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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

MONITORAMENTO NÃO INTRUSIVO DE CARGAS INDUSTRIAIS EM UMA

FÁBRICA NO BRASIL

Pedro Bandeira de Mello Martins

Outubro/2020

Orientador: José Gabriel Rodriguez Carneiro Gomes

Programa: Engenharia Elétrica

Esta dissertação aborda uma aplicação e comparação de um conjunto de técnicas

de Non-Intrusive Load Monitoring (Monitoramento Não-Intrusivo de Cargas, NILM)

em dados elétricos coletados de uma fábrica no Brasil. NILM propõe determinar

o consumo de energia de um único aparelho a partir da demanda total dos con-

sumidores sem a necessidade de instalação de sensores intrusivos ou mais de um

medidor por quadro de energia. Como o foco principal desta tese é estudar NILM

em ambientes industriais e até a data da escrita nenhum dado público dispońıvel

foi encontrado, um conjunto de dados (IMDELD) foi criado para esta pesquisa em

uma fábrica de ração av́ıcola usando medidores inteligentes. IMDELD possui um

total de onze diferentes classes de assinaturas elétricas, incluindo oito classes de

máquinas industriais, dois diferentes subcircuitos e um circuito principal. Os dados

foram coletados em uma frequência de 1 Hz por até cento e onze dias.

Para atingir este objetivo da comparação de métodos, dois métodos são imple-

mentados: Factorial Hidden Markov Models (Modelos Ocultos Fatoriais de Markov,

FHMM) e Deep Learning (WaveNILM). Em paralelo com os modelos FHMM, os

modelos baseados no Deep Learning têm menor Signal Aggregated Error (Erro Agre-

gado de Sinal, SAE) e Normalized Disaggregation Error (Erro de Desagregação Nor-

malizado, NDE). De acordo com a F1-Score (Medida F1, F1), eles também identi-

ficaram aparelhos individuais ligados ou desligados em uma porcentagem maior do

tempo testado.

Dentre todas as máquinas, WaveNILM atingiu F1 0.93± 0.07, enquanto FHMM

pontuou F1 0.79± 0.12. WaveNILM predice máquinas com SAE médio 0.1± 0.2 e

NDE médio 0.1± 0.2, enquanto FHMM predice máquinas com SAE médio 0.3± 0.2

e NDE médio 0.3± 0.2.
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This thesis addresses the comparison of two techniques of Non-Intrusive Load

Monitoring applied to electrical data collected from a factory in Brazil. NILM pro-

poses to separate single-appliance power consumption from consumers total demand

without the need for installation of intrusive sensors or more than one meter per

building. As the main focus of this thesis is to study NILM on industrial settings

and, until the date of writing, no public data were found, IMDELD data set was

collected for this research on a poultry feed factory using smart meters. IMDELD

has a total of eleven classes of electrical signatures, including eight classes of heavy-

industry machines, two different sub-circuits, and a main circuit. The data was

collected at a 1 Hz rate for up to a hundred eleven days.

To achieve the comparison goal, two methods are implemented: Factorial Hidden

Markov Models and Deep Learning (WaveNILM). In comparison to the FHMM

models, the Deep Learning-based models have smaller Signal Aggregated Error and

Normalized Disaggregation Error. They also identified single-appliances as turned

ON or OFF on a larger percentage of the time tested based on F1-Score.

Among all appliances, on average WaveNILM F1-scored 0.93±0.07 while FHMM

scored 0.79± 0.12. WaveNILM predicted machines with average SAE 0.1± 0.2 and

NDE 0.1 ± 0.2, while FHMM predicted machines with average SAE 0.3 ± 0.2 and

NDE 0.3± 0.2.
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Chapter 1

Introduction

This work presents an implementation of a temporal convolution-based deep neural

network to solve load disaggregation on Non-Intrusive Load Monitoring (Monitora-

mento Não-Intrusivo de Cargas, NILM) problem for a data set [1] collected on a

factory in Minas Gerais, Brazil. The main model here presented is compared to a

Factorial Hidden Markov Model previously used on industrial sites.

NILM, a term coined by Hart in 1992 [2], refers to the monitoring of individual

appliance energy consumption of a desired site without the extensive use of intrusive

meters or appliance-specific sensors. Load disaggregation – sometimes referred to

as a synonym to NILM – is the specific method for disaggregation of the single-

appliances load from a whole-building energy consumption signal.

1.1 Objective

The main objectives of this work are: (1) to present a data set of heavy-machinery

energy from a Brazilian factory, (2) to infer energy consumption of industrial machin-

ery using energy data from one meter at the factory Medium-to-Low Voltage Trans-

former (MV/LV), (3) to present a new model of disaggregation based on Temporal

Convolutional Networks (TCN), (4) to compare the aforementioned model with Fac-

torial Hidden Markov Models (Modelos Ocultos Fatoriais de Markov, FHMM) model

found in the literature using the presented data set.

1.2 Constraints

Eleven meters are used to collect energy data from a factory in Brazil. Out of those,

one meter is installed for whole-building energy consumption data acquisition, and

the other ten are installed at sub-circuits or machines to collect data for supervised

training. Root-mean squared (RMS) voltage, RMS current, active power, reactive

1



power, apparent power and active energy are sampled at 1 Hz for each meter. The

time series created is then divided into windows of 1024 samples. All models are

trained using part of those collected windows and tested using the remaining data.

The models are implemented in Python, using libraries such as SciPy [3], Numpy

[4], Pandas [5], TensorFlow [6], Keras [7] and NILMTK [8]. The models are trained

in a machine with 20 GB of RAM, a GPU NVidia GTX1060 with 6 GB RAM and

an Intel(r) Core(TM) i5-440 CPU @ 3.10 GHz with four cores.

1.3 Motivation

The 21st century alone has seen an increase of 34.17% of electric power consumption

per population (kWh/capita) worldwide [9]. Efficient energy use can help slow

down this trend and increase the energy supply without the need for more power

generation, therefore reducing both costs for new infrastructure and greenhouse

gas emissions. Consumer decision making is an essential aspect of saving energy

and, thus increasing energy usage efficiency. FREDERIKS et al. [10] explain how

consumers do not decide about their electrical energy consumption rationally, giving

an insight of how it is vital to give all information possible to them, so they can

check their behaviors and possibly decrease their electricity costs.

Real-time information of energy consumption down to appliance level credit up

to 20% of energy savings according to ARMEL et al. [11] and DARBY et al. [12].

ZEIFMAN and ROTH [13] cite benefits of appliance-specific consumption informa-

tion such as fault detection, behavioral pattern elucidation, appliance analysis based

on use, better data for energy-aware appliance redesign, improved load forecasting,

improved economic models, and label efficiency changes. NILM aims at prospecting

information of this kind without the need for several meters, and it has been mainly

studied in residential and commercial buildings [14–21].

Although the industrial sector corresponds to 31.55% of worldwide electrical

energy supply [9], industry-related NILM is still not widely researched [22, 23].

In Brazil, the industrial sector consumes up to 33% [24] of the total electricity

consumption; therefore, the use of energy efficiency programs on industrial plants

could benefit the entire national grid. Insights granted from NILM inferences can

help with energy wastefulness, with energy quality, and they can leverage demand

response on the sector. NILM gives meaningful feedback not only to consumers, but

also to energy system operators, who can better predict how their customers will

behave, and can then offer focused services based on machines disaggregated from

their consumption.

2



1.4 Description

The following chapters treat in more detail the problem addressed in this work. The

first section of Chap. 2 intends to introduce and briefly explain what NILM is and

its primary literature. After the first section, Chap. 2 aims at explaining the main

concepts of both HMM and ANN with a later focus on Temporal Convolutional

Networks deep learning models.

Chapter 3 gives more details about the data set, including some background on

the factory process and measurement points. After that, the text explains how the

models use the data set and how it is processed.

Chapter 4 has the main objective of explaining how the models are implemented

and trained. Chapter 5 analyses the results obtained from the experiments and

Chap. 6 presents conclusions and proposes future work ideas.

3



Chapter 2

Theory

This chapter covers the main theoretical foundations required for this dissertation.

It is divided into three sections; Sec. 2.1 aims at introducing NILM and Load

Disaggregation with its basic concepts, technical issues, disaggregation methods,

learning methods and needed data set properties. Section 2.2 refers to ANN, Deep

Learning and temporal convolution models. Furthermore, Sec. 2.3 explains HMM.

2.1 Non-Intrusive Load Monitoring

NILM cannot be regarded as a solved problem, even though the concept was pro-

posed in 1992 [2]. Also known as load disaggregation, it is a process of blind source

separation. Generally speaking, we cannot identify how many components were

summed to generate the aggregate signal. This creates an ill-posed problem, and

a series of statistical models and algorithms are used to approximate the original

components. A good recent review can be found in [25].

2.1.1 Problem definition

A whole-building electricity consumption signal measured by a meter can be formu-

lated as in Eq. (2.1):

xt =
N∑
n=1

xn,t + rt (2.1)

xt = g (x1,t,x2,t,x3,t, · · · )

where N is the number of appliances, rt is an intrinsic noise at a given time t, xn,t is

the consumption signal vector of the appliance n at t, and xt is the aggregated signal

vector at t. The measurement x is defined as a vector, because it can have multiple

4
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Figure 2.1: Illustration of a whole-building power signal with appliances events
annotated. (Reprinted with permission from MARTINS et al. [23])

dimensions, such as electric potential difference (V ), electric current (I), active

power (P ), reactive power (Q), apparent power (S), Total Harmonic Distortion

(THD) or any other feature measured. Figure 2.1 illustrates an example of a whole-

building power signal with appliances events annotated.

NILM challenge is to find a function f(·) such that given xt, f (xt) results in

x1,t,x2,t,x3,t, · · · . Although NILM is an inverse problem, g is not a bijective function;

therefore f is not an inverse function of g and f has no unique solution. Even if

rt = 0 the system in Eq. (2.1) is an underdetermined system, since there are more

variables than equations. Different combinations of xn,t could result in the same xt.

As this problem is ill-posed, we try to find a function f̃ that returns an approximate

solution x̃n,t for xn,t. If we define a loss function L, the feasible objective of NILM

is to find f̃ such that L (x̃n,t − xn,t) −→ 0, as seen in Eqs. (2.2) and (2.3).

f̃(xt) =


x̃1,t

x̃2,t

x̃3,t

...

 (2.2)

L (x̃n,t − xn,t) −→ 0 (2.3)
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2.1.2 Appliance modeling

Appliances are modeled in three ways: (1) Finite-State Machines (FSM) when an

appliance can be a simple two-state (ON/OFF) machine, or a multistage machine,

for example, washing machines; (2) Continuously Varying Devices (CVD) when an

appliance does not have quantized states, which is equivalent to say that its power

consumption varies over time, for example, a desktop computer; and (3) Permanent

Consumer Devices (PCD) when an appliance has constant power consumption, for

example, a traffic light. For an FSM modeled appliance, xn,t from Eq. (2.1) can be

defined as in Eq. (2.4):

x̃n,t =
Kn∑
k=1

zn,t,kµn,k (2.4)

as it models each k-th state feature vector µn,k of all Kn states of the appliance

n. zn,k,t indicates whether the state k corresponds to operation or not. There can

only be one state in operation at a given time t, that is to say
∑Kn

k=1 zn,t,k = 1

and zn,t,k ∈ {0, 1}. CVD and PCD xn,t formulas are given in Eqs. (2.5) and (2.6)

respectively.

x̃t,n = µn(t) (2.5)

x̃t,n = µn (2.6)

Using appliance-specific models can create some problems in deciding which

solver should be used, as will be seen in Sec. 2.1.3. Each solution asks for a

particular modeling approach. There is no need to model each appliance differently

on a building. We can generalize or constrain every appliance to be under one of

the previous models.

