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A heterogeneidade do sistema poroso de rochas carbonáticas se manifesta pela 

presença de diferentes tipos, tamanhos e formatos de poros resultantes de sedimentação 

e ações diagenéticas. Essas complexidades aumentam as incertezas na estimativa das 

propriedades hidráulicas, pois podem ocorrer diferentes valores de permeabilidade para 

amostras com porosidades semelhantes. Esta pesquisa utilizou amostras de coquinas 

extraídas de um testemunho contínuo de sondagem da Formação Morro do Chaves, sendo 

consideradas análogas a uma das fácies dos reservatórios carbonáticos do pré-sal 

brasileiro. Este estudo tem como objetivo melhorar predição de permeabilidade, 

otimizando as equações de estimativa de permeabilidade e analisando a influência da 

conectividade no fluxo do sistema poroso. Para isto, rock types foram desenvolvidos 

baseados na petrofísica de rotina. Diferentes técnicas petrofisicas e estatística foram 

utilizados para confirmar as similaridades entre amostras nos agrupamentos. O estudo de 

conectividade foi feito a partir de imagens microtomográficas de amostras com 

porosidade similar e diferentes permeabilidade. As imagens 3D mostraram que a 

interligação do sistema poroso favorece o escoamento, assim como tortuosidade e 

estreitamente das gargantas impactam o fluxo a nível da amostra. A permeabilidade das 

coquinas foram analisadas a partir dos modelos de Kenyon e Timur-Coates. As constantes 

dessas equações foram otimizadas usando regressão linear múltipla, com o objetivo de 

adequar essas equações.  
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The heterogeneity of the pore structure of carbonate rocks is manifested by 

different types, sizes and shapes of pores resulting from sedimentation and diagenetic 

actions. These complexities increase uncertainties in the estimated hydraulic properties 

since different permeability values can occur for samples having similar porosities. 

Investigations were carried out using coquinas taken from a continuous core extracted 

from the Morro do Chaves Formation, which is considered an analogue of Brazilian pre-

salt carbonate oil reservoirs. The aim was to improve permeability predictions and to 

analyze the influence of pore connectivity on fluid flow within the pore system. For this 

purpose, rock types were developed based on routine core analysis. Different 

petrophysical and statistical techniques were used to confirm similarities between the 

samples in the clusters. The connectivity study was carried out using microtomographic 

images of samples having similar porosities but different permeabilities. The 3D images 

showed that the interconnection of the pore system favored flow within the pores, with 

the tortuosity and narrowing of the pore throats also impacting the permeability of the 

pore system. Permeabilities of the coquinas were further analyzed using the Kenyon and 

Timur-Coates models. Multiple linear regression techniques were used to optimize the 

various constants in these equations. 
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1 INTRODUCTION 

1.1 Context 

Studies of oil and gas exploration involve many scientific disciplines, including 

the geology of oil reservoirs, paleontology, stratigraphy, sedimentology, petrophysics, 

geochemistry and geophysics, as well as mechanical, electrical, drilling and production 

engineering (Triggia et al., 2001). In terms of the oil production process, petrophysics is 

the science that studies the physical, electrical, and mechanical properties of rocks and 

fluids (Chen and Pagan, 2013), with a primary aim being to increase oil recovery.  Within 

this context, the petrophysics of carbonate rocks has received much interest since the 

discovery of the pre-salt oil-bearing reservoirs by Petrobras in 2007. Rocks of these 

reservoirs were formed by lake shales rich in organic matter and deposited in low blocks 

from failures during rifting some 131 to 120 million years ago (Chang et al., 2008; Estrella 

et al., 2008). The pre-salt is composed of the Campos and Santos basins, with the 

reservoirs consisting of three main types of rocks: limestones with coquinas (Chang et al, 

2008), microbialitic limestones in the upper portion of the rift, which were produced and 

accumulated in lakes connected to the oceans (Riccomini et al., 2012, Estrella et al., 2008; 

Doborek, 2012), and fractured volcanic rocks in the lower portion of the rift (Chang et 

al., 2008). 

Studies in petroleum geology are often carried out using exposed (outcropped) 

near-surface rocks, referred to as analogues. They are very similar to the subsurface rocks 

and offer the main characteristics of reservoirs in the subsurface. This allows one to 

determine many physical parameters, such as the geometric shapes of rock bodies, and 

their porosity and permeability among other petrophysical parameters. These parameters 

can be compared with information obtained from drilled samples or logging. Also, even 

with samples from the pre-salt formations, several difficulties may arise regarding 

laboratory studies. For example, the waiting time for the formal release of such samples 

is sometimes relatively long, while it is often challenging to carry out specific analyses 

with the pre-salt samples because of their fragile nature. This favors the use of analogues 

in petrophysical studies. 

This research used coquinas as one type of rock analogues to those existing in the 

pre-salt oil reservoirs. Coquinas are known to be hybrid carbonate rocks in that they are 

formed not exclusively by shells and/or fragments, but also contain significant amounts 
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of siliciclastic material (Tavares, 2004). Such rocks typically have a complex pore system, 

with pores ranging from micropores to larger vugs, thus making it difficult to estimate 

specific petrophysical properties such as permeability. 

1.2 Objectives 

This work uses different petrophysical techniques, both basic and advanced, to 

better understand coquina samples contained in a particular core (02-SMC-2-AL) from 

the Morro do Chaves Formation in the Sergipe-Alagoas Basin in north-east Brazil. While 

rocks of this type pose a challenge due to the complex composition and heterogeneity of 

their pore system, understanding their petrophysical properties is of great value for 

improving oil exploration of the Brazilian pre-salt. 

The main objective of this study is to predict the permeability of coquina samples 

by improving predictive equations found in current literature and, to understand how the 

pores connectivity influences this prediction. To carry out this research, several secondary 

objectives were necessary: 

I) to improve rock typing using data from routine core analyses (notably 

porosity and permeability) using similarity confirmation responses from 

transversal relaxation times (T2) obtained with nuclear magnetic resonance 

(NMR) relaxometry; 

II) to correlate pore size distributions obtained using NMR with pore radii 

derived using mercury injection capillary pressure (MICP) techniques. 

The correlations will be used to calibrate pore segmentations in digitized 

X-ray microtomography images; 

III) to statistically analyze the results obtained using pore-scale models of the 

pore system, and to understand how and why samples having the same 

porosity can show significant differences in their permeability; 

IV) to understand how the pore size distribution of different rock types 

influences fluid flow in the samples. For this, principal component 

analysis (PCA) techniques are used to facilitate visualization of the main 

patterns and to highlight differences and similarities of the different 

properties.  

V) To accomplished the above objectives using a series of experimental and 

computational studies, notably routine core analyses, NMR, MICP, 
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centrifugation to determine irreducible saturation, X-ray 

microtomography, pore network modeling, thin sections, diffraction X-

ray, and statistical analysis of the results. Results should improve our 

ability to evaluate the permeability of coquinas, which will facilitate better 

descriptions and exploration of Brazilian pre-salt oil reservoirs. 

1.3 Methodology 

Aiming to achieve the main objectives of this research, a workflow was elaborated 

(Fig. 1) to optimize available time and available resources, and organize expected results. 

 

Figure 1-1. Research workflow to predict the permeability from rock types 
 

As can be seen in Figure 1.1, we used in this study 44 samples of coquinas taken 

from core 02-SMC-2-AL belonging to the Morro do Chaves. After their selection, routine 

core analyses were performed. The routine results were used to separate the samples into 

clusters (rock types) by permeability range so as to understand the differences among the 

petrophysical characteristics of these rocks. With the rock types defined, the next step 

was to confirm similarities of the samples within their group by using NMR data. Thin 

section and X-ray diffraction analyses were used to understand why the curves of certain 

samples had different shapes. 
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Information from estimated pore radii is essential to understand fluid flow in the 

porous medium. For this purpose, some samples were selected with similar porosities but 

different permeabilities. MICP techniques were then used to determine radii of the pore 

throats. This made it possible to observe the effects of pore throats on flow among 

different rock types and differences among samples within the same group. Based on 

MICP data, permeabilities were estimated with the Winland equation (1980), known as 

R35, using linear regression to determine the required coefficients. 

Based on the optimization of the NMR and MICP curves, it was possible to 

transform T2 values from NMR signals into pore radii, thus facilitating the calibration of 

the pore segmentation of microCT images. The starting point to quantify the pore systems 

of samples is the skeletonization of the pore space, such that the pore bodies and 

connected pore throats are defined. Results of the pore throats and pore bodies are then 

statically analyzed, as well as the coordination number of the pore bodies, thus describing 

the connections within the samples. Permeabilities are then estimated by modeling of the 

pore systems using numerical simulations with a pore network model (PNM). 

The permeability can be estimated also using NMR, which is the only technique 

suitable for such measurements during logging. Several equations from the literature are 

used by the oil industry for this purpose. In this research, two equations were tested: the 

Kenyon (KSdr) and Timur-Coates (KTim) equations. For this several parameters are 

required: some are obtained directly from the NMR experiments (such as T2Logmean in the 

KSdr equation), while others require additional information, such as the value of 

irreducible saturation (Swi) to define an essential parameter (effective saturation) in the 

equation for KTim.  

Analyzing the influence of pore size within the developed clusters is one of the 

objectives of this research. This analysis was done using multivariate statistics. Principal 

component analyses (PCA) were used to demonstrate how pore size and other attributes 

are more or less relevant within each rock type. These studies also used results from the 

NMR and MICP experiments. 

1.4 Thesis Organization 

Chapter 2 presents a bibliographic review of the main topics studied in this research. 

Characterizations of the Sergipe Alagoas basin, of which the Morro do Chaves formation 

is part, and the coquinas are explained to provide a geological context of the samples used 
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in this work. Part of this chapter is intended to define the concepts of the petrophysical 

parameters, as well as the experimental techniques that were used. 

Chapter 3 describes the rock samples that were used, as well as of all of the 

laboratory methods and measurements for each experimental step. This information is 

considered of special relevance to the development of this work. 

Chapter 4 presents the result of the various steps indicated in the workflow as 

described in Section 1.3, together with analyses and discussions relevant to the study. 

Chapter 5 presents the conclusions of the research, as well as suggestions for 

future work. 

Finally, bibliographical references are presented in chapter 6. 
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2 THEORETICAL FRAMEWORK 

This chapter presents an overview of the main concepts used in the research. The 

concepts regarding the geology of the samples are presented first, including the structural 

geology and stratigraphy of the Morro do Chaves Formation, as well as the 

characterization of coquinas. This is followed by a discussion of the petrophysical 

properties, such as porosity and permeability, and the macroscopic characterization of 

rock types. Concluding the chapter are the various experimental techniques used for the 

research, such as nuclear magnetic resonance (NMR), mercury intrusion capillary 

pressure (MICP) measurements,  porous media modelling, and a review of multivariate 

statistics such as principle component analysis (PCA). 

2.1 Geological Setting 

It is necessary to first present a theoretical basis of the main terms discussed in the 

present work. 

2.1.1 Sergipe-Alagoas Basin 

The Sergipe-Alagoas Basin is located in northeastern of Brazil. The basin 

comprises a narrow strip between 20 and 50 km wide and 350 km long, with a 45° NE 

orientation extending from 9° to 11°30' south latitude and 35°30' to 37° 00' west longitude 

(Figure 2.1). The basin occupies an area of approximately 32,760 km², covering parts of 

Sergipe and Alagoas states, as well as a small portion of Pernambuco, with one-third 

emerging and two-thirds being submerged up to a 3,000 m isobath (ANP, 2009). The 

Sergipe-Alagoas basin is bounded to the north by Maragogi High, and to the south by the 

Vaza-Barris Fault System, which separate the Sergipe-Alagoas basin from the 

Pernambuco-Paraíba and Jacuípe basins. 
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Figure 2-1. Location of the Sergipe-Alagoas basin in northeastern Brazil (modified from 
AZAMBUJA et al., 1998). 

 
The Sergipe and Alagoas basins differ in terms of their structural and stratigraphic 

characteristics (FEIJÓ, 1994) (Figures 2.2 and 2.3). The western side, with its 

Precambrian crystalline basement, is marked by distensional fault systems and associated 

structures. The internal boundary between the sub-basins is given by Japoatã-Penedo 

High, along the São Francisco River. However, CAMPOS NETO et al. (2007) considered 

elevation only as a divider of the emerged part, encompassing the shallow water parts, 

with no continuity below the Eo-alagoas hinge line block as geological evidence in deep 

waters is lacking. 

 

 
Figure 2-2. Geological section from the Sergipe basin (from Petrobras) 
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Figure 2-3. Geological section from the Alagoas basin (from Petrobras) 
 

 

 

2.1.2 Structural Framework and Tectonic Evolution 

The Sergipe-Alagoas basin is located along the eastern Brazilian continental 

margin. Its sedimentary deposits reflect the various tectonic phases caused by the breakup 

of Western Gondwana. Its origin is explained by models of continental drift, tectonic 

plates, and the formation and expansion of the ocean floor (CAINELLI & MORIAK, 

1999; MORIAK, 2003; MORIAK, 2012; ASMUS, 1982; CHANG et al., 1990). These 

models explain the separation of the South American and African plates, the formation 

of the Atlantic Ocean, and the construction of continental margins. They developed 

during three main crustal phases: crustal uplift, fracturing, and tension separation 

(ASMUS, 1982). The Sergipe-Alagoas basin is subdivided into four tectonic 

compartments separated by large faults, and differentiated by their depths: basement 

surface, sedimentary cover nature, faulting intensity, and gravimetric anomaly patterns. 

SZATMARI & MILANI (1999) considered that, at early Eo-cretaceous, Africa 

was subject to a counterclockwise rotation relative to South America during continental 

separation, which induced a rotation of the Sergipana microplate. However, due to a 

divergent transcurrent failure pattern (NE-SO oriented) along the eastern part of the 

microplate, that movement was slow, thereby generating N-S orientation hemigrabens in 

echelon. During this evolution, on the north side of the microplate, a positive pop-up 

structure developed, causing uplift and erosion. At Late Eo-cretaceous, between the 

Aptian and Albian ages, these transient faults were reactivated. Normal faults with hinge 

lines towards the basin developed to define the newly created continental margin. A SE 

directional movement occurred of the microplate at the end of the rift phase due to the 
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action of the Vaza-Barris sinister fault. During the Albian, there was a definitive 

separation of the plates and drift of the continents, thereby initiating a thermal subsidence 

of the drift phase, associated with sedimentary overload and salt tectonics (halokinetic 

movements). 

2.1.3 Stratigraphy 

The Sergipe-Alagoas basin exhibits the most complete sedimentary succession of 

all basins located along the eastern Brazilian coast. Its sedimentary record shows five 

different tectonic-stratigraphic phases: Paleozoic, the Pre-Rift phase, the Rift phase, the 

Post-Rift phase, and the Drift phase. However, since both sedimentary filling and the 

tectonic style of the basin vary from Sergipe to Alagoas, two stratigraphic charts could be 

constructed as shown in Figures 2.4 and 2.5 (CAMPOS NETO et al., 2007). 

According to CAMPOS NETO et al. (2007), the tectonic-stratigraphic phases 

correspond to five supersequences in the basin:  

 
 The first supersequence corresponds to the Paleozoic phase represented by 

the Igreja Nova Group, which encompasses the Batinga (sub-aqueous 

glacial environment) and Aracaré formations (coastal environment, desert 

and delta) (Permo-Carboniferous age); 

 The second supersequence corresponds to a Pre-Rift Jurrasic phase and 

encompasses the Candeeiro (fluvio-deltaic sandstones), Bananeiras 

(shallow lake systems) and Serraria formations (sandstones reworked by 

eolic river systems) (Early Jurassic age); 

 The third supersequence corresponds to the Rift phase and encompasses 

the Feliz Deserto (lake-deltaic system), Rio Pitanga (fanglomerates 

deposits), Penedo (anastomosed river system), Barra de Itiúba (fine delta-

lacustrine sandstones and shales), Coqueiro Seco (alluvial-delta system), 

Morro do Chaves (coquinas), and Maceió (sandstones, shales evaporites 

and calcirudites from alluvial-deltatic fans and sabkha environment) 

formations (Neocomian to Early Aptian age); 

 The fourth supersequence corresponds to the Post-Rift phase and 

encompasses the Muribeca Formation, including the Carmópolis (alluvial-

deltaic sandstones), Ibura (microbial carbonates, evaporites and shales) 

and Oiteirinhos (shales and calcilutites) members (Neo-Alagoas age); 
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 The fifth supersequence corresponds to the Drift phase characterized by 

the deposition of a carbonate platform represented by the transgressive 

Riachuelo formation (Albian age). Above this formation, a carbonate ramp 

was deposited, formed by fine-grained sediments represented by the 

Contiguiba Formation (Neocenomanian-Coniacian time). At Late 

Coniacian, there was a drop in sea level, leading to the deposition of 

siliciclastic of the Calumbi and Marituba formations and bioclastic 

calcarenites of the Mosquiteiro Formation. In the Pliocene, a regressive 

event related to the global eustatic fall caused the deposition of coastal 

sediments from the Barreiras Formation.  

 

 
Figure 2-4. Stratigraphic chart of the Sergipe sub-basin, highlighting the Morro do Chaves 
Formation (CAMPOS NETO et al., 2007) 
 

 

Figure 2-5. Stratigraphic chart of the Alagoas sub-basin, highlighting the Morro do 
Chaves Formation (CAMPOS NETO et al., 2007) 

 

2.1.4 The Morro do Chaves Formation 

According to AZAMBUJA et al. (1998), the Morro do Chaves Formation is 

defined as a carbonate succession (Jiquié age), having a thickness that varies between 50 

and 350 m. The formation was formed by the accumulation of coquinas (shells of bivalve 

mollusks and shales from lacustrine environments, interspersed with siliciclastic rocks 

from the Coqueiro Seco and Rio Pitanga formations. The formation is composed of fan-

deltas facies associated with the fault edge to the northeast of the basin, presenting 
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conglomerates reworked by waves, sandstones interspersed with bivalves, of thick layers 

of coquinas, and lake shales (Figure 2.6). 

 

Figure 2-6. Facies model from the Morro do Chaves Formation (modified from 
AZAMBUJA et al., 1998) 

 
The Morro do Chaves Formation represents a transgressive third-order system 

covering siliciclastic fluvial deposits from the Penedo Formation. Basement contact is a 

transgressive surface as well as a sequence boundary. The upper contact of the Coqueiro 

Seco Formation is gradual by showing a progressive entrance of terrigenous sediments 

into the basin, with the establishment of fluvio-deltaic and alluvial systems (AZAMBUJA 

et al., 1998). 

The unit suffered from strong tectonic and climatic controls, being marked by a 

lake carbonate sequence developed on high structures. Deposition occurred in smaller 

cycles due to variations between humid and arid climates. According to the 

paleoenvironment, sedimentation strongly varied involving alluvial fans and lakes, and 

with bars composed of coquinas and shales, with grading towards the depocenter. 

The Morro do Chaves Formation is composed of bivalve coquinas of 

Anodontophora sp., Gonodon sp., Psammobia sp., Nucula sp. and Astarte sp. (BORGES, 

1937; OLIVEIRA, 1937), and small gastropods. The bivalves developed in shallow and 

oxygenated waters. After their death, due to strong storms, the shells were reworked and 
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accumulated like bars, washed over fans and beaches, and were transported to the 

coastline. According to RIGUETI et al. (2020), the facies of the Morro do Chaves 

formation indicate low gradient deposition and a high energy coastline. This is supported 

by the predominance of coastal sediments as influenced by storms (Fig. 2.7). Shales were 

generated in shallow waterbodies, restricted by high blocks faults. There was then an 

abundance of organic matter contained in fish fragments belonging to Lepidontes and 

Mawsonia, typical of lake environments, and non-marine ostracodes such as the 

Cyprididae family, common in continental underwater environments (SOUZA-LIMA et 

al., 2002; MAFFIZZONI, 2000). 

 

 

Figure 2-7. Block diagram representing the presumed depositional setting of the Morro 
do Chaves Formation and the distribution of sedimentary facies along the hydrodynamic 
zones of a storm-wave-dominated platform, with an onshore-offshore energy gradient 
(RIGUETI et al., 2020) 

2.1.5 Coquinas 

Several investigations focused on the taphonomy of coquinas. For example, 

PETTIJOHN (1957) considered coquinas to be carbonate rocks consisting of fossil 

fragments (totally or partially) that were transported and then subjected to mechanical 

stress. However, SCHÄFER (1972) characterized coquinas as a concentration of shells 

and/or fragments exclusively, deposited by the action of a transport agent. Both studies 

suggested that the composition, stratum geometry and distribution of coquinas is 

governed by the laws of sedimentation, instead of biological laws. The views of 
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SCHÄFER (1972) were supported by TAVARES (2014) who noted that data from the 

same formation indicated that coquinas formed only from whole and fragmented shells. 

This point of view is reinforced due to the presence of siliciclastic material in the layers, 

reaching values of about 50% of the siliciclastic matrix. 

Coquina layers appear in geological records in sizes of in centimeters to meters, 

associated with and/or carbonate deposits. Their main depositional environments are 

paralic, lakes, estuaries, beaches, and sloughs, but can also occur in a marine platform 

environment (neritic) as a result of the action of waves and tidal currents, in addition to 

waves and currents caused by storms. In the case of coquinas from lacustrine 

environments, they are formed preferentially by the action of currents and storm waves 

(CASTRO, 1988; TEIXEIRA, 2012). 

CASTRO (1988) and TEIXEIRA (2012) suggested that coquinas layers formed 

by such factors as: 

 
 high production of bioclasts, resulting from a stressed environment, with 

variations in temperature, salinity, water energy and turbidity; mass 

mortality, which may have been influenced by volcanism and water bloom 

(i.e., the withdrawal of oxygen and nutrients caused by the rapid 

reproduction of plankton, resulting in the release of toxic waste in the 

water), in addition to earthquakes and tidal waves; 

 low input of terrestrial sediments, thus allowing the colonization and 

accumulation of bioclasts at the substrate; 

 hydraulic selection by preferentially transporting shells of greater 

granulometry (gravel above 2 mm), together with sand and mud; 

 diagenetic effects, which relate shell concentrations to such processes as 

compaction, cementation, micritization, substitution, neomorphism and 

dissolution. These processes influence concentrations of carbonate layers, 

being dependent upon temperature, pressure, pH and Eh. 

 
According to TEIXEIRA (2012), large accumulations of shells are not necessarily 

associated with large populations of organisms, since bivalve shells are highly resistant 

to transport and can be preserved in large quantities. 
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2.2 Porosity 

In petrophysical terms, porosity is a fundamental volumetric property that 

describes the potential storage of fluids (water, oil, or gas) in rocks. Most of the physical 

properties of rocks, including the speed of elastic waves, resistivity, and density, are 

influenced by porosity. As can be seen in Fig. 2.8, porosity (ϕ) is defined as the pore 

volume (Vp) divided by the total volume (Vp + Vg) of a rock, where Vg is the volume of 

the grains. 

 

 

Figure 2-8. Porosity definition by SCHÖN (2016) 
 

Porosity is a dimensionless quantity, usually expressed in fractions between 0 and 

1, as percentages, or in terms in p.u’s. (porosity units), where 1 p.u. is equivalent to 1% 

(MESQUITA, 2017). This property can be determined directly using different laboratory 

techniques, such as gas porosimetry or displacement methods, and, indirectly by profiling 

methods, such as through neutron responses, seismic wave speed and NMR 

measurements. 

Figure 2.8 defines the porosity of rocks in terms of “total porosity”. It is important 

to note that rocks often contain unconnected parts of the porosity (for example vugs and 

moldics pores) that do not contribute to fluid flow within the pore system. The term “not 

effective” is often used for such cases. There are two important definitions that distinguish 

the pore volume: 

 
 Effective porosity: the fraction of the pore space that is interconnected 

inside a rock. Effective porosity is always less than the total porosity 

(HOOK, 2003), and can be easily determined in the laboratory; 
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 Non-effective or residual porosity: the fraction of the pores that are 

disconnected from the pore system, and thus do not contribute to the flux 

inside the rock (AHR, 2008); 

 Total porosity: total void (or pore) volume within the rock, being the sum 

of effective and residual porosity. 

 
CHOQUETTE & PRAY (1970) claim that most carbonate reservoirs have 

porosities between 5% to 10%, whereas terrigenous reservoirs, such as sandstones, have 

values between 15% and 30%. However, these values are not considered rules. For 

example, MOREIRA (2010) classified porosities according to the reservoir quality, as 

seen in Table 2.1. 

 
Table 2-1 – Pore quality classification of reservoir rocks (MOREIRA, 2010) 

 
Porosity Quality 

𝝓 < 5 % Bad 

5% < 𝝓 < 10 % Moderate 

10% < 𝝓 < 20 % Good 

𝝓 > 20 % Excellent 

 
Pores formed concurrently with the formation of a rock are often called primary. 

However, when formed after deposition, they are referred to as secondary, being a 

consequence of diagenetic actions, such as dissolution, cementation, recrystallization, 

dolomitization, and mineral replacement (such as aragonite converting to calcite), in 

addition to leaching of grains and compaction by burial, which is often predominant in 

rocks. These factors directly affect the makeup of the pore space and may increase or 

decrease the porosity as can be seen by the data in Table 2.2. Because of the often high 

impacts of these effects, carbonate rocks generally have a variety of pores, both in terms 

of size and shape, while also having an irregular spatial distribution. This causes the 

geometric analysis and quantification of this group of rocks to become difficult tasks, 

while still being fundamental for the definition of reservoir properties. 
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Table 2-2 – Factors that influence the formation of pore space (modified from PETERS, 
2012) 

 
Influencing Factor Result 

Fracture Increases porosity 

Clay Decreases porosity 

Cimentation Decreases porosity 

Grain size Does not affect porosity 

Poorly sorted grains Decreases porosity 

Well sorted grain Increases porosity 

Compaction Decreases porosity 

Dissolution Increases porosity 

 
One may view the pore system of a rock at the micro-scale in terms of two types 

of pores:  pore bodies that are responsible for the storage of fluids, usually with larger 

sizes, and pore throats responsible for the connection between the pore bodies. The throats 

have a strong influence on permeability and determine to a large extent the size, shape 

and arrangement of the pores in a rock sample. If a rock is composed of well-defined 

spherical grains, the pores between them, classified as intergranular, will have only one 

grain size fraction, and may have throats and pore bodies of similar size. Rocks with 

poorly selected grains generally have poorly selected pore bodies and pore throats of 

varying sizes. The classification and distribution of pore throat sizes in rocks determines 

the body-throat pore ratio and the accessibility of liquids within the pore space (AHR, 

2008). 

Different nomenclatures have been developed to classify pores. ARCHIE (1952) 

was a pioneer in the classification of pores, encompassing its nomenclature aspects related 

to the rock fabric and its petrophysical properties. His classification was based on textural 

descriptions of the reservoir rocks along with characteristics of visible porosity. His 

contribution was to develop a classification system that emphasized the structure of the 

pores, the characteristics of fluid flow and the distribution of fluids. Another important 

classification was developed by CHOQUETTE & PRAY (1970), who recognized the 

importance of time and the way pores are formed in carbonate rocks, including geological 
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concepts associated with the pore space, thereby emphasizing the importance of pore 

genesis. However, LUCIA (1983) developed a more generic classification system by not 

reporting geological origins of the rocks and its pores, but emphasizing the relationship 

between porosity, permeability, and particle size. The main objective was to classify 

carbonate rock samples in a more practical way by using a more visual description for 

laboratory and field studies. In this study, the nomenclature of CHOQUETTE & PRAY 

(1970) will be used, to be presented in the chapter on materials and methods. 

