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O objetivo do presente trabalho é estudar a interação distorcional-global (D-G) 

em colunas de perfis de aço formados a frio (PFF) com secção U enrijecido (Ue), com 

relação ao comportamento estrutural e resistência. Alguns estudos sobre o tópico têm sido 

desenvolvidos na literatura, entretanto a interação D-G não é bem conhecida e precisa de 

atenção. Para a análise elástica de flambagem, um software denominado FStr Computer 

Application Program é criado. O aplicativo é desenvolvido com base no método das 

faixas finitas, com foco em uma interface fácil e amigável. O programa FStr gera os 

modos de flambagem e insere como imperfeição inicial no software de elementos finitos 

ANSYS, objetivando efetuar analise não-linear física e geométrica. Tanto o programa 

FStr, quanto o modelo em elementos finitos, são validados com exemplos numéricos e 

experimentos em escala real. Além disso, para o comportamento estrutural e 

determinação da carga última, são gerados caminhos de estabilidade, provenientes da 

analise não-linear, com diferentes combinações dos modos global e distorcional como 

imperfeição inicial. A combinação dos modos de flambagem como alternativa para a 

imperfeição inicial ajuda a compreensão do comportamento da interação D-G, o qual é 

difícil prever com uma análise de flambagem elástica. Os resultados para o estudo da 

combinação dos modos mostraram que, para aço com alta tensão de escoamento, a 

imperfeição inicial com o modo global apresentou a menor carga última. Adicionalmente, 

o estudo paramétrico variando o comprimento da coluna demonstrou que a equação da 

resistência à compressão axial nominal da flambagem global, já presente nas normas, é 

suficiente para considerar o efeito do fenômeno D-G. 
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The goal of the present research is the distortional-global (D-G) buckling 

interaction of cold-formed steel (CFS) lipped channel (LC) columns, in its buckling, 

structural behavior and strength nature. Some studies on this topic have been conducted 

in the literature, however, the D-G interaction is not well known and needs more attention. 

For an elastic buckling analysis, a software entitled FStr Computer Application Program 

is developed. The application is based on the Finite Strip Method, mainly focused in a 

simple and accessible interface. The FStr program generates the modal shapes and insert 

as initial geometric imperfections in the finite element software ANSYS, in order to 

perform a geometric and material nonlinear analysis. Both, the FStr program and the finite 

element model are validated with available numerical examples and laboratory tests from 

the literature. Moreover, for the structural behavior and column strength, it is carried out 

stability paths from previous nonlinear analysis, for different combination of initial 

geometric imperfection of global and distortional modes. The buckling mode 

combination as initial geometric imperfection helps to understand the D-G buckling 

interaction, which is difficult to predict with a simple elastic buckling analysis. The results 

of the initial imperfection combination have shown that, for high yielding steel, the global 

initial geometric imperfection provides the most detrimental ultimate load. Additionally, 

a parametric study varying the column’s length have shown that the nominal axial 

strength for global buckling equation, already in the standards, is enough to cover the D-

G coupled phenomenon. 
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����,� Critical distortional buckling stress (second model) 
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 Introduction 
______________________________________________________________________ 

In the past few decades, steel cold-formed steel members have taken their place in 

the construction industry due to their high structural efficiency. In this chapter, some 

background, applications and current design codes about cold-formed steel structures are 

presented. Additionally, the motivation of this research, aligned with the objectives is 

introduced. The chapter ends with an outline of what the reader should expect in the next 

chapters. 

1.1 Background 

The major task of structural engineers is to design low-cost and safe solutions. 

Thus, saving weight on the structure will lead to solution with less material consumption 

and, consequently, a better economical option. Under these circumstances, light steel 

construction enables cost savings within the superstructure as well as in the substructure 

and foundation. Choosing thin-walled steel members may be a frequent option due to less 

material consumption, engineering design and architectural concepts. However, light 

gauge steel members are slender structures, which  present additional stability problems, 

Batista [1]. 

The use of steel structural members is directly associated with a vast range of 

advantages, according to CBCA [2]. First of all, in terms of architectural design, the 

design projects in steel are more flexible during restoration, give a higher usable area and 

allow more freedom to develop modern architectural concepts. With respect to project 

management, it means a shorter execution time and a cleaner construction site, as a result 

of an industrialized system. The fact of being a manufactured product enables more 

compatibility with other materials and constructions technologies. Additionally, in terms 

of accuracy of the structure, it has a higher quality standard, which provides more reliable 

structural systems. Last but not least, it is a sustainable alternative, with 100% of 

recyclable material. 
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More specifically, thin-walled cold-formed steel members are structural options 

with a high efficiency, which means they have a large strength-to-weight ratio. As 

reported by Hancock [3], this structural alternative consists of bending flat sheets at 

ambient temperature into shapes that will sustain more than the flat sheets themselves. 

They have been produced for over a century since the primary flat steel sheets were 

manufactured by the steelworks. However, in recent years, higher strength materials and 

a broader range of structural applications have triggered a significant growth in cold-

formed steel relative to the normal heavier hot-rolled steel structures. 

The use of cold-formed steel structures has been growing fast, mainly in the 

industry. Figure 1.1 illustrates a representative example of application of cold-formed 

steel members in the construction of a wholesaler. According to the owner of the patented 

roofing system, MARKO [4], the Poupaki Atacadista establishment has an area of 7,843 

m², located in the city of Guarulhos, state of São Paulo, Brazil, and it was launched in 

April 2019. Their roofing system, called Roll-on, is a patented product for large-scale 

constructions, that involves a set of cold-formed steel sections, in order to give a larger 

range of usable area without a column. The Roll-on system is manufactured as an 

industrial product, where the factory unit produces all the cross-section elements with all 

the roles pre-defined. Then, all the members are transported to the construction site, where 

all pieces are assembled.  

 

Figure 1.1. Roll-on roofing system from MARKO Sistemas Metalicos, consisted of cold-formed steel 
members, illustrated in the construction of Poupaki wholesaler, located in the city of Guarulhos, 

São Paulo, Brazil [4]. 
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Cold-formed steel (CFS) members are composed of thin-walled sections, forming 

very slender structural systems easily susceptible to buckling, obliging designers to deal 

with the complexity of the phenomenon and requiring research development to allow 

structural solution with simple equations. In terms of design procedures, these structural 

design equations are still under constant adjustments. The current codes, Brazilian 

standard ABNT NBR 14762:2010 [5], Australian/New Zealand code AS/NZS 4600 [6] 

and North-American standard AISI S100-16 [7], have been changing their designing 

approaches over the past decades. The need of constant modifications on the design 

procedures, due to the semi-empirical procedures, obliges laboratory experimental 

campaigns combined with accurate numerical solutions in order to calibrate the equations 

and procedures. 

1.2 Motivation 

The most widely applied design method for cold-formed steel structures is the 

Direct Strength Method, DSM. This method became so widespread attributable to its 

simplicity and accuracy in identifying the ultimate load of CFS members. However, the 

available equations of the method have some breaches. Heretofore , the current standards 

(e.g. ABNT NBR 14762:2010 [5], AS/NZS 4600 [6] and AISI S100-16 [7]), adopt the 

direct strength method considering only local, distortional, global and local-global 

buckling interaction design procedure. Nevertheless, further coupled buckling 

phenomena are not addressed, i.e. local-distortional, distortional-global, local-

distortional-global and global-global buckling interaction. The motivation of this research 

is to comprehend the distortional-global interaction in order to propose a new direct 

strength method solution that contemplate the coupled phenomenon. 

In the future, it is expected that the contribution of this research becomes useful 

for the development of general solution taking into account all the possible buckling 

modes interaction. In this case, the design approach should be efficient with respect to 

take into account all the possible failure events. 

1.3 Objectives 

The purpose of this work is to investigate the distortional-global coupled 

phenomenon in cold-formed steel lipped channel columns. More specifically, it is focused 
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on the phenomenon behavior and the column strength under different types of initial 

imperfections and the column slenderness, which can be achieved with appropriate 

variations of the columns’ length and steel yield stress. Additionally, the obtained results 

of the strength of the columns under DG buckling interaction are compared with design 

procedures found in the literature.  

In order to accomplish the main objective, this research offers: (i) elastic buckling 

analysis of CFS columns, using a suitable finite strip method computer application 

program developed by the author; (ii) non-linear analysis using a finite element model to 

acquire numerical data of the post-buckling behavior and the ultimate load of the 

columns; (iii) parametric study of columns under different types of initial geometric 

imperfection combination and different types of distortional-global buckling interaction. 

1.4 Outline 

2 Literature Review: The current chapter provides   the reader with all the 

necessary literature background for the next chapters. First, the reader will understand 

some fundamentals of structural stability associated with thin-walled structures. 

Additionally, a formulation is shown for the finite strip method for the elastic buckling 

analysis. Sequentially, the coupled instability phenomenon is presented, with focus on the 

distortional-global interaction concepts. Finally, the chapter ends with analytical 

procedures, design approaches and the state-of-the-art associated with the couple 

phenomenon, mainly about the distortional-global interaction; 

3 FStr - Computer Application Program: Here is present a finite strip method 

program, entitled FStr. The program is implemented in MATLAB and performs an elastic 

buckling analysis of thin walled structures. A graphical user interface is designed, with 

the purpose of provide a useful and easy tool to perform an elastic buckling analysis. 

Additionally, the section presents different types of validations, comparing with other 

programs, a finite element method and analytical procedures; 

4 Numerical Modeling: This chapter presents a finite element model description. 

The finite element model is used with assistance of ANSYS Mechanical APDL, and the 

analysis is addressed to detect the post-buckling behavior and strength of a structural 

element, using shell finite element analysis. The model is validated with laboratory tests, 

of columns experiencing global and distortional buckling mode; 
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5 Parametric Analysis on Distortional-Global Buckling Interaction: In this 

chapter, a parametric study is accomplished, with assistance of the FStr Computer 

Application Program and the finite element software ANSYS. The non-linear analysis is 

performed with initial imperfection given by the developed program. Through the non-

linear analysis, it is determined the ultimate strength and stability paths, in order to 

understand the distortional-global buckling interaction behavior. More specifically, it is 

conducted a study of lipped channel cold-formed steel columns with different 

combinations of initial imperfections, yield stress and lengths, under distortional-global 

coupled phenomenon; 

6 Concluding Remarks: Summary of important remarks about the present study 

is exposed in this chapter; 

7 Bibliography: All the references cited in this research is presented in this 

chapter; 

APPENDIX A: This section presents the analytical solutions of some integrals 

considered in the finite strip method; 

APPENDIX B: This appendix provides some post-buckling equilibrium paths of 

columns from the study of initial imperfection combination; 

APPENDIX C: Here is presented only tables with modal participation, critical 

loads, slenderness factors, ultimate load and nominal axial strength from the columns 

studied on the distortional-global buckling interaction nature. 

 

Section Finish, next page 

 

 



 Literature Review 
______________________________________________________________________ 

Some fundamentals of structural stability associated with thin-walled structures 

are presented, in order to support the concepts that are required for the next chapters. 

Additionally, in this chapter, a formulation for the finite strip method for the elastic 

buckling analysis is shown. With this formulation, it is possible to determine the elastic 

critical load associated with a critical buckling mode. Also, the coupled instability 

phenomenon is presented, with focus on the distortional-global interaction concepts. 

Finally, the chapter ends with design procedures and the state-of-the-art associated with 

the couple phenomenon, mainly concerning the distortional-global interaction. 

2.1 Fundamentals of Structural Stability  

In general, the perception of an unstable structure can be identified by anyone. It is 

not necessary to be a structural engineer to assume that. Basically, this perception is 

already deep-seated in our consciousness and it can be defined as a structural instability, 

in which a small variation of the load applied to the unstable structure will lead to a 

considerable change in the displacement configuration. Assuming that this change in 

displacement is considerable large in a critical element of the integrated structure, then, 

this member instability might induce local or global structural collapse. The study of the 

mechanics of unstable structures is a singular subspace of the engineering mechanics that 

requires relevant attention to design safe structures, Galambos and Surovek [8]. 

According to Galambos and Surovek [8], structural instability occurs in the 

presence of compressive stress in a plate element, e.g. in the part of a cross-section of a 

beam or column. In an isolated structural element, the following can occur: (i) a local 

instability, which is associate with an instability of a single fraction of the element (e.g. 

local web buckling of a steel beam); (ii) and/or the member instability, which is related 

to an instability of the entire isolated structural element (e.g. buckling of a diagonal 

brace). Between these two instability cases, the entire member instability has a high 
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probability to collapse the structural system and this system instabilities are generally 

catastrophic. 

As reported by Alexander Chajes [9], slender columns are mostly subjected to a 

behavior commonly characterized as buckling. This behavior occurs when a certain load 

is reached, causing large deformations after a small increase of loading. The load 

characterizing this behavior is called critical load. Due to that critical phenomenon, this 

load is used as a reference for design criterion. 

In order to better understand the fundamental concepts of stability an example of 

the behavior of a simple structural system is illustrated in Figure 2.1, by a perfect spring-

bar system. 

The spring-bar system in Figure 2.1 is composed of a vertical rigid bar of length, 

�, with an elastic spring restraining at one of the bar extremities. At the other extremity a 

conservative compressive axial load � is applied. Since the bar is rigid, when the load � 

is increased, the bar tends to rotate, as it is shown in Figure 2.1. 

To detect the critical load of the spring-bar system, it is necessary to find the load 

that when applied to the structure, causes it to cross from a stable to an unstable state. 

Graphically, this critical load can be determined at a bifurcation point. Figure 2.2 shows 

the path performed by the increasing load, until it reaches the critical load versus the angle 

of rotation  of the rigid bar. 

 

Figure 2.1. Structural model of a perfect spring-bar system [8]. 
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Note in Figure 2.2 that the critical load is defined at a bifurcation point, which is 

delimitated by a stable and unstable equilibrium path. The unstable equilibrium for the 

spring-bar system can be divided into two possible paths. The upper path is reached when 

increasing the force � with no lateral displacement. This equilibrium path exists only on 

a perfect structure, with no perturbation, therefore it is only a theoretical path. 

Generally, the stability evaluation of any system can be analyzed by different 

methods: (i) small deflection method, giving only the buckling load; (ii) large deflection 

method for a perfect structure, giving the post-buckling behavior information; (iii) large 

deflection method for an imperfect system, giving the complete stability analysis, as well 

as stiffness reduction in the proximity of the critical load.  

There are two ways to solve analytically these methods, by a static equilibrium 

method or an energy method. It will be focused on the energy method, which is used later 

to describe the finite strip method. The energy method is based on the law of conservation 

of energy1, for which a conservative system depends only on the initial and final position, 

regardless of the path performed by the work of internal and external forces. Therefore, 

according to Chajes [9], the presence of internal friction related to inelastic behavior or 

external friction would culminate in a nonconservative system. 

Based on the law of conservative energy, the total potential energy of an elastic 

system (�) is then defined as the sum of the elastic strain energy of a conservative system 

 

1 According to Chajes [9], the principle states: “A conservative system is in equilibrium if the strain 

energy stored is equal to the work performed by the external loads.” 

  

Figure 2.2. Force versus rotation of a perfect spring-bar system and the stability surface [8] and [9]. 

(A) 

(B) (C) 
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(�) plus the potential of the external forces (�). Since the total potential energy is 

stationary, the equilibrium position of a system can be reached by detecting the minimum 

or maximum of the total potential �. Figure 2.3 is illustrating a table with the three 

possible stability states (stable, unstable and neutral), using the concept of total potential 

energy. 

The state of stable equilibrium is obtained as the minimum total potential energy. 

Therefore, to change the stable state it is necessary to add energy to the system. On the 

other hand, the state of unstable equilibrium is accessed as the maximum total potential 

energy. In this case, for changing the state it is necessary a small perturbation to the 

system and energy would be released. At last, but not least, the neutral state of equilibrium 

is characterized as a situation of inflection, when it changes from stable to unstable 

equilibrium. For this state, there is no quantitative change on the total potential energy. 

 

Figure 2.3. Table illustrating the stability states the total potential energy, related to the example of 
the spring-bar system [8]. 
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In addition, Figure 2.2 shows the stability surface, representing the changing of the 

stability states, from (A) stable to (C) unstable. 

In general, structural stability analysis can be exhausting and time consuming, due 

to the system model complexity2 and the monitoring the total potential energy during the 

loading. Due to that, it might be advisable to adopt a displacement control during the 

loading, in order to find the fundamental paths before and after the bifurcation point. In 

order to show the complexity of these analyses, Figure 2.4 presents different types of 

equilibrium paths (load vs. displacement). 

Buckling of arches, cylindrical shells, and cracking of reinforced concrete are 

some examples of equilibrium paths as shown, respectively, in Figure 2.4 (a), (b) and (c). 

There are several algorithms to detect these paths, e.g. line searches, modified Newton-

Raphson method, arc-length method, where the arc-length method is the most robust of 

the non-linear methods and it is discussed in more detail in the section 4 (Numerical 

Modeling). 

 

2 i.e. adopting geometric and material nonlinearity 

Figure 2.4. Different types of equilibrium paths: (a) snap-through; (b) snap-back; (c) ‘brittle’ 
collapse; (d) ‘ductile’ collapse [10]. 

(a) 
(b) 

(c) (d) 
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2.2 The Finite Strip Method 

The present work adopts the finite strip method (FSM) for the elastic buckling 

analysis. The FSM was originally formulated by Yau Kai Cheung, honorary professor of 

The University of Hong Kong (Cheung [11]). On the other hand, it was Gregory J. 

Hancock, emeritus professor of The University of Sydney, who began using the method 

in structural elements as hot-rolled sections and cold-formed steel sections (Hancock et 

al.  [12], [13] & [14]). Hancock changed the stiffness matrix of Cheung and developed 

his own computational program, BFINST (Hancock et al. [15]), which gives the solution 

for the buckling analysis on thin-walled members with open cross sections. 

The Finite Strip Method is a particular case of the Finite Element Method (FEM). 

Briefly, the FEM uses polynomial shape functions in all directions, while the FSM uses 

polynomials shape functions in transverse direction and trigonometric shape functions in 

longitudinal direction, which satisfies the boundary conditions for the case of small 

displacements of the structural system. The main advantage in using the FSM is to reduce 

the structure’s degrees of freedom, in order to acquire performance and time consuming 

in the elastic buckling analysis. 

The FSM is an extremely useful and a more powerful tool when applied to an 

appropriate situation for a buckling analysis, when compared to the FEM. Basically, the 

FEM is a more generic, versatile and powerful method, while the FSM is more used for 

thin-walled structural models with two extremities that have a well-defined boundary 

condition, e.g. bridges, beams, columns (see Figure 2.5). Also, while the FEM uses a large 

number of equations, the FSM uses fewer number of equations, for the same model as 

discretized in FEM. In addition, the amount of information about the model that should 

be discretized on the pre-processing is denser in the FEM, which increases the probability 

of user’s error in the process of modeling. Likewise, the post-processing of the FSM is 

easier to interpret, compared to the FEM post-processing. Lastly, the FEM needs more 

computational effort and is harder to implement, while the FSM is quicker and 

straightforward to implement, Cheung [11].  
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2.2.1 Matrix Formulation 

The finite strip method formulation is based on the classical plate theory 

assumptions, which is described in detail by Timoshenko and Woinowsky-Krieger [16]. 

For this work, the computational matrix formulation is presented with the main reference 

by Cheung [11], which includes different types of finite strip model formulations (see 

Figure 2.5). According to Cheung [11], the first paper that presented the finite strip 

method was from Cheung [17] for a simply supported plate-bending rectangular strip. 

Later, in Cheung [18] the formulation was generalized, including other end-conditions. 

Some other sources are also used in the present work – i.e. Bradford and Azhari [19],  Li 

and Shafer [20], Schafer [21] and Li [22]. 