2.1.3 Event-based and eventless approaches

Solving NILM can be divided into two main approaches: event-based and eventless.

Event-based approaches were first introduced by HART [2] and remained as the

main focus of research in NILM until recently. Those approaches rely on event de-

tection, feature extraction and load identification to estimate each appliance energy

consumption under a given total consumption. Figure 2.2 illustrates this process.

Event detection searches for features that indicate when an appliance changes its

state. Those features are usually associated with high-frequency events and switches

from a steady-state. Event detectors can be implemented, among other techniques,

using: heuristics [2, 26], probabilistic models [27], matched filters [28], Decision
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Consumption
Measurement

Event
Detector

Feature
Extraction

Load
Identification

Figure 2.2: Block diagram of an event-based NILM algorithm.

Trees (DT), and Long Short-Term Memory (LSTM) [29]. ANDERSON et al. [30]

review event detectors methods for NILM and propose metrics to evaluate them.

Load identification refers to the classification, using features related to a detected

event, of a particular appliance. A myriad of methods can be applied here, including

supervised and unsupervised. We can cite as examples of methods used on load

identification K-Nearest Neighbours Algorithm (KNN) [31], Graph Signal Processing

(GSP) [17, 28], Adaptative Ressonant Theory (ART) [26] and probabilistic knapsack

algorithms [32].

Eventless approaches do not use event detectors nor feature extractors, thus

simplifying the NILM process. In this context, a consumption measurement is di-

rectly input into a load identification algorithm. Figure 2.3 illustrates a simple block

diagram of an eventless approach.

Consumption
Measurement

Load
Identification

Figure 2.3: Block diagram of an eventless NILM algorithm.

Using eventless approach, PARSON et al. [15] propose a HMM-base solution.

They model each appliance as an FSM, assuming that those states are non-

observable and can be modeled as an HMM. In an HMM only the output is observ-

able, so its states are hidden and their probability functions depend on the output.

This method requires that every appliance is modeled as a Markov state and as-

sumes that every step change in aggregate power is due to a change in a Markov

state. Therefore this model does not acknowledge if two states are changed at the

same time, which can be a strong assumption. There are groups of appliances that

are turned on together, especially on factories (for example pelletizers and exhaust-

fans).

KOLTER e JAAKKOLA [16] try to address this issue by using Additive Factorial

Hidden Markov Models (Modelos Ocultos Fatoriais de Markov Aditivos, AFHMM).

This method considers every aggregate consumption data point as a result of an ad-

ditive function of different hidden states, each state being assigned to one appliance,

similar to Eq. (2.1) using Eq. (2.4). Each HMM inside an AFHMM is independent

and can change state simultaneously with another HMM. This approach presents

some difficulties, as the exact inference of the AFHMM is highly susceptible to local
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optima, so the authors assume that there is a mixture component that cannot be

modeled, and they use approximate inference with the constrain that each state can

not change simultaneously. This model was also applied on a previous load disag-

gregation research on the industrial sector [22]. HOLMEGAARD e KJAERGAARD

[22] achieve better results in a cold store using a day-specific FHMM, as this specific

industrial site had different consumption patterns depending on the day. This does

not happen in IMDELD, so a normal FHMM is used.

KELLY e KNOTTENBELT [14], DO NASCIMENTO [20], ZHANG et al. [18]

and MORGAN [21] use Deep Learning techniques to estimate residential appliance

loads based only on aggregate consumption samples. They achieve better results

and higher generalization power in comparison with HMM. ANN and Deep Learn-

ing techniques will be discussed in Sec. 2.2. This work discusses the use of a Deep

Learning model and compares it with HMM in an industrial sector load disaggrega-

tion problem.

2.2 Artificial Neural Networks

ANNs are a set of mathematical models inspired by a biological neural network. Like

their biological counterpart, they are composed of neurons and their connections. A

signal is transmitted and transformed through the network, which improves through

a learning process. This section presents basic concepts of ANNs, how a training

phase occurs, and a summary of ANNs in time series.

An artificial neuron computes a dot product of an input vector x ∈ IRN, having

N features, and a weight vector w ∈ IRN. A bias b is added to this result and

then the results is fed through an activation function g : IRN −→ IR which returns

an output o ∈ IR. Equation (2.7) represents this procedure. Those neurons can

be arranged in different ways, and one example is a Feedforward Neural Networks

(FNN), in which the neurons are arranged in sequenced layers. A layer receives the

output of the previous layer as an input.

o = g
(
wTx + b

)
(2.7)

o = G (Wx + b) (2.8)

Equation (2.8) represents a neuron layer, where o ∈ IRM is the output vector of

all M neurons in the layer, W ∈ IRM×N is the matrix of weights and b ∈ IRM is the

bias vector. G is an activation function G : IRM −→ IRM. This layer is called fully-

connected because, generally, all neurons are connected with nonzero weights wn,m

to all inputs. FNN with multiple layers are called Multilayer Perceptron (MLP).
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An intermediate layer of an MLP is called hidden layer, as its output is usually fed

to another layer, and are not visible from the output. Figure 2.4 represents an MLP

with two hidden layers W(1), W(2) and one output layer W(3). Biases and activation

functions are omitted inside the circles.

...
...

x ỹ

︸︷︷︸
W(1)

︸︷︷︸
W(2)

︸︷︷︸
W(3)

Figure 2.4: MLP with G(3)

(
W(3)G(2)

(
W(2)G(1)

(
W(1)x + b(1)

)
+ b(2)

)
+ b(3)

)
= ỹ

representation.

MLPs are universal approximators in the sense that they can approximate, with

arbitrarily small error, any continuous function within the unitary hypercube 0, 1N if

and only if the activation function G : IRM −→ IRM is non-polynomial [33]. The model

used in this work uses four kinds of activation functions: linear function, hyperbolic

tangent (2.9), logistic function (2.10) and ReLU (2.11). In that way, with a given

loss function L, we can model a neural network that approximates a desired function

f after a learning process. Although a single hidden layer is sufficient for an MLP to

be an universal approximator [34], shallow networks (networks with a single hidden

layer) need prohibitively more neurons than deep networks to approximate the same

function [35].

tanh(x) =
ex − e−x

ex + e−x
(2.9)

σ(x) =
1

1 + e−x
(2.10)

ReLU(x) = max(x, 0) (2.11)

2.2.1 Training

ANNs are parametric functions φθ(x). The parameters θ are all learnable variables,

like weights and biases, and they are locally optimized, iteratively, during a training
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phase, which can be supervised or unsupervised. If we plan to approximate an

unknown function f through an ANN, then we must find a set of parameters θ that

would describe a φθ(x) ≈ f(x). If the inputs x and the desired outputs f(x) = y

are known, then we can train the network using supervised learning.

Supervised learning is not the only possible way of optimizing θ from an ANN. In

some cases the available set of labelled input-output pairs is not enough to properly

represent the real distribution, then a semi-supervised learning algorithm can be

used. If there are no labelled y available on the data set, it is still possible to train

an ANN using unsupervised learning. Even when supervised learning is used to

optimize θ, an unsupervised learning can be used as a pre-training phase.

Optimization

A training phase in supervised learning aims at minimizing the expected value of a

loss function L (φθ (x) ,y), as seen in Eq. (2.12), by updating θ using optimization

methods. As it is extremely difficult – if not impossible – to have a data set of

all possible labelled input-output pairs, an approximation of the expected value is

used as seen in Eq. (2.13). The set {(x1,y1) , (x2,y2) , · · · , (xN ,yN)} used during a

training phase is called a training set.

min
θ

Ex [L (φθ(x),y)] (2.12)

min
θ

1

N

N∑
n=1

L (φθ(xn),yn) (2.13)

This optimization problem is mostly differentiable, apart from some finite num-

ber of points, and is solved iteratively using Gradient Descent algorithms. As train-

ing sets are usually too large to be processed in one batch, Stochastisc Gradient

Descent (SGD) algorithms are used, in which the data set is divided into mini-

batches {(x1,y1) , (x2,y2) , · · · , (xM ,yM)}, where M < N and each mini-batch is

uniformly drawn from the training set. SGD algorithms update θ iteratively as

mini-batches are drawn.

Depending on the problem set up, different loss functions can be chosen as L.

In this work we use MAE (Eq. (2.14)), because it is one of the usual average

model-performance errors alongside with Root Mean Square Error (RMSE) (Eq.

(2.15)). As the name denotes, MAE is the average absolute difference over a sample.

MAE ∈ [0,∞) and it does not account for error direction (whether an error is

more negative or positive). This loss function is usually compared to RMSE, and

interesting articles about it can be found in [36, 37].
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MAE(x) =
1

N

N∑
i=1

|xi − x̃i| (2.14)

RMSE(x) =

Ã
1

N

N∑
i=1

(xi − x̃i)2 (2.15)

2.2.2 ANN in Time series

Unlike static data, time series represent an infinite data stream which is temporarily

auto-correlated. This type of data is used in several different areas, such as commu-

nications, weather forecast, seismic analysis, electrical demand forecast and others.

ANNs can be used to forecast, analyse, regress, and generate a time series. This

work generates appliance time series based on an unique whole-building time series.

In terms of input-to-output, an ANN model for sequential data can be defined

in four different ways: one-to-one, one-to-many, many-to-one, and many-to-many

models. A one-to-one model predicts a data point for each one it reads, while a one-

to-many model will generate more than one data point for each input. Many-to-one

and many-to-many models, on the other hand, use points in the vicinity to predict

one or many points in the time series. Using features from a time instant after the

current output timestamp configures a noncausal model, which can be undesirable.

Recurrent Neural Networks

It is possible to train an MLP model with a time series, but it does not necessarily

acknowledge sequential correlation, and it only accepts fixed-sized vectors as inputs

and outputs. Recurrent Neural Networks (RNN) address those issues with a state

vector ht, which stores all previous inputs. The state vector equation is given by Eq.

(2.16), where tanh is the hyperbolic tangent over all vector dimensions, Whh is a

learnable state weight matrix, and Whx is a learnable input-to-state weight matrix.

Bias vectors are not shown for simplicity.

h0 = 0

ht = tanh (Whhht−1 + Whxxt) (2.16)

With Eq. (2.16), an RNN learns how important its previous inputs are and

stores them. This is the main feature of an RNN and ensures that the model is able

to learn the time series’ temporal correlation. The weight matrices are initialized

with random numbers, just like an MLP and are optimized via a backpropagation

through time algorithm [38]. It is also possible to stack layers of RNN cells and
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create deep models, if activation functions that do not let gradients to vanish are

used.

RNNs tend to have problems in learning when relevant information is too distant

in time, as discussed by [39]. This happens because Gradient Descent becomes

inefficient, it can oscillate, go to infinity or vanish, and the training phase is affected.

To avoid this issue LSTM was introduced by [40]. This neural network introduces

a new memory cell (Ct) and three new gate units that help to forget (ft), store (it),

and propagate to the output ot information. As seen in Eqs. (2.18) to (2.19), all

of the gates use the same principle. They use learnable weight matrices, an input

vector, and a state vector in order to output a number in between (0, 1) along each

feature dimension.

ft (xt,ht−1) = σ (Wfhht−1 + Wfxxt) (2.17)

it (xt,ht−1) = σ (Wihht−1 + Wixxt) (2.18)

ot (xt,ht−1) = σ (Wohht−1 + Woxxt) (2.19)

The new memory cell Ct stores hidden information through time in the LSTM

cells. A forget gate ft can erase this cell state, or diminish its importance through the

cells, while an input gate it manages storage of new information into it. Equation

(2.21) shows how a memory cell in an LSTM cell works. The symbol � represents

an element-wise multiplication.

