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MÉTODOS DE FRONTEIRAS MÓVEIS PARA A SIMULAÇÃO DE
ESCOAMENTOS COM INTERAÇÃO ENTRE DOIS FLUIDOS E

FLUIDO-SEDIMENTO

Malú Grave

Março/2020

Orientador: Alvaro Luiz Gayoso de Azeredo Coutinho

Programa: Engenharia Civil

Uma categoria desafiadora no cálculo de escoamentos de fluidos é a modelagem de
fronteiras e superfı́cies móveis. Existem duas abordagens para modelar esses proble-
mas: métodos de rastreamento de interface e de captura de interface. Neste trabalho, dois
métodos são estudados, sendo um de cada abordagem. Essa escolha se dá considerando
os diferentes tipos de problemas tratados neste trabalho, que são de interações entre dois
fluidos e fluido-sedimento. O primeiro está relacionado à interação entre dois fluidos com
propriedades diferentes, como água e ar, e o segundo é sobre a interação entre um fluido e
um fundo de sedimentos que se deforma a medida que o escoamento evolui. Para modelar
problemas com dois fluidos, o modelo matemático resulta das equações de Navier-Stokes
tratadas com a Formulação Variacional Multiescala baseada no resı́duo, juntamente com
o método Curva de Nı́vel Convectada para rastrear a interface entre os diferentes fluidos.
Por outro lado, para modelar a interação fluido-sedimento, uma abordagem completa den-
tro da descrição Lagrangeana-Euleriana arbitrária com adaptação de malha é apresentada.
As equações de Navier-Stokes são combinadas com uma equação de advecção-difusão
para sedimentos em suspensão. As alteraçcões morfológicas são calculadas por modelos
empı́ricos usados para representar a taxa de erosão, bem como o carregamento de sedi-
mentos no leito. Os deslocamentos e, consequentemente, o movimento da interface, são
aplicados como movimentação da malha. Novas técnicas são introduzidas para melhorar
os resultados de ambos os métodos. Os algoritmos são validados com problemas em que
dados experimentais e numéricos estão disponı́veis. Por fim, os resultados são discutidos
e analisados.

vi
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One challenging category of problems in flow computation is the modeling of mov-
ing boundaries and interfaces. There are different techniques to model such problems:
interface tracking and interface capturing methods. In this work, we study two methods
of modeling moving boundaries and interfaces in CFD problems. This choice is made
considering the type of problem under consideration: two-fluid and sediment-fluid inter-
actions. The first one is related to the interaction between two fluids with different prop-
erties, like water and air, and the second one is about the interaction between a fluid and
a sediment bottom that deforms as the flow evolves. Therefore, we implement the con-
vected level-set method to model two-fluid problems. The mathematical model results
from the Navier-Stokes equations treated with the Residual Based Variational Multiscale
formulation, together with the convected level-set method, used to track the interfaces
between the different fluids. Here, we introduce a new truncated signed distance function
to get a smooth truncation far from the interface. On the other hand, to model sediment-
fluid interaction, we present a full approach within the Arbitrary Lagrangian-Eulerian
framework with mesh adaptivity. The Navier-Stokes equations are combined with an
advection-diffusion equation for suspended sediments. The morphological changes are
calculated by empirical models used to represent the entrainment rate as well as the bed-
load transport. The displacements, and consequently, the interface motion, are applied as
mesh movement. We introduce a new smoothing technique called upwind sand-slide, in
which we adjust the slope angle considering the flow direction. We validate the algorithm
with test cases where experimental and numerical data are available. Finally, the results
are discussed and analyzed.
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Chapter 1

Introduction

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numer-
ical analysis and data structures to analyze and solve problems that involve fluid flows.
One challenging category of problems in flow computation is the modeling of moving
boundaries and interfaces. These include fluid-particle, sediment-fluid, fluid-object and
fluid-structure interactions, free-surface and two-fluid flows, and flows with moving me-
chanical components. The interaction of fluid flows with moving boundaries leads to a
highly coupled, nonlinear system. Across these interfaces, phases, material properties,
and flow features can vary abruptly. The main difficulty in the solution of these problems
is that the moving boundary itself must be determined as part of the solution of the system
of equations that govern the behavior of the fluid flow. The interfaces move under the in-
fluence of the flow field and, in turn, affect its behavior. Therefore, not only the transport
of momentum and mass play significant roles in defining the behavior of the system, but
also the formation, evolution, and dynamics of the interface [1].

Some examples of application of moving boundaries in engineering and science prob-
lems are the simulation of materials processing, as ironmaking and steelmaking, evapo-
ration of metals, electromagnetic levitation, and high-pressure gas atomization of liquid
metals [8]; fluid-structure interaction, as stability analysis of airplane wings, turboma-
chinery design, design of bridges, risers, ships, and the flow of blood through arteries [9];
oil recovery [10], and so on.

Several techniques exist for tracking the moving interfaces, each with its strengths
and weaknesses. These techniques may be classified under two main categories: inter-

face tracking or predominantly Lagrangian methods, and interface capturing or Eulerian
methods [11]. In the Lagrangian methods, the grid is configured to conform to the shape
of the interface, and thus it adapts continually to it. The Lagrangian methods are preferred
for problems that have only small fluid motion because they can lead to severely entan-
gled meshes in flow problems with large amplitude motions, resulting in the failure of the
algorithms or gross inaccuracies in the results. On the other hand, the Eulerian methods
usually employ a fixed grid, and the interface is not explicitly tracked but is reconstructed
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from the properties of appropriate field variables. However, if the discontinuity across
the interface is to be maintained with fidelity, and if interfacial behavior is the focus,
Lagrangian methods hold an advantage.

Therefore, in an attempt to combine the advantages of the Eulerian and Lagrangian
descriptions while minimizing their respective drawbacks as much as possible, the Arbi-
trary Lagrangian Eulerian (ALE) framework was introduced [12, 13]. This approach is
based on an arbitrary motion of the reference frame, which is continuously rezoned to
allow a precise representation of the moving interfaces. Another alternative that not only
retains the advantage of structured Cartesian grids but also provides the ability to handle
complex geometries is the Immersed-Boundary method [14, 15], where complex geome-
tries within a Cartesian grid can be replaced by generating an external force field that acts
on the fluid in the same manner as a solid boundary would.

In this work, we are interested in two categories of problems involving moving inter-
faces: two-fluid flows and sediment-fluid interaction. The first one is important to repro-
duce free-surface problems and the interaction between two different fluids, as water and
air, oil and gases, etc. The second is essential to understand the transport of sediment in
fluid flows, where the sediment bottom deforms as the flow evolves, i.e., the particles that
make up the soil are dragged because of the flow and the morphology of the sediment
bottom changes. Moreover, both situations may occur in one single problem, where there
is a free-surface flow transporting sediment.

Since we are working with distinct category of problems, we use different solutions
to model the interfaces. We use an interface-capturing method called convected level-set
to represent the interface between two-fluid problems, and we use an ALE framework to
represent moving sediment bottoms.

Among the several engineering problems involving two-fluid flows, the study of bub-
bles motion is a good option to validate the numerical implementation of a moving bound-
ary, since there is a lot of experimental and numerical data for comparison. These prob-
lems are of fundamental importance in many physical, chemical and biological processes,
such as boiling [16], cloud cavitation in hydraulic systems [17], bubble columns and cen-
trifuges in the petrochemical industry [18], bubble nucleation and cooperativity in DNA
melting [19]. The study of bubbles is also important to understand natural phenomena
as the sound propagation in the ocean [20], the exchange of gases and heat between the
oceans and the atmosphere [20], and explosive volcanic eruptions [21].

On the other hand, the natural transport of sediments is one of the most common
processes in human environments. Sedimentation occurs in rivers, lakes, seas, and also
in the atmosphere in the form of dust, smoke, or chemical pollutants. Sediment transport
can change the course of a river due to erosion and deposition, can generate scour around
piles [22], siltation in dams [23], and contribute to the formation of geological features
[24]. All these phenomena cause changes at the sediment bottom.
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Although physical modeling of sediment transport in fluid flows in the field or the lab-
oratory may produce reliable results, scaling problems and the costs to conduct tests can
be very high. Thus, numerical simulations offer an interesting alternative, even though
the prediction of this phenomenon is still challenging due to its complexity. First of all,
the flow field itself will be a turbulent flow, often three-dimensional, with a free-surface
between water and air, not simply to simulate. Secondly, the transport of sediments is a
very complex phenomenon that depends on empirical formulations, as the processes of
sediment erosion, that includes the entrainment rate of sediments into suspension, and the
bed-load transport where the particles are moved near the bottom. Also, the suspended
load and deposition depend on a range of parameters. Besides, we have the coupling of
flow with sediment transport. The geometry of the flow field will change with the sedi-
ment transport processes, and the suspended sediment may also influence its properties.

Reproducing two-fluid flows is also complex. The surface tension has an important
role in such problems and has to be modeled as well. Also, the simulations that involve
surface tension need to be three-dimensional because this force acts in all directions.
Therefore, reproducing such problems is not trivial, and the moving surface techniques
are essential in these cases.

1.1 Objectives and methodology

The main objective of this work is to simulate moving interfaces in fluid flows: by
using the convected-level set method to represent two-fluid flows and a moving mesh
technique to represent the morphological changes between sediment and fluid. Therefore,
we work with two different problems. We apply the convected level-set to simulate gas
bubbles motion in viscous fluids, and the ALE formulation is used to simulate sediment
transport in fluid flows problems.

The numerical models for simulating these problems are implemented in libMesh,
an open-source library that provides a platform for parallel, adaptive, multiphysics fi-
nite element simulations, considering adaptive mesh refinement [25]. The Navier-Stokes
equations that govern the fluid are treated with the Residual-Based Variational Multiscale
method (RBVMS). The convected level-set is solved by using a stabilized method with a
discontinuity capturing operator and with a new truncated signed distance function, intro-
duced in this work, to get a smooth truncation far from the interface. We use the Contin-
uum Surface Force model to represent the surface tension between fluids, and we apply
a global mass conservation procedure to enforce the mass balance since the convected
level-set method does not guarantee mass conservation between phases. In the sediment
transport problems, an advection-diffusion equation representing particle concentration is
solved using the RBVMS formulation as well. Empirical models are used to represent
the entrainment rate of sediments into suspension as well as the bed-load transport. Mor-
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phological changes are applied as mesh movement, with the resulting scheme described
within the ALE framework. Moreover, we consider adaptive mesh refinement based on
the flux jump of the level-set and velocity errors to save computational effort, especially
in 3D problems.

1.2 Background

We begin by reviewing the concepts used in two-fluid and sediment-fluid problems.
First, we describe the techniques for modeling the moving boundaries. Then, we present
the mathematical framework of the flow model. Finally, we present aspects of the model-
ing and simulation of sediment transport problems.

1.2.1 Moving boundaries

The techniques for tracking the moving interfaces may be classified under two main
categories, interface tracking and interface capturing methods. The main difference can be
located in the viewpoint, which can be either Eulerian or Lagrangian. The main features
of the two categories are shown in Fig. 1.1.

Interface capturing approaches are based on an Eulerian description and widely used
in deformable domain problems. They define the interface implicitly on a fixed mesh, in
which an appropriate scalar field is used to identify the two phases as well as the interface
between them. Depending on the different methods, this scalar field may be described, for
example, by a discontinuous Heaviside function or a signed distance function. In order to
account for the interface motion, a standard convection equation is solved considering the
velocity field. A significant advantage of the interface capturing approaches is that they
are inherently able to account for topological changes of the interface. This allows for a
much more flexible interface description than in interface tracking approaches. However,
the difficulties are in the aspects of the discontinuity treatment across the interface, mass
conservation, and the application of boundary conditions along the interface.

In interface tracking approaches, the interface is described explicitly on an interface
conforming mesh. The idea is to track the position of the mesh nodes in a Lagrangian
fashion. We can distinguish between fully Lagrangian approaches, where all mesh nodes
are treated in a Lagrangian fashion, and ALE approaches, where the Lagrangian treatment
is only applied to a portion of the mesh nodes, usually those along the interface. Interface
tracking approaches offer an accurate and computationally efficient approximation of the
interface. Furthermore, the imposition of boundary conditions at the interface is simple,
with mesh nodes lying on the interface itself. However, the mesh quality will usually
degrade significantly in the course of large deformations.

Various techniques exist to perform the simulation of moving boundaries, and an ex-
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(a) Purely Lagrangian method with a moving boundary conforming grid.

(b) Fixed grid Eulerian method with a phase fraction (φ) definition of the
interface.

Figure 1.1: Comparison of Lagrangian and Eulerian methods for tracking moving bound-
aries [1].

cellent summary of those methods can be found in a review of ELGETI e SAUERLAND
[26]. The most common methods are described in the following.

Volume of Fluid (VOF) method

The Volume of Fluid method, introduced by HIRT e NICHOLS [27], makes use of a
volume fraction function defined as the volume ratio of one phase to the total volume of
the cell, on an Eulerian fixed grid. One phase is assigned with the fraction variable equal
to 1, and the other one equal to 0. The interface is located in the cells with values between
0 and 1. The volume fraction is then advected with the local flow velocity.

One advantage of the VOF method is that as volumetric data is used to store interface
location, conservation of volume is guaranteed (assuming incompressible fluids). How-
ever, the disadvantages include inaccuracy to evaluate the normals and curvature from the
volume fraction function and abrupt change of the discontinuous physical quantities near
the interface.
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Immersed-boundary method (IBM)

The immersed-boundary method was introduced by [14] to study flow patterns around
heart valves and has evolved into a generally useful method for problems of fluid-structure
interaction. The mathematical formulation employs a mixture of two coordinate systems:
a Eulerian fixed Cartesian mesh for the fluid, and a Lagrangian mesh for the boundaries,
generally non-stationary and unstructured. Both coordinate systems are linked by inter-
action equations that involve a smoothed approximation to the Dirac delta function.

This method solves the fluid equations with an additional term, which represents the
effects of the immersed boundary acting on the fluid motion. The imposition of the bound-
ary conditions is not straightforward, and the ramifications of the boundary treatment on
the accuracy and conservation properties of the numerical scheme are not obvious. One
of the advantages of using IBM is that mesh does not need to be updated.

Phase-Field methods

The phase-field methods are based on models of energy by expressing the free energy
of the system as a Cahn-Hilliard (or Allen-Cahn) functional. They use an auxiliary field
that takes the role of an order parameter. The order parameter, or the phase-field, takes
two distinct values (for instance, +1 and -1) in each phase, with a smooth change between
both values in the zone around the interface, which is represented by thin but nonzero
thickness regions. A discrete location of the interface may be defined as the collection of
all points where the phase-field takes a particular value (e.g., 0). However, the phase-field
equations never require the knowledge of the exact interface location. A phase-field model
is usually constructed in such a way that in the limit of an infinitesimal interface width
(the so-called sharp interface limit), the correct interfacial dynamics are recovered. This
approach permits to solve the problem by integrating a set of partial differential equations
for the whole system, thus avoiding the explicit treatment of the boundary conditions at
the interface.

An advantage of phase-field methods is the ability to compute geometric quantities
easily. However, since the phase function changes quickly near the interface, a large num-
ber of grid points is necessary to solve this region well. An adaptative mesh refinement
method would be appropriate.

Interface tracking approach

In interface tracking methods, the boundaries are explicitly resolved by the compu-
tational mesh that follows the interface’s motion. The necessity of accurately following
the deforming interfaces requires some degree of Lagrangian description in the formula-
tion. However, the fully Lagrangian approach may result in significant mesh distortion

6



or invalid meshes. Then, methods capable of combining the Lagrangian and Eulerian
approaches in the same domain, as the ALE framework, were developed.

The basic idea of ALE is to work with a deforming mesh, as in the Lagrangian method,
but to decouple the mesh deformation from the displacement of the fluid particles, which
means that the mesh velocity is no longer equal to the fluid velocity, and can be cho-
sen arbitrarily. The usual choice in ALE is to track boundary and interface nodes in
a Lagrangian manner, while all other mesh nodes are adjusted solely to preserve mesh
quality as best as possible. The ALE approach requires that the mesh velocity enters the
momentum equation explicitly, thus modifying the original flow equations, precisely the
convection term.

To track the sediment bottom motion in sediment transport problems, we use an
interface-tracking method, as in [2, 28–39]. Our mesh represents only the fluid with
the suspended sediments, while a boundary of our domain represents the sediment bot-
tom. In this boundary, we represent the morphological changes as mesh movement by
using an ALE framework, as presented in [40] and [37]. By applying this method in sed-
iment transport problems, we may face unrealistic bed shapes that might cause numerical
instabilities. Different smoothing techniques are used to avoid these problems, and we
introduce a new smoothing procedure called upwind sand-slide.

Level-set method

The level-set method is an interface capturing strategy that mitigates difficulties asso-
ciated with a discontinuous volume-fraction function, as in the VOF method, by using a
smooth signed distance function instead. The original level-set formulation is divided into
two steps: first, a convection equation is solved to calculate the evolution of the interface,
and after, a reinitialization step is solved to keep the level-set function a signed distance
function from the interface. More details will be addressed along this work.

To track the interface motion of two-fluid problems, we implement a modified level-
set method called convected level-set [41, 42]. The convected level-set associates both
reinitialization and convection steps by including the reinitialization in the convection
equation. The original level-set formulation also makes use of a signed distance func-
tion defined as the Euclidian distance to the interface. In this work, we introduce a new
truncated signed distance function based on [43]. The modified signed distance function
concentrates the iso-surfaces near the interface and provides a smooth truncation far from
there. We also apply a global mass conservation procedure to enforce the mass balance,
since the principal drawback of the level-set method is the lack of conservation of mass.
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1.2.2 Flow model

The governing equations of the flow model are the well-known Navier-Stokes equa-
tions. The Navier-Stokes equations, along with proper boundary and initial conditions,
contain all information necessary to model fluid flows, including turbulent effects. It
is possible to approximate them numerically using a computational grid fine enough to
represent all relevant scales of the studied problem. However, the computational effort
tends to limit the application of this method only to low Reynolds numbers. Thus, direct
numerical simulation (DNS) is still a challenge, particularly at high Reynolds numbers.