2.3 Permeability 

Permeability (k) is a fundamental petrophysical property that defines the ability 

of a fluid to pass through the interconnected pore system of a rock. The connections that 

allow the fluid flow in the system are called pore throats. Due to the complexity of most 

natural rock formations, permeability is commonly anisotropic (SCHÖN, 2016). 

 The permeability of the rocks can be defined in three different ways: 

 
 Absolute permeability (kabs) – refers to laminar flow of a single fluid 

that does not react with the rock (100% fluid saturation). This property 

can be measured on samples in the laboratory, often done by 

commercial companies; 

 Effective permeability (kef) – refers to the flow of a fluid in a p\rtially 

saturated rock. Generally, the sample contains then a wetting fluid and 

a non-wetting fluid, with little or no miscibility between them; 

 Relative permeability (krel) – refers to the ratio between the two 

previous permeabilities, i.e., kef divided by kabs. 

 
Fluid flow (Q) is described by Darcy’s law (DARCY, 1856) as follows:  

 

𝐐 = 𝐀 ቀ
𝒌

𝝁
ቁ ቀ

∆𝑷

𝐋
ቁ                                                                               (2.1) 

 

where k is the permeability, µ is the viscosity of the fluid, 
∆𝑷

𝐋
 is the potential drop in the 

sample and A is the cross-sectional area of the sample. Permeability is a property of the 

rock, and viscosity of the fluid, while 
∆𝑷

𝐋
 is a measure of the flow potential. In the 
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International System (IS), permeability is given in m2, but in the oil industry, permeability 

is usually given in terms of Darcy (D), where 1D = 0.831 m/day. 

The permeability varies considerably in carbonate rocks.  Values can be less than 

0.1 mD for mudstones (almost impermeable), but can reach 10 D for connected vug 

systems, fractures or caves. Differences in the size, shape, and distribution of pores, the 

size and shape of the mineral grains, and the weft of a rock, all lead to a wide variation in 

the permeability, thus making it difficult to predict soil reservoir productivity. 

Qualitatively, the permeability values can be categorized as follows (Table 2.3). 

 
Table 2-3 - Qualitative description of permeability in carbonate rocks (NORTH, 1985) 

 

Qualitative description Permeability (mD) 

Poor to fair < 1.0 – 1.5 

Moderate 15 – 50 

Good 50 – 250 

Very good 250 – 1000 

Excellent > 1000 

 

Permeability measurements in the laboratory are often carried out using special 

cells (e.g., Hassler cell) that allow one to control the fluid pressure gradient within the 

sample, thus leading to fluid flow and obtaining estimates of the permeability using 

Darcy's law. Both a liquid or a gas can be used to determine this property in the laboratory. 

When a gas is used, low pressures gradients are needed, with the speed of the fluid (in 

this case gas) along the walls of the capillaries (the pore throats) usually not becoming 

zero as in the case of liquids.  This causes an overestimation of the permeability, often 

referred to as the Klinkenberg effect (TANIKAWA & SHIMAMOTO, 2006). To correct 

for this anomaly, measurements are typically carried out at different pressures, and the 

results are extrapolated to an infinite pressure (COSENTINO, 2001). This permits one to 

correct the values and bring them closer to values obtained when using a liquid (SCHÖN, 

2016). 

Direct in-situ permeability measurements are also possible in nature, such as 

packer tests and pumping tests, but these are generally very expensive and complex. For 
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this reason, measurements are often done using geophysical methods involving a variety 

of well-logging tools (ELLIS & SINGER, 2008). According to SCHÖN (2006), the 

development and application of NMR technique for the evaluation of formations has 

brought much new knowledge about the rock pore space, and the behavior and 

distribution of fluids within the pores. 

2.4 Rock Typing 

Rock typing is the identification of reservoir rocks in terms of categories based on 

petrophysical data such as porosity and permeability. The method is a simplification 

methodology that aims to group rocks having similar petrophysical characteristics (AHR, 

2008). Rock typing represents a simple grouping method where the characteristics of the 

pores are a primary factor for a basic description of the reservoir rocks. Its results can be 

combined with other information, such as rock classifications, capillary pressures-

saturation curves, as well profile signatures, with as ultimate aim the identification and 

mapping of reservoir flow units.  

The rock typing methodology has a wide range of applications.  These include 

applications for drilling, for example to predict the loss of drilling mud at high intervals; 

for production studies, such as to identify potential production zones, drill locations, the 

design of diversion systems during acidification, and prediction of high injection zones 

(ROQUE et al., 2017; OLIVEIRA et al., 2016); for reservoir studies to define net-pay 

(KOLODZIE, 1980); to obtain representative sample selections for special core analysis 

(SCAL) (SERAG EL DIN et al., 2014; MIRZAEI-PAIAMAN e SABOORIAN-

JOOYBARI, 2016); and for permeability predictions (AMAEFULE et al., 1993; 

ABBASZADEH et al., 1996; DAVIES e VESSELL , 1996; TASLIMI et al., 2008; 

ASKARI E BEHROUZ, 2011; CHEN e YAO, 2017); among many other applications. 

Generally, petrophysical rock typing methods can be classified into two separate 

categories: 

 
 Methods that use permeability and porosity. Excluding cut-off and other 

empirical methods, these include the Winland R35 equation (WINLAND, 

1972; KOLODZIE, 1980), Pittman equations (PITTMAN,1992); FZI by 

AMAEFULE et al. (1993) and FZI* (FZI-Star) by MIRZAEI-PAIAMAN 

et al. (2015); 
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 Methods based on capillary pressure data along with the J-function, and 

empirical clustering technique (THOMEER, 1960; LIN et al., 2015). 

 
Although there are other methods, the first category receives much interest in the 

oil and gas industry, and in academia, since there is no dependence on capillary pressure 

and/or relative permeability data (MIRZAEI-PAIAMAN et al, 2018). The identification 

of flow units and petrophysical rock types is especially difficult because of many 

variations in pore geometry, the lack of correlations between pore size and pore throats, 

and between porosity and permeability, and difficulty in establishing any link between 

the properties of small pores and the properties of a reservoir at the larger scale. Therefore, 

defining a link between the petrophysical view of a reservoir and the geological view is 

not trivial (SKALINSKI, 2009). 

Methods for determining theoretical rock types are generally based on Kozeny-

Carman type equations. Empirical correlations have been established between porosity, 

permeability, and a representative pore throat radius, derived from mercury injection 

capillary pressure data (PURCELL, 1949). The specific radius of a pore throat can then 

be used as an index to characterize the pore geometry dominating fluid flow.  

Unfortunately, the coquinas employed in this research are unusually complex in terms of 

their geological and petrophysical properties. As reported by CORBETT et al. (2016), 

coquinas from the Morro do Chaves Formation have a diagenetic history that provides 

many challenges, such as showing dramatic differences in permeability with only minor 

variations in porosity. New rock types hence may need to be developed to better correlate 

observed petrophysical characteristics of the coquinas with their fluid flow properties. 

CORBETT et al. (2016) used for this GHE (Global Hydraulic Element) base maps to 

separate the samples into two groups, one composed of low-quality reservoir rocks and 

the other of high-quality rocks. Still, they suggest that additional subdivisions may be 

required for these rocks because of unusual difficulties in describing their petrophysical 

properties. 

Following the idea to possibly create more subdivisions, a literature search was 

conducted on the subject, leading to a study by ROMERO (2016). In that study, existing 

relationships between lithology and the time distribution of transversal relaxation (T2) 

were used to identify prior knowledge that each shape of the T2 curve corresponds to a 

particular lithology of some reservoirs in western and southern Venezuela basins. 

Knowing that the T2 distribution can be related to the pore geometry, ROMERO (2016) 
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presented an approach for determining the rock quality using NMR measurements of the 

plugs. T2 relaxation measurements were performed in the laboratory using various clastic 

reservoir plugs from eastern Venezuela. The results showed that samples corresponding 

to the different rock types presented a characteristic pattern in the form of the T2 

distribution. The advantage of this classification is its direct determination, without a need 

for further analysis to characterize the types of rock.  

Following the suggestions by CORBETT et al. (2016) and the research by 

ROMERO (2016), specific rock types will be developed in this research in order to 

understand and more accurately estimate the permeability of coquinas from the Morro do 

Chaves Formation. 

2.5 Nuclear Magnetic Resonance 

NMR is a fast, non-destructive technique that can be used to obtain much 

information about the analyzed rock, such as porosity, pore size distribution, type and 

viscosity of the fluids contained in the porous space, saturation, wettability, and 

permeability (e.g., FLEURY et al., 2001).  

The porosity of complex systems can generally be determined by the application 

of a wide range of techniques, such as mercury intrusion capillary pressure (MICP) 

analysis, gas adsorption (gas porosimetry), X-ray scattering at low angles, and density 

measurements. All of these techniques have restrictions, such as the need to assume a 

specific geometry for the pores, overlap in the limits of the pore sizes with their 

interconnected network, and percolation effects caused by the fluid/gas flow. According 

to SOUZA (2012), NMR is an attractive alternative because it does not require a particular 

geometric pore modeling approach in that the method encompasses a broader range of 

pore sizes (ranging from nanometers to millimeters), and is not affected by the effects of 

percolation. Due to its versatility, its accuracy in measurements of porosity and the 

volume of fluids contained in the rocks, NMR can be applied both in the laboratory using 

benchtop equipment, also for well logging (COATES et al.,1997). 

NMR techniques are based on the response of atomic nuclei (spins) to external 

magnetic fields. The possibility of manipulating these spins in one or more dimensions 

allows the deployment of NMR in many experiments, thus providing unique versatility 

compared to other spectroscopic techniques. The hydrogen spins, present in the water 

molecules contained in the saturating fluid of the samples, are analyzed using NMR. The 
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1H isotope, with its relatively high magnetic moment, is generally used the most for this 

purpose (FIORELLI, 2015). Exciting the spins in the presence of a magnetic field makes 

it possible to manipulate the movement and direction of the spins, thereby capturing 

information about the system. 

NMR measures the amplitude and decay curve of the signal. The amplitude is 

proportional to the density of hydrogen in the pore fluids and, therefore, is an indicator of 

porosity. The signal decay curve provides information about the types of fluids and their 

interactions with the pore system. Thus, NMR measures three properties: the equilibrium 

of nuclear magnetization, Mo, and two main relaxation times: T1 (the longitudinal 

relaxation time) and T2 (the transversal relaxation time). Mo is proportional to the porosity 

occupied by the fluid, while T1 and T2 can be correlated with such petrophysical properties 

as pore size, the fluid produced, and permeability (ROSSINI et al. 1997). Although T1 

measurements are most commonly used in the literature, they consume more time than 

T2, while also having a lower signal-to-noise ratio in the experiments, a fact inherent in 

any NMR measurement (KENYON, 1997). 

Transversal relaxation (T2) involves the contribution of three processes: 

 
𝟏

𝑻𝟐
=  

𝟏

𝑻𝟐𝑺
+  

𝟏

𝑻𝟐𝑩
+  

𝟏

𝑻𝟐𝑫
                                             (2.2) 

 
where T2B is the bulk volume relaxation, T2S is the superficial relaxation, and T2D is the 

diffusional relaxation. Equation (2.2) is considered one of the fundamentals to evaluate 

NMR. The term bulk relaxation is used for relaxation measurements of a fluid when the 

effects of walls and gradients are eliminated. This relaxation is generally inversely 

proportional to viscosity. Superficial relaxation is the result of interaction of the spins 

with the pore wall. This effect is responsible for the sensitivity of NMR to pore size and, 

consequently, the permeability and the amount of irreducible fluid. The relationship of 

the spins is shortened due to molecular diffusion in a non-homogeneous static magnetic 

field (gradient), which is represented by T2D. This inhomogeneity on a meter to centimeter 

scale is a result of the configuration of the permanent magnet inside the tool and appears 

on the micrometer scale, in contrast to the magnetic susceptibility between the grain and 

the fluid. 

 Transverse (or spin-spin) relaxation times, T2, are typically determined using a 

pulse sequence called CPMG (Carr-Purcell-Meiboom-Gill), which was improved by 

MEIBOOM AND GILL in 1958. Through this sequence, the intensities of the echoes are 
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measured until they are no longer observed, thereby generating a multi-exponential decay 

which characterizes the complex nature of rocks. Using inverse Laplace transforms, the 

signal decays are transformed into relaxation curves that are linked to the pore size 

distribution of the sample. Shorter relaxation times with faster decays represent smaller 

pores, while larger pores are represented by long relaxation times with longer decays 

(Figure 2.9). Experiments performed in the laboratory commonly have defined a 

logarithmic time span between 0.1 ms and 10 s, thus presenting a wide range of points, 

also called bins (Figure 2.10). The number of points is reduced in well-logging because 

of the shorter time frame involved. These and related theoretical aspects of NMR 

techniques are discussed by KENYON (1997), ROSSINI et al. (1997), COATES et al. 

(1999), and FIORELLI (2015). 

 

 

Figure 2-9. - Comparison between amplitude and decay for different pore size 
distributions. 
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Figure 2-10. - Schematic of the inverse Laplace transform to obtain the pore size 

distribution of the system (STROMBERG, 2008) 

2.5.1 Permeability Estimation Using NMR 

One major advantage of NMR techniques is the possibility to estimate the 

permeability of a rock sample. Permeability is an important parameter for the reliable 

development of petrophysical and geological models of reservoirs by directly impacting 

oil and gas production strategies. Since permeability is difficult to estimate directly using 

well-logging, NMR techniques have undoubtedly become the main approach for making 

such estimates. Another important aspect of NMR is its versatility since the experiments 

can be carried out in both the laboratory and the field (FLEURY et al., 2001). 

For a saturated sample, T2B and T2D are generally much larger than the superficial 

relaxation time, T2S. In this way T2 can be approximated as 

 

𝑻𝟐  =෥  𝑻𝟐𝑺 =  
𝟏

𝝆𝟐
 
𝑽

𝑺
                                                        (2.3) 

 

where  
௏

ௌ
  is the ratio between pore volume and the pore surface area, and 𝜌ଶ is the 

superficial relaxivity, a parameter related to the abundance of paramagnetic ions on the 

pore surface (KLEINBERG, 1999). Since T2 is related to  
௏

ௌ
, the T2 measurements should 

provide all information necessary to calculate the permeability (DAIGLE & DUGAN, 

2009).  

Several mathematical models have been developed over the years with various 

success to estimate the permeability; the main formulations are described below. In 1927, 

Josef Kozeny developed the first empirical model to estimate the permeability, which in 
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1936 was refined by Philip Carman. The resulting model is known as the Kozeny-Carman 

equation (e.g., SCHEIDEGGER, 1974): 

 

                                                 𝒌 =  
𝛟𝟑

𝛕 ൫𝟏ି 𝛟𝟐൯
 ቀ

𝐕

𝐒
ቁ

𝟐

                                                      (2.4) 

 

which shows that permeability is related to the volume to surface ratioቀ
௏

ௌ
ቁ, also called the 

hydraulic potential ratio, the total porosity (φ), and the tortuosity (𝜏) of a sample. 

SCHEIDEGGER (1974) pointed out that the permeability can be derived from general 

considerations of fluid flow through capillaries tubes. DAIGLE & DUGAN (2009) 

demonstrated that the complexity of the porous medium depends on the degree of 

tortuosity in that a more tortuous pore network leads to a lower permeability of the 

system. 

The first direct relationship between NMR measurements and the permeability 

was developed by SEEVERS (1966) (Eq. 2.5): 

 

                                                          𝐓𝟏𝐋𝐨𝐠𝐦𝐞𝐚𝐧 =  
𝟏

𝛒𝟏
 ቀ

𝐕

𝐒
ቁ                                           (2.5) 

 

in which T1Logmean is the geometric mean. In this formulation, the geometric mean is a 

proportional quantity reflecting the average pore size within the system, 𝜌ଵ is the 

longitudinal superficial relaxivity and ቀ
௏

ௌ
ቁ is the same ratio as used in the Kozeny-Carman 

equation. Thus, Seevers proposed the relationship (Eq. 2.6): 

                                                  
                                                      𝒌 = 𝒂 . 𝝓 . 𝑻𝟏𝒍𝒐𝒈𝒎𝒆𝒂𝒏

𝟐                                          (2.6) 
 

where k is the permeability and a is an empirical constant dependent on the rock lithology. 

This model assumes that longitudinal relaxation is dominated by the interaction of the 

fluid with the surface, and that this interaction produces high values of 𝜌’s, thus 

maximizing the dependence on T1Logmean through pore size. 

The use of longitudinal relaxation times is often a hindrance in NMR logging 

operations since it requires long times for the accurate acquisition of the decays. To avoid 

this problem, longitudinal relaxation times (T1Logmean) were often replaced by transversal 

relaxation times (T2Logmean), starting in the 1990s with the improvements of the NMR 

techniques. 
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The reliability of the Kozeny-Carman model was tested by RIOS et al. (2014). A 

comparative study was carried out between the NMR estimators using different means of 

the transversal relaxation times (T2Logmean), based on the industry's concern about pre-

existing models for the permeability, especially when used for complex carbonate rocks 

(RAMAKRISHNAN et al., 1999). While T2Logmean usually was calculated by logging 

interpreters using geometric averages (KENYON, 1997; KLEINBERG, 1999), resulting 

values for this property often differed widely. For this reason, many used chalk samples 

(fine-grained carbonate rock) saturated in brine, to determine the T2 times. Based on the 

Kozeny-Carman equation, and its modifications, the predictive performance of three 

estimators based on classical Pythagorean averages (harmonic, geometric and arithmetic) 

were evaluated. RIOS et al. (2014) presented as one of the results of their study that, in 

some cases, geometric mean would not be the best way to estimate NMR permeability. 

Calculations using arithmetic means performed better in their case study. 

The Seevers model has certain applicability limits. Previous studies have shown 

that the model works very well to estimate the permeability of uniform porous media, but 

not necessarily for heterogeneous systems. Several new mathematical models were 

generated in attempts to improve the accuracy of the permeability predictions. KENYON 

et al. (1988) used hundreds of sandstone samples to develop the following equation, also 

known as the SDR (Schlumberger-Doll-Research) model: 

 
                                                 𝐤𝐬𝐝𝐫 = 𝐜 . 𝛟𝐚 . 𝐓𝟏𝐋𝐨𝐠𝐦𝐞𝐚𝐧

𝐛                                            (2.7) 
 

where 𝑘௦ௗ௥ is the permeability, b and c are empirical constants, and c is an empirical 

parameter depending upon the lithology.  KENYON et al. (1988) obtained values of 4, 2 

and 4.5 for the constants a, b and c, respectively. They pointed out that longitudinal 

superficial relaxivity is implicitly included in the constant c, which hence should have the 

same value for the same lithology. STRALEY et al. (1995b) later applied Eq. (2.7) to 

sandstone and carbonate rocks, but with the parameter T1Logmean changed to T2Logmean. 

They estimated the value of c for carbonate rocks to be 0.1, but with the sandstone rocks 

showing much smaller values. 

In a study of 155 sandstone rock samples, TIMUR (1968) proposed an equation 

relating the permeability to porosity (𝜙) and irreducible saturation (𝑆௪௜௥): 

                                                    k= 𝟎. 𝟏𝟑𝟔 ൬
𝛟𝟒.𝟒

𝐒𝐰𝐢𝐫
𝟐 ൰                                                     (2.8) 

 



 
 

27 

In a new study using the same set of samples, TIMUR (1969a) proposed a 

relationship between the effective porosity (𝜙௘௙), the Free Fluid Index, FFI (part of the 

fluid that can be removed from the reservoir), and the fraction of the pores that retain 

fluids (Swr), according to the equations 

 

                                                𝝓𝒆𝒇 =  ቂ𝟏 −  
𝑺𝒘𝒓

𝟏𝟎𝟎
ቃ . 𝝓                                                   (2.9) 

 

                                               𝐒𝐰𝐫 = 𝟏𝟎𝟎 . ቂ𝟏 −  
𝐚 (𝐅𝐅𝐈)ା𝐛

𝛟
ቃ                                        (2.10) 

 
 
TIMUR (1969b) further improved the results by using 188 sandstones samples, 

leading to relationships between the NMR signals and FFI using three components with 

decays at different times. The parts represented the total percentage of the pore space 

(called FFI3), indicating that this parameter is identical to the effective porosity value. 

This study considered that the different pore sizes presented different relaxation times, 

thus affecting the prediction of permeability. 

Based on the model by TIMUR (1969b), COATES (1991) developed a new 

equation for the permeability based on the relationship between the free fluid index (FFI) 

and the bulk fluid index (BFI), the latter representing fluid adsorbed by clay minerals and 

fluid trapped by capillarity:  

                                               𝐤𝑻𝒊𝒎 = 𝐜 ቀ
𝛟

𝟏𝟎𝟎
ቁ

𝐚

. ቀ
𝐅𝐅𝐈

𝐁𝐅𝐈
ቁ

𝐛

                                            (2.11) 

 
in which the constants a, b and c are determined by multiple linear regression (MLR). 

The values now used mostly in the oil industry are those determined by KENYON et al. 

(1986), notably values of a = 4 and b = 2, for sandstone rocks. The equation above is 

known as the Timur-Coates equation (TC). 

The Schlumberger-Doll-Research (SDR) and Timur-Coates (TC) equations are 

considered classics in terms of estimating the permeability from NMR data (RIOS et al., 

2010). They assume that the T2 spectrum represents the pore size distribution. The 

equations have been found to work well for homogeneous rocks, i.e., rocks where the 

pore system shows a good correlation between the size of the pore bodies and the size of 

the pore throats, a characteristic not observed for many carbonate rocks (CHEN, 2008). 

Subsequent studies using the SDR and CT equations were performed by many. 

MACHADO et al. (2011) presented a way to estimate the permeability using the two 

equations, but with the application differentiated based on the pore sizes. Previous studies 
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about the superficial relaxivity showed that in a porous medium composed of micro- and 

meso-porosity (i.e., smaller pores), the walls have more interaction with the spins during 

NMR experiments, which then governs the superficial relaxivity. In a system dominated 

by macropores, T2 loses sensibility caused by the pore sizes, but not by their volume. 

Based on these concepts, good correlations could be established by MACHADO et al. 

(2011) for the KSdr equation when the system has a predominance of macropores, with a 

new equation being proposed (KMacro) for macropore systems, modified from the Timur-

Coates equation (KTim).  

2.6 Mercury Injection Capillary Pressure 

Mercury Injection Capillary Pressure (MICP) analysis is a laboratory test used to 

characterize porous media. The experiment, first proposed by WASHBURN (1921), is 

capable of obtaining the capillary pressure curve of a porous medium, which can be 

converted into a distribution of the radii of the interconnected pores of a rock sample. The 

results provide important input to multiphase flow models and can be compared to the 

pore size distributions distribution determined using NMR.  

Although MICP is an old technique, it is still considered one of the most reliable 

methods in the oil industry. The main advantages are: 

 
• Experiments can be performed on fragments of samples having irregular 

shapes; 

• The technique offers a very accurate analysis of the porous rock system 

by providing both the pore sizes and the accessible amount of the pore 

volume after applying pressure; 

• MICP allows the characterization of rock facies based on the radii of pore 

throats; 

• The method can be used to obtain the effective porosity using the total 

intruded mercury volume after application of some maximum pressure; 

• Results may be used to estimate the permeability. 

 
However, the technique also has limitations such as its destructive nature, which 

limits its use to laboratory analyses, but not for in-situ field applications. This main 

limitation relates to the toxic nature of the intruded fluid (mercury), which makes it 
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necessary to discard the samples after the tests due to the high risk to health. For this 

reason, MICP techniques have gradually been replaced by NMR measurements to 

estimate pore distributions and volumes, while centrifuge techniques are increasingly 

being used to obtain capillary pressure – saturation curves since those measurements are 

not destructive in nature. (SOUZA, 2012). 

Much research has been carried out using MICP techniques.  For example, 

HELINGER JR. & SANTOS (2018) applied the technique to coquina samples from the 

Brazilian pre-salt, to evaluate the influence of pore throats on different types of porosity. 

They found that samples with mostly moldic pores have narrower throats when compared 

to samples with interparticle pores, thus directly impacting the permeability. 

Another popular application is to use MICP to develop hydraulic rock types. Since 

MICP measures the pore openings (throats), its results can be used to evaluate the 

connectivity and flow properties of the samples. MIRZAEI-PAIAMAN et al. (2015) 

proposed the use of two types of rock types: one static, where the samples have similar 

capillary pressure curves but different flow characteristics, and one formed by samples 

with similar flow behavior but different capillary pressure curves. THEOLOGOU et al. 

(2015) further developed a methodology that accounts for sample selection, acquisition, 

data quality control and corrections, and parameterization of the MICP curves through 

Gaussian decomposition. Their methodology focused on the development of rock types 

to predict the types of pores determined by MICP for the well scale. 

MICP results can be combined with the NMR measurements and applied in 

several ways to provide a complete characterization of the pore space, such as the pore 

body and pore throats distributions, irreducible saturation, permeability, and superficial 

relaxivity. MARSCHALL et al. (1995) presented estimates of irreducible saturation and 

permeability by correlating the two techniques. They showed that the combination of 

NMR (pore body) and MICP (pore throat) responses could be used to determine 

superficial relaxivity. Using the T2 amplitudes and the pore size distributions, a 

combination of both curves can be obtained by transforming the relaxation times into a 

pore radii and defining the relaxivity. Many other works have been developed along these 

lines of research. 
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2.7 Porous Media Modeling 

One of the difficulties in predicting the flow behavior in porous media is the high 

degree of uncertainty associated with determining the quantities that govern fluid 

retention and flow (AMBRUS et al., 2004). The study of pore-scale processes is essential 

for understanding the flow and transport processes at the continuum or macro scale, which 

implies a multi-scale problem (RAOOF et al., 2013). These various scales have an 

associated hierarchy, covering the molecular scale, the micro or pore scale, the macro or 

laboratory scale, the meso or field scale, and also the mega or regional scale. 

One increasingly popular approach to obtain important information about porous 

media is through Pore Network Modeling (PNM). A bridge can then be developed 

between the processes at the pore scale and the macro scale, with PNM serving as a tool 

for establishing how processes at the pore scale are manifested at the macroscopic level 

(i.e., the core or even field-scale). PNM hence is a valuable tool to understand 

macroscopic behavior by evaluating relevant physics on the pore scale. 

PNM has been widely used in petroleum engineering studies (e.g., WILKINSON 

& WILLEMSEN, 1983). Its application is extremely useful to obtain the constitutive 

properties of the samples. The approach typically involves images acquired from X-ray 

microtomography (micro-CT), from which 3D skeletons are generated, with PNM then 

providing details of porous media flow and retention parameters that are of fundamental 

importance for the simulation of multiphase flow (LEI YANG et al., 2018).  