‹Ct = tanh (Wchht−1 + Wcxxt) (2.20)

Ct = ft �Ct−1 + it � ‹CT (2.21)

The output of an LSTM cell is given by Eq. (2.22). The output gate ot analyses

the last output and the new input to set the output. More on the subject can be

seen in [41].

ht = ot � tanh (Ct) (2.22)

Another variation of an RNN is called Gated Recurrent Unit (GRU) [42]. It

uses two gates instead of three in the LSTM. Those gates are called update gate ut

and reset gate rt (Eq. (2.24)). The update gate is used to decide how much of the

older information will be retained, while the reset gate forgets older information if

needed.
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ut (xt,ht−1) = σ (Wuhht−1 + Wuxxt) (2.23)

rt (xt,ht−1) = σ (Wrhht−1 + Wrxxt) (2.24)

As seen in Eq. (2.26), the reset gate is used when computing a hidden output

h̃t, which has a desired amount of past information. The update gate is used to

choose how much past information ht−1 or h̃t the output xt has.

h̃t = tanh (Whxxt + rt �Whhht−1) (2.25)

ht = ut � ht−1 + (1− ut)� h̃t (2.26)

Temporal Convolutional Networks

Temporal Convolutional Networks (TCN) show better results for time series mod-

eling than RNN [43]. Those networks are Convolutional Neural Networks (CNN)

applied to data with temporal correlation, they are also named 1D Convolutional

Networks, because they use convolutions along only one dimension, although its in-

puts and outputs can have multiple dimensions. A comprehensive tutorial of CNNs

can be found in [44].

Recent best practices in TCN include the use of causal and dilated convolutions

and residual connections. Dilated convolutions are layers that improve the receptive

field of the output by skipping input values at a specific interval, thus applying a

filter over a larger area than it would usually do. A receptive field from a standard

causal convolution would be given by R = L+K− 1, where R is the receptive field,

L is the number of layers and K is the kernel size.

In contrast, stacked dilated convolutions, where each layer has the dilation dou-

bled starting from 1, have a receptive field given by 2L+1−1 [45] for K = 2. Dilation

is related to strides and pooling, as they skip some time steps to compute the convo-

lution, but dilated convolutions return a same-sized window as output, while stride

and pooling are used to downsample windows. Dilated kernels are multiplied by

a mask with zeros, which defines data points to be skipped, in order to return a

same-sized window.

The name causal convolution comes from layers that use causal padding, where

output at time t does not depend on input at time t + 1, in other words, the

layer only uses previous time-steps to make its prediction p(xt+1|x1, . . . , xt). Causal

padding is implemented by left padding D · (K − 1) zeros to the layer input, where

D is the dilation rate. There are residual and skip connections which speed up

training convergence and enable deep models by connecting spatially distant layers,
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and improving gradient flow through the network, thus disabling gradient vanishing

problems.

BAI et al. [43] list some advantages in comparison with RNNs models. Among

the advantages, we highlight: (1) parallelism – an RNN must wait for the previous

output, while a TCN can simultaneously process all entries of an input vector, (2)

configurable receptive field size – it is possible to configure a desirable receptive field

during modeling phase, while in RNNs it is not, and (3) less memory requirement

– as the number of cells, and thus gates of an LSTM, increases, the use of memory

also increases, while in TCNs the weights are shared inside layers and, in practice,

use less memory than RNNs. Moreover, [43] shows that TCN retains information

for longer sequences than LSTM and GRU, even though RNNs can theoretically

retain information for an indefinite amount of time. Due to those advantages, we

use WaveNILM – a TCN model – to compare it with FHMM in an industrial load

disagreggation setting.

ANN in NILM

KELLY e KNOTTENBELT [14] use LSTM in their work with NILM and compare

it with CNN models. They claim that LSTM does not perform well for multi-state

appliances, probably because of how events can be separated by more than 1000

time steps, and LSTM yields overall error greater than their CNN implementations.

DO NASCIMENTO [20] trains an LSTM model, alongside GRU [42] and CNN

models. In his work, LSTM is outperformed by all other models, and GRU yields

the best results.

2.3 Factorial Hidden Markov Models

Another widely used method in time series processing is called HMM. It is defined as

a non-observable stochastic process inside a stochastic process [46]. All states in an

HMM are hidden and are a probabilistic function of an output, which is observable.

In other words, for an HMM, we observe a stochastic process {Yt}t≥0 that is linked

to a hidden Markov Chain {St}t≥0, where t ∈ Z+. A first-order Markov chain is a

sequence of states where the state at time t only depends on the state at time t− 1.

When applied to NILM, every appliance is modeled as an HMM and its internal

states are modeled as Markov Chains. PARSON et al. [15] model several household

appliances into HMMs to solve NILM, and assume that every step change in the

whole-building aggregate power is an observation from the sequence of an appliance

changing state. This method does not consider multiple simultaneous step changes

from different individual appliances. Figure 2.5 shows an HMM representation.
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St−1 St St+1

Yt−1 Yt Yt+1

Figure 2.5: HMM representing a single device. Circumferences are hidden states
while squares are observable outputs.

As the number of appliances in a building increases, the probability of multiple

simultaneous step changes increases, and in certain circumstances they are expected,

for example a factory that turns on all machines at the same time of the day.

Factorial Hidden Markov Models (Modelos Ocultos Fatoriais de Markov, FHMM)

(Fig. 2.6) in NILM [16] address this issue by considering every observed output as

an additive function of different hidden step changes of appliances. On an FHMM

[47] each appliance is modeled as an independent HMM and the output of each

model is added to generate the observable output. Each appliance, therefore, runs

independently and simultaneously.

St−1 St St+1

Yt−1 Yt Yt+1

St+1StSt−1

+ + +

St+1StSt−1

···

···

···

···

Device 1

Device 2

Device M

Figure 2.6: Representation of an FHMM with M devices. The output Yt is the sum
of all inner HMM outputs.
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Chapter 3

Data set

In this chapter, we present the data set IMDELD [1], which is used to train, validate

and test the models implemented for this work. Several NILM data sets [48–54] are

available publicly. They are usually time series of electrical features of appliances

and circuits collected with the principal purpose of training and testing NILM al-

gorithms. As NILM is an umbrella term for different approaches of appliance load

disaggregation from buildings, all those data sets have different settings such as

measured features, sampling rate, and how many buildings they refer to. Table

3.1 shows these differences. All of them have different duration of data collection,

ranging from seconds to years.

Table 3.1: Some publicly available NILM data sets and their differences. LF stands
for low frequency and HF for high frequency, while V is voltage, I is current, P is
active power, Q is reactive power, S is apparent power, E is active energy and THD
is total harmonic distortion.

Data set Features Sampling rate Buildings Appliances
IMDELD [1] V, I, P, Q, S, E 1 Hz 1 8
REDD - LF [48] P 1 Hz 6 24
REDD - HF [48] V, I 16.500 Hz 2 0
UK-Dale - HF [49] P 16.000 Hz 3 0
UK-Dale - LF [49] P 0,1667 Hz 5 up to 52
GREEND [50] P 1 Hz 8 9
BLUED [51] V, I 12.000 Hz 1 43
WHITED [52] I 44.000 Hz 1 46
COOLL [53] V, I 100.000 Hz 1 42
Dataport [55] V, P, S, THD 1 Hz +1000 +70

WHITED [52], and COOLL [53] are data sets of appliances and do not have

whole-building measurements. Out of all the cited [48–54] data sets, only WHITED

has some industry appliances including a treadmill, two soldering irons, a sewing

machine, a jigsaw, and a bench grinder. However, those are all from light industry

environments and do not count as heavy machinery. The rest is focused on residential

16



appliances like fridges, air conditioners, electric ovens, and computers. As part of

the project, IMDELD was collected specifically for this work. The author found no

other publicly available data set with industry machinery.

3.1 Factory

As stated above, IMDELD is a public data set; therefore, we have to take some

notes on privacy concerns. The factory accepted having their electrical signature

shared for the only purpose of advancing research in NILM or correlated areas. The

company decided to share this data anonymously. In this way, we will not give

details that could violate their right to stay unidentified.

Eleven energy meters collected the data in a poultry feed factory in the state

of Minas Gerais, in Brazil. Its process is the same all year round, working from

Mondays through Fridays, and occasionally on Saturdays, which happens when the

set monthly target is not met. It has three daily rotating shift work hours, from

22:00 to 17:00, because electricity prices are higher from 17:00 to 22:00 and the

factory closes.

The factory produces poultry ration with corn or soybeans and added nutrients.

The food is milled and mixed to create a homogeneous paste before going to a

machine that creates pellets out of those. During its work hours, the factory works

at full-scale producing as many pellets as possible.

All of that makes the electrical consumption of the factory consistent and gener-

ally independent of the day, even during holidays at workdays it is at least partially

open. The local energy provider sells medium voltage (13.4 kV) energy to the fac-

tory. This energy supply is connected to a local substation that transforms medium

voltage to low voltage (380 V) and connects it to four different Low Voltage Distri-

bution Board (LVDB).

Each LVDB provides energy to a specific area inside the factory: one (LVDB-

1) for lights and administration-related appliances, the second (LVDB-2) for

pelletizing-related machinery, the third (LVDB-3) for milling-related machinery, and

the last one (LVDB-4) for general production-related machinery. Figure 3.1 shows

this relationship.

Sub-circuits under an LVDB are connected via a four-wire three-phase system

(one for ground and the others for phases A, B, and C). All motors connected to

LVDB-2 and LVDB-3 were assembled from 1998 to 2008 and are three-phase Direct

Current (DC) motors. The motors are responsible for the most considerable amount

of energy consumption in each of these two sub-circuits. The three-phase system is

well-balanced, creating at most a 5% power difference between each phase.

There are two types of appliances under the LVDB-2 circuit: pelletizers and
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MV/LV Transformer

LVDB-1 LVDB-2 LVDB-3 LVDB-4

Administration Pelletizer Mill
General

production

Figure 3.1: Factory circuits. MV/LV Transformer stands for Medium-Voltage/Low-
Voltage Transformer. MV/LV Transformer is the main site circuit, located at the
factory substation.

exhaust fans. Under the LVDB-3 there are milling machines and exhaust fans.

The general production-related LVDB supplies energy mainly to the belt conveyor

system and also to the maintenance related-machinery. The second and third LVDBs

account for up to 80% of the total energy consumption of the factory, as they supply

the largest machines.

It is important to note that DC motors inject much inductive reactive energy

into the grid. To prevent fines from the energy provider, the factory has a passive

capacitor bank inside the substation. It is said to be passive because it is always

connected to the grid, thus not disconnected when the motors are turned off. This

bank sets a capacitive constant in reactive power at all time.

3.2 Hardware

The hardware used to measure every appliance and circuit in this data set is a

GASM-B [56]. It is a three-phase meter that connects via Wi-Fi to the internet

and sends the data collected to GreenAnt’s database. It can save up to 30 days of

measurements if it has no internet connection. This was very useful on the industrial

site, as the connection was not always available due to remoteness of the region. A

picture of a GASM-B can be seen in Fig. 3.2.

GASM-B uses up to three Current Transformer (CT)s to collect current data

from electrical conductors and a four-wired connector to collect the electric poten-

tial difference from different phases. The meter samples current and voltage at

8 kSamples/sec to compute active power, reactive power, apparent power, active

energy, and reactive energy. This data is then downsampled to 1 Hz and stored

as a package of RMS voltage, RMS current, active power, reactive power, apparent

power, active energy, and reactive energy in the internal memory. Every ten seconds,

it sends a package of measurements to the Wi-Fi connection. As internet is unstable
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in the region, the data was sent directly to an on-site server and later uploaded to

our remote server when the internet was available.

Figure 3.2: Picture of a GASM-B and three CTs.

3.3 Installation

This project had access to eleven meters for data acquisition; hence this was the

limit of appliances and circuits that could be measured. In order to analyze the most

critical circuits, it was decided to install meters in LVDB-2, LVDB-3 and before the

MV/LV. This decision was chosen due to the importance of both sub-circuits to the

factory. Figure 3.3 shows that one out of LVDB-1 or LVDB-4 can consume more

mean active power than the LVDB-3.