An alternative approach to DNS consists of Large Eddy simulations (LES). In this
method, only large flow structures are solved, while the smaller ones, called subgrid com-
ponents, are modeled [44]. Inspired on LES models, the variational multiscale methods
(VMS) were introduced by Hughes et al. in [45] as a general technique to model the
subgrid scales in the numerical solution of partial differential equations. Here, we use the
Residual-Based Variational Multiscale method (RBVMS), in which the subgrid compo-
nents are modeled in terms of the residual of the large scales, and they are introduced in
the resolved scale equations. This approach was introduced in Calo [46], and it has been
applied successfully to many problems, with several discretization methods.

The RBVMS method does not include an eddy viscosity, which appears as the numer-
ical diffusion inherent to the model. Thus, it does not need any modeling of the subgrid
scales by statistical theories of turbulence. From this method, it is also possible to derive
stabilized methods as the streamline upwind/Petrov-Galerkin (SUPG), the least-squares
on the incompressibility constraint (LSIC) method and the pressure stabilizing/Petrov-
Galerkin (PSPG) method [11, 47, 48]. It is known that the Galerkin formulation of the
finite element method performs poorly when the advection or reaction terms of a partial
differential equation dominate the problem [13]. Thus, these stabilization terms are im-
portant, and they come naturally from the RBVMS framework. Detailed reviews of the
RBVMS formulation can be found in [47, 49–51].

1.2.3 Sediment transport

Sediment transport can be divided into two phenomena: suspended load and bed-load
transport. The suspended load involves the finer sediment maintained in suspension by
turbulence, whereas, bed-load transport consists of coarse particles transported along the
bed. The majority of the numerical studies divide the sediment transport in fluid flows
into bed-load and suspended load components [2, 28–39, 52–59].

When the shear rate at the bottom is strong enough, sediments may entrain into sus-
pension as well. Thus, sediments are lifted from the bed-load zone and, once out of the
bottom layer, start being governed by the suspended load. Furthermore, suspended grains
can also be deposited due to their settling velocity and gravitational acceleration. All
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these phenomena are schematically represented in Figure 1.2.

Figure 1.2: Types of sediment transport

The coupling between sediment transport and fluid also has some considerations. A
sediment flow mixture can be viewed as a very dilute suspension when the volumetric con-
centration (or simply concentration) is less than 0.001, such that particle interactions can
be neglected [60]. Most sediment transport models are based on this simple assumption.
However, this “passive scalar hypothesis” is valid only under very restrictive assumptions:
the particle diameter must be small in comparison with the smallest dynamic length-scale
of the turbulence (the Kolgomorov length-scale), and the time response of the particle
must be smaller than the dissipation timescale [61]. By exceeding a certain particle con-
centration in the fluid, the flow behavior turns non-Newtonian. This characteristic may be
considered in the fluid simulation solver by a constitutive model [62], and it has a great
influence on fluid behavior [63]. An intermediate assumption between the “passive scalar
hypothesis” and the non-Newtonian fluid is the consideration of the concentration of the
sediment particles in the Navier-Stokes equations, by applying it as a forcing term [64].
The flow behavior is affected, but not enough to be considered as a non-Newtonian fluid.
In this work, we consider only small particle concentrations, and we use the “passive
scalar hypothesis” in which the sediment concentration does not affect the flow behavior.

1.3 Literature review

One reason for studying bubbles motion to validate the two-fluid flow model is the
fact that there are lots of experimental and numerical studies about this subject. The
observations of BHAGA e WEBER [5] and LIU et al. [65] showed the characteristics of
a single rising bubble, in terms of the bubble shape and terminal velocity. GRACE [66]
studied a large number of experimental data on the shapes and velocities of bubbles rising
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in quiescent viscous liquids and condensed the data into one diagram. The interaction
between multiple bubbles rising in different liquids was investigated by BRERETON e
KOROTNEY [3] and MANGA e STONE [67].

In numerical studies, different approaches have been used to model bubble problems,
such as the VOF method [68, 69], the Front Tracking Method (FTM) [7, 70, 71], the
Lattice Boltzmann Method (LBM) [72–75], the Smoothed Particle Hydrodynamics (SPH)
[6, 76, 77], the Phase-Field method [78] and the Level-Set method [43, 79, 80].

Different cases have been investigated about sediment transport in fluid flows as well,
as scour around offshore pipelines [28–34, 52, 53], scour around vertical piles [35, 36, 54,
55, 81], scour due a submerged wall jet [37, 56], sediment transport in curved channels
with mobile beds [38, 39, 82], sediment transport and morphology of ripples [2, 57–59].

To reproduce such problems numerically, some authors have used the VOF method
to model the interface between water-air, while used a Lagragian method to model the
interface between sediment-water [32, 37, 39]. AHMAD et al. [54], KRAFT et al. [57],
QUEZADA et al. [53] and AFZAL et al. [55] have used the level-set method for the
sediment-water tracking. On the other hand, KHOSRONEJAD et al. [82], LEFTHE-
RIOTIS e DIMAS [58] and KHOSRONEJAD e SOTIROPOULOS [59] employed the
immersed boundary method, and ZHAO e FERNANDO [52] and HOSSEIN KAZEM-
INEZHAD et al. [81] employed an Eulerian two-phase model for this same purpose.

The suspended load in sediment transport problems is often solved by an advection-
diffusion equation and the entrainment and bed-load transport need empirical models to
be solved. Two entrainment models commonly used can be found in [83] and [84]. The
bed-load transport rate models are usually related to the bed shear stress and some of them
can be found in [85], [86], [87].

The majority of works about sediment transport in fluids use the Reynolds-Averaged
Navier-Stokes method (RANS) to model the fluid flow, using different approaches for
the turbulence closure model [2, 28–39, 52–59, 81, 82]. In this work, we treat both, the
Navier-Stokes equations and the suspended load transport equation, with the RBVMS
formulation.

1.4 Structure of the thesis

The remainder of this work is organized as follows. In chapter 2, we present the in-
terface tracking methods used in this work, with a description of the convected level-set
and moving mesh methods. Then, in chapter 3, we present the mathematical setting for
the numerical simulation of the flow, the corresponding RBVMS finite element formu-
lation, and some relevant aspects about flow boundary conditions. After that, we show
the sediment transport governing equations, its corresponding finite element formulation,
the sediment boundary conditions, and the upwind sand-slide, used to smooth the mesh
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movement. In chapter 5, we present some aspects of the implementation and the libraries
used in this work. Then, we show numerical examples. The thesis ends with a summary
of our main findings and the perspectives for the next steps of this work.
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Chapter 2

Interface tracking and interface
capturing methods

In this chapter, we present both methods used in this work to represent moving sur-
faces. First, we introduce the governing equations of the convected level-set formulation
for two-fluid problems. Then, we present the ALE framework to solve sediment-fluid
problems.

2.1 Convected Level-Set formulation

The level-set method was first introduced by OSHER e SETHIAN [88] in the late
1980s as a technique for capturing evolving interfaces and tracking the propagation of
fronts. The method consists in to separate two phases with signed distance functions
(SDFs), in which the interface between phases is defined as the zero level-set.

The original level-set function determines the smallest distance of a point to the inter-
face, and the signal is used to represent the different phases (positive values represent one
phase, while negative values the other one). Equation (2.1) defines the standard level-set
function α as,

α(x) =


d(x,Γ) for x ∈ Ω+

0 for x ∈ Γ

−d(x,Γ) for x ∈ Ω−
(2.1)

where d(·, ·) is the Euclidian distance to Γ, Ω+ and Ω− are the subdomains corresponding
to each phase, and Γ is the interface between the subdomains. Figure 2.1 exemplifies how
two phases separated by a circular interface are modeled by using the standard level-set
formulation.

The idea of the level-set method is to move the interface by solving a pure convection
equation and, after that, to enforce the SDF properties by applying a reinitialization step.
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Figure 2.1: Distinguishing two phases separated by a circular interface with the standard
level-set method

As the level-set function is transported, it may lose its signed distance properties, and the
reinitialization recovers it by fixing the position of the iso-surfaces. In this work, we im-
plement a modified level-set method that associates both reinitialization and convection
steps. The method is called convected level-set [41, 42]. The inclusion of the reinitializa-
tion in the convection equation avoids the extra step that appears in the original level-set
formulation.

In the following, we assume incompressible flows, that are flows in which the material
density is constant within a fluid parcel, i.e., an infinitesimal volume that moves with the
flow velocity. Incompressible flows also consider the divergence of the flow velocity
equals to zero.

2.1.1 Governing equations

To follow the evolution of the level-set function, a pure convection problem is solved.
Assuming that a divergence-free velocity field, u, is known everywhere in the domain Ω,
the interface motion is given by the following pure convection equation,

∂α

∂t
+ u · ∇α = 0

α(t = 0,x) = α0(x).
(2.2)

The gradient of the standard level-set function, as a SDF, remains constant along the
domain, i.e. it satisfies the Eikonal equation ||∇α||= 1. However, when the interface is
convected by a given velocity, it loses its distance property and needs to be reinitialized.
Classically, the reinitialization is obtained by solving a Hamilton-Jacobi equation that
reconstructs the level-set with the exact zero iso-value of α(x, t). Introducing a virtual
time τ , we want to keep ||∇α|| close to a given function S, solving the following equation,
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∂α

∂τ
+ sgn(α)(||∇α||−S) = 0

α(τ = 0, x) = α(x, t)
(2.3)

with S = 1 and sgn(α) being the sign function defined as,

sgn(α) =


1 for α > 0

0 for α = 0

−1 for α < 0.

(2.4)

Note that without the reinitialization, the level-set equation (2.2) is almost the same
of the VOF method [89].

The level-set method can be generalized to any SDF having the same independent
measure properties. The only useful information is the exact zero iso-value position.
Thus, the level-set function does not need to be computed in the whole domain. We may
cut off the level-set function at a thickness of E, filtering the level-set function close to
the interface. Here, we introduce a new modified SDF (φ), inspired in [43], given by,

φ =
1

1 + e
−α
E

− 0.5. (2.5)

Figure 2.2 shows the difference between the standard SDF and the new modified one
presented in Eq. (2.5). While in the standard level-set method α ∈ [−∞,∞], in our
modified SDF φ ∈ [−0.5, 0.5]. The new modified SDF, φ, gives a form to define a smooth
truncation for the standard level-set function and can be generalized to any number of
spatial dimensions.

We compute the derivative of φ with respect to the distance function,

∇φ = ∇α e
−α
E

E(1 + e
−α
E )2

. (2.6)

The truncated level-set function now verifies the following property,

S = ||∇φ||= 1

4E
− φ2

E
. (2.7)

Rewriting equations (2.2) and (2.3), the pure convection and reinitialization equations
for the modified SDF φ are,

∂φ

∂t
+ u · ∇φ = 0

φ(t = 0,x) = φ0(x)
(2.8)
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Figure 2.2: Comparison between the standard and modified SDFs with E = 0.1.

∂φ

∂τ
+ sgn(φ)

(
||∇φ||−

(
1

4E
− φ2

E

))
= 0

φ(τ = 0, x) = φ(x, t).

(2.9)

Here, we smooth the sign function using a equation similar to Eq. (2.5),

sgn(φ) =
2

1 + e
−α
E

− 1. (2.10)

Note that sgn(φ) = 0 where φ = 0, thus this reinitialization step does not influence
the interface position.

It is possible to avoid the reinitialization step using the called convected reinitialization
[41, 42, 90]. Once the Hamilton-Jacobi reinitialization is combined with the convection
equation, it can be solved using,

∂φ

∂t
+ u · ∇φ+ λ sgn(φ) (||∇φ||−S) = 0

φ(t = 0,x) = φ0(x)
(2.11)

where λ is a penalty constant. The penalty coefficient λ defines the contribution of the
reinitialization equation in the convection equation. A small λ may not be enough to
correct the iso-surfaces and to recover the signed distance properties adequately, while a
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large one may change the interface shape.
Now, introducing the convection velocity coming from the Hamilton-Jacobi equation,

we can rewrite Eq. (2.11) as,

∂φ

∂t
+ (u + λU) · ∇φ− λ sgn(φ)S = 0

φ(t = 0,x) = φ0(x)
(2.12)

where U = sgn(φ)
∇φ
||∇φ||

.

The final model is given by,

∂φ

∂t
+ (u + λU) · ∇φ− λ sgn(φ)

(
1

4E
− φ2

E

)
= 0

φ(t = 0,x) = φ0(x).

(2.13)

2.1.2 Time integration

Equation (2.13) can be integrated in time with many different time integration methods
[91]. The Backward Euler method is widely applied for two-fluid models because of
its unconditional numerical stability characteristics. However, it has the disadvantage
of being only first-order accurate, which introduces a significant amount of numerical
diffusion. Then, we use the second-order Backward Differentiation Formula (BDF2), that,
compared to the prevailing Backward Euler method, has a significantly better accuracy
(second order) while retaining the important property of unconditional linear stability.
The one-equation model becomes,

1.5φn+1 − 2φn + 0.5φn−1

∆t
+ (un+1 + λUn) · ∇φn+1

−λ sgn(φn)

(
1

4E
− φ2

n

E

)
= 0.

(2.14)

The subscript n+ 1 is associated to t = tn+1 and n, and n− 1 to the previous time-
steps. It is important to remember that Eq. (2.13) is non-linear, because U depends on
φ. Thus we linearize it by evaluating U with the value of φ at the previous time-step (or
time-lagging). The slope S is also evaluated at the previous time-step.

2.1.3 Finite element formulation

We introduce a stabilized finite element variational formulation to discretize in space
the present model. We assume the weight space Shφ for φh along with its trial space
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counterpart V h
φ and the weight function ωh, where the superscript h reminds us of the

underlying finite element mesh on which the basis functions are defined, such that,

Shφ = {φh(·, t) ∈ H1(Ω) | φh = φD on ΓD} (2.15)

V h
φ = {ωh(·, t) ∈ H1(Ω) | ωh = 0 on ΓD} (2.16)

in which φD is a prescribed SDF value on the Dirichlet boundary ΓD.
The weak formulation is then: find φh ∈ Shφ such that ∀ωh ∈ V h

φ ,

(
1.5φhn+1 − 2φhn + 0.5φhn−1

∆t
, ωh
)

Ω

+
(
(uhn+1 + λUh

n) · ∇φhn+1, ω
h
)

Ω

−

(
λ sgn(φhn)

(
1

4E
− φhn

2

E

)
, ωh

)
Ω

+
∑
e

(
Rφ, τφ(uhn+1 + λUh

n) · ∇ωh
)

Ωe
= 0.

(2.17)

Here we define the operation (·, ·)Ω as the standard scalar product in L2(Ω). In Eq.
(2.1.3), Rφ is the residual of the convection equation (2.13), and τφ is the stabilization
parameter of the SUPG formulation [92], that are,

Rφ =
1.5φhn+1 − 2φhn + 0.5φhn−1

∆t
+ (uhn+1 + λUh

n) · ∇φhn+1 − λ sgn(φhn)

(
1

4E
− φhn

2

E

)
(2.18)

τφ =
1

nen||(uhn+1 + λUh
n) · ∇wh||

≈ he
nen||(uhn+1 + λUh

n)||
(2.19)

with nen being the number of nodes per element and he the mesh size.
In addition, a small stabilizing diffusion term κd, based on the Y Zβ discontinuity-

capturing operator [93], is added to improve stability. It is defined as,

κd =
∣∣Y −1Z

∣∣(ndim∑
i=1

∣∣∣∣Y −1∂φ
h

∂xi

∣∣∣∣
)βs/2−1

hβ
s

e (2.20)

where
Y = φ̄ (2.21)

Z = Rφ. (2.22)

The parameter βs in Eq. (2.20) influences the smoothness of the layer and the param-
eter φ̄ is a reference value (φ̄ = 1). For smooth layers βs = 1, and this value is adopted
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here. Note that if βs = 1 and the reference value φ̄ = 1, the discontinuity-capturing term
is equivalent to the Consistent Approximated Upwind method [94].

The final stabilized finite element variational formulation of the convected level-set
method is,

(
1.5φhn+1 − 2φhn + 0.5φhn−1

∆t
, ωh
)

Ω

+
(
(uhn+1 + λUh

n) · ∇φhn+1, ω
h
)

Ω

−

(
λ sgn(φhn)

(
1

4E
− φhn

2

E

)
, ωh

)
Ω

+
(
∇ωh, κd∇φhn+1

)
+
∑
e

(
Rφ, τφ(uhn+1 + λUh

n) · ∇ωh
)

Ωe
= 0.

(2.23)

2.1.4 Global mass conservation

Due to the incompressibility assumption, the area of the region occupied by each
fluid must be conserved during the whole computational process. However, the con-
vected level-set method cannot guarantee mass conservation. Numerical errors may de-
crease/increase the area/volume of one of the fluids about several percent after many time-
steps. That is why some authors combine the level-set method with some enforcement of
mass balance (see [95] and [96]).

Mass conservation means that the current area/volume of one of the phases S+ is equal
to its initial area/volume S+

0 . The initial conditions define S+
0 . If S+ is different from S+

0 ,
we need to introduce a correction. It is necessary only to correct one of the domains since
their union is constant. However, we do not want to change the shape of the interface
between the two phases. Therefore, we change the zero level-set, accepting as a new zero
level-set some near isoline, since it has almost the same shape. To do that, we move the
level-set function upward or downward, by adding to φ a global constant perturbation cφ,
introduced for 2D simulations in [97], and generalized here for any number of spatial
dimensions as,

cφ =
S+

0 − S+

Lt(Γ)
(2.24)

where Lt(Γ) is the length/area of the interface Γ at time t.
We can approximate S+ and Lt(Γ) by,

S+ =

∫
Ω

Hε(α)dΩ (2.25)

Lt =

∫
Ω

δε(α)dΩ (2.26)
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being Hε the regularized Heaviside function and δε the regularized Dirac function. Here,
ε is also defined as ε = he. The functionsHε and δε are,

Hε(α) =


0 for α < −ε

1
2

(
1 + α

ε
+ 1

π
sin
(
πα
ε

))
for |α|≤ ε

1 for α > ε

(2.27)

δε(α) =


0 for α > ε

1
2ε

(
1 + cos

(
πα
ε

))
for |α|≤ ε

0 for α < ε.