The strip element is a lower order rectangular strip with two nodal lines (LO2) as 

shown in Figure 2.6. For each strip,  the membrane strain is examined,  considering plane 

stress assumptions and the bending strain, in accordance with  Kirchoff thin plate theory 

assumptions, Cheung [11]. Due to these assumptions, each strip has 8 degrees of freedom 

and 4 degrees per nodal line. 

 

Figure 2.5. Strip discretization on typical structural models. (a) Encastred slab (plate strips). (b) 
Curved box girder bridge (shell strips). (c) Voided slab bridge (quadrilateral finite prims). (d) 

Multilayer plate (finite layers). [11] 

(a) 

(b) 

(c) 

(d) 
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The matrix formulation is first computed with the displacement field. After the 

elastic stiffness matrices for the membrane and bending actions are defined, the geometric 

stiffness matrices for membrane and bending actions are computed. Finally, the matrices 

are assembled, in order to obtain the critical loads and buckling modes, as a solution of 

an eigenvalue problem. 

The displacement field is computed in �, � and � local direction, corresponding 

to the displacements �, � and �, respectively. In order to determine the displacement in 

any region of the strip, the nodal displacements are interpolated with polynomials 

functions in the transversal direction of the strip and summations of trigonometric 

functions in the longitudinal direction of the strip. 

First, in matrix form, the displacement field inside de strip can be approximated 

by Eq. (2.1), using the nodal displacements {�}, shown in Figure 2.6-b, and the shape 

function matrix [�] (Eq. (2.2)). The displacements field for each strip, {� � �}�, is 

determined as a summation of all longitudinal terms, from 1 to � ∈ Ν. 

�
�
�
�

� = [�]{�} = �[�]�{�}�

�

���

= � �
[���]� [0]���

[0]��� [��]�
�

⎩
⎪
⎪
⎨

⎪
⎪
⎧

��

��

��

��

��

��

��

�� ⎭
⎪
⎪
⎬

⎪
⎪
⎫

�

.

�

���

 (2.1) 

 
 (a) (b) (c) 

Figure 2.6. Lower order rectangular strip with two nodal lines (LO2). (a) Strip 
discretization in a Lipped channel section. (b) Degrees of freedom on nodal lines. (c) 

External end tractions applied to the strip. [20] 
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The shape function matrix is given in the Eq. (2.2). Note that this matrix is 

composed of polynomial functions times ��, which is a trigonometric function, given in 

Table 2.1, depending on the boundary condition. 

[���]� = �

(1 − �̅)�� 0 �̅ �� 0

0 (1 − �̅)  
��

�

��
0 �̅  

��
�

��

�. 

[��]� = �(1 − 3�̅� + 2�̅�)�� �(1 − 2�̅ + �̅�)�� (3�̅� − 2�̅�)�� �(�̅� − �̅)���. 

[�]� = �
[���]� [0]���

[0]��� [��]�
�. (2.2) 

Where �̅ = � �⁄  and � is the half-wave series’ term. Observe that the shape 

function matrix [�] is assembled with the shape functions from the plane stress 

assumption (membrane action) and bending action, separately. 

The formulation of the finite strip now can be defined using the principle of 

minimum total energy3, which is shown in mathematical form by Eq. (2.8). 

�
��

�{�}
� =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

��

�{�}�

��

�{�}�

⋮

��

�{�}�

⋮

��

�{�}�⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

= {0}, �ℎ��� � = � + � (2.8) 

in which � is the total potential energy, � is the elastic strain energy stored in the body, 

� is the potential energy of external forces and {�} is the nodal displacements for all 

degrees of freedom and all terms of the series. 

 

3 According to Cheung [11], the principles states that “of all compatible displacements satisfying 

given boundary conditions, those which satisfy the equilibrium conditions make the total potential 

energy assume a stationary value” 
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Table 2.1. Trigonometric longitudinal functions (basic functions) for each boundary condition 

and each ��ℎ term of the series. 

Longiudinal Displacement Shape Basic Function 

 

S-S 

 
Y� = sin (λ� y). 

(2.3) 

 

 

C-C 

 

Y� = sin (λ� y)sin �
πy

a
�. 

(2.4) 

 

 

S-C 

 

Y� = si n�λ��� y� + �
p + 1

p
� sin �λ�y�. 

(2.5) 

 

 

F-C 

 
Y� = 1 − cos�λ���/� y�. 

(2.6) 

 

 

G-C 

 

Y� = sin�λ���/� y� sin �
πy

2a
�. 

(2.7) 

 

 

 

S: Simply Supported, C: Clamped, 
F: Free, G: Guided. 

�� = �� �⁄  

���� = (� + 1)� �⁄  

����/� = (� − 1/2)� �⁄  

 

 

Additional deformed shapes (� > 1) 

Undeformed shape 

Deformed shape � = 1 
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By definition, the strain energy of a three dimensional solid is defined by Eq. (2.9).  

� =
1

2
 �  {�}�{�} ��

�

=
1

2
� {�}�[�]�[�][�]{�} ��

�

. (2.9) 

In Eq. (2.9) {�} is the strain, compound by the sum of the bending and twisting 

curvature strain ({��}) with the normal and shear strain ({��}). Also, {�} is the stress, 

related to the strains, �� is the differential of volume, [�] is the matrix with the 

appropriate partial differentiations of the strain-displacement relationship known as the 

strain matrix and [�] is the elasticity property matrix. 

By definition, the potential energy of the external forces is defined by: 

� = − �  �
�
�
�

�

�

{�} ��
�

= − �{�}�[�]�{�} ��
�

 (2.10) 

where {�} is the vector with the external surface loading and  �� is the differential of 

area. 

Introducing Eq. (2.9) and Eq. (2.10) into Eq. (2.8) and differentiating with respect 

to {�}, leads to: 

�
��

�{�}
� = �[�]�[�][�]{�} ��

�

− �[�]�{�} ��
�

= {0}. (2.11) 

 

In matrix form, the Eq. (2.11) can be written as [�]{�}  − {�} = {0}, where [�] 

is the elastic stiffness matrix and {�} the vector with the superficial forces applied into 

the plane �� of the strip. 

Expanding the elastic stiffness matrix for all the terms of the series from 1 to �, 

we have 

[�] = �

⎣
⎢
⎢
⎢
⎢
⎢
⎡

[�]�
�[�][�]� [�]�

�[�][�]� ⋯ [�]�
�[�][�]� ⋯ [�]�

�[�][�]�

[�]�
�[�][�]� [�]�

�[�][�]� ⋯ [�]�
�[�][�]� ⋯ [�]�

�[�][�]�

⋮ ⋮ ⋱ ⋮ ⋮
[�]�

�[�][�]� [�]�
�[�][�]� ⋯ [�]�

�[�][�]� ⋯ [�]�
�[�][�]�

⋮ ⋮ ⋮ ⋱ ⋮
[�]�

� [�][�]� [�]�
� [�][�]� ⋯ [�]�

� [�][�]� ⋯ [�]�
� [�][�]�⎦

⎥
⎥
⎥
⎥
⎥
⎤

 �

��. (2.12)

Note that the operation [�]�
�[�][�]� represents a submatrix, with size � x �, where 

� is the total number of strips and it is always a null submatrix when � ≠ �. Additionally, 
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for the ��� strip, there are the ��� and ��� nodal lines. Then, putting Eq. (2.12) in a 

summation form and applying its limits of integration defined by the strip volume, the 

general elastic stiffness matrix is given by: 

[�] = � � � � � � ����
�

�
[�]����

�
 �� �� ��

�

�

�

�

�

�

�

���

�

���

�

���

. (2.13) 

The Eq. (2.13) shows in a compact form the elastic stiffness matrix for the finite 

strip method for a lower order strip with two nodal lines.    The elastic stiffness matrix for 

the membrane and bending cases (Figure 2.7) based on Eq. (2.13) is introduced further 

ahead. 

Assuming the case of plane stress, given in Figure 2.7-a, there are displacements 

only in the plane ��. From that, the strain matrix is obtained from the generalized strain 

relationship including only normal and shear strain, described in Eq. (2.14). 

{��} = �

��

��

���

� =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

��

��

��

��

��

��
+

��

��⎭
⎪
⎪
⎬

⎪
⎪
⎫

= �[���]� �

��

��

��

��

�

�

�

���

 (2.14) 

where � and � are the displacements in the plane of the strip defined in Eq. (2.1) and 

[���]� is the strain matrix of the membrane assumption for the ��� term of the series, 

given by the expression {��} = [���]{���} and shown in the Eq. (2.15). 

 

 (a) (b) 

Figure 2.7. The degrees of freedom uncoupled of a rectangular low order strip with two nodal lines 
for the (a) membrane case (plane stress) and (b) bending case. 
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[���]� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −

��

�
0

��

�
0

0 (1 − �̅)
��

��

��
0 �̅

��
��
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(1 − �̅)��
� −
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�̅ ��
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��
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⎥
⎥
⎥
⎥
⎤

. (2.15) 

Thus, the property matrix of an orthotropic plane stress, [���], is given by the 

expression {��} = [���]{��}, assuming only normal and shear stresses. In the matrix 

form [���] is expressed in Eq. (2.16) for the ��� term of the series. 

�� =
��

1 − ����
    �� =

��

1 − ����
    ��� =

����

���1 + 2��� + ��

  

[���]� = �

�� ���� 0

���� �� 0

0 0 ���

� (2.16) 

where �� and �� are the elastic moduli for � and � directions, �� and �� are the Poisson’s 

ratio for � and � directions and ��� is the axial shear modulus in �� plane. In the case of 

an isotropic material it can be assumed that �� = �� = �, �� = �� = � and ��� = � =

� 2(1 + �)⁄ . 

Introducing Eq. (2.15) and Eq. (2.16) into Eq. (2.13), leads to the elastic stiffness 

matrix for the membrane, given by Eq. (2.17). The matrix corresponds to the ��� and ��� 

half-wave, from node � to node � (��� strip). 
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where: �� = ∫ ������
�

�
; �� = ∫ ��

���
���

�

�
; �� = ∫ ����

����
�

�
; �� = ∫ ��

����
����

�

�
; 

�� = ∫ ��
������

�

�
. These integrals are analytically solved for each boundary condition in 

the Appendix A, given originally by Bradford and Azhari [19] and also given by Li and 

Schafer [20]. 

With the elastic stiffness matrix for the membrane case established, the same 

procedure can be followed to detect the elastic stiffness matrix for the bending case 

(Figure 2.7-b). First, the generalized strain relationship including only bending and 

twisting curvatures is given by: 
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2���
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⎪
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⎪
⎧

−�� �

���

−�� �

���

2
�� �

����⎭
⎪
⎪
⎬

⎪
⎪
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 (2.18) 

where � is the displacement perpendicular to the plane of the strip defined in Eq. (2.1) 

and [��]� is again the strain matrix, but considering the bending assumption for the ��� 

term of the series, given by the expression {��} = [��]{��} and shown in the Eq. (2.19). 

[��]� =

⎣
⎢
⎢
⎢
⎡

�

�� (1 − 2�̅)��
�

�
(2 − 3�̅)��

�

�� (2�̅ − 1)��
�

�
(1 − 3�̅)��

(3�̅� − 2�̅� − 1)��
�� �(2�̅ − �̅� − 1)��

�� (2�̅� − 3�̅�)��
�� �(�̅ − �̅�)��
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��

�
(�̅� − �̅)��

� (2 − 8�̅ + 6�̅�)��
� ��

�
(�̅ − �̅�)��

� (6�̅� − 4�̅)��
�
⎦
⎥
⎥
⎥
⎤

. (2.19) 
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Additionally, the elasticity matrix of an orthotropic plane stress, [��], is given by 

the expression {��} = [��]{��}, assuming only bending and twisting moments and 

shearing forces. In matrix form [��] is expressed in Eq. (2.20) for the ��� term of the 

series. 

�� =
����

12�1 − �����
  �� =

����

12�1 − �����
   �� =

������

12(1 − ����)
=

������

12(1 − ����)
  

��� =
�����

12
     ��� =

����

���1 + 2��� + ��

  

[��]� = �

�� �� 0

�� �� 0

0 0 ���

� (2.20) 

where ��, ��, ��, �� and ��� are the elastic constants, ��, ��, �� and ��� the orthotropic 

plate constants, � is the thickness of the strip. In case of an isotropic material it can be 

assumed that �� = �� = �, �� = �� = � and ��� = � = � 2(1 + �)⁄ . 

Introducing Eq. (2.19) and Eq. (2.20) into Eq. (2.13), leads to the elastic stiffness 

matrix for the bending, given by Eq. (2.21). The matrix corresponds to the ��� and ��� 

half-wave, from node � to node � (��� strip). 

����
��

�
��

=
2 ����
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. (2.21) 

As introduced before, the integrals ��, ��, ��, �� and ��  are analytically solved for 

each boundary condition in the APPENDIX A, given by Li and Schafer [20]. 

For the stability problem, it is necessary to formulate the geometric matrix due to 

the initial stress. The finite strip element is a LO2 flat shell, subjected to initial stresses 

that vary linearly, as shown in Figure 2.6-c. However, the distribution of the edge stress 

along the longitudinal axis is constant. Thus, the potential energy due to the in-plane 

forces is given by: 

� =
1

2
 �  {�� − (�� − ��)�̅} ��

��

��
�

�

+ �
��

��
�
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��
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�

�  ��
�

. (2.22) 

Considering a uniform thickness of the strip, the edge stresses can turn into edge 

tractions, �� = ��� and �� = ���. Then, setting the appropriate limits of integration and 

computing the quadratic derivative terms into a matrix form, the Eq. (2.22) can be written 

as 

� =
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��
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�

��.
�
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 (2.23) 

Note that the vectors with the derivatives in Eq. (2.23) represent rates of change 

of the displacement field with respect to the � direction. Theses vectors can be written in 

accordance with the nodal displacements, as already shown in Eq. (2.18) and Eq. (2.14). 

Thus, in matrix form we have 
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where [�] is the matrix with the partial derivatives of the shape functions and {�} the 

nodal displacement. 

Introducing Eq. (2.24) into Eq. (2.23), and organizing the terms, the potential 

energy due to the in-plane forces can be deducted to a compact form, as shown in Eq. 

(2.27).  
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The geometric matrix can also be obtained with the minimization of the total 

potential energy due to the initial stress. But it is already obvious to notice the geometric 

matrix, [��]��, inside the total potential energy, Eq. (2.26). The general expression for 

the geometric stiffness matrix or the initial stress matrix is written in Eq. (2.28). 

[��] = � � � � � ���
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��̅� ����
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�
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���
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���

�

���

. (2.28) 

Similar to the stiffness matrix, the initial stress matrix will be divided into 

membrane and bending cases. Solving the Eq. (2.28) for the membrane case, which 

considers the matrix [���] with the partial derivatives of the shape functions for the plane 
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stress ({�� ��⁄ �� ��⁄ }�), leads to the geometric stiffness matrix for the membrane 

shown in Eq. (2.29). 
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The integrals �� and ��  are analytically solved for each boundary condition in the 

Appendix A, given by Li and Schafer [20]. 

Likewise, solving the Eq. (2.28) for the bending case, which considers the matrix 

[��] with the partial derivatives of the shape functions for the bending and twisting 

({�� ��⁄ }), leads to geometric stiffness matrix for the bending, shown in Eq. (2.30). 
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The integral ��  is analytically solved for each boundary condition in the Appendix 

A, given by Li and Schafer [20]. 

So far, the stiffness and geometric matrices were deducted for local coordinates 

and only for the ��� term of the series. Since a generic structure will be composed of a 

finite number of strips, it is justified to adopt a common axis for the complete structure. 

This common space is called here the global coordinate system. Figure 2.8 shows the 

local (x, y, and z) and global coordinate system (X, Y and Z). Note that the y and Y axis 

are common to each other, in which the main space transformation here is the rotation of 

the y axis, and of course, the coordinates translation for each strip. 

Before defining the space transformation matrix, the local matrices for each strip 

need to be defined. In Eq. (2.31) the stiffness and geometric matrix are shown for each 

strip and for the ��� half-wave term of the series. Note that for the assumed flat shell strip 

(LO2), there is no interaction between the bending and the membrane. Due to that, the 

elastic stiffness matrix - �����
��

 - and the geometric matrix - ������
��

 - are obtained by 

assembling the membrane and bending matrices through a simple combination, as 

described in Eq. (2.31). 
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          ������
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 (2.31) 

 

Figure 2.8. Local and Global coordinate system on a rectangular strip. [11]. 
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where [0]� � � is the null matrix, ���
��

�
��

 is the elastic stiffness matrix for the membrane 

case defined in Eq. (2.17), ���
��

�
��

 is the elastic stiffness matrix for the bending case 

defined in Eq. (2.21), ����
��

�
��

 is the geometric matrix for the membrane case defined in 

Eq. (2.29), ����
��

�
��

 is the geometric matrix for the bending case defined in Eq. (2.30). 

Thus, the global matrices are obtained by assembling all the half-wave terms in 

each corresponding degree of freedom. For the assembling, it is necessary to transform 

the local coordinate into global coordinates. The displacements are also subjected to this 

space transformation, as can be observed in Eq. (2.32) for the displacement field 

transformation and in Eq (2.33) for the nodal displacement transformation. 
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Note that the space transformation from local to global is performed by 

multiplying the local displacements by a rotation matrix. This matrix can be an 8 by 8 

([�]���) or 3 by 3 ([�]���) size, depending on the displacement addressed. These matrices 

are shown respectively in Eq. (2.34) and Eq. (2.35). 

[�]��� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
��� � 0 0 0 − ��� � 0 0 0

0 1 0 0 0 0 0 0
0 0 ��� � 0 0 0 − ��� � 0
0 0 0 1 0 0 0 0

��� � 0 0 0 ��� � 0 0 0
0 0 0 0 0 1 0 0
0 0 ��� � 0 0 0 ��� � 0
0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (2.34) 
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[�]��� = �
��� � 0 − ��� �

0 1 0
��� � 0 ��� �

�. (2.35) 

With the rotation matrix defined, the space transformation and the assembling of 

the global stiffness and geometric matrices are established in Eq. (2.36) and Eq. (2.37), 

respectively. 

[�] = � � �[�]��������
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. (2.36) 

[��] = � � �[�]���������
��

[�]���
�

�

���

�

���

�

���

. (2.37) 

It can be observed that the space transformation is performed on the local matrices 

(Eq. (2.31)), for each term of half-wave and for each strip. Then, the matrices are added 

in each corresponding degree of freedom in order to form the global matrices. 

After the assembling and space transformation, the general stability solution is 

obtained by solving the classic generalized eigenvalue problem described in the Eq. 

(2.38).  

([�] − [�][��])[�] = [0]    ��      [�][�] = [�][��][�] (2.38) 

where [�] is the assembled global elastic stiffness matrix (Eq. (2.36)), [��] is the 

assembled global geometric stiffness matrix (Eq. (2.37)), [�] is the eigenvalue matrix and 

[�] is the eigenvector matrix. In other words, the matrix [�] corresponds to a diagonal 

matrix with the critical stress and [�] refers to a matrix with buckling modes, where each 

column of the matrix represents one mode, and the first column correspond to the critical 

buckling mode. 

There are some methods to solve the generalized eigenvalue problem described in 

Eq. (2.38), e.g. QZ algorithm; the Cholesky factorization; the implicitly restarted Arnoldi 

method; Krylov-Schur algorithm. The main references for these methods, that are already 

formed as a MATLAB [23] built-in function, can be found in Smith et al. [24], Garbow 

et al. [25], Moler and Stewart [26], Stewart [27] and Lehoucq et al.  [28]. 

To sum up, the finite strip method gives a solution of the critical load and its 

associated buckling mode. However, this formulation is performed for only a defined 

longitudinal length L of the structural member. For the case of the buckling analysis of 
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cold-formed steel sections, it is necessary to perform a multiple and repetitive analysis 

for a set of lengths. Thereby, with the results of this type of analysis it is possible to 

determine the number of the local buckling mode half-waves in any possible critical 

length, associated with its critical load and buckling mode. The same condition is applied 

when investigating the distortional buckling and its multiple buckling longitudinal half-

waves. This analysis brings about a curve, critical load vs. length, called signature curve 

of the cross-section, which presents the solution for local, distortional and global 

buckling. 