Capillary bundle models have traditionally been used to estimate the relative 

permeability of porous media, such as the initial study by PURCELL (1949) and many 

others since then (BURDINE, 1953; MUALEM, 1976). According to this approach, 

porous media can be modeled using capillary tubes of different diameters. Such models 

ignore the interconnectivity of natural porous media and often do not give very realistic 

results. However, with the use of PNM, pore bodies (nodes) and pore throats (or channels) 

are used with a specific topological configuration, with the pore throats prescribing the 

connections between pore bodies. The pore bodies are represented by large empty spaces 

(generally modelled as spheres) inside the rocks, while the pore throats (modeled as 

capillary tubes) serve as connections between the pore bodies. Pore networks have been 

widely used for estimating multiphase flow properties (BLUNT et al., 2001; ALGIVE et 

al., 2012), as well as for modeling the dissolution of organic liquids (ZHOU et al., 2000), 

CO2 sequestration ( RAOOF et al., 2012), biomass growth (ROSENZWEIG et al., 2013), 
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solute dispersity (VASILYEV et al., 2012), adsorption (RAOOF et al., 2010), and the 

hydraulic conductivity (THULLNER et al., 2002), among others. 

PAN et al. (2004) noted that fluid flow simulations using the Lattice Boltzmann 

approach (SHOLOKHOVA et al., 2009) may be very accurate, but are almost impossible 

to run for realistic representative elementary volumes (REVs). Thus, new models needed 

to be developed, including pore network models. One main advantage of PNMs is their 

efficient use of detailed geometric and topological information, even for porous media 

that have a disordered geometry. Thus, the prediction of multiphase flow properties 

within the porous space can be carried out in an easier way. Still, one of the deficiencies 

of the technique is its need to use a simplified geometry for the porous media, normally 

by assuming uniform circular or square shapes with idealized cross-sections. Accurate 

simulation of several processes, such as biogeochemical reactions, hence may become a 

challenge since they involve significant changes in the complex pore geometry resulting 

from dissolution, precipitation and/or biological clogging (RAOOF et al., 2013).  

Recent advances in PNM techniques allow one to consider a certain degree of 

irregularity in the shape of cross-sections of the pore throats with relatively low 

computational cost, thus improving the ability to capture important statistical 

characteristics of the medium, such as pore size distributions (LINDQUIST et al., 2000), 

the distribution of coordination numbers (RAOOF & HASSANIZADEH, 2009) and 

topological parameters such as the Euler number (VOGEL & ROTH, 2001). 

YANG et al. (2017) carried out an important study showing the quantitative 

predictive potential of PNM pore by pore. They made a direct comparison of PNM 

simulations and experiments using corresponding micro-models of the same scale and 

pore-scale geometry. Their research showed that a pore network dynamic flow solver can 

predict the displacement of two-phase flows in pore-scale drainage experiments. YANG 

et al. (2018) further studied the permeability of porous media containing a gas hydrate (a 

compound of water and gases with small molecular weight). Since gas is generally 

distributed unevenly in the samples, the inhomogeneity can significantly impact the 

permeability of a reservoir. They employed PNM calculations using acquired micro-CT 

images to observe the effects of different pore body and pore throat radii, non-uniform 

hydrate distributions and fluid flow directions on both the absolute and relative 

permeability. 
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2.8 Principal Component Analysis (PCA) 

Multivariate analysis, in general, refers to statistical methods that simultaneously 

analyze multiple measures of an object under investigation. Of many available 

multivariate techniques, principal component analysis (PCA) is one of the most popular 

statistical techniques for data analysis in several disciplines such as agronomy, hydrology, 

biology, ecology, and medicine. 

The PCA methodology was first described by PEARSON (1901), but later 

formulated in terms of practical computational methods by HOTELLING (1933, 1936). 

PCA is a multivariate statistical technique that linearly transforms a set of variables, 

initially correlatable to each other, into a considerably smaller set with no correlation 

between them, but still keeping most of the information from the original set. According 

to HONGYU (2015), PCA techniques aim to redistribute the variations observed along 

the original axes to obtain a set of non-correlated orthogonal axes. 

The PCA technique consists of transforming a set of original variables into another 

set of variables of the same dimension, called principal components. These components 

have important properties since each main component is a linear combination of all 

original variables, but independent of the others and estimated such that they retain the 

maximum amount of information in terms of the total variation contained in the data 

(JOHNSON & WICHERN , 1998). Having this understanding in mind, it can be 

concluded that the maximum variations will be in increasing order of the components, 

starting with principal component 1 (PC1) until the last one. When interpreted in this way, 

the PCs with the greatest variances will present the best correlations in that they will 

explain the maximum variability of the data, with only the first two components being 

used normally. All components can be correlated with each other for interpretation, but 

the smaller the variance, the more difficult it will be to interpret the results. 

PCA techniques can be used to generate indexes or group individuals or objects.  

Their main objective is to explain the structure of variance and covariance of a random 

vector, by means of linear combinations of the original variables. The linear combinations 

represent, geometrically, a new coordinate system obtained by rotating the original 

system such that the new coordinate axes have p random variables. The new orthogonal 

axes (new variables) are called scores of the principal components. The analysis groups 

individuals according to their variation, implying that individuals can be grouped 
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according to their behavior within the population, represented by variations in the 

characteristics of the settings that define the individual. 

HONGYU (2015) explained that to establish an index that makes it possible to order 

a set of n objects according to criteria defined by a set of appropriate m variables, it is 

necessary to choose the weights of the variables that translate the information contained 

in them. Although PCA technique was developed initially to solve specific problems 

(REGAZZI, 2000), they can be used to solve other problems such as reducing the 

dimensionality of variables and grouping individuals (observations) because of their 

similarities or differences, thus making them applicable to different areas of study.  

The main advantage of the PCA methodology is the possibility of transforming a set 

of original correlatable variables into a new set of non-correlated variables (main 

components) by removing multicollinearity. In addition, PCA reduces many variables to 

perpendicular axes with fewer variables to explain the variations in data in a decreasing 

and independent way. 

The method has as disadvantage its insensitivity to outliers, which causes many to 

not recommended its use in case of a lack of data. PCA techniques are also not 

recommended when there are more variables than sample units, which can lead to loss of 

information about the variability of the original variables. There are cases where the PCA 

does not work, for example when even with a reduction in the number of variables, the 

variability is still exceptionally large, which can be explained by the original variables 

having little correlation (HONGYU, 2015). 

Since PCA is a multivariate method with wide application, it can be used for several 

problems of data analysis by helping one to identify similarities and explaining the results 

according to the variables used. RAMOS et al. (2009) applied the technique to 68 samples 

of Brazilian crude oil, ranging from light to extra heavy (having viscosities of 2 to 30,000 

cP), and low-field NMR measurements used to predict and analyze the viscosities. 

Application of the PCA methodology showed that the first two principal components, 

PC1 and PC2, comprised 65% of the total variance, thus making it possible to identify 

distinct groups with good correlation between similar viscosity samples, according to the 

classification adopted by ANP (the National Petroleum Agency of Brazil). 

RIOS et al. (2011) used PCA to predict the permeability of rock samples from 

observed NMR data. Using 68 sandstone samples from Brazilian reservoirs, two partial 

least-squares regression models (PLSR) were created to estimate the permeability from 

T2 measurements, with results compared with estimates obtained using the classic 
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Kenyon model (KSdr). BENAVENTE et al. (2006) further used multivariate analysis to 

evaluate the pore structure, the water flow properties, and the resistance of rocks to wear 

by salt. PCA was used to examine the direct relationship between salt wear and the 

petrophysical properties. 
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3 MATERIALS AND METHODS 

This chapter describes in detail the rock samples that were used, as well as the most 

relevant methods and measurements utilized for this research, including the invoked 

materials and techniques. The chapter gives more details regarding the proposed 

workflow in topic 1.3. 

3.1 Coquinas from the Morro do Chaves Formation 

For the development of this work, 44 coquina samples were used from a continuous 

test core (UFRJ 2-SMC-02-AL), drilled at Pedreira Atol, located in the city of São Miguel 

dos Campos in the Brazilian state of Alagoas (WGS-8409 ° 45'17''S / 36 ° 09'14''W), 

which is part of the Sergipe-Alagoas Basin. The core was provided by the Laboratory of 

Sedimentary Geology (LAGESED) of UFRJ. All samples had a cylindrical shape, about 

2.5 cm in diameter x 4.5 cm in height (Figure 3.1). 

 

 

Figure 3-1. - Detail of the plugs used in this work 
 

As opposed to sandstone rocks, carbonate rocks are known for their complex and 

heterogeneous composition, attributed to various depositional and diagenetic processes. 

After the initial deposition of the rock, these processes significantly affected the internal 
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network of pores and their connections, leading to both more favorable as well as 

undesirable reservoir characteristics. Since they are formed by bioclasts, mainly lake 

bivalves, these components may undergo dissolution and hence lead to higher porosities 

of the rocks. Cementation on the other hand could drastically decrease the porosity, which 

would directly affect the storage and fluidity of carbonate reservoirs. All of these factors 

cause such rocks to become a challenge in terms of petrophysical modeling. The coquinas 

in this study were classified lithologically according to the scheme by GRABAU (1904). 

In this classification, sediments are divided into three categories: 

 
I. Calcirudites: sediments with a particle size greater than 2mm; 

II. Calcarenites: sediments with granulometry between 2 and 0.0625mm; 

III. Calcilutites: sediments with granulometry less than 0.0625mm. 

 
TAVARES et al. (2015) and RIGUETTI et al. (2018) previously carried out several 

studies in the Pedreira Atol area. The study by TAVARES et al. (2015), carried out in a 

mining front at Pedreira Atol, focused on the composition of the formation rocks (notably 

the presence or absence of micrite or siliciclastic material) and the degree of 

fragmentation of the shells. They suggested that facies with a predominance of 

fragmented shells, without micrite, would have been deposited in underwater bars, above 

the base level of good weather waves. The considerable fragmentation of the shells and 

the absence of micrite would indicate constant rework in a moderate to high energy 

environment. Facies with whole shells and the presence of micrite would have been 

deposited between the base level of action of good weather and storm waves. RIGUETTI 

et al. (2018) further provided both a macroscopic and microscopic description of core 2-

SMC-02-AL, from which the plugs of this research were taken, aiming at the faciological 

and stratigraphic characterization of the coquinas. The well was divided into four 

stratigraphic intervals, with a predominance of different sedimentary facies and 

successions of facies, as shown Table 3.1. 
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Table 3-1 – Succession of sedimentological facies of well 2-SMC-02-AL, separated by 
stratigraphic intervals (modified from RIGUETI et al., 2018; TAVARES et al., 2015) 

 
Succession of 

sed. facies 
Sedimentary facies 196.30 - 

202.40m 
169.35 – 
196.30m 

100.40 – 
169.35m 

64.20 – 
100.4m 

Nearshore Calcarenite composed of fragmented shells (≥80%), showing 
plane-parallel or low angle cross-stratification (cApp). 
Contains: 
≤ 10% micrite 
≤10% siliciclastics 

- 2% 4% 5% 

Calcirudite with cross stratigraphy (cRc) - - - 10% 

Calcirudite composed of whole shells (≥20%), densely packed, 
showing massive structure (cRdm). Contains: 
≥ 10% micrite 
≤ 10% siliciclastics 

- 80% 81% 16% 

Nodular microcrystalline carbonate (Nc) - 1% 1% 1% 

Offshore Massive calcirudite, densely to loosely packed, with sandy-
gravelly matrix (cRpm). Contains: 
≥ 20% of non-fragmented shells 
≥ 10% micrite 
≥ 10% siliciclastics 

- - - 1% 

Massive calcirudite, densely to loosely packed, moderately to 
poorly sorted terrigenous sandy-muddy matrix (cRm). Contains: 
≥ 20% non-fragmented shells 
≥ 10% micrite 
≥ 10% siliciclastic 

- 2% 5% 2% 

Massive green mudstone or with incipient lamination (Fg) 76% 1% 4% 5% 

Organic-rich mudstone finely laminated (Forg) - - 2% 3% 

Hyperpicnal 

Flux 

Calcirudite composed of whole bivalve shells; fragmented shells 
(≥40%), densely to loosely packed, well-sorted terrigenous 
sandy matrix showing cross-stratification (cRdlc). Contains: 
≤ 10% micrite 
≥ 10% siliciclastics 

3% 4% 1% 51% 

Calcirudite composed of well-sorted, fragmented and whole 
bivalve shells (≥40%); densely to loosely packed, well-sorted 
terrigenous sandy matrix showing cross-stratification (cRcl). 
Contains: 
≤ 10% micrite 
≥ 10% siliciclastics 

- - 1% - 

Moderately to poorly sorted, medium to coarse-grained 
sandstone, moderately to poorly sorted, showing cross-
stratification (Sc); 

- 6% - - 

Well-sorted, fine to medium-grained sandstone, exhibiting cross 
lamination (Scl); 

1% 1% - 3% 

Well to moderate sorted, very fine to medium grained sandstone, 
graded (Sg); 

- 1% 0.5% 3% 

Well sorted, very fine-grained sandstone, showing low angle 
divergent lamination (Sdl); 

20% 2% 0.5% - 

 

Rock typing is a simplified methodology widely used in the study of reservoir 

rocks. It groups rocks with similar petrophysical characteristics, such as porosity and 

permeability (AHR, 2008), to facilitate the understanding of the reservoir. The porosity 

and permeability distributions are very important, especially for reservoir and 
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petrophysical engineers, for assessing the formation and defining recovery strategies, 

thereby improving also accurate forecasts using reservoir model simulations. Rock typing 

represents a simple grouping method in which the pore characteristics are the primary 

factor used to describe reservoir rocks. Its results can be combined with other information, 

such as rock classification, capillary pressure- saturation data and well profile signatures, 

aiming at the identification and mapping of the reservoir flow units. The identification of 

flow units and petrophysical rock types is generally difficult because of much variation 

in the pore geometry, a lack of correlation between pore body and pore throat sizes, poor 

correlation between porosity and permeability, and difficulty to establish links between 

the properties of the small coquina scale pores and the properties of a reservoir at a large 

scale. Therefore, establishing a link between the petrophysical properties and the overall 

geological properties of a reservoir is not trivial (SKALINSKI, 2009). 

3.2 Routine Core Analysis 

The samples were initially subjected to thorough cleaning and the extraction of 

fluids previously present in the pore system, an essential step for the complete removal 

of impurities contained in the samples. For this stage, Soxhlet extractors were employed 

using solvents such as toluene for removing hydrocarbons, and methanol for the 

extraction of salts and water. The advantage of using this technique is the possibility to 

completely remove natural contaminants in a continuous and unsupervised manner, 

without causing damage to the samples. After cleaning, the samples were dried in an oven 

at a controlled temperature of 60°C for 12 hours. 

3.3 Fluid Saturation 

After basic petrophysical tests, samples were prepared for the NMR (nuclear 

magnetic resonance) measurements. Preparation consisted of saturating the samples in 

brine at 30kppm of KCl, in order to minimize possible reactions of the clay material 

present in the samples. The brine had a density of 1.067 g/cm³. For this saturation, the 

samples were separated into two separate groups having high and low permeabilities. For 

the samples of high permeability (i.e., having values above 100 mD), a vacuum was 

applied to the samples immersed in brine. The lower permeability samples were applied 

vacuum for 8 houres before placed in a pressure cell, filled with the fluid until they were 

completely covered. It was applied a pressure of up to 2,000 psi for 24 hours to guarantee 
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total saturation (Fig. 3.2). After this step, the samples were weighed again and their dry 

mass subtracted from the wet mass, this giving estimates of the mass of the solution that 

entered the sample. The volume of solution present in the sample was calculated 

subsequently by dividing the mass of the solution by the density of the brine. 

 

 
Figure 3-2 - Photo illustrating saturation of low permeability samples. a) Cell where 
samples remained for 24 hours, immersed in brine and under the pressure of 2,000 psi; b) 
Detail of the interior of the cell containing a sample immersed in the fluid 
 

Complete as possible saturation of the samples is crucial for carrying out the NMR 

assays, with values above 95% considered to be ideal in order to obtain more accurate T2 

distributions. After determining the solution volume that entered the samples, all samples 

were kept in containers filled with the same saturating fluid (Fig. 3.3) for the purpose of 

maintaining ideal saturation. The sample saturation process was carried out at the NMR 

and Petrophysics Applications Laboratory at Universidade Federal Fluminense 

(UFFLar), Niteroi, Brazil. 
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Figure 3-3 - Samples stored in brine-filled containers to maintain saturation for NMR 
analysis 

3.4 Nuclear Magnetic Resonance (NMR) 

The NMR experiments were carried out in a low-field spectrometer GeoSpec2 

(Oxford Instruments, UK), having a magnetic field equal to 0.047 T and a frequency of 2 

MHz, belonging to the NMR and Petrophysics Applications Laboratory (UFFLar) (Fig. 

3.4). All acquisition controls were implemented using GIT software (Green Imaging 

Technologies, Fredericton, Canada). 

 
Figure 3-4 - NMR equipment used for the experiments. a) Equipment where the 
experiment is carried out, with detail of the sample entry at the top (red arrow); b) Tower 
containing the electronic part of the NMR; c) Equipment responsible for maintaining the 
temperature at 20 ° C; d) Computer to control the experiment, with GIT installed (source: 
website UFFLar) 
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After calibration of the equipment using a standard sample, the analysis started. 

The samples were wrapped with Teflon tape to contain saturation throughout the 

experiment and positioned inside the probe. Table 3.2 shows the parameters used to 

acquire NMR data. 

 

Table 3-2 – NMR data acquisition parameters 
 

Parameters Values 

Total echos 16,250 

Echo time 200μs 

Number of averages 64 

Waiting time between averages 10s 

90º pulse width 12,04μs 

180º pulse width 24,24μs 

Temperature 25ºC  

 

The research was carried out using transversal relaxation measures (T2) obtained 

by using CPMG pulse sequence, which are mostly used in petrophysical studies. A 

CPMG pulse sequence consists of a 90 ° radio frequency pulse followed by a pulse train 

of 180°, delayed by π/2 of the first pulse. Echo intensity measurements were performed 

with a signal/noise ratio above 100.  

Typically, the pore size distribution of a sample directs the distribution of T2 times, 

determined by mathematical inversion of relaxation measurements (BUTTLER et al., 

1981). At the limit of the fast diffusion regime, the time T2 of a fluid that saturates a 

porous medium is given by (Eq. 3.1): 

 

                                                   (3.1) 

 
where ρ2 represents the surface relaxivity. This equation shows that the relaxation times 

of the fluids inside the pores are inversely proportional to the pore surface/volume ratio, 

defined as S/V in Eq. (3.1), with the scaling of this relationship being the surface 

relaxivity, ρ2.  

As a result of the experiment, the effective porosity and the pore size distribution 

curve of the sample are obtained. The porosity results can be compared with those 

obtained with the routine core analysis once the samples are well saturated. The pore size 
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distributions help to understand the complexity of the pore system, as well as assist in 

separating the samples into the various rock types.  

3.5 Mercury Injection Capillary Pressure (MICP) 

The MICP experiments were performed by the Weatherford company using the 

equipment Autopore IV 9500 (Micromeritics Instruments Co.). The subsamples for these 

tests were taken from regions adjacent to the plugs used for the other laboratory 

experiments. Since MICP is a destructive technique, the subsamples submitted to the 

MICP measurements were selected according to comparative criteria, i.e., samples having 

similar porosities but different permeabilities, and vice versa. In total, 15 subsamples 

were chosen. 

Based on the assumption that fluid is not able to enter the pore opening of a rock 

pore network without pressure and that the fluid does not “wet” the pore surface, the 

MICP tests consist of the gradual injection of mercury using increasing pressures, leading 

to estimates of the ratio of the capillary pressure of the pores and the volume of fluid 

injected (SHAFER & NEASHAM, 2000). The experiments begin by enclosing the 

previously unsaturated sample in a closed container under vacuum, which is then filled 

with mercury. Starting with atmospheric pressure itself, increasing pressures are 

subsequently applied to push mercury into the sample.  The non-wetting mercury will 

first invade the larger pores but with increasing pressures slowly move into the entire pore 

system (Fig. 3.5). 
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Figure 3-5 - a) Layout of the MICP experiments. b) Plot showing the incremental porosity 
(blue line), the cumulative porosity (pink dashed line), and the pore size partitions (green 
dashed line) as a function of the diameter of the pore throats of a sample (LIMA, 2016) 

 

Assuming that the pores can be approximated as equivalent cylinders, it is possible 

to relate the capillary pressure to the radii of pore throats using the Washburn equation 

(WASHBURN, 1921) (Eq. 3.2): 

 

𝑷𝒄 =  
𝟐𝝈 |𝐜𝐨𝐬 𝜽|

𝑹𝒕
  (3.2) 

 
where Pc is the capillary pressure (dynes/cm²), σ is the surface tension of mercury (480 

dynes/cm), θ is the contact angle of the mercury/air interface (140°) and Rt is the radius 

of the pore throats (µm). Through this transformation one can obtain the distribution of 

pore throats by the intruded mercury, such as shown by the graphs in Fig. 3.5 

(MESQUITA, 2017). 

3.6 Integration NMR and MICP 

An important application of the NMR and MICP techniques is the integration of its 

results to determine the surface relaxivity, an essential parameter for calibration of T2 

curves, in order to obtain the pore size distribution (WONG, 1999; FLEURY et al., 2016). 

Considering the pore system of the rock as a bundle of cylindrical capillary tubes of radius 
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r, the distribution of pore throats determined using MICP can be correlated with the 

distribution of T2 by means of the surface relaxativity (ρ2) according to (Eq. 3.3): 

 

 (3.3) 

 
where l is the length of the cylinder. The value 2 holds for cylindrical pores, being 

necessary to convert the pores in the S/V ratio of Eq. (3.3) to pore throat radii, but can be 

changed to 3 when approximating the pores as equivalent spheres. Thus, once the 

correlation between the NMR and MICP curves is obtained, ρ2 can be adjusted until the 

two curves are consistent and the peaks overlap (SOUZA, 2012). The combination of 

NMR and MICP measurements will not produce good results if no correlation exists 

between the pore size distributions and corresponding pore throats (MESQUITA et al., 

2016). 

The above methodology to convert T2 values to pore radii was used for the 

segmentation of the pores in 3D images. Assuming that the microCT images are acquired 

with a pixel size of 14μm, the entire region of the pore distribution curve below 7 μm (the 

pixel radius value) will be considered sub-resolution and cannot be viewed. Therefore, 

all pores on the curve above this value can be viewed at this resolution. The porosity of 

the region resolved by the resolution (i.e., the region that can be differentiated from solid 

rock material), is then equivalent to the total area under the NMR curve, from the pore 

radius of the imaging resolution until the end of the distribution. Thus, the maximum 

porosity value that can be seen in microCT images at a given resolution is defined by 

NMR, which helps to choose the ideal threshold value to calculate the porosity of the 

image. Figure 3.6 shows the adjustment of the curves as well as the separation between 

the two regions to be used in the microCT images (red is the visible porosity and blue the 

sub-resolution porosity). 
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Figure 3-6 - Adjustment of NMR and MICP curves for transforming the relaxation times 
T2 into pore radii. The highlighted red part of the NMR curve is for radii above the 
resolution of the microtomography 

3.7 X-Ray Microtomography 

The samples were cleaned again after the NMR step, using the Soxhlet method as 

mentioned in item 3.2, to start the imaging process. For the acquisitions, two tomographs 

were used: Skyscan model 1173 High Energy (Bruker), belonging to the Nuclear 

Instrumentation Laboratory (LIN) of the Nuclear Engineering Department, and 

CoreTOM (Tescan), belonging to the Advanced Oil Recovery Laboratory (LRAP). 

Imaging techniques can be of great value in the porous media research field by 

making it possible to determine the size and shape of the macropores, the topology of the 

pore distribution (mixing region) and throats (segments connecting the pores), as well as 

the network of micropores. A limitation of the use of microCT images to represent the 

pore size distribution is a compromise between sample size and spatial image resolution. 

MicroCT scanners provide a non-destructive 3D imaging technology for 

investigating the internal structure of materials. In the petroleum industry they have been 

used mainly for studying fluid flow and characterizing rocks (BLUNT et al., 2013). 

MicroCT imaging techniques allow investigations of the pore structure at scales ranging 

from micrometers up to a few millimeters. They use the ability of radiation to penetrate 

materials in varying degrees. The equipment uses a fan-shaped beam geometry to acquire 

images, which are transmitted X-ray beams coming out of the source, passing through the 

sample, and being captured by a detector. During acquisition, the sample rotates 360° 
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with steps of 0.5°. At each step, a transmitted image is acquired and saved in 16-bit files 

(TIFF extensions). After acquisition, the images are reconstructed using specific software 

from the manufacturer. Table 3.3 gives the conditions for acquiring images with the 

equipment. 

 
Table 3-3 – Conditions for the acquisition of microCT images 

  

 
Skyscan CoreTOM 

Source voltage (kV) 120 160 

Current (µA) 66 93 

Distance Source - Detector (mm) 364 820 

Distance Object - Source (mm) 102.52 76.53 

Filter (mm) Al 1.0 Cu 1.0 

Exposure time (ms) 1100 490 

Scan duration (hs) 01:08 04:15 

Resolution (µm) 14 14 

Image extension TIFF TIFF 

 

After the acquisition and reconstruction processes, the images were treated using 

the Avizo 9.5 software (Thermo Fisher Scientific), with the same workflow being applied 

to all images regardless of the equipment used for imaging. Initially, the pore edges of 

the images were smoothed for better definition using a non-local means smoothing filter.   

The next step was segmentation of the stack of images.The Edit New Label Field 

tool of Avizo was used to determine the best threshold corresponding to the visible pores 

for the selected resolution (as explained in section 3.6), immediately followed by 

segmentation of the images to obtain the percentage of pores present in the sample. After 

the segmentation process, it is possible to calculate the porosity based on the NMR pore 

size distribution above the microCT resolution. Although it seems to be a simple and 

direct process, this phase is the most delicate since it directly impacts the quality of the 

pore body and pore throat network. Since segmentation is marked by the visible porosity 

in the imaging resolution given by the NMR technique, visual adjustment is hence still 

necessary, and very much dependent upon the user experience of the software. 

With the segmented pores, the Dilation tool of Avizo is used to dilate the pore space, 

which helps to connect the pores. The Erosion tool is used next, with the same number of 

pixels as employed previously, to exclude excess segmentation, leaving only the 

connections between the pores. In this way, the percentage of pores does not change, and 
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the pore clusters become connected. The Connected Components tool is applied after 

dilation/erosion, and the groupings can be determined. After these various steps, the pore 

space is ready to be transformed into cylindrical tubes (equivalent to the pore throats) and 

spheres (the pore bodies), using the Autoskeleton tool of Avizo. In addition to presenting 

the image containing the throats connected to the pore bodies, the Avizo software 

provides a spreadsheet with the skeleton topology comprising the nodes (connections in 

the pore bodies), points (pores with location and radius) and segments (throat pores) of 

the connected clusters.  These are the input data used for modeling of the pore network 

in the porous medium. Figure 3.7 shows the sequence used in the skeletonization process 

of a coquina sample. 

 

Figure 3-7 – a) MicroCT image from sample 88; b) Skeleton obtained after processing 
the stack of microCT images using the Avizo software 

3.8 Pore Network Modeling 

After processing the image stack using the Avizo Fire® software as described in 

section 3.7, the skeletonization output data were prepared in order to model the pore 

system using pore network modeling (PNM).  The Poreflow pore network model of 

RAOOF et al. (2013) was used for this purpose. PNM has the advantage of accelerating 

the simulations of water flow and solute transport in the pore systems of relatively large 

samples, such as for the coquinas in this work. This attribute is often not very viable when 

using direct numerical solutions, especially for general multiphase flow conditions. 



