731rad/s - Fitness criteria: Free Surface Elevation.

Wave
Probe 1

Wave
Probe 2

fKN2 3.69 3.85

Optimum 0.87 0.72

6.1.2 Optimization of Vessel Heave Motion

Considering now the same previous setup for a regular wave with frequency

0.731rad/s, just changing the fitness criteria for ship heave motion. This case took

3 hours and 54 minutes and objective history of all simulation run is given in Fig-

ure 6.4. Also, generation statistics are given in Figure 6.5.

Figure 6.4: Objective History - Regular wave of 0.731rad/s - Fitness criteria: Vessel
Heave Motion.

Figure 6.5: Generation Statistics - Regular wave of 0.731rad/s - Fitness criteria:
Vessel Heave Motion.
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Once again we may observe that newer generations tends to have more profiles

with lower values of the fitness criteria and the mutation creates a diversity that

may lead to a new minimum.

The optimum moonpool appeared the first time in 7th generation and also kept

showing up in others generations. Particulars of it are given in Table 6.3.

Table 6.3: Optimum moonpool particulars - Regular wave of 0.731rad/s - Fitness
criteria: Vessel Heave Motion.

Description Symbol Magnitude Unit

Moonpool’s length on bottom lb 46.94 m

Moonpool’s breadth on bottom bb 17.24 m

Moonpool’s breadth on deck bd 17.24 m

Postion (from transom) P 106.90 m

Cutout angle α 137.55 °

Both heave of the vessel and the water motion inside moonpool are shown in

Figure 6.6. At this case, the algorithm minimization focus is in the heave ship

motion. At the specified frequency the RAO is shown in Table 6.4 and it is observable

that the heave is lower and is just approximately 1% of the default moonpool RAO

value. There is a deterioration of other frequencies RAO, but the setup goal for

a regular wave was reached. At Section 6.2, the random sea shows the optimizer

behavior when considering a range of frequencies.

Figure 6.6: Comparison of RAOs between optimum and default moonpool - Regular
wave of 0.731rad/s - Fitness criteria: Vessel Heave Motion.

127



Table 6.4: Comparison of heave RAO values between optimum and default moonpool
- Regular wave of 0.731rad/s - Fitness criteria: Vessel Heave Motion.

Heave

fKN2 0.45

Optimum 4.59× 10−3

Relative motion measured at wave probes in optimum moonpool is lower than

default for that regular wave frequency, but is higher than the previous optimum

profile shown in Table 6.1, as expected. It means that the optimization of heave

motion not necessarily means lower relative motion inside moonpool and vice versa.

6.2 Random Sea - Case Study

Although the regular wave optimization is good for enlightenment, in real cases

the ship operates at sea in irregular waves. According explained in Section 5.2.1, that

can be described by a spectrum and it is possible to calculate a response spectrum

of ship and water motion using Equation (5.1). For this section, it was chosen the

JONSWAP spectrum due to its importance as it is may be used for parametrisation

of known sea as North Sea or Santos Basin. The parameters for the spectrum

definition were calibrated in order to have more wave energy at resonant frequency

of default moonpool. So the spectrum with significant height HS = 2.0m and peak

wave period TP = 8.6s (0.731rad/s) is graphically shown in Figure 6.7.

Figure 6.7: JONSWAP spectrum representing ocean for case study - HS = 2.0m
and TP = 8.6s.
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6.2.1 Optimization of Free Surface Elevation

Following same setup of regular wave, just changing exciting wave for the spec-

trum presented in Figure 6.7, the software took only 3 hours and 11 minutes to run

all the possible opportunity for all individuals. Objective history is then shown in

Figure 6.8.

Figure 6.8: Objective History - JONSWAP spectrum (HS = 2.0m and TP = 8.6s) -
Fitness criteria: Free Surface Elevation.

Here we can see the same behavior as more advances the generations, more indi-

vidual fitting the criteria appears and mutation still generating random individuals.

It is hard to go below unity in this case, as we are considering a frequency range for

analysis now. The generation statistics is also presented in Figure 6.9.

Figure 6.9: Generation Statistics - JONSWAP spectrum (HS = 2.0m and TP = 8.6s)
- Fitness criteria: Free Surface Elevation.

The fitness criteria mean of each generation decreases and after 6th generation

does not change substantially, besides the fact that we can see that mutation still

happening. That is a good demonstration that in general, most of the individu-
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als in newer generation are providing better good minimization of the free surface

elevation.