Note that adopting a FEM analysis to perform this signature curve will demand a 

much higher computational effort, due to its large number of degrees of freedom. 

Therefore, the finite strip method is useful, when analyzing a set of structural member 

lengths. 

The signature curve of a thin-walled member is of utmost importance because it provides 

three general critical loads associated with local, distortional and global buckling. These 

critical loads can be determined by an implementation of the buckling modal 

decomposition or by a user observation of the buckling modes results. In order to 

understand these critical buckling modes, it is important to define what is a local, 

distortional and global critical buckling mode. Alongside these critical loads, the strength 

of the structural element can be determined, through a simple method called the Design 

Strength Method, which will be described in detail later. 

2.3 Critical Buckling Modes 

The critical buckling modes are given by solving the classic generalized 

eigenvalue problem, described in Eq. (2.38), which is symbolized by matrix [�]. For each 

member length, the finite strip method gives the buckling modes of several superior 

modes, each one corresponding to a superior critical load. Depending on the length and 

geometry of the structural member, the critical buckling mode shows a different modal 

shape. Figure 2.9 illustrates the computed results from FStr program, of the modal shapes 

of a lipped channel cold-formed steel column (LC 100x70x15x2.70 mm) at different 

lengths in order to show each critical buckling mode. 
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Generally, the modal shapes of thin-walled members can be classified by three 

generic groups: local, distortional and global. According to Schafer and Ádány [29], the 

widely adopted definition of these three modes are: 

(i) Local mode (L): defined as plate deformation, without interfering in the 

translation of adjacent points for other plate elements in the member cross-

section (Figure 2.9-a). 

(i) Distortional mode (D): characterize for the translation of some points in 

the intersection of plates elements in the cross-section, mainly noticed as 

a distortion of the cross-section (Figure 2.9-b). 

(ii) Global mode (G): described as a full translation of the cross-section, 

preserving un-deformed cross-section (Figure 2.9-c and Figure 2.9-d). 

Besides this general definition of these three general critical buckling modes, there 

are other characterizations of the modal shapes that are related to the wavelength of the 

buckling mode or related to the membrane versus flexural plate deformations. However, 

these definitions are not always accurate enough to define the critical buckling modes. In 

some cases, where the thin-walled structural member are formed by several folded plates 

and intermediate stiffeners, the general classification for the modal shapes can become 

quite inaccurate and complex, as is discussed by Schafer and Ádány [29]. 

Resulting from that complexity on determining the modal shape, it is appropriate 

to classify the buckling mode as a participation of each classic pure buckling mode. The 

studies made by Ádány and Schafer [30], [31] & [32] present a complete approach on 

how to identify and classifying the modal participation on a critical buckling analysis 

 

 (a) (b) (c) (d) 

Figure 2.9. Cold-formed steel lipped-channel 100x70x15x2.70 mm fixed-fixed end condition 

experiencing (a) local L=252mm, (b) distortional L=1379mm, (c) flexural-torsional L=2557mm and 

(d) flexural buckling L=14521mm. 
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using the finite strip method. Later, Li [22],  Li and Schafer [20], [33] & [34] stated the 

same approach on modal participation, but for general boundary conditions. The principle 

to classify the modes are based on the generalized beam theory (GBT) criteria, which 

takes critical mechanical assumptions. Table 2.2 shows the three criteria for classify the 

buckling modes, according to Schafer and Ádány [29]. 

Table 2.2. Critical buckling mode classification (G: Global, D: Distortional, L: Local, ST/O: 
Other) 

 

(i) The first criterion, takes into account the membrane deformations, which 

includes shear strains equal to zero, membrane transverse strain also equal 

to zero and linear longitudinal displacements, in the cross-section plane. 

Essentially, this first criterion is based on the Vlasov’s assumptions [35]. 

(ii) The second criterion is related to the longitudinal warping. It states that 

the longitudinal strains and displacements are non-zero along the member 

length. 

(iii) The third criterion corresponds to the transverse flexure. This criterion 

assumption consists of flexure in the transverse direction, retaining the 

cross-section undistorted. 

The buckling modes can be defined using the assumptions defined in Table 2.2. 

The modes are generally classified as Global (G), Distortional (D), Local (L) and Other 

(O). 

(i) Global: modes which satisfy all the three assumptions; 

(ii) Distortional: deformation patterns which include Vlasov’s hypothesis 

(first criterion) and longitudinal warping (second criterion); however, the 

undistorted section (third criterion) is not included, which means that 

transverse flexure occurs. 

(iii) Local: modes which have a shape configuration that only follow the 

Vlasov’s hypothesis (first criterion), but do not include the second 
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criterion, which means that longitudinal warping occurs, while the 

transverse flexure is irrelevant for this case. 

(iv) Other: this mode occurs by Vlasov’s hypothesis, which means that it is not 

qualify for the first criterion, and the second and third criterion are 

irrelevant. This deformation pattern classification does not exist in the 

GBT criteria; however, must stand in FSM and FEM, because of the 

incorporation of the membrane degrees of freedom. In another words, this 

mode is classified as the Other mode that is not global, distortional or local. 

The modal participation formulation for the finite strip method is implemented in 

the well-known computer program Constrained and Unconstrained Finite Strip Method 

(CUFSM), by Schafer et al. [36], [37], [38] & [39]. Through this program it is possible 

to determine the (percentage) participation of each general buckling mode. Figure 2.10 

shows all the possible deformation patterns for a lipped channel thin-walled member, 

using the CUFSM software with a total of 40 degrees of freedom. 

  

 (a)  (b) 

Figure 2.10. Pure deformation patterns for a lipped channel thin -walled member under axial 
compression, (a) in plane and (b) out of plane (G: Global, D: Distortional, L: Local, O: Other). 
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2.4 Computer Program Applications and Methods for the Buckling Analysis 

So far, the finite strip method is well consolidated in well-known computer 

programs. The two most famous computer programs that performs a finite strip method 

are: the Constrained and Unconstrained Finite Strip Method (CUFSM), by Schafer et al. 

[36], [37], [38] & [39], and the THIN-WALL by Hancock et al. [40] & [41]. 

The CUFSM [39] program is a finite strip elastic buckling analysis application, 

which performs analyses for thin-walled sections. CUFSM is an open free source program 

created by professor Ben Schafer's thin-walled structures research group at Johns Hopkins 

University (Baltimore, MD, United States of America) and it was developed in the 

MATLAB [33] platform. The semi-analytical finite strip method has been updated by the 

Schafer’s research group in the last decade. Ádány [42] implemented the constrained 

finite strip method (cFSM), providing the modal decomposition and modal identification 

to a conventional finite strip solution. Li [22] has contributed to the constrained finite 

strip method with a more general boundary condition, which could extend the cFSM for 

any boundary condition. The newer version of the computer program is the CUFSM 5.01 

[39] and it includes: signature curve analysis; general end boundary conditions; 

generalized loading; built-in cross-sections; constrained finite strip solutions for modal 

decomposition and identification; plastic section analysis; section property analysis; 

analyses to approximate members with holes; interaction with the bar finite element 

software MASTAN (by McGuire, Gallagher, and Ziemian [43]). 

The THIN-WALL is a Semi-Analytical Finite Strip Method (SAFSM), which has 

been recently updated to the THIN-WALL 2 by Nguyen, Hancock and Pham [41]. The 

new updated version was developed at The University of Sydney (Sydney, NSW, 

Australia), with the help of a graphical user interface from MATLAB [23] and Visual 

Studio C++ computational engines. Originally, the THIN-WALL 2 has two different 

versions of the SAFSM buckling analysis: bfinst7.cpp and bfinst10.cpp. The first version 

(bfinst7.cpp), described by Hancock and Pham [44], considers uniform loading that 

adopts complex mathematical functions with no end-conditions constraints and also 

includes shear modes and signature curve associated with shear, bending and 

compression. The second version (bfinst10.cpp), described by Hancock and Pham [45], 

includes localized loading, assuming simply supported end conditions and arbitrary 

loading. For more information, in Hancock and Pham [46] it is described the theory of 
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the displacement functions used in the buckling analyses for the THIN-WALL 2 

computer program. 

Besides the finite strip computer programs, there are other methods for performing 

the elastic buckling analysis. The Generalized-Beam-Theory (GBT) is a well 

consolidated method, originally proposed by Schardt [47], and in the last decade has been 

updated by many authors (e.g. Silvestre [48], Bebiano [49], Camotim et al. [50]  & [51]). 

In addition, the GBT formulation has been advanced to conduct first-order (e.g.  

Gonçalves and Camotim [52] and Gonçalves et al. [53]), buckling (e.g. Camotim et al. 

[54] & [55], Basaglia and Camotim [56], Natário et al. [57] and Gonçalves and Camotim 

[58]), vibration (e.g. Camotim et al. [59] and Bebiano et al. [60]), dynamic (Bebiano et 

al. [61]) and post-buckling (Silvestre and Camotim [62] and Basaglia et al. [63] & [64]) 

analysis involving prismatic elements, trusses and frames. The  best known computer 

program that uses this method is the GBTul 2.0, from the Generalized Beam Theory 

Research Group at Lisboa, Instituto Superior Técnico (IST), University of Lisboa, 

Portugal, by Bebiano, Camotim and Gonçalves [65]. This software was first created by 

Bebiano, Silvestre and Camotim [66] & [67] as GBTul 1.0β, and it has been updated by 

the IST research group, headed by professor Dinar Camotim. The software performs 

elastic buckling and vibration analysis with an intuitive graphical user interface. The 

computer application gives the deformation field of a structural member based on a 

combination of cross-section deformations. The program makes possible that the user 

takes into account (i) isotropic of orthotropic materials, (ii) different support conditions, 

(iii) combination of arbitrary axial force, bending moment and bimoment diagrams. 

On a final note, the finite element method offers more robust approaches for 

performing the elastic buckling analysis. According to the FEM software ANSYS theory 

reference [68], the Block Lanczos and Subspace Iteration are the eigensolver methods for 

elastic buckling.  The Block Lanczos solver performs the classic Lanczos algorithm that 

can be found in detail in Rajakumar and Rogers [69] and the block shifted Lanczos 

algorithm, described in Grimes et al. [70]. According to the ANSYS theory reference 

release 5.6 [71], the Subspace Iteration method is explained by Bathe [72], and some 

improvements in the method is found in Wilson and Itoh [73]. Since the FEM requires a 

massive computational effort, compared to continuum discretization alternative methods, 

this method is not commonly adopted for performing a buckling analysis of thin-walled 

member for a set of lengths. However, when performing a non-linear analysis (e.g. arc-

length method, described in Riks [74] & [75] and Wempner [76]), in order to detect the 
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strength of a structural element, it is convenient to impose geometric initial imperfection 

of the structure from a previous elastic buckling analysis in FEM. 

2.5 Coupled Instability Phenomena 

In the literature so far, the coupled instability phenomena can be found as 

compound buckling, simultaneous buckling, interaction buckling and many other 

denominations. Historically, Koiter [77] and Budiansky [78], were the first two 

researchers that included the couple instability phenomena. 

The nature of the phenomena is complex and hard to predict. Due to that, many 

authors try to classify the buckling interaction in various ways. In Gioncu [79] is shown 

an overall of the couple instability state-of-art from over 230 papers until 1994. Gioncu 

[79] explains concepts and classifications for the nature of the coupled phenomenon. 

According to Batista [1], the coupled phenomena lead to an erosion of the limit 

load, in other words means loss of the ultimate strength. As stated in Gioncu [79] this 

erosion can be classified into two major groups: primary erosion and secondary erosion. 

The primary erosion is induced by the extensional deformations, elastic supports and 

plastic deformations, while the secondary erosion is caused by the coupled instabilities. 

Figure 2.11 illustrates an example of the two types of erosions, for a case with a stiffened 

cylindrical shell. 

 

Figure 2.11. Types of erosion for stiffened cylindrical shell under compression. [79]. 
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The graph in the Figure 2.11 shows how the number of stiffeners in the cylindrical 

shell affects the �/��� ratio. According to Gioncu [79], the erosion due to the coupling 

phenomenon is hard to predict, but it must happen in the presence of imperfections, 

otherwise, the second erosion would not exist, in other words the cut of the cusp formed 

by the local and global (overall) buckling modes would not take place. 

According to Gioncu [80], the buckling interaction can be classified into two very 

different types: naturally coupled (Figure 2.12-a) and coupling due to design (Figure 2.12-

b). 

(i) Naturally coupled instability: formed by coupling individual modes that 

cannot be separated by any artificial method (e.g. longitudinal compressed 

rectangular plate with four simply supported edges); 

(ii) Coupled instability by design: influenced by the geometry of the structure, 

which force two or more buckling modes close or even coincidental (e.g. 

combination of flexural and torsional modes in a lipped channel open 

cross-section under compression). 

Another classification of coupled instabilities reported by Gioncu [79] is related 

to the coupling linearity. 

(i) Linear coupling: when two modes are coupled, independently of the 

presence of imperfections (e.g. interaction of flexural and torsional modes 

of mono symmetrical cross-sections); 

(ii) Nonlinear coupling: it only exists in the presence of imperfections, 

otherwise, for ideal structures, this coupling does not occur (e.g. 

Figure 2.12. Buckling interaction classification from Gioncu [80], (a) naturally coupled and (b) 
coupling due to design. [79]. 
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interaction between flexural and torsional-flexural modes for a mono 

symmetrical cross-sections). 

In addition, Gioncu [81] has suggested another classification for the erosion based 

on its size: weak, moderate, strong and very strong interaction. 

(i) Weak: erosion under 10% (e.g. flexural and flexural-torsional buckling 

interaction in monosymmetrical columns); 

(ii) Moderate: erosion over 10% and under 30% (e.g. overall and local 

buckling interaction in trusses systems); 

(iii) Strong: erosion over 30% and under 50% (e.g. local-global buckling 

interaction in thin walled columns and beams); 

(iv) Very strong: erosion over 50% (e.g. general and local buckling interaction 

in reticulated shells). 

The erosion size classification is important in order to assume design procedures. 

For example, the cases of weak buckling interaction can be ignored, assuming that the 

safety coefficients would cover the phenomena of losing strength capacity. On the other 

hand, for moderate interaction, methods must be used to consider the phenomena, which 

could be a simple one. On occasions of strong and very strong couple instabilities, special 

methods are used and must be improved, Gioncu [79]. 

More specifically, for the case of thin-walled members, the couple instability is a 

phenomenon which should have special attention. Cold-formed steel members are 

sensitive to the buckling interaction, due to its very slender geometry with most of cases 

composed of open cross-sections. For this type of structural element, the coupling due to 

design classification (Gioncu [80]) takes an important role in the investigation of the 

strength capacity. As reported in the section 2.3 (Critical Buckling Modes), this structural 

option has general modes classified as local (L), distortional (D) and global (G). These 

general buckling modes can interact resulting in a coupled instability by design, 

influenced by the geometry of the structure. This type of coupled instability is composed 

of at least two buckling modes and can be identified as L-D, L-G, D-G and L-D-G. 

 

2.5.1 Distortional-Global Interaction concepts 

The basic concept of distortional-global (D-G) interaction can be shown in the 

results of the buckling analysis, performed with the computational program FStr, included 

in Figure 2.13. Basically, when the critical load resulting from the distortional buckling 
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is in a domain relatively close to the global buckling, it is highly possible to experience 

the D-G interaction, which is in the neighborhood of the length L=1850 mm, for example. 

For the signature curve below (Figure 2.13), the method is the finite strip method and the 

geometry is a lipped channel section LC 100x70x15x2.70 mm, under axial compressive 

load, with fixed-fixed end condition and for a set of 200 lengths, spaced equally in 

logarithm scale. 

 

 

 

(a) Signature Curve: first mode, distortional buckling with 2 half-waves; 

(b) Signature Curve: first mode, distortional buckling with 3 half-waves; 

(c) Signature Curve: first mode, distortional buckling with 4 half-waves; 

(d) Signature Curve: first mode, flexural-torsional buckling with 1 half-wave; 

(e) Fifth Superior Mode: flexural-torsional buckling with 1 half-wave; 

(f) Fourth Superior Mode: flexural-torsional buckling with 1 half-wave; 

(g) Third Superior Mode: flexural-torsional buckling with 1 half-wave; 

(h) Second Superior Mode: flexural-torsional buckling with 1 half-wave; 

(i) Second Superior Mode: distortional buckling with 4 half-waves; 

(j) Second Superior Mode: distortional buckling with 5 half-waves; 

(k) Second Superior Mode: distortional buckling with 6 half-waves; 

Pure Global

Pure Distortional

Pure Local

200

250

300

350

400

450

500

550

600

1000 3000

C
ri

ti
ca

l 
L

o
ad

 (
k

N
)

Length (mm)

Mode 1 Mode 2 Mode 3 Mode 4

Mode 5 Mode 6 Pure Global 1 Pure Dist 1

Pure Local 1 L=1500 L=1850 L=2200

(a)
(b) (c)

(d)

(e)

(f)

(g)

(h)

(i)
(j) (k) (l)

(m)

1500 1850 2200

Figure 2.13. Critical load versus length - signature curve, superior modes and pure modes 
(LC100x70x15x2.70 mm). 

Signature 
Curve

Pure Global

Pure 
Distortional

Pure 
Local

Detail



João Alfredo De Lazzari 

37 

(l) Third Superior Mode: distortional buckling with 6 half-waves; 

(m) Third Superior Mode: distortional buckling with 7 half-waves. 

 

The Figure 2.13 illustrates in detail the superior modes from an elastic buckling 

analysis, in the length range of 1000 to 3000 mm, with pure local, distortional and global 

modes. The curves from (a)-(d) correspond to the signature curve, representing the first 

mode with 10 half-waves terms employed on the finite strip method formulation. 

It should be noted that there is a pattern of superior modes continuing the global 

and distortional modes, (e)-(h) for flexural-torsional mode in distortional length and (i)-

(m) for distortional mode in global length. Also, comparing this pattern with pure modes, 

it is possible to notice an erosion, called primary erosion as classified by Gioncu [79]. It 

is noticed that the secondary erosion is hard to predict with the elastic buckling analysis, 

which makes it harder to investigate the D-G interaction behavior. 

The distortional-global (D-G) interaction can be classified into its type and nature. 

As reported by Martins et al. [82], the type of distortional-global interaction can change 

depending on the form of the global buckling mode: (i) distortional/major-axis flexural-

torsional (D-FT) and (ii) distortional/minor-axis flexural (D-F). However, for lipped 

channel columns, the D-FT interaction is more common to occur, while the D-F 

interaction happens more often on zed-sections columns. In addition, related to the nature 

of the critical buckling load, Martins et al. [82] states another classification. This 

categorization is based on the ratio between the critical loads from global and distortional 

modes, ��� = ���� ����⁄ , and it is useful for performing a parametric and behavior study. 

The categories are classified as:  

(i) True D-G interaction (TI): When the distortional and global critical 

buckling are close, this scenario may always happen for 0.90 < ��� <

1.10. According to Martins et al. [82], this state can behave differently in 

three different groups, depending on the critical slenderness: (i.1) abruptly 

collapse for stocky columns, ��� ≤ 1.0; (i.2) collapse after starting of 

yielding for slender columns, 1.0 < ��� < 2.0; (i.3) elastic-plastic 

strength reserve before collapse for very slender columns, ��� ≥ 2.0 (this 

group has shown local deformations, experiencing L-D-G interaction on 

lipped channel columns). This case can be illustrated by Figure 2.13, when 

the length is between 1750 mm and 1900mm. 
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(ii) Secondary-distortional bifurcation D-G interaction (SDI): Occurs for 

yield strength sufficiently high, in order to enable the interaction to 

develop. This situation is more common in the range ��� ≤ 0.90 and can 

be exemplified by Figure 2.13, when the length is more than 1900 mm. 