Installing the meter before the MV/LV Transformer means that the data col-

lected directly refers to the supply from the energy provider, at 13.8 kV voltage.

As the main input for the disaggregation models, the meter before the MV/LV

Transformer is considered the site meter. Figure 3.4 shows an example of power

consumption measured from the site meter.

Besides the site meter, other two meters were installed in the circuits LVDB-2 and

LVDB-3. Those can be used as both input and output for the disaggregation models.

In NILM, they can be seen as outputs if it is interesting to know the energy and power

consumption of a whole factory sector. All machines under LVDB-2 and LVDB-3

work at 380 V and 60 Hz, and not all machines were chosen for measurement, only

those asked by the factory.

This leaves eight meters to be allocated by appliances. Under LVDB-2, the

appliances measured are PI, PII, EFI, EFII, DPI, and DPII. All of them usually

turn on together, although not at the same time as a measurement to prevent

fines on high power consumption. Double-pole contactors are important contactors

inside the sub-circuit, and the factory asked GreenAnt to measure them. Current
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LVDB-2

49.0%

LVDB-3

19.7%

LVDB-1+LVDB-4

31.3%

Figure 3.3: Percentage of average active power demand over the measurement time
interval of LVDBs 2 and 3 in comparison with other LVDBs under the MV/LV
Transformer.
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Figure 3.4: Power consumption measured from the site meter (meter before the
MV/LV Transformer). Timestamps are in MM-DD HH format (month-day hour).
Negative reactive power means capacitive reactive power, while positive means in-
ductive. (Reprinted with permission from MARTINS et al. [23])
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consumption on each pelletizer can reach up to 1000 A, and an electrical engineer

had to install the CT on the pelletizer’s energy supply, as seen in Fig. 3.5.

Figure 3.5: Installation of a current transformer by an electrical engineer on an
appliance energy supply.

The last two meters were set at the last 12 days of measurement under the LVDB-

3, as they were only available for installation during those days. They measured both

MI and MII. All eight appliances measured are used for the ground-truth analysis

of the disaggregation models; all measured circuits and appliances by meters can

be seen in Fig. 3.6. Samples were collected from December 11th 2017 at 18:43:52

UTC until April 1st 2018 at 21:33:17 UTC, or roughly 111 days. This interval means

that MI and MII only have measurements from about the last 10.81% of the total

measurement time.

MV/LV Transformer

LVDB-2 LVDB-3

PI PII EFI EFII DPI DPII

MI MII

Figure 3.6: Diagram showing measured circuits and appliances. Yellow block stands
for site-meter, gray blocks stand for LVDBs, and green blocks stand for appliances.
Only the site-meter and appliances were set for load disaggregation.
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3.4 Details

Some further details can be examined with the collected data. Figures 3.7, 3.8, 3.9,

3.11, 3.12 were generated with NILMTK [8] python module.

Figure 3.7 shows a two-day time frame from March 31st 2018 to April 2nd 2018,

of active power demand from all meters in the factory. Although it was previously

written that the factory does not work from 17h00 to 22h00, March 31st was a

Saturday, so the factory probably had to work extra hours to achieve a production

target. This example shows an atypical day during the week, in which the factory

worked on full scale from 07h00 until 04h00. Here only the active power for each

meter is shown because all of the time-series features have high correlation with

the active power, as all of them are created from the sampled current and voltage

waveforms.

03-31 00
03-31 06

03-31 12
03-31 18

04-01 00
04-01 06

04-01 12
04-01 18

04-02 00

Time

0

50000

100000

150000

200000

250000

300000

350000

Po
we

r (
W

)

MV/LV Transformer
LVDB-2
Pelletizer I
Pelletizer II
Double-pole Contactor I
Double-pole Contactor II
Exhaust Fan I
Exhaust Fan II
LVDB-3
Milling Machine I
Milling Machine II

Figure 3.7: Active power from all meters from 2018-03-31 to 2018-04-02. Timestamp
is defined in month-day hour format.

The time when each appliance and circuit demands active power from the net-

work is shown in Fig. 3.8. As the meter responsible for collecting data from the

MV/LV transformer had to be installed on the factory substation and at a 13.8 kV

electric tension, it demanded greater care in comparison with other circuits and ap-

pliances to be installed. This attention delayed its installation until December 11th

2017. On the other hand, the data set has measurements from LVDB-2, PI, PII,

DPI, DPII, EFI, and EFII since October 30th 2017, as it was possible to install the

meters on the first factory visit. The last three meters were installed on February
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19th 2018 to collect LVDB-3, MI, and MII.

Looking when MV/LV transformer had gaps in this chart displays when data

were lost due to internet connectivity or meter malfunction. Gaps in sub-meters

(appliances or sub-circuits) can also correspond to work-free days instead of internet

or meter malfunction. This chart is essential to know where are time frames without

data loss.

Figure 3.8: Overview of time intervals in which each circuit or appliance consumes
energy. Timestamp is defined in year-month format.

Figure 3.9 shows the active power pairwise Pearson correlation between each

measured circuit and appliance from February 23rd 2018 until the last measure-

ment. It is interesting to notice how appliances inside the same circuit have a high

correlation. This correlation happens because appliances connected in the same cir-

cuit are usually working at the same time, and the circuit itself is the sum of all

appliances. Correlations between two sub-measurements of different circuits (one

from LVDB-2 and another from LVDB-3) are not as high, lying on a range from

0.58 to 0.67. This information is interesting to show us how those two LVDBs are

isolated from each other, WaveNILM was first trained in LVDB-2 and later fine-

tuned in LVDB-3. DPII is the least correlated machine with all other appliances,

this impacts the results of both WaveNILM and FHMM in load disaggregation, as

it does not follow the same signature as MV/LV Transformer a hundred percentage

of the time. Pelletizers have high influence in the energy consumption of the whole
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factory, as seen in Fig. 3.11, thus it is expected that they would have the highest

correlation with the site-meter, but interestingly enough, DPI has a high correlation

as well, showing that it probably has an electrical signature similar to pelletizers.
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Pelletizer II
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Milling Machine I

Milling Machine II
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0.82 0.67 0.65 0.64 0.65 0.60 0.64 0.64 1.00 0.99 0.99
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Figure 3.9: Pairwise active power correlation between each measured circuit and
appliance. This heatmap represents only the days when all appliances had measures,
more specifically from 2018-02-23 until the end.

Figure 3.10 shows the pairwise Pearson correlation between each measured fea-

ture in the MV/LV transformer. As expected, every feature is highly correlated

with each other besides the voltage. The voltage has a low correlation with the

other features because it stays highly stable while current and power fluctuate. It

also has a negative Pearson correlation index, and this can probably be explained by

the high current consumption, thus changing cable resistance and causing voltage

to decrease.

Considering only appliances, the pie chart in Fig. 3.11 displays the percentage,

of total appliance energy consumption measured, that each appliance consumes.

This percentage shows how pelletizers are the biggest consumers, while the other

appliances consume only 9.8% of all energy consumption. This trend can be further

viewed in Tab. 3.2.

Table 3.2 shows how each appliance works when they are turned on. The PI,

PII, MI, MII power consumption is two orders of magnitude above the power con-

sumption of EFI, EFII, DPI and DPII. The double-pole contactors are the smallest

consumers, followed by the exhaust fans, then milling machines, and finally the

pelletizers. Each type of appliance has its distinctive reactive power consumption,
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Figure 3.10: Pairwise correlation between each feature of the MV/LV transformer
circuit.
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Figure 3.11: Percentage of overall energy consumption corresponding to each appli-
ance.
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and also that voltage is somewhat stable across each device. Histograms of each

appliance during ON time can be seen in Appendix A.

Figure 3.12 shows the autocorrelation RXX(τ) = E [XtXt+τ ] measured from the

MV/LV Transformer active power demand. As τ increases, RXX decreases. After

263 lag points (τ), RXX is below 0.5. Each lag point is a second, so it takes 4 minutes

and 23 seconds to set signal autocorrelation below 0.5. This analysis is important

to set a window size for training convolutional neural networks and is explained in

the last part of Sec. 4.2.
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Figure 3.12: MV/LV Transformer autocorrelation versus data points lag.
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Chapter 4

Method

This chapter describes the method to disaggregate industrial heavy machinery loads

from total factory energy consumption studied in this thesis. First, in Sec. 4.1, we

talk about the frameworks used, then Sec. 4.2 shows how the data set described

in Chap. 3 is applied throughout the models. In Sec. 4.3, the implementation of

WaveNILM is given in details.

4.1 Frameworks

FHMM and WaveNILM implementations use different frameworks. The python

module NILMTK1 [8] has one FHMM algorithm implementation, and it was chosen

as the FHMM used in the code, this would guarantee that it is the same one used

in other research efforts like [16]. WaveNILM was implemented in Keras [7] based

on WaveNet [57].

NILMTK is a python module designed to aid comparing disaggregation algo-

rithms, and it is useful because it has a collection of algorithms like FHMM and

standard accuracy metrics implemented. It also has documentation that helps writ-

ing new disaggregation algorithms, metrics and data set importers. It uses NILM

Metadata [58], which defines classes and relationships between classes for NILM data

sets. The IMDELD data set was transformed to be compatible with NILMTK using

NILM Metadata schema. The original data set in CSV format and the transformed

data set in HDF5 format can be downloaded at [1].

4.2 Training, validation and test sets

For WaveNILM and FHMM, the data set was divided into three different sets: a

training set, a validation set and a test set. The validation set was used to choose

1https://github.com/nilmtk/nilmtk/
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the best model. The test set was fixed before the training and was only shown to

the models after validation; the results shown in the present text are generated with

the test set.

FHMM models every appliance at the same iteration and, to make sure that

an FHMM is trained and validated with at least 85% of the MI and MII data, the

test set size is fixed at the last 15% of LVDB-3 data. This means that the test set

starts at the timestamp 2018-04-01 16:17:21-03:00 and includes data until the last

measurement. Table 4.1 defines each set for FHMM training. The test set used is

shown in Fig. 4.1. The FHMM implementation in NILMTK always receives active

power as input and output; this is in accordance with other works that used this

method for load disaggregation.

Table 4.1: Training, validating and test sets for FHMM models. All timestamps are
in UTC.

Set Start End Pct of data
Training 2017-12-11 16:43:52 2018-03-30 17:16:34 92.78%
Validating 2018-03-30 17:16:35 2018-04-01 13:17:20 3.96%
Test 2018-04-01 13:17:21 2018-04-03 15:48:47 3.26%

04-0
1 00

04-0
1 12

04-0
2 00

04-0
2 12

04-0
3 00

04-0
3 12

Time

0

50000

100000

150000

200000

250000

300000

350000

Po
we

r (
W
)

MV/LV Transformer
Pelletizer I
Pelletizer II
Double-pole Contactor I
Double-pole Contactor II
Exhaust Fan I
Exhaust Fan II
Milling Machine I
Milling Machine II

Figure 4.1: Test set used for the FHMM and WaveNILM results.

Instead of trying to model every appliance at the same time, WaveNILM learns

only one device per model. In this manner, there are eight groups of training,

validating and testing sets; each group is used to generate a different WaveNILM

model. So there are eight different specialized deep learning models, one for each

appliance. Each group consists of features that share the same timestamp for the

MV/LV Transformer and the desired appliance. The neural networks use current
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and voltage from the MV/LV Transformer as inputs, while the active power from

the appliance is used as a target. As shown in Fig. 3.10, active power and current

are highly correlated, while voltage is mildly negative correlated with the other two.

RMS current and RMS voltage are chosen as input features as they are readily

available and they can create the RMS apparent power, by multiplying both, thus

yielding a third indirect feature. Active power is decided to be the output as it is

the most important feature according to the factory.