 
 

48 

Although the implementation of PNM techniques is not trivial, they can provide a 

more realistic estimate of different properties of the porous medium. When modeling 

coquinas, which often have multi-porosity characteristics, it is necessary to add a 

description of the connectivity between the macro- and micro-porosity domains, which 

computationally can be challenging. In this research, quasi-static flow modeling was used 

to calculate the absolute permeability. 

In quasi-static single-phase flow, a pressure gradient is established in the pore 

network between the input and output boundaries of the PNM along the z-axis. The 

numerical simulations were carried out assuming connectivity between the top and 

bottom of the sample (the z-axis), being the direction of the experiments with this plug. 

Flow through a pore throat is assumed to laminar as described with the Hagen-Poiseuille 

equation: 

 
𝑄௜௝ =  𝑔௜௝ (𝑝௝ −  𝑝௜) (3.4) 

 
where 𝑄௜௝ is the volumetric flow rate through the pore throat between two adjacent 

connected pore bodies, i and j, pi and pj are the pressures at the two pore bodies, and gij is 

the conductance of the cylindrically shaped pore throat whose value can be obtained 

using: 

 

   𝑔௜௝ =  
గ ோ೔ೕ

ర

଼ ఓ ௟೔ೕ
   (3.5) 

 
where Rij is the radius of the pore throat that connects pore bodies i and j, μ the dynamic 

viscosity of the fluid, and lij the length of the pore throat. For incompressible flow, the 

continuity equation can be applied to the pore throats as follows: 

 
 ∑ 𝑄௜௝

ே೔
௝ୀ௜ = 0;           𝑖 = 1,2,3, … . . , 𝑁௜  (3.6) 

 
where 𝑄௜௝ is the volumetric flow rate within the pore throat going from pore body 𝑖 to 

pore body 𝑗, and 𝑁௜ is the coordination number of pore body 𝑖. A small differential of 

pressure was adopted to guarantee laminar flow (low Reynolds number), an important 

assumption to guarantee laminar flow. 

Application of the above equations to the entire pore network leads a linear system 

of equations with a sparse, symmetric and definite positive coefficient matrix, which can 
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be solved to obtain the pressures in the individual pore bodies. Considering a well-defined 

sample, the average velocity of a fluid in the pore network, 𝜐̅, can be calculated as 

(RAOOF et al., 2013) 

 

 𝜐̅ =  
ொ೟೚೟ ௅

௏೑
       (3.7) 

 
where 𝑄௧௢௧ is the total flow through the network, which can be determined at the entrance 

or the exit of the pore network as the sum of all local flows, L is the length of the pore 

network, and Vf is the total volume of the liquid phase within the network of pores. 

The absolute permeability K of the sample is calculated using Darcy’s equation: 

 

  𝐾 =  
µொ೟೚೟ ௅

஺ ௱௉
      (3.8) 

 
where µ is the viscosity of the fluid, ΔP is the pressure differential between the pore 

network inlet and outlet and A is the cross-sectional area of the pore network. The 

equations above summarizes the calculations necessary to obtain absolute permeability 

estimates. 

PNM characterizes pore bodies (also called nodes) as the largest elements present 

in the pore network, and as such represent the largest voids found in natural porous media. 

The pore throats, which are the narrow openings that connect adjacent pore bodies, are 

essentially capillary tubes estimated from smaller spherical elements embodying the size 

and topology as reported in the work of FOUARD et al. (2006). 

According to RAOOF et al. (2013), PNM has the ability to simulate highly 

disordered geometries, such as a porous medium, with relatively low computational cost 

as compared for example to Lattice Boltzmann simulations (SHOLOKHOVA et al., 

2009).  Pore Network Modeling is a promising tool for predicting the multiphase fluid 

flow and solute transport properties of porous media. When modeling at the pore level, 

the length of the throats is defined by the distance between two connected pore bodies, 

while their radii are calculated as a function of the average radii of the spherical elements 

comprising the path between two pore bodies. To calculate the radii of the pore throats, 

different averaging methods can be used (notably harmonic, geometric or arithmetic 

averaging), as well as the minimum radius method, which considers the average radius to 

be the minimum value found in a pore throat. In this research, the arithmetic mean of the 

pore radii that make up each throat was used. 
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The PoreFlow software (RAOOF et al., 2013) was used in this work to model the 

pore system. It uses multi-directional pore modeling to simulate water flow and solute 

transport in the pore system. The numerical scheme is based on the assumption that 

porous media can be represented by a network of pore bodies and throats with finite 

volume. As described by RAOOF et al. (2013), some computational characteristics of the 

PoreFlow software are: 

 The multidirectional pore modeling approach allows a distribution of 

coordination numbers varying between 1 and 26; 

 The natural angularity of the pores is taken into account, with a wide variety 

of shape factors, such as those for rectangular and circular pores, in addition 

to several irregular triangular cross-sections; 

 The pore bodies and pore throats have volumes, allowing mass balance 

equations, mass flows and solute concentrations to be applied to the pore 

bodies and throats; 

 Various parameters and relationships can be computed, among them: 

capillary pressure curve - saturation (Pc x Sw) curves, relative permeability 

curves, interfacial area, solute dispersivities (saturated and effective 

diffusion coefficients), tortuosities, and percolation properties. 

Resulst of modeling the pore network of the coquinas using the PoreFlow software 

include not only absolute permeability, but other data such as digital porosity of the 

samples and the flow length in the coquina pore network. The program provides 

numerical output results as well as 3D graphical representations, which can be viewed by 

other software. 

The Paraview 5.3.0 software (AYACHIT, 2015) was used to check the pore 

connections in the system, thus visualizing the main clusters of the samples. This software 

is an open code, allowing the visualization and analysis of extremely large data sets. The 

program uses parallel data processing and rendering to allow interactive visualization of 

the data. Input data consists of vtk extension files (visualization toolkits), which provide 

dorsal spirals of the visualization and processing of data files generated after modeling 

using the PoreFlow software. 
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3.9 Thin Section Petrography 

Microscopic characterization was performed using thin sections made at the 

Solintec company in Rio de Janeiro. Standard size slices (4.5 x 2.5 cm) were made from 

cross-sections of the plugs (Fig. 3.8). They were impregnated with blue epoxy resin to fill 

the pores of the rock, thereby highlighting and facilitating the interpretation of the types 

of pores and mineralogy. A Zeiss optical microscope, model Axio Imager 2 under 

polarized light, was used for the analysis, carried out at the Sedimentary Geology 

Laboratory of UFRJ. 

 
Figure 3-8 - Petrographic thin-sections of sample 87.35 (a), and sample 90.95 (b). The 
pore space is highlighted by the blue epoxy resin. 

 

Pore space can be created, modified, or destroyed at many stages during the 

formation of carbonate rocks. The pore system is generally complex from both a 

petrophysical as well as a genetic point of view. If formed during deposition and modified 

due to diagenesis, sometimes the resulting system may resemble a well-selected 

sandstone. This change represents an unusual physical and genetic simplification of 

carbonates since complexity is the rule for these rocks. 

The classification of pores within the thin slices used in this research is facilitated 

by using the nomenclature of CHOQUETTE & PRAY (1970). Their classification 

employs geological concepts concerning the carbonate pore space, while also 

emphasizing the importance of pore genesis. The classification is based on a relationship 

between the various constituents of the rocks: when a dependency exists between the 

pores and the particles (i.e., the grains or debris), the rock fabric is referred to as having 
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a selective weave, and when it is not possible to establish a dependency, the weave is non-

selective. Primary pores formed during deposition of sediments usually have a selective 

weave, while secondary pores formed after deposition, often due to the effect of 

diagenesis, have a more non-selective weave.  Figure 3.9 summarizes the classification 

proposed by CHOQUETTE & PRAY (1970). 

 
Figure 3-9 – Pore classifications by CHOQUETTE & PRAY (1970) as used in this 
research 

3.10 X-Ray Difraction 

The mass percentage of all minerals present in 11 of the samples that were used was 

determined using X-ray diffraction. The analysis was carried out on sub-samples from 

regions adjacent to the plugs. Sample preparation was carried out at the Centro 

Tecnológico Mineral (CETEM) in Rio de Janeiro. The following protocols were followed 

for sample preparation prior to X-ray diffraction: 10 grams of each sample were grounded 

in a Fritsch Pulverisette 6 planetary mill, with a pan and agate spheres of 10, 20 and 30 

mm diameter, at a speed rotation of 300 rpm for 1 minute, or until the entire sample had 

passed through a 106 micrometer sieve. 
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After quartering in a Quantachrome rotary quartz, a representative aliquot of 3 

grams of the sample was pulverized in a McCrone mill containing 15 ml of deionized 

water in a plastic jar, with the mixture being ground with an agate cylinder of 1cm 

diameter for 10 minutes.  This procedutre was applied to avoid loss of crystallinity of the 

minerals by overflow. After this process, the sample was dried in an oven at 60° C for 24 

hours in a Teflon Petri plate. The dried sample was disaggregated using an agate mortar 

and mounted on a backload support for analysis by X-ray diffraction. 

The samples were next analyzed through of a Bruker-D4 Endeavor diffractometer 

using the following operating conditions: a Cu K sealed tube (λ = 0.179021 nm), a 

generator operated at 40 kV and 40 mA, goniometer speed of 0.01° 2θ step with counting 

time of  0.5 sec per step, and collected from 4° to 90° 2θ, with a LynxEye position-

sensitive detector. After carrying out the experiment, the spectra needed to be interpreted. 

This was done by making comparisons of the obtained spectra with standards contained 

in the PDF database (ICDD, 2019) using the Bruker Diffrac EVA 5.0 software. The 

mineral phases were subsequently quantified in terms of fundamental parameters 

(CHEARY & COELHO, 1992) by using the software DIFFRAC.TOPAS version 5.0 

from Bruker-AXS based on the Rietveld refinement method. 

3.11 Principal Component Analysis 

To better understand the influence of the pore size of samples within given rock 

types, a multivariate Principal Component Analysis (PCA) was carried out. PCA is a 

dimensionality-reduction method often used to reduce the dimensionality of large data 

sets by transforming a large set of variables into a smaller number that still contains most 

of the information in the larger set, with minimum loss of information (WOLD, 1996).  

By reducing the size of the data set and eliminating overlaps, existing patterns are more 

easily viewed and identified. PCA is a data exploration analysis useful for identifying 

clusters and for classifying eventual information from the samples. This is especially 

useful when the feature vectors are multi-dimensional, and it is not possible to represent 

the original data in graphical form. 

The first step of a PCA is to standardize the data by making them dimensionless. 

The aim of this step is to standardize the range of the continuous initial variables so that 

each one contributes equally to the analysis. This procedure is widely used when working 

with data sets that vary in scales having very different amplitudes. Standardization prior 
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to PCA is critical since the analysis is quite sensitive regarding the variances of the initial 

variables. If there are large differences in the ranges of the initial variables, then those 

variables with the larger ranges would have dominated those having smaller ranges. 

Mathematically, the standardization was accomplished by subtracting the mean of each 

variable from each measured value and dividing by the standard deviation. With this 

standardization, the new values found for each variable become dimensionless. In this 

work the T2 distributions of the samples were used as variables. 

The software PAST® (Paleontological Statistics) (HAMMER et al., 2001) was 

used to analyze dimensionless data. As a product of PCA, a new set of variables called 

the principal components (PC) is calculated, which are formed by a linear combination 

of the original variables (MCKENZIE et al., 2011). According to GOTELLI & ELLISON 

(2011), the new variables (PC) can be ordered based on the amount of variation that was 

present in the original data. The covariance matrix computational step is then used to 

understand how much the variables of the input data set differ from the mean with respect 

to each other (i.e., to see if there is any relationship between them). In order to identify 

these correlations, the covariance matrix is computed, and the sign of the covariance 

identified: if positive this means that the two variables increase or decrease 

simultaneously (i.e., are correlated); if negative, one increases when the other decreases 

(inversely correlated). 

PC are new variables that are constructed as linear combinations or mixtures of the 

initial variables (GOMES, 2014). The combinations are achieved such that the new 

variables (i.e., the principal components) are uncorrelated, with most of the information 

within the initial variables being compressed into the first components. The idea is to 

convert n-dimensional data into n PCs, with PCA trying to place maximum possible 

information into the first component, then optimizing the remaining information in the 

second component, and so on. At this point, the eigenvectors are computed and ordered 

by their eigenvalues in descending order, leading to a set of principal components in 

decreasing order of significance. 

A PCA allows one to reduce the dimensionality without losing much information, 

notably by discarding the components with low information and considering the 

remaining components as the new variables. The initial PCs have the biggest variation, 

but during interpretation of the data they can be combined with all other components to 

find the best match of the dataset. The analysis may be used to cluster the samples of each 

rock type, leading to a better understanding of certain petrophysical properties.  
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After determining the PCs, it is possible to build graphs that allow one to identify 

outliers and facilitate the interpretation of patterns in the samples, such as similarities, 

differences and groupings. The results of a PCA are usually discussed in terms of 

component scores (the transformed variable values corresponding to a given data point), 

and loadings (the weight by which each original standardized variable should be 

multiplied to get the component score).  To understand the results of a score graph (Fig. 

3.10), it is necessary to compare the graph with a loading graph showing the contribution 

of each variable. 

 

 
Figure 3-10 - Score graph showing the results of a PC1xPC2 analysis. The graph shows 
the clustering of crude oil samples having different viscosities, based on T2 relaxation 
data (from RAMOS et al., 2009) 
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4 RESULTS AND DISCUSSIONS 

This chapter contains results obtained using the techniques described in Chapter 

3 (Materials and Methods) and the research workflow (Chapter 1). Results are discussed, 

including how complementary techniques were used to understand variability within 

similar rock types. First presented are the measurement methods that were applied to all 

samples (routine core analysis and NMR) and how the various rock types were defined.  

Available samples were divided into rock types, while identifying samples that deviated 

in some manner from others of the same rock type. For this purpose, various analyses 

were performed (such as analyses of the mineralogy components, and the use of thin 

sections and X-ray diffraction), to confirm similarities among the samples and to better 

understand the deviations. After characterizing the rock types, other techniques were used 

(MICP, microCT, and pore scale modeling) to better understand the variability in porosity 

and permeability, as well as to study the effects of connectivity on fluid flow within the 

pore system. A complete analysis of the entire data set for each rock type, as described in 

the flowchart of Fig.1.1, showed which information was important for characterizing the 

rock clusters, and for optimizing possible equations to predict the permeability. 

4.1 Petrophysics 

All samples were analyzed using routine core analysis and nuclear magnetic 

resonance (NMR). Table 4.1 shows the main results for grain density, porosity (ϕ) and 

permeability (k). The routine petrophysics data were obtained at the beginning of pore 

system studies. Also displayed in Table 4.1 are porosity values acquired through NMR. 
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Table 4-1 – Results from the routine core analysis and the NMR measurements of the 
samples 

 
Samples 

(m) 
Grain 

Dens. (g/cm³) 
ΦRout 

(%) 
KRout 

(mD) 
ΦNMR 

(%) 

66.35 2.70 19.1 93.1 18.4 

68.65 2.69 18.2 117.6 18 

71.30 2.72 24.7 152.9 24.4 

73.20 2.71 18.2 70.7 17.7 

80 2.71 16.3 24.1 15.4 

80.95 2.71 19.6 504.4 17.5 

82.05 2.71 19.4 179.5 17 

83.05 2.70 18.6 568.4 17.7 

83.65 2.71 17.4 388.2 16 

87.35 2.70 10.2 5.3 9.6 

88 2.71 8.70 5.2 9.0 

90.95 2.71 15.2 428.5 13.7 

93.00 2.71 19.8 232.9 17.9 

94.40 2.70 18.5 103.5 17.9 

98.55 2.71 18.4 649.9 18.0 

99.50 2.70 24.9 84.0 24.6 

100.7 2.71 16.3 227.7 15.9 

102.55 2.71 18.8 174.1 18.1 

105.30 2.71 9.7 2.7 10.2 

113.7 2.70 8.7 0.4 8.9 

122.45 2.72 12.2 5.7 12.1 

126.05 2.71 11.5 13.0 11.2 

128.05 2.70 12.1 22.1 13.6 

132.15 2.71 11.3 10.6 10.5 

133.90 2.72 13.3 17.3 13.0 

136.85 2.71 15.9 244.9 15.1 

140.80 2.71 7.0 1.8 7.6 

141 2.71 11.8 4.3 11.1 
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Samples 
(m) 

Grain 
Dens. (g/cm³) 

ΦRout 
(%) 

KRout 
(mD) 

ΦNMR 
(%) 

143.25 2.70 8.4 1.3 8.9 

146.25 2.71 4.0 0.04 4.4 

148 2.71 6.1 0.2 6.2 

151.15 2.70 10.6 0.98 10.0 

154.20 2.70 16.6 77.2 16.2 

156.50 2.70 14.1 258.5 13.6 

160.10 2.70 13.4 144.9 13.1 

162.50 2.71 17.5 121.9 17.6 

169.45 2.71 7.8 0.2 8.0 

170.65 2.68 20.2 366.7 20.1 

173.50 2.71 10.8 5.2 11.0 

176.85 2.72 9.9 1.5 9.1 

180 2.71 16.8 245.1 16.3 

184.95 2.72 11.1 63.6 11.2 

187.95 2.70 12.2 152.4 12.4 

189.40 2.70 15.1 273.7 15.2 

 
The data in Table 4.1 show that the samples exhibited much variability in terms 

of both porosity (4% - 24%) and permeability (0.04mD - 649mD). The grain density data 

reflect the predominance of calcite in the mineralogical composition of the rocks (in 

general, 2.71g/cm³), with only two samples (68.65 and 170.65) having a slightly lower 

density (2.69 and 2.68 g/cm³, respectively). 

As reported by LIMA et al. (2020), routine core analysis is important because it 

provides information for calibrating other investigative techniques in petrophysics. For 

example, Fig. 4.1 shows a graph that was generated for NMR and routine porosities values 

of the samples used in this research (R2 = 0.9791). The values are not expected to be same 

but should have errors of less than approximately ± 2 p.u. (SOUZA, 2012). The NMR 

experiments hence showed good quality and can be used as a comparative parameter for 

the same type of rock. One advantage of NMR is that this method also gives estimates of 

the pore size distribution curve of the rocks. Once the samples have a saturation index 

above 95%, graphs can be generated of the pore size distribution from the transverse 
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relaxation time distribution curve (T2), which will then show the heterogeneity of the 

samples being studied. 

 

 

Figure 4-1 – Routine core analysis porosity versus NMR porosity 

 

Fig. 4.2 shows variations in the pore size according to their T2 relaxation times. 

For the partitioning of pore sizes, we used to scheme proposed by SILVA et al. (2015). 

The heterogeneity is well evidenced by the variation of pore families within the sample 

database, thus reinforcing the idea of separating the pore sizes into five partitions: up to 

1ms would be considered micropores; between 1 - 10ms is a transition region between 

micro- and mesopores; 10 - 100ms would correspond to mesopores; 100 - 1000ms is a 

new transition zone between meso- and macropores; and, finally, the region above 

1000ms dominated by macropores. However, as highlighted by SILVA et al. (2015), it is 

not surprising that most bins of the T2 spectrum effectively contribute to the permeability 

of the system. This because carbonate rocks samples are composed by pores that can vary 

by up to three orders of magnitude. 
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Figure 4-2 – Plot showing T2 distributions and the pore size partitioning of all samples 
used. The wide range of the curves reflect the considerable heterogeneity of the pores 

 
The samples in this study were separated into groups, called rock types, in order 

to understand how pore size influences the permeability, as well as to estimate 

permeability using the results obtained with the NMR and MICP techniques. The various 

rock types are discussed next. 

4.2 Rock Types (RT) 

A graph of porosity versus permeability was generated using the routine core 

analysis data, in attempts to optimally group the samples into different rock types (Fig. 

4.3). In this graph the samples were separated into rock types within certain permeability 

ranges. Rock type 1 (RT1) was used to group samples having the lowest permeabilities 

of the whole set, between 0.04 to 5.65 mD; followed by RT2 having permeability values 

ranging from 10.57 to 93.04 mD; RT3 with values from 144.88 to 649.91 mD; RT4 

showing values from 103.49 to 366.68 mD; and finally the RT5 showing values of 84.04 

and 152.96 mD. 
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Figure 4-3 – Plot showing the rock types based on porosity and permeability as derived 
from routine core analysis. Rock types are separated by colors: RT1 in green, RT2 in 
blue, RT3 in yellow, RT4 in red and RT5 in pink 

 
One important aspect of the results in Fig. 4.3 is that the progressive increase in 

permeability is not followed by a similar increase in porosity. For example, the RT2 and 

RT3 groupings show that the porosity ranges are quite similar, while the permeabilities 

diverge much more. This is a recurring characteristic of coquina pore systems and 

reinforces the finding that samples, even with similar porosities and sometimes taken 

from similar depths, can have different fluid flow properties. This shows the importance 

to understand the complex pore systems of coquinas. 

As previously mentioned, the first confirmation of similarities between samples 

in the same cluster was based on the T2 distributions showing similar shapes of the curves, 

the distribution of the pore sizes and the average relaxation times. However, samples in 

some cases showed differences when comparing their T2 shape to others within the group, 

thus requiring complementary analyses. Instead of having only three rock types (e.g., low, 

medium and high permeability), subdivisions were created within the highest 

permeability range. For this, not only the permeability but also the NMR distribution 
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curve and the petrophysical and petrographic characteristics of the samples were taken 

into account. This notion is based on conclusions by CORBETT et al. (2016) who found 

that the diagenesis of a rock formation can dramatically change the permeability with 

small variations in porosity. Their research suggests a need for additional studies to better 

understand the formation as such, to analyze 3D images for better interpretation of the 

interconnectivity of the pores, and to create subdivisions of petrophysical rock types. 

Auxiliary methods used in this research to improve the characterization of 

samples are multivariate statistical principal component analysis (PCA), description of 

thin sections (focusing on the mineralogy and morphology of pores and shells) and X-ray 

diffraction (XRD) for mineralogical determination and quantification, to improve the 

characterization of the samples. The groupings with their main characteristics are 

presented below. 

4.2.1 Characteristics of Rock Type 1 (RT1) 

As shown in Fig. 4.3, RT1 groups samples having the lowest permeability of the 

entire set. Table 4.2 shows its main petrophysical characteristics, as well as the most 

relevant geological details of RT1, such as the fragmentation percentages of shells and 

siliciclastic minerals, quantification of the main minerals by X-ray diffraction as well as 

classification of the pores according to CHOQUETTE & PRAY (1970). 
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Table 4-2 – Petrophysical and geological properties of Rock Type 1 
 

 
As can be seen in Table 4.3, the samples that make up RT1 have low porosities, 

between 4 - 12%, permeabilities between 0.04 - 5.65 mD and relatively low average 

relaxation times (T2Logmean), consistent with samples that are predominantly composed of 

small pores. Fig. 4.4 shows the pore size distributions of the samples in this set. 

 

Sample (m) 
ΦRout 

(%) 
KRout 
(mD) 

T2Logmean 

(ms) 

Shells 
fragm. 

(%) 

Silicic 
Min. 
(%) 

Pore 
Classif. 

XRD 
Calcite 

XRD 
Qtz 

87.35 10.2 5.3 50.9 20 40 Interparticle (90%) 83% 14% 

88 8.7 5.2 133.0 40 5 Interparticle (65%) - - 

105.3 9.7 2.7 111.6 70 18 
Intraparticle (35%) 

Moldic (35%) 
95.6% 3,6% 

113.7 8.7 0.4 23.3 70 45 Interparticle (50%) 69% 26% 

122.45 12.2 5.6 75.4 - - Intraparticle (50%) - - 

140.8 7.1 1.8 41.8 5 12 
Vug (40%) 

intercrystaline (35%) 
- - 

141 11.8 4.3 354.0 15 1 Vug (60%) - - 

143.25 8.4 1.3 17.7 8 15 
Intercrystaline (35%) 

interparticle (35%) 
- - 

146.25 4.0 0.04 11.5 - 8 Intraparticle (20%) - - 

148 6.1 0.2 83.1 5 1 Vug (75%) - - 

151.15 10.6 0.98 247.7 3 - Intraparticle (50%) - - 

169.45 7.7 0.2 17.7 95 5 Intrapartícle (25%) - - 

173.50 10.8 5.2 102.5 2 5 
Interparticle (35%) 

Vug (25%) 
- - 

176.85 10.8 1.5 98.7 15 4 Vug (60%) - - 
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Figure 4-4 – Plots of the multimodal T2 distributions for RT1 samples. The curves for 
samples 141 and 151.15 are dashed to show their differences with the other curves 
 

Since the T2 times reflect the pore size distributions (RIOS et al., 2014), with the 

curves normalized in terms of total area, they clearly indicate that the samples have 

bimodal and trimodal distributions, with most of the T2Logmean situated between 11.5ms 

and 133.04ms. The curves highlight the diversity of the pore sizes in this cluster, even 

though they have similar porosities (i.e., no predominance of a certain range of pores). 

However, two samples stand out by showing sharp peaks in the macroporosity region: 

samples 141 and 151.15 have much higher T2Logmean averages as compared to the others 

(i.e., 354.02 and 247.74 ms respectively). 

Since no preferential shape of the T2 curves was apparent among the samples of 

the same rock type, a need exists to find similarities between them from another point of 

view. A promising tool for studying the influence of pore size on the hydraulic 

conductivity of this rock type is multivariate statistical PCA. This method is used here to 

find which pore size range influences the grouping the most, thus confirming its 

similarities. The PCA technique was applied to 44 samples to obtain scores of the bins 

obtained as a result of NMR. Fig. 4.5 shows a graph of scores for these variables for the 

entire sample set, with the samples of rock type RT1 identified in green. 
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Figure 4-5 – Plot showing scores for all samples. Most of the RT1 samples (highlighted 
in green) are concentrated along the negative PC2 axis 

 

The graph containing the PC3 versus PC2 scores shows that most of the samples 

contained in RT1 are clustered around the negative axis of PC2, with only the 173.5 being 

outside that region. To interpret the positioning of the samples, one needs the loadings 

graphs of the principal components. Each principal component describes a linear 

combination of the original variables, with the contribution of each variable being 

displayed in the loadings graph. Initially, the PC2 graph was examined to provide a better 

overview of all available samples (Fig. 4.6). 
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Figure 4-6 – PC2 loading plot showing the contributions in each pore size partitioning 
 

The graph of scores (Fig. 4.5) indicates that the samples of rock type RT1 are 

concentrated in the negative region of PC2. Interpreting this information through the 

loadings graph of this component (Fig. 4.6), the high negatives correspond to relaxation 

times between 10 and 100 ms (the region of mesopores) principally. This affirms that this 

partition has more influence on the grouping, and consequently contributes more to fluid 

flow in the pore system. The result of this analysis is confirmed by SILVA et al. (2015), 

who showed that the micropores of carbonate rocks do not contribute as much to the 

permeability as do the larger pores. One hence may conclude that, even though there is 

no clear correspondence in the T2 curves, the PCA technique was able to find similarities 

between the samples within the cluster. 

Another principal component may be used for sample 173.50, whose position 

differed from the others. In the graph of scores (Fig. 4.5), this sample is located on the 

positive axis of PC3. The interpretation of the PC3 loadings graph was examined (Fig. 