(iii) Secondary-global bifurcation D-G interaction (SGI): Also occurs for yield 

stress sufficiently high, to enable the interaction to arise, nonetheless this 

one is more likely to develop, due to its high post-critical strength reserve 

caused by the distortional buckling. This is more common in the range 

��� ≥ 1.10. This group can be also exemplified by Figure 2.13, when the 

length is lower than 1750 mm, but not less than 1500 mm, in which the 

global buckling mode starts to become hard to reach and the local buckling 

mode is approachable. In this case, there is possible L-D-G interaction or 

just L-D. 

 

2.6 Analytical Elastic Buckling Analysis 

An analytical elastic buckling analysis is the most consolidated approach in the 

standards, because of its easiness of performing an elastic buckling analysis directly. 

However, the analytical procedure is fairly specific in some cases, depending on the 

boundary condition, the geometry of the cross-section and the type of buckling. 

In this section, an analytical formulation is presented for local, distortional and 

global elastic critical buckling of CFS thin-walled members under axial compression. The 

boundary conditions are simply supported at the end sections. Also, only one half-wave 

term is considered, which means, the first buckling mode, associated with the shorter 

column solution. As reported by Timoshenko and  Gere [83], the first mode is already 

sufficient to determine the elastic critical stress for simply supported columns. 

2.6.1 Local Buckling 

The origin of the analytical expression is given by Bryan [84], which published 

the first solution providing the critical buckling stress of thin simply-supported 

rectangular plates under axial compression on two opposite edges. An approximated 

semi-analytical expression for the local critical stress is given in the Brazilian standard 

ABNT NBR 14762:2010 [5], proposed by Batista [85]. Descriptively, the critical stress 
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is given in the Eq. (2.39), in function of the local buckling coefficient for a full section 

under uniform compression, expressed by Eq. (2.40)4. In addition, the formulation is 

given by a lipped channel section with outside-to-outside measurement, described in 

Figure 2.14-a.  

���� = ��

���

12(1 − ��)
�

�

��
�

�

 (2.39) 

�� = 6.8 − 5.8 �
��

��
� + 9.2 �

��

��
�

�

− 6.0 �
��

��
�

�

. (2.40) 

The critical local load can then be determined as ���� = � ���ℓ, where � is the 

area of the full cross-section. 

2.6.2 Distortional Buckling 

The analytical distortional buckling approach is not provided, specifically, by the 

ABNT NBR 14762:2010 [5], due to its complexity formulations given in the literature so 

far. The Australian/New Zealand code AS/NZS 4600 [6] provides an analytical 

distortional buckling formulation as an option, however, it is still quite complex to 

manipulate, as well as this procedure proved to be inaccurate for certain CFS sections’ 

geometry.  Also, the North-American standard AISI S100-16 [7] presents an analytical 

elastic distortional buckling expression. 

In the following, an expression for the distortional buckling is shown given by 

Cardoso et al. [86]. The procedure is derived from an energy-based approach leading to 

a relatively simple and reliable closed-form equation for lipped channels subject to 

uniform compression. The expression displayed here is associated with the second model 

from Cardoso et al. [86] - with flexible flanges - which gives the best approximated 

results, compared to GBTul 2.0  (Bebiano, Camotim and Gonçalves [65]). 

The formulation is presented below, and it is derived from a simply support 

boundary condition with half of a lipped channel cross-section and only one half-wave 

term. Also, the geometric parameters are all based on the center line of the cross-section, 

illustrated in Figure 2.14-b. The critical distortional buckling expression is given by Eq. 

(2.52). 

 

4 Geometry limited to 0.1 ≤ ��� ��⁄ � ≤ 1.0 and 0.1 ≤ (�� ��⁄ ) ≤ 0.3. 
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(i) Area of half-section on center line dimensions; 

��� = ���� + 2��� + 2����
�

2
. (2.41) 

 

(ii) Plate stiffness; 

� =
���

12(1 − ��)
. (2.42) 

 

(iii) Distance between the web-flange junction and the center of rotation; 

∆�� =
���

�

2��� + ���

. (2.43) 

 

(iv) Correlation coefficient between overall lipped flange and web rotation; 

�� =
1

1 + �2��� 3���⁄ �
. (2.44) 

 

(v) Correlation coefficient between overall lipped flange and stiffener 

rotation; 

�� = �� �
���

���

+ 1�. (2.45) 

 

(vi) Correlation parameter corresponding to the cross-section “translation” per 

unit of flange-stiffener rotation needed to balance moments produced by 

the warping stress distribution; 

� =
������

�
�2��� + 2��� + ����

����
�

+ 4������ + 2������ + 6������� �2��� + ����
. (2.46) 
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(vii) Moment of inertia of half-section about minor axis; 

�� =
���

�
�

6
�

���
�

+ 4������ + 2������ + 6������

2��� + 2��� + ���

�. (2.47) 

 

 

(viii) Stiffened-flange warping constant with respect to the rotation center; 

�� =
���

�
 ���

�
 �

3
�

��� + ���

��� + 2���

�

�

. (2.48) 

 

(ix) Cross-section geometric parameter; 

��� = −
1

6
�

���
�

���
�

�

��� + 2���

�. (2.49) 

 

(x) Lip constant of torsion; 

�� =
��

3
���. (2.50) 

 

(xi) Apparent polar moment of inertia with respect to web-flange junction 

point; 

��
∗ = � �

���
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(2.51) 
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(xii) Elastic distortional buckling critical stress. 
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(2.52) 

The critical distortional load can then be determined as ���� = � ����,�, where � 

is the area of the full cross-section.  

2.6.3 Global Buckling 

The origin of the analytical expression is given by Euler5 [87]. Euler’s analytical 

expression became so popular that the critical load has been also called Euler load. In the 

book of Timoshenko and Gere [83], the Euler critical load is deducted from the 

differential equation of the column. So far, the analytical expression for the global critical 

load is given in the Brazilian standard ABNT NBR 14762:2010 [5], and many other codes 

 

5Appendix “De curvis elasticis” of the book “Methodus inveniendi líneas curvas maximi minimive 

proprietate gaudentes”, Lausanne and Geneva, 1744. 

 

 (a) (b) 

Figure 2.14. Dimensions of a lipped channel cross-section, (a) out-to-out measurement and (b) 
centerline measurement. 



João Alfredo De Lazzari 

43 

(e.g. Australian/New Zealand code AS/NZS 4600 [6] and North-American standard AISI 

S100-16 [7]). 

The critical Euler stress (��) of a bar is given as the smaller root for the cubic 

function in Eq. (2.56). In order to detect the critical stress, it is necessary to compute the 

elastic flexural buckling stress on the major axis x-x (Eq. (2.53)) and minor axis y-y (Eq. 

(2.54)) and the elastic torsional buckling stress on the longitudinal axis z-z (Eq. (2.55)). 

��� =
���

(���� ��⁄ )�
 (2.53) 

��� =
���

����� ��⁄ �
� (2.54) 

��� =
1

� ��
� �

�����

(����)�
+ ��� (2.55) 

(�� − ���)��� − ����(�� − ���) − ��
���� − ����

��
�

��
�

− ��
�(�� − ���)

��
�

��
�

= 0 (2.56) 

The critical global load can then be determined as ���� = � ���, where � is the 

area of the full cross-section, and ��� is the least positive real root of the cubic equation 

Eq. (2.56). 

The expression in Eq. (2.56) is valid for any cross-section and end boundary 

condition. For the simply supported and free warping end boundary condition, the 

buckling coefficients, ��, �� and �� are equal to 1.0. 

2.7 Design Procedures for Cold-Formed Steel Columns 

In general, the design procedures for CFS columns are based on a previously 

elastic buckling analysis, in order to determine the critical buckling load, which is a 

crucial parameter to estimate the strength capacity of the CFS columns. 

The effective width method (EWM), effective section method (ESM) and direct 

strength method (DSM) are the most known design procedures and they are briefly 

discussed in this section, in order to point and highlight the differences and advantages. 
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2.7.1 Effective Width Method (EWM) 

This is the most traditional method for determining the strength of CFS members. 

This method is employed in most standards, e.g. ABNT NBR 14762:2010 [5], AISI S100-

16 [7], AS/NZS 4600 [6], with a semi-empirical calibrated formulation, which takes into 

account the plate buckling in long slender steel members (� ≫  �), with length � and 

maximum width of the walls of the cross-section �, under axial uniform compression with 

simply supported end conditions. Unfortunately, this method does not consider the 

distortional buckling phenomenon. 

The origin of the method is attributed to Kàrmàn et al. [88], which is based on the 

critical plate buckling stress (Bryan [84]), given by Eq. (2.39), however, changing �� to 

� (width of the plate) and �ℓ to � (buckling coefficient for the plate). At first, the EWM 

was assumed for isolated rectangular plates, and further adapted for folded steel members. 

Basically, the method consists of splitting a cross-section into isolated plates, and 

determine the effective section area – or width – for each one of these isolated elements. 

Finally, the strength of the entire folded steel member is computed as the summation of 

each isolated plate contribution, as long as all the isolated elements are simultaneously 

under the yield stress. The boundary condition and the loading case can be considered by 

virtue of a plate buckling coefficient k (replacing �ℓ to � in Eq. (2.39)). Commonly this 

coefficient (k) is 4.0 for the case of four sides simply supported, and 0.43 for a situation 

of three sides simply supported and one longitudinal side free. 

Sequentially, the ultimate compressive load is obtained by summing all the 

effective widths (����) of each plate of the cross-section, times the thickness of the 

section, times the yield stress and dividing by the partial resistance factor. 

The effective width equation expressed in Eq. (2.57) was originally proposed by 

Winter [89] and calibrated from lab tests. This equation was verified by many authors, 

showing its compatibility with the experiments. The main advantage of the method is its 

application as a rule of thumb for thin-walled elements, which can be applied not only to 

cold-formed elements, but also stiffened plated panels (commonly used in naval 

structures and steel bridges). However, the EWM is composed of equations with 

approximated coefficients, due to the calibration from lab tests, resulting in a method 

based on semi-empirical fundaments. 
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���� = �1 − 0.22 �
����

��
�

�.�

� � �
����

��
�

�.�

≤ �. (2.57) 

 

2.7.2 Effective Section Method (ESM) 

This method is an improvement of the original Effective Area Method (EAM), 

which was established for the design of cold-formed structures in line with the local 

buckling. The ESM presents the same approach as the EAM, but with calibrated 

formulation for column and beam resistance. The method originally proposed by Batista 

[85] is now used in  the Brazilian code for the design of CFS members, ABNT NBR 

14762:2010 [5]. Also, this method does not consider the distortional buckling 

phenomenon. 

In order to define the strength of the cold-formed member, the method approach 

is analogous with the direct strength method6. It is important to highlight that the strength 

of thin-walled columns rely on the steel yielding stress and the three most relevant 

buckling modes: local, distortional and global. However, the ESM aims only at the local 

and global buckling modes, and also its coupled phenomena include the interaction of 

local-global buckling modes. 

The steps for determining the thin-walled columns strength can be divided into 

three steps: (i) computing the member global buckling coefficient, expressed by � in the 

Eq. (2.58); (ii) afterwards, when the local buckling effect is reached along with the global 

buckling interaction, expressed in Eq. (2.59) and (iii) lastly when the design value of the 

column compressive strength is obtained by Eq. (2.60). The global buckling contribution 

is obtained with appropriate buckling curves and the strength including the local buckling 

effect is taken by a Winter-type equation [90], with calibrated coefficients. 

� = �

�0.658��
�

� , �� ≤ 1.5

0.877

��
� , �� > 1.5

 �� = �
���

��
 (2.58) 

 

6 This method is well described in the next subsection.  
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���� = �

�, �� ≤ 0.776

� �1 −
0.15

��
�

1

��
�.� , �� > 0.776

 �� = �
����

��
 (2.59) 

���� = �������/� (2.60) 

where � is the gross section area of the thin-walled member;  �� is steel yielding stress; 

�� is the global buckling axial compressive load given originally by the smallest root of 

Eq. (2.56), times the gross section area; �� is the column slenderness factor;  �ℓ is the 

local buckling axial compressive load given by Eq. (2.39) times the gross section area; 

�� is the plate slenderness factor; � is the partial resistance factor. 

According to Batista [85] the Effective Section Method is an easy-to-apply 

method of design and it has a great advantage when compared with the traditional width 

method, due to its simplicity, comprehensibility and accuracy. 

 

2.7.3 Direct Strength Method and Additional Procedures (DSM) 

The direct strength method (DSM) was first proposed by Schafer and Peköz [91], 

based on an idea from Hancock et al. [92]. The method has a simple application for civil 

engineers’ design of thin-walled structural elements, based on the limit states associated 

with local, distortional, global and the local-global interactive modes. The DSM is based 

on the Winter-type equation [90] & [89] for the local and distortional curves, and the 

“classical” design curve for the global mode, taken from specifications of hot-rolled steel 

structures (e.g. ABNT NBR 8800:2008 [93] and ANSI/AISC 360-16 [94]). 

In this sub-section the DSM is described for columns under axial compression, 

and also additional procedures following the DSM. One advantage of the DSM procedure 

is the capacity to expresses straightforward interactive equations, as  shown by Schafer 

[95]. In the past few years, additional equations have been proposed considering 

interactive modes and also recalibration of the Winter-type equation [90] coefficients.  

 

(i) Global Buckling (DSM) 

The nominal axial strength for the global buckling is obtained as described in the 

DSM. The Eq. (2.61) expresses the nominal strength due to global buckling. 



João Alfredo De Lazzari 

47 

��� =

⎩
⎨

⎧�� 0.658��
�
, �� ≤ 1.5

��

0.877

��
� , �� > 1.5

�� = �
��

����
 (2.61) 

where �� is the squash load, defined as the gross section area times the steel yielding 

stress; �� is the global slenderness; ���� is the elastic critical global buckling load. 

It can be noted that the approach is the same as used in the Effective Section 

Method, Eq. (2.58), however, in the DSM the idea is to determine the strength of the 

member due to only the global buckling contribution. 

 

(ii) Local Buckling (DSM) 

The nominal axial strength for the local buckling is obtained as described in the 

DSM (without the local-global interaction). The Eq. (2.62) expresses the nominal strength 

due to local buckling. 

��� =

⎩
⎨

⎧
��, �� ≤ 0.776

��

��
�.� �1 −

0.15

��
�.�� , �� > 0.776

�� = �
��

����
 (2.62) 

where �� is the squash load, defined as the gross section area times the steel yielding 

stress; �� is the local slenderness; ���� is the elastic critical local buckling load. 

As well, the approach is similar to the one shown in the Effective Section Method, 

Eq. (2.59), however, in the DSM the idea is to determine the strength of the member due 

to only the local buckling contribution. 

 

(iii) Distortional Buckling (DSM) 

The nominal axial strength for the distortional buckling is obtained as described 

in the DSM. The Eq. (2.63) expresses the nominal strength due to distortional buckling. 

��� =

⎩
⎨

⎧
��, �� ≤ 0.561

��

��
�.� �1 −

0.25

��
�.�� , �� > 0.561

�� = �
��

����
 (2.63) 
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where �� is the squash load, defined as the gross section area times the steel yielding 

stress; �� is the distortional slenderness; ���� is the elastic critical distortional buckling 

load. 

 

(iv) Local-Global Interaction Procedure (DSM) 

The nominal axial strength for the local-global (L-G) interactive buckling is 

obtained as described in the DSM. The Eq. (2.64) expresses the nominal strength due to 

local-global buckling interaction. 

���� = �

���, ��� ≤ 0.776

���

���
�.� �1 −

0.15

���
�.�� , ��� > 0.776

��� = �
���

����
 (2.64) 

where ��� is the nominal axial strength for the global buckling, expressed in Eq. (2.61); 

��� is the local slenderness based on the global strength; ���� is the elastic critical local 

buckling load. 

Note that the local-global interaction approach consists of replacing the squash 

load �� from Eq. (2.62) by the nominal strength for the global buckling, expressed in Eq. 

(2.61). This proposal was first suggested by Schafer [95]. 

 

(v) Local-Distortional Interaction Procedure (Additional Procedure) 

The nominal axial strength for the local-distortional (L-D) interactive buckling 

has not been included in the standards. However, in the past decade many authors have 

been developing expressions that consider the local-distortional coupled phenomenon, 

e.g. Schafer [95], Silvestre et al. [96], Dinis and Camotim [97], Martins et al. [98], 

Matsubara [99], Matsubara, Batista and Salles [100], Matsubara and Batista [101] and 

Batista et al. [102]. 

The Eq. (2.65) is an approach based on the Winter-type equation [90], which was 

proposed initially by Matsubara [99] and Matsubara, Batista and Salles [100]. Later, in 

Matsubara and Batista [101] and Batista et al. [102],  the polyonomies for determining 

the coefficients � and �, on Eq. (2.66) and Eq. (2.67), respectively, were revised and the 

degree of the polyonomies were reduced. 
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������
� �1 − 

�
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� = �

0.15, ���� < 0.80

0.40 ���� − 0.17, 0.80 ≤ ���� ≤ 1.05
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 (2.66) 

� = �
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−2.26 ����
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1.20, ���� > 1.05
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��

����
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����
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where �� is the squash load, defined as the gross section area times the steel yielding 

stress; ������ is the maximum slenderness, between the distortional (��) and the local 

(��) slenderness; ���� is the ratio between the distortional slenderness and local 

slenderness; ���� is the elastic critical distortional buckling load; ���� is the elastic critical 

local buckling load. 

The proposed local-distortional interactive buckling equation is easy to apply and 

has a greater accuracy, compared to the other proposed procedures (e.g. Silvestre et al. 

[96], Dinis and Camotim [97] and Martins et al. [98]). 

 

(vi) Distortional-Global Interaction Procedure (Additional Procedure) 

The nominal axial strength for the distortional-global (D-G) interactive buckling 

has not been included yet in the standards. In the past few years, authors have been 

studying the distortional-global coupled phenomenon behavior, in Dinis and Camotim 

[103] and Martins et al. [104]. However, there is still a lack of studies of this phenomenon, 

mainly lacking laboratory experiments. Nevertheless, Schafer [95] proposed an approach 

to the DSM that consider the distortional-global interaction, shown in Eq. (2.69). In 

addition, the recent study carried out by Martins et al. [82], uses the procedure proposed 

by Schafer [95] with a parametric study, with results  showing  that the procedure  is  quite 

conservative, comparing  with the global equation approach. Martins et al. [82] also 
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studied  an additional approach that includes the distortional-global interaction shown in 

Eq. (2.70). 

Basically, the approach in Eq. (2.69) involves in replacing the squash load �� from 

the distortional buckling equation (Eq. (2.63)) by the nominal strength for global buckling 

��� (Eq. (2.61)). Likewise, in Eq. (2.70), the approach consists of replacing the squash 

load �� from the global buckling equation (Eq. (2.61)) by the nominal strength for the 

distortional buckling ��� (Eq. (2.63)). 

���� = �

���, ��� ≤ 0.561

���

���
�.� �1 −

0.25

���
�.�� , ��� > 0.561

��� = �
���

����
 (2.69) 

���� =

⎩
⎨

⎧ ��� 0.658���
�
, ��� ≤ 1.5

���

0.877

���
� , ��� > 1.5

��� = �
���

����
 (2.70) 

where ��� is the distortional slenderness based on the global strength; ���� is the elastic 

critical distortional buckling load; ��� is the global slenderness based on the distortional 

strength; ���� is the elastic critical global buckling load. 

 

(vii) Local-Distortional-Global Interaction Procedure (Additional Procedure) 

Likewise the local-distortional and distortional-global interaction procedures, the 

local-distortional-global (L-D-G) interaction approach has not been well stablished. 

However, several authors have been working on the local-distortional-global coupled 

phenomenon, e.g. Dinis et al. [105], Santos [106], Santos et al. [107], Santos et al. [108], 

Cava et al. [109], Young et al. [110], Dinis et al. [111] and Matsubara and Batista [112]. 