(2.28)

2.2 Moving mesh method

The ALE reference frame is responsible for tracking the sediment bottom displace-
ments in fluid-sediment problems. An efficient mesh deformation scheme is necessary to
allow large rotations and motion of the sediment bottom. Among different options avail-
able for addressing node repositioning, we apply an adaptive mesh rezoning technique
based on [98].

The formal statement of the boundary-value problem is: given η, the prescribed dis-
placements vector containing the η values, the displacements per node, find the mesh
displacement field d : Ω ⊂ Rnsd such that,

∇ · ([1 + τmesh](e⊗ e)∇)d = 0 in Ω (2.29)

d = η on Γm (2.30)

d = 0 on Γf . (2.31)

Equation (2.29) is the governing equation while Equations (2.30) and (2.31) are the
boundary conditions at the moving and fixed boundaries, Γm and Γf , respectively. τmesh is
a bounded, non-dimensional function that imposes spatially varying stiffness effect in the
computational domain. One simple definition of τmesh, proposed in MASUD e HUGHES
[98] is,

τmesh =
1− Vmin/Vmax

V/Vmax
(2.32)

where V , Vmax and Vmin represent the volumes of the current, the largest and the smallest
elements in a given mesh, respectively. Because of the spatially varying stiffness, the
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region with small elements moves almost like a rigid body while the biggest elements
absorb the deformation. The tensor e⊗ e induces movement in the preferred direction of
motion. The original formulation considers an anisotropic diffusivity (that is, e⊗ e = I)
[98].

Since the displacements resulting from the morphological changes are only in the
gravity acceleration direction, we change the Equation (2.29), allowing the displacements
of all nodes only in the gravity acceleration direction as well (e = eg). This modification
avoids bad displacements when adjacents boundary nodes have displacements in opposite
directions.

A Galerkin variational formulation is used to solve the mesh boundary value problem,
yielding a symmetric set of algebraic equations of the form:

K(τmesh)d = r (2.33)

where K and r are respectively the global stiffness matrix and the forcing term, which
contains the boundary conditions. We solve Equation (2.33) and once we have the dis-
placements, the mesh velocity is computed by,

umesh =
d

∆t
. (2.34)
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Chapter 3

Navier-Stokes equations

In this chapter, the partial differential equations used for the simulation of turbulent
fluid flows are presented. First, the well-known Navier-Stokes (N-S) equations are in-
troduced. Then, we present the RBVMS framework, the temporal discretization, and an
iterative solution procedure to solve the nonlinear problem. We also present nondimen-
sional equations and numbers often used within the N-S equations. Moreover, at the end
of the chapter, we introduce the flow boundary conditions.

3.1 Governing equations

In this work, we are working with two different problems. One is a two-fluid prob-
lem, and the other is a single-fluid problem that involves sediment-fluid interaction. The
Navier-Stokes equations are different for single and two-fluid flows. Single-fluid flows
are simpler to model, and the N-S equations can be applied straightforward. On the other
hand, in two-fluid flows, there are other considerations. First, it is necessary to recover in-
formation from the convected level-set since it is the SDF that defines where the interface
between both fluids is, and it is its signal that defines the properties of each phase. More-
over, there is a force at the interface between fluids called surface tension that have to be
added. Therefore, in the following, we present the Navier-Stokes equations for two-fluid
flows, and, for single-fluid problems, we simplify it by keeping constant the properties of
the fluid in all domain.

The two-fluid flow is governed by the well known Navier-Stokes equations, which
leads to the following nonlinear mathematical problem to be solved: let us consider a
space-time domain in which the flow takes place along the interval [0, tf ] given by Ω ⊂
Rnsd , where nsd is the number of space dimensions. Let Γ denote the boundary of Ω. Find
the pressure p and the velocity u satisfying the following equations,

ρ
∂u

∂t
+ ρu· ∇u−∇·σ − ρg − Fst = 0 in Ω× [0, tf ] (3.1)
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∇·u = 0 in Ω× [0, tf ] (3.2)

where ρ is the density, g = geg is the gravitational acceleration vector (g is the absolute
value and eg is the direction vector) and Fst is the surface tension force between phases.

Considering only Newtonian behavior, the Cauchy stress tensor σ, is given by,

σ(p,u) = −pI + 2µε(u) (3.3)

where I is the identity tensor, µ is the dynamic viscosity and ε(u) is the strain-rate tensor
defined as

ε(u) =
1

2
(∇u + (∇u)T ). (3.4)

For a complete problem description, proper boundary conditions on the boundary
Γ = ΓD ∪ ΓN must be prescribed. The boundary conditions can be written as,

u = uD on ΓD (3.5)

σ · n = t on ΓN (3.6)

in which uD is a prescribed velocity value on ΓD and t is the interaction traction force on
ΓN . Besides, a divergence-free initial condition for the velocity field must be specified.

To represent the heterogeneous flow material properties, such as the density ρ and the
dynamic viscosity µ, we introduce to the following mixing laws,

ρ = ρ+Hscaled(α) + ρ−(1−Hscaled(α)) (3.7)

µ = µ+Hscaled(α) + µ−(1−Hscaled(α)) (3.8)

where ρ+ and ρ− are the densities, and µ+ and µ− are the dynamic viscosities of the two
different fluids marked with the SDF (positive values represent one phase, while negative
values the other one). Hscaled is a non-symmetrical, smoothed Heaviside function [99],
also related to the SDF, and given by,

Hscaled(α) =


0 for α < −ε

1
2

(
1
2

+ α
ε

+ α2

2ε2
− 1

4π2

(
cos
(

2πα
ε

)
− 1
)

+ ε+α
επ

sin
(
πα
ε

))
for |α|≤ ε

1 for α > ε

(3.9)

in which ε is a thickness related to the mesh size. We define ε = he in this work.
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The surface tension force, which appears on the interface between two fluids, is ap-
plied using the Continuum Surface Force model (CSF) [100], that is,

Fst = σstκnδ(φ) (3.10)

where σst is the surface tension coefficient, κ is the curvature, n is the normal vector to
the interface and δ(φ) is a thickness, calculated by a Dirac function, where the surface
tension is distributed.

An advantage of an SDF is that the normal vector to the interface is readily obtained
by,

n = ∇φ (3.11)

and the curvature ends up being,

κ(φ) = ∇ · ∇φ
||∇φ||

. (3.12)

The Dirac function δ(φ) satisfies δ(φ) = ∂H
∂φ

. Thus, we have,

δscaled(α) =


0 for α > ε

1
2

(
1
ε

+ α
ε2

+ 1
2πε

sin
(

2πα
ε

)
+ 1

επ
sin
(
πα
ε

)
+ ε+α

ε2
cos
(
πα
ε

))
for |α|≤ ε

0 for α < ε.

(3.13)

The scaled Heaviside and Dirac functions are functions of the standard level-set SDF.
Thus, before calculating these parameters, we must recall the standard SDF,

α = −E ln

(
1

φ+ 0.5
− 1

)
. (3.14)

The difference between the scaled (Hscaled and δscaled) and the regularized (Hε and
δε) Heaviside and Dirac functions is that the scaled functions shift the distribution of the
regularized Dirac function to the higher density region in the transition of the two phases,
as shown in Fig. 3.1, and improves the stability of the CSF model [99–101]. However, to
evaluate the perimeter, area, and volume, we must use the regularized functions, since they
are signed-symmetric to the interface between the two phases, while the scaled functions
are not.

3.2 The N-S equations within an ALE framework

The ALE approach introduces a new frame of reference, related to a moving space-
time domain, in which the N-S equations are solved. To take into account the effect of the
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Figure 3.1: Comparison between the regularized and scaled Heaviside and Dirac func-
tions.

mesh movement, the mesh velocity umesh is introduced in Eq. 3.1 as follows

ρ
∂u

∂t
+ ρ(u− umesh)· ∇u−∇·σ − ρg − Fst = 0 in Ω× [0, tf ] (3.15)

For the sake of simplicity, we are going to introduce the term uM in which

uM = u− umesh (3.16)

For fixed meshes, umesh is equal to zero.

3.3 Residual-Based Variational Multiscale formulation

To approximate the Navier-Stokes equations we use a finite element scheme derived
from the Residual-Based Variational Multiscale Formulation (RBVMS). The basic idea is
to consider that the velocity and the pressure can be split into two components, a coarse
one and a fine one. The fine scale components are modeled in terms of the residual of
the large scales and then we replace arisingtheir effect into the large-scale equation. The
well-known stabilization formulations SUPG, PSPG, and LSIC, appear naturally within
this framework [47], [11], [48], and other terms that arise from this formulation might
be interpreted as numerical representations of the cross and Reynolds stresses arising in
Large Eddy Simulation (LES) formulations, and therefore are used here as turbulence
modeling [102–104]. Detailed reviews of the RBVMS formulation can be found at [47,
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49–51].
For the present problem, we assume that the primitive variables are decomposed in

two fields:

u = uh + u′ (3.17)

p = ph + p′ (3.18)

where the subscript h denotes the coarse-scale component of the solution, while the super-
script ′ refers to the fine one. We insert the previous scale splitting in a standard variational
Galerkin formulation built upon Eqs. (3.1) and (3.2). We assume the following weight
spaces Su

h and Shp for velocity and pressure respectively, along with their trial spaces
counterparts Vu

h and V h
p , and the weight functions w and q such that,

Su
h = {uh(·, t) ∈ H1(Ω) | uh = uD on ΓD} (3.19)

Vu
h = {wh(·, t) ∈ H1(Ω) | ωh = 0 on ΓD} (3.20)

Shp = Vp = {qh(·, t) | qh(·, t) ∈ L2(Ω)}. (3.21)

The weak formulation is then: find u ∈ Su
h and p ∈ Shp such that ∀w ∈ Vu

h and
∀q ∈ V h

p ,

(
w, ρ

∂u

∂t

)
Ω

+ (w, ρuM · ∇u)Ω + (∇w, µ∇u)Ω − (∇ ·w, p)Ω

− (w, ρg)Ω − (w,Fst)Ω − (w, µ∇u · n)Γ + (w, pn)Γ + (q,∇ · u)Ω = 0

(3.22)

(3.23)

To come up with a feasible numerical scheme, some simplifications are introduced.
We admit the static hypothesis, such that the fine scales are algebraically related to the
residuals of the governing equations. The time derivatives of the fine scales are supposed
to vanish (rendering the denomination static fine scales), and the spatial derivatives in
the fine scales equations are approximated through algebraic operators (much inspired on
stabilized FEM) leading to the following set of fine scales equations:

u′ = −τmRm (3.24)

p′ = −τcRc (3.25)

where τm and τc are stabilization parameters given by the standard expressions of stabi-
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lized methods,

τm =

(
4

∆t2
+ uh ·Guh + ν2G:G

)− 1
2

(3.26)

τc = (g∗ · τmg∗)−1 (3.27)

with G a second rank metric tensor,

G =
∂ξ

∂x

T ∂ξ

∂x
(3.28)

and g∗ a vector obtained from the column sums of ∂ξ
∂x

, the inverse Jacobian of the element
mapping between the parent and the physical domain,

g∗ = {g∗i } (3.29)

g∗i =
d∑
j=1

(
∂ξ

∂x

)
ji

. (3.30)

The residuals for the continuity and momentum equations are given in function of the
coarse-scales, that is,

Rm = ρ
∂uh

∂t
+ ρuhM · ∇uh +∇ph − µ∆uh − ρg − Fst (3.31)

Rc = ∇·uh. (3.32)

It is important to remember that the weighting functions also are decomposed into
coarse and fine scales, resulting in two different equations. However, since we are con-
sidering an approximation of the fine scales based on the residuals, we only have to solve
the coarse-scale equations.

After substituting and rearranging terms, we can obtain the RBVMS formulation for
the Navier-Stokes equations as follows: find uh ∈ Su

h and ph ∈ Shp such that ∀wh ∈ Vu
h

and ∀qh ∈ V h
p ,
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(
wh, ρ

∂uh

∂t

)
Ω

+

(
wh, ρuhM · ∇uh

)
Ω

+

(
∇wh, µ∇uh

)
Ω

−
(
∇ ·wh, ph

)
Ω

−
(
wh, ρg

)
Ω

−
(
wh,Fst

)
Ω

−
(
wh, µ∇uh · n

)
Γ

+

(
wh, phn

)
Γ

+

(
qh,∇ · uh

)
Ω

+
∑
e

(
∇wh,uh ⊗ τmRm

)
Ωe

+
∑
e

(
∇wh, τmRm ⊗ uhM

)
Ωe

−
∑
e

1

ρ

(
∇wh, τmRm ⊗ τmRm

)
Ωe

+
∑
e

(
∇ ·wh, ρτcRc

)
Ωe

+
∑
e

1

ρ

(
∇qh, τmRm

)
Ωe

= 0

(3.33)

3.4 Time integration

For the time integration, we use the theta method, in which for a function dy
dt

= f(y)

it has the general form of,

dy

dt
≈ yn+1 − yn

∆t
= θf(yn+1) + (1− θ)f(yn) (3.34)

where θ determines the method used, explicit or implicit.
Implicit methods find a solution by solving an equation involving the current state of

the system, together or not with the solution of the previous time-step. It usually allows
larger time-steps than explicit methods, that use only the previous time-step solution to
find the current solution. The use of θ = 0.5 yields the Crank-Nicolson method, which
has second-order accuracy. However, this method does not handle problems with discon-
tinuous initial data well and can have oscillatory results.

Therefore, in this work, we use the Backward Euler (BE) method, i.e., θ = 1. This
implicit method is only first order accurate on time, and we chose to sacrifice accuracy in
time in favour of stability. Our temporal discretization becomes,

dy

dt
≈ yn+1 − yn

∆t
= f(yn+1). (3.35)

Applying this method to Eq. (3.33) yields,
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(
wh, ρuhn+1

)
Ω

−
(
wh, ρuhn

)
Ω

+ ∆t

[(
wh, ρuM

h
n+1· ∇uhn+1

)
Ω

+

(
∇wh, µ∇uhn+1

)
Ω

−
(
∇ ·wh, phn+1

)
Ω

−
(
wh, ρg

)
Ω

−
(
wh,Fst

)
Ω

−
(
wh, µ∇uhn+1 · n

)
Γ

+

(
wh, phn+1n

)
Γ

+

(
qh,∇ · uhn+1

)
Ω

+
∑
e

(
∇wh,uhn+1 ⊗ τmRm

)
Ωe

+
∑
e

(
∇wh, τmRm ⊗ uM

h
n+1

)
Ωe

−
∑
e

1

ρ

(
∇wh, τmRm ⊗ τmRm

)
Ωe

+
∑
e

(
∇ ·wh, ρτcRc

)
Ωe

+
∑
e

1

ρ

(
∇qh, τmRm

)
Ωe

]
= 0.

(3.36)

3.5 Linearization of the Navier-Stokes Equations

The N-S equations are non-linear because of the existence of the convective term. The
usual approach to deal with this situation is to solve a linearized version of the equations
at each time-step. Newton’s method is one of the most popular numerical methods to
solve this problem. In this method, each iteration solves a linear system of equations until
the solution converges.

It is needed to provide an initial guess (u0, p0), which if it is close enough to the
solution, will result in a quadratic convergence of the method. A bad initial guess may
lead to the system not converging at all. Sometimes the solution converges even with an
initial guess being null.

Newton’s method reads: Given an initial guess U0 ∈ VN we seek to find δUh ∈ VN
for k = 1, 2...until convergence such that

J(U)hk · δU
h = −R(U)hk (3.37)

where δUh = Uh
k+1 −Uh

k , the unknowns vector Uh = [uh, ph], k is the Newton iteration
number, J(U)hk is the Jacobian matrix with respect to (U)hk , and R(U)hk is the residual of
Equation (3.33) at Newton iteration k.

To implement this method, we separate terms containing an unknown (i.e., a variable
at iteration k + 1), keeping it on the left-hand-side, whereas all other terms are taken to
the right-hand-side vector. The system of equations that is solved at each iteration is thus,

J(U)hk ·U
h
k+1 = −R(U)hk + J(U)hk ·U

h
k (3.38)

All terms used for the RBVMS implementation are given in Appendix A.
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3.6 Nondimensional Equations and Numbers

The nondimensional analysis is a common approach when working with fluids. It
is possible to obtain information about the flow with characteristic parameters such as a
dynamic viscosity µc, a flow speed uc, a length scale lc, a density ρc and the surface tension
coefficient. Suitably combining these parameters, it yields dimensionless quantities that
allow making statements for flows on any scale.

The Reynolds number, Re, is a dimensionless number defined as the ratio of inertial
forces to viscous forces and consequently quantifies the relative importance of these two
forces. At low Reynolds numbers, the flow is dominated by the viscous forces, while at
high Reynolds numbers, the viscous forces can be neglected, and the inertial forces are
dominating. Thus, the Reynolds number is,

Re =
ρcuclc
µc

. (3.39)

The Froude number, Fr, is defined as the ratio of the flow inertia to the external field,
that is,

Fr =
uc√
||gc||lc

. (3.40)

The Weber number, We, is often useful where there is an interface between two dif-
ferent fluids, particularly for multi-phase flows with strongly curved surfaces. It can be
thought of as a measure of the relative importance of the fluid’s inertia compared to its
surface tension. The quantity is useful in analyzing thin-film flows and the formation of
droplets and bubbles, and is given by,

We =
ρcu

2
c lc

σst
. (3.41)

The Eötvös number, Eo, and the Morton number, Mo, measure the importance of
gravitational forces compared to surface tension forces and are used to characterize the
shape of bubbles or drops moving in a surrounding fluid. They are defined as,

Eo =
g∆ρD2

σst
. (3.42)

Mo =
gµ4

L∆ρ

ρ2
Lσ

3
st

. (3.43)

Here, D is the bubble diameter, ∆ρ = ρL−ρG, ρL is the density of the liquid medium,
and ρG is the density of the gaseous one. In bubbles problems, we use uc = u∞ and
Lc = D to calculate the Reynolds number, where u∞ is the bubble terminal rise velocity.