Optimum moonpool for this case is given in Table 6.5. It appeared just after the

8th generation.

Table 6.5: Optimum moonpool particulars - JONSWAP spectrum (HS = 2.0m and
TP = 8.6s) - Fitness criteria: Free Surface Elevation.

Description Symbol Magnitude Unit

Moonpool’s length on bottom lb 48.30 m

Moonpool’s breadth on bottom bb 7.27 m

Moonpool’s breadth on deck bd 7.27 m

Postion (from transom) P 66.58 m

Cutout angle α 126.53 °

As it was done for previous cases, the heave RAO comparison is presented in

Figure 6.10 and also the water motion RAO in Figure 6.11.

Figure 6.10: Comparison of heave a) RAO and b) response spectrum between op-
timum and default moonpool - JONSWAP spectrum (HS = 2.0m and TP = 8.6s) -
Fitness criteria: Free Surface Elevation.

Now the response spectrum is also calculated using Equation (5.1) and it also

presented for both RAO. Visually we can distinguish the area os each response spec-

trum and conclude that the motions are lower in general for the optimum moonpool.

We can deduce that the optimum moonpool, even having two resonant peak with
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Figure 6.11: Comparison of free surface elevation a) RAOs and b) response spectra
between optimum and default moonpool - JONSWAP spectrum (HS = 2.0m and
TP = 8.6s) - Fitness criteria: Free Surface Elevation.

considerable magnitude, but with different frequencies than the default moonpool

peak, it may reduce the downtime of this drillship when operating in a sea with the

spectrum given. In this case the spectrum was chosen purposefully to have more

energy at the resonant frequency of the default moonpool in fKN2, but even without

previous knowledge of a comparison moonpool and using a specific operation sea it

will provide satisfactory profile.

6.2.2 Optimization of Vessel Heave Motion

Same procedure was done for ship heave motion optimization considering the

spectrum. This case took 3 hours and 35 minutes. The objective history is shown

in Figure 6.12 and it follows exactly the same behavior from previous optimization

cases, with newer generation having more individual presenting lower value of the

fitness criteria and some random individuals expected because of mutation.

Generation statistics (Figure 6.13) in this case shows a continuous decrease of

the fitness criteria mean value.

Optimum moonpool appeared only at the last generation. Its particulars are

shown in Table 6.6 and we may notice that has some similarities to the optimum

moonpool of the optimization in the same spectrum with the fitness criteria decreas-

ing water motion inside moonpool (Table 6.5). These motions are strongly coupled

so some similarities are interesting to happen. The prominent difference is the width

of moonpool.

Heave RAO and response spectrum of that case is shown in Figure 6.14 and the

response is clearly lower than the default one. Analyzing the heave RAO separately,
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Figure 6.12: Objective History - JONSWAP spectrum (HS = 2.0m and TP = 8.6s)
- Fitness criteria: Vessel Heave Motion.

Figure 6.13: Generation Statistics - JONSWAP spectrum (HS = 2.0m and TP =
8.6s) - Fitness criteria: Vessel Heave Motion.

Table 6.6: Optimum moonpool particulars - JONSWAP spectrum (HS = 2.0m and
TP = 8.6s) - Fitness criteria: Vessel Heave Motion.

Description Symbol Magnitude Unit

Moonpool’s length on bottom lb 41.09 m

Moonpool’s breadth on bottom bb 29.48 m

Moonpool’s breadth on deck bd 29.48 m

Postion (from transom) P 56.56 m

Cutout angle α 121.52 °

frequency 0.59rad/s (10.6s) is a high amplitude resonant peak, but as long as the

sea do not have considerable wave energy density at this value, it does not have

weight in the optimization process.
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Figure 6.14: Comparison of heave RAO and response spectrum between optimum
and default moonpool - JONSWAP spectrum (HS = 2.0m and TP = 8.6s) - Fitness
criteria: Vessel Heave Motion.

The RAO of water motion inside moonpool and response spectrum is presented

in Figure 6.15. It is interesting here to notice that this ship provides slightly lower

water motion inside moonpool than the considered optimum moonpool on previous

analysis. This shows that variation in percentage of mutation or increase in the

number of individuals or generations would provide more reliable results.