One of the most recent studies, carried out by Matsubara and Batista [112], has 

reached a general expression that consider the local-distortional-global coupled 

phenomenon. The Eq. (2.71) shows the procedure, which is analogous to the local-

distortional interactive buckling procedure, but using the same idea as proposed by 

Schafer [95]. The idea consists of replacing the squash load �� in the local-distortional 

interaction expression, Eq. (2.65), by the nominal strength for global buckling ���, as in 

the distortional-global interactive buckling equation. 
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���
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where ���� is the maximum slenderness, based on the minimum L or D critical load and 

the column strength related to the global buckling PnG; � and � are the Winter’s-type 

equation [90] coefficients, from Eq. (2.66) and Eq. (2.67) respectively; ���� is the elastic 

critical distortional buckling load; ���� is the elastic critical local buckling load. 

2.8 State-of-the-art 

So far, the standards for CFS sections do not consider all the possible buckling 

interaction. The Brazilian (ABNT NBR 14762:2010 [5]), North-American (AISI S100-

16 [7]), and Australian/New Zealand (AS/NZS 4600 [6]) codes only consider the Local-

Global buckling interaction.  

The L-G interaction is already in the standards for hot-rolled and CFS members 

in the effective section method by Batista [85], as well as in the direct strength method 

(DSM) by Schafer [113] & [114]. Initially, the first proposal for the DSM was published 

by Schafer and Peköz [91], based on the original idea of Hancock et al. [92]. Up to now, 

it is the most frequently adopted method for designing CFS structures.  

Studies have been undertaken in the last few decades on CFS members under the 

couple instability phenomena. Schafer [95] proposed a buckling interaction design 

procedure for L-G, D-G and L-D, using the DSM. The approach is quite straightforward 

and is based on the idea of replacing the squash load �� of one mode, with the other mode 

that is interacting. The author states that with this procedure it is not necessary to consider 

the formulations for the modes separately, if they have been already considered in the 

coupled buckling expression. Also, according to Schafer [95], the DSM is a practicable 

and general approach to predict the strength of the modes separately and their interaction 

with the global buckling mode. 

In addition, the local-distortional (L-D) interaction has been becoming 

increasingly popular in the past 20 years. Different studies on the post-buckling and 

strength on this coupled phenomenon were performed by Yang and Hancock [115], Dinis 

et al. [116], Camotim et al. [117], Kwon et al. [118], Silvestre et al. [96], Martins et al. 

[119] and Matsubara et al. [100]. Some of these researchers, e.g. Yang and Hancock 

[115], Camotim et al. [117], Silvestre et al. [96], Matsubara [99], Matsubara et al. [100], 
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Matsubara and Batista [101] and Batista et al. [102], publish DSM reviews and 

predictions considering the L-D interaction. 

Furthermore, the L-D-G interaction is the coupled phenomenon that has 

stimulated the interests of many authors, in numerical and experimental studies. Some of 

the recent studies on this subject can be found in Dinis et al. [105], Santos [106], Santos 

et al. [107], Santos et al. [108], Cava et al. [109], Young et al. [110], Dinis et al. [111] 

and Matsubara and Batista [112]. 

In the past few years, studies were carried out in relation to the D-G interaction. 

Schafer [95] explains how the dimension of the lip of a lipped channel section could 

expose the D-G interaction. The author states that for members with a small ��, the D-G 

coupled phenomenon is conceivable, because the deformations and the wavelength of the 

distortional buckling mode is close to the local mode, with a known possible global 

interaction in pin-ended columns. On the other hand, for large �� dimensions, or cross-

sections with intermediate stiffeners or even other modification that could make the 

wavelength of the distortional mode to be significantly longer than the local mode, a D-

G interaction may be less likely. 

Yang and Hancock [115] performed compression tests with fixed end of high 

strength steel  lipped channel columns with intermediate stiffeners in the web and the 

flange, with L-D interaction. Their study results in the equation of the D-G interaction, as 

proposed by Schafer [95] before. 

Yap and Hancock [120] also performed compression tests on high-strength CFS 

columns. The sections were web-stiffened channel and the tests were performed with the 

intention of mode interaction. The authors also state design procedures for the coupled 

phenomenon, like distortional buckling interacting with overall buckling, as proposed by 

Schafer [95]. 

Nonetheless, the North-American standard, AISI S100-16 [7], and the 

Australian/New Zealand standard, AS/NZS 4600 [6], follows the effective width method, 

which carry the D-G interaction, according to Dinis and Camotim [103], based on 

laboratory experiments, conducted by Desmond et al. [121]. However, the studies 

proposed by Desmond et al. do not present an explicit approach for the mechanics of the 

modal interaction, as it is shown in Dinis and Camotim [103]. Therefore, it is expected 

that the considerations included in the North-American and Australian/New Zealand 

standards are conservative. 
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One of the first studies on the D-G interaction behavior was carried out by Dinis 

and Camotim [122] & [103]. These researchers performed a post-buckling and strength 

analysis of CFS lipped channels due to compressive loads under D-G coupled 

phenomenon. Dinis and Camotim [122] & [103] concluded that in the critical buckling 

length for D-G interaction, prevails the distortional-flexural-torsional mode, as an 

asymmetrical modal form of the distortional mode. This study contradicts the general 

concept of exclusively global buckling in that specifically critical buckling length. Also, 

the authors corroborate that the asymmetrical modal form (distortional-flexural-

torsional) reduces the post-critic strength, due to the instable post-buckling behavior. In 

addition, they noticed that the equilibrium path is very sensible to initial geometric 

imperfections. Practically, the columns with pure global initial imperfection have a lower 

ultimate load than the columns with pure distortional imperfection. 

Recent studies with experimental tests for D-G interaction in lipped channel 

columns is presented by Rossi et al. [123] and Anbarasu and Murugapandian  [124]. In 

Rossi et al. [123], the authors performed experiments on 48 full-scale stainless steel 

lipped channel section columns, experiencing distortional, flexural-torsional and 

combined distortional-flexural-torsional buckling mode. Moreover, Anbarasu and 

Murugapandian  [124] carried out an experimental study on CFS web stiffened lipped 

channel columns undergoing distortional–global interaction. 

There are recent studies about the D-G interaction that were performed on beams 

in pure bending. Niu et al. [125] & [126] developed an experimental and numerical 

investigation of stainless steel lipped channels beams in two parts. Another study on 

beams was accomplished by Martins et al. [127] & [128], using the generalized beam 

theory (GBT) as an analysis method. The study was also divided in two parts: Mechanics 

and Elastic Behavior [127]; Strength, Relevance and DSM Design [128]. Martins et al. 

[129] carried out the same study, but with zed-sections beams, published in a single 

version. 

The most recent studies on CFS lipped channel columns under D-G coupled 

phenomenon are mainly focused on the mechanics of the D-G interaction and design 

procedures. However, Anbarasu [130] performed experimental tests and numeric finite 

element method, in order to provide a parametric study and design recommendations for 

the D-G interaction behavior. 

Martins et al. [131] & [82] provided a numerical study on CFS lipped channel 

columns, with fixed-fixed end conditions under D-G interaction, which presents design 
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procedures for the direct strength method. The most interesting conclusions was that the 

pure global imperfections on the columns with D-G interaction, gives a lower strength 

capacity with significant post-critical strengths. Also, the authors concluded that the DSM 

global strength curve is capable to predict the three types of D-G interaction (true 

interaction, secondary-distortional bifurcation and secondary-global bifurcation). The 

authors state that this accurate prediction was due to the DSM global design strength 

curve safety margin. However, the cited strength curve underestimates the ultimate load 

for the columns under global modes (flexural-torsional), mostly in high slenderness 

factors (�� > 2.0).  

 

Section Finish, next page 

 

 



 FStr - Computer Application Program 
______________________________________________________________________ 

The finite strip method is implemented in MATLAB platform, MathWorks [23]. 

Entitled FStr Computer Application Program, the program performs an elastic buckling 

analysis of thin-walled structures. A graphical user interface (GUI) of the program is 

designed in order to make the program a useful and easy tool to perform the buckling 

analysis. This section presents the FStr Computer Application Program and its validation. 

3.1 Program Description 

FStr Computer Application Program is a software developed on the basis of the 

Finite Strip Method formulation, as described on item 2.2 (The Finite Strip Method), 

which is based on the book written by Cheung [11] and other sources: Cheung [17], 

Cheung [18], Bradford and Azhari [19], Li and Shafer [20], Schafer [21] and Li [22]. The 

FStr is implemented in MATLAB platform (MathWorks [23]) and is inspired in the 

CUFSM 5 [39] and GBTul 2.0 [65]  graphical user interface. The program logotype is 

illustrated in Figure 3.1 (the graphical user interface application itself is not an open 

source software, however, it is free to use). 

 

Figure 3.1 FStr Computer Application Program logotype.  
https://github.com/joaoadelazzari/FStr  

https://www.mathworks.com/matlabcentral/fileexchange/74306 

https://sites.google.com/coc.ufrj.br/fstr/
https://sites.google.com/coc.ufrj.br/fstr/
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The code structure can be separated in four groups: (i) data input; (ii) data 

preprocessing; (iii) finite strip analysis; (iv) data output. In Figure 3.2 is displayed the 

code structure and its groups. Firstly, in the data input group, the initial parameters are 

set up, e.g. cross-section coordinates and thickness, orthotropic material properties, 

boundary conditions and lengths of the structural member and the number of half-waves 

terms. Secondly, in the data preprocessing category, is just performed an arrangement of 

the initial parameters, in order to perform the finite strip analysis. At this point, the 

analysis is performed in three main loops: (iii.a) half-wave loop, (iii.b) strip loop and 

(iii.c) length loop. For each half-wave number is assembled the local elastic stiffness and 

geometric matrices, Eq. (2.31). These matrices are organized in the global matrices, for 

each strip. In the end of all strips and all half-wave terms loop, there are two global 

matrices, expressed in Eq. (2.36) and Eq. (2.37), for the elastic stiffness and geometric 

matrix, respectively. Finally, the data output are the results from the generalized 

eigenvalue problem, from Eq. (2.38), in other words, the signature curve and the critical 

modal shapes. 

The Graphical User Interface (GUI) is implemented in the MATLAB App 

Designer [23]. The App Designer from MATLAB is a powerful tool to create professional 

apps without having to be a professional software developer. This tool is a complete 

environment with built-in functions, visual components, object-oriented code, code 

Figure 3.2. FStr Computer Application Program code structure. 

https://sites.google.com/coc.ufrj.br/fstr/
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analyzer for identifying errors and many others gadgets. The purpose of the GUI is to 

make it easier to the user to set up the data input and to analyze the data output. 

Figure 3.3 shows the FStr GUI with the data input and output panel. Comparing 

to the code structure in Figure 3.2, the data input is marked from (1-8), the data 

preprocessing and the finite strip analysis are marked as (9) and the data output are 

indicated from (10-16). 

 Coordinates Panel 

[Node Number; Coordinate in � direction; Coordinate in � direction]; 

 Elements Panel  

[Element Number; First Node; Second Node; Thickness; Material Name] 

 Orthotropic Material Panel  

[Material Name; Elastic Modulus for � direction; Elastic Modulus for � direction; 

Poisson’s ratio for � direction; Poisson’s ratio for � direction] 

 Loading 

[P: Compression] 

 

Figure 3.3. FStr Graphical User Interface index description. 
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https://sites.google.com/coc.ufrj.br/fstr/
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[Mx: Moment about geometric � axis] 

[My: Moment about geometric � axis] 

[M1: Moment about major principal axis] 

[M2: Moment about minor principal axis] 

 Boundary Condition  

(S-S, C-C, C-S, C-G, C-F, see Table 2.1) 

 
Half-wave terms for trigonometric series  

[1 2 3 4 … �] {� ∈  � } 

 Longitudinal length of structural element  

(e.g. logspace(1,4,200), (10:100:10000)) 

 Dynamic 2D thin-walled cross-section geometry 

 Elastic Buckling Analysis Button 

 Number of superior modes displayed 

[ 1 2 3 … �] { � ∈  � | � ≤ 20 } 

 Critical Load or Critical Stress or Critical Moment 

 Selection of Superior Modes 

 Signature Curve and Superior Modes (Critical Load versus Longitudinal Length) 

 Dynamic 2D Modal Shape, for each Longitudinal Length and Transversal Position 

Ratio (�� = � �⁄ ) 

 Selection of Longitudinal Length 

 3D Modal Shape for the selected Longitudinal Length (Figure 3.4) 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 
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The program itself has an easy interface and it is faster in some cases, compared 

to the CUFSM and GBTul. The FStr program performance depends mostly of the number 

of strips and terms of half-waves, the fewer of these parameters, faster is the analysis. 

There are some important tips for the users: (i) firstly, it is recommended that the 

user adopt millimeters for length unit and kilonewton for force unit in axial compression, 

e.g. the elastic modulus with 200 ��/��� (steel elastic modulus ≈ 200 ���); (ii) 

secondly, the software data input corresponds to the CUFSM data input, this means that 

the coordinates, elements and material “data box”, can be copied from the CUFSM and 

paste into the FStr; (iii) every space corresponds to a new column and every enter key hit 

is a new row in the data input, in order to set up the coordinates, elements, material, half-

wave terms and lengths; (iv) the length’s “data box” understand MATLAB functions7, 

this means that instead of typing all the lengths, the user can type e.g. ��������(1,4,200), 

10: 100: 10000 or ��������(10,10000,200). 

The FStr is a free computer application program, and it is an elastic buckling 

analysis alternative for research activities and engineering design of steel thin-walled 

structures. The program can be accessed in the GitHub website 

https://github.com/joaoadelazzari/FStr or in the file exchange from MathWorks website 

https://www.mathworks.com/matlabcentral/fileexchange/74306. 

 

 

7 For MATLAB Documentation Help, acess mathworks.com/help 

 

Figure 3.4. FStr 3D modal shape with vector sum normalized displacement colormap visualization. 

https://sites.google.com/coc.ufrj.br/fstr/
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3.2 Elastic Buckling Analysis Validation 

In order to show the accuracy, performance and parallelism of the FStr Computer 

Application Program, in this section some structural models are analyzed and compared 

to other elastic buckling analysis results. The purpose is to validate the FStr solution, with 

Constrained and Unconstrained Finite Strip Method (CUFSM) and Generalized Beam 

Theory (GBT) in most cases, for parallelism intention, and also to the classic FEM, from 

ANSYS [68], and analytical procedures, for comparing performance and accuracy. 

The validation is performed for a total of 9 different models. First, 5 models of 

flat rectangular plates under compression are analyzed, with 5 different boundary 

condition8 on the extremities and free in the longitudinal edges. Secondly, 5 more flat 

rectangular plates under compression are analyzed, but with longitudinal clamped edges. 

Thirdly, a more complex model is analyzed of a lipped channel column, one with simply-

simply end condition and other with clamped-clamped end condition. Lastly, a stiffened 

lipped channel and a zed section beam are analyzed, under uniform unrestricted bending 

and simply-simply end condition. 

The material employed to validate all the models are uniformized as a CFS, with 

elastic modulus of 200 ���, Poisson’s ratio of 0.3 and transversal modulus of 

76.92 ���. 

 

3.2.1 End Boundary Condition Validation 

Firstly, the models for this validation are flat rectangular plates with free 

longitudinal edges, and different end boundary condition. The FStr Computer Application 

program is validated comparing its results with the GBTul 2.0 [65], CUFSM 5 [39] and 

analytical formulation for global buckling (Eq. (2.56)). The analysis consists of a set of 

100 lengths (�) from 100 to 1000, in logarithmic scale. The geometry of the plate is 

illustrated in Figure 3.5, with b = 100 �� and � =  5 ��. 

Even though in all methods are defined the same geometry and end conditions, 

there are some parameters that are exclusively for each method. For the GBT the model 

has 2 natural nodes and 3 internal nodes in the cross-section. Additionally, the analysis is 

performed with all conventional modes and a numerical solution with 10 beam finite 

 

8 S-S, C-C, C-S, C-G and C-F, see Table 2.1. 
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elements. Moreover, for the FStr and CUFSM programs, the geometry has 5 nodal lines 

(4 strips) in the cross-section and considering a total of 10 terms of half-waves. Lastly, 

for the analytical solution, it is managed the Eq. (2.56), with different buckling 

coefficients, depending on the boundary condition: (i) Simply-Simply,  ��, �� and �� 

equal to 1.0; (ii) Clamped-Clamped, ��, �� and �� equal to 0.5; (iii) Clamped -Simply, 

�� and �� equal to 0.7 and �� equal to 1.0; (iv) Clamped -Free, �� and �� equal to 2.0 

and �� equal to 1.0; (v) Clamped -Guided, ��, �� and �� equal to 1.0. 

The graph critical load versus length is shown in Figure 3.6, Figure 3.7, Figure 

3.8, Figure 3.9 and Figure 3.10, for the S-S, C-C, C-S, C-F and C-G end boundary 

condition, respectively. The graphs show the critical load in the left axis, and the relative 

difference between the FStr with each method in the right axis. Furthermore, the first 

three critical buckling modes for � = 298�� are illustrated in Figure 3.11, Figure 3.12, 

Figure 3.13, Figure 3.14 and Figure 3.15 for the S-S, C-C, C-S, C-F and C-G end 

boundary condition, respectively. 

 

Figure 3.5. Geometry of flat rectangular plate with free longitudinal edges. 
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Figure 3.6. [S-S] Rectangular plate critical load validation with GBTul, CUFSM and Global 
Buckling Analytical formulation. 

Figure 3.7. [C-C] Rectangular plate critical load validation with GBTul, CUFSM and Global 
Buckling Analytical formulation. 

Figure 3.8. [C-G] Rectangular plate critical load validation with GBTul, CUFSM and Global 
Buckling Analytical formulation. 
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Note that in all cases, the relative difference between the FStr and the CUFSM is 

nearly to zero, with the maximum difference of 0.00016%. This shows that the FStr and 

CUFSM are in accordance with the FSM formulation applied in both programs. On the 

other hand, comparing to the GBT method and the analytical formulation, the relative 

differences are slightly higher. Comparing FStr to GBTul, the maximum relative 

difference is 2.58% for the C-S end boundary condition. For the others end conditions, 

the maximum relative difference is around 1.5%. Comparing the FStr to the global 

buckling analytical formulation, the relative difference is fairly higher. For shorter 

lengths, the global buckling formulation has shown the highest relative difference, while 

for long lengths, the global buckling equation tends to FStr solution. Also, note that the 

relative difference from the analytical solution is decreasing almost proportionally to the 

increasing of length, differently from the GBT method, where the relative difference 

remains almost constant. 

Figure 3.9. [C-F] Rectangular plate critical load validation with GBTul, CUFSM and Global 
Buckling Analytical formulation. 

Figure 3.10. [C-G] Rectangular plate critical load validation with CUFSM and Global Buckling 
Analytical formulation. 
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Figure 3.11. Tridimensional buckling modes for S-S end condition at L=298 mm: (a) CUFSM, (a.1) 
1st mode, (a.2) 2nd mode, (a.3) 3rd mode; (b) GBTul, (b.1) 1st mode, (b.2) 2nd mode, (b.3) 3rd mode; (c) 

FStr, (c.1) 1st mode, (c.2) 2nd mode, (c.3) 3rd mode. 

 

Figure 3.12. Tridimensional buckling modes for C-C end condition at L=298 mm: (a) CUFSM, (a.1) 
1st mode, (a.2) 2nd mode, (a.3) 3rd mode; (b) GBTul, (b.1) 1st mode, (b.2) 2nd mode, (b.3) 3rd mode; (c) 

FStr, (c.1) 1st mode, (c.2) 2nd mode, (c.3) 3rd mode. 
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Figure 3.13. Tridimensional buckling modes for C-S end condition at L=298 mm: (a) CUFSM, (a.1) 
1st mode, (a.2) 2nd mode, (a.3) 3rd mode; (b) GBTul, (b.1) 1st mode, (b.2) 2nd mode, (b.3) 3rd mode; (c) 

FStr, (c.1) 1st mode, (c.2) 2nd mode, (c.3) 3rd mode. 