Some bubble benchmarks are calculated with the dimensionless equations. Based on
this concept, we introduce the following dimensionless variables,
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x∗ =
x

lc
(3.44)

t∗ =
uct

lc
(3.45)

u∗ =
u

uc
(3.46)

p∗ =
p− pc
ρcu2

c

(3.47)

ρ∗ =
ρ

ρc
(3.48)

µ∗ =
µ

µc
(3.49)

g∗ =
g

||gc||
(3.50)

Fst
∗ =

Fst

σst
. (3.51)

Recasting Eqs. (3.1) and (3.2) in the variables of Eqs. (3.44) to (3.51), we have the
the dimensionless form of N-S equations,

ρ∗
∂u∗

∂t
+ ρ∗u∗M · ∇u∗ +∇p∗ − 1

Re
∇· (µ∗∇u∗)− ρ∗g∗

Fr2
− F∗st
We

= 0 in Ω× [0, tf ] (3.52)

∇·u∗ = 0 in Ω× [0, tf ]. (3.53)

From now on, we drop the asterisk for simplicity. The finite element formulation also
applies to Eqs. (3.52) and (3.53). In addition, we introduce the following quantities of
interest, which will be used to assist in describing the temporal evolution of the bubbles
quantitatively.

Center of mass. To track the translation of bubbles, it is common to use the center of
mass,

Xc =

∫
Ω− xdx∫
Ω− 1dx

(3.54)

where Ω− denotes the region that the bubble occupies.
Circularity / Sphericity. The “degree of circularity”, /c, introduced by WADELL [105],

can be defined as,

/c =
Pa
Pb

=
perimeter of a area-equivalent circle

perimeter of the bubble
=

2πR

Pb
. (3.55)

Here, Pa denotes the perimeter or circumference of a circle with radii R which has
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an area equal to that of a bubble with perimeter Pb. Similarly, for spheres, the “degree of
sphericity”, /s, is given by,

/s =
Aa
Ab

=
surface area of a volume-equivalent sphere

surface area of the bubble
=

4πR2

Ab
. (3.56)

Rise Velocity. The mean velocity, Umean, with which a bubble is rising or moving, is a
particularly interesting quantity since it does not only measure how the interface tracking
algorithm behaves but also the quality of the overall solution. We define the mean bubble
velocity as,

Umean =

∫
Ω− udx∫
Ω− 1dx

. (3.57)

Diameter. Denotes the bubble’s maximum extension in each coordinate direction.

3.7 Boundary conditions

The boundary conditions (BCs) are equations that give the constraints of the problem
under consideration. There are three types of boundary conditions commonly encountered
in the solution of partial differential equations: Dirichlet BC, specify the value of the
function on a surface; Neumann BC, specify the normal derivative of the function on a
surface; and Robin BC, specify a linear combination of the values of a function and the
values of its derivative on the boundary of the domain.

The most common Dirichlet BCs used in CFD are the no-slip and the free-slip BCs.
The no-slip BC means that the velocities at the boundary are zero (uh = 0), while the
free-slip represents no friction between the fluid and boundary, i.e., the normal velocity is
set to zero (uh · n = 0).

The Dirichlet BC usually is applied using the penalty method, called the strong form.
The penalty method was put in a finite element context by BABUŠKA [106]. The use
of this method replaces the Dirichlet boundary condition uh = uhD on ΓD by a penalized
Robin-type boundary condition, as follows,

t′ + βuh = βuhD on ΓD (3.58)

where β acts as a penalty constant.
The boundary term that arises from the integration by parts of the N-S equations (Eq.

3.22) is now split into a Neumann portion ΓN and a penalized Robin portion,

(wh, µ∇uh · n)Γ − (w, phn)Γ = (wh, t′)ΓN
+ (wh, βuhD − βuh)ΓD

. (3.59)
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Therefore the momentum equation (Eq. 3.22) changes as follows using the penalty
method,

(
wh, ρ

∂uh

∂t

)
Ω

+
(
wh, ρuhM · ∇uh

)
Ω

+
(
∇wh, µ∇uh

)
Ω
−
(
∇ ·wh, ph

)
Ω

−
(
wh, ρg

)
Ω
−
(
wh,Fst

)
Ω
− (wh, t′)ΓN

− (wh, βuhD − βuh)ΓD
+ (qh,∇ · uh)Ω = 0.

(3.60)

In order to simplify the understanding, let us consider a matrix-vector system
KJunk = fRHS with KJ the Jacobian matrix, unk the vector of unknowns and fRHS

the right-hand-side vector. The penalty method for this system yields

KJunk + βKLDunk = fRHS + βKJDunk (3.61)

where KJD is a diagonal constraint matrix which has unit entries only for the Dirichlet
boundary nodes.

Since β is very large, the penalty terms dominate this equation. At the same time, large
values of β may cause ill-conditioning of the matrix, although this problem is alleviated
by the use of preconditioners and iterative linear system equations solvers. The value of
β is taken as 1010.

The Dirichlet BC also may be applied weakly, by adding terms to the variational
formulation. Considering the normal component of the velocity enforced strongly (uh ·
n = 0), we have to add the following terms to the momentum equation in order to enforce
the tangential component of the velocity weakly,

−
∑
e

(wh, µ∇uh·n−phn)ΓD
−
∑
e

(µ∇wh·n−qhn,uh−bh)ΓD
+
∑
e

(wh, τB(uh−bh))ΓD

(3.62)
with bh = 0 for the no-slip BC.

The first term corresponds to the resolved viscous shear stress at the boundary. How-
ever, the computed velocity is poorly resolved in the near-wall region. Thus this stress is
not expected to match the correct wall shear stress. Therefore, a penalty stress is added
corresponding to the third term of the equation. The second term is the called adjoint
consistent term.

BAZILEVS et al. [107] have concluded that the best penalty stress to be considered
is the law of the wall. They have implemented the one given by Spalding [108] being

τb = ρ
uh
∗2

‖up‖
(3.63)
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with u∗ the friction velocity and up the velocity parallel to the wall. The friction velocity
is calculated by

y+ = f(u+) = u+ + e−χB
(
eχu

+ − 1− χu+ − (χu+)2

2
− (χu+)3

6

)
(3.64)

where y+ and u+ denote the distance from the wall and the mean fluid velocity, respec-
tively, expressed in non-dimensional wall units as

y+ =
yu∗

ν
(3.65)

u+ =
‖up‖
u∗

(3.66)

Also, χ is 0.4 and B is 5.5. The Spalding law is valid for all ranges of y+. This is
important because the flow behavior changes on layers near the wall, and this law can
account these effects.

It is known that weak and strong boundary conditions give the same results on
stretched meshes. However, on coarse meshes, the weakly imposed boundary conditions
deliver a significantly more accurate mean flow velocity than their strong counterpart.
The combination of the RBVMS with the weakly imposed boundary condition acts like a
RANS-type model applied to meshes too coarse for conventional LES models [107].

Sometimes, one may face a huge domain even if the interest is only in the initial part
of it. Thus, the domain is cut in a way to reduce the computation effort by creating an
Outflow BC. However, this is not trivial when the flux is turbulent and how to deal with
outflows for incompressible flow simulations is still a challenge. In this work, we are not
interested in reducing the domain significantly. Therefore, in the absence of a body force
field (e.g., a gravitational field), we may prescribe the normal stress equal to zero on the
Outflow BC, defined as,

(wh, (−phn + µ∇uh · n))ΓO
= 0. (3.67)

However, when we do consider a body force field, this equation changes a little. The
pressure field can be decomposed in two components,

ph = p0 + pd (3.68)

where ph is the total pressure, p0 is the hydrostatic pressure and pd is the dynamic pressure.
At the outlet, only the dynamic pressure is specified as zero normal gradient and

not the total pressure. Thus, the hydrostatic pressure has to be subtracted from the total
pressure in this boundary. The resulting equation is,
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(wh,−(pdn + µ∇uh · n))ΓO
= 0

(wh,−((ph − p0)n + µ∇uh · n))ΓO
= 0

(wh,−(phn + µ∇uh · n))ΓO
+ (wh, (p0n))ΓO

= 0

(wh,−(phn + µ∇uh · n))ΓO
= −(wh, (p0n))ΓO

.

(3.69)

Note that in this case, the tangential velocity is set to be zero [109, 110].
The Outflow BC is important in two-fluid problems where the hydrostatic pressure

must be considered to track the air/water interface.
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Chapter 4

Sediment transport model

In this section, we present the governing equations of the sediment transport model,
including the suspended and bed-load. We also present the bed morphology model and
the upwind sand-slide algorithm, developed to smooth and minimize the unrealistic bed
shapes that may occur when the predicted slope of the elements exceeds the sediment
angle of repose.

4.1 Governing equations

The governing equations of the sediment transport model are composed of an
advection-diffusion equation that represents the suspended load, together with empiri-
cal formulations that represent the bed-load and entrainment rate of sediments. Here we
present all the components necessary to model these phenomena.

4.1.1 Suspended Load

In the suspended load, the turbulence of the flow carries the sediment particles, and an
advection-diffusion equation governs it. By assuming a dilute suspension of small parti-
cles, we can neglect particle inertia and any particle-particle interactions. Consequently,
the particles are driven by fluid motion, with a settling velocity acting in the direction of
gravity, us, and the following equation governs it,

∂c

∂t
+ (uM + use

g)· ∇c = ∇· (εs∇c) in Ω× [0, tf ] (4.1)

in which c is the sediment concentration and εs is the sediment diffusivity considered to
be very small. The terms which are coming from the Eq. (4.1), resulting from applying
the RBVMS formulation and the Backward Euler time integration, are given in Appendix
B.

The settling velocity can be estimated by experiments or analytically. Stokes’ solution
for the drag resistance of the flow past a sphere can be expressed by the simplified Navier-

35



Stokes equation together with the continuity equation in polar coordinates. By using his
solution, the following expression for the settling velocity of spherical particles can be
derived [111],

us =
d2

50(ρs − ρ)g

18µ
(4.2)

where d50 is the average particle size, ρ is the fluid density, ρs is the particle density, g is
the gravitational acceleration and µ is the fluid viscosity.

4.1.2 Bed-load transport

The bed-load transport is the sediment movement near the bottom, where the particles
are moved by sliding, rolling or by saltation. In our work, it is represented as mesh
movement, since the boundary of the domain represents the sediment bottom.

There will be bed-load transport if the boundary shear stress exceeds the sediment
critical bed shear stress. The critical bed shear stress for a particular sediment is a function
of the flow intensity and sediment properties, and it is calculated from the Shields diagram
[112]. It is always given for a flat bed of identically-sized grains, and it can be determined
from the Soulsby-Whitehouse [86] equation, that is,

τθc =
0.3

1 + 1.2d∗
+ 0.055(1− e−0.02d∗) (4.3)

where d∗ is the dimensionless grain size given by,

d∗ = d50

(
gR

ν2

) 1
3

(4.4)

in which R is the sediment submerged specific gravity
(
R = ρ−ρs

ρ

)
.

The dimensionless shear stress for motion initiation, the Shields number, is defined
as,

τθ =
τb

ρgRd50

(4.5)

where τb is the bed shear stress calculated with the fluid flow model.
In this way, if the Shields number calculated in Equation (4.5) is higher than the

critical shear stress, it is necessary to calculate the bed-load transport. There are many
bed-load transport rate formulas in the literature [87, 113, 114]. For the current model,
the formula of Engelund and Fredsøe [87] is chosen, and it is defined as,

q∗ =

{
18.74(τθ − τθc)(τ 0.5

θ − 0.7τ 0.5
θc ), if τθ > τθc

0, otherwise
(4.6)
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where q∗ is the dimensionless bed-load transport rate, known as the Einstein number,
which is given by,

q∗ =
q0√

Rgd50d50

. (4.7)

Here q0 is the bed-load transport rate for flat bed, and it is used to find the bed-load
transport rates in different directions considering the slope effect according to the Equa-
tion (4.8), that is,

qi = q0
τbi
|τb|
− C|q0|

∂η

∂xi
(4.8)

where qi is the bed-load rate on the i direction, τbi is the bed shear stress on the i direction,
τb is the vector containing τbi, η is the bed elevation and C is a constant in the range of
1.5-2.3 which is used to represent the slope effect on the sediment flux [29].

4.1.3 Entrainment and Deposition Rate

Depending on the shear stress at the bottom, sediments can entrain into suspension,
going out of the bed-load zone and starting to be governed by the suspended load equa-
tions. It is also possible that suspended particles are settled on the bottom. We represent
these exchanges between bed-load and suspended load zones as boundary conditions to-
gether with mesh movement.

The flux of sediments qs including convective and diffusive fluxes is defined as,

qs = (uM + use
g)c− εs∇c. (4.9)

The sediment flux at the atmosphere boundary and the rigid walls is zero (qs·n = 0),
and at the sediment bed, the sediment flux is equal to E −D, where E is the entrainment
rate and D is the deposition rate (qs·n = E −D). Besides the flux boundary conditions,
we may have a boundary where there is a prescribed flux of sediments. In this case we
use a Dirichlet boundary condition with c = cin on Γsin.

The entrainment rate also needs an empirical model and, in this work, we adopt the
van Rijn model [83]. The entrainment rate is then given by,

E = Caeus (4.10)

where

Cae = 0.015
d50

a

T 1.5

d0.3
∗

(4.11)

T =
(u′∗ − u∗c)

u∗c
(4.12)
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u∗c =

√
τbc
ρ

(4.13)

τbc = τθcρgRd50 (4.14)

u′∗ =
g0.5

C ′
ū (4.15)

C ′ = 18 log

(
12Rb

3d90

)
. (4.16)

In equations (4.10) to (4.16), Cae is the near-bed sediment concentration in volume under
capacity (equilibrium) status, a is the reference level above the bed, T is the transport
parameter, u′∗ is the effective bed shear velocity related to grain friction, u∗c is the critical
bed-shear velocity for initial motion of sediment, τθc is the critical Shields number given
by Equation (4.3), ū is the mean flow velocity, Rb is the hydraulic radius according to the
method of Vanoni-Brooks [115] and d90 is the grain size corresponding to 90% finer.

On the other hand, the deposition rate at the bed is straightforward,

D = uscb (4.17)

where cb is the sediment concentration very near the bed.

4.2 Bed morphology model with ALE

Bed elevation changes are based on the continuity of sediment. The equation which
describes the sediment continuity is the Exner equation [116], given by:

∂η

∂t
=

1

1− n
(−∇ · qb +D − E) (4.18)

where η is the bed elevation, n is the porosity of the bed, qb is the bed-load transport rate
vector whose components are given by Equation (4.8), E is the entrainment rate given by
Equation (4.10) and D is the deposition rate given by Equation (4.17).

The Exner equation relates all possible ways of sediment moves in a giving time-step.
We apply the bed elevation resulting from Equation (4.18) as mesh movement, with the
resulting scheme described within the ALE framework, as explained in chapter 2.2.

4.3 Upwind sand-slide

In sediment transport problems, unrealistic bed shapes as sharp corners sometimes
occur and undermine numerical stability. It often occurs when the predicted slope of the
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elements exceeds the sediment angle of repose. Therefore, different smoothing techniques
were developed to minimize these unrealistic bed shapes [2, 30, 59, 117].

In this work, we developed a new smoothing procedure called upwind sand-slide. The
traditional smoothing techniques rotate the element boundary around its gravity center
until the slope becomes lower or equal to the sediment angle of repose. Thus, sediment
mass is removed and reallocated in the domain to avoid big slopes and its consequences
in the numerical simulation.

Our smoothing technique also changes the position of the sediments, but we change it
by considering the direction of the flow. If the flow is coming in the up-slope direction, it
does not make sense that sediments move in the opposite direction as occurs on traditional
sand-slide models. Instead of rotating the element boundary around its gravity center, we
fix the first node, and we move the two subsequent nodes in the upwind flow direction,
one to adjust the slope, and the other to keep the mass conservation. When the flow is
coming in the down-slope direction, we can use the traditional method, since the sediment
movement follows already the flow direction. We can see how it works in Figure 4.1.

We apply the upwind sand-slide if the computed bed slope between two adjacent bed
nodes is found to be larger than the sediment angle of repose. The distance dy used to
adjust the slope is given by,

dy =
xi − xi−1

2
(tanαs − tanφsc) (4.19)

where αs is the angle between the bed and the horizontal axis, xi and xi−1 are the hori-
zontal coordinates of the nodes and φsc is the critical slope. This method requires a slope
change on the adjacent elements every time it is applied. Thus, after that, we have to
check the slope of all elements again, and the algorithm is iterated until convergence is
achieved. Figure 4.2 shows the iteration procedure of this method. The sediment angle
of repose, φs, has been fixed and the angle of stability limit is chosen to be φsc = φs + 1◦

according to [118].
It is important to remember that these methods are geometrical, and the horizontal

distance between nodes have to be the same to conserve the mass of sediments. It is
also important to verify if the integral of the vertical coordinates at the bottom is constant
along the time interval of interest.

Besides the upwind sand-slide model, we also apply a Laplacian smoothing in the
boundary nodes to avoid small oscillations that may harm numerical stability. This
smoothing is made after a certain number of time-steps, considering the quantity of sed-
iments in movement. This smoothing tends to lead the sediment bottom to a horizontal
shape. Thus we have to be careful about the frequency that it is applied. Considering we
have only bilinear elements, the Laplacian smoothing on the boundary can be written as,
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Figure 4.1: Upwind sand-slide model: (a) Initial configuration in which the slope angle
is bigger than the sediment angle of repose; (b) Traditional sand-slide models in which
we rotate the element boundary around its gravity center until the slope becomes lower or
equal to the sediment angle of repose; (c) Upwind sand-slide model in which we consider
the direction of the flow. If the flow is coming in the up-slope direction, we fix the first
node, and we move the two subsequent nodes in the upwind flow direction, one to adjust
the slope, and the other to keep the mass conservation. When the flow is coming in the
down-slope direction, we can use the traditional method. The green area is the sediment
mass added, and the red area is the sediment mass removed.

yi = 0.5yi + 0.25(yi−1 + yi+1)

where yi is the vertical coordinate of the node, and yi−1 and yi+1 are the vertical coordi-
nates of its neighbor nodes.
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Figure 4.2: Two iterations of the sand-slide algorithm; (a) initial bed form, (b) first itera-
tion, (c) second iteration [2]

.
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Chapter 5

Computational aspects

This chapter discuss the computation aspects of the models implemented on
libmesh [25]. We present the structure of the algorithm and how the model is solved
using the available libraries.