Figure 6.15: Comparison of free surface elevation RAOs and response spectra be-
tween optimum and default moonpool - JONSWAP spectrum (HS = 2.0m and
TP = 8.6s) - Fitness criteria: Vessel Heave Motion.
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Observing Figures 6.10, 6.11, 6.14 and 6.15 we may notice an interesting char-

acteristic confirming the purpose of the optimizer, that is the fact of the default

moonpool higher peak inside the spectrum range of frequencies disappears in the

optimum profile but it may appear a new peak (maybe even higher) on another

frequency that is not related with the sea being analyzed. It reinforces the idea

that there is no optimum moonpool for general uses but an optimum for a specific

purpose.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This is a relatively recent topic and the quantity of papers published shows this is

a state-of-art problem. This brings a motivation of using an optimization algorithm

in order to discover a moonpool design that has better performance in a specific

random sea. Thus, it is possible to design a drillship that may reduce downtime in

critical operations. This bring technological contribution to the offshore area, as for

the first time, this thesis applies the GA methodology for a drillship. The moonpool

size influences the drillship behavior, which influences the internal motion on the

moopool. It may be easily used in the preliminary design process.

Analytical Approach

Mathematical model derived for a squared moonpool using conservation of mo-

mentum in a control volume was first deduced in this thesis based on AALBERS

[24] work, where the cylinder moonpool is analyzed.

Numerical Approach

Turbulence analysis provided us the information that the turbulence modeling

in this case may be negligible and we also could notice that the edge angle plays

important role on the eddy shedding, and thus the edges angle are related with the

damping of water motion inside moonpool.

We may notice that is hard to predict analytically frequency and consequently

other variables of motion, so numerical and experimental are hardly necessary for

this kind of study.

Moonpool presence varies the ship motion and it may be seen as damper of that.

There are other works in literature studying it for this purpose.
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Regarding the lid technique is a good mathematical workaround to consider vis-

cous effects inside moonpool. In this work we calculate numerically the equivalent

linearized damping coefficient Beq relative to the critical damping coefficient BCrit

that may be calculated for a specific squared moonpool design by Equation (3.4).

Then, it is possible to see the variation in the RAO values calculated in poten-

tial theory when considering the viscous damping. The variation is mainly in the

resonant peaks amplitude.

Genetic Algorithm

Heave and water motion inside moonpool are strongly coupled but the opti-

mization of one does not necessarily means the optimization of the other motion

as noticed in the results, so the engineer must be aware of the necessary purpose

for better optimization. That also brings discussion on one of the main goals of

this thesis as long as with the genetic algorithm solver we may find an optimum

moonpool that would change the overall ship motions.

An apparently obvious conclusion that is reinforced by the results is that moon-

pool optimization depends on where it will exactly operate, so it is important to

previously study the sea where it will be acting most part of the time in preliminary

design.

7.2 Future Works

This thesis was divided in two parts and there are possibilities of future works

in both ways.

Analytical Approach

A possible addition in future works would be the consideration of the cutout

angle and that would clarify the importance of the angle in natural frequency and

also in the damping calculation.

Numerical Approach

In the V&V process, other verification steps like roundoff error (changing ma-

chine accuracy), iterative convergence error (change residuals), temporal discretiza-

tion error (using different time steps in the temporal mesh) would give more confi-

dence in the numerical results, making the result more robust. Besides it is not used

directly in the optimization, it enriches the work and also bring more understanding

in the physics of phenomenon.
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The turbulence analysis would be improved in future works, considering bet-

ter refinement increasing the number of nodes inside moonpool and enhancing the

discretization on boundary layer.

In parallel to this work, the author already started a study based on KNOTT

and FLOWER [73] work simulating outflow in a cylinder moonpool (Figure 7.1). It

is an important analysis to show the consequence of vortice shredding and maybe it

would bring knowledge of other possible variation in moonpool profile for damping

increasing. It contribution in the motion may be seen in the non-linear term of the

Equation (3.1).

Figure 7.1: a) Numerical analysis and b) experimental test of outflow vortices in
decay test inside a cylinder done in LOC facilities.

It would be adequate in Numerical Forced Heave Oscillation simulation to run

more time steps in order to see the phase behavior and also how the relative motion

decreases. In Numerical Regular Wave with Captive vessel, shifting the phase of inlet

wave (Figure 4.28) to fit with initial condition will help convergence and probably

will make the simulation to run faster. Another issue in this simulation and in Freely

Floating Vessel Test is about use the right wave theory for the values of depth and

wave amplitude. The first order Airy was used instead of Second Order Stokes that

is the proper one for better representation.