 

Figure 3.14. Tridimensional buckling modes for C-F end condition at L=298 mm: (a) CUFSM, (a.1) 
1st mode, (a.2) 2nd mode, (a.3) 3rd mode; (b) GBTul, (b.1) 1st mode, (b.2) 2nd mode, (b.3) 3rd mode; (c) 

FStr, (c.1) 1st mode, (c.2) 2nd mode, (c.3) 3rd mode. 
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It can be observed that all the modal shapes are shown as expected by each 

method. However, it is important to point some interesting observations. First, the 3D 

generation of the CUFSM takes a while to show the modal shape and the GBTul 3D mode 

generation sometimes crashes, resulting in unexpecting closing of the program, while the 

FStr 3D generation is quite faster with a light performance. Secondly, comparing the 

modal shapes from the C-S end boundary condition, note that the CUFSM program shown 

a not equivalent shape. The expected form for the first mode was supposed to have 

rotation equal to zero in one extremity and different to zero in the other extremity, with 

only one half-wave length. However, the CUFSM does not appear to present a 

correspondent modal shape, which the GBTul and FStr seems to perform a correct 

buckling mode. Since all the equations for performing the elastic buckling analysis are in 

accordance with the FStr program, it is believed that the mistake should be in the 

interpolation of the modes, in order to print the modal shape in the screen. Lastly, note 

that for the C-G boundary condition, there is no buckling mode for the GBTul program, 

due to the lack of this boundary condition in the program. 

In order to compare each boundary condition, Figure 3.16 shows the critical load 

versus the length of the plates with different boundary conditions. 

 

Figure 3.15. Tridimensional buckling modes for C-G end condition at L=298 mm: (a) CUFSM, (a.1) 
1st mode, (a.2) 2nd mode, (a.3) 3rd mode; (b) FStr, (b.1) 1st mode, (b.2) 2nd mode, (b.3) 3rd mode. 
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It should be noted that as more degrees of freedom are restricted, e.g. C-C, higher 

is the critical load. Alternatively, for plates with less restricted degrees of freedom, e.g. 

C-F, lower is the critical load, as it was expected. The same conclusions can be found in 

Bradford and Azhari [19]. 

 

3.2.2 Local Buckling Validation 

In this section, the FStr Computer Application Program is validated with flat 

rectangular plates with clamped longitudinal edges, and different end boundary condition. 

The results are compared with CUFSM 5 [39] and findings from Li and Schafer [20]. The 

analysis also consists on a set of 100 lengths (�) from 100 to 1000, in logarithmic scale, 

with a total of 10 terms of half-waves, for both FStr and CUFSM programs. The geometry 

of the plate is illustrated in Figure 3.17, with b = 100 �� and � =  5 ��, and the 

longitudinal boundary condition is modeled with an addition of a thicker plate (40�), in 

order to stiff the longitudinal edges, and simulate a clamped condition. 

With respect to Figure 3.17, the geometry of the plate has a total width of two 

times the nominal width, half for each edge side. For this additional plate parts, the 

thickness are forty times the nominal thickness. This alternative model has the purpose 

of reproduce a plate with width of b and thickness of �, but with clamped longitudinal 

edges. Since the FStr does not restrict the degrees of freedom yet (this approach must be 

improved in future works), the model in Figure 3.17 is adopted for the FStr Computer 

Application Program. To the point that in the CUFSM the longitudinal edges are restricted 

for the twist, x, y and z direction. 

Figure 3.16. Critical Buckling Load comparison between plates with different end boundary 
condition (FStr Computer Application Program). 
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Since the plate are restricted in all edges, the local buckling is more likely to 

develop. Due to that, the equation that governs the phenomenon is expressed in Eq. (2.39). 

Through this equation, it can be seen that only the �ℓ parameter is variable, depending on 

the plate’s length, since all the others parameters are constants. According to Li and 

Schafer [20], for plates with all four edges clamped, the buckling coefficient from the 

local buckling equation, tends to 6.97. With this conclusion, the plate model from FStr is 

validated, comparing the variation of the buckling coefficient along the ratio between the 

plate’s length and its width, with the solution provided by CUFSM and Li and Schafer 

[20], illustrated in Figure 3.18. 

One important observation about the graph in Figure 3.18 is the trend of the 

buckling coefficient to 6.97 for longer plates. For ratios �/b higher than 8, the relative 

 

Figure 3.17. Geometry of flat rectangular plate with “clamped” longitudinal edges (c-c). 

Figure 3.18. Buckling Coefficient versus the ratio between length and width for the C-C c-c plate, 
comparing FStr and CUFSM. 
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difference among FSM and the buckling coefficient tendency are minimal. Also, note that 

the relative difference between the FStr and CUFSM is also almost null. 

In order to compare the buckling modes, Figure 3.19 shows the modal shapes for 

the first mode in four different lengths from CUFSM and FStr. Notice that the buckling 

modes from FStr has wider strips next to the edge to restrict the longitudinal edges, which 

is part of the model. But this difference in the model, did not interfere in the modal shapes. 

Additionally, for the same plate model, an analysis varying the end boundary 

condition, but maintaining edge longitudinal boundary condition as clamped, is also 

performed. Figure 3.20 shows the variation of the buckling coefficient along the ratio 

between the plate’s length and its width, for five different end boundary condition. 

 

Figure 3.19. 3D buckling modes comparison between CUFSM and FStr for the C-C c-c plate, at 
L=100 mm, L=200 mm, L=497 mm and L=705 mm. 

Figure 3.20. Buckling Coefficient versus the ratio between length and width for S-S, C-C, C-S, C-F 
and C-G end boundary condition, and c-c longitudinal edges boundary condition.  
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Li and Schafer [20] shown that for clamped-clamped longitudinal edges boundary 

condition, k tends to 6.97 for S-S, C-C, C-S and C-G end boundary condition, and 3.9 for 

C-F end boundary condition, as has been found by the program FStr, illustrated in Figure 

3.20. In Figure 3.21 is displayed the top view of the buckling modes at �/b = 3.12 or 

length of 312 mm. Notice the variation of the number of the half-waves and its 

distribution along the plate’s length. 

 

3.2.3 Analytical Validation 

The main goal for this validation is to compare a lipped channel section signature 

curve, with analytical procedures in the literature. For this model, only the simply 

supported end boundary condition, with all the longitudinal edges free, and only one term 

of half-wave is analyzed. The geometry of the cross-section illustrated in Figure 2.14-a 

has �� = 100 ��, �� = 70 �� , �� = 15 �� and � = 2.70 ��.  

The critical buckling load from FStr is compared to: (i) local buckling equation, 

Eq. (2.39), retrieved from ABNT NBR 14762:2010 [5]; (ii) distortional buckling 

equation, Eq. (2.52), from Cardoso et al. [86]; (iii) global buckling equation, Eq. (2.56), 

found in Timoshenko and Gere [83] and mostly into the codes, e.g. ABNT NBR 

14762:2010 [5], AS/NZS 4600 [6] and AISI S100-16 [7]. Also, results from CUFSM and 

GBTul are compared to the analytical procedures and FStr. 

Figure 3.22 presents the signature curve from FStr, CUFSM and GBTul programs, 

in addition to the analytical equations for local, distortional and global buckling. 

Moreover, Figure 3.23 shows the critical buckling modes for (i) local, (ii) distortional (iii) 

flexural-torsional and (iv) flexural, from the FStr Computer Application Program. 

 

Figure 3.21. Top view of plates from FStr under local buckling for the c-c longitudinal edge 
boundary condition, at L/b=3.12 or L=312 mm, for different end boundary condition. 
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Notice that the FStr program obtained practically the same signature curve as the 

CUFSM. The GBTul program also provided a solution close to the finite strip method. 

Further, the analytical procedures offered a great precision for the critical loads at critical 

lengths. As can be shown in Table 3.1, the critical buckling ratios between the FStr with 

analytical procedures at critical lengths for local and distortional length has demonstrated 

that the matrix formulation from FStr is following the analytical formulations. With a 

relative difference of 3.8% for local buckling (NBR 14762 [5]) and 2.5% for distortional 

buckling (Cardoso et al. [86]), the FStr accuracy against analytical formulation is 

validated. 

 

Figure 3.22. Signature Curve comparison between FStr, CUFSM, GBTul and analytical procedures 
of LC 100x70x15x2.70 with S-S end boundary condition with one term of half-wave. 

Figure 3.23. Critical Buckling modes from FStr, for a Lipped Channel section with one half-wave 
term. 
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Table 3.1.Critical Buckling comparison at critical lengths. 

Critical Length Mode FStr/CUFSM FStr/GBTul FStr/Analytical 

[mm]         

(i) 84 Local 1.000 0.993 1.038 (NBR 14762 [5]) 

(ii) 405 Distortional 1.000 0.995 0.975 (Cardoso et al. [86]) 

 

3.2.4 Finite Element Method Validation 

In this section, the FStr Computer Application program is validated comparing its 

results with the Finite Element Method (FEM), Generalized Beam Theory (GBT) and 

Constrained and Unconstrained Finite Strip Method (CUFSM). 

For this validation, an elastic buckling analysis for a range of 200 lengths of lipped 

channel columns is performed. Also, for all the methods studied, it is treated a column 

under uniform axial compression, with fixed-fixed end condition. The geometry of the 

cross-section is illustrated in Figure 3.24. Additionally, the buckling analysis of the lipped 

channel cross-section studied in this section, is the same as shown in Figure 2.13, and 

their buckling modes are illustrated in Figure 2.9. 

The FEM is employed with assistance of the ANSYS Mechanical APDL [68]. The 

main mode extraction method to be applied for the buckling analysis is the subspace 

iteration9, which is suitable to detect the modes for large models. Additional finite element 

model specifications about the column discretization, type of element, boundary 

conditions, etc. is well detailed in the subsection 4.1 (Model description). 

The other method appropriated for comparison, the GBT, is performed with 

GBTul 2.0 [65] computer application. For this method, all the conventional modes, 

numerical solution with 20 beam finite elements and clamped-clamped end condition are 

considered. 

Lastly, the CUFSM 5 [39] is a method based on the FSM, which is also the same 

method as applied for the developed computer application program, FStr. For this 

method, the same initial parameters as applied in the FStr program, are employed: 10 

half-wave terms, clamped-clamped end condition and 18 strips. 

 

9 This method is explained in the book from Bathe [72], and additional improvements is found in 

Wilson and Itoh [73]. 
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The graph of critical load versus column’s length is illustrated in the Figure 3.24 

in accordance with the relative difference between the FStr Computer Application 

Program with other numerical solutions. 

First, comparing the two graphs in the Figure 3.24, it can be seen that the CUFSM 

and the FStr provides the same results, with a maximum difference of 0.000056%, which 

is probably a difference occasioned by an inevitable numerical precision. Also, the FStr 

reached close to the GBT method, with a maximum relative difference of 2.0%. However, 

comparing the FStr with the FEM, the maximum relative difference is 13.3%, which can 

be seen clearly in the signature curve. On the other hand, this maximum difference occurs 

in short column’s length, which is irrelevant for the purposes of structural members 

design. As shown in Figure 2.13, the D-G modal interaction is stronger near to the length 

1850 mm. For a certain length range near to L=1850mm, the maximum relative difference 

is around 3.51%, which is an acceptable relative difference between the FEM and FSM. 

With respect to the modal shape,  Figure 3.25 shows the FEM vs FSM comparison 

of the buckling mode shape for the column’s length of 1722 mm and 2222 mm. Note that 

the FStr provides the same buckling mode with same maximum amplitude, as it is given 

by the FEM. 

Figure 3.24. Signature Curve and Relative Difference comparing FEM, GBTul and CUFSM with 
the FStr computer application program. 
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Further, the time of performance of each method is shown in Figure 3.24. Note 

that the FStr is the faster method (for this particular model), with a great precision, 

compared to the other methods. Additionally, observe that the CUFSM is quite faster as 

the FStr. Even though both programs employ the same matrix method, the FStr eigenvalue 

problem solver is faster, and the code structure is optimized with the purpose of avoid 

repeated loops. Moreover, the GBT method has shown a quite slow method. The most 

probable reason for this slowness is because the model has a clamped-clamped end 

boundary condition, which imposes the GBTul program performs a numerical interactive 

analysis, which takes a huge computational effort. With respect to the FEM, its clearly 

the slowest method, as expected, caused by its higher number of degrees of freedom. 

Accordingly, the FStr computer program application, is a powerful tool for an 

elastic buckling analysis, that can be applied, for example, for optimization problems or 

large number of buckling analysis. 

 

 (a) (b) 

Figure 3.25. Tridimensional modal shapes comparison between (a) FEM and (b) FStr at 
distortional and global lengths. 
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3.2.5 Unrestricted Bending Validation 

The last validation is the buckling analysis of beams under unrestricted pure 

bending, where there is not axial, shear or torsional forces. For this validation case, it is 

performed only simply supported end boundary condition, with all the longitudinal edges 

free, and ten terms of half-waves. The results from FStr are again compared to the 

CUFSM and GBTul programs.  

In order to validate the uniform bending, it is applied two different geometries, a 

lipped channel section with web stiffener (Figure 3.26-a) and an asymmetric zed section 

(Figure 3.29-a). For both models the moment is applied at the geometric central x-x axis, 

however, for the zed section, the principal 1-1 axis is rotated by 19.34 degrees clockwise, 

while for the lipped channel section with web stiffener, the central x-x axis coincides with 

the principal 1-1 axis. Another important condition is that the pure bending is unrestricted, 

this means that the neutral line is not parallel to the flanges. Additionally, the geometric 

sections are consisted of rounded corners, with a more realistic form and analysis. 

 

 (a) (b) (c) (d) 

Figure 3.26. Lipped Channel section with web stiffener, (a) cross-section geometry, (b) FStr, (c) 
CUFSM and (d) GBTul 2D buckling mode at L=849 mm and ��=0.3L. 

First, for the lipped channel section with web stiffener model (Figure 3.26-a), the 

signature curve is displayed in Figure 3.27. As can clearly be seen, the relative difference 

between the FStr and GBTul hits to a maximum of 13%. The same maximum difference 

is also noted compared the CUFSM with the GBTul, since the maximum relative 

difference between CUFSM and FStr is 0.007%.  
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However, as shown in Figure 3.27, the maximum relative difference between FStr 

and GBTul occurs at short lengths with local buckling mode. For distortional modes, this 

difference approaches to a maximum of 1%, while for global buckling mode has a 

maximum of 6.5%. In order to compare the modal shapes, Figure 3.26 shows the 2D 

buckling modes at L = 849 mm, for FStr, CUFSM and GBTul programs, and Figure 3.28 

shows the 3D modal shape for the FStr Computer Application Program. 

 

 (a) (b) (c) (d) 

Figure 3.28. 3D modal shapes for a beam with lipped channel and web stiffener section from FStr 
at L=849 mm, showing contour plot for (a) resultant, (b) x-direction, (c) y-direction and (d) z-

direction displacements. 

In order to illustrate the modal shape displacement in the geometric orthogonal 

directions, Figure 3.28 shows the FStr buckling mode at L=849 mm, in four different 

contour plots. The plot shows that the resultant contour plot not always shows the 

apparent modal shape contour plot. As can be noticed, the contour plot for the y-direction, 

Figure 3.27. Lipped channel section with web stiffener critical bending validation with GBTul and 
CUFSM. 
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Figure 3.28-c, shows displacements in the transversal section plane, that is not trivial to 

observe in the resultant contour plot. 

Secondly, discussing about the asymmetric zed section beam, details about its 

asymmetry (geometry illustrated in Figure 3.29-a) are important to point out. Since this 

model has its principal axis rotated - 19.34 degrees clockwise - the moment applied in the 

x-x axis can be decomposed into the 1-1 and 2-2 principal axis. Attributable to this fact, 

the model in CUFSM and FStr has the option to add the moment in the x-x axis. However, 

in GBTul, the only possible option is to apply the moment in the principal axis. As a result 

of this, the moment of 1 kN.m applied at x-x axis, is analogous as two orthogonal 

moments of 0.944 kN.m at 1-1 principal axis and 0.331 at 2-2 principal axis. The signature 

curve for the asymmetric zed beam is displayed in Figure 3.30.  

 

 (a) (b) (c) (d) 

Figure 3.29. Asymmetric zed beam section, (a) cross-section geometry, (b) FStr, (c) CUFSM and (d) 
GBTul 2D buckling mode at L=351 mm and ��=0.5L. 

 

Notice that the relative difference between the FStr and GBTul have a smaller 

deviation, with a maximum relative difference of 2.8%. Also, this relative difference 

approaches to almost zero when the length is increased in the global buckling mode. The 

CUFSM again showed a minimal relative difference compared to FStr, with a maximum 

of 0.005%.  



João Alfredo De Lazzari 

78 

In order to compare the modal shapes, Figure 3.29 shows the buckling modes at 

L = 351 mm, for FStr, CUFSM and GBTul programs. The buckling modes in 2D form 

illustrates the conformity of the developed program, FStr, with the usual programs, 

CUFSM and GBTul. 

 

Section Finish, next page 

 

 

 

Figure 3.30. Asymmetric zed section critical bending validation with GBTul and CUFSM. 
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 Numerical Modeling 
______________________________________________________________________ 

For a numerical investigation of D-G buckling interaction, a Finite Element 

Analysis (FEM) is performed in order to understand the structural behavior. Also, the 

FEM is employed with assistance of ANSYS Mechanical APDL [68]. The analysis using 

the FEM is addressed to capture and observe the nonlinear equilibrium path and detect 

the strength of the structural element. In this section, the finite element model is described 

and validated with compression tests provided from laboratory experiments. 

4.1 Model description 

The FEM numerical model performs an important task to the parametric study of 

CFS columns under D-G buckling interaction. Through a calibrated finite element model, 

based on experimental tests, the model can reproduce real experiments numerically.  This 

approach save time in order to perform a parametric study, and also leads it to a more 

practical structural investigation that is almost impossible to test in real physical 

conditions. Consequently, it is fundamental that the numerical model is well calibrated to 

behaves as expected, avoiding untrustworthy results, that could compromise the 

parametric study and influencing the conclusions of the study. Due to that, the description 

of the numerical modeling needs to be precise and detailed, reporting every type of 

consideration in the FEM implementation. 

The adopted model is described in five different groups: (i) discretization, (ii) end 

boundary condition, (iii) loading, (iv) material model and (v) initial geometric 

imperfections. For each group, the model is explained in detail, according to the ANSYS 

Mechanical APDL reference [68] and considerations retrieved from the literature. 

Figure 4.1 shows an illustration of a CFS column with a lipped channel section 

and both ends fixed. This figure illustrates some of the main components of the numerical 

model, as discretization, end boundary condition and loading. In Figure 4.1-a is illustrated 

the meshes, as well as the real thickness of the end plate and the structural CFS element. 

Figure 4.1-b and Figure 4.1-e displays both end boundary condition with the loading and 
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restrictions. Figure 4.1-c also exhibits the mesh, but in the structural element. Finally, 

Figure 4.1-d shows the restriction on longitudinal direction.  

4.1.1 Discretization 

This section describes the type of element and mesh properties. First, the type of 

element is restricted to a shell type. This type of element is adequate for analyzing thin to 

moderately-thick shell based structures. Secondly, the mesh properties include a mixed 

mesh with quadrilateral and triangular shell element with a fixed element size. 

Illustrations of shell element and mesh configuration is shown in Figure 4.1-a and Figure 

4.1-c. 

Figure 4.1. Finite Element Model description: (a) Shell element mesh and thickness on fixed-ended 
end; (b) boundary condition and loading on extremity; (c) mesh of structural element along the 

length; (d) restriction to longitudinal direction movement at mid span; (e) boundary condition and 
loading on the other extremity. 

