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UMA ABORDAGEM DE ÁGUAS-RASAS ORIENTADA A EVENTOS PARA

SIMULAR CORRENTES DE TURBIDEZ EM ESCALA ESTRATIGRÁFICA

Túlio Ligneul Santos
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Apresenta-se uma nova abordagem orientada a eventos para simular a formação

de sistemas deposicionais turbid́ıticos em escala estratigráfica. Combina-se um mo-

delo de escoamento baseado na aproximação de águas-rasas com um algoritmo de

sedimentação prático. Equações que governam correntes de turbidez são resolvidas

usando um novo esquema de transporte corrigido por fluxo embasado no método

dos elementos finitos. Sua formulação de baixa ordem é constrúıda adicionando,

à expressão usual obtida pelo método de Galerkin, um componente difusivo seme-

lhante à dissipação escalar de Rusanov, escalado por um operador de captura de

choques. Obtém-se o sistema de alta ordem incluindo fluxos anti-difusivos lineariza-

dos em torno da solução de baixa ordem e limitados pelo procedimento de Zalesak,

seguindo um pré-limitador minmod. A integração temporal é feita implicitamente

com passos de tempo adaptativos, e usando um algoritmo não-linear iterativo que

lineariza os termos fonte. A sedimentação é realizada carregando cinco frações gra-

nulométricas através de linhas de emissão evolúıdas durante o escoamento e espa-

lhando sedimentos radialmente. Estes depositam, preenchendo o espaço dispońıvel

e compactando as camadas inferiores. O escoamento é calculado enquanto a des-

carga de um evento estiver ativa, continuando até a corrente atingir um estado de

equiĺıbrio. Em seguida, a etapa de deposição do evento é executada. Resultados

do simulador do escoamento apresentaram boa concordância com soluções exatas

e bibliográficas dispońıveis. A estratégia adotada também demonstrou melhor de-

sempenho em relação à formulação de elementos finitos estabilizados testada. Além

disso, os depósitos de sedimentos reproduzidos sugerem que a abordagem proposta

é adequada para realizar simulações em escala estratigráfica.
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We present a new event-driven approach that combines a shallow water flow

model with a practical sedimentation technique to simulate the formation of tur-

bidite depositional systems at a stratigraphic scale. Equations that govern turbidity

currents dynamics are solved using a new finite element flux-corrected transport

scheme. In this sense, the low-order formulation is built by adding a novel Rusanov-

like scalar dissipation scaled by a shock-capturing operator to standard Galerkin

equations. From it, the high-order system is obtained by including anti-diffusive

fluxes linearized around the low-order solution and limited with the Zalesak’s algo-

rithm, following a minmod prelimiter. Implicit time integration with adaptive time

steps is performed with an iterative nonlinear scheme that linearizes source terms.

Sedimentation is implemented by carrying five granulometric fractions (clay, silt,

and fine, medium and coarse sands) along evolved streaklines and radially scatter-

ing sediments that deposit filling the available space and compacting the underneath

sediment layers. The flow is computed while an event discharge into an area of inter-

est is active, or the inflow current has not reached an equilibrium state. Afterward,

the event deposition step is executed. Numerical results of our flow solver presented

a good agreement with available exact and literature solutions. It is also compared

with a stabilized finite element formulation, producing better outcomes, especially

in scenarios with complex drying/wetting dynamics. Also, the simulated sediment

deposits suggest that our approach is well suited for stratigraphic scale simulations.
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Chapter 1

Introduction

In the petroleum geology field, one of the main concerns is understanding the forma-

tion and evolution of potential hydrocarbon reservoirs. Besides, the characterization

of siliciclastic areas in sedimentary basins and, on a smaller scale, the depositional

features whose architectures form reservoirs is of particular interest. It is as essen-

tial to the exploration and prospection of new reserves as to the optimization of oil

production. At present, important hydrocarbon reservoirs discovered in deep-water

sediments are trapped into turbidite reservoirs, whose majority are in siliciclastic

turbidites and hyper-concentrated flow deposits [1].

By definition, turbidite deposits are formed by the accumulation of the sediments

carried by turbidity currents. These gravitational flows are broadly affected by

turbulence effects. In fact, the more turbulent is the flow, the more the sediments

are drawn by the current and, with the increased density, it gains more speed, which,

as a result, increases turbulence. On this subject, MEIBURG and KNELLER [2]

present an elegant review focused on fluid mechanics. In general, a turbidity current

can be induced by sediment-laden river outflows, earthquakes, volcanic activities,

storms, tsunami, and other sudden geological events [3]. However, when referring

to a turbidite system, we are usually concerned with the outcome of a succession of

these events, distributed over a long geologic period.

One way of studying sedimentary basins is through the point of view of stratig-

raphy. This discipline is mainly concerned with the formation of rock layers (strata)

and the layering process (stratification). Its goal is to correlate strata separated in

space and time in regard to their geometric relationships and to estimate the char-

acteristics of the original depositional environment. However, stratigraphic stud-

ies are never straightforward and usually require different approaches and pieces

of evidence as none are unbiased or yield completely unambiguous results. Thus,

this field is traditionally subdivided into some branches according to their different

strategies [4]. For example, chronostratigraphy seeks to assign absolute dates to the

depositional sequence of all rocks within a region, providing an entire geological
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record. Lithostratigraphy is mainly concerned with physical contrasts between rock

types (lithologies). In turn, sequence stratigraphy surveys the succession of genet-

ically related strata, i.e., of layers that were deposited in a single cycle of relative

sea-level change. Undoubtedly, the evolution of the sea level might condition signif-

icant lateral shifts in the depositional pattern, which can form alternating layers of

porous and permeable materials and sealing media. These structures can build oil

traps and create reservoirs.

In complement to these and the other stratigraphy branches, numerical simula-

tions of the sedimentary process should provide more data to reduce the inaccuracies

of the whole stratigraphic model. Indeed, they can help understand the formation

of a specific area, test a qualitative hypothesis, or provide quantitative data like the

deposited rocks’ properties (composition, porosity, permeability, texture). For such

purposes, simulators based on sequence stratigraphy operate with time steps chosen

according to the order of the sea level variation cycles that should be captured, usu-

ally ranging from 0.1 Ma to 10 Ma. Also, in basin-scale models, the studied regions

have areas in the order of 100 km × 100 km, which are frequently decomposed into

1 km2 elements (or cells) [5–7].

For instance, CARVALHO et al. [7–9] describe an algorithm for the transport

and deposition of sediments in platform, slope and basin environments. Their tech-

nique applies quantitative sequence stratigraphy concepts as a sedimentation con-

trol mechanism, combined with a 2D steady-state flow simulation of an inviscid

fluid that highly depends on the region’s bathymetry. Given velocity-based bound-

ary conditions, they compute a velocity field from which streamlines are obtained.

These lines that originate from predetermined sediment supplies are used to trans-

port sediments. The deposition itself is controlled by the angle of stability of each

granulometric fraction and the available accommodation space. Additionally, other

stratigraphic simulation techniques have been proposed. SHAFIE and MADON [10]

present a comprehensive review of the main ones. STROBEL et al. [11] perform 2D

simulations based on geometric rules, LEE and HARBAUGH [12] apply the particle-

in-cell method to simulate 3D flows, and GRANJEON [5] describes a diffusion-based

model.

Therefore, the main objective of this work is to develop a solution capable of

simulating the formation of sedimentary basins in terms of the layering of different

strata as a result of the sediment transport and the hydrodynamics of turbidity cur-

rents. For this purpose, we seek to improve the approach of CARVALHO et al. [7–9]

in two senses. First, we employ a more realistic flow model. Possible advances could

be to perform a transient analysis or to consider bed friction and turbulence effects.

Second, we allow the simulation of turbidity currents, i.e., we must take into account

the flow of sediment currents across an aqueous body, instead of just accounting for
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the dynamics of the water itself.

To simulate the flow, we assume that the shallow water hypothesis holds. This

approximation presupposes the horizontal extent of the flow is significantly higher

than its vertical scale. In our case, the height of a turbidity current is many times

smaller than the size of a basin. Thus, simplifications can be made on standard

Navier-Stokes equations, producing a so-called depth-averaged or shallow water

model. These modifications are fundamental to reduce computational costs, en-

abling the simulation of vast regions over long periods. On the other hand, depth-

resolving strategies can provide more accurate results at the expense of additional

computational effort. In this sense, MEIBURG et al. [13] discuss the strengths and

challenges associated with the different approaches. Finite element methods have

been used successfully [14–17] in depth-resolving models, and more recent studies

include uncertainty quantification [18, 19].

Shallow water models have found their way into the study of geophysical prob-

lems such as atmospheric [20] and ocean [21] modeling, where extensive areas need

to be examined. Besides, some have been derived for compressible flows, such as

for gas motion [22] and magnetohydrodynamics [23]. Regarding morphodynamic ap-

proaches, some authors consider movable beds [24, 25] or flow and sediment/particle

coupled models [26], with applications in the simulation of floodings [27, 28] and tur-

bidity currents [29, 30]. Also, GROENENBERG et al. [31, 32] have shown usage in

turbidite fan stratigraphy.

To numerically solve the shallow water equations, often finite difference [31] and

finite volume [33] methods are employed. Also, several discontinuous [34] and contin-

uous [35–37] finite element techniques have been applied over the years. Within the

finite element group, stabilized formulations, formed by adding consistent and nu-

merically stabilizing terms to the Galerkin method, have achieved considerable suc-

cess [38–40]. Usually, they use a Streamline Upwind Petrov-Galerkin (SUPG) [41]

term combined with a shock-capturing operator, such as the Consistent Approx-

imate Upwind (CAU) [42, 43] operator. SANTOS and COUTINHO [37] evalu-

ate the use of different SUPG and shock-capturing techniques to solve the shal-

low water equations. Similarly, regarding continuous finite elements, flux-corrected

transport (FCT) [44–47] methods constitute a relevant subgroup. Classical FCT

schemes employ a low-order method imbued with enough artificial diffusion to ob-

tain a non-oscillatory smooth solution, which is then corrected by anti-diffusive

fluxes limited to avoid the creation or growth of extrema. An alternative proce-

dure is to blend the high- and low-order fluxes’ approximations in a high-resolution

scheme [48].

In this work, we adopt a semi-discrete finite element FCT technique with implicit

time integration. Our low-order formulation is built by adding a novel Rusanov-like
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scalar dissipation to standard Galerkin equations. Another possible approach would

be to add, to a Taylor-Galerkin finite element model, artificial diffusion proportional

to the difference between the consistent and lumped mass matrices [46, 49]. Next,

the high-order equation is composed by adding limited anti-diffusive fluxes to the

low-order equations. Here, we linearize and limit the fluxes around the low-order

solution so these computations can be performed once per time step. Limiting is

done with a Zalesak [50] limiter, and a prelimiter is also enforced.

To better evaluate the proposed FCT scheme, we test it against a stabilized fi-

nite element formulation. The examined stabilized approach comes from the work

of SANTOS and COUTINHO [37]. We use the SUPG operator proposed by TEZ-

DUYAR [51], later adapted by TAKASE et al. [52] to the shallow water equations.

Plus, we employ the Y Zβ [53, 54] and CAU [42, 43] shock-capturing operators.

All implementations related to the finite element method were aided by the deal.II

library [55], and thus we only use quadrilateral elements.

In many real-world applications of a shallow water simulator, the area in question

may experience transitions between wet and dry states. For instance, such are the

cases of simulations of coastal regions with periodic tidal oscillations [56, 57], dam

breaks [58] and floodings [59]. For turbidity currents [31], the wet and dry states

refer to the region being wet by the current or not. Thus, this type of simulation is

always treated as the flooding of a “wet” current into a “dry” ambient fluid. Near

fronts of dry/wet transition, the current’s height tends to zero, giving rise to some

numerical problems that can lead to instabilities, mass unbalances or nonphysical

behaviors. This is especially true when dealing with complex bathymetries. For this

reason, appropriate drying/wetting techniques must be applied.

With a better flow model, the sedimentation algorithm still needs to be adapted.

Hence, we start by transporting sediments through streaklines evolved during the

flow simulation and radially scattering them. In this context, we propose a method

to adaptively add and remove points from the streaklines to ensure accuracy and

reduce computational costs. Then, during the deposition operation, the available

accommodation space is limited by the point-wise maximum current heights. Addi-

tionally, to try to reproduce lithology stacking patterns seen in nature, we allow the

sedimentation to be made in sub-steps that have even more limited accommodation

spaces. Meanwhile, as new rock layers are deposited, we compact those underneath

due to the overburden.

To make our approach more suitable to simulate the creation of turbidite systems,

we have chosen to work with event-driven simulations. Accordingly, sedimentation

and flow computations are performed on a per-event basis. In this work, we show

how these events can be defined and monitored over time. However, the simulation

of distinct events has been addressed in the past by GROENENBERG et al. [31, 32].
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In their works, the simulation of an event is executed while the suspended sediment

concentration is above a given threshold. Also, the quiet intervals between events

can incur user-specified tectonic activity and a background sedimentation that can

cover the turbidite deposits. Although they need to specify the inflow sediment

volume and a recurrence frequency to define an event, the fact that they simulate

the flow and sedimentation processes in a more strongly coupled manner causes

its definition and usage to be slightly different from how we handle events in our

simulations.

All in all, we evolve the stratigraphic simulation procedure introduced by CAR-

VALHO et al. [7–9] with the ability to simulate the construction of turbidite deposits

due to the development of several turbidity current events distributed over long pe-

riods. Furthermore, the shallow water flow model employed in the current dynamics

is solved with an original FCT scheme. The artificial diffusion dependent on the hy-

drostatic reconstruction of current height and specific discharges is one of the main

contributions of the proposed FCT scheme. It is reduced near dry/wet fronts as a

result of the enforced velocity cut-offs, avoiding displacing some fluid incorrectly into

a dry region. Also, the shock detector we present shows good results in the tested

cases. Plus, while we assessed that the anti-diffusive correction factors computed

with the proposed flux limiter should be synchronized into a single component, we

observe that the chosen prelimiter should be applied individually to each flux com-

ponent. Finally, to the best of our knowledge, no other approach has combined a

process-based flow simulation with a sedimentation procedure as we propose.

The remainder of this thesis is structured as follows: In Chapter 2, we present

our approach to simulate the flow of turbidity currents. Next, in Chapter 3, we

describe how we integrate it with a practical sedimentation procedure to simulate

the formation of turbidite systems resulting from recurrent events in an event-driven

framework. In sequence, Chapter 4 presents some implementation details, while the

obtained results are discussed in Chapter 5. At last, Chapter 6 wraps up with our

conclusions and some future work suggestions.
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Chapter 2

Flow Simulation

In this chapter, we introduce how we perform numerical simulations of turbidity

current flows. First, we present the adopted shallow water model, together with its

governing equations. Next, we enunciate the continuous and the semi-discrete initial

value problems to be solved. Then, we show the stabilized finite element formulation

and the FCT scheme employed to obtain numerical solutions and display how we

adaptively control times step lengths during simulations. Finally, we examine the

techniques used to avoid numerical instabilities and nonphysical behaviors as the

current’s height tends to zero.

2.1 Governing Equations

A schematic representation of the employed shallow water model can be seen in

Figure 2.1. It depicts a sediment current of constant density ρ that flows over a

terrain across a quiescent ambient fluid of density ρw. In this work, we let the

ambient fluid and terrain be, respectively, the seabed and the seawater. h(x, y, t)

represents the current’s thickness, while zb(x, y) is the seabed elevation from a datum

fixed at the bed’s lowest point. In addition, we assume that the turbidity current

is diluted enough to behave as a Newtonian fluid and to allow its dynamic viscosity

to be approximately equal to the water viscosity (µ = µw = 10−3 Pa s).

As suggested by GROENENBERG [32], we consider the ambient fluid to be

infinitely deep, so we can use a single-layer model (as opposed to multi-layer

versions [60–62]), which is valid when the thickness of the current is much smaller

than the depth of the real ambient fluid. In this scenario, the water column is so high

that current height variations do not result in significant relative pressure changes

in the ambient fluid along the current-water interface. Plus, the drag forces exerted

by the current to the ambient water can be disregarded since it has no expressive

impact if we consider the whole water column. As a result, the ambient pressure

of an initially still water body will always have no dynamic component, and we can
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Figure 2.1: Schematic representation of the adopted shallow water model. It shows
a turbidity current with density ρ and thickness h(x, y, t) that flows over a terrain,
whose elevation is zb(x, y), and advances through a motionless fluid of density ρw.

assume that the fluid remains motionless as the current flows.

To derive the equations governing the dynamics of a turbidity current, we start

from the Navier-Stokes set of equations for incompressible flows. It comprises the

mass conservation equation (or the continuity equation):

∇ · u = 0, (2.1)

and the momentum conservation equation:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+

µ

ρ
∇2u+ b, (2.2)

where u = (u, v, w) is the fluid’s velocity, p indicates the pressure, and the source

term b = (bx, by, bz) covers the body forces applied to the fluid.

2.1.1 Boundary Conditions

The first step to derive the equations that govern the model is to define some bound-

ary conditions. Initially, we define a kinematic condition for the interface between

the current and the ambient fluid. Let η = h + zb be the elevation of the current

free surface. The equation that defines it is z = η(x, y, t), which can also be written

as the level surface Φ(x, y, z, t) = 0, with Φ(x, y, z, t) = z − η(x, y, t). Thus, the

outward-pointing normal at the surface is:

nη = ∇Φ =

(
−∂η
∂x
, −∂η

∂y
, 1

)
, (2.3)

which is not normalized at this point. Then, assuming that the surface is imper-

meable, dΦ/dt = 0 holds in the Lagrangian perspective. This implies that a fluid

particle initially on the surface will always remains attached to it. If the velocity of

7



a point on the free surface is uη = (uη, vη, wη), we have:

dΦ

dt
=
dz

dt
− ∂η

∂x

dx

dt
− ∂η

∂y

dy

dt
− ∂η

∂t
= 0

∴ wη −
∂η

∂x
uη −

∂η

∂y
vη −

∂η

∂t
= 0

∴
∂η

∂t
− uη · nη = 0. (2.4)

We can also perform an analogous procedure to obtain a kinematic condition for the

bed surface. In this case, the normal vector pointing out of the bed is:

nb =

(
−∂zb
∂x

, −∂zb
∂y

, 1

)
. (2.5)

Hence, if the fluid velocity on the bed is ub = (ub, vb, wb), we can arrive to:

∂zb
∂t
− ub · nb = 0. (2.6)

However, in this work, we consider that the bed elevation does not change during

the flow simulation, i.e.:
∂zb
∂t

= ub · nb = 0. (2.7)

In sequence, we define dynamic boundary conditions for the current free sur-

face and the bed. We impose the following tangential stress on the current-water

interface:

τη = (τηx , τηy) = −µ∂uη
∂n̂η

= −µ (n̂η · ∇)uη, (2.8)

where n̂η is the unit normal vector on the current-water interface, pointing to

the outside of the current. In addition, supposing that the surface is smooth, i.e

∂η/∂x� 1 and ∂η/∂y � 1, we can assign n̂η = nη.

Similarly, we impose the bottom shear stress acting on the current:

τb = (τbx , τby) = µ
∂ub
∂n̂b

= µ (n̂b · ∇)ub, (2.9)

where n̂b is the unit normal vector on the bed, pointing into the current. Once

more, we assume the surface is smooth, i.e. ∂zb/∂x� 1 and ∂zb/∂y � 1, and adopt

n̂b = nb.

2.1.2 Scale Considerations

Now we introduce some scale considerations regarding shallow water models and

examine their impact on the momentum conservation equation (2.2). First, let Lx,
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U and Lx/U be the flow’s characteristic length, speed and time scales along the x-

direction. For the y- and z-directions, the correspondent scales are Ly, V , Ly/V , Lz,

W and Lz/W . Also, define the operator O(scale) to indicate the order of magnitude

of a desired scale. In the study that follows, consider that O(Lx) = O(Ly), using

Lx = Ly = L. Then, the shallow water hypothesis states that:

Lz
L

= ε� 1. (2.10)

In fact, TAN [63] says it is usually required that Lz/L < 10−3−10−4, while SLO-

BODCICOV [64] and VREUGDENHIL [65] consider that the ratio Lz/L = 0.05

is the upper limit on which the shallow water theory is valid. This value comes

from the fact that a long shallow water wave is produced if the ratio between water

depth and wavelength is less than approximately 0.05 [66]. All in all, the general

idea is that the extent of the region to be simulated is considerably greater than

the height of the turbidity current. Additionally, if we consider that the flow has

the same characteristic time scale T on all directions (x, y and z), the proposition

(2.10) implies that:

T =
L

U
=
L

V
=
Lz
W

∴ V = U and W =
Lz
L
U = εU,

(2.11)

i.e., the z-component of the flow velocity is also much smaller than the x- and

y-components.

Next, based on the relations (2.10) and (2.11), we assess the main contributions

to the fluid pressure variation. We initially examine the order of magnitude of the

terms of the momentum equation (2.2) along the x-direction. For the transient and

advective terms:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
−→ O

(
U

T
+
U2

L
+
U2

L
+
WU

Lz

)
= O

(
U2

L

)
, (2.12)

and for the diffusive term:

µ

ρ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
−→ µ

ρ
O

(
U2

L2
+
U2

L2
+
U2

L2
z

)
=
µ

ρ
O

(
U2

ε2L2

)
. (2.13)

Likewise, the same orders of magnitude can be obtained for the analogous terms of

the momentum equation along the y-direction. However, if we regard the balance

(2.11) in the z-direction, we get different orders of magnitude for the transient and
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advective terms:

∂w

∂t
+u

∂w

∂x
+v

∂w

∂y
+w

∂w

∂z
−→ O

(
W

T
+
UW

L
+
UW

L
+
W 2

Lz

)
= O

(
εU2

L

)
, (2.14)

and for the diffusive term:

µ

ρ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
−→ µ

ρ
O

(
W 2

L2
+
W 2

L2
+
W 2

L2
z

)
=
µ

ρ
O

(
U2

L2

)
. (2.15)

We can observe that the order of the transient, advective and viscous terms in the

z-direction is many times smaller than that of their respective counterparts in the

x- and y-directions. This means that the dynamic components of the pressure inside

the current has a much greater contribution coming from the horizontal directions

than from the vertical. Thus, we can neglect the dynamic components along the

current height, obtaining hydrostatic pressure profiles in this direction. In this case,

the associated momentum balance equation is reduced to:

∂p

∂z
= −ρg, (2.16)

where g = 9.81 m s−2 is the gravitational acceleration.

Therefore, to obtain the pressure at a position z inside the current, we can

integrate (2.16) along the z-direction:∫ η

z

∂p

∂z
dz = −

∫ η

z

ρg dz

∴ pη − p = −ρg(η − z)

∴ p = pη + ρg(η − z), (2.17)

where pη is the pressure at the current-water interface. As the ambient fluid is at

rest, the pressure is hydrostatic and can be determined. So, we arrive at:

p = patm +

∫ ηw

η

ρwg dz + ρg(η − z)

∴ p = patm + ρwg(ηw − η) + ρg(η − z), (2.18)

where patm is the atmospheric pressure and ηw is the elevation of the water free

surface. At last, considering that patm and ηw are constants, we differentiate the

previous equation in respect to x and y to obtain the pressure gradients we will

employ in the momentum conservation equation (2.2):

∂p

∂x
= (ρ− ρw)g

∂η

∂x
, (2.19)
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∂p

∂y
= (ρ− ρw)g

∂η

∂y
. (2.20)

2.1.3 Mass Conservation Equation

We can obtain the shallow-water continuity equation by integrating Equation (2.1)

over the current’s depth:∫ η

zb

∂u

∂x
dz +

∫ η

zb

∂v

∂y
dz +

∫ η

zb

∂w

∂z
dz = 0 (2.21)

∴
∫ η

zb

∂u

∂x
dz +

∫ η

zb

∂v

∂y
dz + wη − wb = 0. (2.22)

The two remaining integrals can be expanded using the Leibniz integral rule:[
−uη

∂η

∂x
+ ub

∂zb
∂x

+
∂

∂x

(∫ η

zb

u dz

)]
+

[
−vη

∂η

∂y
+ vb

∂zb
∂x

+
∂

∂y

(∫ η

zb

v dz

)]
+

+ wη − wb = 0

∴

(
−uη

∂η

∂x
− vη

∂η

∂y
+ wη

)
+

(
ub
∂zb
∂x

+ vb
∂zb
∂y
− wb

)
+

∂

∂x

(∫ η

zb

u dz

)
+

+
∂

∂y

(∫ η

zb

v dz

)
= 0

∴ uη · nη − ub · nb +
∂

∂x

(∫ η

zb

u dz

)
+

∂

∂y

(∫ η

zb

v dz

)
= 0. (2.23)

Then, using the boundary conditions (2.4) and (2.6) for the displacement of the

current free surface and the bed, we arrive to:

∂η

∂t
− ∂zb

∂t
+

∂

∂x

(∫ η

zb

u dz

)
+

∂

∂y

(∫ η

zb

v dz

)
= 0. (2.24)

Using the definition η = h+ zb:

∂h

∂t
+

∂

∂x

(∫ η

zb

u dz

)
+

∂

∂y

(∫ η

zb

v dz

)
= 0. (2.25)

Next, we define the depth-averaged velocities:

ū =
1

h

∫ η

zb

u dz and v̄ =
1

h

∫ η

zb

v dz, (2.26)

and use them to replace the integrals in Equation (2.25), obtaining the final conti-

nuity equation:
∂h

∂t
+
∂(hū)

∂x
+
∂(hv̄)

∂y
= 0, (2.27)
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where the terms hū and hv̄ are the fluid specific discharges (or discharges per unit

width) along the x- and y-directions. They are often denoted by q = (qx, qy) =

(hū, hv̄).