5.1 The libmesh library

libmesh provides a finite element framework that can be used for numerical simu-
lation of partial differential equations on serial and parallel platforms. This library is an
excellent tool for programming the finite element method and can be used for one-, two-,
and three-dimensional steady and transient simulations. The libmesh library also has
adaptive mesh refinement and coarsening strategies, also used in this work.

The main advantage of this library is the possibility to focus on the implementation of
the specifics features of the modeling without warning about adaptivity and code paral-
lelization. Consequently, the effort to build a high performance computing code tends to
be minimized.

The libmesh library is written in C++ [119], being compatible with several software
and hardware. There are many external libraries used by libmesh as the LASPack [120],
which has a package with serial routines of linear algebra and iterative solution methods
and the Portable Extensible Toolkit for Scientific Computation (PETSc) library [121], for
the solution of linear and non-linear systems, both in serial and parallel. We also can
cite METIS [122] and ParMETIS [123] used for the domain partitioning, among other
available libraries.

The PETSc library gives the support for the numerical solution of the partial dif-
ferential equations in parallel. It has efficient data storage and manipulation of vectors
and matrices structures. The PETSc library also has several methods for the solution of
sparse linear systems as the Generalized Minimal Residual Method (GMRES) and the
bi-conjugated gradient, and preconditioners as the ILU(k) and block-Jacobi. It is the user
that defines which kind of linear solver and preconditioner will be used within the algo-
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rithm. For more information about this library, linear solvers and preconditioners, see
[124] and [125].

5.2 Adaptive Mesh Refinement (AMR)

The AMR procedure uses a local error estimator considering the error of an element
relative to its neighbor elements in the mesh. This error may come from any variable of
the system. As it is standard in libMesh, Kelly′s error indicator is employed, which uses
the H1-seminorm to estimate the error ([126]). Apart from the element interior residual,
the flux jumps across the inter-element faces influence the element error. The flux jump
of each face is computed and added to the error contribution of the cell. For both the
residual and flux jump, the value of the desired variables at each node is necessary. Being
so, the error ‖e‖2 can be stated as,

‖e‖2 =
n∑
i=1

‖e‖2
i (5.1)

where ‖e‖2
i is the error of each variable. In this study we use only the velocity as variable

for the error estimator.
After computing the error values the elements are ”flagged” for refining and coarsen-

ing regarding their relative error. This is done by a statistical element flagging strategy. It
is assumed that the element error ‖e‖ is distributed approximately in a normal probability
function. Here, the statistical mean µs and standard deviation σs of all errors are calcu-
lated. Whether an element is flagged is depending on a refining (rf ) and a coarsening (cf )
fraction. For all errors ‖e‖ < µs − σscf the elements are flagged for coarsening and for
all ‖e‖ > µs +σsrf the elements are marked for refinement. The refinement is performed
by local isotropic subdivision (h-refinement) with hanging nodes. Here, the refinement
level is limited by a maximum h-level (hmax) and the coarsening is done by h-restitution
of subelements ([127], [128], [129]).

5.3 Two-fluid algorithm

To solve two-fluid problems, we start the algorithm by initializing the level-set vari-
ables, building the iso-surfaces according to the modified SDF. Then, it calls a routine to
calculate the normals and curvature. Afterward, it calculates the Navier-Stokes equation
using the previously defined fluid properties. The PETSc library solves the linear system
of equations coming from the linearization of the Navier-Stokes equations invoked by
libMesh, applying the GMRES with Block-Jacobi preconditioner together with ILU(0)
within each block. Then, the interface movement is calculated with the convected level-
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set method using the velocities coming from the fluid flow model. The resulting linear
system of the pure convection equation is solved in the same way as the fluid flow model.
The global mass conservation is then enforced. With the flow and level-set updated, the
adaptive mesh refinement algorithm is applied, refining, or coarsening the mesh depend-
ing on the flux jump of the level-set and velocity errors. Finally, before going for the next
time-step, the flow and level-set equations are recalculated with the updated mesh. Figure
5.1 illustrate this sequence.

Figure 5.1: Flow chart of computation of two-fluid problems

The use of the algorithm is straightforward. To give the information about the prob-
lem under consideration, we need to provide two input files. One contains mesh data,
including node coordinates, element connections, and physical groups of each boundary,
and another contains all information and parameters to close the problem, as time-step,
final time, the maximum number of non-linear and linear iterations, etc. Here, we also
define what happens with each physical group by defining the boundary conditions. The
libmesh library also allows the mesh creation inside the source code. However, depend-
ing on the geometry, it is easier to use an external mesh generator as GMSH, for example
[130].

5.4 Sediment-fluid algorithm

In sediment transport problems, we only consider the fluid and the sediment bottom.
We are still not considering free-surface problems together with morphological changes.
However, we intend to couple both methods in future works. Therefore, we only have one
phase, representing the fluid, while the sediment bottom is represented as mesh movement
within the ALE framework. It is possible to avoid some steps of calculation used in the
previous algorithm by defining a constant density in the Navier-Stokes equation.
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Therefore, the algorithm starts calculating the fluid flow model using AMR based on
the flux jump of the velocities error. After that, the suspended sediment transport is cal-
culated using the velocities coming from the fluid flow model. If there is no sediment
suspended and there is no entrainment rate, the algorithm jumps to the next part. Oth-
erwise, the resulting linear system is solved in the same way (using the preconditioned
GMRES).

Finally, we calculate morphological contributions. It comes from the bed-load trans-
port and entrainment and deposition rate, according to the Exner equation (4.18). Here,
we calculate the bottom displacements, and we check the angle of repose before going
to the mesh movement solver. We adjust the displacements using the upwind sand-slide
algorithm, and once this process is over, it is possible to move the mesh.

The mesh movement system of equations is symmetric, and it is solved using the
preconditioned Conjugate Gradients method, together with IC(0). The mesh is updated,
and the velocities coming from these changes are included in the flow calculation in the
next time-step. Figure 5.2 illustrate this sequence.

Figure 5.2: Flow chart of computation of sediment-fluid problems

Note that we are not considering that the suspended sediment affects the fluid behav-
ior. The sediments are considered passive scalars to the flow. They are only carried by
the flow without changing its course. However, it is possible to consider the sediment
influence and to couple both modules. We only have to add a forcing term correspondent
to the suspended sediment concentration in the Navier-Stokes equations [64]. The test
cases used in this work do not require this coupling because the influence of the particles
on the fluid is minimal to them. This is the reason we are considering the “passive scalar
hypothesis”, in which the sediment concentration is too low to be considered in the fluid
model.
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Chapter 6

Results and Discussion

In this chapter, we verify our algorithm by solving several problems. The verification
goes through several stages until reaching the complete model. These steps are essential
to understand each phase of the developed models and also to isolate errors when they
appear.

We start verifying the fluid flow model by solving single-phase problems. Then we
verify the implementation of the convected level-set method with pure convection prob-
lems. After, we check the surface tension model by comparing the results with analytical
responses. Finally, it is possible to solve two-fluid problems, and we solve several bubbles
motion problems.

To solve sediment-fluid problems, we start verifying the mesh movement procedure
by applying it to a simple configuration where it is possible to check all considerations
done for these problems. Then, we show the influence of the upwind sand-slide smoothing
technique. After, the suspended load of sediments is verified against experimental data.
Finally, we present the results of the complete model of sediment-fluid interaction.

6.1 Verification of the fluid flow model

The first challenge is to model the flow field correctly. Therefore, we begin with
two classical single-phase problems: the lid-driven cavity, and the flow over a backward
facing-step. These problems are useful benchmarks to verify the implemented model.

6.1.1 Lid-driven cavity test case

We begin solving the classical lid-driven flow problem. This test has been widely used
as a benchmark for numerical methods and has been analyzed by many authors [131–133].
The problem consists of a square container with dimensions 1 × 1 filled with a fluid, and
the lid of the container moves at a given velocity, thereby setting the fluid in motion.
The problem description and boundary conditions are shown in Figure 6.1, where no-slip
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conditions are imposed on all segments of the boundary except for the upper boundary,
along which the velocity u is not set to zero, but equals to 1.

1
u = v = 0

u
=
v

=
0

1

u
=
v

=
0

u = 1 v = 0

Figure 6.1: Lid-driven cavity: Geometry

First, we perform a mesh sensitivity study to validate the capability of the method.
Therefore, four different structured grids are used for these comparisons with a mesh of
16 × 16, 32 × 32, 64 × 64, and 128 × 128 bilinear quadrilateral elements respectively.
The Reynolds number is chosen to be equal to 5000, and we use a time-step equal to 0.1
until reach the steady-state. All numerical experiments are compared to the very known
reference of ERTURK et al. [132]. In [132] the 2D steady incompressible Navier–Stokes
equations were solved using a very efficient finite difference numerical method (fourth-
order compact formulation) on a very fine grid of 601 × 601.

The velocity profiles for ux and uy along x = 0.5 and y = 0.5 respectively employing
different grid resolutions together with the reference solution are shown in Fig. 6.2. It is
possible to see that the present method converges rather rapidly to the given benchmark
solution.

Now we present the velocity profiles (Fig. 6.3 to Fig. 6.5) and streamlines (Fig. 6.6)
of three situations, in which the Reynolds number is defined as 1000, 5000 and 10000. We
use a fixed mesh of 160 × 160 bilinear quadrilateral elements and a time-step of 0.1. All
simulations have good agreement with the numerical reference of ERTURK et al. [132].

6.1.2 Flow over a backward facing-step test case

As a second test case, we consider a popular test problem for developing flow simula-
tion codes, which is the flow over a backward facing-step. It consists of a fluid flowing in
a straight channel, which abruptly widens on one side. The geometry and the boundary
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(a) ux along x = 0.5. (b) uy along y = 0.5.

Figure 6.2: Lid-driven cavity: Velocity profile using different meshes with Re = 5000.

(a) ux along x = 0.5. (b) uy along y = 0.5.

Figure 6.3: Lid-driven cavity: Velocity profile with Re = 1000.

conditions of the problem are shown in Figure 6.7. We apply the no-slip boundary con-
dition in all boundaries, except for the inlet and outlet. At the inlet boundary, we apply
an inflow velocity that has parabolic shape given by uin = 24y(0.5− y), and at the outlet
boundary, we apply nothing, representing the Outflow BC when we do not consider the
hydrostatic pressure as a body force.

Once again, we perform a mesh sensitivity study. Three different structured grids
are used for these comparisons with a mesh of 10 × 200, 20 × 400 and 40 × 800 bi-
linear quadrilateral elements. The Reynolds number is chosen to be equal to 800, and
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(a) ux along x = 0.5. (b) uy along y = 0.5.

Figure 6.4: Lid-driven cavity: Velocity profile with Re = 5000.

(a) ux along x = 0.5. (b) uy along y = 0.5.

Figure 6.5: Lid-driven cavity: Velocity profile with Re = 10000.

we use a time-step equal to 0.1 until reach the steady-state. All numerical experiments
are compared to the very known reference of GARTLING [134], where the 2D steady
incompressible Navier–Stokes equations were solved on a grid of 40 × 800.

The velocity profiles for ux along x = 7 and x = 15 employing different grid reso-
lutions together with the reference solution are shown in Fig. 6.8. In Fig. 6.9 we also
present the streamlines of the solution between x = 0 and x = 10.

We also test the Outflow BC in this problem, by considering the hydrostatic pressure as
a body force term. The velocity profiles should be the same by considering the hydrostatic
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Figure 6.6: Lid-driven cavity: Streamlines for different Reynolds.
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Figure 6.7: Backward facing-step: Geometry

(a) ux along x = 7. (b) ux along x = 15.

Figure 6.8: Backward facing-step: velocity profile using different meshes with Re = 800.

Figure 6.9: Backward facing-step: Streamlines for Re = 800 in 0 < x < 10.
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pressure or not. Therefore, we have to add the Outflow BC term at the outlet boundary
to consider its influence, as explained in section 3.7. This condition works pretty well,
although it generates a small perturbation of the pressure at the corners of the boundary, as
shown in Fig. 6.10. The Outflow BC is important when working with two-fluid problems.

−0.4−0.2 0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

Dynamic pressure

y

With hydrostatic pressure and ouflow BC
Without hydrostatic pressure

Figure 6.10: Backward facing-step: Dynamic pressure at x=20

6.2 Verification of the convected level-set

Before simulating two-fluid problems, it is important to verify if the interface motion
is working correctly. In this section, we verify the implementation of the convected level-
set method by solving simple convection problems. In all simulations, we assign the
value of the penalty constant λ to 1, and we define a time-step low enough to properly
reinitialize the SDF, by considering the value of λ and mesh size.

6.2.1 Pure convection of a circle

In this two-dimensional benchmark, we consider the rotation of a circle placed in a
square computational domain of side equal to 1 and initially centered at (0.25,0.5) with a
radius of 0.15. The imposed divergence-free velocity field u is,

u = −2π(y − y(Square Center))

v = 2π(x− x(Square Center)).
(6.1)

This test case is used to verify different assumptions adopted in this work, as the tem-
poral integration method and the importance of the global mass enforcement procedure.
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To do that, a series of runs of this case with fixed mesh is performed. We also outline
the importance of the mesh size and the corresponding time-step. In section 2.1.2, we
have defined the time integration method for the convected level-set as the BDF2. Here,
we compare the BDF2 with the Backward Euler (BE) method, which is given by Eq.
(3.35). Even though we know the BDF2 method should provide better results than the
BE because it has second-order accuracy while the BE is only first-order, we would like
to outline that there is no extra computational cost by applying it. We also would like
to show what is the difference between both methods with different mesh refinement and
time-step. Applying the BE method to the convected level-set equation (Eq. 2.13) yields,

φn+1 − φn
∆t

+ (un+1 + λUn) · ∇φn+1 − λ sgn(φn)

(
1

4E
− φ2

n

E

)
= 0. (6.2)

Table 6.1 provides the data used for the simulations. We use the SDF presented in Eq.
(2.2) with a thickness E = 0.05. The computational times were obtained in an Intel c©

CoreTM i5-8400 CPU @ 2.80GHz × 6. In Figure 6.11, the shape’s deformation between
the initial and the final time are shown for all these simulations.

Table 6.1: Pure convection of a circle: Parameters of the different simulations performed.

CPU time (s)
Case Mesh Grid time-step (s) (BE) (BDF2)
(a) 50×50 0.01 10 10
(b) 50×50 0.005 20 17
(c) 50×50 0.0025 30 31
(d) 100×100 0.005 66 66
(e) 100×100 0.0025 117 118
(f) 100×100 0.001 265 266
(g) 200×200 0.001 961 990
(h) 200×200 0.0005 1096 1041

The most challenging feature for a good interface-capturing method resides in its abil-
ity to preserve the mass of the species involved. In these first simulations, we do not apply
the global mass conservation routine, presented in section 2.1.4, aiming to observe what
happens by using this method without a mass conservation enforcement. The mass con-
servation is given by the relative error between the final area of the deformed circle and
the initial area. Figure 6.12 shows the percentage of area loss per time of the simulations
given by Table 6.1. It is possible to see that the BDF2 method provides more accurate
results in all simulations, and there is no extra computational cost by using it. The mass
conservation is also dependent on the mesh size. Refined meshes lose less mass than the
coarse ones. The area loss of the BE method (Fig. 6.12a) is significantly larger than the
area loss of the BDF2 method (Fig. 6.12b). That is why we chose the BDF2 method for
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Figure 6.11: Pure convection of a circle: Circle deformation on different meshes, with
different time-steps and without the global mass conservation procedure. In the simple
green line: the initial zero iso-value of the distance function. In the blue dashed line: the
same iso-value at the final time-step (after one turn) with the BDF2 time discretization.
In the red dotted line: the same iso-value at the final time-step (after one turn) with the
BE time discretization. (a)-(h) correspond to values given in Table 6.1

the time integration of the convected level-set method.

(a) With BE. (b) With BDF2.

Figure 6.12: Pure convection of a circle: Area loss per time of all simulations [(a)-(h)]
given in Table 6.1

In Fig. 6.13, we present the shape’s deformation between the initial and the final time
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when using the global mass conservation procedure presented in section 2.1.4. There is
no longer mass loss between phases. However, these runs indicate the dependency of the
accuracy of the convected level-set method on the mesh size. The coarse the mesh, the
more distorted the interface becomes. Moreover, refining the domain implies a smaller
time-step for a better precision.

Figure 6.13: Pure convection of a circle: Circle deformation on different meshes, with
different time-steps and with the global mass conservation procedure. In the simple green
line: the initial zero iso-value of the distance function. In the blue dashed line: the same
iso-value at the final time-step (after one turn) with the BDF2 time discretization. In the
red dotted line: the same iso-value at the final time-step (after one turn) with the BE time
discretization. (a)-(h) correspond to values given in Table 6.1

Finally, we present this simulation using AMR, together with the BDF2 method and
with the global mass conservation procedure. We use an adaptive mesh refinement based
on the flux jump of the level-set function error, in which hmax(LS) = 2, the coarsening
fraction cf = 0.01 and the refining fraction rf = 0.99. We apply the adaptive mesh
refinement every 50 time-steps. The initial mesh has 50 × 50 bilinear quadrilateral ele-
ments, and after the refinement, the smallest element has size 0.005. We initially refine
in two levels the region where the circle is located. The time-step is 0.0005. Figure 6.14
shows the simulation results at different steps during one revolution of the circle. The
zero level-set is highlighted, and it is possible to see the mesh adaptivity. Note that after
one turn, the circle keeps its shape. The computational time for the result with AMR is
711 seconds. Therefore, by using AMR we save computational effort, and we obtain the
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same accuracy of the results of the run (h) that took 1096 seconds.

Figure 6.14: Pure convection of a circle: Position of the circle and mesh refinement at
different time-steps during one turn.

In Figure 6.15, we show what happens when we consider only the pure convection
parcel of the convected level-set equation to capture the interface motion, i.e., λ = 0,
aiming to understand the importance of the reinitialization. After one turn, even that the
zero iso-value keeps its shape close to a circle, the other iso-values has distortions and
become ellipses when using the BE method (Fig. 6.15b). On the other hand, the BDF2
method preserves better the iso-values shape, even though they still are not perfect circles
(Fig. 6.15c). Figure 6.15d shows the iso-values using the complete convected level-set.
It is possible to see how the reinitialization adjusts the level-set field to keep it an SDF.
We also conclude that the BDF2 preserves the iso-values shape better than the BE, and
for this reason, we only use the BDF2 for the time integration of the convected level-set
method in the next simulations.