4.7). The PC3 graph shows that the high positives are, mainly, in the micro region (0.1 to 

1ms) and in the meso/macropore hybrid region (approximately 100 – 1000 ms) 

principally. 
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Figure 4-7 – PC3 loading plot showing the contributions of each partitions of pore size 
 

The above example shows that PCA techniques make it possible to verify that for 

the samples of this study, even with their different NMR curves, the mesoporosity pore 

partition mostly influences flow in the RT1 group. This result makes it possible to 

separate the samples into groups according to their relaxation peaks. It allows the 

identification of samples that show peak relaxations within the most influential region of 

RT1, and to separate the other samples that show peak relaxations in the regions of least 

influence. For this reason, the curves are separated into the three groups shown in Fig. 

4.8. 
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Figure 4-8 – Plot showing T2 distributions curves for RT1 samples. From the PCA, the 
NMR plot was separated according to regions of influence for flow in the samples, being: 
a) samples that showed peaks in the region of least influence; b) samples that show 
relaxation peaks in the region of greatest influence; c) samples showing peak relaxation 
in the region of least influence 

 
The contribution of multivariate statistics was critical to understand the influence 

of pore size partitioning on the conductivity of the RT1 samples. Initially, the 

heterogeneity of the samples was observed from the T2 curves, without identifying a 

region where the relaxation peaks were concentrated. With the use of the bins resulting 

from the NMR, the PCA technique was applied, thereby making it possible to create 

separations between the samples according to the importance of their predominant pores. 

Fig. 4.8 highlights three regions: a pink region (a) containing samples 146.25 and 

169.45, with relaxation peaks between 0.1 - 10ms, below the region of greatest influence; 

a yellow region (b) containing samples 87.35, 88, 113.7, 140.8 and 148, that show a 

relaxation peak between 10 - 100ms, with the greatest influence within the cluster; and a 

green region (c) composed of samples 105.3, 122.45, 141, 143.25, 148, 151.15, 173.5 and 

176.85 whose peak relaxation occur above the region of greatest influence (above 

100ms). 

It is important to note that sample 148 has peaks in two partitions due to the 

bimodal distribution with two very similar peaks. This is yet another example of the 

difficulty in diagnosing similarities between the samples. Another finding is the presence 

of two samples with relaxation peaks at the threshold of regions b and c (samples 87.35 
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and 88). These separations made it possible to determine which samples has a more 

homogeneous pore system, with similarities between them explained by analysis of their 

petrographic characteristics. The petrographic interpretation was made using thin sections 

of the rock samples, with as aim to identify some geological factors that could have 

caused the similarities and differences. 

To better assess the rocks and resolve doubts, their geological aspects were 

evaluated to highlight some of the properties that impact porosity and permeability, 

notably shell fragmentation, mineralogy and pore types. After petrographic analysis, 

similarities were found between samples from each region in terms of shell fragmentation 

pattern, pore morphology, and other geological aspects. To illustrate these aspects, Fig. 

4.9 shows thin sections of samples that dominated in each the three regions identified in 

Fig. 4.8. 

 

 

Figure 4-9 – Thin sections of samples from RT1 (niçois parallel), with pore space 
highlighted in blue. Sample 146.25 (shells cemented by calcite); sample 113.70 (arrows 
indicate compaction direction and the dashed lines shells orientation), and sample 105.30 
(arrow indicates whole shells and  the yellow circle showing moldic porosity). The scale 
bar is 5 mm 

 
The thin sections helped to understand the morphology of the pores and shells that 

are characteristic of each region separated by the PCA statistics. The difference in shell 

size of the samples is clear, as well as the composition of the pore system. Sample 146.25 

was used as an example for the characterization of the rocks below the range of greatest 

influence (Fig. 4.8). The sample contained entire shells, from coarse to medium grain 

size, well sorted, and cemented and compacted, all factors that reduce the pore space and 

hence lower the flow capacity. Regarding pore type, the intraparticle pores stood out by 

being the most representative pore type for the samples of this region. 

Sample 113.70 was used as an example of region b (Fig. 4.8), with T2 peaks 

between 10 – 100 ms, being the region that most contributed to the permeability of the 
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cluster. The morphology of the shells and pores was analyzed in terms of their 

petrographic characteristics. A reduction in the size of the shells was noticed, with a clear 

orientation (dotted lines) caused by physical compaction (arrows), a common effect of 

samples from the formation. The fragmented shells had very coarse to granules, whole 

shells with granules to fine pebbles and well sorted. Quartz was present among the 

minerals in the thin section, being fine to coarse sand (mostly medium sand), and 

moderately well sorted. In the pore space, fragments of shells and other constituents could 

be observed, such as siliciclastic material that causes a reduction in the pore volume. As 

for the classification of pores, sample 113.70 had a predominance of interparticle pores, 

which is a characteristic of samples that have relaxation peaks within this region. It is 

evident that compaction identified in the thin sections has direct impact on pore 

connectivity, thus reducing the permeability of the system. 

Thin section 105.30 was used to characterize typical samples in region c, above 

the region of greatest influence. One could notice morphological differences of the shells 

and pores compared to the other samples. The sample contained medium to coarse-

grained fragmented shells, as well as fine to medium pebble-sized whole shells, poorly 

sorted. Regarding its mineralogy, calcite minerals dominated, but quartz grains with fine 

to very coarse sand, high to low sphericity, subangular to angular, poorly sorted were also 

observed. The pores showed a predominance of intraparticle and moldic pores. The 

presence of relaxation peaks in this region may be due to the larger pores identified in the 

thin sections, mainly moldic pores generated by the dissolution of larger particles (shells 

or minerals). Evidently, the low flow capacity of the porous medium was due to the 

presence of more angular fragments, mainly of smaller particles, which directly affected 

the tortuosity of the system. Added to this fact, the narrowing of pore throats is equally 

important in terms of lowering the permeability. These findings explain the curves of 

samples 141 and 151.10 (Fig. 4.8). The dashed lines of the pore size distribution of these 

samples indicate the presence of large pores, classified as moldic, but having relatively 

low permeabilities resulting from narrower connections and flow through more tortuous 

paths. 

Several conclusions are possible from the petrographic characterizations. Despite 

heterogeneity as shown by the NMR curves, similarities identified using the PCA analysis 

can be explained geologically by using various petrophysical aspects. Samples show 

similarity in the morphology of the shells and the pores when they have relaxation peaks 

in the same pore size partition. Region a showed the greatest cementation and pore 
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characteristics (mostly intraparticle pores), and a well-defined shells. The factor that 

contributed most to a lower permeability of the samples is cementation, which 

agglutinates the particles and impacts the conductivity. Region b has a predominance of 

smaller shells with good selection, but with more fragmented material in the pores as well 

as some orientation of the particles due to compaction. The rocks contain quartz grains 

with good selection and pores mostly classified as interparticle. The presence of more 

fragmented material, even with good selection, may be one explanation for the low 

permeability of the samples.  This since the grains can block the pore throats, thus 

reducing the flow capacity. Region c, on the other hand, is characterized by fragmented 

shells having a relatively coarse granulometry, with poor selection. The presence of 

subangular to angular quartz particles highlights the poor selection of these minerals. The 

predominance of moldic pores explains the relaxation peaks in this region in that some 

particles that make up the rocks were completely dissolved, thus leaving empty spaces. 

However, due to the poor selection of shells and quartz grains, the connections between 

the large pores are reduced, thereby causing a lower conductivity. 

All samples were analyzed using thin sections. In addition to morphological 

identification of the constituents of the samples and classification of the pores, the 

mineralogy was also examined. Compositionally, most of the minerals were found to be 

calcites, but siliciclastic material was also present, mainly in samples 87.35, 105.3 and 

113.70. Because of high visual quantification, the samples were submitted to XRD 

experiments to define the complete mineralogy.  The results in Fig. 4.10, obtained using 

the Rietveld method, show the percentages of each mineral that make up the samples. 

Most of the constituent minerals were calcites, making up a total of 83% in sample 87.35, 

95.6% in sample 105.30 and 68% in sample 113.70. Quartz was also present, especially 

in sample 113.70, making up 26% of the total minerals. The feldspar mineral microcline 

was also found, mostly in sample 113.70 (3%). The samples also contained some kaolinite 

clay, presumably due to diagenesis suffered by these rocks. Despite the appearance of the 

siliciclastic minerals in the samples, their petrophysical characteristics remained similar 

to the others in the cluster. 

 



 
 

72 

 

Figure 4-10–XRD results from samples 87.35, 105.3 and 113.70 showing a predominance 
of calcite in the samples 
 

4.2.2 Characteristics of Rock Type 2 (RT2) 

The RT2 cluster, shown in Fig. 4.3, contains samples with slightly higher 

permeabilities as compared to RT1. Table 4.3 shows the main petrophysical 

characteristics of the RT2 samples, such as porosity, permeability and T2Logmean, in 

addition to geological aspects such as the fragmentation percentage of the shells and 

siliciclastic minerals, the main minerals as determined using X-ray diffraction, and their 

pore classification according to CHOQUETTE & PRAY (1970). The data in Table 4.3 

show that the porosity of the RT2 samples varied between 11 and 19%, and the 

permeability between 10.57 and 93.04 mD, while the average relaxation times slightly 

decreased consistent with the increase in permeability.  
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Table 4-3 – Petrophysical and geological properties of Rock Type 2 
 

Sample 
(m) 

ΦRout 

(%) 
KRout 
(mD) 

T2Logmean 

(ms) 

Shells 
fragm. 

(%) 

Silicic. 
Min. 
(%) 

Pore 
Classif. 

XRD 
Calcite 

XRD 
Qtz 

66.35 19.1 93.1 212.1 60 10 Intraparticle (60%) - - 

73.20 18.2 70.8 262.5 60 30 Intraparticle (40%) 93% 5% 

80 16.3 22.9 64.8 80 68 Moldic (50%) 61% 29% 

126.05 11.5 10.3 225.1 15 - 
Interparticle (35%) 

intercrystaline (20%) 
- - 

128.05 12.1 22.1 145.1 2 3 
Interparticle (35%) 

Intercristalina (20%) 
- - 

132.15 11.3 10.6 177.5 15 1 Intercrystaline (40%) - - 

133.90 13.3 14.5 165.9 10 10 
Intraparticle (60%) 

Interparticle (20%) 
- - 

154.20 16.6 62.8 390.1 25 10 Moldic (60%) - - 

184.95 11.1 51.5 285.2 20 - 
Intercrystaline (50%) 

Vug (30%) 
- - 

 
Fig. 4.11 shows the pore size distributions of the samples in the RT2 set. The T2 

distributions, normalized by the total area, indicate that the samples have larger pores 

compared to RT1, with a slight bimodal distribution. The majority of pores have 

relaxation times above 100ms, mostly within the hybrid mesopore and macropores 

regions. Unlike for RT1, the RT2 pore distributions are more grouped together, with 

T2Logmean averages ranging between 64.84ms and 390.12ms, with a predominance of meso 

and macroporosity.  
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Figure 4-11 - Plot showing T2 distribution curves for RT2 samples. The dashed lines show 
different curves for samples 80 and 132.15 

 
Observing the RT2 cluster curves, it appears that most samples have relaxation 

peaks in the same region, close to 1000ms, thus indicating a greater volume of pores with 

sizes between meso- and macropores. Even with their different pore volumes, the 

distributions are quite similar. However, samples 80 and 132.15, highlighted by the dotted 

lines in Fig. 4.11, show some divergence from the other distributions. With their 

relaxation peaks closer to 100ms, the samples have porosities of 16.34% and 11.30%, 

permeabilities of 22.93 mD and 9.08 mD, and T2Logmean averages of 64.84ms and 

177.51ms, respectively. Even with the differences in the T2 curves, the variations in the 

petrophysical parameters are well within the expected range for the RT2 cluster. Still, the 

divergence found for these samples required complementary analyses to justify their 

grouping within this rock type. 

Because of the deviations in the pore-size distributions of samples 80 and 132.90, 

other investigative methods were used to justify their presence in RT2. The first method 

was again PCA multivariate statistics. Contrary to what was possible for RT1, the PCA 

analysis of RT2 did not provide a conclusive explanation for the divergences that were 

found, with little agreement between the samples in the principal components. PCA is 

often unable to decode the responses found in the data being study, thus requiring other 

methods. This was done using thin sections to analyze information provided by 

petrophysics and NMR, and to search for possible similarities among the samples within 

RT2. Fig. 4.12 shows the thin sections that were obtained for the RT2 samples. 
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Figure 4-12 – Thin sections of the RT2 samples (parallel niçois). Some features are 
highlighted in blue: Sample 66.35 – a) micritized matrix with quartz; Sample 73.20 – a) 
intraparticle pore, b) shell fragments and quartz inside the pore space; Sample 80 – a) 
monocrystalline quartz, b) moldic pore; Sample 126.05 – a) whole shells, b) ) shell 
fragments at the pore space; Sample 128.05 – a) intraparticle pore, b) shell compaction, 
pore space filled with fragments; Sample 132.15 – a) cementation; 133.9 – a) shell 
compaction, b) intraparticle pore; Sample 154.20 – a) whole shell, b) pore space filled 
with fragments; pore space filled with fragments above the dashed line; yellow circle 
shows quartz within the pore space; Sample 184.95 – a) angular shell fragment, b) 
elongated pores caused by shell fragmentation, c) whole shell. Scale bar = 5 mm 

 
Similarly as for RT1, the first aspect explored of the RT2 thin sections was the 

morphology of the shells and pores. The morphological differences between the samples 

are very much evident. Several characteristics can be highlighted: 
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 Sample 66.35 had a clearly visible micritized matrix (carbonatic clay) in 

which subangular quartz grains were deposited. Predominance of 

intraparticle pores; 

 Sample 73.20 contained partially dissolved and fragmented shells (60%) 

that were poorly sorted. Presence of siliciclastic subangular material. 

Intense micritization and dissolution. Predominance of intraparticle pores; 

 The thin section from sample 80 exhibited fragmented shells that were 

moderately sorted, making up 80% of the total particles. Presence of 

quartz, fine to very coarse sand, moderately sorted. Micritization is visible, 

characterized by micrite envelopes at the pore boundaries. Pores were 

formed by dissolution while maintaining the shape of the particles. 

Predominance of moldic pores; 

 The thin section of sample 126.05 showed whole shells (85%) in some 

compacted portions. The pore space contained shell fragments and 

medium to very coarse sand-size, poorly selected. Predominance of 

intraparticle pores; 

 Sample 128.05 consisted predominantly of entire shells, as well as coarse 

particles to fine pebbles, moderately sorted, 98% of the particles present. 

Compacted shells could be observed, containing fragmented shells, 

causing a reduction in the pore space. Most pores could be classified as 

interparticles; 

 The thin section from sample 132.15 showed much evidence of 

compaction: the presence of robust whole shells, coarse sand to fine 

pebbles, poorly sorted, making up 85% of the total particles. The pores, in 

their majority, could be classified as intercrystalline, partially filled by 

shell fragments, medium to very coarse sand; 

 The thin section from sample 133.90 consisted of whole shells, granules 

to fine pebbles, moderately sorted (90% of the total) and quartz grains 

(10%). Evidence of compaction with fragmented shells, coarse to very 

coarse sand. Occurrence of porosity by dissolution, leading to a higher 

percentage of interparticle pores; 

 Sample 154.20 contained whole shells, up to 75% of the total, and coarse 

sand to fine pebbles. The pore space was filled by shell fragments and 
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quartz, subangular, moderately sorted, mainly in the lower region of the 

slide (below the dotted line). Diagenetic action resulted in a 

moldic porosity, associated with micritization; 

 Sample 184.95 contained whole shells, up 80% of the total, very coarse to 

fine pebble. Fragmented shells medium to very coarse sand, poorly sorted. 

Intercrystaline pores predominate. 

 
The petrographic analysis of the samples failed to identify other geological 

characteristics that could justify the clustering.  No single cause could be identified for 

the development of the pore space of the RT2 samples. According to the T2 curves (Fig. 

4.11), most of the samples showed that pores concentrated mostly in the region from 

mesopores to macropores, with overlapping peaks, but with diverging pore volumes. The 

main similarity of the RT2 rocks hence is that they have the same permeability range by 

containing pores of similar sizes but reflecting different geological processes. The RT2 

grouping hence is considered to be a transition group separating the region with the lowest 

permeability (RT1) from the region with the highest permeability (RT3), which will be 

discussed hereafter. 

Despite cluster RT2 being a transition region in which the samples do not have 

petrographic similarities, we still evaluated the mineralogical composition of the samples. 

As reported earlier, calcite was identified as the predominant mineral of the rock. 

However, some siliciclastic material could be identified in several samples, especially in 

the thin sections of samples 73.20 and 80. These samples were submitted to XRD 

analyses, again using the Rietveld method, since they visually showed a higher content 

of siliciclastic material. The results for samples 73.20 and 80 in Fig. 4.13 indicated that 

calcite was again by far the most abundant material, totaling 83% and 70%, respectively. 

Quartz was present in both, with sample 80 having a higher percentage (29%). Other 

siliciclastic minerals were identified, such as microcline, a feldspar mineral, which 

occupied 1.6% and 4.5% of samples 73.20 and 80, respectively. Kaolinite clay was also 

identified in sample 80 (2%), resulting from diagenetic processes. 
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Figure 4-13 – Results of XRD from samples 73.20 and 80. Sample 80 showed more 
siliciclastic material 
 

It is important to note that, even though the RT2 samples are in a transition region 

with their own specific petrographic characteristics, the studied specimens are still quite 

similar in terms of their heterogeneity. This fact can be explained by the NMR results 

(Fig. 4.11), which show that even with their multimodal distributions, the highest pore 

volumes are located in the same time range of relaxation, indicating that the pore systems 

of the samples are similar. This interesting characteristic causes these samples to remain 

in their own group. 

4.2.3 Characteristics of Rock Type 3 (RT3) 

Following the logic of the development of the rock types of this study, all rocks 

that showed permeabilities above 100 mD were grouped initially in a single cluster. The 

NMR results, however, showed that they exhibited divergent pore-size distributions and 

hence could not be included in the same group. This motivated us to establish three new 

groupings: RT3, RT4 and RT5. This separation enabled a more complete description of 

the samples by assembling specimens with similar hydraulic characteristics. Thus, RT3 

contains rocks with higher permeabilities, as can be seen in Table 4.4. This table presents 

the main petrophysical and petrographic characteristics of the samples, similarly, as done 

before for the other rock types. 
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Table 4-4 – Petrophysical and geological properties of Rock Type 3 
 

Samples 
ΦRout 

(%) 
K 

(mD) 
T2Logmean 

(ms) 

Shells 
Fragm. 

(%) 

Silicic. 
Min. 
(%) 

Pore 
Class. 

XRD 
Calcite 

XRD 
Qtz 

80.95 19.6 482.3 528.9 70 15 
Moldic (30%) 

Vug (30%) 
90.6% 8.3% 

83.05 18.6 556.4 484.4 90 5 Intraparticle (50%) - - 

83.65 17.4 369.9 434.8 70 15 
Vug (30%) 

Moldic (25%) 
59.3% 33.1% 

90.95 15.2 412.2 274.4 30 15 
Vug (45%) 

Intercrystaline (35%) 
97.9% 2.1% 

98.55 18.4 649.9 398.1 10 - Vug (60%) - - 

100.7 16.3 217.4 458.5 5 - 
Vug 50% 

Intraparticule (30%) 
- - 

136.85 15.9 175.5 405.3 35 12 Vug (50%) - - 

156.5 14.1 179.4 571.3 20 8 Vug (75%) - - 

160.10 13.4 110.1 638.8 15 - Vug (80%) - - 

180.00 16.8 245.1 749.3 40 - Vug (70%) - - 

187.95 12.1 152.4 461.2 5 - 
Vug (35%) 

Intercrystaline (35%) 
- - 

189.40 15.10 191.58 463.13 3 - Vug (60%) - - 

 
As can be seen in Fig. 4.3., RT3 is formed by samples with the highest 

permeabilities, yet intermediate porosities. While porosities ranged from 12% to 19%, 

permeabilities were between 110 and 649 mD. The higher permeability values are 

consistent with the relatively high average relaxation times as shown by the NMR-derived 

pore-size distributions of the RT3 samples in Fig. 4.14. The distributions in this figure 

show a predominance of pores in the macroporosity region, with peaks at slightly more 

than 1000 ms, with very few micropores. The difference with the previous groupings is 

clear: the increase in the permeability and T2 values reflect a predominance of large pores. 

The T2Logmean averages increased to between 110 and 649 ms, consistent with the increase 

in permeability. 
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Figure 4-14 - Plot showing T2 distributions for RT3 samples. Note that most samples had 
very similar distribution. Sample 90.95 is represented by a dashed line to highlight the 
different shape of its T2 distribuition  

 
The T2 curves in Fig. 4.14 indicate that almost all samples in the cluster have 

much of their pores in the same region, close to 1000ms. The overlapping of the NMR 

curves furthermore confirms the considerable similarity of the various RT3 samples, 

except for sample 90.95. The peak of the distribution for this sample was located slightly 

to the right, thereby reflecting a change in pore size with a predominance of pores in the 

meso/macro hybrid region. Its pore volume was lower compared to the others in the group 

as shown by its T2Logmean value of 274.37ms, one of the lowest in the group. However, 

this sample still had a porosity of 15.23% and a permeability of 412.2 mD, one of the 

highest in the group. Because of these peculiarities, other methods were used again to 

justify the similarities among the samples, including sample 90.95, first with multivariate 

statistics. 

In the PCA technique, the spectrum data (bins) of the NMR experiment were used 

to identify the most influential pore partitions in the group, thus demonstrating their 

similarities. In Fig. 4.15, the scores of these variables are presented for the entire set of 

rocks in the study, with the RT3 samples identified by the yellow color. 
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Figure 4-15 – Plot showing scores for all samples. a) Most RT3 samples are concentrated 
at – x axis (PC1); b) 100.70 and 136.85 are concentrated at +y axis (PC2) 

 
To better interpret the results, the loadings graphs of the components were further 

analyzed, with results shown in Figs. 4.16 and 4.17 for components PC1 and PC2, 

respectively. The PC1 graph in Fig. 4.16 shows that the highest negative values 

correspond to relaxation times between 250 - 5000ms, being part of the meso/macro 

hybrid region and the region of predominance of macropores. These partitions hence have 

a greater influence on the cluster, and thus contribute more to flow in the pore system. 

The higher permeabilities of these samples are hence due to an increase in the size of the 

pore throats. Regarding sample 90.95, whose T2 curve diverged from the other samples, 

its distribution belongs to the same group of pore sizes that predominate the RT3 group. 

This shows that even with a difference in the pore-size distribution curve provided by 

NMR, sample 90.95 is still very similar to the others. 
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Figure 4-16 – PC1 loading plot showing the contributions of each pore size partitioning 

 
The PCA analysis showed a different behavior of two samples in the cluster: 

100.70 and 136.95. The NMR distributions of these two samples were quite similar as the 

others, which was not apparent from the PCA results in Fig. 4.15. To better understand 

these differences, Fig. 4.17 shows the PC2 loadings graph (the principal component 

where the samples are located).  
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 Figure 4-17 – PC2 loading plot showing the contributions of each pore size partitioning 

 
One of the great virtues of PCA statistics is its versatility in various applications. 

For RT1, the PC2 component explained similarities between the samples, similarly as for 

RT3 in terms of the pore partitions that influence samples 100.70 and 136.95. These two 

samples were positioned on the positive part of PC2. The loadings graph in Fig. 4.17 

shows that the highest positive values are attributed to two distinct partitions: micropores 

and the region of predominance of macropores. Since the distribution provided by NMR 

encompasses the entire pore space without differentiating between pore bodies and pore 

throats, one may conclude that the samples have large pore bodies (peak of the T2 

distribution), connected by micrometric throats (slight elevation in the T2 curve). 

However, this interpretation does not exclude the possibility of having larger throats, a 

fact compatible with the high permeability value of the samples (217.41 mD and 175.47 

mD for samples 100.70 and 136.95, respectively). To better analyze this possibility, thin 

sections of the samples were studies next. 

Thin sections were evaluated, highlighting some geological characteristics that 

impact porosity and permeability: fragmentation of shells, mineralogical composition and 

types of pores (Fig. 4.18). 
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Figure 4-18 – Thin sections of samples from RT3 (parallel niçois). Some features are 
highlighted: 80.95 – a) Shells and quartz fragmented, b) vug porosity; 83.05 – a) vug 
porosity, b) shells highly fragmented; 83.65 – a) intercrystaline porosity, b) robust shells 
fragmented; 90.95 – a) vug porosity, b) shells dissolved, c) quartz; 98.55 – a) vug 
porosity; 100.7 – a) vug porosity; 136.85 – a) vug porosity, c) whole shells; 156.60 – a) 
whole shells, b) vug porosity; 180 – a) vug porosity; 187.95 – a) whole shells, b) vug 
porosity; 189.40 – a) whole shells. Scale bar – 5 mm 

 
Analyzing the thin section in Fig. 4.18 some aspects can be noted: sample 83.05 

shows the typical impact of fragmentation on the permeability, making up 90% of the 

shells fragmented, leading to a heterogeneous structure involving secondary pores 

classified as intraparticle pores, as well as vugular pores causing a high permeability of 

the system. The remarkable presence of vugular porosity in most of the thin sections also 

helped us to understand the hydraulic behavior of the cluster: the samples demonstrate 

the effects of dissolution, i.e., chemical processes that affect carbonate rocks by 

increasing their hydraulic capacity. This diagenetic process causes the formation of 

secondary pores, causing an increase in both pore bodies and pore throats and reducing 

the tortuosity of the system. This effect can be seen clearly in samples 80.95, 90.95 and 

98.55, which have the highest permeability of the group: 482.3, 412.20, and 649.91 mD, 

respectively.  
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Another important diagenetic effect exhibited by the RT3 thin sections was the 

cementation of particles. Cementations is capable of agglutinating loose particles in the 

porous interior by transferring saturated fluid to the cement phase, a process which 

depends on the chemistry of the water and the available carbonate supply. This process 

can be seen for samples 83.65, 136.85 and 160.10. These samples show that cementation 

occurred as the first diagenetic phase, followed by a second diagenetic phase, dissolution. 

This sequence of events caused a reworking of the shells, thereby contributing to the 

interconnection of the pores and, consequently, to an increase in the permeability. The 

existence of multiple diagenetic phases is evident in these samples, which may explain 

the increase in flow through the pore systems. 

The T2 curve of sample 90.95 in Fig. 4.14 exhibited a different shape, which is 

consistent with its thin section showing more elongated pores and probable wider throats 

caused by dissolution, thereby enhancing the connectivity of the pore system. Even with 

its difference with other RT3 curves, this sample is petrographically similar to the others 

by containing many vugular pores that increased the permeability of this rock.   

As with the previous groups, fragmentation percentages of the shells in the RT3 

samples were quantified. Most thin sections showed clear fragmentation, especially 

sample 83.05 (90% fragmentation), followed by samples 80.95 and 83.65 having 70% 

fragmentation each. The samples consequently have relatively high permeability values: 

556.36, 482.3 mD, and 369.90 mD, respectively 

Another important aspect of rocks is the type of pores that can be classified using 

the thin sections. Many RT3 thin sections show vugs, relatively large pores with often a 

poorly defined geometry, which is common for carbonate rocks and resulted from their 

diagenesis. Several studies demonstrated that connected vugs can significantly increase 

the flow capacity of reservoirs, at times reaching a permeability of 10 D (AHN, 2008), 

which suggests that vugs are a likely cause of the increase of this parameter in the RT3 

rocks. 