2.1.4 Momentum Conservation Equation

We can arrive at the model’s momentum conservation equation by integrating Equa-

tion (2.2) over the current’s height. For the equation in the x-direction:∫ η

zb

(
∂u

∂t
+
∂u2

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

)
dz =

∫ η

zb

(
−1

ρ

∂p

∂x
+
µ

ρ
∇2u+ bx

)
dz. (2.28)

Similar to the definition of the depth-averaged velocities in (2.26), the contribu-

tion of the body forces is: ∫ η

zb

bx dz = hb̄x, (2.29)

where b̄x is the depth-averaged x-component of the volume forces. Nevertheless, in

this work, we account for no such forces along the x- and y-directions.

In sequence, using Equation (2.19), we expand the pressure term into:∫ η

zb

1

ρ

∂p

∂x
dz =

∫ η

zb

(
ρ− ρw
ρ

)
g
∂η

∂x
dz =

(
ρ− ρw
ρ

)
gh
∂η

∂x
. (2.30)

Then, we consider that g′ = (ρ − ρw)g/ρ is the reduced gravity due to buoyancy

forces and replace η = h+ zb to obtain:∫ η

zb

1

ρ

∂p

∂x
dz = g′h

∂h

∂x
+ g′h

∂zb
∂x

=
∂

∂x

(
g′h2

2

)
+ g′h

∂zb
∂x

. (2.31)

In the case of the viscous term, we have:∫ η

zb

µ

ρ
∇2u dz =

1

ρ

∫ η

zb

[
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
+

∂

∂z

(
µ
∂u

∂z

)]
dz =

=
1

ρ

{[
∂

∂x

(∫ η

zb

µ
∂u

∂x
dz

)
− µ∂uη

∂x

∂η

∂x
+ µ

∂ub
∂x

∂zb
∂x

]
+

[
∂

∂y

(∫ η

zb

µ
∂u

∂y
dz

)
+

−µ∂uη
∂y

∂η

∂y
+ µ

∂ub
∂y

∂zb
∂y

]
+

[
µ
∂uη
∂z
− µ∂ub

∂z

]}
=

1

ρ

[
∂

∂x

(∫ η

zb

µ
∂u

∂x
dz

)
+

+
∂

∂y

(∫ η

zb

µ
∂u

∂y
dz

)
+

(
−µ∂uη

∂x

∂η

∂x
− µ∂uη

∂y

∂η

∂y
+ µ

∂uη
∂z

)
+

(
µ
∂ub
∂x

∂zb
∂x

+

+µ
∂ub
∂y

∂zb
∂y
− µ∂ub

∂z

)]
=
µ

ρ

∂

∂x

(∫ η

zb

∂u

∂x
dz

)
+
µ

ρ

∂

∂y

(∫ η

zb

∂u

∂y
dz

)
− τηx + τbx

ρ
,

(2.32)

where we have employed the Leibniz integral rule and the dynamic boundary con-
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ditions (2.8) and (2.9) at the current free surface and at the bed. The first integral

term can be expanded into:

∂

∂x

(∫ η

zb

∂u

∂x
dz

)
=

∂

∂x

[
∂

∂x

(∫ η

zb

u dz

)
− ∂uη

∂x

∂η

∂x
+
∂ub
∂x

∂zb
∂x

]
=

=
∂

∂x

(
∂(hū)

∂x

)
+

∂

∂x

(
−∂uη
∂x

∂η

∂x
+
∂ub
∂x

∂zb
∂x

)
, (2.33)

which, if we consider that the current free surface and the bed are smooth, is reduced

to:
∂

∂x

(∫ η

zb

∂u

∂x
dz

)
=

∂

∂x

(
∂(hū)

∂x

)
. (2.34)

Analogously, we have:

∂

∂y

(∫ η

zb

∂u

∂y
dz

)
=

∂

∂y

(
∂(hū)

∂y

)
. (2.35)

Therefore, replacing the relations (2.34) and (2.35) into Equation (2.32), we get the

contribution of the viscous term:∫ η

zb

µ

ρ
∇2u dz =

µ

ρ

∂2(hū)

∂x2
+
µ

ρ

∂2(hū)

∂y2
− τηx + τbx

ρ
. (2.36)

Going back to Equation (2.28) and applying the Leibniz rule to its left-hand

side, we obtain:∫ η

zb

(
∂u

∂t
+
∂u2

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

)
dz =

[
∂

∂t

(∫ η

zb

u dz

)
− uη

∂η

∂t
+ ub

∂zb
∂t

]
+

+

[
∂

∂x

(∫ η

zb

u2 dz

)
− u2

η

∂η

∂x
+ u2

b

∂zb
∂x

]
+

[
∂

∂y

(∫ η

zb

uv dz

)
− uηvη

∂η

∂y
+ ubvb

∂zb
∂y

]
+

+

[
uηwη − ubwb

]
=

∂

∂t

(∫ η

zb

u dz

)
+

∂

∂x

(∫ η

zb

u2 dz

)
+

∂

∂y

(∫ η

zb

uv dz

)
+

−uη
���

���
���

���
���

�:0(
∂η

∂t
+ uη

∂η

∂x
+ vη

∂η

∂y
− wη

)
+ ub

��
���

���
���

���
��:0(

∂zb
∂t

+ ub
∂zb
∂x

+ vb
∂zb
∂y
− wb

)
=

=
∂(hū)

∂t
+

∂

∂x

(∫ η

zb

u2 dz

)
+

∂

∂y

(∫ η

zb

uv dz

)
, (2.37)

where we have canceled out some terms due to the kinematic boundary conditions

(2.4) and (2.6). To simplify the previous expression, we define the form factors:

ζ1 =
1

hū2

∫ η

zb

u2 dz = 1 +
1

h

∫ η

zb

(
1− u

ū

)2

dz , (2.38)

ζ2 =
1

hūv̄

∫ η

zb

uv dz = 1 +
1

h

∫ η

zb

(
1− u

ū

)(
1− v

v̄

)
dz , (2.39)
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so we obtain:∫ η

zb

(
∂u

∂t
+
∂u2

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

)
dz =

∂(hū)

∂t
+
∂(ζ1hū

2)

∂x
+
∂(ζ2hūv̄)

∂y
.

Now we assume that ζ1 and ζ2 are sufficiently close to 1 so they can be considered

equal to the unit. As it can be seen through Equations (2.38) and (2.39), if u and

v do not change along the z-direction, we have u = ū and v = v̄ by definition, and

thus ζ1 = ζ2 = 1. Also, as another example, if u and v are 20% different from their

respective averages ū and v̄, ζ1 and ζ2 would only vary 4%. Consequently, in most

cases, it is valid the simplification ζ1 = ζ2 = 1, which results in:∫ η

zb

(
∂u

∂t
+
∂u2

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

)
dz =

∂(hū)

∂t
+
∂(hū2)

∂x
+
∂(hūv̄)

∂y
. (2.40)

Therefore, we can assemble the terms in Equations (2.29), (2.31), (2.36) and

(2.40) into (2.28) to define the complete equation for the momentum conservation

of the adopted shallow water model along the x-direction:

∂(hu)

∂t
+

∂

∂x

(
hu2 +

1

2
g′h2

)
+
∂(huv)

∂y
= −g′h∂zb

∂x
+
µ

ρ

(
∂2(hu)

∂x2
+
∂2(hu)

∂y2

)
+

− τηx + τbx
ρ

+ hbx , (2.41)

where the bars over the depth-averaged quantities were omitted to simplify the

notation. From this point onward, we will always refer to u = (u, v) as the

depth-averaged velocity. Plus, other space dependent vectors and differential op-

erators are also evaluated in a two-dimensional sense. For instance, x = (x, y) and

∇ = (∂/∂x, ∂/∂y). Following a procedure similar to the one employed to arrive at

Equation (2.41), we can also obtain an equation for the balance along the y-direction:

∂(hv)

∂t
+
∂(huv)

∂x
+

∂

∂y

(
hv2 +

1

2
g′h2

)
= −g′h∂zb

∂y
+
µ

ρ

(
∂2(hv)

∂x2
+
∂2(hv)

∂y2

)
+

−
τηy + τby

ρ
+ hby . (2.42)

2.1.5 Bed Friction Forces

In this section, we identify the frictional shear stresses acting on the current at its

free surface and at the bed. In one-dimensional flows, it is acknowledged that the
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bottom shear stress τb is a quadratic function of the fluid velocity:

τb = ρ(u∗)
2. (2.43)

From this expression, it comes the definition of the shear velocity u∗ = (τb/ρ)1/2,

which is an alternative quantity for expressing the friction in velocity units. More-

over, according to SOULSBY [67], the shear stress is related to the depth-averaged

current velocity through the relation:

τb = ρc′du
2, (2.44)

where c′d = gn2h−1/3 is a non-dimensional drag coefficient based on the Manning

coefficient n. As an aid to choose plausible values for n, works such as the one from

ARCEMENT and SCHNEIDER [68] can be seen. For two-dimensional shallow

water models, TAN [63] defines:

τb = ρc′d||u||u. (2.45)

This stress can be written as a function of the specific discharge q:

τb = ρcd||q||q, (2.46)

with cd = gn2h−7/3.

Furthermore, we use the approach employed by KUBO and NAKAJIMA [69] and

DE LUNA et al. [30] that defines the friction between the current and the ambient

fluid as a fraction of the shear stress at the bed:

τη = ατb. (2.47)

In this case, α is the ratio of the drag forces at the top of the flow and at the bed.

We adopt α = 0.43, as suggested by KUBO and NAKAJIMA [69] and KOMAR [70].

However, ideally, α should vary with the flow’s Froude number [71]. Although we

employ the same parameterization for the bed and free surface stresses, BÁRCENAS

et al. [72] have improved this approximation by considering different rules for each

contribution. At last, in this work, to simplify the notation, we combine the effects

of the friction at the bottom and at the top of the current into a single term:

τ = τη + τb = ργq, (2.48)

with γ = (1 + α)cd||q||.
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2.1.6 Equation System in Convection-Diffusion Form

We can write the equation system composed of Equations (2.27), (2.41) and (2.42)

in the conservation form:
∂U

∂t
+∇ · F = Scon, (2.49)

with:

U =

 hhu
hv

 =

hqx
qy

 , Scon =


0

−g′h∂zb
∂x

+
µ

ρ

(
∂2qx
∂x2

+
∂2qx
∂y2

)
− γqx

−g′h∂zb
∂y

+
µ

ρ

(
∂2qy
∂x2

+
∂2qy
∂y2

)
− γqy

 , (2.50)

F =
[
F x F y

]
, F x =


hu

hu2 +
1

2
g′h2

huv

 , F y =


hv

huv

hv2 +
1

2
g′h2

 , (2.51)

where U is the vector of conservation variables, F x and F y are hydraulic fluxes,

and Scon is a source term. This system can also be cast as a quasi-linear equation

if we employ the differentiation chain rule to get:

∂F x

∂x
=
∂F x

∂U

∂U

∂x
= Ax

∂U

∂x
and

∂F y

∂y
=
∂F y

∂U

∂U

∂y
= Ay

∂U

∂y
, (2.52)

where Ax and Ay are flux Jacobian matrices. We provide some insights on the

computation of the derivatives with respect to U in Appendix A.1. Besides, after

some manipulations, the set of equations that govern the flow can be given in the

form of a generalized convection-diffusion equation:

∂U

∂t
+ (A · ∇)U −∇ · (K∇U ) = S, (2.53)

where:

A =
[
Ax Ay

]
, Ax =

 0 1 0

g′h− u2 2u 0

−uv v u

 , Ay =

 0 0 1

−uv v u

g′h− v2 0 2v

 , (2.54)

K =
µ

ρ

0 0 0

0 1 0

0 0 1

 , S =


0

−g′∂zb
∂x

h− γqx

−g′∂zb
∂y

h− γqy

 . (2.55)

We remark that this system can also be used to simulate classic shallow water flows

(instead of turbidity currents) if we set g′ = g, ρ = ρw and compute γ with α = 0.
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2.2 Initial Value Problem

The initial value problem in question is: given the closed domain Ω̄ ∈ R2, of interior

region Ω and boundary Γ = Γe ∪ Γn, with Γe ∩ Γn = ∅, we solve the system of

equations (2.53) for U(x, t), ∀t ∈ ]0, tf ], subject to the initial condition:

U (x, 0) = U 0(x), (2.56)

and to the essential and natural boundary conditions:

U = G on Γe, (2.57)

K (n · ∇)U = 0 on Γn, (2.58)

where n is the outward-pointing unit normal at the boundary. In (2.58), the diffu-

sive flux across the boundary Γn is null. This is a common approach in convective-

diffusive physical models. In this case, all the flow across the boundary is ad-

vective. Another type of boundary condition that can be employed is the non-

penetration condition q · n = 0 on Γe. When the associated contour is aligned

with a coordinate axis, we simply impose that the component of the specific dis-

charge orthogonal to it is zero-valued. Otherwise, we take advantage of the deal.II’s

VectorTools::compute no normal flux constraints(..) function. Thus, we re-

fer to the work of BANGERTH and KAYSER-HEROLD [73] for further details on

how these constraints are applied.

To obtain the variational formulation of the problem, we initially define the sets

of test and trial functions respectively as S = {U ∈ (H1(Ω̄))3 | U = G on Γe} and

V = {W ∈ (H1(Ω̄))3 |W = 0 on Γe}, where H1(Ω̄) is the first order Hilbert space,

defined in the closed domain Ω̄. Then, using the weighted residuals method, the

solution of the differential equation (2.53) can be computed by solving:∫
Ω

W TR dΩ = 0 , (2.59)

where:

R =
∂U

∂t
+ (A · ∇)U −∇ · (K∇U)− S (2.60)

is the residual of the system (2.53). Here, the diffusive term can be integrated by

parts:∫
Ω

W T ∇ · (K∇U)dΩ =

∫
Γ

W TK(n · ∇)U dΓ−
∫

Ω

∇W T · (K∇U) dΩ. (2.61)
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As W = 0 on Γe:∫
Ω

W T ∇ · (K∇U)dΩ =

∫
Γn

W TK(n · ∇)U dΓn −
∫

Ω

∇W T · (K∇U) dΩ, (2.62)

and, using the natural boundary conditions (2.58):∫
Ω

W T ∇ · (K∇U) dΩ = −
∫

Ω

∇W T · (K∇U) dΩ. (2.63)

Thus, Equation (2.59) becomes:∫
Ω

W T

(
∂U

∂t
+ (A · ∇)U − S

)
dΩ +

∫
Ω

∇W T · (K∇U) dΩ = 0. (2.64)

In sequence, consider the finite-dimensional spaces of trial and test functions

respectively defined as Sh = {Uh ∈ (H1h(Ω̄))3 | Uh = G on Γe} and Vh = {W h ∈
(H1h(Ω̄))3 | W h = 0 on Γe}, with Sh ⊂ S and Vh ⊂ Vh. Here, H1h(Ω̄) is the

finite-dimensional first-order Hilbert space, specified in the closed domain Ω̄. Then,

we can perform a finite-dimensional approximation to the residual (2.60):

Rh =
∂Uh

∂t
+ (Ah · ∇)Uh −∇ ·

(
K∇Uh

)
− Sh, (2.65)

where the forms Ah and Sh indicate that their respective matrices should be

computed based on Uh. Similarly, Equation (2.64) can be brought to the finite-

dimensional space:∫
Ω

(
W h

)T (∂Uh

∂t
+ (Ah · ∇)Uh − Sh

)
dΩ +

∫
Ω

∇(W h)T ·
(
K∇Uh

)
dΩ = 0.

(2.66)

Next, employing the standard Galerkin method, we initially consider Uh = V N

and W h = CN , where V contains the nodal values of the solution, C defines

arbitrary constants and N holds the finite element basis (or shape) functions. For

example, in the case of a finite space of dimension 3, we would have:

Uh =

h
h

qhx

qhy

 =

h1 h2 h3

qx1 qx2 qx2

qy1 qy2 qy3


N1

N2

N3

 =

 N1h1 +N2h2 +N3h3

N1qx1 +N2qx2 +N3qx3

N1qy1 +N2qy2 +N3qy3

 , (2.67)

where the subscripts indicate to which node each value is associated. To represent

the multidimensional nodal solutions in a single vector, which will effectively be a

linear system solution, we employ known properties of the vectorization operator
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vec(..), introduced in Appendix A.2, to write:

Uh = vec(Uh) = vec(V N) = (NT ⊗ I3) vec(V ), (2.68)

where I3 is the third-order identity matrix, and ⊗ denotes the Kronecker product,

which we describe in Appendix A.3. For example, using an element with three

nodes, we would have:

Uh =

h
h

qhx

qhy

 =

[N1 N2 N3

]
⊗

1 0 0

0 1 0

0 0 1


 vec


h1 h2 h3

qx1 qx2 qx2

qy1 qy2 qy3


 =

=

N1 0 0 N2 0 0 N3 0 0

0 N1 0 0 N2 0 0 N3 0

0 0 N1 0 0 N2 0 0 N3





h1

qx1

qy1

h2

qx2

qy2

h3

qx3

qy3


=

 N1h1 +N2h2 +N3h3

N1qx1 +N2qx2 +N3qx3

N1qy1 +N2qy2 +N3qy3

 .

(2.69)

Note, however, that the elements we use in this work have four nodes (i.e., they

are quadrilaterals) because the deal.II library does not support triangular elements.

Based on the previous transformation, for the deductions that follow, we will employ

the definitions:

Uh = NV , W h = NC, (2.70)

where:

N =
[
N 1 N 2 ... N dS

]
, N i = NiI3, (2.71)

V =
[
V T

1 V T
2 ... V T

dS

]T
, V i =

[
hi qxi qyi

]T
, (2.72)

and C contains arbitrary constants, while dS is the dimension of the space Sh.
Therefore, we can expand Equation (2.66) to obtain:(
CT

∫
Ω

NTN dΩ

)
∂V

∂t
+

(
CT

∫
Ω

NT (Ah · ∇)N dΩ

)
V +

+

(
CT

∫
Ω

∇NT · (K∇N ) dΩ

)
V = CT

∫
Ω

NTSh dΩ. (2.73)
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With suitable choices for the constants in C, we can define the semi-discrete system:

M
∂V

∂t
= −DV + F , (2.74)

where M and D are generalized mass and stiffness matrices, and F is a source

term. In this case:

M =

∫
Ω

NTN dΩ, F =

∫
Ω

NTSh dΩ, (2.75)

D =

∫
Ω

[
NT (Ah · ∇)N +∇NT · (K∇N )

]
dΩ. (2.76)

Here, it should be noted that D and F depend on V , which confers nonlinearity

to the system. Next, we let the finite element basis functions be locally determined

piecewise linear functions with compact support. In this sense, the shape function

associated with a mesh node is non-null only inside the elements surrounding the

node. Therefore, we can write the matrices of the dynamic system (2.74) as sums

of element contributions:

M =

nel∑
e=1

∫
Ωe

NTN dΩe, F =

nel∑
e=1

∫
Ωe

NTSh dΩe, (2.77)

D =

nel∑
e=1

∫
Ωe

[
NT (Ah · ∇)N +∇NT · (K∇N )

]
dΩe, (2.78)

where Ωe, e = 1, ..., nel are the nel elements that comprise the domain Ω, with

Ωi∩Ωj = ∅, ∀ (i, j). At last, the discrete problem specification is completed by con-

sidering discrete versions of the initial and boundary conditions defined in Equations

(2.56)-(2.58):

V (0) = V 0, (2.79)

V = G on Γe× ]0, tf ], (2.80)

K (n · ∇)Uh = 0 on Γn× ]0, tf ]. (2.81)

Besides, from this point onward, to simplify notation, we drop the superscript h

from the components of the finite element approximation to the solution U , so we

have Uh =
[
h qx qy

]T
. Do observe that this notation differs from the one used

to represent the components of the nodal value solutions - introduced in Equation

(2.72) - by not having subscripts.
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2.3 Stabilized Formulation

For the stabilized formulation, the test function space is augmented using the Petrov-

Galerkin method, by which Ŵ = W+PG. Following the Streamline Upwind Petrov-

Galerkin (SUPG) technique, we incorporate effects associated with the convective

term as we define PG = τSUPG(A·∇)W . This additional function can be interpreted

as a directional derivative associated with the convection matrix A, having the

coefficient τSUPG as an intrinsic time scale. Thus, the weighted residuals equation

(2.59) becomes: ∫
Ω

Ŵ
T
R dΩ = 0 (2.82)

∴
∫

Ω

[W + τSUPG(A · ∇)W ]TR dΩ = 0. (2.83)

Because W has continuity C0 and Ŵ depends on ∇W , Ŵ is discontinuous. For

the same reason, we cannot integrate by parts the SUPG contribution.

In complement to the SUPG term, a shock-capturing (or discontinuity-capturing)

contribution is also added to the weighting function to better represent sharp shocks,

obtaining smooth but crisp solution profiles near discontinuities. This new term acts

in the direction of the solution gradient instead of the streamline direction [74]. Its

contribution can be included in Equation (2.83) by adding, to its left-hand side, the

operator: ∫
Ω

δShock∇W T · ∇Uh dΩ,

where δShock is the shock-capturing operator’s coefficient.

Therefore, the stabilized formulation is obtained by adding, to their respective

counterparts in Equations (2.77) and (2.78), the matrices:

MSUPG =

nel∑
e=1

∫
Ωe

[
τSUPG(Ah · ∇)N

]T
N dΩe, (2.84)

F SUPG =

nel∑
e=1

∫
Ωe

[
τSUPG(Ah · ∇)N

]T
Sh dΩe, (2.85)

DSUPG =

nel∑
e=1

∫
Ωe

[
τSUPG(Ah · ∇)N

]T [
(Ah · ∇)N −K∇2N

]
dΩe, (2.86)

DShock =

nel∑
e=1

∫
Ωe

δShock∇NT · ∇N dΩe. (2.87)

The adopted SUPG technique, which was proposed by TEZDUYAR [51] and
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adapted by TAKASE et al. [52] to the shallow water equations, defines:

τSUPG =

[
1

(τSUGN1)2
+

1

(τSUGN2)2

]−1/2

, (2.88)

with:

τSUGN1 =

(
nnpe∑
a=1

c|j · ∇Na|+ |u · ∇Na|

)−1

, τSUGN2 =
∆t

2
, (2.89)

where ∆t is the current time step, nnpe = 4 is the number of nodes per element,

c =
√
g′h is the propagation speed of a perturbation on the current surface, and

j = ∇η/||∇η|| is the normalized gradient of the current free surface elevation.

As a complement, we use the Consistent Approximate Upwind (CAU) shock-

capturing operator introduced by GALEÃO and DO CARMO [42] to solve the

scalar advection-diffusion equation, and later extended to the compressible Euler

and Navier-Stokes equations by ALMEIDA and GALEÃO [43]. Because the oper-

ator is defined in terms of entropy variables, first consider the transformation from

entropy to conservation variables TS : US → U , whose Jacobian matrix is ÃAA0, i.e.,

∇U = ÃAA0∇US. Then, we can write the residual (2.60) as a function of the entropy

variables US:

R = ÃAA0
∂US
∂t

+
(
AÃAA0 · ∇

)
US −∇ ·

(
KÃAA0∇US

)
− S = RS, (2.90)

which is in the same form used by ALMEIDA and GALEÃO [43]. Additionally, in

the original definition, the matrix ÃAA0 (and also its inverse ÃAA
−1

0 ) plays the role of a

metric tensor in R3, being employed, for instance, in the norm ||∇V h||eAAA0
. Here, for

a vector v and a matrix M , ||v||M denotes the norm (vTMv)1/2. Such a norm

of the gradient of the entropy variables can be given in terms of the conservation

quantities:

||∇Uh
S||eAAA0

=
(
∇Uh

S

)T
ÃAA0

(
∇Uh

S

)
=
(
ÃAA
−1

0 ∇Uh
)T
ÃAA0

(
ÃAA
−1

0 ∇Uh
)

=

=
(
∇Uh

)T
ÃAA
−1

0

(
∇Uh

)
= ||∇Uh||eAAA−1

0
. (2.91)

Therefore, considering the transformation TS, the Equations (2.90) and (2.91)

and assuming the flow has a high Péclet number, we can write, in terms of the

conservation variables, the coefficient of the CAU shock-capturing operator to be
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applied to the semi-discrete system (2.74):

δShock = max

0,

∥∥Rh
∥∥eAAA−1

0

||∇̂Uh||eAAA−1

0

−
[
τSUPG

(
Ah · ∇

)
Uh
]T
Rh

||∇Uh||2eAAA−1

0

 , (2.92)

with:

||∇Uh||2eAAA−1

0

=

∥∥∥∥∂Uh

∂x

∥∥∥∥2

eAAA−1

0

+

∥∥∥∥∂Uh

∂y

∥∥∥∥2

eAAA−1

0

, (2.93)

||∇̂Uh||eAAA−1

0
=

( ∥∥∥∥∂x̂∂x ∂Uh

∂x
+
∂x̂

∂y

∂Uh

∂y

∥∥∥∥2

eAAA−1

0

+

∥∥∥∥∂ŷ∂x ∂Uh

∂x
+
∂ŷ

∂y

∂Uh

∂y

∥∥∥∥2

eAAA−1

0

)1/2

, (2.94)

where x̂ = (x̂, ŷ) is a position in the canonical/local reference system. Thus, the

derivatives of x̂ are entries of the Jacobian matrix of the transformation between

the real and the canonical coordinate systems. When computing the coefficient, we

assign δShock = 0 if ||∇Uh||2eAAA−1

0

= 0. Also, we observed that the operator produces

better results if we neglect the transient term in the residual Rh. In fact, profiles

obtained with the modified residual are smoother, while the use of its complete

form (2.65) best represents discontinuities at the expense of having some spurious

artifacts in the produced solutions. Thus, we employ the modified residual in all

examples presented in this work.