(a) Initial iso-values. (b) Final iso-values
without reinitialization
and with BE.

(c) Final iso-values
without reinitialization
and with BDF2.

(d) Final iso-values us-
ing the convected level-
set method.

Figure 6.15: Pure convection of a circle: iso-values when using the reinitialization or not.

6.2.2 Advection of a sphere

Now, we consider a three-dimensional problem that is the rotation of a sphere. The
sphere is initially centered at (0.25,0.5,0.5), the side of the computational domain is set to
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1, with a radius of 0.15. The imposed velocity field is,

u = −2π(y − y(Square Center))

v = 2π(x− x(Square Center))

w = 0

(6.3)

We use an adaptive mesh refinement with hmax = 2, cf = 0.01 and rf = 0.99. We
apply the AMR every 25 time-steps. The initial mesh has 25×25×25 trilinear hexahedral
elements, and after the refinement, the smallest element has size 0.01. We initially refine
in two levels the sphere region, as we can see in Figure 6.16. The time-step is 0.001
seconds, and we choose a thickness E = 0.025. Figure 6.17 shows the simulation at
different steps during one rotation. The result shows that the convected level-set method
preserves a good interface shape for three-dimensional problems as well.

Figure 6.16: Pure convection of a sphere: Initial mesh refinement of the advection of a
sphere problem.

6.2.3 Zalesak’s problem

The Zalesak’s problem consists of the rotation of a slotted disk under a given velocity
field [135]. The side of the squared computational domain is 1.2, and the disk is initially
centered in (0.3, 0.6) with a radius of 0.2 and a slot length of 0.35 (Fig. 6.18). The
velocity field is also given by Eq. (6.1).

We choose a thickness E = 0.0125 and we use an adaptive mesh refinement with
hmax(LS) = 3, cf = 0.01 and rf = 0.99. We apply the adaptive mesh refinement every
50 time-steps. The initial mesh has 60× 60 bilinear quadrilateral elements, and after the
refinement, the smallest element has size 0.0025. We initially refine in three levels the
circle region. This example needs more refinement than the previous ones because of
the sharp corners of the disk. The time-step is 0.0001. Figure 6.19 shows the simulation
results at different steps during one revolution. The zero level-set is highlighted, and it
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Figure 6.17: Pure convection of a sphere: Position of the sphere during one turn.

Figure 6.18: Zalesak’s problem: Configuration.

is possible to see the mesh adaptivity. In Fig. 6.20, we compare the initial configuration
with the final one after one turn, and the interface shape is preserved.

6.2.4 Single vortex problem

The single vortex problem was firstly introduced by BELL et al. [136] as a more
severe test case than the Zalesak’s problem for testing the ability of the numerical scheme
to resolve thin filaments. The problem consists of a circle initially centered at (0.5, 0.75)
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Figure 6.19: Zalesak’s problem: Position of the disk and mesh refinement at different
time-steps during one turn.

Figure 6.20: Zalesak’s problem: Initial disk configuration (blue line) and final configura-
tion after one turn (green line with markers)

in a unit square domain, and it is advected by a velocity field given by the following
stream function,

Ψ =
1

π
sin2(πx) sin2(πy) (6.4)

which leads to the velocity field,

u =
∂Ψ

∂y
= sin(2πy) sin2(πx) (6.5)

v =
∂Ψ

∂x
= sin(2πx) sin2(πy). (6.6)

For the purpose of error analysis, LEVEQUE [137] suggested to multiply the velocity
field by

g(t) = cos(πt/T ) (6.7)

where T is the period at which the flow returns to its initial state. Following other authors
[89, 138], we adopt a period T = 8, but we also show the results using T = 4.

We choose a thickness E = 0.0078125 and we use an adaptive mesh refinement with
hmax(LS) = 4, cf = 0.01 and rf = 0.99. We apply the adaptive mesh refinement every
50 time-steps. The initial mesh has 80 × 80 bilinear quadrilateral elements, and after
the refinement, the smallest element has size 0.0015625. We refine the initial region in
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four levels. This level of refinement is important to reproduce the thin “tail” that arises
after a few simulation instants. The time-step is 0.0025. Figures 6.21 and 6.22 show the
simulation results at different steps during one revolution of the single vortex problem for
T = 4 and T = 8, respectively. The zero level-set is highlighted, and it is possible to see
the mesh adaptivity. In Fig. 6.23, we compare the initial configuration with the final one
after one period. In the simulation with T = 8, the “tail” becomes thinner than for the
simulation with T = 4, and the mesh used is not refined enough to capture this thickness,
which distorts the final interface shape. For better results, we should use an even more
refined mesh in that region. On the other hand, the level of refinement used is enough to
provide good results with T = 4, and after one turn, the interface shape is preserved.

Figure 6.21: Single vortex problem: Vortex deformation and mesh refinement at different
time-steps for T = 4.

Figure 6.22: Single vortex problem: Vortex deformation and mesh refinement at different
time-steps for T = 8.

6.3 Verification of the surface tension model

In this section, we verify the implementation of the surface tension model. First, we
check the calculation of the surface tension force in a given contour, in which we have the
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Figure 6.23: Single vortex problem: Initial configuration (blue line) and final configura-
tion after one period (dashed green line).

analytical response based on the geometry of the problem. Then, we check a two-fluid
problem in the absence of gravity, where we can verify the pressure resulting from the
surface tension.

6.3.1 Film-like interface

In this test case, we want to check the calculation of the surface tension force in a
given contour. We reproduce the contour used by SHEPEL e SMITH [139], shown in
Fig. 6.24. It consists of four 180◦ arcs, two large arcs of radii Ro and Ri and two small
arcs of radius (Ro−Ri)/2. The surface tension coefficient is set to σst = 0.1 and the radii
are set to Ro = 1.0625 and Ri = 0.9375.

Figure 6.24: Film-like interface: Geometry of the closed contour.

The computational domain is divided into two parts by a horizontal line passing
through the origin of the coordinate system and the points where the arcs are connected.
Therefore, we denote the surface tension force in the upper part of the domain, i.e., for
y ≥ 0, as F+

st and in the lower part of the domain, y ≤ 0, as F−st.
As the contour is symmetric with respect to the y-axis, the horizontal component of

Fst is not considered in the analysis, whereas the vertical component is calculated as
follows: F y

st = h2
∑

i,j J ·Fst(xi, j) , where J = (0, 1) is the unit vector along the y-axis.
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The exact solution to this problem obtained by contour integration is given by F y+
st = −4

and F y−
st = +4.

The contour is modeled using a thickness E = 0.1. We define the half-thickness of
the band where the surface tension force is distributed equally to ε = 5he, being he the
element size. Table 6.2 shows the results of a convergence study for successively refined
uniform grids. The errors are calculated as E+ = (4 + F y+

st )/4 and E− = (4 − F y−
st )/4.

It is possible to see the importance of mesh refinement to achieve good results.

Table 6.2: Film-like interface: Integration errors for the surface tension force on the stud-
ied closed contour with successively refined uniform grids.

he
Error 0.05 0.025 0.0125 0.00625
|E+| 8.64E-02 3.78E-02 1.91E-04 5.10E-05
|E−| 1.23E-01 1.84E-02 2.78E-03 6.15E-04

6.3.2 Pressure inside a bubble due the surface tension

The surface tension induces an excess of pressure inside bubbles which, for a spherical
shape, can be calculated from the Youngs-Laplace equation,

∆p =
2σst
R

. (6.8)

Here, we present a simulation of a drop of water with a radius R = 2 cm in stagnant
air in the absence of gravity. Under these conditions, the drop should acquire a spherical
shape and remain in equilibrium. The data given in Table 6.3 is used for this simulation.
The free-slip boundary condition is used at all boundaries. We use two different meshes
(case A and case B) to compare the grid influence for this test case. Although we obtain
the pressure solution with only one time-step, we run this simulation during a larger period
to confirm that the surface tension keeps the bubble in a spherical shape.

According to Laplace’s formula, the exact solution to this problem is a discontinuous
pressure distribution equals to 0 outside the drop and 7.2 Pa inside the drop, with a jump
at the drop surface. In Fig. 6.25, we plot our results and compare them with the exact
solution. It can be seen that the excess pressure inside the bubble is predicted with reason-
able accuracy in both cases (deviation from the analytical solution is 3.83% for case A and
2.45% for case B), which indicates that the surface tension model has been implemented
correctly. Moreover, the spherical bubble shape is maintained. Comparing the results of
cases A and B, the more refined mesh provides better results.
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Table 6.3: Pressure inside a bubble due the surface tension: Data.

Computational domain 0.08× 0.08× 0.08 m
Grid sizes (A) 0.004 / (B) 0.002 m

Number of time-steps 1000 (-)
Time-step 0.001 s

Bubble radius 0.02 m
Initial bubble position (x, y, z) = (0.04, 0.04, 0.04) m

Liquid density 1000 kg/m3

Liquid viscosity 10−3 kg/(ms)
Gas density 1.163 kg/m3

Gas viscosity 1.85−5 kg/(ms)
Surface tension 0.072 N/m

Gravity 0.0 m/s2

Figure 6.25: Pressure inside a bubble due the surface tension: Results.

6.4 Verification of the moving mesh method

In this section, we verify the implementation of the moving mesh method. As men-
tioned before, the ALE framework is used in sediment-fluid problems, and the morpho-
logical changes are represented as mesh movement. First, we verify the algorithm of
mesh movement. Then, we verify the upwind sand-slide mechanism, developed to limit
the slope angle to the sediment angle of repose.

6.4.1 Mesh movement

In sediment transport problems, the movement of the sediment boundary is essential,
playing the main role in the resolution of these problems. The desired result is the final
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profile of the sediment bed, and this is represented by mesh movement in this work.
To verify the mesh movement algorithm, we use a rectangular domain with 10 × 50

bilinear quadrilateral elements, and we apply mesh movement boundary conditions as
follows: we fix the superior part of the rectangular domain, d = 0 on Γf and we apply a
sinusoidal displacement that depends on time at the bottom boundary, d = −CM sin(t)

on Γm, where CM is a vector with all entries equal to a positive constant CM . The laterals
are free to move. In Figure 6.26, we can see the domain at different times. It is possible
to note that all elements were deformed in the same way. The diffusion applied was
dependent on the area of the elements, and since all elements have the same area, the
displacements were the same.

Now, we take the same domain and mesh movement boundary conditions, but we
refine the middle south part of the rectangular elements. In this case, the displacements of
the biggest elements are bigger than the small ones (Figure 6.27). Usually, the boundaries
are refined. Therefore this method of calculating the diffusion is good to keep the shape
of the small elements (at boundaries) while the biggest ones are more deformed.

As a last mesh movement test, we would like to show the importance of the choice
of a gravity acceleration direction diffusion, especially when there are displacements in
opposite directions. For this test, the displacements at the bottom are,

if 2 < coord(x) ≤ 2.5 d = −CM sin(t)

if 2.5 < coord(x) ≤ 3 d = CM sin(t) (6.9)

otherwise d = 0

where coord(x) is the coordinate in x direction. Figure 6.28 compares the mesh when
using a motion diffusion only in the gravity acceleration direction, with an anisotropic
motion diffusion.

When there are displacements in opposite directions, an anisotropic diffusion tends to
cause large deformations in the mesh, as it is possible to see in Figure 6.28. These large
deformations may make the system unstable, and the simulation might diverge. On the
other hand, by using a diffusion applied only in the gravity acceleration direction, only
a few elements are distorted, and more elements absorb the displacements. In sediment
transport simulations, displacements in opposite directions are expected, and that is why
we choose a diffusion applied only in the gravity acceleration direction.

6.4.2 Upwind sand-slide

In order to test the upwind sand-slide mechanism, a heap of sand with initial slopes
larger than a pre-determined critical bed slope is used as a test case. This test case is de-
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Figure 6.26: Mesh movement: displacements when the elements have the same area.

signed to test only the upwind sand-slide mechanism. Thus no sediment transport models
are included in the simulation.

A sketch of the case can be seen in Fig. 6.29. The left slope angle is 40o, and the right
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Figure 6.27: Mesh movement: displacements when the elements have different areas.

slope angle is 35o. The critical bed slope is set to be 30o. Therefore both slopes need to
be corrected although the correction is different on each side.

The computational mesh for this test case is two-dimensional with 750 bilinear quadri-
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Figure 6.28: Mesh movement: comparison between an anisotropic diffusion (left) and a
isotropic diffusion in the gravity acceleration direction (right).

laterals elements. The boundary conditions for the mesh displacements are fixed to zero
for all the boundaries except for the bottom boundary where the values are given by the
upwind sand-slide mechanism. We present three situations: (A) without a flow field. (B)
the flow comes from the left to the right side of the domain. (C) the flow comes from
the right to the left side of the domain. Here, we are still not applying the Laplacian
smoothing.

The displacements of the mesh after the procedure are shown in Figures 6.30 to 6.32.
The initial and final geometry of each case are shown in Figures 6.33 to 6.35. It is possible
to see the influence of the flow field in the final geometry. If we are not considering any
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Figure 6.29: Upwind sand-slide: Geometry and mesh

flow field as the test case A, the correction can be done using the classical smoothing
techniques, which rotate the element boundary around its gravity center until the slope
becomes lower or equal to the sediment angle. On the other hand, in the test cases B and
C, we apply the upwind sand-slide procedure, considering the direction of the flow. Note
how the geometry changes and follows the direction of the flow.

It is important to check if the area of the domain is the same in all geometries because
we do not want to lose or to gain sediments with this process. In this test case, the initial
and final domains have an area of 5.736, which means that the mass is conserved. This
test demonstrates that the upwind sand-slide mechanism works correctly to restrict the
bed slope to the critical bed slope of the sediment, considering the direction of the flow.

Figure 6.30: Upwind sand-slide: Mesh displacements of case A

Now, we show the influence of the Laplacian smoothing used to avoid sharp corners
and small oscillations. We repeat the three test cases considering the smoothing technique
only when a certain quantity of sediment moves. Therefore, it is possible to find the
equilibrium geometry with the Laplacian smoothing. The new geometries are shown in
Figures 6.36 to 6.38. The smoothing has rounded the corners and only affects the regions
where the boundary angle changes.
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Figure 6.31: Upwind sand-slide: Mesh displacements of case B

Figure 6.32: Upwind sand-slide: Mesh displacements of case C

Figure 6.33: Upwind sand-slide: Initial (dashed lines) and final geometry of case A

Figure 6.34: Upwind sand-slide: Initial (dashed lines) and final geometry of case B

6.5 Two-fluid simulations

For the next simulations, we include the effects of the gravity acceleration by simu-
lating the rise of gas bubbles in quiescent viscous liquids. These are the complete simu-
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Figure 6.35: Upwind sand-slide: Initial (dashed lines) and final geometry of case C

Figure 6.36: Upwind sand-slide: Mesh displacements with smoothing of case A

Figure 6.37: Upwind sand-slide: Mesh displacements with smoothing of case B

Figure 6.38: Upwind sand-slide: Mesh displacements with smoothing of case C

lations of two-fluid problems.
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6.5.1 2D rising bubble

First, we simulate two benchmarks proposed by HYSING et al. [140] (case A and case
B). The task of the proposed benchmarks is to track the evolution of a two-dimensional
bubble rising in a liquid column, with the initial configuration described in Fig. 6.39.

Figure 6.39: 2D rising bubble: Initial configuration and boundary conditions for the test
cases.

The initial configuration is identical for both test cases and consists of a circular bubble
of radius R = 0.25 m centered at [0.5, 0.5] m in a [1× 2] m rectangular domain. The no-
slip boundary condition is used at the top and bottom boundaries, whereas the free-slip
condition is imposed on the vertical walls. Table 6.4 lists the parameters used for this
simulation.

Table 6.4: 2D rising bubble: Data.

Computational domain 1× 2 (m)
Grid sizes 0.05 to 0.003125 (m)

Number of time-steps 960 (-)
Time-step 0.003125 s

Bubble radius 0.25 m
Initial bubble position (x, y) = (0.5, 0.5) m

Liquid density (A) 1000 (B) 1000 kg/m3

Liquid viscosity (A) 10 (B) 10 kg/(ms)
Gas density (A) 100 (B) 1 kg/m3

Gas viscosity (A) 1 (B) 0.1 kg/(ms)
Surface tension (A) 24.5 (B) 1.96 N/m

Gravity (A) 0.98 (B) 0.98 m/s2

We use an adapted mesh, initially with 20 × 40 bilinear quadrilateral elements, and
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after the refinement, the smallest element has size 0.003125 m. We initially refine the
region where the bubble is located in four levels. The adaptive mesh refinement is based
on the flux jump of the level-set function error, in which hmax(LS) = 4, and in the flux
jump of the velocity error, with hmax(FLOW )

= 2. We apply the adaptive mesh refinement
every eight time-steps. The interface is modeled with E = 0.015625.

In Fig. 6.40a, we present the bubble shape at the final time (t = 3) for the test case
A. We compare our results with the ones obtained by three different groups [140]: TP2D
[141], FreeLIFE [142], and MooNMD [143], which are available in [140]. We list the
main features of each code in Table 6.5. Our prediction is in good agreement with the
others (Fig. 6.40a). However, the final shape is not sufficient to validate the code, and it is
now that the previously defined quantities of interest become particularly useful. Thus, in
Figures 6.40b, 6.40c, 6.40d we compare the circularity, center of mass position, and rise
velocity for test case A. All groups have a good agreement for the quantities of interest.

Table 6.5: 2D rising bubble: Comparison of the code features and schemes.

TP2D FreeLIFE MooNMD Present work
Space discretization FEM FEM FEM FEM
Interface capturing Level-set Level-set ALE Convected level-set
Time discretization Fractional-step θ method BDF2 Fractional-step θ method Backward Euler / BDF2

In Fig. 6.41a, we present the bubble shape at the final time (t = 3) for the test case
B. Again, we compare our results with [141], [142], and [143]. It is evident that although
all codes predict a similar shape for the main bulk of the bubble, there is no agreement
concerning the thin filamentary regions. There are discrepancies when we compare all
quantities of interest. The circularity for all groups (Fig. 6.41b) agrees very well until
about t = 1.75 seconds, and for later times significant differences start to appear, that is,
when the thin filaments are present. The center of mass, shown in Fig. 6.41c, is predicted
similarly for all groups despite the shape differences, and the mean rise velocity also
presents a quite good agreement between the different codes (Fig. 6.41d).