 

(b) 

(a) 

(d) 

(c) 

(e) 
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 The adopted finite element type is the SHELL281, Figure 4.2-b. According to the 

ANSYS Theory Reference [68], the SHELL281 has 8 nodes, with 6 degrees of freedom10 

per node, and is appropriate for linear, large rotation and large strain nonlinear situations. 

In addition, the SHELL281 formulation is placed on logarithmic strain and true stress 

measures. For this research, the finite element option contemplates the shell structural 

stiffness with bending and membrane considerations. 

The mesh generation has a particularity, it generates quadrilateral and triangle-

shaped elements with an element size of 5 mm. This mixed mesh occurs resulting from 

the predefined imperfections from the FStr Computer Application Program and also due 

to the automatic mesh generation in the plates at the ends of the column. Even though the 

element shape chosen for the whole column is quadrilateral-shaped, triangle-shaped 

elements may be emerged, when the mesh is generated. This happens because the areas 

generation for the mesh are formed by non-planar surfaces. This is the reason why in this 

research the SHELL218 is employed instead of SHELL181 (Figure 4.2-a), which has less 

nodes and degrees of freedom. According to ANSYS Theory Reference [68], SHELL281 

provides more reliable results for triangular elements, while SHELL181 is not 

recommend for triangular-shaped elements. Figure 4.3 shows the mesh at the end plate of 

the column, detailing both types of possible meshes occurrences, quadrilateral and 

triangular shell element. 

 

 

10 Translations in the x, y, and z axes, and rotations about the x, y, and z-axes. 

 

 (a) (b) 

Figure 4.2. Degrees of freedom of (a) SHELL181 and (b) SHELL281, retrived from ANSYS 
Mechanical APDL reference [68]. 
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More details and specifications about the formulation of SHELL281 element can 

be found in Ahmad et al. [132], Dvorkin [133], Dvorkin and Bathe [134], Allman [135], 

Bathe and Dvorkin [136], Cook [137], MacNeal and Harder [138] and Cook et al. [139]. 

 

4.1.2 End boundary conditions 

With respect to the boundary conditions, the column has fixed-fixed end 

condition. The constraints in the extremities of the column are designed to be a stiff plate 

rigidly fixed to the end of the column, illustrated in Figure 4.1-a and Figure 4.4. 

For this type of model, both extremities of the column have constraints on 

displacements in x and y direction, and constraints on rotation in x, y and z direction (see 

Figure 4.1-b, Figure 4.1-e and Figure 4.4-c). Another constraint in necessary in the middle 

of the column, in a node in the middle of web, which prevent displacement in z direction 

(Figure 4.1-d). This additional constraint in the middle of the columns is needed to avoid 

free body translation, taking into account that symmetric behavior develops in the 

longitudinal direction of the column, imposed by the symmetric end boundary condition.  

Figure 4.3. Detail of the end plate, showing the type of possible meshes occurrences, quadrilateral 
and triangular shell element. 

6 node triangular 
element 

8 node quadrilateral 
element 
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The stiff plate is generated covering all the points in the extremity section. In this 

condition, a unique surface is formed and the boundary conditions restrictions are applied, 

as shown in Figure 4.4-c. Sequentially, the end plate mesh is shaped automatically by 

ANSYS. Even so, the plate rigidly fixed is considered with a fixed thickness of 12 mm, 

and the section thickness can vary (e.g. for a parametric study). The value of the plate 

thickness is based on laboratory experiments performed by Salles [140] and Santos [106]. 

The thickness difference from the plate and the cross-section can be observed in Figure 

4.4-c. 

 

4.1.3 Loading 

Since the numerical model is a column, the only type of load is an axial 

compressive force. Equal compressive loads are applied to the ends of the column (see 

Figure 4.1-b, Figure 4.1-e and Figure 4.4-c). The external load is applied as a punctual 

concentrated load in the centroid of the section, at both ends, generated automatically by 

ANSYS as a HARDPOINT, where the compressive load can be easily applied. For the 

buckling analysis, the force magnitude is equal to the squash load �� = �. ��. The non-

linear analysis, up to the column strength capacity, increases the load based on load steps. 

 

 (a) (b) (c) 

Figure 4.4. Plate rigidly fixed to the end of the column, representing a fixed-ended end support 
conditions, (a) without shell thickness, (b) with illustration of shell thickness and (c) representation 

of restricted degrees of freedom. 
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The maximum load is set up to be 1 �/� , and the load steps are 0.05 �/� for the arc-

length method11. 

 

4.1.4 Material Model 

A structure composed of an elastic material behaves linearly and constantly for 

any kind of external load applied to the structure. However, a real structure never behaves 

always linear and elastic. In this case, a ductile material with nonlinear characteristics 

should be considered. In order to perform a nonlinear material analysis, the elastic-plastic 

assumptions of cold-formed steel must be introduced. 

The material model here is defined as a balance of simplicity and accordance with 

reality for perform an acceptable parametric study. In this case, a material with bilinear 

isotropic hardening (elastic-perfect plastic model) is considered, which applies the von 

Mises yield criteria with an isotropic work hardening presumption. This hardening 

assumption consider an initial slope of the strain-stress curve with an elastic modulus in 

the elastic strain region and a tangent slope modulus (��) with small magnitude, compared 

to the elastic modulus, in the plastic strain region. The yield strength of the material 

varies, depending on the study, however, it is defined for all cases an elastic modulus of 

200 GPa (200 kN/mm2) and the major Poisson’s ratio equal 0.3. Also, the material for the 

plate rigidly fixed to the end of the column have the same properties and characteristics 

as the structural element. In Figure 4.5 is shown an example of a strain-stress curve given 

by a tensile test and the material model adopted here. For the cases where the material 

has a high strength yield stress, it is adopted �� = �� and �� = 0. 

With respect to the residual stresses and corner effects by the CFS material, the 

major part of investigations neglected these effects. In Dinis and Camotim [97] has been 

shown an insignificant impact in the ultimate column load. Also, according to Ellobody 

and Young [141], the small membrane residual stresses has been demonstrated an 

irrelevant effect on the ultimate load, stiffness of the column, load-shortening behavior 

and in the failure mode. In Matsubara et al. [100], a recent finite element modeling of 

local-distortional coupled phenomena in lipped channel CFS columns, the residual 

stresses and rounded corners effects are also neglected. 

 

11 Described in subsection 4.1.6 (Analysis Methods) 
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Figure 4.5. Strain-Stress curve of a Bilinear Model comparing with tensile test performed by Salles 
[140]. 

4.1.5 Initial geometric imperfections 

All the structural members include geometric imperfections, originating on their 

fabrication, transportation, precision on measurement tools and many others. CFS 

members are never completely flat or perfectly straight. In this case, definition of the 

geometric imperfections performs an important task in the nonlinear analysis, in order to 

represent a structural model as close as possible of the reality. 

For the present work the original perfect geometry and imperfections of the 

column are created with the help of the previous FSM analysis. The FStr program 

(described in chapter 3)  performs the elastic buckling analysis and, with the corresponded 

modal critical shape, generates points that are inserted into an APDL routine code as 

KEYPOINTS. The modal critical shape is inserted as an initial imperfection, with a 

maximum amplitude depending on the mode. In this case, the initial imperfect geometry 

of the column is composed of non-planar surfaces, connecting 4 nearby KEYPOINTS. 

Figure 4.6 shows the structural geometry generation with predefined imperfections given 

by KEYPOINTS, from FStr Computer Application Program. 
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The maximum amplitudes parameters for global and distortional buckling are 

different. As proposed by Martins et al. [82], the present research adopts �/1000 for 

global imperfection and 0.94� for distortional imperfection. The reason for the 

distortional imperfection as 0.94� is presented by Schafer and Pekoz [142], as 

corresponding to 50% probability that a random imperfection amplitude is below or above 

this value. However, in the study of Santos [143], with end-bolted CFS columns under 

distortional critical length, it has been shown that the ultimate load has not changed 

excessively with the variation of the maximum amplitude from 0.1� up to 1.0� (failure 

load variation below 5%). Anyway, 0.94� is adopted and applied to the distortional 

buckling initial geometric imperfection amplitude. 

 

4.1.6 Analysis Methods 

The main goal in using a finite element method, is its flexibility to perform 

complex analysis, involving nonlinearities. For the present case a material and geometry 

nonlinearities are considered in a post-buckling behavior. The ANSYS built-in method 

using to execute this type of analysis is based on the arc-length method, known as “The 

modified Riks method” (introduced by Riks [74], [75] and Wempner [76] with 

modifications being carried out later by many authors, e.g. Crisfield [144] & [145]). The 

 

Figure 4.6. Geometry and initial geometric imperfections generation from FStr Computer 
Application Program into the ANSYS Mechanical APDL. 
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method has a displacement control, during the loading, in order to find the fundamental 

paths before and after the bifurcation point. This method is convenient for solutions of 

unstable problems that has a nonlinear static equilibrium. 

4.2 Numerical model validation 

Since there is an absence of laboratory testing experiencing the D-G interaction, 

the finite element model is validated for columns that demonstrated only global buckling 

mode and distortional buckling mode, before collapsing. For the validation, the 

experimental results from Heva [146], Gunalan et al. [147], Kankanamge and Mahendran 

[148], Salles [140] and Matsubara, Batista and Salles [100] are taken. 

 

4.2.1 Global Buckling Mode Validation 

The global (flexural-torsional) buckling validation is performed using three 

columns tested by Heva [146], described in Table 4.1. This author has performed 

laboratory tests of multiple columns under different temperatures developing the flexural-

torsional buckling. Updated information about the experiments can be found in Gunalan 

et al. [147]. For the present research, only the results for the specimen with room 

temperature (20oC) are considered. Table 4.1 shows all the parameters and Table 4.2 the 

results of the numerical and laboratory tests performed by Heva [146] and also the results 

obtained in the present research. Also, Table 4.1 includes all the measured geometries of 

the specimen, the material properties given by standard tensile tests and the measured 

specimen imperfections.  

Table 4.1. Measured geometry and material properties of specimens from Heva [146]. 

Column  

Measured Geometry 

��  � Imperf. 
� �� �� ��  � 

[ # ]  [mm] [mm] [mm] [mm] [mm] [MPa] [N/mm2] [ ] 

G250-1.95-1800 1.95 74.82 50.06 14.87 1740 271 188000 L/2558 

G450-1.90-1800 1.88 74.67 49.94 14.51 1740 515 206000 L/2949 

G550-0.95-1800 0.95 54.94 34.88 8.00 1740 615 205000 L/2485 
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Detailed information about the stress-strain curves and mechanical properties of 

CFS described in Table 4.1, can be found in Kankanamge and Mahendran [148], for 250 

and 450 steel grades, and in Ranawaka and Mahendran [149], for 550 steel grade.  

The actual stress-strain curves are obtained with a strain gauge at ambient 

temperature, and they are illustrated in Figure 4.7, Figure 4.8 and Figure 4.9. Based on 

the stress-strain tests, the material models adopted here are bilinear and multilinear 

isotropic hardening, also graphically illustrated in Figure 4.7, Figure 4.8 and Figure 4.9. 

The bilinear model is adopted with �� = �� and �� = 0 (see Figure 4.5). According to 

ANSYS APDL Theory Reference [68] the multilinear model is described by pieces of 

stress-strain curve, starting at the origin and defined by sets of positive stress and strain 

values with always positive slopes of the stress-strain curve. 

 

  

Figure 4.7. Stress-Strain models for 1.95mm and 250 MPa cold-formed steel. 

 

Figure 4.8. Stress-Strain models for 1.90mm and 450 MPa cold-formed steel. 
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Table 4.2 provides the column strength for 4 cases: (i) the column strength �� ��� 

from FEM analysis by Heva [146], (ii) from the experimental tests �� ���� performed by 

Heva [146], (iii) the column strength �� �.��� with the bilinear material FEM model 

given by the present investigation and (iv) with the multilinear material model FEM 

�� �.��� also given by the present work. 

Table 4.2. Ultimate load results for room temperature (20oC) of specimens from Heva [146], 
both numerical and lab tests, and the numerical results obtained in the present research. 

Column  

Ultimate Load 

Heva [146] 

Author's 

Bilinear 

Author's 

Multilinear 

PU TEST   PU FEM PU B. FEM PU M. FEM 

[ # ] [kN] [kN] [kN] [kN] 

G250-1.95-1800  87.94 90.7 93.59 93.81 

G450-1.90-1800  120.42 129 127.60 121.77 

G550-0.95-1800  24.72 25.4 25.71 24.72 

 

Notice that the author’s present work numerical ultimate load is similar to the 

numerical model and laboratory tests given by Heva [146]. The proposed numerical 

bilinear model has a relative difference of 6.4%, 6.0% and 4.0% regarding with tests of 

Heva [146] and 3.2%, -1.1% and 1.2% differences regarding with the numerical solution 

of Heva [146], respectively for the models G250-1.95-1800, G450-1.90-1800 and G550-

0.95-1800. Relatively to the multilinear model, the relative difference is 6.7%, 1.1% and 

 

Figure 4.9. Stress-Strain models for 0.95mm and 550 MPa cold-formed steel. 
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0.0% regarding with tests of Heva [146] and 3.4%, -5.6% and -2.7% differences regarding 

with the numerical solution of Heva [146], respectively for the models G250-1.95-1800, 

G450-1.90-1800 and G550-0.95-1800. The results from Table 4.2 are graphically 

displayed in Figure 4.10. 

For more convincing results, the graphs load versus displacement out of plane in 

the middle top flange at mid span (displacement position exemplified in  Figure 4.11-b) 

for the 3 column specimens in Table 4.1 are shown in Figure 4.11 and Figure 4.12. These 

graphs show the displacement behavior of a specific point during the loading procedure. 

Figure 4.10. Graphical results of ultimate load for room temperature (20oC) of specimens from 
Heva [146], both numerical and lab tests, and the numerical results obtained in the present 

research (relative difference with respect to the tests from Heva [146]). 

  

 (a) (b) 

Figure 4.11. Load versus displacement out of plane in the middle top flange at mid span of models 
(a) G250-1.95-1800 and (b) G550-0.95-1800 (both for room temperature 20oC). 
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It can be noted in Figure 4.11-b that the author’s FEM have a similar equilibrium 

path as Heva’s [146] test, with a better fit with the multilinear model. On the other hand, 

in Figure 4.12-b, the laboratory tests are kindly translated on the displacement direction. 

However, the bilinear numerical model performed in this research has a very close 

behavior to the numerical model performed by Heva [146]. Another important 

observation, is about the model G250-1.95-1800. Note that comparing to the experiment, 

the present numerical model does not fit well with the experimental records. However, 

comparing the author’s present work, both bilinear and multilinear, with the numerical 

model from Heva [146], it is noticed an almost exact fit of the equilibrium paths. 

Even though, the multilinear material model has indicated better results for the 

column strength, it is more convenient to adopt the bilinear isotropic hardening model for 

the parametric study. Moreover, adopting the bilinear model, makes the finite element 

analysis simpler, with satisfactory results. To sum up, the obtained results allow 

concluding that the developed finite element model is validated for flexural-torsional 

buckling analysis. 

 

 

 (a) (b) 

Figure 4.12. Results from model G450-1.90-1800: (a) comparison of flexural-torsional failure mode 
for the present numerical model, the laboratory test from Heva [146] and numerical model from 

Heva [146]; (b) load versus displacement out of plane in the middle top flange at mid span. 
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4.2.2 Distortional Buckling Mode Validation 

The distortional buckling validation is performed using a single column tested by 

Salles [140]. The testing was performed at the COPPE Laboratory of Structures and 

Materials Professor Lobo Carneiro (LabEST). Updated information about the tested 

column is in Matsubara, Batista and Salles [100]. 

The column cross-section geometry is shown in Figure 4.13. The lipped channel 

CFS column specimen was 2529 millimeters long, with material properties of 342 MPa 

of yield strength, 179.468 GPa of elastic modulus (quite low average Young modulus 

extracted from a set of standard tensile tests) and 9.845 GPa of tangent slope modulus 

(��). As a result, the specimen reached its experimental column strength of 33.4 kN, while 

the finite element model in this research, leads to an ultimate load of 35.3 kN. A maximum 

amplitude of 0.1� for the distortional buckling mode as initial geometric imperfection and 

a bilinear model for the strain-stress curve, as shown in Figure 4.5, is considered. Figure 

4.13 shows a comparison of the equilibrium path of the web extremities at mid span, for 

the experimental test and the FEM solution. 

 

 

Figure 4.13. Load versus displacement of the web extremities at mid span of LC specimen by Salles 
[140] and numerical FEM results for the present work. 
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Figure 4.14. Displacement D4 along the column’s position, with 5 load increments of numerical 
FEM results for the present work and specimen tested by Salles [140]. 

Figure 4.15. Displacement D5 along the column’s position, with 5 load increments of numerical 
FEM results for the present work and specimen tested by Salles [140]. 
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Note that in Figure 4.13 that the equilibrium path of the FEM is pretty close to the 

experimental results for small displacements. For larger displacements, the FEM model 

tends to behave into a stiffer linear path until it collapses, while the laboratory test shows 

a long plateau before collapse. Figure 4.14 shows the shape of the flange displacement 

out of plane D4 along the column length, and Figure 4.15 for the shape displacement out 

of plane D5 along the column’s position, both for 5 loading steps. It can be observed that 

the same behavior of distortional buckling is clearly shown in the FEM and in the 

experimental test, with 3 half-waves of distortional modal shape. In addition, the buckling 

behavior is increased with the load increment, until the column collapse. 

 

Section Finish, next page 

 

 



 Parametric Analysis on Distortional-
Global Buckling Interaction 

______________________________________________________________________ 

In this chapter, the results of a parametric study are presented in order to 

understand the D-G coupled phenomenon. Following the previously explained 

methodology, the combination of the FStr Computer Application Program for the elastic 

buckling analysis and the nonlinear FEM model allowed obtaining the set of column 

strengths and equilibrium paths. The numerical study is addressed to a set of lipped 

channel cold-formed steel columns under true D-G interaction, with different 

combinations of initial geometric imperfections. Additionally, the study included 

variation of the yield stress and longitudinal length takes place in order to understand the 

column strength and behavior of D-G interaction in a large range of slenderness. 

5.1 Study of Initial Geometric Imperfection Combination 

This study consists in analyzing the structural behavior of a cold-formed lipped 

channel section LC 100x70x15x2.70 mm (out-to-out dimensions) with L=1850 mm 

(Table 5.1) with different initial geometric imperfections and yield strength. The goal of 

this study is to identify the column’s strength and behavior sensibility to initial 

geometrical imperfections using “impure” modal combination. The geometry is 

determined for a column experiencing strong D-G interaction, for a length L 

characterizing True D-G interaction12 (TI). 

The main reason of combining the buckling modes as initial geometric 

imperfection, emerged due to its difficulty in finding the D-G buckling interaction in a 

simple elastic buckling analysis. 

 

12 This categorization is based on the ratio between the critical loads from global and distortional 

modes, proposed by Martins et al. [82], which True D-G interaction is characterized by similar 

values of distortional and global critical loads. The definition is well commented in subsection 

2.5.1 (Distortional-Global Interaction concepts). 
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The combination of elastic buckling modes, as an alternative to include the 

distortional and global buckling modes as initial geometric imperfection in the nonlinear 

analysis, arose as a result of the difficulty in obtaining a true distortional-global buckling 

shape through an elastic buckling analysis. Thereby, combining the global and 

distortional shapes as initial geometric imperfection, enables the possibility of occur the 

D-G coupled phenomenon. Figure 2.13 shows the signature curve for the proposed 

geometry and, as can be observed, the derivative of the signature curve before L=1850 

mm and after this length, changes drastically, as well as the modal shape. In this case, it 

is hard to get a shape that presents a clear D-G interaction. Because of this obstacle of 

getting a D-G interaction shape mode, the first (Figure 5.1-a) and second mode (Figure 

5.1-b) are combined. 

Table 5.1. Column LC 100x70x15x2.70 geometry, out-to-out dimensions. 