To complete the definition of the operator, we still need to define the matrix

ÃAA
−1

0 . Hence we consider the energy functional:

E =
g′h2 + u2h+ v2h

2
, (2.95)

from which the entropy variables US and the matrix ÃAA
−1

0 can be defined [75]:

US =
∂E

∂U
=

g
′h− u2 + v2

2
u

v

 , (2.96)

ÃAA
−1

0 =
∂US
∂U

=
1

h

g
′h+ u2 + v2 −u −v
−u 1 0

−v 0 1

 . (2.97)

Here, the derivatives with respect to U were computed in the same manner as

discussed in Appendix A.1. As we show in Appendix B.1, ÃAA
−1

0 is symmetric positive

definite if h > 0, which should be true by definition. Also, to compute the coefficient

(2.92), we determine ÃAA
−1

0 based on the components of Uh.
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As an alternative to the CAU technique, we employ the Y Zβ [53] shock-capturing

operator, whose coefficient is:

δShock =
δβ=1 + δβ=2

2
, (2.98)

with:

δβ = ||Y −1Z||

(∥∥∥∥Y −1∂U
h

∂x

∥∥∥∥2

+

∥∥∥∥Y −1∂U
h

∂y

∥∥∥∥2
)0.5β−1

‖Y −1Uh‖1−β
(
hShock

2

)β
,

(2.99)

Y =

(h)Ref 0 0

0 (qx)Ref 0

0 0 (qy)Ref

 , Z = (Ah · ∇)Uh, (2.100)

hShock = 2

(
nnpe∑
a=1

|j · ∇Na|

)−1

. (2.101)

In this case, (h)Ref, (qx)Ref and (qy)Ref are reference values for the variables h, qx

and qy. Alternatively, it could be used δShock = δβ=1 or δShock = δβ=2, for smoother

or sharper shocks, respectively. Recently, TEN EIKELDER et al. [76] showed the

connection of the Y Zβ operator to the variational multiscale method.

Following a semi-discrete approach, we use the predictor/multi-corrector algo-

rithm introduced by ALIABADI and TEZDUYAR [77] to advance nodal values over

a time step ∆t = ∆tn = tn+1 − tn, from a state V n to the next V n+1. Here the

superscripts n and n + 1 are used denote the current and next states of any given

quantity. We summarize the technique in Algorithm 1 and provide a full deduction

in Appendix D. In this algorithm, θ ∈ [0, 1] is a parameter that controls the stability

and precision of the method. θ = 0 characterizes the forward Euler method, θ = 1

defines the implicit backward Euler and θ = 1/2 constitutes the trapezoidal rule.

In this work, we employ θ = 1/2. Also, we stop the nonlinear correction iterations

if the l2-norm of linear system’s residual is less than TOL1 times its value at the

first iteration, or the relative difference between its current and previous values is

less than TOL2. Here we set TOL1 = 10−4 and TOL2 = 10−6, while limiting the

number of iterations to 100. The linear system is solved with the iterative GMRes

(Generalized Minimal Residual) algorithm [78], using a Krylov space of dimension

35 and the ILU(0) preconditioner. To speed up the execution of the linear sys-

tem’s solver, we reorder the degrees of freedom using the algorithm proposed by

CUTHILL and MCKEE [79].
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Algorithm 1 Predictor/multi-corrector algorithm employed for the time integration
in the stabilized method. Here we assign Ac = ∂V /∂t.

• Prediction phase:

1: A(0)
c = 0.

2: V (0) = V n + (1− θ)∆tAn
c .

• Correction phase

3: for m = 0, 1, 2, ... until the convergence criteria is met, do:
4: R(m) = −(MA(m)

c +D(m)V (m)) + F (m).
5: M∗ = M + θ∆tD(m).
6: Solve M∗(∆A(m)

c ) = R(m).
7: A(m+1)

c = A(m)
c + ∆A(m)

c .
8: V (m+1) = V (m) + θ∆t∆A(m)

c .
9: end for.

10: An+1
c = A(m+1)

c

11: V n+1 = V (m+1)

2.4 FCT Scheme

The semi-discrete system (2.74) is also numerically solved by a flux-corrected trans-

port scheme [44, 45, 48]. The main idea is to adaptively swap a high-order method

that might have spurious oscillations and a low-order approach that is both non-

oscillatory and positivity preserving. In this work, the addition of anti-diffusive

fluxes to the low-order system of equations recovers the high-order method. How-

ever, we scale these fluxes to optimize the transition between both methods, im-

proving the overall stability and accuracy.

2.4.1 Positivity Preservation

Before venturing into the low-order method, it is necessary to understand the prop-

erties it must hold. The main concern is that the numerical scheme should respect

the positivity constraints intrinsic to the continuous physical model. That is, it

should not produce nonphysical negative values. In our case, the current thickness

should always be non-negative.

However, to be complete and, at the same time, provide a clearer explanation

for the multidimensional system (2.74), we have chosen to first examine an scalar

analogous equation. In this case, we consider thatM = {mij}, V = {vi},D = {dij}
and F = {fi}, obtaining:

∑
j

mij
∂vj
∂t

= −
∑
j

dijvj + fi, ∀i. (2.102)

Initially, we replace the consistent mass matrix M with its diagonal counterpart
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ML, formed by summing and lumping the values in each row on the diagonal:

ML = diag{mi}, with mi =
∑
j

mij, ∀i, (2.103)

where the operator diag(..) stands for the diagonal matrix whose diagonal entries,

ordered from the upper left corner, are given by its operand. So, we have:

mi
∂vi
∂t

= −
∑
j

dijvj + fi, ∀i. (2.104)

This procedure can be used to get a diagonal mass matrix and obtain an explicit

solution for the semi-discrete system. HANSBO [80] showed that a lumped mass

matrix only preserves mass in flow conservation laws if it is built by the adopted

row-sum strategy. Indeed, it preserves mass in the sense that, for bilinear elements:∑
i

mivi =
∑
i

∑
j

mijvj, ∀i, (2.105)

as shown in Appendix B.2. The effect of mass lumping corresponds to adding arti-

ficial diffusion to the system [80], which should aid in suppressing undesired oscilla-

tions. Moreover, because the basis functions of bilinear elements are always positive

inside the elements, mi > 0, ∀i, which is a property explored in the deductions that

follow.

In addition, observe that D = {dij} has zero row sums, as we demonstrate in

Appendix B.3. Hence dii = −
∑

j 6=i dij and:∑
j

dijvj = diivi+
∑
j 6=i

dijvj = −
∑
j 6=i

dijvi+
∑
j 6=i

dijvj =
∑
j 6=i

dij (vj − vi) , ∀i, (2.106)

which allows us to write (2.104) as:

mi
∂vi
∂t

= −
∑
j 6=i

dij (vj − vi) + fi, ∀i. (2.107)

For the scalar problem, the positivity criterion states that, if vi(t = 0) ≥ 0, ∀i,
then vi(t) ≥ 0, ∀i, ∀t. Therefore, the semi-discrete system (2.107) preserves posi-

tivity if:

mi > 0, dij ≤ 0, fi ≥ 0, ∀i, ∀j 6= i. (2.108)

For instance, consider that vi = 0 and the previous conditions hold. In this case,

it is clear that ∂vi/∂t ≥ 0. As another example, consider that the source term is

null and vi is a local maximum. Then −
∑

j 6=i dij (vj − vi) ≤ 0 and, as a result,

∂vi/∂t ≤ 0. That is, a local maximum cannot increase (unless due to external
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forces). Similarly, a local minimum cannot decrease. This shows that the scheme

for the scalar equation is Local Extremum Diminishing (LED). This criterion coined

by JAMESON [81] assures positivity because, as vi is non-negative, so is the global

minimum, which cannot decrease further.

After showing that the semi-discrete equation (2.107) is positivity preserving

and LED under the assumptions (2.108), we still need to examine the employed

time discretization procedure. In the present study, we employ the generalized

trapezoidal method, arriving at a system in the form:

AV n+1 = BV n + F n+θ, (2.109)

where A = {aij} and B = {bij}, with:

aij = miδij + θ∆t dn+1
ij , ∀i, ∀j, (2.110)

bij = miδij − (1− θ)∆t dnij, ∀i, ∀j, (2.111)

where δij is the Kronecker delta. Here, the monotonicity of A is an important

property, since it implies that, if (AV n+1)i ≥ 0, ∀i, then vi ≥ 0, ∀i. Thus, we restrict

A to be an M-matrix, which is a class of monotone matrices that satisfies [82]:

aii > 0, ∀i, (2.112)

aij ≤ 0, ∀i, ∀j 6= i, (2.113)∑
j

aij ≥ 0, ∀i. (2.114)

Therefore, assuming the conditions (2.108) are met, the fully discrete scheme is

positivity preserving if A meets the requirements (2.112)-(2.114) an B does not have

negative values (bij ≥ 0, ∀i, ∀j). Hence we examine the matrices A and B to see

if theses properties hold. First, we observe that their off-diagonal entries have the

correct sign:

aij = θ∆t dn+1
ij ≤ 0, ∀i, ∀j 6= i, (2.115)

bij = −(1− θ)∆t dnij ≥ 0, ∀i, ∀j 6= i. (2.116)

Plus, the diagonal values of A also have the appropriate sign:

aii = mi + θ∆t dn+1
ii = mi − θ∆t

∑
j 6=i

dn+1
ij > 0, ∀i. (2.117)

However, for B to only have non-negative diagonal values, we have to impose a
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restriction on the time step:

bii = mi − (1− θ)∆t dnii ≥ 0

∴ ∆t ≤ mi

(1− θ)dnii
, ∀i. (2.118)

Now, we return to the multidimensional Equation (2.74) and perform a similar

analysis. To start, we remark that the system matrices are organized by blocks, in

the sense that:

M = {M ij} = {mijI3}, with mij =

∫
Ω

NiNj dΩ, (2.119)

D = {Dij}, F = {F i}, (2.120)

where M ij and Dij are 3×3 matrices that are not null only if the nodes i and j are

adjacent. Thus,M andD are block sparse matrices. Also, F i is a three-dimensional

vector with the source term contributions associated to each component of V i. In

addition, for this system, the lumped mass matrix is defined by block-wise row sums:

ML = diag{MLi} = diag{miI3}, MLi =
∑
j

M ij, ∀i. (2.121)

Therefore, we can replace the consistent mass matrix in (2.74) with the block diag-

onal lumped mass matrix, and rewrite the system as:

MLi

∂V i

∂t
= −

∑
j

DijV j + F i , ∀i. (2.122)

Next, observe that D has zero block-wise row sums, as we demonstrate in Appendix

B.3. Then, Dii = −
∑

j 6=iDij, ∀i, and:

∑
j

DijV j = DiiV i +
∑
j 6=i

DijV j = −
∑
j 6=i

DijV i +
∑
j 6=i

DijV j =

=
∑
j 6=i

Dij (V j − V i) , ∀i, (2.123)

which we use to write Equation (2.122) as:

MLi

∂V i

∂t
= −

∑
j 6=i

Dij (V j − V i) + F i , ∀i. (2.124)

In sequence, we initially consider the same positivity criterion employed in the

scalar problem. It states that, if V 0
i ≥ 0, ∀i, then V i ≥ 0, ∀i, ∀t > 0. Here, all

matrix/vector inequalities should be treated as element-wise comparisons. At this
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point, it is important to emphasize that, if V j ≥ 0 is not held for a node j 6= i,

then the numerical solution for V i is not forced to be positive. In fact, positivity

preservation means that the numerical scheme cannot produce nonphysical negative

values [48]. This notion is particularly important in multidimensional problems,

such as the present one, where the fluid discharges can obviously become negative

over time.

Following KUZMIN et al. [83], we employ a natural generalization of the LED

criterion used in the scalar transport problem, requiring all off-diagonal blocks of

D to be negative semi-definite. Alternatively, we suppose −Dij, ∀i, ∀j 6= i, is

positive semi-definite. This requirement is much less restrictive than assuming

that all off-diagonal entries of D are non-positive [84]. To better understand why

−Dij, ∀i, ∀j 6= i, should be positive semi-definite, consider a positive definite matrix

P and a non-zero vector v. Then, the product Pv is the result of a linear transfor-

mation on v, being a vector of different norm and direction, as depicted in Figure 2.2.

From the definition of a positive definite matrix, we know that vTPv > 0. This

Figure 2.2: Representation of a non-zero vector v and its transformation Pv using
the positive definite matrix P .

operation also represents the scalar product between v and Pv, so that:

vTPv = ||v|| ||Pv|| cos(ω) > 0, (2.125)

where ω is the angle between v and Pv. As a result, ω ∈ [−π/2, π/2], which means

that Pv points to the same general direction as v or, equivalently, P cannot reverse

the overall direction of v. Thereby, as mi > 0, ∀i and we presuppose F i ≥ 0, ∀i, we

can show that the scheme is LED if Dij, ∀i, ∀j 6= i, is negative semi-definite. For

example, consider that V i is a local minimum. Then, −
∑

j 6=iDij (V j − V i) points

to the general direction of growth of the magnitude of V i. Thus a minimum cannot

decrease and, similarly, a maximum cannot increase.

Afterward, we discretize Equation (2.122) in time using the generalized trape-
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zoidal method, obtaining:∑
j

(
MLi δij + θ∆tDn+1

ij

)
V n+1

j =
∑
j

[
MLi δij − (1− θ)∆tDn

ij

]
V n

j + ∆tF n+θ
i , ∀i.

(2.126)

If we disregard the source term, it can also be written as:

AV n+1 = BV n, (2.127)

where A = {Aij} and B = {Bij}. Then, as a natural extension of the scalar

problem’s approach, we let A be a generalized M-matrix [85, 86] where Aii, ∀i, is

positive definite, Aij, ∀i, ∀j 6= i, is negative semi-definite and A is block-dominant,

in the sense that Aii + 0.5
∑

j (Aij + Aji) ≥ 0, ∀i. Also, we assume that Bij, ∀i, ∀j,
is positive semi-definite so that BijV

n
j does not change the overall direction of V n

j .

Next, we propose to examine the blocks Aij = {aklij} and Bij = {bklij} - which are

3× 3 matrices - for additional necessary conditions. We basis these requirements on

the fact that positive definite matrices must have non-negative diagonal entries and,

likewise, negative definite matrices only have non-positive values at their diagonals,

as briefly discussed in Appendix B.4. Thus, as we need the diagonal blocks of A to

be positive definite, we must have:

akkii = mi + θ∆t
(
dkkii
)n+1

> 0

∴ ∆t >
−mi

θ
(
dkkii
)n+1 , ∀i, ∀k, (2.128)

which should be true by construction, since Dii = −
∑

j 6=iDij, ∀i, and we assume

Dij, ∀i, ∀j 6= i, is negative semi-definite. Similarly, for the negative semi-definite

off-diagonal blocks:

akkij = θ∆t
(
dkkij
)n+1 ≤ 0, ∀i, ∀j 6= i, ∀k, (2.129)

which is also met by default. In the case of the positive semi-definite blocks Bij, for

the off-diagonal ones, the condition:

bkkij = −(1− θ)∆t
(
dkkij
)n ≥ 0, ∀i, ∀j 6= i, ∀k (2.130)

is always met. Meanwhile, for those along the main diagonal:

bkkii = mi − (1− θ)∆t
(
dkkii
)n ≥ 0,

∴ ∆t ≤ mi

(1− θ)
(
dkkii
)n , ∀i, ∀k, (2.131)
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which is a constraint we need to impose on the simulation time step. For this reason,

as we advance the simulation in time, we adaptively choose time steps that obey

the condition:

∆t ≤ 1

1− θ
min
i,k

{
mi(
dkkii
)n ∣∣∣∣ (dkkii )n > 0

}
, (2.132)

where the operator mini,k [f(i, k)] returns the lowest value of the function f(i, k),

considering all the values of i and k. The imposition of similar upper bounds on

the time step also has been contemplated in the works of KUZMIN et al. [45] and

KUZMIN [48].

2.4.2 Low-Order Method

Up to this stage, we have replaced M in (2.74) with ML, arriving at the semi-

discrete system (2.122), on which we employed the generalized trapezoidal method

to obtain the fully discrete Equation (2.126). The next step into the construction of

our low-order method is to add artificial diffusion to D, attempting to eliminate the

positive eigenvalues of the off-diagonal matrix blocks, which are rendered negative

semi-definite. First, following GUERMOND et al. [87] and AUDUSSE et al. [88], let

the hydrostatic reconstruction of the current’s height at the i-th node with respect

to the j-th one be:

hij = max
[
0, hi + zbi −max(zbi, zbj)

]
, (2.133)

where zbi denotes the bed elevation evaluated at the i-th node, and the operator

max(..) returns the highest of its operands. Then, the associated reconstructed

nodal specific discharge vector is qij = hijui, where the velocity ui is computed

from V i.

Now, based on the Rusanov-like scalar dissipation operator applied by KUZMIN

et al. [89], we propose a new one, dependent on the reconstructed height and specific

discharge. The latter is included to reduce the artificial diffusion near dry/wet

fronts, avoiding the fluid of nonphysically stepping into a dry region, as detailed in

Section 2.6. We define L = D+C, where the blocks of the novel dissipation matrix

C = {Cij}, are given by:

Cij = −max(cij, cji)I3, ∀i, ∀ j 6= i,

Cii = −
∑
j 6=i

Cij, ∀i, (2.134)
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with:

cij = |eij · uj|+ |eij · qji|
√
ghji , eij =

∫
Ω

Ni∇NjdΩ, ∀i, ∀j 6= i. (2.135)

Formed this way, the matrix C has zero block-wise row and column sums, and

thus, being a generalized diffusion operator, conserves mass. However, as stated

by KUZMIN [48] in regard to the Euler equations, the nonlinearity of the problem

makes it impossible to prove that the artificial diffusion makes the semi-discrete

Equation (2.122) LED or positivity preserving. Notwithstanding, most times it is

dissipative enough to avoid spurious oscillations near shocks and discontinuities.

In complement, inspired by the works of BASTING and KUZMIN [90] and

GUERMOND et al. [87], we employ a shock detector, so more diffusion is added

near discontinuities, while regions where the solution is smooth receive less. Con-

sider ∆hij = hi − hj and the function sign(x) that returns 1 if x ≥ 0 and −1,

otherwise. Then, we propose to use the operator:

ψi =


|
∑

j∈S(i) sign(∆hij)(∆hij − r)4|∑
j∈S(i)(∆hij − r)4

, if
∑

j∈S(i)(∆hij − r)4 6= 0,

0, otherwise,

(2.136)

associated with a node i, where r = 0.001 and S(i) is the set of the neighboring

nodes of i, which includes all those belonging to the elements adjacent to i. Thereby,

we scale the submatrices of C:

Cij = −max(ψi, ψj) max(cij, cji)I3, ∀i, ∀ j 6= i,

Cii = −
∑
j 6=i

Cij, ∀i. (2.137)

Altogether, our results indicate that this operator produces better solutions for the

tested cases than the earlier ones.

Then, we can write the equation for the low-order scheme as:∑
j

(
MLi δij + θ∆tL

(m)
ij

)
V

(m+1)
j =

∑
j

[
MLi δij − (1− θ)∆tLnij

]
V n

j + ∆tF n+θ
i , ∀i,

(2.138)

which we solve iteratively using the same stopping criteria and linear system solver

used with the stabilized approach. After convergence, we assign V L = V (m+1).

Do observe that, in this case, the time step constraint (2.132) must be computed

based on the entries of L, instead of those from D.
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2.4.3 Source Term Linearization

To prevent a negative source term from violating the positivity constraint, while

also following the general recommendation to treat negative sources implicitly and

positive sources explicitly [91], we linearize source terms around V n+1, as suggested

by PATANKAR [92] and KUZMIN et al. [45]:

F i = FC i + FP iV
n+1
i , ∀i, (2.139)

with FC i > 0 and FP i ≤ 0, ∀i. This splitting can be done in the context of the

iterative scheme with:

F i = F+
i +

(
F−i

V
(m)
i

)
V

(m+1)
i , (2.140)

where F+
i and F−i are, respectively, the positive and negative parts of the source

term. Thus we have FC i = F+
i and FP i = F−i /V

(m)
i . In this work, this separation is

performed individually for each quadrature point contribution. Besides, considering

that F n+θ
i = θF n+1

i + (1− θ)F n
i , we split the contribution of F n+1

i into FC
(m)
i and

FP
(m)
i , and divide F n

i into FC
n
i and FP

n(m)
i .

Therefore, the final low-order equation is:

∑
j

[
MLi δij + θ∆t

(
L

(m)
ij − FP

(m)
i δij

)
− (1− θ)∆tFP n(m)

i δij

]
V

(m+1)
j =

=
∑
j

[
MLi δij − (1− θ)∆tLnij

]
V n

j + θ∆tFC
(m)
i + (1− θ)∆tFCni , ∀i. (2.141)

Do note that, because we have −FP (m)
i ≥ 0 and −FP n(m)

i ≥ 0, ∀i, this type of

linearization reinforces the dominance of the block matrices on the diagonal and

contributes to having non-negative diagonal entries on the left-hand side matrix.

Plus, the fact that FC
(m)
i ≥ 0 and FC

n
i ≥ 0, ∀i, on the right-hand side also avoids

the source term of spuriously changing the sign of the solution.

2.4.4 High-Order Method

To obtain the high-order equation, we directly employ the generalized trapezoidal

method for the time discretization of Equation (2.74), arriving at:(
M ij + θ∆tDn+1

ij

)
V n+1

j =
[
M ij − (1− θ)∆tDn

i

]
V n

j + ∆tF n+θ
i , ∀i. (2.142)

Then, we build the high-order method by adding anti-diffusive fluxes F i to the

right-hand side of the low-order system (2.141), recovering the previous high-order
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set of equations:

∑
j

[
MLi δij + θ∆t

(
L

(m)
ij − FP

(m)
i δij

)
− (1− θ)∆tFP n(m)

i δij

]
V

(m+1)
j =

=
∑
j

[
MLi δij − (1− θ)∆tLnij

]
V n

j + θ∆tFC
(m)
i + (1− θ)∆tFCni + F i, ∀i.

(2.143)

In this case, the definition of the anti-diffusive term comes from the difference be-

tween the high-order Equation (2.142) and the low-order Equation (2.138), which

results in:

F i(V
(m),V n) =

∑
j

(
MLi δij −M ij

)(
V

(m)
j − V n

j

)
+

+
∑
j

[
θ∆tC

(m)
ij V

(m)
j + (1− θ)∆tCn

ijV
n
j

]
,∀i. (2.144)

Owing to the fact that we use the diagonally lumped mass matrix and also because

C has zero block-wise row sums, the following relations hold:

∑
j

(
MLi δij −M ij

)
V j = MLiV i −

∑
j

M ijV j =

=
(∑

j

M ij

)
V i −

∑
j

M ijV j =
∑
j 6=i

M ij

(
V i − V j

)
, ∀i, (2.145)

∑
j

CijV j = CiiV i +
∑
j 6=i

CijV j =
(
−
∑
j 6=i

Cij

)
V i +

∑
j 6=i

CijV j =

=
∑
j 6=i

Cij

(
V j − V i

)
, ∀i, (2.146)

allowing us to write the anti-diffusive flux in terms of the adjacent nodes’ contribu-

tions:

F i =
∑
j∈S(i)

F ij, ∀i, (2.147)

with:

F ij =
(
M ij − θ∆tC(m)

ij

)(
V

(m)
i −V (m)

j

)
−
[
M ij + (1− θ)∆tCn

ij

](
V n

i −V n
j

)
.

(2.148)
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2.4.5 Flux Limiting

Now we adaptively switch between the low- and high- order methods by limiting

how much anti-diffusion is added. This is done by scaling the edge contributions:

F i =
∑
j∈S(i)

αijF ij, ∀i. (2.149)

Following KUZMIN [48], the use of the multidimensional Zalesak’s flux limiter

[50] yields an individual correction factor for each solution component (αhij, α
qx
ij and

α
qy
ij ). In this case, a synchronization technique is needed to obtain a single αij and

avoid inappropriate results, such as the lack of mass conservation. Indeed, we found

the best results are obtained when αij = αhij. Thus, let Fhij be the anti-diffusive flux

component related to h. We propose to employ a limiter for Fhij that also depends

on the hydrostatic reconstruction hji:

P+
i =

∑
j∈S(i)

max(0,Fhij), P−i =
∑
j∈S(i)

min(0,Fhij), (2.150)

Q+
i = max

[
0, max

j∈S(i)

(
h

(m)
ji − h

(m)
i

)]
, Q−i = min

[
0, min

j∈S(i)

(
h

(m)
ji − h

(m)
i

)]
,

(2.151)

R+
i = min

(
1,
miQ

+
i

P+
i

)
, R−i = min

(
1,
miQ

−
i

P−i

)
, (2.152)

αij = αhij =

min
(
R+
i , R

−
j

)
, if Fhij > 0,

min
(
R−i , R

+
j

)
, otherwise.

(2.153)

Here it is important to observe that αij = αji, so that the limiter preserves the flux

balance between the nodes i and j.

Additionally, we prelimit the fluxes before computing the correction factors.

Hence, as suggested by KUZMIN [48], we adopted a minmod strategy to prevent

the consistent mass matrix of reversing the sign of F ij or increasing its magnitude:

F ij = minmod
(
F ij, F∗ij

)
, (2.154)

with:

F∗ij = −θ∆t
∑
j

C
(m)
ij

(
V

(m)
i − V (m)

j

)
− (1− θ)∆t

∑
j

Cn
ij

(
V n

i − V n
j

)
. (2.155)

By definition, the minmod function returns zero if the arguments have opposite

signs, or the argument with the smallest magnitude, otherwise. We observed that,

while the correction factors must be synchronized, the minmod prelimiter works
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better if applied to each flux component individually.

To avoid having to compute and limit the anti-diffusive fluxes at each iteration

of Equation (2.143), we use V L as an approximation to V (m) - and, thus, to V n+1 -

when computing the fluxes and correction factors. Hence, both have to be computed

only once per time step. Nonetheless, the low-order solution must be obtained prior

to solving Equation (2.143). We present a summary of the full FCT scheme in

Algorithm 2.

Algorithm 2 Summary of the adopted FCT scheme.

1: Choose ∆t based on the CFL condition (2.157).
2: Assemble the low-order system.

3: if condition (2.132) is not met then choose new ∆t and reassemble the
system.

4: Obtain the low-order solution V L.
5: Compute the anti-diffusive fluxes F(V L,V n).
6: Prelimit the fluxes.
7: Compute the αij factors and limit the fluxes.
8: Compute the high-order solution V H and set V n+1 = V H .