The mineralogical composition was further measured using thin sections. Results 

confirmed that most of the minerals present were calcites, but siliciclastic materials were 

also observed, similarly as in the other groups described above. Fig.4.19 shows the 

mineralogical composition and the mineral percentages of samples 80.95, 83.65 and 

90.95 as obtained from the XRD measurements. The three samples showed a 

predominance of calcite, totaling 90% of sample 80.95, 59% of sample 83.65 and 80% of 

sample 90.95. Quartz was also quantified, with sample 83.65 showing the highest 
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percentage (33%). The siliciclastic microcline mineral was found in sample 80.95 (0.1%) 

and, in a much greater quantity, in sample 83.65 (4.6%). Some kaolinite clay was also 

identified, with percentages being around 1%, resulting from the alteration of siliciclastic 

minerals. As noted earlier, these siliciclastic minerals in the samples did not modify the 

petrophysical characteristics of the various samples in this group. 

 

 
Figure 4-19 – XRD results for samples 80.95, 83.65 and 90.95 
 

4.2.4 Characteristics of Rock Type 4 (RT4) 

As mentioned earlier, samples with permeabilities above 100 mD were subdivided 

into three groups (RT4, RT4 and RT5). RT4 contained samples with slightly lower 

permeabilities compared to RT3, as can be seen by the entries in Table 4.5 summarizing 

the RT4 petrophysical information and petrographical characteristics. The data show a 

decrease in permeability as compared to RT3. Porosities ranged from 17.5 % to 20.2 %, 

and permeabilities from 92.88 mD to 243.58 mD, slightly lower than those of the RT3 

grouping.  The average relaxation times (T2Logmean times) were also lower than those of 

RT3, consistent with the reduction in permeability.  
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Table 4-5 – Petrophysical and geological properties of Rock Type 4 

 
Sample ΦRout 

(%)  
K (mD) T2Logmean 

(ms) 
Shells 

Frag. (%)  
Silicic. 
Min. 
(%) 

Pore 
Class. 

XRD 
Calcite 

XRD 
Qtz 

68.65 18.2 113.8 269.2 30 30 Vug (50%) - - 

82.05 19.4 169.2 357.2 70 15 
Moldic (35%) 

Vug (25%) 
- - 

93 19.8 232.9 437.6 20 - 
Vug (30%) 

Moldic (30%) 
- - 

94.4 18.5 103.5 56.1 100 70 Interparticle (60%) 56% 37% 

102.55 18.8 165.8 310.9 90 5 
Intraparticle (45%) 

Interpartícle (40%) 
- - 

162.5 17.5 121.9 311.1 85 5 
Moldic (45%) 

Intraparticle (30%) 
- - 

170.65 20.2 243.6 130.7 98 45 
Interparticle (35%) 

Vug (25%) 
62.6% 31% 

 
Fig. 4.20 shows the NMR measured pore-size distributions of the RT4 samples, 

with the T2 curves normalized by the total area. The curves exhibit strongly unimodal 

properties, with many of the pores having relaxation times above 100 ms in a relatively 

hybrid region of meso/macro pores. As can be seen, the average T2Logmean times varied 

between 56.11 ms and 357.16 ms, slightly slower than those of the RT3 samples. Samples 

94.4 and 170.65, highlighted by yellow and green dashed lines, respectively, showed 

different distributions. Sample 94.4 contained pores that are more distributed throughout 

the plot, but still showing a predominance of meso to macropores, while sample 170.65 

exhibited a well-marked bimodal curve, with relaxation peaks in two different partitions: 

the mesopore region and the hybrid meso/macropore region. Their average T2Logmean times 

were 56.11ms and 130.65ms, respectively.  
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Figure 4-20 - Plot showing T2 distributions curves for RT4 samples. Samples 94.4 and 
170.65 are represented by dashed lines to highlight the different shape of their 
distributions 

 
Samples 94.4 and 170.65 had T2 distributions that diverged from those of the other 

RT4 rocks, thus requiring additional investigations using other methods to justify their 

positioning in the group. The first tool used for this was again a PCA multivariate 

statistical analysis. Fig. 4.21 shows a plot of the PC3 versus PC1 scores of the variables 

for the entire set of 44 samples, with the RT4 samples identified in red. The plot indicates 

the formation of sample clusters in three subgroups: group a, formed by samples 68.65, 

82.05 and 93, located close to the negative axis of PC1; group b, formed by samples 

102.55 and 162.50, located close to the positive axis of PC3; and finally group c, 

composed of samples 94.4 and 170.65, located in the positive quadrant of the two 

principal components.  
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Figure 4-21 – Plot showing scores for all samples. Group a concentrates samples along 
PC1 axis; group b has samples along PC3 axis, while group c consists of samples in 
positive quadrant of the PC3 and PC1 components 

 
To interpret the close positioning of the samples in Fig. 4.21, the loadings graphs 

of the principal components were used again to display the contributions of each variable. 

Because of their close location, the graphs of PC3 and PC1 are presented together in Fig. 

4.22.   
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Figure 4-22  – PC3 and PC1 loading plots showing the contributions of each pore size 
partitioning 
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The scores graph in Fig. 4.21 showed that the samples came together in three 

groups: group a, group b and group c. The loadings graphs of the components in Fig. 

4.22 reveal the relaxation time zones with the greatest influence in accordance with the 

positioning of the samples in the scores graph. Thus, group a containing the highest 

negative values of PC1 represents a region comprised of partitions from meso/macro to 

macro pores (250 to 4000 ms). This interpretation about the T2 curves implies that 

samples 68.65, 82.05 and 93 are strongly influenced by relatively large pore higher 

relaxation times, with their T2 distribution peaks overlapping at about 1000 ms. 

The samples within group b (102.55 and 162.50) have high positive values of 

PC3, influenced by the micropores partitions (0.1ms to 1ms) and meso to macro pores 

(15ms to 4000ms). With the aid of the resulting NMR curves, we identified that these 

samples have their peaks superimposed, being strongly influenced by pores of the hybrid 

meso/macro region. Probably the pore bodies have a larger diameter, but the smaller pores 

identified in the PCA are responsible for the connectivity and fluid flow, which would 

justify the reduction of permeability when compared with the RT3. 

Group c, presenting samples located in the positive quadrant of the principal 

components, exhibit a different behavior, mainly due to the result of PC1. The high 

positives of PC1 include relaxation times from 0.1 ms (micropores) to 220ms 

(meso/macro pores), with the influence distributed over almost all pore sizes within the 

spectrum. Due to its location, sample 94.40 is likely to be more influenced by these pore 

sizes as compared to sample 170.65. The high positives of PC3 are identified by the strong 

influence of micropores partitions (0.1 to 1 ms) and meso- to macropores (20 to 4000 ms), 

strikingly more in the sample 170.65 due to its location next to this component. Analysis 

the information together with the T2 curves shows that the more elongated distribution of 

the sample 94.40, with its larger pores in the meso region, must be connected through 

smaller pores (micropores). The bimodal curve of sample 170.65 is marked by a strong 

influence in the meso- and macropore region, having larger pore bodies (within the 

meso/macro hybrid region) connected through meso-sized throats. 

Compared with the RT3 samples, the characteristics of the pore system of RT4 

samples would theoretically not explain a reduction in permeability, which would be 

necessary to evaluate the petrographic factors that explain the differences in this 

petrophysical parameter. For this analysis, the thin sections were interpreted and are 

shown in Fig. 4.23. 

 



 
 

92 

 
Figure 4-23 – Thin sections of RT4 samples (parallel niçois). Some features are 
highlighted: 68.65 – a) vug porosity, b) whole shells; 82.05 – a) vug porosity, b) 
fragmented shells; 93 – a) whole shells, b) intraparticle pores; 102.55 – a) intraparticle 
pores, b) whole shells; 162.50 – a) yellow dashed line separated whole shells zone, b) 
moldic pores into fragmented zone; 94.40 – a) shells highly fragmented into interparticle 
pores, b) quartz well sorted; 17065 – a) fragmented zone with interparticle pores separated 
by yellow dashed line, b) robust grains and quartz zone with interparticle pores. Scale bar 
is 5 mm 

 
To better understand the rocks in the RT4 cluster, the thin sections were again 

evaluated to identify petrographic characteristics that may impact the porosity and 

permeability, notably the fragmentation of shells, the mineralogical composition and the 

types of pores. The thin sections in Fig. 4.24 were grouped according to the PCA analysis 

(Fig. 4.21) to facilitate the explanations of the results. Below are the main petrographic 

aspects associated with the NMR and PCA results. 
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 Group a - composed by samples showing distribution peaks in the meso/macro 

hybrid region. Regarding the multivariate statistical analysis, the samples are 

influenced mostly by micropores and meso/macropores. According to their thin 

sections, we classified the largest pores as vugs and moldic pores. These pores 

were formed by complete or partial dissolution of particles and mineral grains that 

were part of the initial constitution of the rock, thus benefitting the storage of 

fluids. The thin sections were composed by grains and particles, medium to 

coarse-grained sand, poorly sorted. Associating the information obtained by the 

methods, we realized that samples 68.65, 82.05 and 93 are more similar: the NMR 

results showed overlapping T2 distribution peaks, while the PCA identified that 

these samples clustered close to the negative PC1 axis. This evidence signifies 

that even with large pores, the factor that most impacted the permeability is good 

connectivity through micropores. This connection is strongly influenced by an 

increase in the tortuosity, reflected by a poor selection of shells and mineral grains. 

 

 Group b - composed of samples 102.55 and 162.50 showing T2 curves within the 

mesoporosity region (between 100 and 1000 ms). The PCA analysis indicated that 

these samples are displaced in relation to group a by remaining closer to the 

positive axis of PC3, thus indicating the influence of the micropore and 

meso/macropores. The dense packing of the components is consistent with 

evidence from the thin sections suggesting that the samples suffered from physical 

compaction. The compaction caused shell fragmentation to produce medium to 

coarse-grained, moderately sorted sand. Most of the pores were classified as 

intraparticles and moldics, being the result of dissolution suffered by the samples. 

One can verify the similarities among them when integrating the results, which 

exhibited almost overlapping distribution peaks. Sample 162.50 contained more 

moldic pores, probably causing a larger pore volume region as compared to the 

intraparticle pores that dominated sample 102.55. Compared with RT3, the 

permeability reduction is the result of narrower throats and micropores sizes as 

verified by the PCA, probably reflected by physical compaction as evidenced by 

the thin sections. Even with the dissolution of shells and the formation of meso- 

and macropores, flow remained more difficult due to the narrow throat diameters, 
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causing permeabilities of 165.80 mD and 93.88 mD for samples 102.55 and 

162.50, respectively.  

 

 Group c - composed of samples 94.4 and 170.65 exhibiting the most distinct T2 

curves of the RT4 samples as marked by the dashed lines in Fig. 4.20. The NMR 

results showed that their pores varied between micropores and meso/macro 

(approximately 1 to 3000 ms). The PCA analysis placed these samples in the 

positive quadrant of the two principal components. Sample 94.4 was closest to the 

positive maxima of PC1, indicating an almost uniform influence of pores from 

micro to meso, while sample 170.65 was closest to the positive maxima of PC3, 

thus pointing to strong influence of micropores and meso- to macropores. The thin 

sections further helped to understand the previous results. Sample 94.4 is typical 

of siliciclastic rocks: a large amount of siliciclastic material, very fine to fine sand, 

rounded to subangular, well sorted. The shells are fragmented, very coarse sand 

to granule, well sorted. The pores mostly interparticle. All available information, 

including the NMR and PCA studies, suggest these samples to be siliciclastic with 

a relatively homogeneous pore-size distribution. Compared with RT3, the 

permeability reduction is due to the high fragmentation of the shells caused by 

diagenetic actions that reduced the pore throats. The presence of fragmented 

particles and very small siliciclastic minerals (very fine to fine sand size) directly 

impacted the flow through the pores. Sample 170.65 also exhibited siliciclastic 

rock characteristics, with a large amount of siliciclastic minerals, very coarse sand 

to granular, subangular to angular, and moderately sorted. On the other hand, the 

shells were completely fragmented and medium sand to coarse-grained. Mostly 

interparticle pores and vugs were observed. All information, including the NMR 

and PCA analyses, again points to siliciclastic rocks characteristics, just like the 

previous sample. However, the bimodal distribution observed in the NMR curve 

is directly linked to the two main types of pores that can be seen in the thin 

sections: interparticle pores associated with the peak of relaxation times in the 

mesopore region, and vugs associated with the distribution peak in the meso/ 

macropore region. Compared to RT3, RT4 showed a reduction in the permeability 

probably caused by an increase in tortuosity. Due to high fragmentation of the 

shells and the angularity of the siliciclastic grains, the flow paths became more 

distorted, directly impacting the permeability. Sample 170.65 still showed the 
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highest permeability (243.20 mD) and porosity (20.19%), probably a result of its 

loose packing.  

 
The mineralogical composition as determined from the thin sections confirmed 

that most of the minerals were calcites; however, siliciclastic materials were also 

observed, similarly as in the other groups. Samples 94.4 and 170.65 showed more 

siliciclastic material, exhibiting siliciclastic rock morphology. For this reason, XRD 

experiments was used additionally to define and quantify the entire mineralogy of the 

samples. 

 

 

Figure 4-24 – Results of XRD from samples 94.40 and 170.65 
 
Figure 4.25 shows the results of the XRD experiments, again using the Rietveld 

method. As with most cases before, samples 94.40 and 170.65 indicate a predominance 

of the mineral calcite, 56% in sample 94.4 and 63% in sample 170.65. Quartz was also 

present, 36% in sample 94.4 and 30% in sample 170.65. Another siliciclastic mineral, 

microcline, was also found, 4.8% in sample 94.4 and 4.5% in sample 170.65. Kaolinite 

clay was further present in the two samples (about 2.5%), caused by the alteration of 

siliciclastic minerals. Unlike with the other groups, these siliciclastic minerals changed 

the petrophysical characteristics, mainly in the pore-size distributions. However, the 

permeability remained similar as those of the other samples grouped in this rock type. 
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4.2.5 Characteristics of Rock Type 5 (RT5) 

Rock type 5 represents the last group of samples with a relatively high 

permeability, as noted earlier. This rock type showed slightly lower permeabilities but 

higher priorities that rock types RT3 and RT4 (Fig. 4.3). For these reasons they were 

grouped together to clarify their specific petrophysical behavior in terms of influencing 

fluid flow in the system. Table 4.6 presents petrophysical information and petrographic 

characteristics of the two samples making up the RT5 group. The data in this table show 

that the two samples have the highest porosities of all samples that were studies, about 

24%. The permeabilities of 84.4 mD and 152.96 mD and the T2Logmean times are close to 

or only slightly lower than those of the RT4 range.  

 
Table 4-6 – Petrophysical and geological properties of Rock Type 5 

 

Sample 
ΦRout 

(%) 
K 

(mD) 
T2Logmean 

(ms) 

Shells 
Frag. 
(%) 

Silicic. 
Min. 
(%) 

Pore 
Class. 

71.3 24.7 152.9 210.3 30 30 

Intraparticle 

(40%) 

Vug (30%) 

99.5 24.9 84.1 105.7 100 50 Moldic (70%) 

 
Similarly, as for the other groups, graphs of the NMR results were generated for 

the two RT5 samples. Figure 4.26 provides a plot of the T2 distributions of samples 71.3 

and 99.5. They show a clear predominance of pores in the hybrid meso/macroporosity 

region. The T2Logmean values (105.74 ms and 210.3 ms of samples 71.3 and 99.5) were still 

within the range of variation of the RT4 samples, but mostly lower than the RT3 values, 

which is consistent with the decrease in permeability when compared to RT3. 
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Figure 4-25 - Plot showing T2 distributions curves for the RT5 samples 
 
The NMR curves indicate that the samples have very similar pore-size 

distributions, which almost overlap at around 300ms. The shift in the curve to the left of 

sample curve 99.5 reflects a slight decrease in the pore sizes, as compared to sample 

71.30. Still, the two curves are very similar, implying that the samples as such are very 

similar also. To ascertain this, multivariate statistical analysis was again applied using the 

bins resulting from the NMR. Figure 4.26 shows the graph of scores for the variables for 

the entire set of rock samples, with the RT5 samples identified in pink. 

 

 

Figure 4-26 – Plot showing scores for all samples. The samples from RT5 are 
concentrating at - x axis (PC2) and + y axis (PC3) 
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As with the other rock types, the combination of principal components that best 

characterized the RT5 samples was evaluated. In this grouping, the PC2xPC3 graph was 

able to cluster the two samples together. The loadings graphs of the principal components 

were used to interpret the scores graph. Since the samples were close to each other in the 

upper left quadrant, but away from the two axes, the loadings graphs of the PCs were 

analyzed together to better interpret the statistical results of the two samples.  The results 

are plotted in Fig. 4.27. 

 
Figure 4-27 – Samples 71.30 and 99.50 are clustered in the negative PC2 and positive 
PC3 quadrant: a) at PC2 negative highs relative to micro/meso to meso/macro pore size 
zones; b) at PC3 positive highs relative to micropores and meso to macro pore size zones 
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The graphs of scores in Fig. 4.26 show that the samples are placed together in the 

negative quadrant of PC2 and in the positive quadrant of PC3. The component loadings 

graphs (Fig. 4.27) suggest that the high negatives of PC2 correspond to the mesopore to 

meso/macropore partitions (from 10 to 1000ms) manly. The PC3 principal component, 

on the other hand, indicates that the samples agglomerated in the positive quadrant have 

influence by micropores (0.1ms to 1ms) to meso/macropore (from 100ms to 1000ms) 

region manly. 

Relating these responses to those acquired using NMR indicates that pores in the 

meso/macropore partition most influenced the two samples in terms of contributing to 

flow in the pore system. Since they presented the highest porosities of all samples in this 

study and are not associated with an increase in the permeability, petrographic analysis 

using thin sections becomes essential for understanding this unique characteristic. Figure 

4.28 shows thin sections of the two RT5 samples in attempts to highlight some of the 

geologic characteristics that impact porosity and permeability, notably shell and pore 

morphology, mineralogical composition, and pore classification.  

We noted earlier that sample 71.3 exhibited a T2 curve in the hybrid 

meso/macropore region, with the influence of pores in the meso/macro transition region 

being identified by PCA (those pores were classified as intraparticle and vugular pores). 

The 99.5 sample also exhibited a T2 curve in the hybrid meso/macropores region, and it 

was possible to identify this influence of the meso/macropore region using the PCA 

analysis, while the petrographic analysis classified them as mostly moldic. Both the action 

of dissolution, which caused the formation of most of the pores observed in the thin 

sections, and physical compaction, which caused the fragmentation of particles and 

grains, influenced the reduction in the permeability of the samples. The slight 

displacement of the relaxation peak of sample 99.5 was probably caused by the high rate 

of fragmentation (100%), which generated small particles and very angular grains and 

thus impacted the size of the pores formed. The increase in porosity with a decline in 

permeability can be directly linked to the connection of these larger pores, as verified in 

all of the techniques that were used. Even with an abundance of meso- and macropores, 

some microporosity was present, as reported by the PCA, which may have been 

responsible for the connectivity of the pore system. Hence, notwithstanding having many 

large but mostly isolated pores, their connection occurred through very small pores which 

still reduced the permeability. Another important aspect is the presence of grains and 
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angular particles in the rocks. Angulation of the rocky framework causes an increase in 

the tortuosity of the system, causing a decrease in flow. 

 

 

Figure 4-28 – Thin sections of the RT5 samples (parallel niçois). Some features are 
highlighted: 71.30 – a) intraparticle pore, b) fragmented shells and silicate minerals, c) 
quartz grain; 99.50 – a) compacted orientation (red arrow), b) grains orientation (yellow 
arrow), c) moldic pore. Scale bar – 5 mm 

 
The analysis above indicates that the samples could be grouped successfully into 

their respective rock types, using a range of techniques, even though certain variations 

were observed, sometimes petrophysical, sometimes petrographic. Various aspects, such 

as the connectivity and pore size differences within the clusters, were evaluated better 

using other techniques in attempts to resolve remaining questions and to obtain accurate 

information for obtaining good estimated of the permeability. 

With the rock types characterized, the next step in this research was to correlate the 

NMR generated pore-size distributions with the radii of the pore throats obtained using 

mercury injection capillary pressure (MICP) methods. From this integration, important 

information about the characteristics of the samples could be identified. A more 

comprehensively analysis was further made to study the connectivity of the pore system 

by quantifying the distribution of pore bodies and throat sizes and their impact on the 

relationship between porosity and permeability. The totality of results obtained using 

NMR and MICP is of very helpful for microtomography analyses by improving the 

quantitative description of porous media at the pore level and contributing to the 

simulation of fluid flow in the subsurface. 
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4.3 The Connectivity Of Pore Systems  

This part of the research aims to estimate the permeability by adapting the main 

equations found in the scientific literature to coquinas. To improve these equations, the 

samples initially were separated into rock types to bring together rocks with similar 

petrophysical characteristics, thereby facilitating the quantification of possible flow 

processes in the set. Unfortunately, the high variation in pore geometry and the lack of 

correlation between pore body and pore throats make it difficult to accurately correlate 

porosity and permeability. 

For the characterization of rock types, NMR experimental data offered one way 

of comparing samples in their respective groups. The results consisted of the distributions 

of the connected pore system of the samples, encompassing both the pore bodies and the 

pore throats, the latter being responsible for the connectivity within the porous medium. 

Even when showing certain similarities, several samples exhibited also contradictory 

details, which required complementary analyses to better group the various rock types. 

For example, petrographic analyses showed that samples with pores classified as 

intraparticle and moldic, with considerable sizes and well-marked T2 curves, often did 

not have high permeability values. This finding contradicts the customary assumption that 

porous media made up of larger pores would allow easier fluid flow. One possible reason 

for the lower permeability of these rocks could be the narrowing of the pore throats that 

connect the large pore bodies formed by macropores, as discussed already in section 4.2. 

To study the pore throats of the samples more precisely, this section 4.3 focuses on 

capillary pressure-saturation curves as measured using mercury injection techniques. 

4.3.1 Capillary pressure by mercury injection technique 

Reliable knowledge of pore throats in a natural porous media is especially 

important for carbonate rocks, which often exhibiting heterogeneous multimodal pore 

systems.  To study this problem, capillary pressure by mercury injection (MICP) 

techniques were used to determine the pore throats of the samples in the set. Since MICP 

is a destructive technique, its application to the entire set of samples was unfeasible and 

hence only a limited number of samples could be used to explore this problem. The 

porosity versus permeability plot of Fig. 4.3, which earlier formed a basis for the 

development of rock types, was used to create sample comparison trails that had the same 
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porosity but different permeabilities and vice versa. Figure 4.29 shows a plot of the rock 

types as well as of the trails developed for the comparisons to optimally select the samples 

for the MICP analyses. To have good representativeness of the set, samples from all 

groups were chosen to cover the different relationships that are possible between porosity 

and permeability.  

 

 
Figure 4-29 – Plot showing the rock types based on porosity and permeability from 
routine core analysis. The marked trails were used to select samples to understand the 
different relationships between porosity and permeability 
 

Table 4.7 lists the routine core analysis data separated according to the trails that 

were selected. The data show that trail 1 was created to include the pore system showing 

increased permeabilities at lower porosities (within a group of samples having high 

permeabilities). For this, samples 99.5 (RT5), 94.4 (RT4) and 98.55 (RT3) were used. 

Trail 2 includes a larger number of samples to compare the those showing a decrease in 

the permeability (up to three orders of magnitude) at lower porosities. The samples chosen 

for this were 180 (RT3), 80 (RT2), 122.45, 87.35, 88 and 113.7 (RT1). 

Trail 3 was designed to understand samples clustered in RT3, which had the 

highest permeability values. The chosen samples were 80.95, 98.55, 136.85, 187.95.  And 

finally, trail 4 was created to better understand why samples with the same porosity could 
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have permeabilities varying by three orders of magnitude. For this analysis, samples of 

three different rock types were used, namely 187.95 (RT3), 128.05 (RT2) and 122.45 

(RT1). 

 
Table 4-7 – Details of trails constructed to understand different correlations 

between porosity and permeability 
 

Trails Samples  ΦRout (%) KRout (mD) 

1 

99.5 24.9 84.0 

94..4 18.4 103.5 

98.55 18.4 649.9 

 

2 

180 16.8 245.1 

80 16.3 24.1 

122..45 12.23 5.7 

87.35 10.2 5.3 

88 8.7 5.2 

113.7 8.7 0.4 

3 

80.95 19.6 504.4 

98.55 18.4 649.9 

136.85 15.9 244.9 

187.95 12.1 152.4 

4 

187.95 12.1 152.4 

128.05 12.1 22.1 

122.45 12.2 5.7 
 
By injecting mercury stepwise at incremental pressures into a rock medium, MICP 

techniques may be used to construct curves of the capillary pressure as a function of 

mercury saturation. The amount of mercury intrusion at the different pressures to which 

the samples are submitted detail how difficult it is to access the various pores, initially 

the larger pores but then increasingly the smaller pores of the rock sample. The resulting 

capillary pressure (Pc) – saturation (S) curves can be compared to assess differences in 

the pore systems of the samples.  

Figure 4.30 shows the Pc-S curves of the samples along trail 1. As mentioned 

earlier, trail 1 was used to analyze samples with large changes in the permeability with 

only small porosity variations. According to Table 4.7, sample 98.55 had the highest 

permeability of the group (649.91 mD at a porosity of 18.4%), followed by sample 94.4 

(103.49 mD at 18.48% porosity), and sample 99.5 (84.04 mD at 24.8% porosity). The 
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curves in Fig. 4.31, plotted in the sequence as they appeared along trail 1 in Fig. 4.30, 

show an increase in capillary pressure consistent with the entry of mercury into pores 

having smaller diameters. Sample 98.55 required less pressure than the other samples to 

access the various pores. Following the order of the curves, mercury intrusion into sample 

99.5 required a higher pressure, which may be interpreted as resulting from a reduction 

in the openings of the pore throats of this rock. The third curve, for sample 94.4, shows a 

relatively large difference in the pressure when mercury begins to intrude the medium, 

thus suggestion lots of very small pores (the pore throats). 

 

 
Figure 4-30 – MICP-generatde capillary pressure curves as a function of mercury 
saturation for the samples along trail 1. Notice the differences in pressure when mercury 
intrudes the pores at similar saturations. Sample 98.55 had a higher permeability than the 
other samples. 

 
The characterization of sample 98.55 in section 4.2.3 showed that NMR provided 

a mean T2 value of 398 ms, while the PCA statistic indicated a strong predominance of 

meso/macropores. Analysis of the thin section also showed relatively large pores, 

classified as vugs, due to strong diagenetic actions endured by this rock. The MICP results 

confirm that dissolution favored fluid flow within the sample by increasing the diameters 

of the pore throats. 

The analysis of the RT4 samples in section 4.2.4 indicated that sample 94.4 had 

different characteristics from the others in the grouping in terms of the combined NMR, 

PCA and thin section results. Sample 94.4 was found to be different because of a 

reduction in the granulometry of the grains and particles, leading to a reduction in the 

pore throats, a fact confirmed by the MICP data. It is noteworthy that sandstones, in their 
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majority, present a more simplified petrophysical response regarding reservoir 

productivity. This because well-distributed grains lead to more homogeneous pore 

system, thereby facilitating the percolation of fluids. This concept holds for sample 94.4 

in that the relative uniformity of the pore space of this sample improves hydraulic 

behavior and maintains a high permeability. 