The test set for all appliances is chosen to be the same as the one used in the

FHMM model, while the rest of the data is used for training and validation. PI,

PII, DPI, DPII, EFI, and EFII use the interval from 2017-12-11 16:43:52 to 2018-

04-01 13:17:16 for training and validation, while MI and MII use the interval from

2018-02-19 19:52:28 to 2018-04-01 13:17:16.

After selecting a group, the data selected for training and validation is divided

into seven folds. WaveNILM model training is thus repeated seven times. For each

iteration, a different fold is chosen as a validation set, and the other six are merged

as the training set. This folding was done in order to provide information on how

the model changed according to the training set. The validation set is used to find

the best-trained model.

Means (µ) and standard deviations (σ) are computed from the training set for

each feature and then used in the normalization of the model input, as show in Eq.

(4.1). Voltage is normalized with µV = 6743 V and σV = 50 V, while current is

normalized with µI = 30 A and σI = 24 A. Targets are not normalized in this

setting.

z =
x− µ
σ

(4.1)

WaveNILM models evaluate windows of 1024 normalized samples with two fea-

tures – current and voltage – and output a 1024 window of active power from the

modeled appliance. This widows size was decided based on Fig. 3.12, as in a win-

dow of 1024 samples there is still meaningful correlation in between timestamps. If

the total number of seconds of a set is not a multiple of 1024, the last seconds are

removed until it became one such multiple. PI, PII, DPI, DPII, EFI, and EFII are

trained with 2677 samples and evaluated with 446 window samples. Five hundred

forty-seven (547) windows are available for MI and MII training and validation. All

sets are shuffled before training and validation. The test set has 121 windows used

in the final evaluation of the models.
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4.3 WaveNILM implementation

Another approach to the NILM problem is to use deep neural networks, as shown

in residential data by KELLY e KNOTTENBELT [14], ZHANG et al. [18] and

MORGAN [21]. WaveNILM is a deep learning model based on Google DeepMind

WaveNet [57]. WaveNet was developed to generate raw audio waveform, and is used

on several sub-fields inside audio generation such as text-to-speech, music generation,

voice conversion and source separation. Load disaggregation can be seen as an

appliance-load generation based on site meter data, therefore it relates to source

separation using an audio waveform generator model like WaveNet.

WaveNILM, like WaveNet, is a deep learning model for time series, thus it uses

temporal convolutions (also called 1D convolutions). It uses three types of temporal

convolutions: 1 × 1 convolutions (or 1D convolutions with kernel size 1), causal

convolutions, and dilated causal convolutions. 1D convolutions with kernel size 1

are used to permute channels and set outputs with the desired channel size. Figure

4.2 shows the general flowchart of the model, and Fig. 4.3 details a WaveNet block.

If we count that B blocks are used on WaveNet, then the receptive field equation is

given by Eq. (4.2).

R = B · 2L+1 −B + 1 (4.2)
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Figure 4.2: WaveNILM model based on DeepMind Wavenet [57]. Reprinted with
some modifications and permission from [23]. A σ represents a sigmoid function.

Eight deep models are trained in the present work. Each model is trained to

disaggregate one specific machine inside the factory. One model is pre-trained on
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Figure 4.3: A detailed version of the implemented WaveNet block, also used in
WaveNILM.

the PI machine for a hundred epochs. It is then fine-tuned for all seven remaining

appliances, thus creating the other seven models, for twelve epochs. This pre-trained

model increases model convergence speed, with some appliances leading to conver-

gence at the sixth epoch. PI is chosen as the pre-training machine for other appli-

ances, because it has the most extensive data set and the most significant impact on

the factory energy consumption. Other machines were tested for pre-training input,

but besides MI and MII, which have fewer examples and worse results, they yield

similar validation loss. All models are trained with Adam optimization algorithm

and MAE loss function. The log file created for this setting with further informa-

tion can be seen in Appendix C. Appendix B shows charts with all training and

validation losses.

General hyper-parameters used for all models can be seen in Tab. 4.2. Each

causal convolution, including the ones with dilated padding, uses 32 kernels with

2 weights, 1 × 1 convolutions use 32 kernels of size 1 followed by linear activation

functions, and the output 1× 1 convolution is a kernel of size 1 with ReLU activa-

tion. The models have five stacks of four dilation depth layers, meaning that each

stack has five WaveNet blocks with five stacked layers with dilation 0, 1, 2, 4, and 8,

respectively, which yields a 156-seconds receptive field for each time step at the

output, according to Eq. (4.2). A 156-seconds window has 0.68 ≤ RXX(τ) ≤ 1.00,

according to Fig. 3.12, between each data point and a lag τ .
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Table 4.2: WaveNILM hyper-parameters.

Hyper-parameter Value
Number of stacks 5
Number of filters 32
Dilation depth 4
Window size 1024
Number of epochs 100
Loss function MAE
Optimization Adam

4.4 Metrics

After choosing each model from a fold based on MAE computed at the validation,

the trained models are validated according to four different metrics computed over

the test set: NDE, SAE, F1, and again with MAE. Equations (4.3), (4.4), and

(4.9) describe them, with yi and ŷi, i = 1, . . . , N being elements of the target and

predicted signals respectively. MAE is explained in Section 2.2.1.

NDE, as the name says, indicates how well disaggregated the signal is. It reduces

outlier influence at the target, and it can be used to choose a model that mimics

well a target signature. SAE is a normalized discrepancy on energy estimations; it

is especially useful if the total appliance consumption throughout a window is more

important than the signal signature. Both NDE and SAE lie within the interval

[0,∞), where the values closer to zero are better and values above 1.0 are considered

extremely bad.

NDE =

∑N
1 (ŷi − yi)2∑N

1 y
2
i

(4.3)

SAE =

∣∣∣∑N
1 ŷi −

∑N
1 yi

∣∣∣∑N
1 yi

(4.4)

F1-Score is related to test accuracy in binary classification. Target and predicted

signals are transformed into binary signals following Eq. (4.5), and they are then

used in the logical functions shown in Eqs. (4.6), (4.7), and (4.8), where TP is

true positives, FN is false negatives, and FP is false positives. Equation (4.5) is

computed over the entire test set, instead of a window of 1024 data points. The aim

is to verify if the model correctly classifies timestamps at which the appliances are

ON or OFF. It is seen as a percentage of time during which the machine is correctly

classified as turned ON or OFF. F1 is bounded in [0, 1], where the closer to 1, the
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fewer the false events.

b (y) =

ON, if yi >
∑N

1 yi
N

OFF, else
(4.5)

TP = b(ŷ) ∧ b(y) (4.6)

FN = ¬b(ŷ) ∧ b(y) (4.7)

FP = b(ŷ) ∧ ¬b(y) (4.8)

F1 =
2 · TP

2 · TP + FN + FP
(4.9)
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Chapter 5

Results

The main results can be seen in Tab. 5.1. The FHMM and WaveNILM model

comparison is based on F1, NDE, SAE, MAE values. It is possible to note how

FHMM modeled EFI, EFII, DPI, and DPII appliances poorly. As seen in Figs. 5.1

to 5.16, appliances poorly modeled by FHMM switch states at almost every time

step, thus inflicting low scores in F1 and high errors in NDE, SAE, and MAE. This

poor modeling is probably due to the low power consumption they use, comparing

to other appliances, as seen in Sec. 3.4. The pelletizers and milling machines

are so important in the factory active power consumption that the electric noise

that each of them generates is higher than the sum of the other appliances active

power consumption. As FHMM only uses active power in its model inference – in its

NILMTK implementation –, it might not have the necessary information to properly

separate each appliance from the site meter active power consumption. Although

the milling machines consume much active power, they are the appliances with the

smallest number of available data points, which may have have impacted on how

FHMM learns their signatures and states.

WaveNILM, on the other hand, uses current and voltage as inputs and has a high

capability of learning time-series features. This difference results in less degradation

for the smaller appliances such as DPI, EFI and EFII. The milling machines are

also less affected by the smaller amount of data points available for training, in

comparison to the number of points available for FHMM inference. F1-Score shows

that WaveNILM correctly infers, more often than the FHMM model, when each

appliance is turned ON or OFF. Milling machines (seen in Figs. 5.15 and 5.16) active

power oscillates during working hours, and the WaveNILM predicts this oscillation

with 93.0± 0.9 and 93.8± 0.5 F1-Score. Table 5.1 presents that WaveNILM models

have small variation regarding training/validation fold.

Figures 5.9 to 5.16 help visualize how WaveNILM accurately predicts each ap-

pliance signal, including when it is turned on. We can see that noise is smoothed

in all devices. Given the highly probabilistic nature of noise, electric noise is hardly
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modeled. In the point of view of the factory, noise can have some impact on its

electric bill, especially for machines such as pelletizers, as electric noise can create

fines due to high power demand – in case of switching noise – or request a tighter

maintenance schedule. However, it does not create a serious problem with total

factory energy consumption, and this can be viewed by SAE results. Smaller SAE

is related to smoother noise.

DPII has the worst results in Tab. 5.1, and Fig. 5.12 shows that DPII model

falsely predicts double-pole contactors signals in between time steps 2 × 104 and

6 × 104, but if we compare it with Fig. 5.11, then we can see that DPI is working

at the same moment when DPII predicts it. Thus models do learn how to predict

types of appliances and not individual appliances, even though the model DPII was

never trained with DPI targets.

FHMM also yields its worst results while predicting DPII appliance. Neverthe-

less, unlike in the WaveNILM case, Figs. 5.3 and 5.4 show us both predictions

are visually equally wrong, with many oscillations, and DPII gets worse scores and

errors because it is OFF during more time steps than DPI, while both predicted

signals are on 50% of the window frame. Those scores do not show up on other

appliances, because only DPII seems to work differently during this test window.

If we analyze SAE, and thus the total energy consumption during this time frame,

WaveNILM has less than 9% error on most appliances, while FHMM has at least 20%

error for each non-pelletizer device. WaveNILM best-modeled appliances according

to SAE are EFI and EFII with 0.9%± 0.6% and 1.1%± 0.5%. If we compare these

numbers with Figs. 5.13 and 5.14, we conclude that models predict the switching-

state peaks well, and that low noise from the devices have some correlation with

the low SAEs. In comparison, the WaveNILM pelletizer models do not predict

any switching peak occurrence during this time frame, and get 2% ± 0.3% and

3.7% ± 0.4% errors. This trend is not exposed by NDE, and pelletizers models

achieve better results than the exhaust fans models.