6.5.2 3D rising bubble

The bubble benchmark presented above is a good test to validate the code because
several results are available. However, modeling bubbles in 2D is not the best alternative,
since the surface tension acts in all directions, and this force has significant influence
in the bubble shape and the rise velocity. Therefore, from now on, we present only 3D
simulations.

We simulate a 3D benchmark proposed by ADELSBERGER et al. [4] in which the
results of several flow solvers are available for comparison. The only difference intro-
duced with respect to the 2D benchmark (aside from the additional spatial dimension) is
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(a) Bubble shape at t = 3. (b) Circularity.

(c) Center of mass. (d) Rise velocity.

Figure 6.40: 2D rising bubble: Test A results.

the type of boundary condition applied at the vertical walls, which in 2D is a free-slip
boundary condition, but in the 3D benchmark, it is a no-slip boundary condition. The
geometrical setup for the 3D configuration is depicted in Fig. 6.42, and we use the same
physical parameters presented in Table 6.4, except for the grid size and time-step.

We use an adapted mesh, initially with 10 × 20 × 10 trilinear hexahedral elements,
and after the refinement, the smallest element has size 0.00625 m. We refine the initial
region where the bubble is located into four levels. The adaptive mesh refinement is based
on the flux jump of the level-set function error, in which hmax(LS) = 4, and in the flux jump
of the velocity error, with hmax(FLOW )

= 3. We apply the adaptive mesh refinement every
20 time-steps. The interface is modeled with E = 0.0125, and the time-step is defined as
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(a) Bubble shape at t = 3. (b) Circularity.

(c) Center of mass. (d) Rise velocity.

Figure 6.41: 2D rising bubble: Test B results.

0.0025 seconds.
We compare our results with the ones obtained by the flow solvers DROPS [144],

NaSt3DGPF [79] and OpenFOAM [145], which are available in [4]. All codes adopt dif-
ferent numerical techniques. We list the main features of each code in Table 6.6. The sim-
ulations of DROPS, NaSt3DGPF, and OpenFOAM were performed on the HPC cluster
Siebengebirge featuring 160 Intel Xeon X7560 2.226 GHz CPU cores and total memory
of 2560 GB. Our simulations run on the HPC cluster Lobo Carneiro, featuring 504 CPUs
Intel Xeon E5-2670v3 (Haswell) 2.3 GHz: 6048 cores and total memory of 16 TB. In
Table 6.6, it is possible to see how our computational time was considerably lower than
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Figure 6.42: 3D rising bubble: Initial configuration and boundary conditions for the test
cases.

the other solvers. It happens not only because of the bigger computational power of Lobo

Carneiro but also because we use larger time-steps and a lower number of elements. The
AMR procedure, together with the implicit solution of the Navier-Stokes and convected
level-set equations, allows saving much computational effort.

Table 6.6: 3D rising bubble: Comparison of the code features and schemes [4].

DROPS NaSt3D OpenFOAM Present work
Space discretization XFEM Finite differences Finite volumes FEM
Interface capturing Level-set Level-set VOF Convected level-set
Time discretization Crank-Nicholson Adams-Bashforth 2nd Backward Euler Backward Euler / BDF2

∆t 2.5× 10−4 10−4 10−4 2.5× 10−3

Mesh AMR Fixed Fixed AMR
min he 1/32 1/121 1/128 1/160

Number of elements ≤ 65,536 3,543,122 4,194,304 max of 1,400,000
Computational time 2 weeks / 1 proc 1 week / 32 procs 2.5 days / 32 procs 24 hours / 16 procs

In Fig. 6.43, we present the bubble shapes at different times for the test case A. In
Figures 6.44a, 6.44b, 6.44c, 6.44d we show the diameter, sphericity, center of mass posi-
tion and rise velocity for test case A, and we add the results of the other solvers presented
in ADELSBERGER et al. [4]. All groups have a good agreement for the quantities of
interest, except OpenFOAM, which presents some discrepancies.

In Fig. 6.45, we present the bubble shape at different time-steps for the test case B. As
in the 2D benchmark, after 1.75 seconds of simulation, the results for the bubble diameter
(Fig. 6.46a) and sphericity (Fig. 6.46b) differ. The center of mass, shown in Fig. 6.46c, is
predicted very similarly, and the mean rise velocity also presents a quite good agreement
between the different solvers (Fig. 6.46d).

To show the influence of the mesh refinement in our results, we run three different
meshes considering the same time-step of 0.0025 seconds, being the initial mesh equal to
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Figure 6.43: 3D rising bubble: Bubble shapes at different times for the test A.

10 × 20 × 10 trilinear hexahedral elements, with a refined region near the initial bubble
position. The difference between the meshes is the maximum level of refinement allowed.
Mesh 1 has hmax(LS) = 2, Mesh 2 has hmax(LS) = 3 and Mesh 3 has hmax(LS) = 4. We
show the initial meshes and the number of elements with time in Figures 6.47a and 6.47b.
If we would not use the AMR procedure and refine all domain with elements sizes equal
to the smallest element size of each mesh, we would have 128, 000 elements for Mesh 1,
1, 024, 000 elements for Mesh 2 and 8, 192, 000 elements for Mesh 3. Using the AMR
procedure, we save much computational effort, working with meshes about one-eighth
of the mesh without AMR. In Figures 6.48a to 6.49d, it is possible to see how the mesh
refinement influences the quantities of interest. It happens because of the surface tension
model adopted. We distribute the surface tension in an area near the interface, and the
thickness where it is applied depends on the mesh size. Therefore, smaller element sizes
will yield more accurate results. The difference between the results of hmax(LS) = 3 and
hmax(LS) = 4 is minimal, and we chose to limit the simulations until hmax(LS) = 4, not
only because of the computational cost but also because we already have good agreement
with the other solvers. However, the results certainly would be a little more accurate with
more refinement, as the simulations of the 2D benchmark, that we have used a smaller
element size than for the 3D one.

6.5.3 Grace’s bubble diagram

Depending on the characteristics of the gas and liquid phases, the bubble reaches
different shapes and terminal velocities. GRACE [66] has analyzed a large body of exper-
imental data on shapes and rise velocities of bubbles in quiescent viscous liquids and has
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(a) Bubble diameter. (b) Sphericity.

(c) Center of mass. (d) Rise velocity.

Figure 6.44: 3D rising bubble: Test A results.

shown that this data can be condensed into one diagram. The Grace’s diagram relates the
Morton, Eötvös and Reynolds numbers, and depending on how they are combined, the
shape of the bubble may become spherical, ellipsoidal, skirted, dimple ellipsoidal cap,
spherical cap or wobbling.

We simulate five regimes given in Grace’s diagram, using the same values of Morton
and Eötvös numbers used in the simulations in [71] and in the experiments in [5], which
are presented in Table 6.7, where we also present the Reynolds calculated in this work.
The surface tension, density, and viscosity are adapted in each simulation to result in the
desired Morton and Eötvös numbers. We simulate two different meshes for each case,
Mesh 1 and Mesh 2. The data used in these simulations are presented in Table 6.8.
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Figure 6.45: 3D rising bubble: Bubble shapes at different times for the test B.

Table 6.7: Grace’s bubble diagram: Morton (Mo), Eötvös (Eo) and Reynolds (Re) num-
bers according to the experiment of [5].

Bubble regime Mo Eo Reexp [5] Represent work Case
Spherical 711 17.7 0.232 0.172 A

Ellipsoidal 8.2× 10−4 32.2 55.3 51.86 B
Skirted 43.1 339 18.3 18.25 C

Dimpled ellipsoidal cap 266 243 7.77 7.86 D
Spherical cap 4.63× 10−3 115 94.0 87.6 E

To reduce the computational cost, we simulate only one-quarter of the domain, apply-
ing symmetry (free-slip) boundary conditions at all boundaries. Then, we use an adapted
mesh, initially with 10 × 10 × 40 trilinear hexahedral elements, and after the refinement,
the smallest element has size 0.00025 m in Mesh 1 and 0.000125 m in Mesh 2. We
initially refine the region where the bubble is located into three/four levels. The adap-
tive mesh refinement is based on the flux jump of the level-set function error, in which
hmax(LS) = 3 in Mesh 1 and hmax(LS) = 4 in Mesh 2, and on the flux jump of the velocity,
in which hmax(FLOW )

= hmax(LS) − 1. The coarsening fraction is cf = 0.01 and the refin-
ing fraction is rf = 0.99. We apply the adaptive mesh refinement every 5 time-steps. The
interface is modeled with E = 0.0005 m in Mesh 1 and E = 0.00025 m in Mesh 2.

For future comparisons, in Figures 6.50 to 6.54, we present the bubble quantities
obtained with our solver for these cases, considering the two different meshes. The mesh
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(a) Bubble diameter. (b) Sphericity.

(c) Center of mass. (d) Rise velocity.

Figure 6.46: 3D rising bubble: Test B results.

refinement has minimal influence in all quantities of tests A and B (Fig. 6.50 and Fig.
6.51). On the other hand, in tests C and D, the bubble shapes between the different
meshes differ after some simulation time, which also influences the rise velocity results
(Fig. 6.52 and Fig. 6.53). Curiously, in test E (Fig. 6.54), the bubble shapes of both
meshes agree, although the rise velocity changes a little. However, the small differences
in the results make us conclude that the mesh refinement used is enough to represent well
the studied cases.

In Table 6.9, snapshots are given of the shapes of the computed bubbles in the different
regimes using Mesh 2, and they are compared with other numerical and experimental
results. The computed Reynolds numbers and bubble shapes compare well with the results
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(a) The three used meshes.

(b) Number of elements with time.

Figure 6.47: 3D rising bubble: Comparison of the mesh refinement.

obtained by ZHANG et al. [6] and HUA e LOU [7]. Although the Reynolds numbers are
a little different for the different methods, they all have the same order, and the shapes
qualitatively agree.
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(a) Bubble diameter. (b) Sphericity.

(c) Center of mass. (d) Rise velocity.

Figure 6.48: 3D rising bubble: Test A comparison of the results with different mesh
refinements. The smallest element size for hmax(LS) = 2 is 0.025 m, for hmax(LS) = 3 is
0.0125 m and hmax(LS) = 4 is 0.00625.

6.5.4 Coalescence of two rising gas bubbles

Now, we simulate the coalescence of two rising bubbles in a quiescent liquid where the
bubbles are initially spherical with their centers separated by three bubble radius. Here,
we also simulate two configurations, (A) the co-axial coalescence and (B) the oblique
coalescence. The Morton and Eötvös number for these cases are, respectively, equal to
2×10−4 and 16 (based on the individual bubbles). The data used in both cases is presented
in Table 6.10.
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(a) Bubble diameter. (b) Sphericity.

(c) Center of mass. (d) Rise velocity.

Figure 6.49: 3D rising bubble: Test B comparison of the results with different mesh
refinements. The smallest element size for hmax(LS) = 2 is 0.025 m, for hmax(LS) = 3 is
0.0125 m and hmax(LS) = 4 is 0.00625.

In the co-axial case, as we can see in Fig. 6.55, the leading bubble deforms into the
ellipsoidal shape quickly due to the considerable resistance force from the liquid above,
while the trailing bubble deforms into a “bullet” shape due to the absorption effect from
the flow wake of the leading bubble. At t = 0.10 s, the two bubbles touch each other
and merge into one bigger bubble. The predicted shape of the bubbles may seem different
from the experiment data, but this is because the initial bubble shapes in our model are
spherical, which is different from the initial condition of an ellipsoid in the experiment.
Figure 6.56 shows the oblique coalescence of the two rising bubbles. In this case, it is
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Table 6.8: Grace’s bubble diagram: Data.

Computational domain 0.02× 0.02× 0.08 (m)
Grid sizes (1) 0.002 to 0.00025 and (2) 0.002 to 0.000125 (m)

Number of time-steps 500 (-)
Time-step 0.0005 s

Bubble radius 0.01 m
Initial bubble position (x, y, z) = (0.02, 0.02, 0.01) m

Case A B C D E
Liquid density 1000 1000 1000 1000 1000 kg/m3

Liquid viscosity 1.872 0.039 0.102 0.205 0.023 kg/(ms)
Gas density 1 1 1 1 1 kg/m3

Gas viscosity 0.01872 0.00039 0.00102 0.00205 0.00023 kg/(ms)
Surface tension 0.05535 0.03043 0.00289 0.00403 0.00852 N/m

Gravity 9.8 m/s2

Table 6.9: Grace’s bubble diagram: The terminal bubble shapes compared with the results
of SPH [6], FTM [7] and the experimental data [5].

Case Present work SPH [6] FTM [7] Experiment [5]

No reference data(A)
Eo = 17.7
M = 711

Re = 0.172 - Re = 0.182 Re = 0.232

(B)
Eo = 32.2

M = 8.2× 10−4

Re = 51.86 Re = 52.6 Re = 54.8 Re = 55.3

(C)
Eo = 339
M = 43.1

Re = 18.25 Re = 18.1 Re = 17.8 Re = 18.3

(D)
Eo = 243
M = 266

Re = 7.86 Re = 7.99 Re = 7.6 Re = 7.77

(E)
Eo = 115

M = 4.63× 10−3

Re = 87.6 Re = 88 Re = 89.6 Re = 94

possible to see more clearly the absorption effect of the leading bubble, which is stronger
right below it, and it is weakened, as the horizontal distance increases. In this case, only
at t = 0.15 s the two bubbles touch each other and merge into one. For both cases we
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(a) Bubble diameter × time. (b) Sphericity × time.

(c) Center of mass × time. (d) Rise velocity × time.

Figure 6.50: Grace’s bubble diagram: Test A comparison of the results with different
mesh refinements.

have good agreement with the experimental data of BRERETON e KOROTNEY [3], and
with numerical results of VAN SINT ANNALAND et al. [68], ZHANG et al. [6] and XIE
et al. [69].

6.6 Suspended load of sediments simulations

Two well-documented test cases where experimental data are available are used to
validate the model employed in the present study. One involves the net entrainment of
sediment from a loose channel bed, and the other deals with the net deposition of sedi-
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(a) Bubble diameter × time. (b) Sphericity × time.

(c) Center of mass × time. (d) Rise velocity × time.

Figure 6.51: Grace’s bubble diagram: Test B comparison of the results with different
mesh refinements.

ment. These two test cases are essential to validate the implemented sediment boundary
conditions. The bed-load transport of sediments is not included in these cases, and also
the sediments are considered passive scalars to the flow, meaning that the flow carries
them, but they do not change its behavior.

6.6.1 Net entrainment test case

In the van Rijn [146] entrainment test case, a fully-developed flow with clear water
is introduced over the sediment bed and the sediment concentration is measured after
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(a) Bubble diameter × time. (b) Sphericity × time.

(c) Center of mass × time. (d) Rise velocity × time.

Figure 6.52: Grace’s bubble diagram: Test C comparison of the results with different
mesh refinements.

reaching the equilibrium condition (Figure 6.57). The present validation employs the
original test conditions. The flow is steady and uniform, with a water depth of 0.25 m and
a mean velocity ū of 0.67 m/s. The median diameter is 0.23 mm, d90 is 0.32 mm, and the
corresponding settling velocity is set to be 0.022 m/s. The reference level above the bed
is taken to be 0.005 m, and the predicted friction velocity is 0.047 m/s.

The numerical simulation is made with real dimensions, ∆t = 0.0001 s and a mesh
with 1640×40 bilinear quadrilateral elements. Figure 6.58 shows the flow boundary con-
ditions which are: at the inlet, the velocity profile is specified to be the fully developed
profile obtained from a separate calculation; for the rigid bed and the sediment bed, the
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(a) Bubble diameter × time. (b) Sphericity × time.

(c) Center of mass × time. (d) Rise velocity × time.

Figure 6.53: Grace’s bubble diagram: Test D comparison of the results with different
mesh refinements.

no-slip condition is applied; at atmosphere, the slip condition is set; finally, zero veloc-
ity gradient is set at the outlet. The sediment boundary conditions are defined in section
4.1.3 with the sediment concentration cin set to zero at the inlet, which corresponds to
clear water coming into the domain.

The initial conditions are zero sediment concentration in all domain and a fully-
developed flow. In this study, we do not use adaptive mesh refinement. Figure 6.59
illustrates the comparison of computational and experimental sediment concentration dis-
tributions in four sections of the channel. We also show results from Liang et al. [30] and
Wu et al. [38]. It can be observed that the simulation predicts the concentrations very
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(a) Bubble diameter × time. (b) Sphericity × time.

(c) Center of mass × time. (d) Rise velocity × time.

Figure 6.54: Grace’s bubble diagram: Test E comparison of the results with different
mesh refinements.

well.

6.6.2 Net deposition test case

In the second test case, Wang and Ribberink [147] discharged sand into a flume whose
bed is changed from rigid to perforated, as shown in Figure 6.60. Once the sediments
fall to the bed, they are trapped into these compartments through the perforated plate
and could hardly be entrained again. Hence, this case represents net deposition, and the
entrainment rate is considered zero at the bed. The flow is steady and uniform with a mean
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Table 6.10: Coalescence of two rising gas bubbles: Data.

Computational domain 0.04× 0.04× 0.08 (m)
Grid sizes 0.0005 to 0.002 (m)

Number of time-steps 250 (-)
Time-step 0.001 s

Bubbles radius 0.005 m
Initial bubbles position (A) (x, y, z) = (0.02, 0.02, 0.01) (0.02, 0.02, 0.025) m
Initial bubbles position (B) (x, y, z) = (0.028, 0.02, 0.01) (0.02, 0.02, 0.025) m

Liquid density 1000 kg/m3

Liquid viscosity 0.04655 kg/(ms)
Gas density 10 kg/m3

Gas viscosity 0.0004655 kg/(ms)
Surface tension 0.06125 N/m

Gravity 9.8 m/s2

Figure 6.55: Coalescence of two rising gas bubbles: Snapshots of the co-axial coalescence
together with the experimental data of [3].

velocity ū of 0.56 m/s and a water depth of 0.215 m. The median sediment diameter is
0.095 mm and its fall velocity is 0.007 m/s.