Validation of numerical results with experimental analysis would enlighten all the

physics simulated and give the final confidence necessary in the results. The results

in model scale of freely floating tests were done purposefully as the Laboratory of

Waves and Currents (Laboratório de Ondas e Correntes - LOC) already has available

the two models, with the same particulars presented in Table 4.16, as they were used

in previous researches. Also, in LOC facilities we have the necessary tools and wave

basin for proper analysis.
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In potential theory solvers, is possible to analyze each wave component sepa-

rately, i.e., incident, diffraction and radiation. This may show us more information

about the physic behavior with modification of some moonpool parameters and may

bring new conclusions.

For artificial damping generic proper calculation, using lid technique, more stud-

ies for validation and application of correct values in other moonpool profiles is

necessary.

Genetic Algorithm

The code can be modified to include other position and size parameters, for

instance it is possible to include a cutout step like the one in CHALKIAS and

KRIJGER [9] work (Figure 1.8.b) increasing the possibilities of design.

It is already in code a routine for other headings instead of just using β = 180°.

This option is not available for the user to choose yet, but is easy to implement as

it is already in algorithm. Another improvement in the code is the addition of finite

depth water calculation with depth setting being an option for the user.

This work did not consider the addition of fitting inside moonpool for damping

increase, as cofferdam, guidance structures and others damping devices in general.

It may be think as opportunity for future works with genetic algorithm, considering

a moonpool profile and varying damping devices position and size.

Experimental analysis with optimum moonpool in model scale would validated

the GAUFRJ software giving the final confidence in the results making it ready for

final users.
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sciencedirect.com/science/article/pii/S0360544216308283>.

[28] ARIS, R. “The symmetry of the stress tensor”. In: Vectors, Tensors and the

Basic Equations of Fluid Mechanics, 1st ed., cap. 5, pp. 102–104, New

York, USA, Dover Publications, 1990. ISBN: 0486661105.

141

http://www.bakker.org/dartmouth06/engs150/16-fsurf.pdf
http://www.bakker.org/dartmouth06/engs150/16-fsurf.pdf
https://www.drillingcontractor.org/dcpi/2001/dc-septoct01/s1-dualact.pdf
https://www.drillingcontractor.org/dcpi/2001/dc-septoct01/s1-dualact.pdf
http://www.sciencedirect.com/science/article/pii/S0360544216308283
http://www.sciencedirect.com/science/article/pii/S0360544216308283


[29] VERSTEEG, H. K., MALALASEKERA, W. An Introduction to Computa-

tional Fluid Dynamics: The Finite Volume Method. 2nd ed. Cambridge,

Massachussetts, USA, Pearson Education Ltd., 2007. ISBN: 0131274988.
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Appendix A

Equation of Motion for the

Moonpool in a Floating Vessel

This section provides the original deduction of the equation of motion for the

squared moonpool that appears throughout this work. First of all, we need to de-

scribe the conservation law of momentum, so-called second law of mechanics. It

states that the rate of change of linear momentum of the medium inside a control

volume must be equal to the external force exerted on it. For an arbitrary volume

Ω, with surface dΩ, at time t, mathematical statement of second law is:

D

Dt

∫∫∫
Ω

ρvj dV =

∫∫∫
Ω

ρfi dV +

∫∫
dΩ

Pjknk dA , (A.1)

where ρ is specific density [kg/m3], fi is body force density [m/s2], Pjk is stress

tensor in index notation [N/m2], nk is the outward-pointing unit normal surface

vector and
D

Dt
≡ ∂

∂t
+ ~v · ~∇ =

∂

∂t
+

3∑
i=1

∂xi
∂t

∂

∂xi
(A.2)

is the material (or substantive) derivative, in which ~v is velocity vector [m/s] and
~∇ is nabla operator.

Reynolds transport theorem states that:

D

Dt

∫∫∫
Ω

Ψ dV =

∫∫∫
Ω

∂Ψ

∂t
dV +

∫∫
dΩ

Ψ (~v · ~n) dA , (A.3)

where the function Ψ may be tensor, vector or scalar-valued

Using Equation (A.3) on left-hand side (LHS) of the conservation law (Equa-

tion (A.1)) yields:

∂

∂t

∫∫∫
Ω

ρvj dV +

∫∫
dΩ

ρvj (~v · ~n) dA =

∫∫∫
Ω

ρfi dV +

∫∫
dΩ

Pjknk dA . (A.4)
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Now, consider the control volume Ω that represents a rectangle shaped moonpool

in Figure A.1.