MAE cannot be compared explicitly for different appliances, but we can com-

pare WaveNILM with FHMM models. Table 5.1 shows us that, for each appliance,

WaveNILM has lower MAE than FHMM. If we compare this MAE column with

Tab. 3.2, then we can see that WaveNILM models result in MAE compatible with

the standard deviation of each appliance except for DPII.
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Figure 5.1: Pelletizer I FHMM model target and predicted signals. Results: F1:
97.38; NDE: 0.040; SAE: 0.042; MAE: 4372
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Figure 5.2: Pelletizer II FHMM model target and predicted signals. Results: F1:
96.39; NDE: 0.063; SAE: 0.091; MAE: 6089
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Figure 5.3: Double Pole Contactor I FHMM model target and predicted signals.
Results: F1: 74.09; NDE: 0.424; SAE: 0.326; MAE: 463
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Figure 5.4: Double Pole Contactor II FHMM model target and predicted signals.
Results: F1: 57.85; NDE: 0.626; SAE: 0.521; MAE: 576
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Figure 5.5: Exhaust Fan I FHMM model target and predicted signals. Results: F1:
79.75; NDE: 0.378; SAE: 0.182; MAE: 1070
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Figure 5.6: Exhaust Fan II FHMM model target and predicted signals. Results: F1:
78.38; NDE: 0.393; SAE: 0.200; MAE: 2008
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Figure 5.7: Milling Machine I FHMM model target and predicted signals. Results:
F1: 76.71; NDE: 0.335; SAE: 0.433; MAE: 14608
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Figure 5.8: Milling Machine II FHMM model target and predicted signals. Results:
F1: 75.83; NDE: 0.286; SAE: 0.337; MAE: 11746
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Figure 5.9: Pelletizer I WaveNILM model target and predicted signals.
Results: F1: 98.27± .005; NDE: 0.024±0.001; SAE: 0.020±0.003; MAE: 3015±63
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Figure 5.10: Pelletizer II WaveNILM model target and predicted signals.
Results: F1: 97.42 ± 0.006; NDE: 0.0369 ± 0.0009; SAE: 0.037 ± 0.004; MAE:
4034± 47
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Figure 5.11: Double Pole Contactor I WaveNILM model target and predicted signals.
Results: F1: 97.17± 0.04; NDE: 0.053± 0.004; SAE: 0.07± 0.02; MAE: 79± 8

0 20000 40000 60000 80000 100000 120000
Time (s)

0

200

400

600

800

1000

1200

1400

Ac
tiv

e 
Po

we
r (

W
)

Double-pole Contactor II
Target
Predicted

Figure 5.12: Double Pole Contactor II WaveNILM model target and predicted sig-
nals. Results: F1: 75.72±0.05; NDE: 0.68±0.04; SAE: 0.66±0.05; MAE: 286±14
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Figure 5.13: Exhaust Fan I WaveNILM model target and predicted signals. Results:
F1: 98.30± 0.03; NDE: 0.0483± 0.0006; SAE: 0.009± 0.006; MAE: 135± 1
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Figure 5.14: Exhaust Fan II WaveNILM model target and predicted signals. Results:
F1: 98.1± 0.3; NDE: 0.049± 0.007; SAE: 0.011± 0.005; MAE: 248± 27
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Figure 5.15: Milling Machine I WaveNILM model target and predicted signals.
Results: F1: 93.0± 0.9; NDE: 0.11± 0.02; SAE: 0.08± 0.05; MAE: 4317± 428
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Figure 5.16: Milling Machine II WaveNILM model target and predicted signals.
Results: F1: 93.8± 0.5; NDE: 0.078± 0.004; SAE: 0.06± 0.02; MAE: 3154± 159
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Chapter 6

Conclusion

This work presents a new data set and a new attention-based model inspired by

WaveNet called WaveNILM. It then compares WaveNILM to a standard FHMM

model implemented by [8]. Both models are trained and tested using the data set

presented here. The WaveNILM model shows that it is possible to replicate industry

machinery electrical signature with only site-meter voltage and current, without

using an event-based NILM approach or modeling each appliance as state machines.

This result is possible because of the high capability of TCNs to model time-series

signals. The factory also accepted to make the IMDELD data set publicly available

for free at [1], which can be a great help for future investigations on the field. In

this chapter, we present some conclusions and future works.

This work shows that the use of TCNs in NILM for industrial machines is an

improvement in contrast with FHMM models. Also, the first public heavy-machinery

data set for NILM is presented and detailed. Unfortunately, it was impossible to

collect data from more factories, so all models are tested on an intra-building level.

This means that these models are not verified to work on other industries, and the

models may have represented the data with local overfit. When used in this specific

scenario, this can be beneficial; if models stop disaggregating their appliances, then

it is a sign that something has happened on the factory: a machine may have been

turned permanently off, or it is malfunctioning.

WaveNILM achieve better results in all measurements when compared with de-

fault FHMM implemented by NILMTK. Based on DPI and DPII analysis, Wave-

NILM seems to learn and predict types of appliances instead of unique devices. This

modeling implies that if two equal machines work at different time schedules, then

one of them or both might not be adequately disaggregated. FHMM has results

comparable to WaveNILM for machines with high load and a significant amount of

data, but the low energy consumption devices and devices with a low amount of data

are often modeled poorly. WaveNILM works well for devices with low power con-

sumption and also with a smaller amount of data compared to the other appliances,
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though the latter may have been influenced by pre-training. With pre-training,

WaveNILM models are able to train on a much bigger set of voltage/current data,

and although the models are trained from different machines, trained models that

are fined-tuned for each appliance achieves faster convergence and requires smaller

data sets for training.

HOLMEGAARD and KJAERGAARD [22] assume that we cannot properly dis-

aggregate loads with only one site-meter, and use sub-metering to achieve better

results. In this work we show that it is possible to disagreggate even small machines

(like EFI, EFII, DPI, and DPII) from the site meter. WaveNILM is capable to

predict low consumption machines from the site-meter with same error range as the

biggest and most important motors (PI and PII). Our approach does not depend

on events detectors or stable steady-states, WaveNILM models aim at simulating

a specific machine electrical signature from a site-meter, and they assume that all

machines are CVDs. In contrast, FHMM assumes that all machines are FSMs. This

can be troublesome for machines like milling machines, which do not have clearly

distinguishable states, and are constantly increasing or decreasing power as they

work.

6.1 Future work

We would like to encourage more industry data sets to be published, as it would

help validate and test more models across different factories, industry sectors and

machines. It would be interesting to find pelletizers, exhaust fans, double pole con-

tactors, and milling machines with similar power consumption in other factories, in

order to test if WaveNILM results keep consistent. It was not possible to measure

machines without the interference of other appliances. It would be interesting to

measure all those machines again in a controlled environment, where only they are

turned on for a period of time. TCNs, and Neural Networks in general, are in a

constant development state, and they should be tested in NILM applications. Wave-

NILM itself should also be tested with other topology parameters, for example, more

stacks, or different receptive field sizes. As noted within residential householders by

[59], after 52 weeks of measurements, user interest in appliance-level monitoring de-

creased by a factor of 90% average. A long-term study focusing on factory usage of

appliance-level monitoring could be carried out, in order to clarify the usefulness of

such monitoring in this sector.
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Appendix A

Histogram for all turned on

appliances in data set
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Figure A.1: Histogram of features from Pelletizer I.
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Figure A.2: Histogram of features from Pelletizer II.
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Figure A.3: Histogram of features from Double-pole contactor I.
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Figure A.4: Histogram of features from Double-pole contactor II.
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Figure A.5: Histogram of features from Exhaust Fan I.
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Figure A.6: Histogram of features from Exhaust Fan II.
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Figure A.7: Histogram of features from Milling Machine I.
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Figure A.8: Histogram of features from Milling Machine II.
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Appendix B

Training and validation loss from

WaveNILM training.
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Figure B.1: Training loss and validation loss from Pelletizer I model training.
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Figure B.2: Training loss and validation loss from Pelletizer II model training.
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Figure B.3: Training loss and validation loss from Milling Machine I model training.
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Figure B.4: Training loss and validation loss from Milling Machine II model training.

0 20 40 60 80 100
Epochs

2000

4000

6000

8000

10000

12000

14000

16000

M
AE

Exhaust Fan I
Training
Validation

Figure B.5: Training loss and validation loss from Exhaust Fan I model training.
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Figure B.6: Training loss and validation loss from Exhaust Fan II model training.
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Figure B.7: Training loss and validation loss from Double Pole Contactor I model
training.
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Figure B.8: Training loss and validation loss from Double Pole Contactor II model
training.
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Appendix C

Log file created during

WaveNILM training

Window s i z e : 1024

Number o f epochs : 100

Number o f Kfold s p l i t s : 7

S i t e mete r : MV/LV Transformer

S i t e mete r f e a t u r e s : [ ( ’ vo l tage ’ , ’ ’ ) , ( ’ current ’ , ’ ’ ) ]

Appl iances : [ ’ P e l l e t i z e r I ’ , ’ P e l l e t i z e r I I ’ , ’ Double−po le Contactor I ’ ,

’ Double−po le Contactor I I ’ , ’ Exhaust Fan I ’ ,

’ Exhaust Fan II ’ , ’ M i l l i ng Machine I ’ , ’ M i l l i n g Machine I I ’ ]

Appl iances f e a t u r e s : [ ( ’ power ’ , ’ a c t ive ’ ) ]

Loss func t i on : mae

Optimizer : Adam

Appliance : P e l l e t i z e r I on f o l d 0

− t r a i n gap : 2017−12−11T20:51:15:2017−12−11T21 : 3 5 : 3 4

− v a l i d a t i o n gap : 2017−12−11T20:43:52:2017−12−11T20 : 5 1 : 1 4

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I on f o l d 1

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 3 4

− v a l i d a t i o n gap : 2017−12−11T20:51:15:2017−12−11T20 : 5 8 : 3 8

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I on f o l d 2

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 3 4

− v a l i d a t i o n gap : 2017−12−11T20:58:40:2017−12−11T21 : 0 6 : 0 6

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I on f o l d 3

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 3 4
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− v a l i d a t i o n gap : 2017−12−11T21:06:07:2017−12−11T21 : 1 3 : 2 8

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I on f o l d 4

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 3 4

− v a l i d a t i o n gap : 2017−12−11T21:13:29:2017−12−11T21 : 2 0 : 5 0

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I on f o l d 5

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 3 4

− v a l i d a t i o n gap : 2017−12−11T21:20:51:2017−12−11T21 : 2 8 : 1 2

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I on f o l d 6

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 2 8 : 1 2

− v a l i d a t i o n gap : 2017−12−11T21:28:13:2017−12−11T21 : 3 5 : 3 4

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I I on f o l d 0

− t r a i n gap : 2017−12−11T20:51:20:2017−12−11T21 : 3 5 : 5 5

− v a l i d a t i o n gap : 2017−12−11T20:43:52:2017−12−11T20 : 5 1 : 1 9

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I I on f o l d 1

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 5

− v a l i d a t i o n gap : 2017−12−11T20:51:20:2017−12−11T20 : 5 8 : 4 5

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I I on f o l d 2

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 5

− v a l i d a t i o n gap : 2017−12−11T20:58:46:2017−12−11T21 : 0 6 : 1 1

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I I on f o l d 3

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 5

− v a l i d a t i o n gap : 2017−12−11T21:06:12:2017−12−11T21 : 1 3 : 3 7

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I I on f o l d 4

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 5

− v a l i d a t i o n gap : 2017−12−11T21:13:38:2017−12−11T21 : 2 1 : 0 3

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I I on f o l d 5

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 5

− v a l i d a t i o n gap : 2017−12−11T21:21:04:2017−12−11T21 : 2 8 : 2 9

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : P e l l e t i z e r I I on f o l d 6
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− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 2 8 : 2 9

− v a l i d a t i o n gap : 2017−12−11T21:28:30:2017−12−11T21 : 3 5 : 5 5

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I on f o l d 0

− t r a i n gap : 2017−12−11T20:51:19:2017−12−11T21 : 3 5 : 5 6

− v a l i d a t i o n gap : 2017−12−11T20:43:52:2017−12−11T20 : 5 1 : 1 8

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I on f o l d 1

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 6

− v a l i d a t i o n gap : 2017−12−11T20:51:19:2017−12−11T20 : 5 8 : 4 6

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I on f o l d 2

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 6

− v a l i d a t i o n gap : 2017−12−11T20:58:47:2017−12−11T21 : 0 6 : 1 2

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I on f o l d 3

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 6

− v a l i d a t i o n gap : 2017−12−11T21:06:13:2017−12−11T21 : 1 3 : 3 8

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I on f o l d 4

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 6

− v a l i d a t i o n gap : 2017−12−11T21:13:39:2017−12−11T21 : 2 1 : 0 4

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I on f o l d 5

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 6

− v a l i d a t i o n gap : 2017−12−11T21:21:05:2017−12−11T21 : 2 8 : 3 0

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I on f o l d 6

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 2 8 : 3 0

− v a l i d a t i o n gap : 2017−12−11T21:28:31:2017−12−11T21 : 3 5 : 5 6

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I I on f o l d 0

− t r a i n gap : 2017−12−11T20:51:16:2017−12−11T21 : 3 5 : 3 9

− v a l i d a t i o n gap : 2017−12−11T20:43:52:2017−12−11T20 : 5 1 : 1 5

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I I on f o l d 1

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 3 9

− v a l i d a t i o n gap : 2017−12−11T20:51:16:2017−12−11T20 : 5 8 : 3 9

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00
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Appliance : Double−po le Contactor I I on f o l d 2