2.5 Adaptive Time Step Control

As we advance the solution in time, we constrain the time step to limit the maximum

CFL number of an element e, defined as:

CFLe =
(
|ue|+

√
g′he

) ∆t

le
, (2.156)

where le is the element’s characteristic length, defined here as the square root of its

area. Also, the speeds |ue| and
√
g′he are evaluated at the element’s barycentre.

Then, the related restriction is given by:

∆t ≤ CFL min
e

(
le

|ue|+
√
g′he

)
. (2.157)

For the simulations ran in this work, CFL = 0.5. Thus, as we march through time,

we adaptively choose time steps that comply with condition (2.157). Do note that

the adopted FCT scheme further constrains the time step to help preserve positivity,

choosing time steps that also obey the requirement (2.132).
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2.6 Dry/Wet Handling

To reinforce the model’s applicability to real-world scenarios where turbidity cur-

rents flow over irregular beds, we need to mitigate the instabilities and the nonphys-

ical behavior that might arise near transitions between dry and wet states. Hence,

initially, it conveys to distinguish between wet and dry elements. We classify a node

as being wet if its height h is greater than the threshold hdry = 0.01 m. Then, an

element is classified as wet or dry according to whether it has only wet or dry nodes.

Otherwise, it is in a dry/wet front. This type of procedure is commonly applied to

shallow water models [93–96].

Another frequent conduct is to define a cut-off height value, under which point

velocities are considered null. Often this value is the same as the one used for the

dry/wet element classification [96]. Still, no cut-off is considered for the height h.

Based on the approach employed by RICCHIUTO and BOLLERMANN [95], we

adopt:

u =


q

h
, if h ≥ Cu,

0, otherwise,
(2.158)

where Cu = le/Lref, with Lref = maxi,j∈Ω (‖xi − xj‖) and le is the characteristic

length of the associated element.

Moreover, spurious velocities can arise near dry/wet fronts and violate mass

conservation, as a result of trying to simulate a continuous surface elevation on a

discrete mesh. This is particularly important at elements with adverse slopes. An

element is said to have an adverse slope if it has a wet node i and a dry node j,

where zbj > zbi [95]. For fronts over flat or downward sloping surfaces, the discrete

equilibrium would correctly induce the flow in the direction of the dry nodes.

To better understand the problem with adverse slopes, consider, for simplicity,

the case of a still fluid in 1D depicted in Figure 2.3. We take into account the wet

node i and the dry node j, where the fluid’s free surface (η = h + zb) at i is lower

than the bed elevation at j. The real physical state in equilibrium is illustrated

in Figure 2.3a, where we have a flat free surface and a still fluid. However, the

discrete linear finite element approximation seen in Figure 2.3b ends up causing the

momentum balance to produce spurious velocities downslope.

This undesired behavior can be avoided by the solution proposed by BRUFAU

and GARCÍA-NAVARRO [93], where the bed gradient is locally redefined to obey

the equilibrium condition ∇zb = −∇h. This requirement can be easily obtained by

nullifying the velocities of the momentum conservation equation in (2.53). For an

element with an adverse slope, the bed elevation of its dry nodes is updated as:

zbdry = max
i is Wet

(zbi + hi). (2.159)
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(a) (b) (c)

Figure 2.3: Representations of the fluid’s free surface in a 1D element with nodes i
and j. (a) Real physical state; (b) Linear finite element representation; (c) Corrected
linear finite element representation.

Then, for the given example, this adjustment results in the state shown in Figure

2.3c. In earlier works, this procedure has been applied to triangular elements. The

fact that we use quadrilateral elements could jeopardize the correction since the

polynomial interpolations in linear triangular and quadrilateral elements are differ-

ent. The free surface is always approximated by a plane inside triangular elements,

which is not true for quadrilaterals. However, we found that the technique also

produces excellent results with quadrilateral elements. Additionally, we observed

that the update can be performed locally. When assembling an element’s matrix

contributions, we use nodal bed elevations corrected based only on the element’s

nodes. There is no need to iterate through all the elements adjusting all nodal bed

elevations.

Therefore, the adopted correction algorithm keeps the same discrete fluid volume

and preserves the mass and the steady state as it avoids the creation of nonphysical

velocities. For fronts propagating over adverse slopes, we apply the same procedure.

However, after each time step, to avoid some fluid quickly jumping to a dry node, we

zero the solution discharges using the same cut-off condition used for the velocities

in Equation (2.158). This has been done by other authors, such as JIANG and WAI

[97], that zero dry node discharges. Also, with the same objective, we have included

the reconstructed specific discharge qji in the second term of the artificial diffusion

operator (2.135). In this case, the artificial diffusion is nullified for current heights

smaller than the velocity cut-off Cu.

A final aspect to be considered concerns how the friction term varies when h

tends to zero. As we use the Manning’s formula to compute the drag coefficient, it

could become arbitrarily large and bring numerical problems. To avoid this, LIANG

and BORTHWICK [98] zeroes the drag coefficient at dry quadrature points. LIANG

and MARCHE [99] limit the friction force, so its maximum effect is to stop the fluid,

i.e., it cannot reverse the flow. Conversely, other works increase friction when h→ 0

as a means to decrease and stabilize the flow. In fact, GOURGUE et al. [57] linearly

increase the bottom stress and eddy viscosity inside the so-called “buffer” layer, de-

fined by the region where h < hbuffer, being hbuffer a constant. WANG et al. [100] also
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increase the drag coefficient, using hbuffer = 0.05 m and hdry = 0.002 m. With the

goal to freeze the flow in dry areas, HENICHE et al. [101] linearly vary the Manning

coefficient at dry nodes: ndry = n[1 + β(hdry − h)], with β ∈ [102, 104]. We follow

HENICHE et al. [101], using β = 102.
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Chapter 3

Event-Driven Simulation

In the context of turbidity currents, an event-driven simulation comes as a natural

approach, since it is known that many geological features are the result of not one

but many turbidite events. Here, the event-driven concept refers to the fact that

simulation is only run during event discharges into the area of interest and while

the currents carrying the inflow sediments have not reached an equilibrium state.

Thus, when these criteria are not met, the simulation halts and time is skipped to

the start of the next event occurrence, when the simulation is resumed.

This plan of action can find its use in the field of stratigraphy, where the simula-

tions performed to build a complete stratigraphic model might need to span millions

of years. Frequently, this process is split into sub-intervals that have their own pa-

rameter configuration and usually extend for at least a hundred thousand years. In

contrast, a single turbidity current event range from hours to months [102]. So,

knowing or estimating when they occur can considerably reduce simulation costs.

Therefore, in this chapter, we introduce our approach to perform an event-driven

simulation of the sedimentary fill of an area. We start by showing how we define

and track turbidite events, which are the base unit of the simulation. Then, we

present how we build and evolve a set of streaklines for each event. In sequence,

we show how the mesh used in the flow simulation is constructed from an external

stratigraphic grid. Finally, we put forward the event-wise sedimentation algorithm.

3.1 Recurrent Events

To simplify the definition of events over long periods, we have chosen to work with

recurrent episodes, namely an event with given features that have several occurrences

over time. The event itself is defined by the usual Dirichlet boundary conditions, i.e.,

by setting UT =
[
he qxe qye

]
on a section of the contour, and the total amount

of volume it can supply to the domain. However, we have found that, instead of

directly specifying qe, it is more intuitive to prescribe he on a sub-boundary and

40



define the event volume and the interval when its inflow is active. In this case,

to compute the specific discharges required for the associated boundary condition,

first, we obtain the event’s flow rate by dividing its total volume by its duration.

Then the specific discharge magnitude is obtained by the ratio between the flow rate

and the sum of the lengths of the element edges along the sub-boundary. At last,

qe is locally determined at each edge by the product between the magnitude and

the edge’s inward-pointing unit normal. In turn, event recurrence is described by

its quantity and the time interval between the start of each episode.

When an event e has introduced all its available volume VeT into the domain, its

inflow discharges must be deactivated. Hence, we apply the new boundary condition

qe = 0. However, to know when this must happen, we need to track the inflow

volume of each active event. This is done by accumulating:

∆V n
e = −∆t

∫
∂eΓe

[
(1− θ) (qne · n) + θ

(
qn+1
e · n

)]
dΓe , (3.1)

where ∂eΓe refers to the subset of the boundary Γe on which the event is active

and n is the outward-pointing unit normal vector at the boundary. Specifically,

V n
eA

=
∑

n ∆V n
e is the accumulated inflow volume. Note that we consider qe at the

start and end of a time step. Consequently, the event’s discharges can be given as

a function of time.

Furthermore, the time step must be constrained, so no event injects into the

domain more volume than it originally had available, and the instant that another

event is to be activated is not exceeded. For the former case, the time step is limited

based on the previous step’s inflow volume:

∆t ≤
VeT − V n−1

eA

∆V n−1
e

∆tn−1. (3.2)

In the latter context:

∆t ≤ teS − tn, (3.3)

where teS is the time when an event is scheduled to start and t is the current time.

Another relevant aspect is how to define when we must end the simulation of

an event that is no longer discharging material into the domain. In these cases,

computation is interrupted when the flow has stopped or reached an equilibrium

state. Thus, we test if the averaged l2-norm of the thickness derivative of all wet

nodes is sufficiently close to zero, i.e., if:

1

nW

√√√√ ∑
i is wet

(
hn+1
i − hni

∆t

)2

≤ 10−6, (3.4)
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with nW being the number of wet nodes.

3.2 Streakline Computation

One of the inputs to the sedimentation procedure is the streaklines evolved during

each event, as they are needed to transport the supplied sediments throughout the

studied region. Thus, we link streakline sources to cells with predetermined sedi-

ment supplies. From these fixed points, the lines will emerge as the flow simulation

advances. To allow a good integration between the streaklines and the flow and sed-

imentation solvers, we have chosen to implement our own streakline computation

solution.

The approach we adopt is inspired by the works of DRITSCHEL [103] and MILLS

[104] in the sense that points are added or removed from streaklines based on dis-

tance and curvature metrics, and are advected with a Runge-Kutta scheme using

velocities interpolated from a mesh. Also, the continuous curve between two nodes is

approximated by a locally-determined cubic polynomial. Additionally, after moving

all streakline nodes, here we remove the ones that have left the domain.

Streaklines are initially built by inserting new points/particles at their beginnings

until each one has, at least, 10 points. Then, more points p(x, y) are adaptively

added or removed to prevent an excessive number of particles, while ensuring accu-

racy. For this purpose, each streakline is traversed from start to end, considering

each segment p1p2. As depicted in Figure 3.1, the previous and following points p0

and p3 are also considered. If p1 is the first point of a streakline, p0 is extrapolated

from the p1p2 segment by defining p0 = p1 − (p2 − p1). The same is done for p3 if

p2 is the last point.

Figure 3.1: Streakline segment p1p2 and adjacent points p0 and p3.

As we proceed along a line, we remove a segment if its length is less than 0.02 ld1,

with ld1 being the length of the largest diagonal of the element that contains p1. In

this case, p1 is removed and p2 := 0.5(p1 + p2). Otherwise, the segment can be

subdivided according to its mean curvature.

The curvature at a point is computed as the inverse of the radius of the cir-

cle circumscribing the triangle defined by the point and its immediate adjacent

points. This and other curvature approximations for discrete curves were examined
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by WILLIAMS and SHAH [105]. In this context, consider the point p2 illustrated

in Figure 3.2. To compute the associated curvature, regard the triangle formed by

Figure 3.2: The circle circumscribed in the triangle with vertices p1, p2 and p3 that
is used to compute the curvature at p2.

the points p1, p2 and p3. Also, let a, b and c be vectors respectively pointing from

p2 to p3, p1 to p3 and p1 to p2. Plus, R is the circumcircle’s radius and β is the

angle between b and c. Then, from the law of sines:

||a||
sin(β)

= 2R, (3.5)

and the cross-product relation:

||b× c|| = ||b|| ||c|| sin(β) (3.6)

∴ sin(β) =
||b× c||
||b|| ||c||

, (3.7)

we can determine the curvature at p2:

k(p2) =
1

R
=

2‖b× c‖
‖a‖ ‖b‖ ‖c‖

. (3.8)

Consequently, the mean curvature of the segment p1p2 can be computed as:

kmean =
k(p1) + k(p2)

2
, (3.9)

where k(p1) is determined by applying (3.8) to the previous streakline segment.

Next, we define the circle sector angle relative to the chord c. Consider the

inscribed and central angles ω and ζ depicted in Figure 3.3. From the sine law:

||c||
sin(ω)

= 2R

∴ ω = arcsin

(
||c||
2R

)
,

(3.10)
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Figure 3.3: Streakline segment, the associated central angle and a inscribed angle.

and the inscribed angle property that states that ζ = 2ω, we have:

ζ = 2 arcsin

(
||c||
2R

)
, (3.11)

which becomes, using a small-angle approximation:

ζ = 2
||c||
2R

= ||c|| 1
R

= ||c||k. (3.12)

Here we adopt ζ = ||c||kmean as the circle sector angle associated with the streakline

segment p1p2.

Therefore, we define the number of points that should be added between p1 and

p2 as:

nkp = ceil

(
ζ

ζmax

)
− 1, (3.13)

where ζmax = 1◦ = π/180 rad, and the function ceil(x) returns the smallest integer

value that is bigger than or equal to x. The positions of the new points are de-

termined by fitting a parametric centripetal Catmull-Rom spline [106] through p0,

p1, p2 and p3, and evaluating points at equally spaced intervals of the parametric

variable. This type of spline guarantees that the tangents of the generated curve

are continuous across segments and that it does not form cusps or self-intersections

within curve segments [107].

Afterward, if the segment is not subdivided due to curvature restrictions, it can

be partitioned if its length is more than Lmax = 3 ld1. In this case, the number of

points to be added is:

nlp = ceil

(
‖p2 − p1 ‖
Lmax

)
− 1. (3.14)

Here the positions of the new points are defined by a linear interpolation between p1

and p2. For completeness, we present in Appendix C the equations of the parametric

curves used in the interpolations.

After the simulation of each time step, the particles that compose each streakline
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are displaced by solving the equation of motion:

∂2X

∂t2
(x0, t) = Ac(x0, t), (3.15)

where x0 is the initial position of a particle, X(x0, t) is the Lagrangian description

of the particle’s position over time and Ac(x0, t) is its acceleration. As our flow

solver is Eulerian-based, we employ the mapping:

∂X

∂t
(x0, t) = u

[
X(x0, t), t

]
, (3.16)

and apply the following Runge-Kutta scheme:

X(x0, t
n+1) = x0 + u(x0, t

n)∆t+

(∑3
k=0 ckak∑3
k=0 ck

)
∆t2

2
, (3.17)

where:

xk = X(x0, t
n) + dk

[
u(x0, t

n)
∆t

ck
+ ak−1

(∆t/ck)
2

2

]
, (3.18)

ak = Ac(x0, t
n + dk∆t/ck) =

u(xk, t
n+1)− u(x0, t)

∆t/ck
, (3.19)

with constants d0 = 0, dk 6=0 = 1, c0 = c3 = 1 and c1 = c2 = 2. At last, after

displacing all the streakline points, we remove the ones that have left the mesh. We

provide a summary of the streakline computation procedure in Algorithm 3.

3.3 Mesh Generation

The mesh on which we carry out the flow simulation comes from an external applica-

tion specialized in stratigraphic simulations based on the works of CARVALHO et al.

[7–9]. Roughly, its data-structure is a 2D regular grid representing a surface in 3D

over which sediment layers are deposited, building pillar-like arrangements on each

cell. This type of grid is also used in other stratigraphic simulators [10, 11]. Besides,

at any time, the collection of the top of these structures compose the current depo-

sitional surface, although only wet regions can undergo morphological changes. An

example of an initial surface with the starting water level can be seen in Figure 3.4.

In this context, our objective is to simulate the flow of a turbidity current inside

an underwater region. Therefore, we apply suitable boundary conditions to different

parts of the wet domain’s contour. In fact, we enforce the proper Dirichlet boundary

conditions where an event is active, impose non-penetration constraints on bound-

aries along a coastline, and leave the remaining sub-contours open, only applying
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Algorithm 3 Summary of the algorithm used to build streaklines and advance
them in time from tn to tn+1.

1: for each streakline do:
2: if it contains less than 10 points then
3: Add new point at the same position of the streakline’s source.
4: else
5: for each segment p1p2 do
6: if ||p1p2|| < 0.02 ld1 then . Is it too short?
7: Remove p1;
8: p2 := 0.5(p1 + p2).
9: else if nkp > 0 then . Is its curvature too high?

10: Create nkp streakline points between p1 and p2 at positions
interpolated using a fitted Catmull-Rom spline.

11: else if nlp > 0 then . Is is too long?
12: Create nlp streakline points between p1 and p2 at linearly

interpolated positions.
13: end if
14: end for
15: end if
16: Displace all the streakline’s points besides its source using Equation (3.17).
17: Remove all streakline points that have left the mesh.
18: end for

Figure 3.4: Example of an initial depositional surface (in brown) with the starting
water level (in blue) at the external stratigraphic application.

the natural boundary conditions (2.58). Additionally, to work with a mesh that has

a smooth boundary, which supposedly can better represent natural features, the ac-

tual mesh used in the flow simulation is created by remeshing the wet domain using

the Gmsh [108] application (version 4.2.0). Nonetheless, we still create quadrilateral

elements due to deal.II’s requirements.

With Gmsh, we mesh a 2D surface delimited by patches of B-splines whose con-

trol points are obtained from the original grid. In general, we get these locations

from the outer faces of the domain’s boundary cells, as depicted by the black lines

and dots in Figure 3.5a. Corner cells are diagonally traversed to avoid introducing

corners in the new triangulation. Also, we create a spline patch for each subdivision
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of the contour containing cells with the same boundary condition. This way, we

properly delimit the transition between different boundary constraints in the result-

ing mesh, identifying them for use by the simulator. Figure 3.5b shows the splines

and mesh generated for the area in Figure 3.5a. An example of a complete mesh

can be seen in Figure 3.6.

(a) (b)

Figure 3.5: Detail of the domain’s contour in the original (a) and generated (b)
meshes. The black dots in (a) are the control points used to build the red B-
splines in (b).

Figure 3.6: Mesh generated for the underwater region illustrated in Figure 3.4.

Next, consider the practical example of the region illustrated in Figure 3.7a,

which could represent an island near a coastal region. In this scenario, we have

arbitrarily positioned a turbidite event inflow along the pink sub-contour. Plus, we

have two disconnected coast boundaries (in green) and a large blue open border.

While traversing the wet grid cells and selecting control points for the splines, we

make sure the positions at the transitions between two boundary types are included

so we properly delimit them. Moreover, observe that, in this case, we also need to

define an internal boundary for the domain. To allow Gmsh to distinguish between

internal and external curves, producing “holes” in the resulting mesh, we sort the
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points that define them, respectively, in clockwise and counter-clockwise orders. The

generated mesh for this configuration can be seen in Figure 3.7b.

(a) (b)

Figure 3.7: (a) Example of a simulation scenario on the stratigraphic grid. The
brown cells are dry while the light blue cells are underwater. Also, we identify
two green coastlines, a blue open boundary, and a pink border that takes event
inflows. (b) Mesh produced for the setup in (a). The B-splines in red were created
using the black dots as control points.

When the external stratigraphic application requests a flow simulation, we eval-

uate the current scenario and create a geometry script file with the .geo extension.

This file will contain the instructions, in Gmsh’s built-in scripting language, needed

to create the mesh. As an example, for the case presented in Figure 3.7, the pro-

duced script file will have the content displayed in Figure 3.8. It starts with the

definition of a reference element size for the produced mesh, which we usually set

as equal to the mean edge length of the cells in the stratigraphic grid. Then, we list

the coordinates of all control points and define the distinct B-spline patches. Also,

by associating splines with physical lines, we identify each boundary with an id that

we can use to enforce the appropriate constraint on each section of the contour. For

a fact, in the resulting mesh, the edges on the domain’s boundary will indicate to

which boundary they belong. In sequence, we use the definition of the line loops

to determine the surface to be triangulated. As Gmsh creates triangular meshes by

default, we have to indicate that it should recombine the triangles into quads. At

last, we export the generated mesh using the .msh2 format so we can import it into

our solver using deal.II’s API.

3.4 Sedimentation

In this section, we propose a novel sedimentation algorithm to simulate the forma-

tion of turbidite systems in stratigraphic scales. To this end, we employ all the

toolsets previously discussed in the thesis. However, first, it is important to review

some sequence stratigraphy concepts and introduce the depositional features our
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// Reference element size:
size = 1;
// Points on external boundary:
Point(1) = {0, 2, 0, size};
Point(2) = {1, 2, 0, size};
Point(3) = {2, 1, 0, size};
Point(4) = {3, 1, 0, size};
Point(5) = {4, 1, 0, size};
Point(6) = {5, 1, 0, size};
Point(7) = {5, 2, 0, size};
Point(8) = {5, 3, 0, size};
Point(9) = {5, 4, 0, size};
Point(10) = {4, 5, 0, size};
Point(11) = {3, 5, 0, size};
Point(12) = {2, 5, 0, size};
Point(13) = {1, 5, 0, size};
Point(14) = {0, 4, 0, size};
Point(15) = {0, 3, 0, size};
// Points on internal boundary:
Point(16) = {2, 2, 0, size};
Point(17) = {2, 3, 0, size};
Point(18) = {2, 4, 0, size};
Point(19) = {3, 4, 0, size};
Point(20) = {4, 3, 0, size};
Point(21) = {4, 2, 0, size};

Point(22) = {3, 2, 0, size};
// Coast boundaries:
BSpline(1) = {1, 2, 3, 4, 5, 6};
Physical Line(1) = {1};
BSpline(4) = {16, 17, 18, 19, 20, 21, 22, 16};
Physical Line(4) = {4};
// Open boundary:
BSpline(2) = {6, 7, 8, 9, 10, 11, 12, 13, 14};
Physical Line(2) = {2};
// Event boundary:
BSpline(3) = {14, 15, 1};
Physical Line(3) = {3};
// External boundary line loop:
Line Loop(5) = {1,2,3};
// Internal boundary line loop:
Line Loop(6) = {4};
// Define plane surface:
Plane Surface(1) = {5,6};
Recombine Surface{1};
Physical Surface(1) = {1};
// Create the mesh:
Mesh.Algorithm = 8;
Mesh.RecombinationAlgorithm = 1;
Mesh 2;

Figure 3.8: Contents of the Gmsh script file used to create the mesh in Figure 3.7b.
We highlight the definition of the domain’s boundaries with the same colors used in
Figure 3.7a: coast boundaries in green, open borders in blue, and contours with
events in pink.

approach aims to reproduce. As its name implies, the base working unit of sequence

stratigraphy is called a sequence, which consists of a series of genetically related

strata. This means that the sediments were deposited in a single cycle of relative

sea-level change and that they have lateral continuity, obeying Walther’s law [109].

Sequences are often decomposed into the lower order parasequences, which are sep-

arated by marine flooding events.

In turn, parasequences are classified according to their depositional stacking

patterns. A major conditioning factor for the different stacking patterns is the

relation between the available accommodation space and the sediment inflow rate.

In the case of the potential space for sedimentation, its variation is determined,

for instance, by changes of the seafloor (subsidence) and the sea level (eustasy).

If we consider the sea level as the single modifying factor of the accommodation

space, if it rises and we have a low sediment influx rate, we get a retrogradational

stacking pattern. In this case, deeper water deposits move towards the land, laying
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over shallower water deposits. Meanwhile, if the sediment flux rate matches the sea

level rise, we obtain an aggradational sequence in which sediments are deposited

atop others of the same type. Also, if the influx sediment rate exceeds the sea level

increase, we see a progradational arrangement where shore and nearshore deposits

move into the ocean, overlying deeper-water deposits. All these stacking patterns

are illustrated in Figure 3.9.

(a)

(b)

(c)

Figure 3.9: Different parasequence stacking patterns. Here the numbers denote
the distinct parasequences in a set. (a) Retrogradational parasequence set; (b)
Aggradational parasequence set; (c) Progradational parasequence set. Adapted from
WAGONER et al. [110].

For turbidity currents, the Bouma sequence [111] describes the ideal vertical

succession of strata deposited by low-density turbidity currents. One of its charac-

teristics is that the sediments get finer-grained from the bottom to the top of the

deposit. Laterally, this produces stacking patterns analogous to retrogradational

parasequence sets. Besides, as a sequence of turbidite events takes place, progra-

dational patterns emerge at the distal portion of the turbidite system, as the bulbs

created by each event merge in progradation [112]. These progressive advances,

together with channel avulsions, build the radial pattern of the depositional lobe.

Here it is important to observe that, in this work, we do not intend to reproduce

the intricate structure of the bulbs or the lobe channels, but the overall stacking

pattern on a larger scale.

Next, we provide a brief review of the technique proposed by CARVALHO et al.

[7–9], since it was the starting point of our research in what concerns the sedimen-

tation algorithm. At first, it is important to observe that their approach sought

to simulate the transport and deposition of siliciclastic sediments in platform, slope
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and basin environments, without any concern on turbidite systems. Plus, since their

method is also based on sequence stratigraphy, the available depositional space and

sediment influx rate are essential controlling factors of the sedimentation.

The accommodation space is changed by applying, to the local sea level, eustatic

variations determined by the Haq sea-level curve [113]. Moreover, to account for

tectonic/thermal subsidence effects, it is employed a table with subsidence rates per

geologic time that is sampled at a few positions throughout the studied region. These

data can come, for instance, from previous well log studies, and are extrapolated

to the entire domain so we can displace the whole sea bed. In turn, a sediment

inflow is imposed by placing sediment supplies along the coastline. Each supply

provides a user-defined volume of sand, silt and clay, being usually associated with

an inflow boundary condition in the solved flow problem. To aid the estimation of

these quantities, CARVALHO [8] provides a set of tables with reference values for

the sediment discharges in different environments, as well as the individual volume

concentration of each lithology type.