Sample 99.5 exhibited similar MICP behavior as sample 98.55, with only a small 

difference regarding the required pressure and the initial point of intrusion. The analysis 

in section 4.2.5 indicated a predominance of pores in the hybrid region of 

meso/macropores, classified mostly as moldic. The analysis then also indicated near-total 

fragmentation of the shells, leading to small angular particles that increased the tortuosity 

of the pore system. The MICP results revealed initial intrusion at a pressure value of about 

5 psi, with pressure increments compatible with the narrowing of the pore throats, while 

also showing a significant rise in the curve at 80 psi, when about 70% of the pores were 

already filled. 

As shown here for trail 1, one may conclude that rocks made up of small pores, 

which require an increase in the capillary pressure to enable the percolation of fluids, not 

always lead to a low permeability. Mercury intrusion in sample 98.55 started at 3 psi, 

while a slight increase in pressure to about 28 psi already caused about 70% of the pores 

to be accessed, thus confirming the presence of larger pore bodies and pore throats within 

the system. Intrusion in sample 99.5 started at 5psi, and caused a slightly greater slope in 

the curve as compared to sample 99.5 in that about 70% of the pores were already 

accessed with pressures up to 80 psi, thus demonstrating a reduction of the pore throats 

of this sample. Intrusion in sample 94.4 started at 34 psi, much higher than those of the 

other samples, while also requiring much larger pressures (about 500 psi) to saturate 70% 

of the pores. This confirms the presence of much smaller pore throats.  

The analysis above indicates that the differences in permeability are related to the 

widths of pore throats, the tortuosity, and the connectivity of the pore system, but not 

necessarily to the amount or total volume of pores in the system. Regardless of the size 

of the pore bodies in the samples, when there is a reduction in the width of the pore throats, 

the impact on the permeability is inevitable. The decrease in permeability can also be seen 

when the sample contains more angular grains, which cause a more twirling porous 

network that hinders the passage of fluid. However, when the rock system is more 

homogenous by containing pores with similar sizes, fluid flow increases. 
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Contrary to the samples of trail 1, the samples along trail 2 show a rapid decrease 

in permeability with only modest reductions in the porosity. Fig. 4.31 shows the capillary 

pressure curves for the trail 2 samples. The curves show an increase in capillary pressure 

as the smaller pores are being intruded by mercury. The data in Table 4.7 indicated that 

sample 180 had the highest values of porosity and permeability of trail 2. This is reflected 

also by the capillary pressure curve of this sample, which showed the initial intrusion to 

occur at 2 psi, while about 80% of the pores were saturated with pressures up to 85 psi. 

As noted in section 4.2.3, RT3 sample 180 showed a predominance of macropores and a 

relatively high value of T2Logmean, with pores classified as vugs, mostly due to dissolution. 

The MICP results support the finding here that the diagenetic process of dissolution 

caused an increase in the diameter of the pore throats, and hence a relatively high 

permeability. 

 

 
Figure 4-31 – MICP-generated capillary pressure curves as a function of mercury 
saturation for samples from trail 2. Can be noted the difference between intrude pressures 
into the pores. Sample 180 has higher permeability and 113.7 has the lower permeability 
compared to the other samples 

 
The next sample on trail 2 is sample 80 (Fig. 4.29). This sample has a very similar 

porosity (16%) as sample 180, but a much lower permeability (22.93 mD) as shown by 

the petrophysical data in Table 4.7. According to the capillary pressure curve, mercury 

started to intrude the pores of sample 80 at about 4 psi, after which saturation increased 

smoothly with increasing pressures until reaching a saturation of 80% at a pressure of 

about 300 psi. Notice the considerable shift in the curve as compared to sample 180, thus 

confirming a significant reduction in the pore throats of this sample. In section 4.2.2, 
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where the RT2 samples were characterized, the pore system of sample 80 was found to 

have the lowest mean of T2Logmean in the group, with a predominance of moldic pores 

resulting from the dissolution of particles and the fragmentation of 80% of the shells due 

to compaction suffered by this sample. These characteristics caused a major reduction in 

the pore throats. The MICP results confirm this finding that shell fragmentation will lead 

to much smaller particles and micritization of the original rock structure to considerably 

reduce the permeability. 

The next sample on trail 2 is sample 122.45. This sample had a slight lower 

porosity compared with the others, and a permeability of 5.65 mD (an order of magnitude 

lower). Fig. 4.31 shows that the capillary pressure curves in sample 122.45 is positioned 

just above the curve of sample 180. The intrusion of mercury started at 3 psi, while 80% 

of the pores are filled at a pressure of 200 psi, much higher than with sample 180, which 

reflects a reduction in the opening of throats. Sample 122.45 was part of RT1, 

characterized as having a bimodal pore size distribution with the pore relaxation peaks in 

the hybrid micro/meso region and the hybrid meso/macro region. Its relaxation averages 

are lower than those of sample 180, but greater than sample 80. These findings indicate a 

strong influence of pores from the meso/macro region, with a predominance of whole 

shells, granules to fine pebbles, and strongly compacted. Compaction helped to reduce 

the pore sizes, which is confirmed by the MICP results.  Comparing these data with those 

of the other samples, especially sample 80, confirms that physical compaction without 

much fragmentation of the shells, impairs flow through the pore network and reduces the 

permeability.  

The next two samples along trail 2 (87.35 and 88) belong to RT1. Similarly, as 

sample 122.45, these samples have permeabilities of about 5 mD, but differ in their 

porosity: 12.23%, 10.27% and 8.7% for samples 122.45, 87.35 and 88, respectively. 

Samples 87.35 and 88 previously (in section 4.2.1) showed bimodal pore-size 

distributions with a strong influence of mesopores between 10 – 100 ms. The reduction 

in porosity between samples 122.45 and 87.35 may be due to the presence of small 

fragments and large shells, which reduced the pore space. A detailed view of sample 88 

further revealed an abundance (60%) of whole shells having granule to fine pebble sizes. 

A first phase of diagenesis was identified, involving the cementation of shells, while 

physical compaction later created interparticle pores. From the comparison of samples 

87.35 and 88, one may conclude that compaction associated with cementation was 

primarily responsible for the reduction in porosity, while the re-orientation and 
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fragmentation of large shells had lesser effect on the permeability. The pressure-

saturation curves of the two samples closely overlapped at low mercury saturations, with 

an initial pressure of 4 psi, until about 80% of the pores are filled. From there, the curves 

started to separate, with sample 87.35 exhibiting a greater pressure increase as 30% of its 

pores had smaller diameters.  

The last sample analyzed on trail 2 was sample 113.70, which had a porosity of 

8.72%, the same as sample 88, but a much lower permeability, 0.43 mD versus 5.21 mD. 

The difference between the pressure curves in Fig. 4.31 is evident: while intrusion started 

at 3psi, an abrupt increase in pressure occurred, with the sample requiring about 80 psi to 

intrude only 10% of the sample. Sample 113.7 was characterized in section 4.2.1, showing 

a unimodal pore distribution, with whole shells oriented and fine pebbles which made up 

30% of the visual total. Shell fragments were also found, coarse to medium sand, and fine 

siliciclastic grains, medium to fine sand, with physical compaction shaping the shells. 

Most of the pores were classified as interparticle. The most noticeable characteristic of 

the pore system of this sample was the compaction of shells, and the presence of smaller 

fragments of grains and particles, leading to less connectivity and more complex flow 

paths. These effects cause an increase in the tortuosity and narrower pore throats, thereby 

impacting the permeability. 

The next trail considered is trail 3.  This trail, composed of samples having very 

high permeabilities, was used to better understand differences between the samples that 

make up RT3. Figure 4.32 shows the capillary pressure curves of the trail 3 samples, 

while Table 4.7 lists the basic petrophysical properties. The trail initiated with sample 

80.95 sample, which has 19.57% porosity and 504.37 mD permeability. The capillary 

pressure curves of this sample show that pore intrusion started at 3 psi, while 10% of the 

pores were intruded with mercury using a pressure of 10 psi and 80% of the pores at a 

pressure just below 272 psi. The NMR results of sample 80.95 in section 4.2.3 showed a 

pore system consisting mostly of macropores, as confirmed also by the PCA statistics. 

The pores were classified as moldic and vugular, with fragments of shells and mineral 

grains, and containing fine to medium sand between the whole shells. The main 

diagenesis of the sample is dissolution, an effect that benefits the enlargement of the pore 

system and increases the permeability. 
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Figure 4-32  – MICP-generated capillary pressure curves as a function of mercury 
saturation for samples from trail 3. The surves show differences among the intruded 
pressures into the pores. Sample 80.95 has a higher permeability and 187.95 has the lower 
permeability compared to the other samples 

 
Sample 98.55 along trail 3 was examined next. Its petrophysical data indicated a 

reduction of 1% in porosity, and an increase of approximately 25% in the permeability as 

compared to sample 80.95. Sample 98.55 contained a predominance of macropores, 

similarly as sample 80.95. Sample 98.55 consisted for 90% of preserved whole shells, 

granules to fine pebbles without orientation, and a few percentages of fragmented material 

and very coarse sand. As for sample 80.95, dissolution was very strong, being the most 

striking diagenetic process in the thin section, leading to an increase in the percentage of 

vugular pores. This indicates that low fragmentation of the sample constituents, as well 

as the increase in pore size, enhanced the connectivity of the system, and increased its 

permeability. This difference is reflected also by the sample's capillary pressure curve. 

Sample 98.55 required a very pressure for initial intrusion, thus reinforcing the notion 

that its pore throats are larger than those of the other samples. Moreover, 80% of the pores 

were filled with mercury at pressures just below 84 psi, which further explains the 

increase in permeability. 

The next sample on trail 3 was sample 136.85, having a porosity of 15.97% and a 

permeability of 244.97 mD. Both parameters were lower as compared to sample 98.55. 

The capillary pressure curve showed evidence that the sample consisted of pores with 

smaller diameters in that 80% of the pores had been accessed with a pressure of about 

226 psi. The characterization of RT3 sample 136.85 in section 4.2.3 indicated an 
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abundance of macropores, with some contributions of micropores. The petrographic 

properties showed a reduction in the amount of whole shells (65%), and granules to fine 

pebbles with concordant orientation. The remainder (35%) consisted of fragmented 

shells, medium to coarse-grained sand, as well as siliciclastic material, fine to very coarse 

sand, had low selection and angulation. Blocky cementation was identified as fill of the 

moldic pores, as well as poikilotopic calcite cementation, which cemented various grains 

and fragments. The vug pores were formed mostly by shell dissolution and shell 

fragmentation. A comparing of samples 136.85 and 98.55 suggests that the reduction in 

the throat diameters of sample 136.85 was due to more effective cementation, leading to 

smaller pores as compared with sample 98.55, and hence a lower permeability. 

The last sample of trail 3 was sample 187.95, with had a lower porosity (12.14%) 

as well as a lower permeability (152.43 mD) compared to the other trail 3 samples. The 

MICP graph in Fig. 4.3 shows that pore intrusion started at about 3 psi, and that 80% of 

the pores were filled at pressures of 110 psi, less than the previous sample. The 

petrophysical characterization in section 4.2.3 indicated a predominance of macropores, 

while shells in the thin sections remained intact, with also showing granules to fine 

pebbles. The pores, mostly classified as vugular, were a result of dissolution, as with the 

other RT3 samples. The difference involves physical compaction and cementation, which 

are the most impactful diagenetic processes of sample 187.95. These different phenomena 

all contributed together to cause a decrease in the connectivity between pores and 

narrowing of the pore throats. One may conclude that the high permeability of all RT3 

samples is due to dissolution processes, which increased the pore body and pore throats 

radii and facilitated more flow. Still, an increase in cementation and compaction may 

narrow some of the pore throats and lower the connectivity.   

The last trail (trail 4) was created to better understand the behavior of the samples 

of three different rock types in terms of major reductions in the permeability (three orders 

of magnitude), while maintaining the same porosity values. Fig. 4.33 compares the 

capillary pressure curves of the three samples (187.95, 128.05 and 122.45) making up this 

trail. They showed an increase in capillary pressure as smaller pores were being intruded 

by mercury. Sample 187.95 had the highest permeability, 152.43 mD. In section 4.2.3, 

this sample was characterized as having a unimodal pore distribution, with a 

predominance of macropores. The sample is made up of whole shells, granules to fine 

pebbles. The pores were classified as vugular, mostly as a result of dissolution. Some 

evidence of cementation and physical compaction was also present 
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Figure 4-33 – MICP-generated capillary pressure curves as a function of mercury 
saturation for samples from trail 4. The surves show differences among the intruded 
pressures into the pores. Sample 187.95 has a higher permeability and the 122.45 has a 
the lower permeability, compared to the other samples 

 
Sample 128.05 had the same porosity value as sample 187.95, but one order of 

magnitude lower permeability. Sample 128.05 showed a slightly bimodal pore-size 

distribution, indicating a predominance of pores in the meso/macro hybrid region, but 

with far fewer macropores than sample 187.95. Sample 128.05 consisted of whole shells, 

granules to fine pebbles, and very micritized medium-sand sized shell fragments. The 

shells were compacted, leading to a narrowing of the pore throats, increased tortuosity 

within the pore system and less connectivity between the pores, and consequently a lower 

permeability. 

The last sample analyzed was 122.45, which had the same porosity (about 12%) 

as samples 128.05 and 187.95, but with a marked decrease in permeability. The T2 curve 

was bimodal with relaxation peaks in the hybrid micro/meso and hybrid meso/macro 

regions. The PCA indicated a strong influence of pores in the meso/macro region. Sample 

122.45 contained a predominance of whole shells, granules to fine pebbles, strongly 

compacted. The reduction in permeability was again caused by compaction by reducing 

the pore connections, narrowing of the pore throats and increasing the tortuosity of the 

pore system. 

The capillary pressure curves showed no significant differences in the pressures 

needed for mercury intrusion. Up to 70% of the pores of the samples could be filled with 

mercury at a pressure of about 50 psi to 187.95 and 128.05 samples, and 70 psi to 122.45 
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sample. From that point on, there was a gradual increase in pressures needed to fill the 

smaller pore throats, with sample 122.45 showing slightly narrower openings, followed 

by samples 187.95 and 128.05. The impact of tortuosity and smaller pore throat diameters 

was well evidenced for sample 122.45, which had the lowest permeability value of trail 

4. Poor pore connectivity appeared to be the main reason for sample 128.05 to have a 

lower permeability than sample 187.95. 

After the analysis using the four trails, the next step was to study the connectivity 

of the pore system of the various samples by means of microtomographic images. For 

this, the pore-size distributions obtained using NMR were integrated with the results of 

pore throats provided by MICP, to facilitate the segmentation of micro-CT images. The 

integration and the results obtained are discussed in the next section. 

4.3.2 Integration of NMR and MICP 

A methodology widely used for determining the surface relaxivity (ρ2) is through 

adjustment of the pore-size distribution obtained using NMR, and pore throats determined 

using MICP. The relaxivity is a property of the relaxation mechanisms involving both the 

saturating fluid and the porous surface. According to KLEINBERG et al., (1994), ρ2 is a 

function of the density of the paramagnetic centers present on the surface of the pores and 

the residence time of fluid molecules that are subject to action by the magnetic centers. 

 As stated in chapter 3, ρ2 may be used to convert relaxation times into pore radii. 

Some relation is essential for transforming the T2 dimensions into pore sizes using the 

assumption that pores have a cylindrical geometry (SOUZA, 2012). Knowing that rocks 

respond differently to ρ2 (e.g., carbonate rocks have lower values than sandstones), this 

constant is essential for a more accurate analysis of the pore network when using 

microtomographic images. For the integration of NMR and MICP, six samples were used, 

namely 87.35, 88, 122.45, 136.85, 180 and 187.95. 

The NMR and MICP distributions of the six samples are shown in Fig. 4.34. The 

parameter ρ2 in Eq. (3.3) was adjusted until the peaks of the NMR and MICP distributions 

were very close. Samples 87.35, 88, 122.45, 180 and 187.95 generated reasonable 

adjustments for the overlapping of NMR and MICP curves by showing visual similarities 

between their distributions. The MICP curves suggest that the pore throats, derived using 

the WASHBURN equation (Eq. 3.2), describe the pore-size distributions that are 
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responsible for the connectivity, and hence are the main flow channels of the pore system 

(BASAN et al., 1997). 

 

 

Figure 4-34 – MICP and optimized NMR curves of six carbonate rock samples 
  
Sample 136.85 showed important differences between the two curves. The NMR 

curve exhibited a triple porosity system, with the larger pores dominating. A somewhat 

similar shape was obtained with MICP, but with far more smaller pores in the micro/meso 

hybrid region. Knowing that MICP is more sensitive to throats, and NMR to the entire 

porous space, this result reflects the limitations of mercury techniques in determining the 

actual diameters of large pores, when preceded by small pores. During mercury intrusion, 

pressure increments are required to access the smaller pores. During injection at a given 

pressure, mercury can enter connected larger pores only after entering the smaller pores 

that blocked the larger pores. When the acquisition data are processed, the pore volume 

intruded by mercury is actually measured at a given pressure.  The assumption is then 

made that all pores making up that volume have the same size. In this way, the larger 
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pores end up being transformed into countless smaller pores with the same diameter, thus 

increasing their percentage. This effect may explain the significant increase in pores in 

the micro/meso region shown by the MICP curve. This complexity shown by sample 

136.85 is a common feature of carbonate rocks. 

Sample 122.45 is also interesting in that the NMR curve shows a higher 

percentage of pores in the micropore and mesopore regions as compared to the throats of 

the MICP curve. Pores of this sample hence must be connected by wider throats compared 

to samples 87.35 and 88, but still have the same permeability. This comparison suggests 

that the reduction in connectivity contributed to the reduced porosity. Samples 122.45 

and 87.35 have the same permeability values (about 5 mD), with most pore throats in the 

mesoporous region.  

As for samples 180 and 187.95, they have similar curves. The MICP and NMR 

curves show that most pores are concentrated in the hybrid meso/macro region, which 

explains their relatively permeability values. Figure 4.34 also contains information on 

surface relaxivity, ranging from 6 to 16 µm/s, typical values of carbonate rocks. 

From the ρ2 values, microCT images were generated to study the pore space 

connectivity. With the 3D images, the internal structures of the samples could be 

visualized, such as the orientation of shells, the mineral arrangement, as well as the 

distribution of pores at the specific resolution being used. The main results obtained by 

using this technique are analyzed next. 

4.3.3 Pore network modeling 

This section presents results obtained using X-ray microtomography and pore 

network modeling of samples 87.35, 88, 122.45, 136.85, 180 and 187.95 discussed in the 

previous section (Fig. 4.34). Processing and interpretation of data from the reconstructed 

images was performed using the software Avizo® 9.5.  

Porosities were determined from the entire sample volume. As a tool to aid visual 

segmentation, the NMR comparative method was used (HOERLLE et al., 2018), based 

on the idea that the pore space of an image can be identified from the NMR-measured 

data. This method allows pores to be identified at the specific resolution that was used. 

Segmentation of the images was based on the separation of the mineral framework from 

the pore system and transforming from grayscale into binary image.  Initially, pores were 
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selected visually by characterizing tones closest to 0 in the gray-tone histogram as pores. 

Figure 4.35 shows the microCT scan of sample 88.  

 

 

Figure 4-35 – MicroCT slice of sample 88 with a pixel size of 14 µm (pore radius 7 µm): 
a) Gray scale image, with pores in black and gray being the rocky framework; b) Gray 
scale images with segmented pores (blue) 

 
This separation of the two populations in the medium in terms of black and gray 

make it is possible to distinguish pores of solid materials present in a given sample. This 

separation is a method based on the choice of threshold obtained from the grayscale 

distribution histogram from the obtained images. 

The final determination of the threshold between the rock framework and the 

pores is then obtained by summing the incremental porosities provided by NMR, based 

on the percentage relative to the radius of the smallest pore visible at the invoked 

resolution (e.g. 7 µm). This methodology allows porosity values to be estimated from the 

images based on the calibration of porosities from the pore radii obtained through 

integration of the RMN and MICP data. Fig. 4.36 shows a plot of the pore-size 

distribution of sample 136.85, with the blue area under the curve representing the 

unresolved porosity from the microCT image. 
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Figure 4-36 – a) Plot showing the pore size distribution of sample 136.85.The blue area 
under the curve shows unresolved porosity from the microCT images 

 
After segmentation of the pores, data must be prepared for pore network modeling 

step. Still using the Avizo® 9.5 software, the connected components tool was used to 

select the cluster of pores connected within a sample. This would create an image with 

only the clusters, while removing all isolated pores. The autoskeleton tool was used next 

to transform the pore throats in this new image into cylindrical tubes (by forming in effect 

a sequence of connected spheres) and the pore bodies into equivalent spheres, a process 

known as skeletonization (PUDNEY, 1998).  Fig. 4.37 summarizes this data extraction 

process for modeling at the pore scale. 
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Figure 4-37 – MicroCT images of sample 88 showing the data extraction process for 
modeling at the pore level: a) cylinder with pores in darker gray tones; b) cylinder with 
segmented pores (blue); c) cylinder with connected pores of the sample, with different 
colors demonstrating different connected systems; d) skeletonized connected pores that 
transform the pore throats into cylindrical tubes and the pore bodies into spheres using 
the autoskeleton tool 

   
The skeletonization process leads to a series of nodal points and nodes composing 

the segments. These data subsequently are analyzed and transformed into input data for 

the porosity and permeability calculations using the PoreFlow software (RAOOF et al., 

2013). The results obtained through the PoreFlow software showed good correlations 

when compared with routine core analysis, as shown by the data in Table 4.8. The 

porosities obtained with PoreFlow were always lower than those obtained by routine 

petrophysics, but the calculated permeabilities and measurements were very similar for 



 
 

118 

most samples. One may therefore conclude that the resolution used for imaging the 

samples was effective in that the pore system responsible for flow within the samples 

could be identified. 

 
Table 4-8 – Comparison of routine core analysis and Poreflow modeling results 

 
Samples 

Core depth (m) 
routine 

(%) 
PoreFlow 

(%) 
Kroutine 

(mD) 
KPoreFlow 

(mD) 

87.35 10.2 8.1 4.6 4.6 

88 8.7 6.1 5.2 4.4 

122.45 12.3 4.2 5.7 3.7 

136.85 16.7 13.2 245 249.2 

180 16.7 10.8 245.1 236.7 

187.95 12.2 6.8 152.4 138.9 

 

Figure 4.38 shows the correlation between the routine permeability measurements 

and those obtained through simulation. Good agreement was achieved between the 

permeability predictions obtained with the PoreFlow software and the routine 

petrophysical measurements. Table 4.8 shows that samples 122.45 and 187.95 had the 

same porosity (12%), but different permeability values (5.65 mD and 152.40 mD, 

respectively). One major advantage of using microCT images is the possibility to further 

investigate the internal structure of a sample. Modeling with PoreFlow then enables one 

to estimate in a non-destructive way the connected pore system by identifying the pore 

bodies and pore throats that contribute to storage and fluid flow within the system. Thus, 

the study of connectivity becomes very effective when performed through 

microtomography and pore network modeling. 
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Figure 4-38 – Plot showing good correlation between the routine permeability of six 
samples, and permeability obtained using pore network modeling 

 
Because of the close agreement between the routine petrophysical measurements 

and the pore network modeling results as shown in Fig. 4.38, a more detailed analysis of 

the PoreFlow output data of samples 122.45 and 187.95 was carried out. Main objective 

was to better understand how the connectivity of the pore systems would lead to the 

differences in permeability. Using the Paraview software (AYACHIT, 2015), the pore 

system of the samples was visualized to identifying the pore bodies and throats that are 

most connective with the pore system. This would quantify the connected pore groups, in 

addition to allowing visualization of the main cluster connecting the base and the top of 

the samples.  The resulting percolation route would be most responsible for flow in the 

system.  

Figure 4.39 shows the images of sample 122.45 and 187.95 as obtained using 

Paraview. The images show the pore arrangement, the connected pore groupings, and the 

main group responsible for the permeability in the samples. Figure 4.39a shows the pores 

of sample 122.45, with the smaller pores in blue and the larger pores in red. In Fig 4.39b, 

the clusters of connected pores are visualized, showing different colors for each connected 

group, with a total of 1748 recognized pore groups being quantified. Fig. 4.39c further 

shows the main pore grouping responsible for flow. Since pore network modeling 

produced a very similar value of the permeability as the routine petrophysical 

experiments, one may conclude that the cluster shown in Fig. 4.39c is mostly responsible 

for the conductivity of fluids within the pore system. Fig. 4.39d shows the pores of sample 

of 187.95, with the size of the cylindrical pores again differentiated by color. In Fig. 4.39e, 

all pore clusters in the sample are visualized; a total of 724 distinct groups were 
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recognized (i.e., those that were separate from each other), forming the most connected 

pore network in the sample. Figure 4.39f shows the main pore cluster of sample 187.95 

responsible for fluid flow within the system. 

 

 
Figure 4-39 – Pore system distribution of two rock samples: a) all pores connected in 
sample 122.45: red spheres (e.g., the bottom) correspond to the biggest pores in the 
sample; b) all pore clusters of sample 122.45, with each cluster corresponding to a 
different color (the scale bar identifies the clusters); c) the main pore cluster responsible 
for flow through the sample and its permeability; d) all pores connected in sample 187.95; 
e) all pore clusters of same sample 187.95; and f) the main pore cluster. This figure 
explains why sample 187.95 with a similar porosity as sample 122.45 has a much higher 
permeability. Scal bar in mm 

 
The compositional differences of connected pores in the pore groups responsible 

for most of the percolation (Figs. 4.39c and 4.39f) reflect the distinct volumes of 

connected pores of the two samples, and explain the differences in permeability: sample 

122.45 contained a main cluster with fewer connected pores and, consequently, a lower 

permeability, while sample 187.95 had a much larger volume of connected pores 

belonging to the main cluster, thus leading to a higher permeability. The large amount of 

non-percolating agglomerates in sample 122.45 (Fig. 4.39b) is responsible for the 

difference between the NMR and MICP curves of samples 122.45 and 187.95, as shown 

in Fig. 4.35. While NMR captures the entire pore system, MICP measurements are mostly 
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affected by the presence of clusters of complex non-percolating pores; this since MICP is 

based on the flow of mercury into the sample. Similar correlations for other images were 

found to be useful in explaining why certain samples with similar total porosity gave 

different permeability values. As explained well by LUCIA (1999), diagenesis normally 

reduces porosity, redistributes pore space, and changes permeability and the capillary 

characteristics. The changes caused by this effect may have affected most or all of the 

permeability changes by increasing the complexity of the pores of the samples. 

To obtain a more complete understanding of connectivity and its impact on 

permeability, some statistical analyses were carried out with the data obtained from the 

images of the two samples. Initially, the coordination numbers were analyzed. These 

numbers, also called pore connectivity, represent the average number of pore bodies that 

are connected to adjacent pores (SAHIMI et al., 2012). They are a fundamental 

characteristic of pore networks and have a real impact on the hydraulic conductance 

calculations of porous rocks (CHEN et al., 2003; VASILYEV et al., 2012). 

Frequency histograms were created to compare the distribution of the 

coordination numbers of samples 122.45 and 187.95.  The results in Fig. 4.40 show that 

sample 187.95 has far more connections (counts) between the pore bodies, especially 

those with coordination number 3. This implies that RT3 sample 187.95 has much better 

pore interconnections, and hence a higher permeability, than RT1 sample 122.45, even if 

they were to have similar throat radii. 