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 3 9

− v a l i d a t i o n gap : 2017−12−11T20:58:40:2017−12−11T21 : 0 6 : 0 3

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I I on f o l d 3

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 3 9

− v a l i d a t i o n gap : 2017−12−11T21:06:04:2017−12−11T21 : 1 3 : 2 7

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I I on f o l d 4

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 3 9

− v a l i d a t i o n gap : 2017−12−11T21:13:28:2017−12−11T21 : 2 0 : 5 1

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I I on f o l d 5

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 3 9

− v a l i d a t i o n gap : 2017−12−11T21:20:52:2017−12−11T21 : 2 8 : 1 5

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Double−po le Contactor I I on f o l d 6

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 2 8 : 1 5

− v a l i d a t i o n gap : 2017−12−11T21:28:16:2017−12−11T21 : 3 5 : 3 9

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I on f o l d 0

− t r a i n gap : 2017−12−11T20:51:19:2017−12−11T21 : 3 5 : 5 4

− v a l i d a t i o n gap : 2017−12−11T20:43:52:2017−12−11T20 : 5 1 : 1 8

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I on f o l d 1

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 4

− v a l i d a t i o n gap : 2017−12−11T20:51:19:2017−12−11T20 : 5 8 : 4 4

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I on f o l d 2

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 4

− v a l i d a t i o n gap : 2017−12−11T20:58:45:2017−12−11T21 : 0 6 : 1 0

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I on f o l d 3

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 4

− v a l i d a t i o n gap : 2017−12−11T21:06:11:2017−12−11T21 : 1 3 : 3 6

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I on f o l d 4

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 4

− v a l i d a t i o n gap : 2017−12−11T21:13:37:2017−12−11T21 : 2 1 : 0 2
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− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I on f o l d 5

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 5 4

− v a l i d a t i o n gap : 2017−12−11T21:21:03:2017−12−11T21 : 2 8 : 2 8

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I on f o l d 6

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 2 8 : 2 8

− v a l i d a t i o n gap : 2017−12−11T21:28:29:2017−12−11T21 : 3 5 : 5 4

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I I on f o l d 0

− t r a i n gap : 2017−12−11T20:51:14:2017−12−11T21 : 3 5 : 2 0

− v a l i d a t i o n gap : 2017−12−11T20:43:52:2017−12−11T20 : 5 1 : 1 3

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I I on f o l d 1

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 2 0

− v a l i d a t i o n gap : 2017−12−11T20:51:14:2017−12−11T20 : 5 8 : 3 5

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I I on f o l d 2

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 2 0

− v a l i d a t i o n gap : 2017−12−11T20:58:36:2017−12−11T21 : 0 5 : 5 6

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I I on f o l d 3

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 2 0

− v a l i d a t i o n gap : 2017−12−11T21:05:57:2017−12−11T21 : 1 3 : 1 7

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I I on f o l d 4

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 2 0

− v a l i d a t i o n gap : 2017−12−11T21:13:18:2017−12−11T21 : 2 0 : 3 8

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I I on f o l d 5

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 3 5 : 2 0

− v a l i d a t i o n gap : 2017−12−11T21:20:39:2017−12−11T21 : 2 7 : 5 9

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : Exhaust Fan I I on f o l d 6

− t r a i n gap : 2017−12−11T20:43:52:2017−12−11T21 : 2 7 : 5 9

− v a l i d a t i o n gap : 2017−12−11T21:28:00:2017−12−11T21 : 3 5 : 2 0

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I on f o l d 0

− t r a i n gap : 2018−02−19T22:54:21:2018−02−19T23 : 0 5 : 3 5
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− v a l i d a t i o n gap : 2018−02−19T22:52:28:2018−02−19T22 : 5 4 : 2 0

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I on f o l d 1

− t r a i n gap : 2018−02−19T22:52:28:2018−02−19T23 : 0 5 : 3 5

− v a l i d a t i o n gap : 2018−02−19T22:54:21:2018−02−19T22 : 5 6 : 1 3

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I on f o l d 2

− t r a i n gap : 2018−02−19T22:52:28:2018−02−19T23 : 0 5 : 3 5

− v a l i d a t i o n gap : 2018−02−19T22:56:14:2018−02−19T22 : 5 8 : 0 6

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I on f o l d 3

− t r a i n gap : 2018−02−19T22:52:28:2018−02−19T23 : 0 5 : 3 5

− v a l i d a t i o n gap : 2018−02−19T22:58:07:2018−02−19T22 : 5 9 : 5 9

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I on f o l d 4

− t r a i n gap : 2018−02−19T22:52:28:2018−02−19T23 : 0 5 : 3 5

− v a l i d a t i o n gap : 2018−02−19T23:00:00:2018−02−19T23 : 0 1 : 5 1

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I on f o l d 5

− t r a i n gap : 2018−02−19T22:52:28:2018−02−19T23 : 0 5 : 3 5

− v a l i d a t i o n gap : 2018−02−19T23:01:52:2018−02−19T23 : 0 3 : 4 3

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I on f o l d 6

− t r a i n gap : 2018−02−19T22:52:28:2018−02−19T23 : 0 3 : 4 3

− v a l i d a t i o n gap : 2018−02−19T23:03:44:2018−02−19T23 : 0 5 : 3 5

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I I on f o l d 0

− t r a i n gap : 2018−02−19T22:54:22:2018−02−19T23 : 0 5 : 3 7

− v a l i d a t i o n gap : 2018−02−19T22:52:29:2018−02−19T22 : 5 4 : 2 1

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I I on f o l d 1

− t r a i n gap : 2018−02−19T22:52:29:2018−02−19T23 : 0 5 : 3 7

− v a l i d a t i o n gap : 2018−02−19T22:54:22:2018−02−19T22 : 5 6 : 1 4

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I I on f o l d 2

− t r a i n gap : 2018−02−19T22:52:29:2018−02−19T23 : 0 5 : 3 7

− v a l i d a t i o n gap : 2018−02−19T22:56:15:2018−02−19T22 : 5 8 : 0 7

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I I on f o l d 3

70



− t r a i n gap : 2018−02−19T22:52:29:2018−02−19T23 : 0 5 : 3 7

− v a l i d a t i o n gap : 2018−02−19T22:58:08:2018−02−19T23 : 0 0 : 0 0

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I I on f o l d 4

− t r a i n gap : 2018−02−19T22:52:29:2018−02−19T23 : 0 5 : 3 7

− v a l i d a t i o n gap : 2018−02−19T23:00:01:2018−02−19T23 : 0 1 : 5 3

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I I on f o l d 5

− t r a i n gap : 2018−02−19T22:52:29:2018−02−19T23 : 0 5 : 3 7

− v a l i d a t i o n gap : 2018−02−19T23:01:54:2018−02−19T23 : 0 3 : 4 5

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

Appliance : M i l l i n g Machine I I on f o l d 6

− t r a i n gap : 2018−02−19T22:52:29:2018−02−19T23 : 0 3 : 4 5

− v a l i d a t i o n gap : 2018−02−19T23:03:46:2018−02−19T23 : 0 5 : 3 7

− t e s t gap : 2018−04−01 13 :17 :21+00:00 : 2018−04−03 15 :48 :47+00:00

=================Means and STD===========

” P e l l e t i z e r I ” : {
”mean ” : [

6739.594822767663 ,

33.69756475642021

] ,

” std ” : [

51 .17050304268481 ,

23.82871894031847

]

} ,

” P e l l e t i z e r I I ” : {
”mean ” : [

6740.168183499572 ,

33.441182036036984

] ,

” std ” : [

51 .36374825760136 ,

23.88174982691653

]

} ,

”Double−po le Contactor I ” : {
”mean ” : [

6740.162164253307 ,
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33.446267619833215

] ,

” std ” : [

51 .358292778354134 ,

23.88155212711967

]

} ,

”Double−po le Contactor I I ” : {
”mean ” : [

6740.3341079415095 ,

33.42896490937573

] ,

” std ” : [

51 .35046354326173 ,

23.910003450832395

]

} ,

”Exhaust Fan I ” : {
”mean ” : [

6740.1638060896585 ,

33.443767671038664

] ,

” std ” : [

51 .36427418425424 ,

23.88201536430618

]

} ,

”Exhaust Fan I I ” : {
”mean ” : [

6739.9998979686925 ,

33.59945378261505

] ,

” std ” : [

51 .30972999555064 ,

23.879451350676955

]

} ,

” Mi l l i n g Machine I ” : {
”mean ” : [
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6741.2522288269065 ,

34.084129110700374

] ,

” std ” : [

50 .04662160612179 ,

22.93584371361278

]

} ,

” Mi l l i n g Machine I I ” : {
”mean ” : [

6741.299658712319 ,

34.061662761187655

] ,

” std ” : [

50 .04364615483314 ,

22.930161463857242

]

}
}
=================Scores on Test Set================

==========P e l l e t i z e r I==========

F1 Score : mean : 98 . 277985 , std : 0 . 050698

NDE: mean : 0 . 023953 , std : 0 . 001329

SAE: mean : 0 . 020778 , std : 0 . 003172

MSE: mean :91387035 .324848 , std :5071199 .557461

MAE: mean :3015 .271739 , std : 63 .403069

====================

==========P e l l e t i z e r I I==========

F1 Score : mean : 97 . 426203 , std : 0 . 056077

NDE: mean : 0 . 036899 , std : 0 . 000905

SAE: mean : 0 . 037623 , std : 0 . 003866

MSE: mean :126397885 .455240 , std :3098862 .570705

MAE: mean :4034 .629246 , std : 46 .871800

====================

==========Double−po le Contactor I==========

F1 Score : mean : 97 . 165256 , std : 0 . 040858

NDE: mean : 0 . 052699 , std : 0 . 004678

SAE: mean : 0 . 072961 , std : 0 . 023182

MSE: mean :33946 .848171 , std :3013 .086460
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MAE: mean :79 . 755762 , std : 8 . 441514

====================

==========Double−po le Contactor I I==========

F1 Score : mean : 75 . 719913 , std : 0 . 046713

NDE: mean : 0 . 682095 , std : 0 . 041950

SAE: mean : 0 . 663258 , std : 0 . 048234

MSE: mean :305482 .955720 , std :18787 .608793

MAE: mean :285 . 977601 , std : 13 .561529

====================

==========Exhaust Fan I==========

F1 Score : mean : 98 . 296734 , std : 0 . 026845

NDE: mean : 0 . 048336 , std : 0 . 000579

SAE: mean : 0 . 009735 , std : 0 . 006441

MSE: mean :313101 .836834 , std :3749 .034802

MAE: mean :134 . 853799 , std : 1 . 384034

====================

==========Exhaust Fan I I==========

F1 Score : mean : 98 . 112254 , std : 0 . 308573

NDE: mean : 0 . 049312 , std : 0 . 006959

SAE: mean : 0 . 011347 , std : 0 . 005710

MSE: mean :915141 .160972 , std :129153 .730853

MAE: mean :247 . 828238 , std : 27 .127936

====================

==========M i l l i n g Machine I==========

F1 Score : mean : 93 . 017162 , std : 0 . 884479

NDE: mean : 0 . 110613 , std : 0 . 015437

SAE: mean : 0 . 079064 , std : 0 . 047207

MSE: mean :86333084 .235863 , std :12048630 .796999

MAE: mean :4317 .012515 , std :428 .572732

====================

==========M i l l i n g Machine I I==========

F1 Score : mean : 93 . 771856 , std : 0 . 518441

NDE: mean : 0 . 078719 , std : 0 . 004145

SAE: mean : 0 . 060303 , std : 0 . 022049

MSE: mean :66722245 .061129 , std :3513088 .121908

MAE: mean :3154 .172028 , std :159 .196058

====================

=================ALL Scores on Test Set================

==========P e l l e t i z e r I==========
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−−−−−−F1 Score−−−−−−
Fold 0 :98 .364813