For each sedimentation step, after updating the sea level and the sea bed eleva-

tions, CARVALHO [8] solves the steady-state flow problem:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= f(x, y), (3.20)

where f(x, y) is the sea bottom bathymetry and ϕ is the flow velocity potential, from

which we can compute the flow velocities u = ∇ϕ. In fact, he solves a boundary

value problem on a 2D regular grid using the finite difference method. Neumann

boundary conditions are enforced so we can impose velocity values on the contour,

although only the velocity component orthogonal to a boundary face can be pre-

scribed. Then, the resulting velocity field is used to compute streamlines that begin

from grid cells that contain sediment supplies. In this case, a 4-th order Runge-Kutta

integration algorithm is employed. Afterward, the streamlines are used to transport

and deposit sediments. Initially, each line receives an equal part of the total sedi-

ment available at the corresponding sediment supply. In sequence, each streamline

is traversed from start to end while trying to deposit sediments in each grid cell

crossed by it. Sediments will deposit if the local bed elevation slope along the line

is less than a predetermined stability angle for each lithologic fraction. When a

deposition should happen, sediments are deposited up to the wave base level, which

is the maximum depth that waves would erode the deposits, or until the streamline

does not carry any more sediments. The deposition itself is performed following the

decreasing order of the granulometric curve (i.e., in the order: sand, silt and clay)

and creating blocks of the deposited sediment type over the current seabed. After

the deposition, a sediment compaction phase takes place.
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Altogether, the approach introduced by CARVALHO [8] is intrinsically different

from ours, since we focus on the simulation of turbidity currents. Besides, one

of the main differences between them is that, instead of carrying sediments along

streamlines built from a steady flow, we perform this task based on streaklines

evolved during the simulation of transient flows produced by recurrent turbidite

events. In addition, we radially scatter sediments from the cells crossed by the

streaklines and impose additional constraints on the accumulation space.

In this context, we link sediment supplies to the boundary cells from which cur-

rents are to enter the domain. We consider that a supply can have five granulometric

fractions - clay, silt and fine, medium and coarse sands - although each supply can

have different proportions of them. Moreover, we place streakline sources in each

of these boundary cells along a line that crosses the cell center, and that is parallel

to the external boundary. In this case, we let the number of sources per cell be an

input parameter. For the sedimentation examples presented in this work, we always

assign five streakline sources to each cell.

After an event’s flow simulation, the final state of the associated streaklines is

used in the sedimentation procedure. By doing so, it is implied that, for the time

and space scales employed in stratigraphic studies, the terminal streakline state is

a sufficiently good approximation to the average path of the sediments carried by

the current. For instance, if we consider a stratigraphic simulation with a time step

of 0.1 Ma and a grid with 1 km × 1 km cells, changes that happen in the order of

seconds or hours and that displace the pathlines by some meters may not significantly

impact the quality of the results. We remember that, with a similar rationale,

CARVALHO [8] performed steady-state simulations. That is, in this perspective,

these changes are so small that the time dependence can be neglected.

With this in mind, the first step of the sedimentation algorithm is to evenly

distribute the volume available at the supplies - which may not be strictly equivalent

to the simulated event’s volume - between the associated streaklines. Thus, the

more streaklines we have per supply, the less amount each one carries. Then, the

lines are jointly traversed from start to end, while sediments are carried, scattered

and deposited. The general idea of this process is to visit each cell crossed by

a specific streakline, deposit sediments up to the cell’s available depositional (or

accommodation) space, radially spread sediments to neighboring cells, leaving the

remaining sediments to the next cell on the line. Do note that the order in which the

streaklines are used for the deposition can affect the resulting deposits. To reduce

the lateral bias that can be induced by such ordering, the sequence in which we

advance along each streakline progresses from the outermost lines to the innermost,

as depicted in Figure 3.10.

This whole operation is done for each granulometric fraction in the decreasing
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Figure 3.10: Representation of the order in which we advance one step along each
streakline. This sequence goes from the outermost to the innermost lines and is
given by the numbers beside each streakline source in yellow. Here the cells with
the blue highlight are associated with the same sediment supply.

order of the granulometric curve, i.e., in the sequence: coarse, medium and fine

sands, silt and clay. When switching from one grain size to the next, the transport

process is resumed from the point on the streakline where the deposition of the

previous lithology type ended. An overview of the full algorithm for the transport

and deposition of sediments along the streaklines can be seen in Algorithm 4.

The accommodation space available for the deposition of the sediments injected

by a turbidite event is initially defined by the volume between the initial seabed

and the water level. Alternatively, when it is known the paleobathymetric surface

chrono-correlated to the final time of the stratigraphic time step, it can be used as

an upper limit to the sediments’ deposits. Notwithstanding, we propose to impose

another constraint on the accommodation space. We only allow the deposit of a

single event to be as thick as the simulated current’s point-wise maximum height.

To obtain this property, after each time step of the flow simulation, we update

the maximum current height of each mesh node so we have, by the simulation end,

hmax(x, y) = maxt [h(x, y, t)]. To use this scalar field in the definition of the available

space, we evaluate it at the center of each stratigraphic grid cell using finite element

interpolations. Still, spaces not occupied by an event’s deposits are left as available

for the next event.

For completeness, it should be noted that, in the works of CARVALHO et al. [7–

9], the deposition of the sediments carried from one cell to the next along a streamline

is conditioned by the bathymetric gradient. It only occurs if the bed surface gradient

is less than the stability angle of at least one lithology type. However, in this work,

we consider that deposition always happens as it is already limited by the maximum

current heights. At the same time, to mimic the effect of a stability angle, and

following the work of RAYMOND [114], when we spread the sediments from a given

cell, we reduce the accommodation volume as we distance from it. This is done by
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Algorithm 4 Summary of the algorithm used to transport and deposit sediments
along the streaklines. Here, availableVolume(lt, s) holds the volume of the lithology
type lt currently available in the streakline s; nextUnvisitedCell(s) returns the
next cell to be visited along the streakline s; accommodationVolume(c) determines
the current accommodation volume at the cell c; depositSediments(vol, lt, su, c)
deposits a sediment volume vol of the type lt from the streakline su into the cell c;
and spreadSediments(lt, c, su) radially spreads sediments of the type lt from the
cell c, considering the volume available at the line su.

1: Compute availableVolume(lt, s), ∀lt, ∀s, from the sediment supplies’ data.
2: for each lithology type lt do
3: while exists an untraversed streakline in respect to lt do
4: for each untraversed streakline su do
5: if availableVolume(lt, su) = 0 then
6: Set su as traversed in respect to lt;
7: continue.
8: end if
9: c = nextUnvisitedCell(su);

10: vol = min
[
availableVolume(lt, su), accommodationVolume(c)

]
;

11: depositSediments(vol, lt, su, c);
12: spreadSediments(lt, c, su);
13: Mark cell c as visited by the traversal of the line su;
14: if c is the last cell crossed by su then
15: Set su as traversed in respect to lt.
16: end if
17: end for
18: end while
19: end for

the scaling, during a sediment spread operation:

accommodationVolume(c) =
accommodationVolume(c)

f
dist(c, cs)
s

, (3.21)

where c is the current cell being visited and cs is the cell that is the source of the

sediment spread process that reached c. Also, the function dist(c, cs) measures the

Euclidean distance between the indexes (i, j) of the cells c and cs on the regular

stratigraphic grid. fs is a factor that controls the height profile and the maximum

extent of the deposits created as a result of scattering sediments from a single cell.

Although this parameter can be given a different value for each lithology type, we

assign fs = 2.

Optionally, we allow the deposition of an event to be made in sub-steps that

have limited accommodation space with respect to the one available for the entire

event. We split the maximum depositional space equally between the sub-steps,

although spaces not occupied at one sub-step is left available for the next. Allied
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to the fact that the injected sediment volume is not split between the sub-steps, the

imposed proportion between sediment influx and accommodation volume conditions

the resulting event deposits to have a retrogradational-like stacking pattern. It

makes the sediments finer-grained from the bottom to the top of the deposit, as in

the well known Bouma sequence. Otherwise, without using sub-steps, the different

grain-sizes settle in blocks, and the only stratifications we see inside an event’s

deposit are due to the factor fs. Therefore, as illustrated in Figure 3.11, with the

proper setup, we can perform a simulation where the deposits of a sequence of events

produce a stacking pattern analogous to the progradational parasequence sets. Still,

the deposits of every single event exhibit fining-upwards trends.

Figure 3.11: Schematic representation of a possible result of the sedimentation of
three events using three sub-steps per event.

The deposition at a cell is accomplished by computing the volume of the specific

granulometric fraction to be deposited, removing this amount from the streakline

in question and adding a pillar of the same volume and material to the top of the

cell’s deposit. The amount of sediments to be accumulated is specified trying to fill

all the space available in the cell, while being constrained by the volume still carried

by the streakline. Also, the procedure that radially spreads sediments from a cell

crossed by a streakline visits the cell’s neighbors in a queue-based flood-fill algorithm

where, when a cell is visited, all its neighbors are immediately added to the queue.

In Figure 3.12, we show in which sequence the flood-fill algorithm will visit cells,

starting from the hatched one. The left-most group of cells depicts the order that

the immediate neighbors of the hatched cell are added to the queue. Next, as the

cell 1 is visited, its neighbors are included in the queue, if they are not already

there. In this case, the cells adjacent to 1 are enqueued in the same sequence as

the neighbors of the hatched cell. Then, in the following three cell groups, we visit

the cells 2, 3 and 4, and add their respective surrounding cells to the queue. It is

important to observe that, in this process, while the deposition on each visited cell

is constrained by its accommodation space, it is also limited by the volume available

at the streakline that crossed the initial cell.

After the deposition phase of each event, we compact the accumulated sediments

as a result of the weight added by the new layers deposited. That is, the layers below
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Figure 3.12: Representation of the first steps of the flood-fill algorithm employed to
scatter sediments from the hatched grid cell. The green color denotes the cells that
were visited by the algorithm and the yellow color stands for the cells waiting in
the queue to be visited. The numbers show the order in which the cells are to be
visited.

the top one are compressed due to the decrease in porosity caused by the weight

overload. Following the works of GILES et al. [115] and CARVALHO et al. [7–9],

we consider the porosity φ to be a function of the buried depth z, being defined as:

φ(z) = φ0e
−cbz, (3.22)

where φ0 is the initial/surface porosity and cb is the compaction coefficient. We

obtain the initial values for the porosity of each granulometric fraction and the

compaction coefficients from HANTSCHEL and KAUERAUF [116]. Thus, we adopt

φclay
0 = 0.7, cclay

b = 8.3× 10−4 m−1, φsilt
0 = 0.55, csilt

b = 5.1× 10−4 m−1 and, for all

sands, φsand
0 = 0.41, csand

b = 3.1× 10−4 m−1.

The idea here is to compact the pillar of sediments in each cell independently.

Starting from the second layer of sediments in the top, going down to all the sub-

sequent layers, we fix its top depth zt and compute a new depth zb for its bottom.

To conserve mass, we require that the total sediment mass:

msed =

∫ zt

zb

ρsed(1− φ) dz, (3.23)

of density ρsed, does not change in the process. In this sense, the mass balance

between the states 1 and 2, which refer, respectively, to the configuration of a

sediment layer before the deposition of the top layer and after the compaction, is

given by: ∫ z1t

z1b

ρsed(1− φ) dz =

∫ z2t

z2b

ρsed(1− φ) dz,

∴
∫ z1t

z1b

ρsed(1− φ0e
−cbz) dz =

∫ z2t

z2b

ρsed(1− φ0e
−cbz) dz

∴ z1
t − z1

b +
φ0

cb

(
e−cbz

1
t − e−cbz1b

)
= z2

t − z2
b +

φ0

cb

(
e−cbz

2
t − e−cbz2b

)
. (3.24)
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From this balance, we compute the new buried depth zb of a sediment layer itera-

tively:

z2
b = z2

t − z1
t + z1

b +
φ0

cb

(
e−cz

2
t − e−cbz2b − e−cbz1t + e−cbz

1
b

)
, (3.25)

At last, we remark that the adopted sedimentation technique exactly conserves

the sediment mass even if the flow simulation were to present some mass error. In

our practical algorithm, all supplied sediments are transported and should deposit

up to the available depositional space, which is limited by the maximum envelope

of the associated turbidity current throughout the flow simulation. However, if an

event has an excessive amount of volume, the current (and the sediments) may leave

the area of interest. Still, the outflow sediment volume can be easily tracked. Also,

the compaction operation conserves mass as Equation (3.25) is solved up to machine

precision.
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Chapter 4

Implementation Aspects

Although the focus of this work is the proposed ensemble of methods and techniques

that allows simulating the formation of turbidite system in stratigraphic scales, and

not the computational implementation per se, in the present chapter, we provide

some insights regarding how it was done. Notably, we regard the flow solver based

on the proposed FCT scheme as well as the streakline evolution procedure. In

contrast, we do not examine the sedimentation algorithm since it consists of a much

simpler and straightforward implementation. Besides, it was operationalized in a

stratigraphic application whose base algorithms and data-structures come from the

work of CARVALHO et al. [7–9].

All the solver’s finite element related implementations were aided by the

deal.II [55] C++ software library (version 9.0.0). Its use speeds up implementations

while providing efficient data-structures for the finite element and linear system

routines. For an analysis of the efficiency of the algorithms and data structures

provided by deal.ii, we refer to the works of BANGERTH and KAYSER-HEROLD

[73] and BANGERTH et al. [117]. Another deciding factor for its use is it being

multiplatform, so our program would run natively on both Windows and Linux sys-

tems. deal.II supports quadrangular finite elements of different types and orders,

although here we only use bilinear Lagrange elements. Another advantage of deal.II

is that it handles mesh refinement/coarsening transparently to the user. Besides,

it also supports parallel computing, either with shared or distributed memory ma-

chines. Among other tools used, we find it important to highlight the Gmsh [108]

mesh generator we employ to build the meshes for the flow solver, and the Visu-

alization ToolKit (VTK) [118], whose application programming interface we use to

export the solution’s mesh and streakline data, which we take to the ParaView [119]

application for analysis.

Now, we present key aspects of the base configuration of the solver using deal.II.

Thus, unless stated otherwise, all classes and functions we discuss are part of its

library, being defined in the dealii namespace. We start from the mesh data-
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structure, which is of type Triangulation<2>, defining a surface immersed in the

two-dimensional real space. As an automated procedure generates the meshes used

in the simulations, we found it useful to refine them anisotropically to avoid elements

with high aspect ratios using GridTools::remove anisotropy(..). Also, we re-

move all hanging nodes in the mesh with GridTools::remove hanging nodes(..),

which performs another refinement step. Hanging nodes are usually obtained dur-

ing mesh refinements, being nodes that do not belong to all adjacent elements, as

depicted in Figure 4.1.

Figure 4.1: Example of a hanging node (in red) created from the refinement of the
original left cell. While it belongs to the elements on its left side, it is not part of
the element on the right. The nodes in blue define the coarse elements, and the
green nodes were also created by the refinement step.

In deal.II, objects of the type DoFHandler<2> can be used to enumerate the

degrees of freedom on all vertices. We create one object of this type for the problem

solution and another one for the bed elevation, since the former is vector-valued

and the latter contains scalar quantities. Also, the nodal values of both the solution

and the bed elevation are stored in separate Vector<double> objects. The main

finite element structure is defined by FESystem<2>(FE Q<2>(1),3), which groups 3

Lagrange finite elements of degree 1, defined on the 2D space. Similarly, for the bed

elevation, we use FESystem<2>(FE Q<2>(1)). Numerical integration is performed

using the Gauss quadrature QGauss<2>(2) that produces 2 quadrature points in each

space direction. In turn, the evaluation of a finite element in a cell’s quadrature

points is stored into a FEValues<2> object. Initial conditions are enforced using

the function VectorTools::interpolate(..). One of its parameters is a function

object of type Function<2,double>, responsible for computing the initial solution

at each position (x, y). To define the nodal bed elevations, we apply the same

procedure.

While the right-hand side of the assembled linear system is a standard vec-

tor (of type Vector<double>), its left-hand side is a sparse matrix (i.e., a

SparseMatrix<double> object). Its sparsity pattern is built using the function

DoFTools::make sparsity pattern(..), which takes the current DoFHandler as

an argument. However, prior to creating the sparsity pattern, we reorder the de-

grees of freedom using DoFRenumbering::Cuthill McKee(..) that implements

the algorithm proposed by CUTHILL and MCKEE [79]. To deal with constraints
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on degrees of freedom, we use the AffineConstraints<double> class. Dirich-

let boundary conditions (including those associated with events) are accounted

into the constraints by VectorTools::interpolate boundary values(..). In

addition, the non-penetration condition imposed on the mesh contours associ-

ated with coastal lines are defined by VectorTools::compute no normal flux -

constraints(..). At last, the linear system itself is solved using the preconditioner

SparseILU<double> and the solver SolverGMRES<>.

Before giving more details about the implementation of the FCT scheme used to

advance a solution in time, it is important to know how we initially define the time

steps employed in the time marching algorithm. To compute them according to the

condition (2.157), we use a quadrature rule with a single point positioned on the

unit cell barycentre, being defined as Quadrature<2>(Point<2>(0.5, 0.5)). The

use of the quadrature value instead of the nodal ones is because the constraint is

based on the current’s velocity, computed from the specific discharges using Equation

(2.158), which depends on the cell area. Thus, we choose the maximum time step

that makes the requirement (2.157) hold for the barycentre of each mesh cell.

In regard to the FCT scheme, both the low- and high-order equations are solved

in two main steps. First, we compute the terms dependent on V n. For the low-

order system, this is where we verify if the condition (2.132) on the time step is met.

If not, we choose a suitable time step and reassemble the matrices. For the high-

order system, we compute and limit the anti-diffusive fluxes. They are built into a

global sparse matrix where each entry (i, j) denotes the flux from the i-th to the

j-th degree of freedom. Thus, it can only have non-null values where the associated

degrees of freedom belong to adjacent nodes. Besides, the fluxes are computed based

on previously assembled sparse matrices, namely the artificial diffusion matrix and

the consistent mass matrix. This operation is performed iterating through each node

and its adjacent ones in parallel. To help identify the adjacent nodes of any node

in the mesh, we take advantage of the function GridTools::get dof to support -

patch map(..), which gives us a map of each degree of freedom to the cells that

share them. In sequence, the second step consists of the non-linear iterations where

we assemble the terms that depend on V n+1 and solve the linear system to obtain

a solution.

To speed-up the computations needed for the FCT scheme, we employed deal.II’s

module for parallel computing in shared memory devices. In particular, we benefit

from the WorkStream namespace that allows operating on streams of cells/elements

in parallel, while making all the synchronization and load balance tasks transparent

to the user. For instance, when assembling the linear system matrices, it enables the

local contributions to be computed in parallel. In contrast, their copy to the global

matrices is done sequentially in a stable and reproducible order. To allow the worker
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functions to use data that should not be shared between threads, deal.II defines a

template object called ScratchData, which threads can use as private data. For

example, we use it to store the local solution and the bed elevation evaluated at an

element’s quadrature points. Also, we keep the local copy of the nodal bed elevations

that will be corrected using (2.159). In this context, the bed elevations at the

quadrature points are computed from the corrected nodal values. In complement to

the ScratchData, worker functions can store their results in objects of the template

type CopyData, which can be used by a separate function to transfer the results

to the global matrices. As an example, we store in a structure of such type, the

local element contributions to the linear system matrices and the artificial diffusion

matrix, as well as the mapping from the local to the global degrees of freedom

indexes. After objects of the types ScratchData and CopyData have been used by

a thread, they may be reused by other threads, avoiding spending computational

time allocating and deallocating memory.

In terms of the recurrent events, we always keep a record of the number of

recurrences left and the time of the next episode start. After activating an event, we

start tracking the total volume it has injected into the domain, so we can know when

to deactivate it. Thus, we need compute the increments defined in Equation (3.1).

To compute this integral along the boundary edges where an event is active, we use

the quadrature rule QGauss<1>(2) together with an object of type FEFaceValues<2>

to obtain the evaluation of a finite element in quadrature points on an element face.

In addition, when an event is activated or deactivated, we reset our instance of

AffineConstraints<double>, so the new boundary conditions can be correctly

enforced.

In sequence, we make some remarks about the streakline computation. In this

sense, we observe that, to compute the velocities needed in the Runge-Kutta scheme

(3.17) used to displace streakline points, we need to know the element where each

one resides and whose nodal values will be interpolated for a desired position. The

simplest way to perform this is to search the entire mesh at each value computation.

However, the performance is increased if we store, for each particle, the current cell

in which it resides. Thus, our streakline data-structure consists of an ordered list of

pairs that hold a Point<2> object and an iterator of type DoFHandler<2>::active -

cell iterator that points to the container element. Hence, when moving a particle,

we search for the new container cell starting from the current cell, going to its

neighboring elements.

First, we find out to which vertex of the current element the desired position

is closest. Then, using a cached map of every vertex to its adjacent elements, we

test whether the position is inside any of the neighboring cells. The order in which

the cells are tested depends on the direction between the particle’s position and the
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nearest vertex. The test itself is made by projecting the position to local unit cell

coordinates and verifying if they are in the range [0, 1]. If none of the neighbors

contains the particle, then we search the whole mesh for the vertex closest to the

particle and proceed to check its adjacent elements. If still no cell is found to contain

the particle, we obtain the one it is nearest to and its projection into the cell in local

unit coordinates. In addition, we mark the cell as being outside the mesh, so it can

be removed if its final state after the displacement is still out of bounds.

One issue that might arise in the previous procedure is that polynomial mappings

from unit to real cell coordinates might not be invertible for points outside the cell, as

pointed out by the deal.II’s documentation on the Mapping::transform real to -

unit cell(..) function1. In these cases, the point is classified as outside the cell,

and its projection to the local unit coordinates is the coordinates of the nearest vertex

of the cell. This implementation is aided by the deal.II’s GridTools::Cache<2> class

and the search itself is a modified version of the GridTools::find active cell -

around point(..) function.

When we perform a simulation requested by the external stratigraphic applica-

tion, we need to define the initial state of the solution on each mesh node. For

the solution itself, we always assign null values since, initially, there is no turbidite

current flowing inside the domain. However, bed elevation values still need to be

interpolated from the bathymetric data of the stratigraphic grid. Thus, for a given

node, we find out the cell of the regular grid where it resides and use the bed eleva-

tions of the centers of the cell and its adjacent ones to obtain a value for the desired

node. In this matter, the adopted interpolation method is the well-known inverse

squared distance weighting [120].

After simulating the flow of an event, the evolved streaklines are brought to

the stratigraphic application, where the event sedimentation phase will take place.

At this point, for each streakline, we build an ordered list with the cells crossed

by it. This is done as we iterate through all the streakline points and compute

the grid cell in which they are located. Also, to prevent a low point density along

any section of a streakline from making a cell crossed by it not to be detected and

included in the ordered list, we increase the number of points in long segments.

Thus, we subdivide the streakline segments whose lengths are greater than half the

diagonal of the uniform grid cells. In addition to the streaklines, we also take the

computed max current heights to the external application. This is done by using the

function VectorTools::point value(..) to obtain a value for the centre of each

grid cell. Moreover, to export a solution that we want to import into the ParaView

application, we use deal.II’s API, employing a DataOut<2, DoFHandler<2>> object

1https://www.dealii.org/current/doxygen/deal.II/classMapping.html#

a38ba6aaa1745359910e1b465a0f5fb27, visited on January 18th, 2020.
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to save a VTK [118] unstructured grid (.vtu files) with the solution of each time

step, and the function DataOutBase::write pvd record(..) to group the files

that make up the solution in time. For the streaklines, we export them as VTK

polygonal data (.vtp files) that are also indexed with the pvd record file.

63



Chapter 5

Numerical Results

In this chapter, we present the numerical results of some test cases and make com-

parisons with analytical and literature available solutions. For each example, the

input mesh is created with the Gmsh [108] tool, and the results were brought to the

ParaView [119] application for analysis, when not directly examined in the strati-

graphic software program. We consider that ρw = 103 kg m−3, µ = µw = 10−3Pa s

and n = 0.018 sm−1/3. Also, when it is relevant to compute the mass/volume relative

error Volerr, we use the expression:

Volerr(t) =
Vol(t)− Vol(0)

Vol(0)
, (5.1)

where Vol(t) is the volume stored in the domain at the time t. For the cases where

we simulate the sedimentation process, we consider the color table illustrated in

Figure 5.1 to portray the distinct granulometric fractions (and the associated lithol-

ogy types).

Coarse sand
Medium sand
Fine sand
Silt
Clay

Figure 5.1: Color table used to represent the distinct granulometric fractions (and
the associated lithology types).

5.1 1D Dam Break

We regard a 1D dam break configuration that describes two reservoirs that contain

water and are separated by a dam. One reservoir has fluid with depth h1, while,

in the other, the fluid height is h0, with h1 > h0. At a given time, the barrier is
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instantly removed. Thus, we calculate the subsequent fluid flow. For this arrange-

ment, it is possible to obtain an analytical solution for the state of the fluid after the

release. STOKER [121] presented the solution adopted in this work. A schematic

representation of the solution and the initial state of the problem can be seen in

Figure 5.2.

(a) (b)

Figure 5.2: Schematic representations of the 1D dam break problem (a) and its
analytical solution (b). The bold numbers represent the different regions of the
initial state and the analytical solution.

The analytical solution can be divided into 4 regions. In the transition between

regions 2 and 0, a shock wave propagates to the right with speed ξ. Also, the fluid

has zero velocity in regions 1 and 0 (u1 = u0 = 0 m s−1). Let the propagation

speed of a perturbation on the surface of each region be defined as ci =
√
ghi,

with i = 0, 1, 2, 3. Then, the shock wave speed is obtained by solving the nonlinear

equation:
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and the result is used as an input to the exact solution computation.