The numerical simulation is made with real dimensions, ∆t = 0.0001 s and a mesh
with 1600×22 bilinear quadrilateral elements. Figure 6.61 shows the flow boundary con-
ditions. They are: at the inlet, the velocity profile is specified to be the fully developed
profile obtained from a separate calculation; at the perforated bed, the no-slip condition
is applied; at the atmosphere, the slip condition is set; lastly zero velocity gradient is set
at the outlet. The sediment boundary conditions are defined in section 4.1.3. However,
in this case, a measured sediment concentration profile is designated at the inlet, and the
entrainment rate at the perforated bed is zero. This means that there is only deposition at
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Figure 6.56: Coalescence of two rising gas bubbles: Snapshots of the oblique coalescence
together with the experimental data of [3].

Figure 6.57: Net entrainment test case: Schematic definition of the problem.

1640 × 40 elements
∆t = 0.0001 s

10 m
Sediment bed

0.25 m
Rigid bed

In
le

t
0.

25
m

O
ut

le
t

Atmosphere

Figure 6.58: Net entrainment test case: Geometry, boundary conditions, time-step, and
mesh.

this boundary.
The initial conditions are zero sediment concentration in all domain and a fully-

developed flow whose velocities are calculated in a separated simulation. Here, we also
do not use adaptive mesh refinement. Figure 6.62 illustrates the comparison of the com-
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Figure 6.59: Net entrainment test case: Comparison of simulations (solid lines) and mea-
sured (squares) suspended sediment concentrations.

Figure 6.60: Net deposition test case: Schematic definition of the problem.

1600 × 22 elements
∆t = 0.0001 s

16 m
Perforated bed

In
le

t
0.

21
5

m

O
ut

le
t

Atmosphere

Figure 6.61: Net deposition test case: Geometry, boundary conditions, time-step, and
mesh.
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putational and experimental sediment concentration distributions for six sections of the
channel. We also show results from Liang et al. [30] and Wu et al. [38]. Once again, it
can be observed that our simulation predicts the experimental concentrations very well.
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Figure 6.62: Net deposition test case: Comparison of simulations (solid lines) and mea-
sured (squares) suspended sediment concentrations.

6.7 Sediment-fluid interaction

Finally, we present two test cases considering bed-load transport and, consequently,
sediment-fluid interaction. One reproduces the scour caused by a wall jet flowing over a
rigid apron onto an erodible bed, and the other simulates the scour over a pipeline.

6.7.1 Wall Jet Scour test case

This case study investigates the flow field and sediment transport due to a submerged
wall jet. The schematic representation of this problem is shown in Figure 6.63. The sedi-
ment bottom is initially plane, and due to the flow, it begins to move. The jet is formed by
a small opening under a sluice gate and flows over a rigid apron onto an erodible bed. We
compare our results with the experimental data of a turbulent wall jet scour by Chatterjee
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and Ghosh [148] and Chatterjee et al. [149] and also with numerical results obtained by
Liu and Garcı́a [37]. The bed material is sand with d50 = 0.76 mm, submerged specific
gravity 1.65, porosity 0.43, and angle of repose 29◦. The apron length is 0.66 m and the
jet inlet velocity resulting from the difference between upstream and downstream water
depth is 1.56 m/s. We fix the downstream water depth as 0.291 m and the opening gate
has 0.02 m. Therefore, the Reynolds number of this problem is equal to Re = 31200.

Figure 6.63: Wall Jet Scour test case: Schematic definition of the problem.

The numerical simulation is made with real dimensions, ∆t = 0.025 s, and we use two
different meshes, one fixed (i.e., unstructured) and one considering mesh adaptivity. The
fixed mesh contains 34085 bilinear quadrilateral elements, while the mesh with adaptivity
starts with 17889 elements and finishes with 24300. The fixed mesh is generated with an
initial unstructured coarse mesh, and it is refined two times, to have a more dense mesh in
the region near the sediment bed. The final mesh is non-conformal, with hanging nodes.
The hanging nodes are treated naturally by libMesh. For the adaptive mesh refinement
we use hmax = 2, a coarsening fraction cf = 0.001 and a refining fraction rf = 0.99.

Figure 6.64 shows the flow boundary conditions which are: at the inlet, a velocity of
1.56 m/s is applied; at the rigid wall, sediment bed and atmosphere, the slip condition is
set; and zero velocity gradient is set at the outlet. The sediment boundary conditions are
defined in section 4.1.3.
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Figure 6.64: Wall Jet Scour test case: Geometry, boundary conditions, time-step, and
number of elements in the unstructured mesh.

In this problem, some considerations are necessary. We define that the node between
the rigid wall and sediment bottom has zero bed-load rate, since no sediments would leave
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the rigid wall. After the sediment bottom reaches the critical sediment angle (30◦) and
when the bed-load rate increases this angle, we also consider that there is no bed-load
rate on these elements. This means that there is bed-load rate only if the elements have
the chance to move. Otherwise, the rate is null. This adjustment is necessary to keep the
conservation of mass since the bed-load rate removes the sediment of one node to put it
on its adjacent node. Meaning that if we cannot move a node because its movement would
exceed the critical angle, but despite it, we keep adding sediments on its adjacent node,
the result is the addition of mass to the system. We have verified that with our upwind
sand-slide scheme, the difference between the initial and final integral of the coordinates
of the vertical nodes in the region of interest is of the order of 10−7, indicating that mass
is conserved.

We plot the results of the fixed mesh after 60 seconds of simulation, then compare it
with the experimental data and with the numerical results obtained by Liu and Garcı́a [37]
(Figure 6.65). They have used the k − ε method as a turbulence closure model, and the
morphological changes are tracked within an ALE framework. Also, in Figure 6.66, we
show the scour profile in different time-steps. Our results are in good agreement with the
experimental and the numerical simulation of Liu and Garcı́a [37].
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Figure 6.65: Wall Jet Scour test case: Comparison of simulations (solid lines) and mea-
sured (circles) scour profile at t = 60s.

In Figure 6.67, we compare the results between the solution with the fixed and adapted
meshes. The results are quite similar. Nevertheless, the meshes are considerably different,
as we can observe in Figures 6.68 and 6.69. We save a lot of computational effort using
the AMR procedure. We can note this when comparing the number of elements in the
fixed mesh (34085) and the final number of elements of the adapted mesh (24300). To
make this a fair comparison, we have used in the adapted meshes the same element sizes
of the fixed mesh in the bed-load boundary. Also, to keep the mass conservation in the
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Figure 6.66: Wall Jet Scour test case: Scour profile evolution in different time-steps.

bed-load comparable, we cannot allow this first layer of elements to be refined, since
it would change the horizontal distances between nodes. The number of elements of the
adapted mesh has increased considerably between zero and 5 seconds of simulation. After
that, it keeps oscillating close to 24000 elements.

6.7.2 Scour Over a Pipeline test case

The last test case investigates the scour over a pipe initially placed on a horizontal
seabed. The water depth is 0.4 m and the pipeline has a diameter of 0.1 m. The sediment
bed is composed of particles of d50 = 0.36 mm, which has an angle of repose 33◦. The
mean velocity at the inlet is equal to 0.37 m/s, and the porosity is equal to 0.43. The
Reynolds number of this problem is equal to Re = 37000. We compare our results with
the experimental ones obtained by Mao [150] and with the numerical results obtained by
Liang et al. [30].

In the experiment, the pipeline is initially placed on the sediment bottom. However,
for numerical purposes, we introduce a small hole between the pipeline and the sediment
bottom. The gap has a bilinear shape with a depth of 0.01 m. Figure 6.70 shows the
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Figure 6.67: Wall Jet Scour test case: Comparison between the solutions for the fixed and
the adapted meshes at t = 60s.

Figure 6.68: Wall Jet Scour test case: Detail of the initial and final unstructured quadri-
lateral fixed mesh with 34085 elements and hanging nodes at different times.

initial configuration and the flow boundary conditions. They are: at the inlet, a velocity
of 0.37 m/s is applied; at the rigid wall, sediment bed and atmosphere, the slip condition
is set; and zero velocity gradient is used at the outlet. The sediment boundary conditions
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Figure 6.69: Wall Jet Scour test case: Detail of the unstructured quadrilateral adapted
meshes at t=0, t=20, t=40 and t=60 seconds with respectively 17889, 23853, 24294 and
24300 elements and hanging nodes at different times.

are defined in section 4.1.3.
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Figure 6.70: Scour over a pipeline test case: Geometry, boundary conditions, time-step,
and number of elements in the unstructured mesh.

In this test case, we also use two different meshes, one fixed (i.e., unstructured) and
one considering mesh adaptivity. The fixed mesh contains 85796 bilinear quadrilateral
elements, while the mesh with adaptivity starts with 18820 elements and finishes with
26641. For the adaptive mesh refinement we use hmax = 2, a coarsening fraction cf =

0.001 and a refining fraction rf = 0.99.
In Figures 6.71 and 6.72, we can observe the scour profile after 600 seconds of the
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fixed mesh simulation and the profiles evolution at different time-steps. In Figure 6.71 we
also show the results obtained by Liang et al. [30]. The authors have studied two different
turbulence models for this test case, the k − ε model, and the Smagorinsky subgrid-scale
model. They also use an ALE framework to track the morphological changes. We can
observe that our results, using the RBVMS formulation, are closer to the experimental
ones. Again, we verify that with our upwind sand-slide scheme, the difference between
the initial and final integral of vertical node coordinates in the region of interest is of the
order of 10−7, indicating that mass is conserved.
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Figure 6.71: Scour over a pipeline test case: Comparison of the simulation (solid lines),
with the measured (circles) scour profile at t = 600s.

In Figure 6.73, we compare the results between the solution with the fixed and adapted
meshes. The results are quite similar, although the meshes are considerably different, as
we can observe in Figure 6.74 and 6.75. The number of elements of the adapted mesh has
increased considerably between zero and 20 seconds of simulation. Afterward, it keeps
oscillating close to 26000 elements. Nevertheless, we saved a lot of computational effort
by using adaptive mesh refinement. That can be seen by the number of elements we have
used in the fixed mesh (85796) and the final number of elements of the adapted mesh
(26641).
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Figure 6.72: Scour over a pipeline test case: Scour profile evolution at different time-
steps.
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Figure 6.73: Scour over a pipeline test case: Comparison between the solutions for the
fixed and the adapted meshes t = 600s.
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Figure 6.74: Scour over a pipeline test case: Detail of the initial and final unstructured
quadrilateral fixed mesh with 85796 elements and hanging nodes at different times.
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Figure 6.75: Scour over a pipeline test case: Detail of the unstructured quadrilateral
adapted meshes at t=0, t=200, t=400 and t=600 seconds with respectively 18820, 26617,
25471 and 26641 elements and hanging nodes.
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Chapter 7

Conclusions and future work

In this work, we have studied two methods of modeling moving boundaries and sur-
faces in CFD problems. Among the several methods used for this purpose, we choose to
work with two methods quite different from each other. One is an interface tracking, and
the other is an interface capturing method. This choice was made considering the type of
problem under consideration: two-fluid and sediment-fluid interactions. Both situations
are very distinct, the first one is related to the interaction between two fluids with different
properties, like water and air, and the second one is about the interaction between a fluid
and a sediment bottom that deforms as the flow evolves. Distinct problems that require
distinct solutions to be modeled.

Therefore, we have implemented the convected level-set method to model two-fluid
problems. The mathematical model results from the Navier-Stokes equations treated with
the RBVMS formulation, together with the convected level-set method, used to track the
interfaces between the different fluids. The convected level-set method includes the reini-
tialization step in the main equation, which avoids the extra step that appears in the orig-
inal level-set formulation. Here, we introduced a new truncated signed distance function
to get a smooth truncation far from the interface. We have used the CSF model [100] to
model the surface tension between fluids, and we generalize the global mass conservation
procedure introduced in [97] to enforce the mass balance, since the convected level-set
method does not guarantee mass conservation between phases.

On the other hand, to model sediment-fluid interaction, we have presented a full ap-
proach within the ALE framework with mesh adaptivity. The mathematical model re-
sults from the Navier-Stokes equations combined with an advection-diffusion equation
for suspended sediments, both treated with the RBVMS formulation. The morphological
changes are calculated by empirical models used to represent the entrainment rate as well
as the bed-load transport. The displacements, and consequently, the interface motion, are
applied as mesh movement. We introduced an alternative smoothing technique called up-
wind sand-slide, in which we adjust the slope angle considering the flow direction. This
adjustment is necessary to avoid unrealistic bed shapes that may occur in sediment trans-

102



port problems. We also applied a first-order Laplacian smoothing to improve numerical
stability. It was verified that the upwind sand-slide is a robust method, and the mass is
preserved when it is applied.

To validate the implementation of both methods, we have run a series of different prob-
lems. First, we have presented numerical results of classical CFD problems to check the
implementation of the Navier-Stokes equations. Then, we have presented numerical re-
sults for classical interface-capturing benchmarks in order to validate the implementation
of the convected-level set method. The convected level-set method showed to be simple
to implement, and, together with the global mass enforcement procedure and BDF2 time
integration, provided excellent results. The BDF2 method showed being more efficient
than the BE for the simulations, and we also have noted the importance of the mesh size
and the corresponding time-step. The truncated signed distance function introduced in
this work worked quite well with the convected level-set formulation, and it was used as
a marker for the adaptive mesh refinement algorithm.

Afterward, we have checked the implementation of the surface tension model in prob-
lems with analytical solutions. Then, to validate the two-fluid algorithm, we use two
bubbles benchmarks that are available for comparison with other solvers, in 2D and 3D.
The 2D benchmark is useful only to validate the code because it does not represent the
bubbles rising process physically since it does not consider the contribution of the sur-
face tension in the z-direction. Despite that, our results were in good agreement with
other authors for this test case. In the 3D benchmark, we have shown the influence of the
mesh refinement, and it was possible to see that the more refined is the mesh, the more
accurate the results are. We also have presented comparisons with the bubble shapes and
rise velocities of several experimental data, for both single and multiple bubbles. For
the single bubbles, we have presented five bubbles regimes of Grace’s diagram. For the
multiple bubbles, we have presented the co-axial and oblique coalescence of two rising
bubbles. Our results have a good qualitative agreement with the experimental ones. In all
examples, mass is conserved to machine precision because the global mass enforcement
procedure.

To model the sediment-fluid problems, we had to add some different routines of the
moving mesh method. Thus, we have verified the mesh movement and the upwind sand-
slide algorithms with simple problems. Afterward, the full model of sediment transport
was verified against four controlled physical experiments, and it has shown good agree-
ment with the experimental data, not only for the suspended load transport but also for
the prediction of sediment profiles.

The RBVMS formulation has shown to provide excellent results for the flow field,
particularly when turbulence is important, like in the scour over a pipeline test case and
the wall jet scour problem. The sediment profile of the wall jet scour test case has a good
prediction using our model with RBVMS as well as the results of Liu and Garcı́a [37]
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that have used the k − ε model. On the other hand, our predicted sediment profile of the
scour over a pipeline test case is better than the results obtained by Liang et al. [30].
They have used two different turbulence closure models, the k − ε and the Smagorinsky
subgrid-scale model. Therefore, it is possible to conclude that the RBVMS formulation
is a good option to model sediment transport in fluid flows.

The main difficulty in the implementation of the presented methods is the definition of
some sensitive parameters, as the penalty coefficient λ on the convected level-set formu-
lation and the frequency of the application of the Laplacian smoothing procedure on the
sediment-fluid boundary. The penalty coefficient λ defines the contribution of the reini-
tialization equation in the convection equation. A small λ may not be enough to correct
the iso-surfaces to recover the signed distance properties adequately, and a large one may
change the interface shape. In this work, we have adjusted the value of λ in each simu-
lation. Although λ = 1 provides good results in almost all simulations, others needed a
bigger value. As future work, we aim to study the influence of this parameter and then to
define the best value of λ for each simulation.

The Laplacian smoothing has shown to be necessary, but it influences a lot the results
of the sediment bottom profile. Depending on how frequently we apply this smoothing,
the sediment bottom profile may have significant changes. This smoothing technique
tends to let the boundary horizontal. Thus we cannot apply it in every time-step. We have
defined an amount of sediment movement to be reached before we apply this procedure.
The parameter that influences the sediment bottom profile is the definition of how much
sediment movement has to be accumulated.

Other difficulties encountered were related to the stabilization of the methods. The
discontinuity-capturing operator has shown to be essential to keep the stabilization of the
convected level-set method. Without it, some oscillations around the interface appeared,
and the simulation diverged. Also, other oscillations could appear depending on the λ
combined with a very small time-step.

Although this work was written presenting the convected level-set before the ALE
framework, at the beginning of this study, we started working with sediment transport
problems, i.e., the ALE framework. We have developed the code in 2D, and we realized
that our procedure was too geometrical, and the scalability for 3D problems would not be
trivial. Thus, we have started to study other ways to follow an interface, as the convected
level-set method. The convected level-set is easily scalable to 3D, and we started to study
it with two objectives: to model two-fluid flows and to model the sediment-fluid interface.
Until now, as it was presented, we only finished the two-fluid model. As future work, we
aim to predict the sediment bottom profile with the convected level-set method as well.
The idea is to model a full approach, including free-surface and bed-load transport, with
all interfaces modeled with the convected level-set method.
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Appendix A

RBVMS formulation applied to the
Navier-Stokes equations

In the following, we present the terms of the Navier-Stokes equations resulting from
applying the RBVMS formulation. The temporal discretization used is the backward
Euler method, and Newton’s method is used to treat the non-linearity of the problem,
being k Newton’s iteration counter. On the left-hand side, we gather the terms containing
an unknown, whereas all the other terms are taken to the right-hand-side. Here, we are
going to consider that,

f = ρg + Fst. (A.1)

First, we introduce the formulation excluding the partial terms coming from
−
∑

e
1
ρ

(
∇wh, τmRm ⊗ τmRm

)
Ωe

.
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Now, we present the partial terms coming from the
−
∑

e
1
ρ

(
∇wh, τmRm ⊗ τmRm

)
Ωe

. We introduce this term separately to keep the
formulation clear because it is composed by several partial terms.
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Right-Hand-Side:
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Appendix B

RBVMS formulation applied to the
sediment transport equations

Finally, the terms for the suspended load equation, resulting from applying the RB-
VMS formulation, are presented as follows.
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