 

 

Figure 4-40 – Comparison of the distribution of coordination numbers for samples 
122.45 and 187.95 
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An alternative way to explain the differences in permeability between samples is 

an analysis of their pore bodies and throats. Using the information extracted from the 

skeletonized images, one can quantify the volume and size of the pore bodies and pore 

throats.  These two parameters in their entirety, should reflect the complexity of the pore 

system of a sample. Such an analysis was applied to samples 122.45 and 187.95.  

Figure 4.41 presents the distribution of pore bodies (Fig. 4.41a) and pore throats 

(Fig. 4.41c) of samples 122.45 and 187.95. The plots show that sample 187.95 (gray lines) 

has higher volumes of both pore bodies and pore throats, which is consistent with its 

higher permeability as compared with sample 122.45 (red lines). The pore sizes obtained 

from the skeletonized images are larger than those estimated from the NMR and MICP 

data. Comparing these techniques assumes equivalence of the pore bodies and pore 

throats sizes, which may not be appropriate for carbonate rocks, which can be very 

heterogeneous. Still, using this conversion, the permeabilities estimated from the images 

agreed well with the direct measurements, thus confirming the applicability of the 

proposed workflow in section 1.3. Figs. 4.41b and 4.41d show the differences in the 

accumulated porosity of both the pore bodies and pore throats of samples 122.45 and 

187.95. Sample 187.95 displayed a considerable difference in the accumulated volumes 

when compared to the elements of sample 122.45, a finding that helps to understand the 

difference in permeability between them.  

 

 
Figure 4-41 – Plots comparing the pore structure of samples 122.45 and 187.95 in terms 
of a) actual pore body volumes; b) cumulative pore body volumes, c) actual pore throat 
volumes, and d) cumulative pore throat volumes. 
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Fig. 4.41b also shows that the microCT estimates of the pore throats are higher 

than those determined using MICP. As mentioned earlier, the MICP results are based on 

the Washburn equation, which approximates the porous medium as a bundle of 

cylindrical tubes. When analyzing carbonate rocks (especially coquinas), the 

heterogeneity of the pore systems in terms of different pore formats must be taken into 

account. These differences are exemplified in Fig. 4.42 using the microCT slices of 

samples 122.45 and 187.97. The figure illustrates the differences between the pore 

systems of these two samples. Although the images are in two dimensions (microCT XY 

slices), it is possible to recognize that the moldic pores (e.g., arrow a) and interparticle 

pores (arrow b) of sample 122.45 differ greatly from the vug pores (arrow c) of sample 

187.95. However, due to the resolution used, it was not possible to detect other differences 

in and between the samples, which would require a better resolution for this study.  

 

 
Figure 4-42 - 2D microCT slices highlighting different pore types for samples 122.45 
(left) with moldic (arrow a) and interparticle (arrow b) pores, and sample 187.95 (right) 
with many intraparticle vugular pores (arrow c) 
 

Some aspects are known to impact studies using NMR. One concerns 

uncertainties in the measurements of the surface relaxivity (ρ2). Since ρ2 does not have an 

exact form to be calculated, being mostly approximated by means of different equations, 

this parameter may cause errors when converting relaxation times into pore radii. Another 

factor that also influences NMR results is the bulk effect of the larger pores. Above 2.5 s 

(the relaxation time of a sample saturated with fluid), the spins do not completely collide 

with the pore walls within the sample, which can make the measured relaxation time less 

reliable (KENYON, 1997). This in turn causes uncertainty in the size of pores, especially 

of the larger pores. 
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4.4 Permeability estimation based on NMR results 

As the main focus of this research, the permeability (k) is an essential parameter in 

petrophysical studies. Accurate estimates of this parameter will improve the design of 

hydrocarbon production strategies with a view to more efficiently manage reservoirs. One 

specific objective of this study is the application of classical permeability models to 

coquinas, a carbonate rock that is present in the Brazilian pre-salt reservoirs. With their 

complex characteristics, studies of the permeability of coquinas should give insight also 

about the use of classical permeability models to improve the accuracy of estimates made 

from well logging data. 

This section presents permeability estimates obtained with the main models 

frequented in the oil industry. After obtaining the necessary parameters for the models 

described in section 2.3.1, the permeability of the samples was estimated. This section 

provides an analysis of the measured permeability data in terms of two models, the 

Kenyon model (kSdr) and the Timur Coates model (kTim), both using available NMR 

results. 

4.4.1 Kenyon Model (kSdr) 

As mentioned earlier, one of the great virtues of NMR techniques is the possibility 

of estimating the permeability from well logging data. Accurate permeability data are 

critical to defining the potential production of an oil and gas reservoir. As discussed in 

section 2.3.1, one of the most popular models for the permeability is the classical Kenyon 

model, often referred to as kSdr after the Schlumberger-Doll Research center where the 

model was developed. As shown by Eq. (2.7) in section 2.3.1, and restated here, the 

Kenyon model is based on the logarithmic mean (T2Logmean) of T2 distribution data, as well 

as on the porosity:  

 
𝒌𝒔𝒅𝒓 = 𝒄  𝝓𝒂 𝑻ଶ𝑳𝒐𝒈𝒎𝒆𝒂𝒏

𝒃                                          (4.1) 
 

in which, a, b and c are empirical constants. The equation has been widely used in both 

research and for various field applications. KENYON et al. (1988) obtained values of 4, 

2 and 4.5 for a, b and c, respectively. The constant c is strongly influenced by the lithology 

of the rock formation. 
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Equation (4.1) with the above constants obtained by KENYON et al. (1988), was 

first tested against the routine core permeability measurements obtained in this study. Fig. 

4.43 shows the correlation between the predicted (kSdr) values and the routine core data 

(kroutine). Using the classic constants in the Kenyon equation underestimated the true 

values since the majority of the predicted points are located below the 1:1 line (X = Y). 

 

 
Figure 4-43 – Plot comparing permeabilities from routine core measurements with those 
predicted with the Kenyon equation using literature values for the parameters in Eq. (4.1). 
The measures data are shown by rock type. 

 
To improve the permeability estimates, Eq. (4.1) was used again, but now with 

optimized constants a, b and c, obtained using multiple linear regression (MLR). The 

main objective of MLR is to the estimate unknown parameters of a given model from 

measured data (COELHO-BARROS et al., 2008). Application of this technique to the 

available routine permeability data produced the following optimized values for the 

parameters in the Kenyon equation: a = 4.88, b = 0.727, and c = 9.51. The optimized 

value of the constant c (9.51) was found to be considerable larger than the classic 

literature value (4.5). Carbonate rocks generally have lower surface relaxivity values than 

sandstone rocks (KENYON, 1997), which should be taken into account.  This likely 

caused an difference in the c value for the coquina samples of this study. The classic 
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constant hence required some adjustment when the Kenyon equation is applied to 

coquinas.  

The constant a for the coquina samples was not much different, showing that the 

dependence of k on porosity is quite stable. However, the constant b for our samples 

(0.727) showed a reduction in value compared to the classic model (2.0). This can be 

explained by the heterogenous nature of the pore system of many coquinas, which causes 

the average relaxation times of rocks not to be very representative. Because coquinas 

often contain large pores (e.g. vugs and moldics), as well as sometimes narrower throats, 

the pore body to pore throat ratio can be unusually large, thus requiring a reassessment of 

the impact of the average relaxation time on the permeability. Linear regression caused 

the exponent b to decrease from its classical value of 2.0 to a value of 0.727 for the 

coquinas, which implies a slightly lower effect of the average relaxation time on the 

permeability. 

 Recalculating the permeability with Eq. (4.1) using the optimized parameters 

improved the comparison between the predicted and measured permeabilities, as shown 

by the results in Fig. 4.44. Permeability predictions improved for almost all samples. 

However, some samples did not show satisfactory agreement. The predicted values for 

some samples overestimated the measured values (such as for RT1 samples 141 and 

151.15 and RT5 samples 71.3 and 99.5), while in other cases they underestimated the 

measurements (such as for RT3 sample 90.95).  As demonstrated earlier in section 4.2 

when characterizing the various rock types, those five samples differed from the other 

samples in their groupings, which implies that not necessarily the same values of the 

constants a, b and c should be used. 
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Figure 4-44 – Plot comparing permeabilities from routine core measurements with those 
predicted with the Kenyon equation (kSdr) using optimized values of the parameters in Eq. 
(4.1). Measured data are shown by rock type. Notice that samples 151.15 and 141 of RT1, 
90.95 of RT3, and 71.30 and 99.5 of RT5 are situated outside the dashed lines 

 
To further improve the predictions, Eq. (4.1) was applied next to each rock type 

separately. This would lead to constants that are more customized to the separate samples, 

mostly in terms of their permeability values. Another advantage of this approach would 

be to account for the possible effects of the two variables (porosity and T2logmean) in Eq. 

(4.1) on the permeability predictions of the different rock types. Table 4.9 shows the MLR 

optimized values obtained for the constants, with Fig. 4.45 comparing the measured and 

newly calculated permeabilities. 

 
Table 4-9 – Multiple linear regression estimates of the parameters a, b and c  

in Eq. (4.1) for the different rock types. 
 
 

Rock types a b c 

RT1 4.38 0.32 9.53 

RT2 2.83 0.90 4.28 

RT3 3.82 0.89 16.51 

RT4 4.47 0.30 14.55 

RT5 2.83 0.90 4.28 
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Figure 4-45 – Plot comparing permeabilities from routine core measurements with those 
predicted with the Kenyon equation (kSdr) using optimized values of the parameters in 
Eq. (4.1) for each rock type separately. The MLR optimized values of a, b and c are 
listed in Table 4.9 
 

The entries in Table 4.9 show that the constants a, b and c deviated from the 

classical values, as well as varied markedly among themselves. The constant b remained 

relatively low, presumably because of carbonate rock heterogeneity as noted earlier.  The 

lithological constant c, however, varied widely, with much higher values for the RT3 and 

RT4 rock types. Since they are clusters formed by samples with the highest permeability 

and as noted earlier, predominated by vug pores, the lower values of b and the 

considerable increase in c appear to mathematically compensate each other. The low 

contribution of T2Logmean, due to heterogeneity of the porous medium, may be offset by 

the increase in c, a realistic finding for the coquinas tested in this research. Still, this result 

should be tested on other samples, including on well logging data with know lithology. 

Figure 4.45 indicates close correlation between the calculated and measured 

permeabilities. According to BROOKS & BARCIKOWSKI (2012), using a very small 

number of samples to validate regression models can cause statistical errors. PEDHAZUR 

& SCHMELKIN (2013) recommended that equations determined using multiple linear 

regression should only be considered representative of a data set when the ratio of data 

size and number of variables is at least 30:1, with MILLER & KUNCE (1973) earlier 

suggesting a ratio of 10:1. The values obtained for the constants a, b and c in this study 
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are considered quite promising since the increasing and decreasing trends in the MLR 

estimated values of the constants were very consistent. 

The regression could not be applied to RT5 since this rock type contained only 

two samples. Because of this, the constants of the other clusters were tested to see if they 

could be applied to RT5 samples. The results for the RT2 cluster successfully estimated 

the permeability of the two RT5 samples. Characterization of RT2 and RT5 rock types 

earlier demonstrated that they showed similarities only in their petrophysical parameters 

(porosity and permeability), but not in many petrographic properties. RT2 was classified 

as a transition group, while RT5, grouped samples that were in the high permeability 

range, with porosities above those of the RT3 and RT4 groups. For these reasons we 

conclude that the two rock types can be considered to be transitional groups by containing 

samples that did not fit into the other clusters, while being similar in terms of their 

heterogeneity. The lithological constant c of RT5 was not modified much, being similar 

to the value used for sandstone rocks. The exponents a and b (for porosity and T2Logmean) 

decreased only slightly from the original Kenyon values, thus reinforcing the low 

representativeness of these two parameters for predicting the permeability, k. 

The above results for the Kenyon model us indicate that permeability predictions 

using the classical values of the Kenyon constants a, b and c produced relatively poor 

results.  Some improvements were possible when adjusting the constants for all of the 

samples used in this study. MLR optimization of the constants for each rock type 

separately further improved the predictions such that all estimated permeability values 

closely approached the measured values. Using only the measured porosity and measured 

pore size distribution did not lead to acceptable results for several of the samples. One 

may conclude that in addition to connectivity, other factors such as the mean pore throats 

radii and throat constrictions need to be better evaluated since they can have a great 

impact on fluid flow and better explain observed permeabilities, especially of carbonate 

rocks. 

4.4.2 Timur-Coates Model (KTim) 

Permeabilities of the various samples in this thesis were also analyzed in terms 

the Timur-Coates model (kTim), given by Eq. (2.12) of section 2.5.1 and restated here: 

 

𝒌𝑻𝒊𝒎 = 𝒄 ቀ
𝝓

𝟏𝟎𝟎
ቁ

𝒂

ቀ
𝑭𝑭𝑰

𝑩𝑽𝑰
ቁ

𝒃

                                        (4.2) 
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where ϕ is porosity as before, FFI is the free fluid index, BFI is the bulk fluid index, the 

latter representing fluid adsorbed by clay minerals and trapped by capillarity, and a, b and 

c are empirical constants, with c again being a mostly lithological parameter. Values of 

the constants most commonly used in the oil industry are those for sandstone: a = 4, b = 

2, and c = 100. The biggest difference between the Kenyon and Timur-Coats equations is 

the change of the T2Logmean parameter for the ratio FFI/BFI, which aims to improve 

predictions by using T2cutoff, a separation factor between immobile fluid (BFI) trapped by 

capillarity and in clay minerals, and free fluid (FFI), which has a mobility and can be 

produced. This ratio is usually evaluated at some relaxation time between 90 and 100 ms, 

being the threshold of the mesoporosity region (in this study 100 ms is used).  

In the same way as for the Kenyon model, initially literature values of the 

constants a, b and c were used to evaluate their ability of Eq. (4.1) to predict the measured 

permeabilities (k) of the coquinas.  The plot of measured (krot) versus predicted (kTim) in 

Fig. 4.46 shows that the use of classical values did not lead to accurate permeability 

estimates, with the predicted values being dispersed in the figure. About 30% of the 

samples were outside of the considered error ranges, which suggests that the T2cutoff values 

and/or the constants needed to be reevaluated.  

 

 
Figure 4-46 – Plot comparing permeabilities from routine core measurements with those 
predicted with the Timur-Coates equation using literature values for the parameters a, b 
and c in Eq. (4.2). The measurements were separated by rock type 
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The RT1 samples in Fig. 4.46 were the most poorly predicted, probably because 

a high value of T2cutoff was used for samples having relatively small pore sizes compared 

to the other groups. To verify if the FFI/BFI ratios were correct, it is necessary to 

determine the irreducible saturation of the samples, which can be carried out either by 

centrifugation or using porous plates. Initially, some samples considered to be 

representative for each rock type were taken to define Swi for subsequent evaluation of 

T2cutoff. Unfortunately, the use of only a few samples was not sufficient to more accurately 

evaluate this parameter, thus we fixed the cutoff at 100 ms and used multiple linear 

regression (MLR) to determine the constants for the samples. 

A first attempt was made to optimize the constants for all of the samples 

combined, leading to Fig. 4.47. The MLR analysis produced the values a = 4.02, b = 1.13 

and c = 409. Note that the optimized values of these constants showed similarities with 

those determined for the Kenyon equation. Again, the lithological constant varied the 

most, thus reinforcing the premise that the response is associated with a change in the 

surface relaxivity of the samples. The constant a linked to porosity did not change much 

this parameter showing more stability between permeability and porosity as was the case 

for the Kenyon model. The constant b was lower than classic value, which can be justified 

by the inappropriate value of T2cutoff, which is difficult to determine for rocks as 

heterogeneous as the coquinas.  
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Figure 4-47 – Plot comparing permeabilities from routine core measurements with those 
predicted with the Timur-Coates equation (kTim) using optimized values of the parameters 
in Eq. (4.2). Measured data are shown by rock type. Notice that samples 140.8, 141 and 
151.15 (RT1), 90.95 and 187.95 (RT3) and 170.65 (RT4) are situated outside the dashed 
lines 
 

Figure 4.47 shows that MLR optimization of the constants a, b and c in Eq. (4.2) 

did lead to a better prediction of the measured permeabilities. Success was achieved for 

about 90% of the samples, reflecting a better correlation between the estimated and 

measured values. However, some samples still did not present satisfactory values, 

involving underestimated values for samples 140.8 (RT1), 90.95 and 187.95 (RT3) and 

170.65 (RT4) and overestimated values in the cases of samples 141 and 151.15 (RT1). 

These samples, with the exception of 187.95, showed differences with the other samples 

of their rock type groupings, as noted earlier for the Kenyon analysis in section 4.4.1. 

Improved correlations were again possible by applying the MLR analysis 

separately to each rock type, with the additional advantage that the effects of the porosity 

and the FFI/BFI ratio on the permeability became more clearly defined. Table 4.10 shows 

the different values obtained for the constants, while Fig. 4.48 compares the estimated 

permeabilities with the measured values. 
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Table 4-10 – Multiple linear regression estimates of the parameters a, b and c  
in Eq. (4.2) for the different rock types 

 
 

Rock types a b c 

RT1 3.84 0.56 1712 

RT2 2.12 0.95 999 

RT3 2.98 0.22 11592 

RT4 6.62 0.22 94567 

RT5 2.12 0.95 999 

 

 
Figure 4-48 – Plot comparing permeabilities from routine core measurements with those 
predicted with the Timur-Coates equation (kTim) using optimized values of the parameters 
in Eq. (4.1) for each rock type separately. The MLR optimized values of a, b and c are 
listed in Table 4.10 

 
The data in Table 4.10 show some interesting differences with the classical values 

of the constants a, b and c in Eq. (4.2). The value of the lithological constant c increased 

for all rock types, possibly related to differences in the surface relaxivity of the samples. 

The RT3 and RT4 samples exhibited higher values of c, probably because of their higher 

permeability, which compensated for the low value of the constant b associated with pore 

size. The T2cutoff value used for these groupings may have required better adjustment, 

which should be explored in future studies. The porosity constant a showed only slight 
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variations, mostly since this porosity terms does not affect k predictions as much as the 

NMR contribution. The constant b was lower that the classical value of 2, similarly as in 

the Kenyon model. Because this parameter is directly associated with the pore size 

distribution, the considerable heterogeneity of the coquina samples forces the parameters 

c to increase to mathematically compensate for the relatively lower contribution of the 

FFI/BFI term. While the MLR generated values of the constants a, b and c improved the 

permeability predictions, it is important to emphasize that the generality of the results 

here should be tested on other samples, including on well logging data of this lithology. 

As mentioned previously, the RT5 samples could not be used for the MLR 

optimization because of the low number of samples of this rock type (only samples 71.3 

and 99.5). The RT2 constants were used again successfully for predicting the permeability 

of these two samples. Similarly as before, the two clusters can be considered transitional 

since they did not fit in any of the other clusters. The analyzed samples showed an 

increase in the value of the lithological constant c and a reduction in the porosity constant 

a. Exponent b of the FFI/BFI term showed a decrease in its value, which may be 

associated with the poor representativeness of this parameter in the permeability 

predictions, and/or the need to improve the T2cutoff value. 

Figure 4.48 still shows two samples that were not completely resolved by the 

optimized constants. Unlike with the Kenyon model, the use of the FFI/BFI ratio for these 

samples did not benefit the predictions. Thus, k predictions for these two complex samples 

could benefit from a more detailed careful analysis of both the pore throats and pore 

bodies as inevitably the connectivity of pore system has the major effect on the 

permeability. From the permeability predictions above, one may conclude that the 

classical constants in the Timur-Coates model provided less accurate results by showing 

a far more dispersed range of k values. Improvements could be obtained by optimizing 

the parameters, either by using all available samples together, or analyzing them 

separately according to rock type.  

The Kenyon and Timur-Coates were compared further by comparing the constants 

determined by the regressions. Two correlation parameters were used: the coefficient of 

multiple determination (R²) and the multiple R (R). From the R² it is possible to identify 

how well a multiple regression equation fits the sample data, with its values ranging from 

0 to 1, where 1 represents a perfect correlation with no differences between the real and 

estimated values. R2 is widely used in dispersion plots, such as for the porosity and 

permeability in petrophysics, but its value can be affected by the number of variables 
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being used (DAVIES & FEARN, 2006). Using only this parameter can generate for this 

reason doubtful results, making it necessary to use one more comparative parameter, in 

this case the multiple R. This parameter demonstrates the degree of linear correlation 

between the dependent variable and the set of independent variables. Specifically, R 

measures how closely they are correlated, with the highest value being the best model.  

Table 4.11 lists the values of R2 and R for both the Kenyon and Timur-Coates 

models. The data in this table allow comparisons of the two models, with optimized 

values of a, b and c in their respective formulations, as applied to the whole set of samples 

and separated by rock type. The Kenyon model applied to the entire set of samples 

produced very acceptable values of R² and R (0.79 and 0.89, respectively). When the 

results were plotted on a comparative plot (Fig. 4.44), only five samples fell outside of 

the permeability trend ranges. When the samples were separated by rock type, the 

correlation parameters were also quite satisfactory, with the correlations providing 

permeability values within the trend ranges (Fig. 4.45). Both options (with and without 

separating the rock types) hence showed good correlations, validating the use of both. 

 
Table 4-11 – Correlation parameters from the regression 

 
 Kenyon Model Timur - Coates Model 

Samples R² 
Multiple 

R 
R² 

Multiple 
R 

All samples 0.78 0.89 0.88 0.94 

RT1 0.76 0.87 0.74 0.86 

RT2 0.77 0.88 0.54 0.74 

RT3 0.79 0.89 0.59 0.77 

RT4 0.58 0.76 0.29 0.54 

RT5 0.68 0.87 0.54 0.74 

 

Regarding the correlative parameters of the Timur-Coates model, they showed 

also better results when the entire set of samples is used, compared to when the statistical 

analysis is carried out for each rock type separately. With an R² = 0.87 and a multiple R 

= 0.94, the Timur-Coates was superior when using all samples simultaneously, 

notwithstanding more samples being outside of the permeability trend lines (Fig 4.47). 

The correlation results were less when the constants were optimized separately for each 

rock type, especially for RT4 with a value of 0.29 for R². For this cluster, all constants 
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varied greatly as compared to using the classic values of a, b and c. This may be a sign 

that not only porosity and FFI/BFI contribute to permeability, but other factors may need 

to be considered and possibly should be incorporated also in the predicted permeability 

equations. As pointed out previously, the constants determined in this research are well 

suited for the samples studied here, but their effectiveness still needs to be evaluated with 

more samples. 
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5 CONCLUSIONS 

Through the application of different petrophysical techniques, this research aimed 

to obtain a more complete understanding of carbonate rocks samples contained in core 

02-SMC-2-AL of the Morro do Chaves Formation. These rocks are a challenge due to the 

high compositional complexity and heterogeneity of the pore space, their understanding 

being of great importance for the challenging oil scenario of the Brazilian pre-salt. 

Rock types were developed from 44 coquina samples, in order to understand how 

pore size and shape contribute to permeability. Initially, the samples were separated by 

permeability ranges, while confirming their similarties through the T2 curves. PCA 

statistics was applied to confirm which pore size partitions have the most influence on 

each cluster. Petrographic interpretation was also performed to identify geological factors 

that explain similarities among the groups of samples. As a complementary tool, XRD 

was used to classify and quantify the minerals contained in the rocks. The integration of 

all techniques helped to better understand the petrophysics and petrography of the 

samples. 

A connectivity study was carried out in the development of this research. Based 

on the pore size distributions determined by NMR and the pore throats radius distributions 

provided by MICP, the surface relaxation was defined. This parameter is of great 

importance for transforming the relaxation times into pore radius, in order to assist the 

pore segmentation of the microCT images. From the pore segmentation, it was possible 

to transform the pore throats and pore bodies into tubes and spheres, respectively, a 

technique known as skeletonization. With this information modeling at the pore network 

level was performed and the permeability estimated, achieving good results. Based on 

this information, it was possible to understand how connectivity influences flow into the 

pore system. We could verify that samples with similar porosities but different 

permeabilities possess different interconnection of the pore system favors the flow within 

the pores. 

The permeability was also estimated using NMR-based equations. The Kenyon 

and Timur-Coates equations are the most used in the literature to estimate this parameter 

in the field. This research aimed to determine the most suitable constants for the coquinas. 

Multiple linear regression (MLR) was used from the entire set of samples and also 

separated by rock type. As a result, the two models provided good results for the 

application, but the Kenyon model performed better for samples separated by rock type. 
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Normally, standard values for the constants are used by the oil industry, but this research 

could show that optimization of the constants through MLR improved the predictions, 

reaching values close to those of the laboratory. 

Another point considered in this research was to verify how different techniques 

with their different results can contribute to a better understanding of complex rocks. The 

results obtained by routine core analysis are important once they provide a calibration for 

other techniques. NMR provides exceptionally good results for porosity and pore size 

distribution, in addition to have the versatility of its application during logging, making 

it possible to estimate the permeability of the reservoir “in situ”. If measurements could 

be done in a well and in the laboratory, this would become the preferred method in 

petrophysics, but this is not always possible in the oil industry. MICP can provide the 

pore throat distribution obtained according to the boundary conditions imposed. The 

microCT images permit one to perform numerical simulations in order to determine 

porosity and permeability of a sample. In this case, the resolution will guide all the results 

to be obtained. The most powerful spect of microCT coupled with PNM techniques is its 

ability to carefully observe the pore system while the other tools provide more global 

values, without direct visualization.  

Finally, we concluded that different available techniques are potentially important 

to obtain relevant information about a specific rock formation. Also, it was possible verify 

that in order to understand and to obtain good estimates of porosity and permeability, one 

needs to combine different techniques and extract the more reliable measurements. The 

integration of the various techniques and their results can improve our understanding of 

complex pore systems, giving better guidance for upscaling the petrophysics to fields 

conditions.  

5.1 Further Studies 

From the results and discussions presented along this work, some points are 

presented that could guide future research in order to improve knowledge in coquinas: 

I. In the development of this work, important constants were determined to estimate 

permeability using NMR data. These constants were adequate for the set of samples 

used in this research, but it is still necessary to test their applicability in other samples; 

II. The samples studied in this research were imaged with 14 µm of resolution. In 

general, this resolution iss considered adequate for most samples. However, in some 
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cases, it was not possible to visualize the sample connections, as these are made by 

subresolution pores. Therefore, new images with better resolution can contribute to 

identify unresolved pore throats and understand their contribution to  flow in the pore 

system; 

III. The k prediction results showed that the optimized constants did not agree with 

accepted literature values. Hence, their permeability values were not compatible with 

the experimental ones. Initially, one could assume that information about the pore 

distribution and porosity is enough to determine the permeability. However, 

additional studies of these samples can present interesting results, demonstrating that 

in addition to connectivity, other factors such as mean radius and throat constriction 

can impact the flow in highly heterogeneous samples such as carbonate rocks; 

IV. The flow of fluid in a rocky interior is affected by porosity, permeability, tortuosity 

and the pore-size distribution of the rock (BEAR, 1972). These parameters are 

macroscopic consequences of the pore structure, which integrates geometry (pore size 

and shape, pore size distribution) and topology (pore connectivity) (DULLIEN, 

1992). Sometimes, the topological factors are more important than the more well-

known geometric factors (EWING and HORTON, 2002; HU et al., 2002; HUNT, 

2004), especially when pore connectivity is low. However, the prevalence of low pore 

connectivity in rocks and their impact on the flow of fluids is poorly documented and 

understood, being a topic of great importance to be addressed in futher studies. 
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