In sequence, it is defined:
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x

t

)
, (5.4)

where t is the elapsed time since the dam’s removal. So, the coordinates of each

transition between regions can be defined as:

x13 = −c1t, x32 = (u2 − c2)t, x20 = ξt. (5.5)
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Here we consider x ∈ [−50, 50] m, t ∈ [0, 10] s, h1 = 2 m and h0 = 1 m, and

compute ξ = 4.183 m s−1. The simulation is performed on a 2D regular mesh with

302×4 rectangular elements comprising a 100 m×1 m area. Non-penetration bound-

ary conditions are applied at the limits of the numerical domain. Also, frictional

forces are not considered. As FENNEMA and CHAUDHRY [122] mention, this

assumption prevents the source term from introducing additional damping to the

result. To compute the Y Zβ operator in the stabilized formulation, we use the

reference values (h)Ref = h1, (qx)Ref = h1c1 and (qy)Ref = 1010 m2 s−1.

Figure 5.3 presents the exact solution and the results obtained with the stabilized

and FCT methods at t = 7.5 s. We observe that the results obtained with the FCT

scheme are in better consonance with the analytical solution than the ones produced

by the stabilized techniques that use the CAU and Y Zβ shock-capturing operators.

(a)

(b)

Figure 5.3: Exact and simulated solutions at t = 7.5 s of the 1D dam break problem.
(a) Fluid height; (b) Water velocity.

5.2 Transcritical Flow with a Shock

We simulate the steady-state solution of a transcritical flow that presents a hydraulic

shock. Following DELESTRE et al. [123], we neglect frictional forces and viscous

stresses (µ = 0 Pa s). The simulation domain is a 25 m×5 m area whose bed elevation
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is defined as:

zb(x) =

0.2− 0.05(x− 10)2, if 8 m < x < 12 m ,

0, otherwise.
(5.6)

The adopted boundary conditions are q(x = 0) = q0 = 0.18 m2 s−1 and h(x = L =

25) = hL = 0.33 m, while the initial state is q(x) = q0 and h(x) = hL. According

to DELESTRE et al. [123], for this configuration, the exact solution at the steady

state can be computed by solving:

h(x)3 +

(
z(x)− q2

0

2ghc
− hc − zmax

)
h(x)2 +

q2
0

2g
= 0, ∀x ∈ [0, xshock), (5.7)

h(x)3 +

(
z(x)− q2

0

2ghL
− hL

)
h(x)2 +

q2
0

2g
= 0, ∀x ∈ (xshock, L], (5.8)

q2
0

(
1

h2
+

− 1

h2
−

)
+
g

2

(
h2
− − h2

+

)
= 0, for x = xshock, (5.9)

where hc = (q2
0/g)1/3 is the critical water level at the subcritical to supercriti-

cal transition, zmax = 0.2 m is the maximum bed elevation, and h−(x = xshock)

and h+(x = xshock) are the water height upstream and downstream of the shock.

The shock position xshock can be obtained by solving Equation (5.9). However,

the identification of the physically sound roots of the polynomials in Equations

(5.7)-(5.9) requires further knowledge about the problem. For this reason, we pro-

vide a more complete explanation of the problem and its exact solution in Ap-

pendix E. Nonetheless, for the studied configuration, we implemented an Octave

[124] script to solve the previous equations and obtain the solution. In this case,

xshock ≈ 11.666 m and hc ≈ 0.149 m. Computation is performed on a mesh with

200 × 10 elements. To calculate the Y Zβ operator, we use the reference values

(h)Ref = hL and (qx)Ref = (qy)Ref = 1010 m2 s−1. We also tested it with (h)Ref = hL,

(qx)Ref = q0 and (qy)Ref = 1010 m2 s−1, but the obtained solution was too oscillatory.

A comparison between the analytical and simulated solutions can be seen in

Figure 5.4. We observe that the use of the CAU operator produced an undesired

oscillation to the left of the mound. In contrast, the Y Zβ approach created a

nonphysical peak at the downstream side of the shock. At last, the FCT scheme

generated the best results, which are in good agreement with the exact solution.
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Figure 5.4: Exact and simulated water elevation solutions of the transcritical flow
with shock problem.

5.3 1D Flow over an Irregular Bed

We set up a scenario based on a test case of GEORGE [125], where it is considered

the flow over an irregular bed. In general, the resulting dynamics encompass dry/wet

transitions, shocks and a stationary bore, before ending up in a motionless state.

We define the bed elevation as:

zb(x) =


3e−6(0.1x)2 , if x < 15.064 m,

1.5e−(0.08x−4.8)2 , if 15.064 m,≤ x < 89.717 m,

3e−6(0.1x−10)2 , if x ≥ 89.717 m,

(5.10)

while the initial conditions are q = 0 and:

η(x) = h(x) + zb(x) =

2.0, x < 40 m,

1.0, x ≥ 40 m.
(5.11)

Also, non-penetration conditions are enforced on the whole boundary. The simula-

tion is carried on a 2D regular mesh composed of 1 m2 elements distributed along a

100 m×4 m area, and covers a period of 700 s. To compute the Y Zβ shock-capturing

operator in the stabilized method, we employ the reference values (h)Ref = 1.5 m

and (qx)Ref = (qy)Ref = 1010 m2 s−1.

We present the water surface profiles obtained at key simulation times in

Figure 5.5. At first, the initial shock wave propagates to the right covering the

mound, while the right-most reservoir maintains its steady-state equilibrium. As

the wave surpasses the mound, its arrival at the second reservoir produces a station-

ary bore and a shock wave that moves to the right. Then, this wave is reflected

by the right-most hill and comes back to the left, shifting and extinguishing the
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Figure 5.5: Water surface obtained at key simulation times of the 1D flow over an irregular bed problem. The results of the FCT approach
are in red and the ones obtained using the CAU and Y Zβ operators are, respectively, in green and blue.
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hydraulic shock. Meanwhile, the mound is dried out as the first reservoir’s wet front

is retracted back into it. In sequence, a series of similar dynamics that involve the

exchange of water between both reservoirs take place, until the fluid stops and its

surface remains flat.

Among the tested approaches, the FCT scheme showed the sharpest profiles.

Also, the use of the CAU operator failed to reproduce the water elevation near the

highest mounds precisely, and it did not reach a state with a flat water surface at

t = 700 s. By the end of the simulation, the volume error of the FCT scheme was in

the order of 10−10, while the error of the Y Zβ and CAU stabilized approaches were

in the orders of 10−5 and 10−3, respectively.

Moreover, the results of the proposed method are in good consonance with the

overall simulation of GEORGE [125]. Note, however, that he does not consider the

fluid’s viscosity nor bed friction forces. Hence our solutions could not be the same.

Notwithstanding, our simulation shows our approach’s ability to maintain an initial

still state (right-most reservoir before receiving the initial wave), and to reach a

motionless equilibrium. Besides, dry/wet transitions are correctly handled even at

the steeper slopes of the left- and right-most hills while keeping the smallest volume

error between the assessed techniques.

5.4 Asymmetric Dam Break

Following previous studies [46, 58, 126–129], we simulate the frictionless inviscid

flow triggered by the instantaneous break of the dam separating two reservoirs con-

nected by a channel. The initial water height at the left and right reservoirs are,

respectively, hL = 10 m and hR = 5 m. Here, we run the simulation up to t = 7.2 s

and enforce non-penetration constraints at the whole domain boundary. A diagram

of the domain’s geometry, dam’s placement and the initial fluid height distribution

can be seen in Figure 5.6a. Additionally, Figure 5.6b depicts a detailed view of the

employed 13488-element mesh and the initial water heights near the dam. In this

case, to compute the Y Zβ operator, let h2 = 7.27 m and u2 = 2.92 m s−1 be the fluid

height and velocity at the region 2 of the 1D dam break problem that has an initial

fluid height distribution analogous to the present 2D case. Then, we use (h)Ref = h2

and (qx)Ref = (qy)Ref = h2u2 as the reference values in the Y Zβ term.

Figure 5.7 shows the final water height distribution with 40 contours between

h = 5 m and h = 10 m. We observe that both stabilized formulations produced

undesired water height perturbations past the wave front in the right-most reservoir,

where the water surface should be flat, as reproduced by the FCT scheme. Figure 5.8

compares our results with the solutions obtained by RICCHIUTO et al. [128] and

RICCHIUTO [129]. Among the tested approaches, the one with the CAU operator
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(a) (b)

Figure 5.6: Initial configuration of the asymmetric dam break problem. (a) Domain’s
geometry and initial fluid height distribution; (b) Detail of the mesh and the initial
water heights near the dam.

Figure 5.7: 3D and map views of the water surface with height contours obtained at
t = 7.2 s of the asymmetric dam break problem. The ones with the green and blue
borders were computed with the stabilized approach using, respectively, the CAU
and Y Zβ shock-capturing operators. Those with the red borders are outcomes of
the FCT scheme.
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produced a smoother profile, and the FCT scheme created the sharpest. In the first

section (Figure 5.8a), which roughly crosses the center of the depression formed due

to the interaction between the two corner rarefaction waves, we can see that the

FCT solution presented a smoother profile than the reference result, having less

pronounced kinks. In the second section (Figure 5.8b), our simulated front fell a

little behind in relation to the reference solution.

(a)

(b)

Figure 5.8: Computed and reference solutions for the asymmetric dam break prob-
lem plotted along two sections at t = 7.2 s. In (a), the reference is the result of
RICCHIUTO [129] at y = 132 m. In (b), the reference is the solution of RICCHI-
UTO et al. [128] at y = 160 m.

In Figure 5.9, we show the computed specific discharge vectors inside a small

area near the channel at t = 7.2 s. Again we observe that the CAU solution is the

smoothest one, as can be seen by the mild color gradient in the right-most reservoir.

Plus, we notice that the solution of the Y Zβ operator produced higher discharge

values near the channel walls. Throughout the simulations, the stabilized methods’

volume errors remained under 10−13, while the FCT’s volume error stayed under

10−9. All in all, we remark that the FCT technique produced better results as it

did not create spurious perturbations in regions where the shock wave still had not

arrived, and the obtained height profiles are closer to the reference solutions.
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Figure 5.9: Detail of the specific discharge vectors obtained near the channel at
t = 7.2 s of the asymmetric dam break problem. The maps with the green and
blue borders were computed using the CAU and Y Zβ operators while the one with
the red border was generated by the FCT method.

5.5 Dam Break over a Channel with Bumps

We simulate the flow produced by a dam break over a dry bed that presents three

bumps. This problem was introduced by KAWAHARA and UMETSU [130], be-

ing later revisited by BRUFAU and GARCÍA-NAVARRO [93], and LIANG and

BORTHWICK [98]. The initial dam encloses a reservoir 16 m long that contains

water 1.875 m deep. Here, the 75 m×30 m domain is discretized with 1 m2 elements.

Also, non-penetration boundary conditions are enforced during the simulations car-

ried out until t = 300 s. As employed by LIANG and BORTHWICK [98], the bed

elevation is defined by:

zb(x, y) = max
[
0, z1(x, y), z2(x, y), z3(x, y)

]
, (5.12)

with:

z1(x, y) = 1− 1

8

√
(x− 30)2 + (y − 6)2, (5.13)

z2(x, y) = 1− 1

8

√
(x− 30)2 + (y − 24)2, (5.14)

z3(x, y) = 3− 3

10

√
(x− 47.5)2 + (y − 15)2. (5.15)
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A 3D view of the problem’s initial state can be seen in Figure 5.10a. Figure 5.10b

depicts the simulation mesh and the initial water surface elevation. In this example,

we use the reference values (h)Ref = 1.875 m and (qx)Ref = (qy)Ref = 1010 m2 s−1 to

compute the Y Zβ operator.

(a) (b)

Figure 5.10: 3D view of the initial state (a) and 2D map of the simulation mesh (b)
of the dam break over a channel with bumps problem.

Results obtained at key simulation times are presented in Figure 5.11, while

Figure 5.12 shows free surface profiles computed along a section at y = 15 m and

t = 300 s. After the dam release, the flooding front advances, covering the smallest

bumps and generating reflection waves in the upstream direction. At t = 12 s, as

the fluid that passed between the bumps slows down climbing the highest hill, it

flows sideways, skirting the largest mound and moving downstream along the sides

of the closed domain. Meanwhile, the reflection of the leading flood wave by the

highest hill produces another upstream directed wave. By t = 30 s, the reflection

of the first wave on the right wall is climbing the largest bump from its right side.

Then, at t = 300 s, after a series of reflections and dry/wet transitions, all bumps

are left partially submerged, and the water surface remains flat.

In general, the results achieved with the Y Zβ and FCT techniques are in better

agreement with the works of LIANG and BORTHWICK [98] and GUERMOND

et al. [87]. At t = 12 s, among the tested approaches, the FCT scheme produced

the sharpest water surface, as can be seen by the greater maximum fluid height

and the more detailed fringes that spread downstream along the top and bottom

walls. At t = 30 s, we observe that the FCT scheme presented some ripples to the

left of the mounds, while the other methods’ surfaces are flat. By the end of the

simulation, the solution of the CAU technique has fluid in all the domain, and the

Y Zβ formulation has made some fluid go up the highest bump, creating negative

fluid heights at a few points. In this case, the FCT method best represented the dry

and wet regions and their transitions. This can be seen in Figure 5.11c by the water

height distribution near and at the bumps’ regions, and the water surface profile in

Figure 5.12. In terms of the volume error, the CAU and FCT approaches presented
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(a) t = 12 s

(b) t = 30 s

(c) t = 300 s

Figure 5.11: Map views of the obtained water heights at key simulation times of
the dam break over a channel with bumps problem. The green and blue borders
indicate results computed with the stabilized approach using, respectively, the CAU
and Y Zβ shock-capturing operators. The maps with red borders are outcomes of
the FCT scheme.

(a) (b)

Figure 5.12: Water surface elevation along a section at y = 15 m and t = 300 s (a)
and detail of the free surface near the highest bump (b) of the dam break over a
channel with bumps problem.

similar errors of the order of 10−10, while the Y Zβ technique showed an error of

the order of 10−2. These facts support the understanding that our approach can

properly handle complex wetting and drying processes. In this sense, we present, in

Figure 5.13, 3D and map views of the FCT solution at the same times illustrated by

LIANG and BORTHWICK [98], showing that our results are in a consonance with

theirs. Furthermore, for the next problems studied, we only employ the proposed

FCT formulation.
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(a) t = 2.00 s

(b) t = 6.00 s

(c) t = 12.00 s

(d) t = 30.00 s

(e) t = 300.00 s

Figure 5.13: 3D and map views at the same times illustrated by LIANG and
BORTHWICK [98] of the FCT solution for the dam break over a channel with
bumps problem.
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5.6 Inflow from a Sloped Channel

We simulate the inflow of water from a slanted channel into a dry reservoir. This

problem is based on a case studied by CAMATA et al. [131] in which morphodynamic

interactions were the focus. However, here the objective is to evaluate the technique

proposed to build and evolve streaklines during flow simulations.

Diagrams of the studied region’s geometry can be seen in Figure 5.14. We dis-

cretize the domain using two meshes: one with 4788 regular elements and another

one built by a refinement step in which every element of the first mesh is broken

into four smaller cells. Also, we consider that water enters the channel from its left

side with h = 0.5 m and uT = [10−3, 0] m s−1. The rest of the boundary is closed,

being subjected to non-penetration conditions. Additionally, 10 streakline sources

are positioned along the right faces of the elements at the start of the channel, as

depicted in Figure 5.15.

(a) (b)

Figure 5.14: Geometric representation of the domain studied in the inflow from a
sloped channel problem. (a) Domain’s shape and lengths; (b) Detail of a vertical
slice over the red dashed line in (a), showing the channel slope and the water inflow
direction.

Figure 5.15: Detail of the position of the streakline sources (dots in yellow) at the
start of the channel of the inflow from a sloped channel problem.
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We present the solution of the problem and the state of the evolved streaklines

at t = 1.8 s in Figure 5.16. Also, we zoom into the end of the channel to show

the distribution of points along the streaklines. Observe that more points are used

in regions with higher curvature to the detriment of sections where the lines are

straight. This allows to focus computational efforts in regions where the line (or the

flow) direction is rapidly changing.

(a)

(b)

Figure 5.16: Solution at t = 1.8 s of the inflow from a channel problem, showing
the streaklines in white and their individual points in yellow. (a) 3D view of the
bed and water surfaces, and the streaklines; (b) Detail of the distribution of points
along the streaklines near the end of the channel.

As a benchmark, we use the streaklines computed by the ParaView [119] applica-

tion. In the finest mesh, the lines built with both approaches are in good consonance.

However, when we use the coarsest mesh, the results differ. Our technique seems

to produce smoother lines as a consequence of the adaptive procedure used to add

and remove points throughout the simulation. Also, as we use splines to determine

new point locations at high curvature regions, these are potential sources of discrep-

ancy between the solutions. Figure 5.17 presents the streaklines computed by both

approaches at t = 6.19 s. Finally, we observe that the present approach is able to

produce complex line geometries, like the ones depicted in Figure 5.18.

5.7 Turbidity Current Flow over an Irregular Bed

We simulate the continuous flow of a turbidity current over an irregular topogra-

phy. We focus on the turbidite system originated from the mouth of the Almirante

Câmara canyon, located in the Campos Basin in Brazil. This deep-water marine

sedimentary environment is part of the Carapebus formation. It is known that the

turbidite beds in this region are the result of several events over long geological peri-

ods [112]. However, here we only simulate a single continuous inflow to evaluate the
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(a)

(b)

Figure 5.17: States of the streaklines computed by the ParaView [119] application
(lines in pink) and our approach (lines in white and points in yellow) at t = 6.19 s
of the inflow from a sloped channel problem. Computations were performed using
two meshes: one with low-resolution (a) and another one with higher resolution (b).

Figure 5.18: State of the evolved streaklines at t = 13 s of the inflow from a sloped
channel problem.
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evolution of the current and the related streaklines, as well as the overall stability

of our approach. Also, as paleosurfaces of this region are unavailable, we perform

the simulation over the modern seabed. This might be a valid approximation since

the system is considered recent from a geological perspective.

The examined region covers an area of about 141 km × 107 km, subdivided

by quadrilateral elements with the average characteristic length of 2 km. A 3D

view of the seabed and the entry of the Almirante Câmara canyon can be seen

in Figure 5.19a. In our simulation, we consider the current to have density

ρ = 1100 kg m−3. Also, we prescribe an inflow with h = 5 m, qx = 37.037 m2 s−1

and qy = 0 m2 s−1 at the start of the channel. Figure 5.19b shows a detailed view

of the mesh near the canyon’s entry and the inflow discharges. Here, we apply non-

penetration constrains to the portion of the coast that does not receive the current’s

inflow and leave the remaining boundary open. In addition, 5 streakline sources are

placed near the canyon’s entry.

(a) (b)

Figure 5.19: Initial configuration of the turbidity current flow over an irregular bed
problem. (a) 3D view of the seabed indicating the entry of the Almirante Câmara
canyon. (b) Detailed view of the mesh and the inflow discharges near the boundary
by the canyon’s entry, and the streakline sources (dots in yellow).

Obtained results at key simulation times are presented in Figure 5.20. In the ini-

tial steps of the simulation, the flow is channeled into the canyon, and the streaklines

merge into one. After leaving the valley, the current advances with little variations

in width until it forms a lobe before being forced back into a channel. As it tra-

verses the trough, it finds an accumulation point in a turn. Then, following the

channel, it leaves the area of interest. We observe that the path followed by the

simulated current is in a good agreement with the real Almirante Câmara turbidite

system studied by MACHADO et al. [112]. Also, the positions of the lobe and the

accumulation point resemble the real system features.
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(a) t = 6803.0 s (b) t = 18 029.7 s

(c) t = 30 867.0 s (d) t = 41 308.3 s

(e) t = 52 011.2 s (f) t = 83 024.6 s

Figure 5.20: Simulated turbidity current at key times of the turbidity current flow
over an irregular bed problem. The pink lines in middle of the current portray the
computed streaklines.
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5.8 Sedimentation on a Flat Bed

In this section, we simulate a basic scenario, trying to reproduce stacking patterns

similar to the one illustrated in Figure 3.11, where we see a progradational trend

between events and a retrogradational-like arrangement in an event’s deposits. Fur-

thermore, we evaluate the use of the decay factor fs, introduced in Equation 3.21

to reduce the accommodation space when we radially scatter sediments from a cell

crossed by a streakline. Plus, we assess the impact of using sub-steps with yet more

limited depositional spaces.

We consider a 10 km × 10 km area subdivided into 20 × 20 cells, and position

the sediment supply (and the turbidity current inflow) in the middle of the left-

most boundary, as depicted in Figure 5.21. For the present example, we simulate

three events that have the same inflow current height of h = 4 m. In each case, the

associated sediment supply provides the same proportion of the different sediment

types: 33.3% silt, 33.3% medium sand and 33.4% coarse sand. However, we vary

the total amount of sediments supplied to each event, as well as the event’s volume

and duration. The first flow event holds 0.2 Mm3, having an inflow duration of

5 min. Then, the second and thirds events have, respectively, two and four times

more volume and duration than the first one. The amount of sediments available to

the three events are, respectively, 16.98 Mm3, 49.8 Mm3 and 84.9 Mm3.

Figure 5.21: Location of the sediment supply used in the sedimentation on a flat bed
problem. Here, the columns beside the boundary cells highlighted in blue represent
the sediment supplies.

At first, we perform a simulation using one sub-step per event and setting fs = 1

to disable the factor’s effect on the available accumulation space. We show maps

of the top of the resulting deposits after each event simulation in Figure 5.22. Be

aware that, if examined alone, these maps can be misleading in the sense that they

only show the strata at the top of the bed, however thin they may be. Thus, to aid

the result analysis, we show, in Figure 5.25, the deposited lithologies along a vertical

section that is parallel to the x-direction and crosses the middle of the domain.

Next, we run a simulation using one sub-step per event and the standard value

of the spreading factor fs = 2. Map views of the produced deposits are shown in

Figure 5.23, while we present, in Figure 5.26, the obtained stacking pattern along

the same section of the previous case. Map views of the deposits’ thickness after each

event simulation can be seen in Figure 5.27. We observe that the use of the factor
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(a) (b) (c)

Figure 5.22: Map views of the top of the resulting deposits after each event of the
sedimentation on a flat bed problem, when solved using a single sub-step per event
and fs = 1. The maps (a), (b) and (c) refer to the state of the bed after the first,
second and last events.

(a) (b) (c)

Figure 5.23: Map views of the top of the resulting deposits after each event of the
sedimentation on a flat bed problem, when solved using a single sub-step per event.
The maps (a), (b) and (c) refer to the state of the bed after the first, second and
third events.

fs produces more natural lateral distributions of sediments, avoiding the deposits of

having squared shapes, such as the ones seen in Figure 5.22. Besides, its use yields

more realistic stacking patterns, as the transitions between the different lithologies

is less abrupt. We can also notice fining-upwards trends in an event’s deposits near

the interfaces between different lithology types.

Afterward, we simulate the current scenario using three sub-steps per event.

Maps of the top of the depositional bed after each sub-step can be seen in Figure

5.24. In addition, we present in Figure 5.28 the stacking pattern obtained at the

same vertical section previously examined. Then, the evolution of the thickness of

the deposits of each lithology type is illustrated in Figure 5.30.
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(a)

(b)

(c)

Figure 5.24: Map views of the sedimentary bed after each event and sub-step of the
sedimentation on a flat bed problem, when solved using three sub-steps per event.
(a), (b) and (c) represent depositions at each event simulation, being (a) associated
with the first event and (c) with the last. The progression of the maps from left to
right denote the sequence of sub-steps in an event’s deposition.
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(a) (b)

Figure 5.25: View, along a vertical section parallel to the x-direction and placed in the middle of the simulated region, of the stacking
pattern produced at the sedimentation on a flat bed problem, when solved using one sub-step and fs = 1. (a) Original section in terms
of the deposited lithology blocks; (b) Smoothed section. Here the black lines separate the strata of each event.

(a) (b)

Figure 5.26: View, along a vertical section parallel to the x-direction and placed in the middle of the simulated region, of the stacking
pattern produced at the sedimentation on a flat bed problem, when solved using one sub-step. (a) Original section in terms of the
deposited lithology blocks; (b) Smoothed section. Here the black lines separate the strata of each event.
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(a)

(b)

(c)

(d)

Figure 5.27: Maps of the thickness of the accumulated sediment deposits after each
event of the sedimentation on a flat bed problem, when solved using one sub-step
per event. The maps on the left depict the result after the first event, while the
maps at the middle and the right columns respectively represent the states after the
second and third events. Each maps row shows the accumulated thickness of the
different components: (a) All lithology types; (b) Coarse sand strata; (c) Medium
sand deposits; (d) Silt material.
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(a) (b)

Figure 5.28: View, along a vertical section parallel to the x-direction and placed in the middle of the simulated region, of the stacking
pattern produced at the sedimentation on a flat bed problem, when solved using three sub-steps. (a) Original section in terms of the
deposited lithology blocks; (b) Smoothed section. Here the black lines separate the strata of each event.

(a) (b)

Figure 5.29: View, along a vertical section parallel to the x-direction and placed in the middle of the simulated region, of the stacking
pattern produced at the sedimentation on a flat bed problem, when solved using five lithology types and three sub-steps. (a) Original
section in terms of the deposited lithology blocks; (b) Smoothed section. Here the black lines separate the strata of each event.
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(a)

(b)

(c)

(d)

Figure 5.30: Maps of the thickness of the accumulated sediment deposits after each
event of the sedimentation on a flat bed problem, when solved using three sub-steps
per event. The maps on the left depict the result after the first event, while the
maps at the middle and the right columns respectively represent the states after the
second and third events. Each maps row shows the accumulated thickness of the
different components: (a) All lithology types; (b) Coarse sand strata; (c) Medium
sand deposits; (d) Silt material.
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From the deposits reproduced by the simulations using one and three sub-steps,

we can see that the use of a single step causes the deposition of each lithology type

to be given in blocks. Indeed, there are clear lateral transitions between them, as

we can distinguish in Figures 5.26 and 5.27. However, in this case, the coarser grain

sizes deposit mostly near the inflow region, creating tall strata and filling all the

available accommodation space. Also, we observe that the modest retrogradational

trend inside each layer is only due to the spreading factor fs. In contrast, if we

use more sub-steps per event, we allow the coarser fractions to progress further

downstream, leaving, in the upstream area, more accommodation space available

to the finer sediments’ deposition. As we can see in Figures 5.28 and 5.30, this

engenders more pronounced fining-upwards biases in an event’s deposits. Finally,

we remark that, regardless of the number of sub-steps employed, we could reproduce

stacking patterns similar to the one presented in Figure 3.11, where each event

progrades in respect to the previous one.