Figure A.1: The control volume Ω with surface dΩ of rectangular shaped moonpool.

Inside this chosen control volume, two media exist, water and air. It can be

shown that the contribution in Equation (A.4) due to the air can be neglected, for:

ρair � ρw. (A.5)

Therefore, as the only body force (fi) acting in the system is due the gravity

(g) field, the conservation law (Equation (A.4)) for moonpool control volume (Fig-

ure A.1) may be written as:

∂

∂t

[
ρwbl (d+ h)

dh

dt

]
− ρwbl

(
dh

dt

)2

= −ρwgbl (d+ h) +

∫∫
dΩ

Pjknk dA . (A.6)

Last term in the right-hand side (RHS) describes the forces due to external

pressure. Pressure on vertical side of moonpool yield a net force which is zero due

to symmetry. Upper and lower surface, however, should be considered separately.

At upper surface the moonpool is opened, so atmospheric pressure (patm) is the

condition and the surface integral can be written as:∫∫
Upper

Pjknk dA = blpatm . (A.7)

At lower surface the fluid pressure exists, which is given by unsteady Bernoulli’s

law :

plower +
1

2
ρ
(
~∇φ
)2

+ ρgz + ρ
∂φ

∂t
+ patm = 0 , (A.8)
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where z is the elevation of the calculation point in relation to a reference plane (at

draft z = 0), with the positive z-direction pointing upward, so in the direction op-

posite to the gravitational acceleration and the flow velocity ( ~∇φ) can be described

as the gradient of a velocity potential φ.

So:

plower = −1

2
ρ

(
dh

dt

)2

+ ρgd− ρ∂φ
∂t
− patm . (A.9)

Applying plower at the lower integral:∫∫
Lower

plower dA = −1

2
ρbl

(
dh

dt

)2

+ ρblgd− patmbl −
∫∫

Lower

ρ
∂φ

∂t
dA . (A.10)

Substituting (A.10) and (A.7) in Equation (A.6) yields the equation of motion

of the rectangle shaped moonpool water column for the case that the ship hull is

fixed:

ρwbl (d+ h)
d2h

dt2
+

1

2
ρwbl

(
dh

dt

)2

+ ρwgblh =

∫∫
Lower

ρ
∂φ

∂t
dA . (A.11)

Assuming the fluid to be ideal (isotropic stress tensor Pjk) and irrotational ( ~∇×
~v) it is possible to obtain RHS of Equation (A.11). In linear potential theory, this

result can be expressed by means of an added mass (Ma) and damping coefficient

(Bl), neglecting higher order terms, by:∫∫
Lower

∂φ

∂t
dA = Ma

d2h

dt2
+Bl

dh

dt
. (A.12)

When no external wave force is present, the equation of motion for water in

moonpool in a captive body is:

[ρwbl (d+ h) +Ma] ḧ+Blḣ+ ρwgblh+
1

2
ρwblḣ

2 = 0 , (A.13)

The presence of viscous effects until now is neglected. A study of KNOTT and

FLOWER [73], in which it is analyzed the presence of vortices at the in and outflow

of water of a pipe, they included this damping with an additional contribution

proportional to the velocity squared. The Equation (A.13) can be written as:

[ρwbl (d+ h) +Ma] ḧ+Blḣ+Bqḣḣ+ ρwgblh = 0 . (A.14)

It is possible to analyze the water oscillation inside the moonpool in a free floating

vessel describing it as a system of two floating structures in waves. OORTMERSSEN

[82] has outlined a detailed theory about it. It is assumed that the water inside

the moonpool is described by a frictionless moving piston inside the vessel and all

150



moonpool motions except heave are determined by the vessel. Knowing that it is

possible to write the moonpool oscillatory motion results inside of a free floating

vessel as follows:

[ρwbl (d+ h) +Ma] ḧ+Blḣ+Bqḣ|ḣ|+ ρwgblh+

[dhz + ρwbl (d+ h) +Ma] z̈h + [ehz +Bl] żh + ρwgblzh

= Fwh .

(A.15)
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