Fold 1 :98 .243309

Fold 2 :98 .311877

Fold 3 :98 .316503

Fold 4 :98 .265508

Fold 5 :98 .212417

Fold 6 :98 .231469

−−−−−−NDE−−−−−−
Fold 0 :0 . 022815

Fold 1 :0 . 023567

Fold 2 :0 . 023336

Fold 3 :0 . 022635

Fold 4 :0 . 023685

Fold 5 :0 . 026762

Fold 6 :0 . 024869

−−−−−−SAE−−−−−−
Fold 0 :0 . 023007

Fold 1 :0 . 018743

Fold 2 :0 . 020942

Fold 3 :0 . 016217

Fold 4 :0 . 018874

Fold 5 :0 . 026848

Fold 6 :0 . 020815

−−−−−−MSE−−−−−−
Fold 0 :87045160 .748986

Fold 1 :89915357 .874667

Fold 2 :89032917 .564497

Fold 3 :86358324 .949354

Fold 4 :90366621 .566992

Fold 5 :102105978 .498630

Fold 6 :94884886 .070812

−−−−−−MAE−−−−−−
Fold 0 :2947 .199466

Fold 1 :3001 .769835

Fold 2 :2973 .522337

Fold 3 :2957 .903211

Fold 4 :3013 .048114

Fold 5 :3134 .616171
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Fold 6 :3078 .843036

==========P e l l e t i z e r I I==========

−−−−−−F1 Score−−−−−−
Fold 0 :97 .474984

Fold 1 :97 .463913

Fold 2 :97 .481957

Fold 3 :97 .308752

Fold 4 :97 .411470

Fold 5 :97 .443972

Fold 6 :97 .398370

−−−−−−NDE−−−−−−
Fold 0 :0 . 036167

Fold 1 :0 . 036067

Fold 2 :0 . 036172

Fold 3 :0 . 038205

Fold 4 :0 . 037025

Fold 5 :0 . 038300

Fold 6 :0 . 036361

−−−−−−SAE−−−−−−
Fold 0 :0 . 040758

Fold 1 :0 . 038615

Fold 2 :0 . 035922

Fold 3 :0 . 034001

Fold 4 :0 . 035130

Fold 5 :0 . 045158

Fold 6 :0 . 033779

−−−−−−MSE−−−−−−
Fold 0 :123890018 .191987

Fold 1 :123545697 .080437

Fold 2 :123906166 .793013

Fold 3 :130868654 .244972

Fold 4 :126827860 .781097

Fold 5 :131194594 .916342

Fold 6 :124552206 .178830

−−−−−−MAE−−−−−−
Fold 0 :4010 .031500

Fold 1 :3982 .504964

Fold 2 :3986 .667176

Fold 3 :4098 .552108
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Fold 4 :4030 .464167

Fold 5 :4109 .194757

Fold 6 :4024 .990048

==========Double−po le Contactor I==========

−−−−−−F1 Score−−−−−−
Fold 0 :97 .196639

Fold 1 :97 .146875

Fold 2 :97 .161176

Fold 3 :97 .212400

Fold 4 :97 .212377

Fold 5 :97 .130674

Fold 6 :97 .096647

−−−−−−NDE−−−−−−
Fold 0 :0 . 048841

Fold 1 :0 . 050924

Fold 2 :0 . 052692

Fold 3 :0 . 048007

Fold 4 :0 . 056214

Fold 5 :0 . 049882

Fold 6 :0 . 062333

−−−−−−SAE−−−−−−
Fold 0 :0 . 058274

Fold 1 :0 . 058028

Fold 2 :0 . 062996

Fold 3 :0 . 052462

Fold 4 :0 . 096092

Fold 5 :0 . 063281

Fold 6 :0 . 119598

−−−−−−MSE−−−−−−
Fold 0 :31461 .799130

Fold 1 :32803 .471118

Fold 2 :33942 .264968

Fold 3 :30924 .551814

Fold 4 :36210 .907507

Fold 5 :32132 .093094

Fold 6 :40152 .849570

−−−−−−MAE−−−−−−
Fold 0 :73 .962445

Fold 1 :74 .949926
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Fold 2 :77 .843094

Fold 3 :72 .463883

Fold 4 :87 .544691

Fold 5 :74 .527468

Fold 6 :96 .998825

==========Double−po le Contactor I I==========

−−−−−−F1 Score−−−−−−
Fold 0 :75 .803204

Fold 1 :75 .699780

Fold 2 :75 .708381

Fold 3 :75 .728771

Fold 4 :75 .758456

Fold 5 :75 .696205

Fold 6 :75 .644595

−−−−−−NDE−−−−−−
Fold 0 :0 . 665503

Fold 1 :0 . 636510

Fold 2 :0 . 708206

Fold 3 :0 . 766733

Fold 4 :0 . 670684

Fold 5 :0 . 638028

Fold 6 :0 . 688998

−−−−−−SAE−−−−−−
Fold 0 :0 . 648095

Fold 1 :0 . 608482

Fold 2 :0 . 693342

Fold 3 :0 . 758896

Fold 4 :0 . 654190

Fold 5 :0 . 609650

Fold 6 :0 . 670152

−−−−−−MSE−−−−−−
Fold 0 :298052 .304643

Fold 1 :285067 .550158

Fold 2 :317177 .257856

Fold 3 :343389 .174538

Fold 4 :300372 .658141

Fold 5 :285747 .088198

Fold 6 :308574 .656508

−−−−−−MAE−−−−−−
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Fold 0 :280 .067812

Fold 1 :272 .656938

Fold 2 :293 .251724

Fold 3 :314 .923788

Fold 4 :281 .433690

Fold 5 :273 .191576

Fold 6 :286 .317681

==========Exhaust Fan I==========

−−−−−−F1 Score−−−−−−
Fold 0 :98 .255080

Fold 1 :98 .292897

Fold 2 :98 .300477

Fold 3 :98 .319429

Fold 4 :98 .308748

Fold 5 :98 .336285

Fold 6 :98 .264220

−−−−−−NDE−−−−−−
Fold 0 :0 . 049344

Fold 1 :0 . 047993

Fold 2 :0 . 047528

Fold 3 :0 . 047838

Fold 4 :0 . 048409

Fold 5 :0 . 048353

Fold 6 :0 . 048887

−−−−−−SAE−−−−−−
Fold 0 :0 . 022423

Fold 1 :0 . 005505

Fold 2 :0 . 004332

Fold 3 :0 . 007877

Fold 4 :0 . 008620

Fold 5 :0 . 003464

Fold 6 :0 . 015928

−−−−−−MSE−−−−−−
Fold 0 :319633 .826175

Fold 1 :310879 .886210

Fold 2 :307868 .357065

Fold 3 :309873 .487466

Fold 4 :313575 .610831

Fold 5 :313211 .254058
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Fold 6 :316670 .436036

−−−−−−MAE−−−−−−
Fold 0 :137 .355420

Fold 1 :135 .113573

Fold 2 :133 .906015

Fold 3 :133 .162215

Fold 4 :133 .587535

Fold 5 :134 .696039

Fold 6 :136 .155798

==========Exhaust Fan I I==========

−−−−−−F1 Score−−−−−−
Fold 0 :98 .226027

Fold 1 :98 .239368

Fold 2 :97 .357728

Fold 3 :98 .236218

Fold 4 :98 .249196

Fold 5 :98 .270640

Fold 6 :98 .206604

−−−−−−NDE−−−−−−
Fold 0 :0 . 046634

Fold 1 :0 . 046366

Fold 2 :0 . 066322

Fold 3 :0 . 046208

Fold 4 :0 . 046269

Fold 5 :0 . 045911

Fold 6 :0 . 047476

−−−−−−SAE−−−−−−
Fold 0 :0 . 003079

Fold 1 :0 . 011479

Fold 2 :0 . 023522

Fold 3 :0 . 009916

Fold 4 :0 . 008283

Fold 5 :0 . 011383

Fold 6 :0 . 011770

−−−−−−MSE−−−−−−
Fold 0 :865438 .408164

Fold 1 :860458 .880435

Fold 2 :1230814 .334351

Fold 3 :857528 .585428
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Fold 4 :858657 .214349

Fold 5 :852019 .768703

Fold 6 :881070 .935374

−−−−−−MAE−−−−−−
Fold 0 :243 .893851

Fold 1 :232 .808257

Fold 2 :313 .548953

Fold 3 :232 .963289

Fold 4 :238 .668617

Fold 5 :232 .734240

Fold 6 :240 .180457

==========M i l l i n g Machine I==========

−−−−−−F1 Score−−−−−−
Fold 0 :93 .344865

Fold 1 :93 .418797

Fold 2 :93 .913605

Fold 3 :90 .970136

Fold 4 :93 .166269

Fold 5 :92 .875529

Fold 6 :93 .430934

−−−−−−NDE−−−−−−
Fold 0 :0 . 105497

Fold 1 :0 . 110912

Fold 2 :0 . 104278

Fold 3 :0 . 147189

Fold 4 :0 . 096568

Fold 5 :0 . 105897

Fold 6 :0 . 103949

−−−−−−SAE−−−−−−
Fold 0 :0 . 066685

Fold 1 :0 . 076103

Fold 2 :0 . 089949

Fold 3 :0 . 186421

Fold 4 :0 . 033569

Fold 5 :0 . 044204

Fold 6 :0 . 056519

−−−−−−MSE−−−−−−
Fold 0 :82339968 .525655

Fold 1 :86566334 .539304
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Fold 2 :81389115 .802078

Fold 3 :114880905 .649382

Fold 4 :75371106 .664862

Fold 5 :82652413 .161698

Fold 6 :81131745 .308059

−−−−−−MAE−−−−−−
Fold 0 :4154 .214175

Fold 1 :4230 .803073

Fold 2 :4164 .139675

Fold 3 :5349 .229647

Fold 4 :3966 .167607

Fold 5 :4197 .197773

Fold 6 :4157 .335652

==========M i l l i n g Machine I I==========

−−−−−−F1 Score−−−−−−
Fold 0 :94 .088053

Fold 1 :93 .812420

Fold 2 :94 .140369

Fold 3 :93 .824317

Fold 4 :92 .605349

Fold 5 :94 .286381

Fold 6 :93 .646102

−−−−−−NDE−−−−−−
Fold 0 :0 . 075681

Fold 1 :0 . 085463

Fold 2 :0 . 076664

Fold 3 :0 . 073826

Fold 4 :0 . 079735

Fold 5 :0 . 075716

Fold 6 :0 . 083946

−−−−−−SAE−−−−−−
Fold 0 :0 . 053724

Fold 1 :0 . 085843

Fold 2 :0 . 069798

Fold 3 :0 . 041024

Fold 4 :0 . 020336

Fold 5 :0 . 066366

Fold 6 :0 . 085032

−−−−−−MSE−−−−−−
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Fold 0 :64147592 .007647

Fold 1 :72438926 .845482

Fold 2 :64980608 .183700

Fold 3 :62575235 .962060

Fold 4 :67583608 .267814

Fold 5 :64176806 .237862

Fold 6 :71152937 .923341

−−−−−−MAE−−−−−−
Fold 0 :2999 .143837

Fold 1 :3218 .910360

Fold 2 :3071 .122201

Fold 3 :3026 .586988

Fold 4 :3295 .295094

Fold 5 :3018 .063967

Fold 6 :3450 .081748
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