At last, to help elucidate that our approach can reproduce more complex stacking

patterns, we present in Figure 5.29 the layering of different strata along a section,

computed considering that the sediment supply provides an equal amount of each

of the five granulometric fractions.

5.9 Sedimentation on a Sloping Bed

In this example, we simulate three turbidite events initiated as a result of consecutive

sudden sea-level drops in a region where part of the sea bed is sloped. A schematic

representation of the simulated area and the initial bed elevation can be seen in

Figure 5.31.

Figure 5.31: Schematic representation of the region simulated in the sedimentation
on a sloping bed problem.

At the stratigraphic application, the simulation grid is composed of 50× 20 cells.

We show the state of the sea level and the position of the sediment supply (or

the associated current inflow) used in the simulation of each event in Figure 5.32.

For the first event, the sea level is positioned at 45 m from the bed’s lowest point.

89



(a)

(b)

(c)

Figure 5.32: Location of the sea level and the sediment supply used to simulate
each turbidite event of the sedimentation on a sloping bed problem. The arrange-
ments (a), (b) and (c) were used to simulate, respectively, the first, second and last
events. Here, the columns beside the boundary cells highlighted in blue represent
the sediment supplies.

Afterward, we decrease it by 15 m to simulate the second event, and reduce it again

by the same amount to compute the last one. Here, all events have the same

characteristics: current inflow height of h = 4 m, available volume of 0.2 Mm3 and

inflow duration of 5 min. Also, at each event, the sediment supply provides a total

of 35.5 Mm3 of which 33.3% is silt, 33.3% is medium sand and 33.4% is coarse sand.

At first, we perform the simulation using one sub-step per event. Map views of

the resulting deposits after each event can be seen in Figure 5.33. To allow the ex-

amination of the produced stacking patterns, we show, in Figure 5.34, the deposited

lithologies along a vertical section that is parallel to the x-direction and positioned

in the middle of the simulated area. Next, we present maps of the thickness of the

accumulated sediment deposits after each event in Figure 5.35, even showing the

contribution of each granulometric fraction.

In sequence, we perform a simulation using three sub-steps per event. We show

map views of the accumulated deposits after each event and sub-step in Figure 5.36.

As in the previous case, we present, in Figure 5.37, the deposited lithologies along a

vertical section parallel to the x-direction and placed in the middle of the simulated

area. Then, Figure 5.38 shows maps of the thickness of the accumulated sediment

deposits after each event simulation.
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(a)

(b)

(c)

Figure 5.33: Map views of the resulting deposits after each event of the sedimentation
on a sloping bed problem, when solved using a single sub-step per event. The maps
(a), (b) and (c) refer to the state of the bed after the first, second and last events.

(a)

(b)

Figure 5.34: View, along a vertical section parallel to the x-direction and placed
in the middle of the simulated region, of the stacking pattern produced at the
sedimentation on a sloping bed problem, when solved using a single sub-step per
event. (a) Original section; (b) Section with scaled deposit thicknesses. Here the
different types of black lines separate the strata of each event.
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(a)

(b)

(c)

(d)

Figure 5.35: Maps of the thickness of the accumulated sediment deposits after each event of the sedimentation on a sloping bed problem,
when solved using a single sub-step per event. The maps on the left depict the result after the first event, while the maps at the middle
and the right columns respectively represent the states after the second and third events. Each maps row shows the accumulated thickness
of the different components: (a) All lithology types; (b) Coarse sand strata; (c) Medium sand deposits; (d) Silt material.
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(a)

(b)

(c)

Figure 5.36: Map views of the sedimentary bed after each event and sub-step of the sedimentation on a sloping bed problem, when solved
using three sub-steps per event. (a), (b) and (c) represent depositions at each event simulation, being (a) associated with the first event
and (c) with the last. The progression of the maps from left to right denote the sequence of sub-steps in an event’s deposition.

(a) (b)

Figure 5.37: View, along a vertical section parallel to the x-direction and placed in the middle of the simulated region, of the stacking
pattern produced at the sedimentation on a sloping bed problem, when solved using three sub-steps. (a) Original section; (b) Section
with scaled deposit thicknesses. The thinnest black lines represent the limits of a sub-step deposit, while the different types of thicker
black lines separate the strata of each event.
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(a)

(b)

(c)

(d)

Figure 5.38: Maps of the thickness of the accumulated sediment deposits after each event of the sedimentation on a sloping bed problem,
when solved using three sub-steps per event. The maps on the left depict the result after the first event, while the maps at the middle and
the right columns respectively represent the states after the second and third events. Each maps row shows the accumulated thickness of
the different components: (a) All lithology types; (b) Coarse sand strata; (c) Medium sand deposits; (d) Silt material.
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From the results obtained for the simulations using one or three sub-steps, we ob-

serve that, in the former case, the deposition of each granulometric fraction happens

in blocks within each event, having a clearer horizontal transition between them, as

we can see in Figures 5.34 and 5.35. Besides, most of the coarser fractions deposit

near the inlet region, filling all the available depositional space. In this case, the

small retrogradational-like pattern inside each layer is due to the decay factor fs.

When we use more sub-steps for each event, the coarser grains advance further along

the flow, allowing the finer fractions to deposit more volume in the upstream area,

as seen in Figures 5.37 and 5.38. This produces more pronounced fining-upwards

trends in an event’s deposits. Also, we remark that, independent to the number of

sub-steps employed, the results clearly show the progradation of each event in regard

to the previous one. Furthermore, we argue that the number of sub-steps can be a

convenient tool in reproducing different stacking patterns, specially if allied to the

fact that a sediment supply can provide different amounts of each sediment type.

(a)

(b)

Figure 5.39: View, along a vertical section parallel to the x-direction and placed
in the middle of the simulated region, of the stacking pattern produced at the
sedimentation on a sloping bed problem, when solved using five lithology types and
three sub-steps. (a) Original section. (b) Smoothed section with scaled deposit
thicknesses. The thinnest black lines represent the limits of a sub-step deposit,
while the different types of thicker black lines separate the strata of each event.

To exemplify a more complex stacking pattern that can be reproduced, we sim-

ulate the current scenario using all 5 granulometric factions, but still considering
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the same total sediment volume, and an equal amount of each sediment type. We

show the resulting stacking pattern along a section in Figure 5.39. In this case,

together with a scaled version of bed’s smoothed surface, we also present a view of

the deposited lithology blocks, representing the actual data-structure used in the

algorithm.

5.10 Sedimentation on an Irregular Terrain

We perform event-driven simulations of the formation of the deposits generated by

the accommodation of the sediments brought by a series of turbidity currents. The

region studied is the same one contemplated at Section 5.7, i.e., we simulate flows

arising from the Almirante Câmara canyon. Although the real turbidite deposits in

this region are mainly sandy, we have chosen to employ all five previously mentioned

granulometric fractions (clay, silt and fine, medium and coarse sands) so we can see

the vertical interchange of the different lithologies. Here, remember that, for the

current approach, the properties of the sediments have no impact on the flow and,

hence, on the geometric shape of the deposits. In nature, it is estimated that it

takes thousands of turbidite events along at least a million years to create a single

depositional lobe or seismic horizon in this particular system [112]. However, for

a stratigraphic analysis at a basin scale, the smaller channels and bulbs can be

disregarded. Indeed, we seek to reproduce the larger-scale structural formations

using fewer events.

Initially, we perform two simulations at the stratigraphic application in which

we impose a progradational trend between five events by gradually increasing the

volume available at each one, as done in Section 5.8. In these cases, we consider that

the turbidity currents enter the domain with height h = 5 m. Also, we establish that

the first event has an inflow duration of 10 min, injecting 6 Mm3 into the simulated

region. Then, as we simulate the next four events, the inflow volume and duration

of an event are set as double the amounts conferred to its antecedent. Also, the

total sediment volume supplied to each event is, in sequence, 147 Mm3, 267 Mm3,

508 Mm3, 828 Mm3, 2259 Mm3, which is composed of an equal part of each of the

five employed sediment types.

In the first case, we carry out the simulation using a single sedimentation sub-

step per event. Figure 5.40 shows the map of the top of the deposits after each

event, while Figure 5.41 portrays the obtained deposit thickness. In turn, Figure

5.42 depicts the final thicknesses of the deposits of each sediment type. Then, we

show in Figure 5.43b the stacking pattern we obtained along a vertical section that

follows the white line in Figure 5.43a. The thicknesses of the strata along the section

were scaled by a factor of 50 to aid visualization. Do observe that the layers in the
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bottom are, in general, thinner than the ones near the top of the deposit. This

happens as a result of the compaction of the layers according to their burial.

(a) (b) (c)

(d) (e)

Figure 5.40: Map views of the top of the resulting deposits after each event of the
sedimentation on an irregular terrain problem, computed imposing event prograda-
tion and using one sedimentation sub-step. Here the progression (a) through (e)
represents the sequence of the simulated events.

In sequence, for the second case, we execute the simulation using three sub-

steps per event. We show, in Figure 5.44, the maps of the top of the deposits

after each sub-step, while Figure 5.45 exhibits the obtained deposit thickness. Also,

Figure 5.46 displays the final thickness related to each deposit type. Then, we

present, in Figure 5.47b, the resulting stratification along a vertical section that

follows the white line in Figure 5.47a. Again, we scaled the strata along the section

by a factor of 50 to improve the visualization.

We can observe that the obtained results using one and three sub-steps are in

agreement with the simulations performed in Sections 5.8 and 5.9, where simpler

terrains were considered. In fact, using a single sub-step, the sediments settle in

blocks, producing more localized concentrations of the distinct sediment types, as

we can see in Figure 5.46. On the other hand, with more sub-steps, the deposits

of each sediment type are more spread out horizontally, as seen in Figure 5.46.

Besides, in this case, the fining-upwards trends within each event’s deposits are

more pronounced. It is worth to remember that these trends are a characteristic

of the Bouma sequence [111], which describes the ideal vertical succession of strata

deposited by low-density turbidity currents.

Next, we run a simulation on the stratigraphic application using events with the
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(a) (b)

(c) (d)

(e)

Figure 5.41: 3D views of the obtained deposit thicknesses after each event of the
sedimentation on an irregular terrain problem, computed imposing event prograda-
tion and using one sedimentation sub-step. Here the progression (a) through (e)
represents the sequence of the simulated events.

same base characteristics and three sedimentation sub-steps. Here, the current asso-

ciated with each event enters the domain with h = 5 m, injecting a total of 96 Mm3

into the region in 160 min. We perform six simulation steps of the stratigraphic

application, considering a single event at the each of the first four steps. In these

steps, we provide to each event a total sediment volume of 1167 Mm3, which is evenly

split between all five sediment types. Then, in the fifth step, we simulate two events
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(a) (b)

(c) (d)

(e)

Figure 5.42: 3D views of the final deposit thicknesses associated with each sediment
type of the sedimentation on an irregular terrain problem, computed imposing event
progradation and using one sedimentation sub-step. (a) Coarse sand; (b) Medium
sand; (c) Fine sand; (d) Silt; (e) Clay.

with the recurrence of four years. In this case, the simulated current advanced fur-

ther than in the previous events. Hence we provided more sediments to the event,

composing a total of 2334 Mm3, so that we fill most of the accommodation space

determined by the maximum point-wise current heights. At last, in the final step,

we took into account four events, using the same parameters employed in the pre-

vious one. We show the final deposit thickness associated with each sediment type
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(a)

(b)

Figure 5.43: (a) shows the position of the white line along which we extracted the
vertical section displayed in (b), containing the stacking pattern obtained at the
sedimentation on an irregular terrain problem, computed imposing event prograda-
tion and using one sedimentation sub-step. Layer thicknesses in (b) were scaled by
a factor of 50 to aid visualization.

in Figure 5.48 and show the stacking pattern obtained along a vertical section in

Figure 5.49. Although we did not impose a progradational trend between events, we

obtained progradational depositional patterns, while also keeping a fining-upwards

trend within each event’s deposits.

We compare our result with the map of sedimentary facies at the modern seabed

presented by MACHADO et al. [112] in Figure 5.50, which overlays the shape of

the real turbidite system onto the deposit thickness map we obtained. We observe

that the actual path of the proximal trough agrees with the simulated deposits.

Additionally, the real turbidite lobe is well represented by the increase in the de-

position area before the current reenters a channel. In our simulation, the flow did

not advance further due to the chosen boundary conditions. However, we remark

that different deposit geometries and stacking patterns can be recreated by wisely

selecting the input parameters. For instance, increasing (or decreasing) the event

volume or specific discharges, or changing the available sediment supply would pro-
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(a)

(b)

(c)

(d)

(e)

Figure 5.44: Map views of the top of the resulting deposits after each event of the
sedimentation on an irregular terrain problem, computed imposing event progra-
dation and using three sub-steps. Here the progression (a) through (e) represents
the sequence of the simulated events, while the maps from left to right mark the
sub-steps succession.

duce distinct outcomes. Therefore, we ascertain that our approach can reproduce

stacking patterns common in sequence stratigraphy, and can recreate depositional

features of turbidite systems.

101



(a) (b)

(c) (d)

(e)

Figure 5.45: 3D views of the obtained deposit thicknesses after each event of the
sedimentation on an irregular terrain problem, computed imposing event prograda-
tion and using three sub-steps. Here the progression (a) through (e) represents the
sequence of the simulated events.
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(a) (b)

(c) (d)

(e)

Figure 5.46: 3D views of the final deposit thicknesses associated with each sediment
type of the sedimentation on an irregular terrain problem, computed imposing event
progradation and using three sub-steps. (a) Coarse sand; (b) Medium sand; (c) Fine
sand; (d) Silt; (e) Clay.
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(a)

(b)

Figure 5.47: (a) shows the position of the white line along which we extracted the
vertical section displayed in (b), containing the stacking pattern obtained at the
sedimentation on an irregular terrain problem, computed imposing event prograda-
tion and using three sub-steps. Layer thicknesses in (b) were scaled by a factor of
50 to aid visualization.
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(a) (b)

(c) (d)

(e)

Figure 5.48: 3D views of the final deposit thicknesses associated with each sediment
type of the sedimentation on an irregular terrain problem, computed using three
sub-steps per event. (a) Coarse sand; (b) Medium sand; (c) Fine sand; (d) Silt; (e)
Clay.
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(a)

(b)

Figure 5.49: (a) shows the position of the white line along which we extracted
the vertical section displayed in (b), containing the stacking pattern obtained at
the sedimentation on an irregular terrain problem, computed using three sub-steps
per event. Here the thicker lines mark the transition between each stratigraphic
application’s simulation step. Layer thicknesses in (b) were scaled by a factor of 50
to aid visualization.
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(a)

(b)

Figure 5.50: (a) Map view of the deposit thickness by the end of the simulation of
the sedimentation on an irregular terrain problem, computed using three sub-steps
per event; (b) Overlay of the real turbidite system presented by MACHADO et al.
[112] (in black) onto the obtained deposit thickness map.
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Chapter 6

Conclusions and Future Work

We proposed a new event-driven approach to simulate the formation of turbidite

depositional systems at stratigraphic scale. Indeed, we couple a process-based dy-

namic flow model with a practical sedimentation technique. The obtained results

suggest good applicability to the stratigraphic scale.

The adopted turbidity current flow model is based on the shallow water approxi-

mation and considers an augmented friction coefficient to account for the drag forces

at the water-current and current-bed interfaces. In this context, to solve the gov-

erning equations, we developed an original finite element flux-corrected transport

scheme. Its low-order formulation is built by adding a novel Rusanov-like scalar dis-

sipation scaled by a shock-capturing operator to standard Galerkin equations. This

artificial diffusion depends on the hydrostatic reconstruction of the current height

and specific discharges. The use of the latter reduces the diffusion near dry/wet

fronts to avoid fluid incorrectly jumping into dry regions. Indeed, it nullifies the dif-

fusion for current heights smaller than the cut-off discussed in Section 2.6. Besides,

our results suggest that the presented shock detector yields better results than the

ones introduced by BASTING and KUZMIN [90] and GUERMOND et al. [87].

Next, the high-order system is composed by summing, to the low-order one,

limited anti-diffusive fluxes linearized around the low-order solution. Limiting is

performed with a Zalesak-type flux limiter that considers the hydrostatic recon-

struction of the fluid’s height, together with a minmod prelimiter. In this regard,

we concluded that, for the shallow water equations, the minmod prelimiter should

be applied to each flux component individually. In contrast, the correction factors

computed by the flux limiter should be synchronized by the factor relative to the

current height component. An iterative nonlinear implicit time integration scheme

with source term linearization is employed in both the high- and low-order systems.

Besides, in this work, all finite element related implementations were assisted by

the deal.II [55] library and its module for parallel computing with shared memory

devices.
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During a simulation, as the fluid’s height tends to zero, velocities are desingular-

ized using a cut-off value based on the local ratio between element and mesh sizes.

Also, we correct the bed elevation at dry nodes to avoid unnatural dynamics due to

the discretization of the current and bed surfaces. We showed that this procedure,

initially applied by BRUFAU and GARCÍA-NAVARRO [93] to triangular elements,

also produces excellent results with quadrilateral elements. Plus, we found that the

correction can be performed for each element individually. When assembling an el-

ement’s matrix contributions, the correction can be based only on its nodal values,

without the need to ever iterate through all the elements adjusting each nodal bed

elevation. In addition, we linearly vary the bed friction near the bed to help stabilize

the flow and adaptively update the time steps throughout the simulation to enforce

a maximum CFL constraint and to help preserve the current height positivity.

We compared our approach with a stabilized finite element formulation and found

that the FCT scheme is more robust, presenting good results in all the tested cases.

Regarding the stabilized method, the Y Zβ technique also produced plausible results.

However, its usage requires some tweaking with the reference values for the variables

h, qx and qy. We remark that the perturbations it created past the advancing wave-

front in Section 5.4 might have a more significant impact on simulations with dry

and wet cells. For the example in Section 5.5, it made some fluid go up the larger

bump and produced negative height values at some dry points. Thus, this method

might be unsuitable to regions with more irregular terrains and more complex flow

dynamics. All in all, the results of our flow solver indicate mass conservation and a

good agreement with analytical solutions and simulations performed by others.

In sequence, the new sedimentation algorithm, which was based on the works

of CARVALHO et al. [7–9], is coupled to the flow solver. In this context, one of

our main contributions is using more accurate flow lines since our flow simulation is

based on the actual physical transient process, also accounting for bed friction effects,

instead of considering a simplified steady-state equilibrium. Plus, our approach

allows the simulation of currents entering an aqueous body, as opposed to only

computing the flow of a water body. These features, allied to the proposed event-

driven framework, makes our work more suitable for turbidite systems.

Moreover, as we carry sediments along streaklines, we radially scatter them from

each grid cell traversed, instead of only depositing along the lines. Also, here we

further constrain the space available for sediment accommodation by each event’s

point-wise maximum current height. Nevertheless, for the deposition, we do not

assess the stability angle of each lithology, since we assume it is indirectly enforced

by the limit on the vacant depositional space. However, when we radially spread

sediments from a cell crossed by a streakline, we gradually reduce the accommoda-

tion space as we distance from it. In practice, this constraint has an effect similar
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to considering a stability angle. In addition, to try to reproduce stacking patterns

seen in real turbidite systems, we allow the deposition of a single event to be made

in sub-steps that yet have more limited accommodation spaces. Finally, after the

deposition step of each event, we compact the deposited sediment layers as a result

of the new overburden.

The streaklines used in the sedimentation operation are computed with a new

strategy in which points/particles are adaptively added or removed. New particle po-

sitions are interpolated using centripetal Catmull-Rom splines and evolved through

time with a 4th-order Runge-Kutta scheme. An efficient method to track the cell

that contains each point is adopted to speed up the interpolation of properties on a

point’s position for its displacement.

All the meshes used in the test problems were created with the Gmsh [108]

application. In the Almirante Câmara’s case, the employed mesh is created by

remeshing the underwater region of a 2D regular grid coming from an external

stratigraphic application. To this end, we developed a procedure that defines the

boundary of the simulation mesh using B-spline patches whose control points come

from the original grid.

In terms of future works, one possible approach is to enhance the adopted phys-

ical and numerical models. For instance, it is known that turbulence effects con-

stitute a relevant mechanism in turbidity current dynamics. Thus, a turbulence

model, such as the Smagorinsky scheme [132], could improve our results. Another

action would be to compute the turbidity current’s density and viscosity based on

its water/sediment composition. Also, erosive forces could even be contemplated.

In this case, a potential plan of attack is to create a pseudo-heuristic based on the

Hjusltröm diagram [133] and the point-wise maximum flow speed during each event.

Furthermore, we also could derive and implement a two-layer shallow-water

model where the hydrostatic hypothesis is applied within each layer. This type of

model can be employed to simulate flows with different densities [36] and tsunamis

generated by landslides [134]. In the latter case, one bottom layer refers to the land-

slide, considered as an incompressible liquid, and the other is the seawater. One

known issue with this kind of model is that the system is conditionally hyperbolic

due to the coupling terms between the layers [60–62]. Also, if the velocities of the

two layers are too different, it is expected that Kelvin-Helmholtz instabilities arise

in the interface between them.

Another suggestion is to consider a depth-averaged non-hydrostatic extension

for the shallow water equations. In this sense, JESCHKE et al. [135] proved that

the use of a quadratic vertical pressure profile makes the system correspondent to

the fully nonlinear weakly dispersive Boussinesq-type equations. A distinct issue

concerns the imposition of consistent absorbing (or transparent) boundary condi-
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tions throughout the simulation, which is usually done based on the analysis of the

incoming characteristic waves. These constraints can reduce the simulation error

and improve convergence rates [136, 137]. However, their implementation can be

a particularly daunting task in complex simulations where different parts of the

boundary switch between inlet/outlet or subcritical/supercritical states.

We can find additional courses for improvements in speeding up the simulation.

For example, we could adaptively refine/coarse the mesh to optimally distribute

computational effort between different regions. Following a similar rationale, dry

elements far from dry/wet interfaces could be left out of computation, not being

assigned any degree of freedom. Thus, as the current is flooding into an initially dry

region, a much smaller system of equations would have to be assembled and solved.

At last, although we employed deal.II’s module for parallelism on shared memory

devices, the use of clusters with distributed memory still has not been addressed.

Finally, we suggest further study should be performed to better understand the

impact of different parameters and boundary conditions on the resulting deposits.

For instance, using the same bathymetry, we could evaluate how the deposits change

if we simulate more events with shorter durations, instead of less and longer events.

This type of analysis may need to be region dependent, leading to the assessment

of the model’s applicability in different areas of interest.
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[43] ALMEIDA, R. C., GALEÃO, A. C. “An adaptive Petrov-Galerkin formulation

for the compressible Euler and Navier-Stokes equations”, Computer Meth-

ods in Applied Mechanics and Engineering, v. 129, n. 1-2, pp. 157–176,

1996. ISSN: 0045-7825. doi: 10.1016/0045-7825(95)00858-6.

[44] BORIS, J. P., BOOK, D. L. “Flux-corrected transport. I. SHASTA, a fluid

transport algorithm that works”, Journal of Computational Physics, v. 11,

n. 1, pp. 38–69, 1973. ISSN: 0021-9991. doi: 10.1016/0021-9991(73)

90147-2.

[45] KUZMIN, D., MÖLLER, M., TUREK, S. “Multidimensional FEM-FCT

schemes for arbitrary time stepping”, International Journal for Numerical

Methods in Fluids, v. 42, n. 3, pp. 265–295, 2003. doi: 10.1002/fld.493.

[46] SHEU, T. W. H., FANG, C. C. “High resolution finite-element analysis of

shallow water equations in two dimensions”, Computer Methods in Applied

Mechanics and Engineering, v. 190, n. 20–21, pp. 2581–2601, 2001. ISSN:

0045-7825. doi: 10.1016/S0045-7825(00)00255-3.

[47] ORTIZ, P., ANGUITA, J., RIVEIRO, M. “Free surface flows over partially

erodible beds by a continuous finite element method”, Environmental

Earth Sciences, v. 74, n. 11, pp. 7357–7370, Dec. 2015. ISSN: 1866-6299.

doi: 10.1007/s12665-015-4730-y.

[48] KUZMIN, D. “Explicit and implicit FEM-FCT algorithms with flux lineariza-

tion”, Journal of Computational Physics, v. 228, n. 7, pp. 2517–2534,

2009. ISSN: 0021-9991. doi: 10.1016/j.jcp.2008.12.011.
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Appendix A

Useful Definitions

In this chapter, we present some definitions that are useful to improve the under-

standing of certain parts of the thesis.

A.1 Derivatives at the Flux and Transformation

Jacobian Matrices

To give the reader the gist of how to compute the derivatives with respect to U

that define the Jacobian fluxes presented in Section 2.1.6 and the inverse Jacobian

matrix of the transformation from entropy to conservation variables introduced in

Section 2.3, we demonstrate the derivation of some of the required terms. Alto-

gether, the crucial point is not to forget that the depth-averaged velocities ū and v̄

depend on h. Therefore, we exemplify:

∂ū

∂h
=

∂

∂h

(
1

h

∫ η

zb

u dz

)
= − 1

h2

∫ η

zb

u dz = − ū
h
, (A.1)

∂ū

∂(hū)
=

∂

(
1

h

∫ η
zb
u dz

)
∂
(∫ η

zb
u dz

) =
1

h
, (A.2)

∂(hū2)

∂h
=

∂
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[
1

h

(∫ η

zb

u dz

)2
]

=

(∫ η
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u dz

)2
∂h−1

∂h
=

= − 1

h2

(∫ η

zb

u dz

)2

= −ū2, (A.3)
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∂(hūv̄)

∂h
=

∂
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[
1

h

(∫ η

zb

u dz

)(∫ η
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v dz

)]
=
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u dz

)(∫ η

zb

v dz

)
∂h−1
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=

= − 1
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v dz
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∂(hūv̄)

∂(hū)
=
∂(hū)

∂(hū)
v̄ + hū

�
�
���

0
∂(v̄)

∂(hū)
= v̄. (A.6)

A.2 Matrix Vectorization

The vectorization of a matrix is a linear transformation that converts it into a

column vector. Let A be a matrix of dimensions m× n. Its vectorization, denoted

by vec(A) is the column vector of size mn obtained by the juxtaposition of all its

columns. For example, if we have:

A =

[
a11 a12

a21 a22

]
, (A.7)

the vectorized matrix is:

vec(A) =
[
a11 a21 a12 a22

]T
. (A.8)

The vectorization operation can be employed together with the Kronecker prod-

uct - which is denoted by ⊗ and introduced in Section A.3 - to express matrix

multiplications as a linear transformation. In this sense, if we also consider the

matrices B and C, whose respective dimensions are n× p and p× q, the following

equations are valid:

vec(AB) = (Ip ⊗A) vec(B) = (BT ⊗ Im) vec(A), (A.9)

vec(ABC) = (CT ⊗A) vec(B) = (Iq ⊗AB) vec(C) =

= (CTBT ⊗ Im) vec(A),
(A.10)

where Im denotes the m-th order identity matrix.

A.3 Kronecker Product

The Kronecker product between two matrices is an operation that results in a block

matrix. It is closely related to the standard tensor product. Thus, using the index

notation, initially consider the basis vectors ea, eb, ..., ey and ez, and the tensors

A = aab..leaeb · · · el and B = bmn..zemen · · · ez. The tensor product between A and
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B is given by:

A⊗B = aab..lbmn..zeaeb · · · ez. (A.11)

If these tensors are of second-order, or, equivalently, if they represent matrices, we

have A = aijeiej and B = bklekel, and hence:

A⊗B = aijbkleiejekel. (A.12)

The resulting tensor can be written in matrix notation if we employ the Kronecker

product. If A and B are, respectively, matrices of dimensions m× n and p× q, we

get:

A⊗B =


a11B · · · a1mB

...
. . .

...

am1B · · · amnB

 . (A.13)

At this point, we remark that the Kronecker product is not strictly a tensor

product. It provides the result of the operation on a standard basis so that it can

be represented as a matrix. In the previous example, the product A ⊗ B should

have returned a fourth-order tensor under the bases ei, ej, ek and el. However,

we obtained a second-order tensor (a matrix) with respect other two bases. To

exemplify the use of the operator, we can consider the 2× 2 matrices:

A =

[
a11 a12

a21 a22

]
, B =

[
b11 b12

b21 b22

]
, (A.14)

and compute:

A⊗B =


a11

[
b11 b12

b21 b22

]
a12

[
b11 b12

b21 b22

]

a21

[
b11 b12

b21 b22

]
a22

[
b11 b12

b21 b22

]
 =


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 .
(A.15)

At last, among the properties of the Kronecker product, we can list:

• Inverse matrix: (A⊗B)−1 = A−1 ⊗B−1. (A.16)

• Transpose matrix: (A⊗B)T = AT ⊗BT . (A.17)

• Determinant: For the square matrices A and B, of dimensions m × m and

p× p: |A⊗B| = |A|m |B|p. (A.18)
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Appendix B

Hypotheses Evaluations

This chapter comprises the evaluation of some hypotheses made in previous chapters

of the thesis.

B.1 SPD Jacobian Matrix of the Transformation

from Conservation to Entropy Variables

We show that the Jacobian matrix of the transformation from conservation to en-

tropy variables is symmetric positive definite (SPD) for positive current heights, i.e.,

for h > 0. The matrix in question is:

ÃAA
−1

0 =
1

h

g
′h+ u2 + v2 −u −v
−u 1 0

−v 0 1

 . (B.1)

We compute its eigenvalues λ1, λ2 and λ3, which are the solutions of the equation:

det(hÃAA
−1

0 − hλI3) = 0, (B.2)

where det(..) is the determinant operator. Thus, we solve:∣∣∣∣∣∣∣
(g′h+ u2 + v2)− hλ −u −v

−u 1− hλ 0

−v 0 1− hλ

∣∣∣∣∣∣∣ = 0,

∴ (1− hλ)
[
(1− hλ)(g′h+ u2 + v2 − hλ)− u2 − v2

]
= 0. (B.3)

So, if (1− hλ) = 0, the equation holds for the eigenvalue:

λ1 =
1

h
. (B.4)
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Otherwise, we have:

(1− hλ)(g′h+ u2 + v2 − hλ)− u2 − v2 = 0

∴ hλ2 − αλ+ g′h = 0, (B.5)

with α = (g′h+u2 +v2 +h) > 0. Solving the previous quadratic equation, we obtain

the other two eigenvalues:

λ2 =
α +

√
α2 − 4g′h2

2h
and λ3 =

α−
√
α2 − 4g′h2

2h
. (B.6)

As ÃAA
−1

0 is symmetric and all its entries are real-valued, the Spectral Theorem states

that all its eigenvalues are also real numbers. This fact can be easily verified for

a symmetric matrix S. Let the superscript ∗ denote the element-wise complex

conjugate function and take into account the eigenequation Sv = λv. Then, note

that (Sv)∗ = Sv∗ = λ∗v∗, since S only has real entries. In this context, consider

the following relation:

λ(vTv∗) = (λv)Tv∗ = (Sv)Tv∗ = vTSTv∗ = vTSv∗ = vTλ∗v∗ = λ∗(vTv∗)

∴ λ = λ∗, (B.7)

which is only true if λ ∈ R. As a result, α2 − 4gh2 ≥ 0 and, thus, λ2 is a positive

real value. Next, observing that
√
α2 − 4g′h2 ≤

√
α2 ≤ α, we can also see that

λ3 > 0. Therefore, all the matrix’s eigenvalues are positive real values and hence

ÃAA
−1

0 is SPD for h > 0.

B.2 Mass-Preserving Lumped Mass Matrix

We show that we can replace the consistent mass matrix in Equation (2.102) with

the row-sum lumped mass matrix while preserving the global mass. That is, we can

rewrite: ∑
j

mij
∂vj
∂t

= −
∑
j

dijvj + fi (B.8)

as:

mi
∂vi
∂t

= −
∑
j

dijvj + fi, (B.9)

where mi =
∑

jmij.

Initially, we observe that the entries of the consistent mass matrix are defined

by:

mij =

∫
Ω

NiNj dΩ, (B.10)
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where Ni is the shape function associated with the i-th mesh node. For finite

elements, we have
∑

iNi = 1 at any point inside the domain Ω. In turn, the values

of the lumped diagonal matrix are given by:

mi =
∑
j

mij =
∑
j

∫
Ω

NiNj dΩ =

∫
Ω

Ni

(∑
j

Nj

)
dΩ =

∫
Ω

Ni dΩ. (B.11)

Therefore, the global mass is preserved when switching between the consistent and

lumped mass matrices in the sense that:

∑
i

∑
j

mijvj =
∑
i

∑
j

(∫
Ω

NiNj dΩ

)
vj =

∑
j

[∫
Ω

(∑
i

Ni

)
Nj dΩ

]
vj =

=
∑
j

(∫
Ω

Nj dΩ

)
vj =

∑
j

mjvj =
∑
i

mivi. (B.12)

B.3 Zero Row-Sum Property of the Generalized

Stiffness Matrix

We show that the generalized stiffness matrix:

D =

∫
Ω

[
NT (Ah · ∇)N +∇NT · (K∇N )

]
dΩ, (B.13)

defined in Section 2.2, has zero block-wise row sums.

However, we initially examine the simpler stiffness matrix of a scalar equation

analogous to the multidimensional system (2.74). In this case,N = {Ni},D = {dij}
and ah and k are the scalar problem equivalents to the Ah advection matrix and the

K diffusivity matrix. We can perform row-wise sums of the advection contribution:

∑
j

∫
Ω

Ni(a
h ·∇)Nj dΩ =

∫
Ω

Ni(a
h ·∇)

∑
j

Nj dΩ =

∫
Ω

Ni(a
h ·∇)1 dΩ = 0, (B.14)

and of the diffusion component:

∑
j

∫
Ω

∇Ni · (k∇Nj) dΩ =

∫
Ω

∇Ni ·

[
k∇

(∑
j

Nj

)]
dΩ =

∫
Ω

∇Ni · (k∇1) dΩ = 0, .

(B.15)

Together, Equations B.14 and B.15 prove that the stiffness matrix of the scalar

problem has zero row sums, i.e.,
∑

j dij = 0. Additionally, note that we cannot

guarantee that D has zero column sums because, unlike the diffusion contribution,

the advection term does not meet this condition.
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In sequence, going back to the original multidimensional problem, observe that

N = {N i} = {NiI3} and D = {Dij}, where Dij are 3×3 matrices. We argue that∑
jDij = 0, ∀i. On these grounds, we sum the rows of the advection part:

∑
j

∫
Ω

N i(A
h · ∇)N j dΩ =

∫
Ω

N i(A
h · ∇)

∑
j

N j dΩ =

∫
Ω

N i(A
h · ∇)I3 dΩ = 0,

(B.16)

and of the diffusion contribution:

∑
j

∫
Ω

∇N i · (K∇N j) dΩ =

∫
Ω

∇N i ·

[
K∇

(∑
j

N j

)]
dΩ =

=

∫
Ω

∇N i · (K∇I3) dΩ = 0, (B.17)

showing that the matrix D has zero block-wise row sums.

B.4 Non-Negative Diagonal Entries of Positive

Definite Matrices

We show that positive definite matrices must have non-negative diagonal entries.

By definition, a matrix M = {mij} is positive definite if:

vTMv > 0, ∀v ∈ Rn\0. (B.18)

Now, suppose an arbitrary diagonal entry is non-positive, i.e., mii ≤ 0 for a given

i. Then, we can choose a vector v whose values are zero, except for the i-th entry,

which assumes a positive value. In this case, the product vTMv is non-positive. As

an example, for a 3× 3 matrix M , if v = [0 1 0]T and m22 = −1:

[
0 1 0

]m11 m12 m13

m21 −1 m23

m31 m32 m33


0

1

0

 = −1 ≤ 0. (B.19)

Therefore, as condition (B.18) must hold for all non-zero vectors v, we conclude that

positive definite matrices never have non-positive diagonal values. Otherwise, it is

always possible to choose a vector v that renders the product vTMv non-positive.

Similarly, the same rationale can be employed to show that negative definite matrices

always have non-positive diagonal entries.
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Appendix C

Parametric Streakline Curves

We define the parametric curves used to interpolate new streakline nodes, as in-

troduced in Section 3.2. Consider the line segment p1p2 that has adjacent points

p0 and p3, and is illustrated in Figure 3.1 . We approximate the continuous curve

f : R→ R2 between p1 and p2 with a centripetal Catmull-Rom spline [106], defined

by:

f(s) =
r2 − r
r2 − r1

b1 +
r − r1

r2 − r1

b2 , ∀s ∈ [0, 1], (C.1)

where:

r = (1− s)r1 + s r2 ,

r2 = ‖p2 − p1 ‖+ r1 ,

b1 =
r2 − r
r2

a1 +
r

r2

a2 ,

a1 =
r1 − r
r1

p0 +
r

r1

p1 ,

r1 = ‖p1 − p0 ‖ ,

r3 = ‖p3 − p2 ‖+ r2 ,

b2 =
r3 − r
r3 − r1

a2 +
r − r1

r3 − r1

a3 ,

a2 =
r2 − r
r2 − r1

p1 +
r − r1

r2 − r1

p2 ,

(C.2)

a3 =
r3 − r
r3 − r2

p2 +
r − r2

r3 − r2

p3.

In the cases we linearly interpolate between p1 and p2, we consider the function:

f(s) = p1 + s(p2 − p1), ∀s ∈ [0, 1] . (C.3)

Do note that f(0) = p1 and f(1) = p2 in both curve types.
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Appendix D

Predictor/Multi-corrector

Algorithm

We present a deduction for the predictor/multi-corrector algorithm introduced by

ALIABADI and TEZDUYAR [77]. For an analysis of the stability and precision

of such algorithm, we refer to the work of HUGHES and TEZDUYAR [138]. We

consider the semi-discrete dynamic system:

MAc = −DV + F , (D.1)

where V contains the problem’s unknowns whose time derivatives are denoted by

Ac. Also, M is a generalized mass matrix and D and F , which might depend on

V , are, respectively, generalized stiffness and source matrices.

We employ the predictor/multi-corrector algorithm to iteratively advance the

solution a time step of ∆t = tn+1 − tn from its current state V n to the next V n+1.

For each m-th iteration, with m ∈ {0, 1, 2, ..}, it solves the equation:

MA(m+1)
c = −D(m)V (m+1) + F (m), (D.2)

obtaining the (m+1)th solution. After the last iteration, we assign V n+1 = V (m+1).

With this objective, first we use the generalized trapezoidal method to discretize

∂V /∂t = Ac between the current and next solution states:

V n+1 = V n + (1− θ)∆tAn
c + θ∆tAn+1

c , (D.3)

where θ = 0.5 is a parameter that controls the stability and precision of the method.

Then, we define An+1
c as the sum of the consecutive corrections on Ac, which are
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performed in each iteration:

An+1
c =

∑
m

∆A(m)
c , ∆A(m)

c = A(m+1)
c −A(m)

c . (D.4)

Thus, in each iteration, its current value can be updated by:

A(m+1)
c = A(m)

c + ∆A(m)
c . (D.5)

For consistency with (D.3), we define

A(0)
c = 0. (D.6)

Hence, we get:

V n+1 = V n + (1− θ)∆tAn
c + θ∆t

∑
m

∆A(m)
c . (D.7)

If we define:

V (0) = V n + (1− θ)∆tAn
c , (D.8)

we can obtain an expression for the update on V in each iteration:

V (m+1) = V (m) + θ∆t∆A(m)
c = V (m) + θ∆t

(
A(m+1)
c −A(m)

c

)
. (D.9)

Then, from (D.2) and (D.9):

MA(m+1)
c = −D(m)

[
V (m) + θ∆t

(
A(m+1)
c −A(m)

c

)]
+ F (m)

∴MA(m+1)
c = −D(m)V (m) − θ∆tD(m)

(
A(m+1)
c −A(m)

c

)
+ F (m). (D.10)

Subtracting MA(m)
c from both sides of the equation:

M
(
A(m+1)
c −A(m)

c

)
+ θ∆tD(m)

(
A(m+1)
c −A(m)

c

)
=

−
(
MA(m)

c +D(m)V (m)
)

+ F (m)

∴
(
M + θ∆tD(m)

)(
A(m+1)
c −A(m)

c

)
= −

(
MA(m)

c +D(m)V (m)
)

+ F (m)

∴M ∗
(

∆A(m)
c

)
= R(m), (D.11)

with:

M ∗ = M + θ∆tD(m), (D.12)

R(m) = −
(
MA(m)

c +D(m)V (m)
)

+ F (m), (D.13)
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where M ∗ is a effective mass matrix and R(m) is the residual of (D.1) at the m-th

iteration.

Therefore, in the prediction phase of the algorithm, we perform the initializations

in (D.6) and (D.8). Then, during the correction phase, at each iteration, we assemble

and solve (D.11) for ∆A(m)
c . The result is used to update the current solution

utilizing (D.5) and (D.9). A summary of the algorithm is presented in Algorithm 1,

which is reproduced here for clarity.

Algorithm 1 Predictor/multi-corrector algorithm employed for the time integration
in the stabilized method. Here we assign Ac = ∂V /∂t.

• Prediction phase:

1: A(0)
c = 0.

2: V (0) = V n + (1− θ)∆tAn
c .

• Correction phase

3: for m = 0, 1, 2, ... until the convergence criteria is met, do:
4: R(m) = −(MA(m)

c +D(m)V (m)) + F (m).
5: M∗ = M + θ∆tD(m).
6: Solve M∗(∆A(m)

c ) = R(m).
7: A(m+1)

c = A(m)
c + ∆A(m)

c .
8: V (m+1) = V (m) + θ∆t∆A(m)

c .
9: end for.

10: An+1
c = A(m+1)

c

11: V n+1 = V (m+1)
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Appendix E

Exact Solution of the Transcritical

Flow with a Shock Problem

Here we discuss the exact solution of the transcritical flow with a shock problem

introduced in Section 5.2. We consider a 1D region delimited by x ∈ [0, 25] m and

whose bed elevation is:

zb(x) =

0.2− 0.05(x− 10)2, if 8 m < x < 12 m,

0, otherwise.
(E.1)

As previously stated, we can solve Equations (5.7)-(5.9) to obtain a solution. How-

ever, doing so requires further knowledge about the problem, which is often not

provided in other works that also present numerical solutions. Therefore, we derive

the exact steady-solution of a 1D transcritical flow that presents a hydraulic shock.

We start from the steady shallow water equations:

∂q

∂x
= 0, (E.2)

∂

∂x

(
hu2 +

gh2

2

)
= −gh∂zb

∂x
, (E.3)

where u is the fluid’s depth-averaged velocity, q = hu is its specific discharge, zb is

the bed elevation and g is the gravitational acceleration. If we consider the domain

x ∈ [0, L] and prescribe q(x = 0) = q0, Equation (E.2) results in q = q0. Then,
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Equation (E.3) can be written as:

(−u+ gh)
∂h

∂x
= −gh∂zb

∂x

∴

(
− q

2

h2
+ gh

)
∂h

∂x
= −gh∂zb

∂x

∴

(
q2

0

gh3
− 1

)
∂h

∂x
=
∂zb
∂x

∴ − q
2
0

2g

∂h−2

∂x
− ∂h

∂x
=
∂zb
∂x

. (E.4)

Integrating (E.4) between two positions labeled 1 and 2, we obtain:

− q2
0

2gh2
2

+
q2

0

2gh2
1

− h2 + h1 = zb2 − zb1 , (E.5)

from which we infer that:

h+
q2

0

2gh2
+ zb = constant (E.6)

throughout the domain. Also, if we consider the specific energy:

E = h+
q2

0

2gh2
, (E.7)

we have:

E + zb = constant. (E.8)

This implies that if we increase the bed elevation by ∆z from one position 1 to

another 2 along the flow, we are decreasing the specific energy by the same amount,

i.e., E2 = E1 −∆z.

For a given q0, Figure E.1 presents the general form of the curve (E.7). The point

with specific energy Ec and fluid height hc marks the transition between subcritical

and supercritical flow states. The related critical value is represented by the ratio

of the flow speed and the velocity of a small amplitude gravity wave, which is given

by the Froude number:

Fr =
u√
gh

=
q√
gh3

. (E.9)

Flows with Fr > 1 are said to be supercritical while those with Fr < 1 are sub-

critical. Subcritical flows are deeper and slower, having more potential than kinetic

energy. Meanwhile, supercritical flows are shallower and faster, with more kinetic

than potential energy.
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Figure E.1: Plot of the energy-height curve for flows in a 1D channel. It show
the critical height and energy values, and the intervals of the curve that denote
subcritical or supercritical regimes.

The critical height hc can be computed by minimizing the energy equation (E.7):

dE

dh
= 0 ∴ 1− q2

0

gh2
c

= 0 ∴ hc =

(
q2

0

g

)1/3

. (E.10)

Next, we replace the relation q2
0 = gh3

c obtained from (E.10) into (E.7) to define the

critical specific energy as a function of the critical height:

Ec =
3

2
hc. (E.11)

Before defining the exact solution for the case with a transcritical flow with a

shock, we initially examine the solution of a subcritical flow and a transcritical flow,

building up to the more complex solution of the target scenario.

For the subcritical flow, consider the Figure E.2 that depicts the expected profile

of the solution. We consider the boundary conditions q(x = 0) = q0 = 4.42 m2 s−1

and h(x = L) = 2 m and the initial conditions q(x) = q0 and h(x) = hL. If we apply

the Bernoulli equation (E.6) between x = L and any other position, we get:

h+
q2

0

2gh2
+ zb = hL +

q2
0

2gL2

∴ h3 +

(
zb −

q2
0

2gh2
L

− hL
)
h2 +

q2
0

2g
= 0, ∀x ∈ [0, L], (E.12)

from where we can obtain three values for h(x). One solution is negative and can

discarded because it does not have any physical meaning. The other two repre-

sent solutions with subcritical and supercritical regimes. Hence, we need further

knowledge about the resulting flow regime to select the actual solution value for h.

First, we compute the critical fluid height hc = 1.2581 from (E.10) and observe

that the initial fluid heights at the positions 0, 1 and 2 in Figure E.2 are subcritical.

Then we compute the solution h0 = 2 m from (E.12) to keep the flow subcriti-

cal and the associated specific energy E0 = 2.2489 m. Downstream of this point,
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Figure E.2: Representation of the solution of the subcritical flow in a 1D channel
with a bump.

the flow can only become supercritical if the energy is minimized to the critical

value Ec = 1.8872 m, computed with (E.11). However, the maximum bed elevation

∆zmax = 0.2 m is not enough to reduce E0 to Ec and thus the flow remains subcrit-

ical in all the domain. For the present case, in the energy-height diagram in Figure

E.3, the flow goes from the state A to B as it climbs the mound, coming back to A

downstream.

Figure E.3: Energy-height diagram for the subcritical flow in a 1D channel over a
bump. The points A and B indicate different states of the fluid along the channel.

The next case we examine is the transcritical flow whose solution profile is illus-

trated in Figure E.4. We apply the initial conditions q(x) = q0 = 1.53 m2 s−1 and

h(x) = hL = 0.66 m and the boundary condition q(x = 0) = q0. In addition, while

the flow is subcritical, we enforce h(x = L) = hL. To start, we compute the critical

values hc = 0.6202 m and Ec = 0.9303 s. Then, we note that, as the fluid flows

over the bump, the specific energy is reduced by ∆zmax = 0.2 m before reaching the

position 1 in Figure E.4. Also, using the initial fluid height, we compute the specific

energy E0 = 0.9339 s at the position 0 by the start of channel in Figure E.4. These

data show that, at first, as the initial subcritical flow passes over the bump, the

specific energy would be less than the critical value (E0 −∆zmax < Ec), indicating

that it does not have the energy needed to surpass the bump. Thus, as the fluid

inflows, h0 increases until hc (and Ec) is obtained at the position 1 and the fluid

overpasses the mound in a supercritical regime.

To compute the exact solution, we apply the Bernoulli equation (E.6) between
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Figure E.4: Representation of the solution of the transcritical flow in a 1D channel
with a bump.

position 1, denoted as xc, and any other position and get:

h+
q2

0

2gh2
+ zb = hc +

q2
0

2gh2
c

+ zbmax

∴ h3 +

(
zb −

q2
0

2gh2
c

− hc − zbmax

)
h2 +

q2
0

2g
= 0, ∀x ∈ [0, L], (E.13)

which we solve, obtaining three values for h. The negative solution is discarded

by default, while we choose the value relative to a subcritical or a supercritical

state according to whether it is associated with a position, respectively, upstream

or downstream of xc. In Figure E.5, the resulting steady-state flow starts from the

subcritical state A, reaching C at the top of the mound, where the flow becomes su-

percritical. As the flow advances down the bump, it regains specific energy, reaching

B.

Figure E.5: Energy-height diagram for the transcritical flow in a 1D channel over
a bump. The points A, B and C indicate different states of the fluid along the
channel.

The last case we examine is the steady-state solution of a transcritical flow that

presents a hydraulic shock and whose profile is depicted in Figure E.6. We start from

the subcritical state q(x) = q0 = 0.18 m2 s−1 and h(x) = hL = 0.33 m and enforce

the boundary conditions q(x = 0) = q0 and h(x = L) = hL. The computed critical

height and energy are hc = 0.1489 m and Ec = 0.22 m. As in the previous case, the

initial specific energy E0 = 0.3451 m of the position 0 at the start of the channel is

not enough to make the fluid surpass the mound. Thus, the fluid height upstream of
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the mound will increase and the fluid will reach the critical height hc at the position

1 and transition into a supercritical regime. In sequence, the boundary condition at

x = L indicates that the flow should change back to a subcritical regime. However,

in a supercritical flow between 1 and 3, the energy rises and the height diminishes,

making it impossible to reach the critical point. Thus, a hydraulic shock takes place

at a position xshock between 1 and 3, evolving the flow to a subcritical state.

Figure E.6: Representation of the solution of the transcritical flow with a shock in
a 1D channel with a bump.

The exact solution upstream of the shock can be computed with the Equation

(E.13) used in the previous case:

h3 +

(
zb −

q2
0

2gh2
c

− hc − zbmax

)
h2 +

q2
0

2g
= 0, ∀x ∈ [0, xshock), (E.14)

choosing solution values according to the flow regime. In addition, the exact solution

downstream of the shock is obtained by solving the equation (E.12) of the first

scenario:

h3 +

(
zb −

q2
0

2gh2
L

− hL
)
h2 +

q2
0

2g
= 0, ∀x ∈ (xshock, L]. (E.15)

At last, we need to define the exact position of the shock. Let the fluid momen-

tum be p = ρqu = ρq2/h and consider the hydrostatic force f =
∫ h

0
ρgh dh = ρgh2/2.

Then, the momentum change across the shock should be balanced by the difference

in the hydrostatic force:

ρ
q2

0

h+

− ρ q
2
0

h−
= ρg

h2
+

2
− ρg

h2
−

2

∴ q2
0

(
1

h2
+

− 1

h2
−

)
+
g

2

(
h2
− − h2

+

)
= 0, for x = xshock, (E.16)

where h−(x = xshock) and h+(x = xshock) are the water height upstream and down-

stream of the shock. We have implemented an Octave [124] script to solve this

equation and obtain xshock ≈ 11.6656 m.

Figure E.7 shows an energy-height diagram with the different states of the fluid

in the present case. The resulting steady-state flow starts from the subcritical state

A, reaching C at the top of the mound, where the flow becomes supercritical. As
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the flow advances down the bump, it regains specific energy reaching B. Then,

an hydraulic shock changes the fluid to the subcritical state D, which gains energy

down the mound to E.

Figure E.7: Energy-height diagram for the transcritical flow with a shock in a 1D
channel over a bump. The points A through E indicate different states of the fluid
along the channel.
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