Column Name 
�� �� �� � Area Length 

Imperfections 

First Mode 

(Global) 

Second Mode 

(Distortional) [mm] [mm] [mm] [mm] [mm2] [mm] 

LC100x70x15x2.70 100 70 15 2.70 699.84 1850 L/1000 0.94 t 

 

The modal combination is performed using the first and the second mode shape, 

for a length of 1850mm. The buckling modes and the modal participation of the first and 

second modes are illustrated in Figure 5.1, and details about mode composition and 

critical loads are exposed in Table 5.2. The critical load and the modal shapes are given 

by the FStr Computer Application Program. The modal participation percentages are 

given by the CUFSM computer program, confirming, in addition, the same critical loads 

and modes for FStr and CUFSM results (see subsection 3.2 Elastic Buckling Analysis 

Validation). 

Table 5.2. Critical load and modal buckling participation for first and second mode of LC 
100x70x15x2.70. 

Mode Critical 

Load 

Half-

wave 

Modal Participation (CUFSM Vector Norm) 

Type Shape 
Mode # Global Distortional Local Other 

[#] [kN] [#] [%] [%] [%] [%] 

First Mode Global 1o 354.5 1 88.6% 11.0% 0.3% 0.1% 

Second Mode Distortional 2o 356.2 4 1.6% 95.8% 2.4% 0.1% 
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It can be noted that the first mode (Figure 5.1-a) is clearly a “global”, which is 

more precisely defined as a flexural-torsional mode. In this case, the D-G buckling 

interaction is mainly focused in the distortional-flexural-torsional (D-FT) interaction of 

lipped channel cross sections. In order to study additional D-G buckling interaction, such 

as flexural-distortional and torsional-distortional coupled phenomena, it is required 

another geometric cross section that exhibit the flexural or torsional buckling mode, in 

transition with the distortional mode. Also, the first and second buckling modes (Figure 

5.1) are not pure modes, since they are obtained with the signature curve. 

 

 (a) (b) 

Figure 5.1. Modal buckling participation of (a) first (flexural-torsional) and (b) second mode 
(distortional) given by CUFSM Vector Norm. 

Table 5.3 shows the slenderness factors, the ratios between slenderness factors 

and the column strength computed with the direct strength method for both distortional 

and global buckling, for each value of the yield stress and geometry described in Table 

5.1. 

Table 5.3. Slenderness, ratios and DSM strength of LC 100x70x15x2.70 at different yield stress. 

�� 
�� �� �� ���� ���� ��/��� 

��� ��� 

[MPa] [kN] [kN] 

345 0.69 0.82 0.83 1.00 1.20 0.7 208.6 181.6 

508 0.83 1.00 1.00 1.00 1.20 1.0 266.8 233.6 

1016 1.18 1.41 1.42 1.00 1.20 2.0 392.1 307.1 

1523 1.44 1.73 1.73 1.00 1.20 3.0 480.6 310.9 

Inf. Inf. Inf. Inf. 1.00 1.20 Elastic - - 

First Mode Second Mode

Pure Global

Pure Distortional

Pure Local

Other
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In Table 6.3: ��, �� and �� are the local, distortional and global slenderness factor 

given in Eq. (2.62), Eq. (2.63) and Eq. (2.61), respectively; ���� = ��/��is the ratio 

between �� and ��; ���� =  ��/�� is the ratio between �� and ��, given by Eq. (2.68); 

��/��� is the ratio between the squash load over the minimum critical load (in this case 

of True D-G buckling interaction, ���� ≈ ����); ��� and ��� are the nominal axial 

strength given by DSM for distortional and global buckling, given by Eq. (2.63) and Eq. 

(2.61), respectively. 

According to Matsubara, Batista and Salles [100], for values of ���� higher than 

1.20, the L-D buckling interaction will not develop. Also, notice that the proposed L-D 

interaction equation Eq. (2.65), and its coefficients expressed in Eq. (2.66) and Eq. (2.67), 

converts to the pure distortional Winter-type equation when ���� ≥ 1.05. Based on the 

ratio values in Table 5.3, ���� = 1.2 and ���� = 1.0, probably True D-G buckling 

interaction will occur. 

Now, related to the modal combination, it is carried out using the displacement 

field ({� � �}�) obtained in the finite strip method, Eq. (2.1), and combining linearly 

the first and second mode displacements. Equation (6.1) shows the linear combination of 

the displacements. These displacements are obtained from the eigenvectors [�], given by 

the eigenvalue equation, Eq. (2.38). The matrix of the critical modal shapes [�] represents 

the nodal line displacements for the degrees of freedom shown in Figure 2.6-b for each 

mode. This means that each column of the matrix [�] represents the critical modal shape 

for one mode. In order to obtain the displacement field on any point inside each strip, Eq. 

(2.1) performs the linear transformation from the nodal line solution to the displacement 

field, with assistance of the shape function matrix [�], Eq. (2.2). 

�
�
�
�

� = �� �
�
�
�

�

���� �

+ �� �
�
�
�

�

���� �

. (6.1) 

Since the displacement field is normalized, with maximum displacement of 1.0, 

the coefficients �� and �� are the parameters of amplification of these shapes. These 

parameters are defined in Eq. (6.2), where: �1 =  ���(�); �2 =  ���(�); � is an angle 

for changing the modal combination; �� and  �� are the maximum amplitude for initial 

geometric imperfection, for the first and second mode respectively. 
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�� =
��

|��| + |��|
�� , �� =

��

|��| + |��|
��. (6.2) 

It should be noted that Eq. (6.2) shows a combination of the maximum amplitude 

for the initial imperfection. When � =  0�, then, ��  =  �� and ��  =  0, on the other 

hand, when � =  90�, then, ��   =  0 and ��  =  ��. Basically, the parameter � is a single 

parameter that allows changing the initial geometric imperfections and consequently the 

modal combination shape. In order to illustrate the modes combination, Figure 5.2 shows 

the product ���� and ���� varying in a “trigonometric ellipse”. This idea of combining 

the buckling modes in a “trigonometric ellipse” is inspired in a similar procedure 

proposed by Martins et al. [82]. 

 

The maximum amplitude for the initial geometric imperfection, which is ��  =

 � ⁄ 1000 and ��  =  0.94 �, are chosen based on studies from Martins et al. [82] and 

Schafer and Peköz [142]. Regard to these amplitudes, Table 5.4 provides the percentage 

 

Figure 5.2. Analogy of modal shape initial imperfection combination in function of � initial 
imperfection parameter (modal shapes amplified 10 times).  

-0.94t 

���� 

���� 

0.94t 

L/1000 -L/1000 

θ 
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of each initial imperfection, in function of the � initial imperfection parameter. This table 

shows the mode contribution changing from 100% to -100% for each mode, but with a 

total modulus summation of 100%. Basically, the negative percentage of the mode 

represents a modal combination in opposite modal shape. Thereby, all the possible cases 

are combined. 

Notice in Table 5.4 that there is a type of symmetry on combining the 

imperfections. Basically, the columns with initial geometric imperfection combination 

from � =  0� until � =  180� (first and second quadrant) are the same columns with 

� =  180� until � =  360� (third and fourth quadrant). This symmetry behavior can be 

easily seen through a graph of ultimate load versus the � parameter. For this case only, 

the 24 columns with initial imperfections of Table 5.4 are modeled with yield stress of 

345 MPa. The graph displaying the ultimate load variation is shown in Figure 5.3. 

 

 

Figure 5.3-a shows clearly a cyclic behavior of the ultimate load. Also, in Figure 

5.3-b it can be seen the symmetry of the behavior in the first quadrant. Basically, the 

behavior from the first and second quadrant are the same as the third and fourth. Another 

way to see this cyclic behavior can be done with the deformed columns at the ultimate 

load step displayed in Figure 5.4. 

 

 

 (a) (b) 

Figure 5.3. Ultimate load versus � parameter for 345 MPa: (a) cartesian system; (b) polar system. 
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Table 5.4. Absolute value of initial geometric imperfection amplification parameters and their 
correspondent percentage. 

Theta 
MODE* 

β1 β2 % Mode 1 % Mode 2 
Name 

[Degrees] [mm] [mm] [ %] [ %] 

0 G (+) 1.85 0.00 100% 0% 1G+0D 

15 DG (+) 1.46 0.54 79% 21% 0.8G+0.2D 

30 DG (+) 1.17 0.93 63% 37% 0.6G+0.4D 

45 DG (+) 0.93 1.27 50% 50% 0.5G+0.5D 

60 DG (+) 0.68 1.61 37% 63% 0.4G+0.6D 

75 DG (+) 0.39 2.00 21% 79% 0.2G+0.8D 

90 D (+) 0.00 2.54 0% 100% 0G+1D 

105 DG (-) -0.39 2.00 -21% 79% -0.2G+0.8D 

120 DG (-) -0.68 1.61 -37% 63% -0.4G+0.6D 

135 DG (-) -0.93 1.27 -50% 50% -0.5G+0.5D 

150 DG (-) -1.17 0.93 -63% 37% -0.6G+0.4D 

165 DG (-) -1.46 0.54 -79% 21% -0.8G+0.2D 

180 G (-) -1.85 0.00 -100% 0% -1G+0D 

195 DG (+) -1.46 -0.54 -79% -21% -0.8G-0.2D 

210 DG (+) -1.17 -0.93 -63% -37% -0.6G-0.4D 

225 DG (+) -0.93 -1.27 -50% -50% -0.5G-0.5D 

240 DG (+) -0.68 -1.61 -37% -63% -0.4G-0.6D 

255 DG (+) -0.39 -2.00 -21% -79% -0.2G-0.8D 

270 D (-) 0.00 -2.54 0% -100% 0G-1D 

285 DG (-) 0.39 -2.00 21% -79% 0.2G-0.8D 

300 DG (-) 0.68 -1.61 37% -63% 0.4G-0.6D 

315 DG (-) 0.93 -1.27 50% -50% 0.5G-0.5D 

330 DG (-) 1.17 -0.93 63% -37% 0.6G-0.4D 

345 DG (-) 1.46 -0.54 79% -21% 0.8G-0.2D 

 * Modal shape of the initial geometric imperfection, where (+) is the modal shape in 

original form and (-) is the modal shape multiplied by -1. 
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Note that in Figure 5.4 that the maximum displacement at ultimate load step 

changes based on the initial geometric imperfection shape. This shows the sensitivity of 

the column structural behavior depending on the initial geometric imperfection shape. 

Also, the cyclic behavior of the maximum displacement, from a global failure to a 

distortional one, is even clearer to notice. The maximum displacement cycle starts at mid 

span at the top flange and moves to the nearest distortional maximum half-wave 

deformation (around 40% of the maximum length). From that, the maximum 

displacement “jumps” to the bottom flange, with a distortional shape collapse. From that 

point, the maximum displacement moves to the mid span again, but at the bottom flange 

and, after that, the cycle repeats. Those modal shapes on the column strength step shows 

that an analysis from � =  0� until � =  180� is already enough to perform a D-G 

interaction investigation. 

However, it is noticed another cyclic and symmetric behavior for � in first and 

second quadrant. To conclude complete description of the relation between buckling 

modes combination (definition of the initial geometric imperfection) and the collapse 

mechanism, deeper analysis based on accurate observation of the equilibrium paths of the 

columns is required to avoid mistaken conclusions. In this case, the post-buckling 

equilibrium paths for � = [0�, 180�], spaced with an increment of 15�, are illustrated 

below in Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9. Each figure reveals 

the FEM results of the post-buckling paths for a different point in the cross-section. 

 

Figure 5.4. Maximum vector displacement at the limit load (or column strength) step for � =  �� to 
����, incremented by ���. 
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 (a) (b) 

Figure 5.5. Post-buckling equilibrium paths, load steps vs. out-of-plane displacement NT1, with 

�
�

 =  ��� ���  and ���  =  ���. � �� (��/���  =  �. �) at �. ��, from (a) � = [��, ���] and (b) 

� = [���, ����]. 

 

 (a) (b) 

Figure 5.6. Post-buckling equilibrium paths, load steps vs. out-of-plane displacement NT2, with 

�
�

 =  ��� ���  and ���  =  ���. � �� (��/���  =  �. �) at �. ��, from (a) � = [��, ���] and (b) 

� = [���, ����]. 
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 (a) (b) 

Figure 5.7. Post-buckling equilibrium paths, load steps vs. out-of-plane displacement NT3, with 

�
�

 =  ��� ���  and ���  =  ���. � �� (��/���  =  �. �) at �. ��, from (a) � = [��, ���] and (b) 

� = [���, ����]. 

 

 (a) (b) 

Figure 5.8. Post-buckling equilibrium paths, load steps vs. out-of-plane displacement NT4, with 

�
�

 =  ��� ���  and ���  =  ���. � �� (��/���  =  �. �) at �. ��, from (a) � = [��, ���] and (b) 

� = [���, ����]. 
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Comparing the post-buckling paths, a symmetric behavior between the initial 

imperfections with  � = [0�, 90�] and � = [90�, 180�], is detected. Analyzing the NT1 

and NT3 displacements, Figure 5.5 and Figure 5.7 respectively, it is found that the initial 

imperfections with � = [0�, 90�] for the NT1 displacement, has the same behavior as 

the initial imperfection with � = [90�, 180�] for the NT3 displacement, as well as vice-

versa. The same behavior happens comparing the displacement NT4 and NT5. While for 

the NT2 displacement, it has a symmetric behavior between its initial imperfection with  

� = [0�, 90�] and � = [90�, 180�]. Basically, this symmetric behavior evidences a 

“mirroring” behavior of the initial imperfection with � from the first and second quadrant. 

This conclusion supports the parametric analysis of a large set of columns, to be 

conducted only with the initial imperfection for � = [0�, 90�]. 

 

5.1.1 Imperfection Combination with different yield stress 

The next step is to investigate columns with higher yield strength. The same 

analysis conducted for columns with 345 MPa (��/���  =  0.7) yield stress, are performed 

 

 (a) (b) 

Figure 5.9. Post-buckling equilibrium paths, load steps vs. out-of-plane displacement NT5, with 

�
�

 =  ��� ���  and ���  =  ���. � �� (��/���  =  �. �) at �. ��, from (a) � = [��, ���] and (b) 

� = [���, ����]. 
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for columns with 508 MPa (��/��� =  1.0), 1016 MPa (��/��� =  2.0), 1523 MPa 

(��/��� =  3.0) and an elastic behavior analysis (��/���  → ∞ ), taking � = [0�, 90�]. 

The results for theses analysis are shown in APPENDIX B, and the table with slenderness, 

ratios and DSM strength, is shown in Table 5.3. 

In order to visualize and compare the influence of each yield strength in the 

column structural behavior, the post-buckling equilibrium paths are presented, for only 

one type of initial imperfection combination. These results are shown in Figure 5.10, 

Figure 5.11, Figure 5.12 and Figure 5.13, for � =  0�, 45�, 75� and 90�, respectively, 

related to NT5 displacement. Results with � =  15�, 30� and 60� are in APPENDIX B. 

Those figures also show the deformed column at the ultimate load with equivalent stress 

contour plots, related to the von Mises yield criterion (the red areas represent the material 

reached to yielding condition). The color scale is proportional to the yield stress of each 

column. 

 

 

 

Figure 5.10. Post-buckling equilibrium paths, �/��� vs. �/� of displacement NT5 at �. ��, with 
� = �� (100% Global mode), for different ratios of ��/���, where ���  =  ���. � �� and � =

�. �� ��. 
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Figure 5.11. Post-buckling equilibrium paths, �/��� vs. �/� of displacement NT5 at �. ��, with 
� = ��� (50% Global and 50% Distortional mode), for different ratios of ��/���, where ���  =

 ���. � �� and � = �. �� ��. 

 

Figure 5.12. Post-buckling equilibrium paths, �/��� vs. �/� of displacement NT5 at �. ��, with 
� = �� (21% Global and 79% Distortional mode), for different ratios of ��/���, where ���  =

 ���. � �� and � = �. �� ��. 
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Firstly, note that all equilibrium paths follow the elastic behavior until a 

bifurcation point. Specifically, for � = 0� (100% global initial geometric imperfection, 

Figure 5.10) the bifurcation point is located on the elastic path for ��/��� ≤ 1.0. 

Clearly, the stability behavior for � = [0�, 75�] (see Figure 5.10, Figure 5.11 and Figure 

5.12) - which means only global and mixed global + distortional initial geometric 

imperfection - shows a transition behavior, while, surprisingly, for only distortional initial 

imperfection (� = 90�, Figure 5.13), the behavior is quite unique, with a smaller 

maximum displacement. This singular behavior is probably affected by an absence of the 

global mode, and also because the position of 0.4� does not coincides to the cross section 

with maximum displacement of the distortional modal shape. Furthermore, for � initial 

imperfection combination parameter near to 90�, the ultimate load happens on higher 

displacements, but for � = 90� (distortional only initial geometric imperfection), the 

ultimate load happens in small displacements. Unfortunately, the finite element model 

with initial imperfection of � = 90� did not converged for higher squash load. 

Evidently, all the elastic columns behave in global mode for higher displacements 

(except for columns with only distortional initial geometric imperfection, Figure 5.13). 

While for columns with lower yield strength, the distortional mode has a chance to behave 

 

Figure 5.13. Post-buckling equilibrium paths, �/��� vs. �/� of displacement NT5 at �. ��, with 
� = �� (100% Distortional mode), for different ratios of ��/���, where ���  =  ���. � �� and 

� = �. �� ��. 
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in the beginning of the loading process, when the distortional initial imperfection has a 

significant influence (see Figure 5.12). 

The yielding is more common on columns with lower yielding stress over critical 

stress ratios, which was already expected. Moreover, it is noticed that for columns with 

more global initial geometric imperfection, the yield of the material is symmetric and 

more concentrated at mid span. Whereas for columns with more distortional initial 

imperfection, the yielding process is more distributed. 

Now, comparing the strength of these columns with different initial geometric 

imperfection combination and different yield strength, it is possible to notice which initial 

imperfection has more influence in the column’s load capacity. Figure 5.14 shows the 

column strength vs. squash load, normalized with critical load in both axes. 

 As it was expected, in Figure 5.14, for more elastic columns, the ultimate load 

increases. For ��/��� = 0.7, the lower ultimate load occurs with only distortional initial 

imperfection (� = 90�). However, for ��/��� = 1.0, the most detrimental load takes 

place with 50% of global and 50% of distortional mode contribution (� = 45� or 

0.5G+0.5D) of initial imperfection. Moreover, for high yield stress, the lower ultimate 

load is affected with only by global initial imperfection (� = 0�). 

 

Figure 5.14. ��/��� vs. ��/��� of columns under different initial geometric imperfection 

combination, � = [��, ���] and with yield strength of 345 MPa, 508 MPa, 1016 MPa and 1523 
MPa. 
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Basically, the proposed study of initial geometric imperfection combination 

allowed a deep understanding of the complex behavior of the True D-G buckling 

interaction (TI). It has shown that the different initial imperfection combination affects 

the ultimate load and structural behavior for a column under the TI D-G buckling 

interaction nature. Now, it is important to study the behavior of the D-G buckling 

interaction behaves with different type of their nature13. The following study consists of 

evaluating the performance of the load capacity of columns in Secondary-distortional 

bifurcation D-G interaction (SDI) and Secondary-global bifurcation D-G interaction 

(SGI) regions. 

 

5.2 Study of D-G buckling interaction nature 

This study consists in investigating columns with different slenderness factors, in 

order to understand the influence of the interaction nature in the column strength. For this 

study the section LC 100x70x15x2.70 mm is considered, the same geometry employed 

in the initial geometric imperfection combination analysis. However, the length of the 

column is diversified, from 1500 to 2200 mm, with an increment step of 50 mm. This 

changing of column’s length permits a modification of the global and distortional 

slenderness ratios and its contribution on the column behavior. 

Basically, the investigation is performed for columns with the three different 

natures: secondary-global bifurcation D-G interaction (SGI), true D-G interaction (TI) 

and secondary-distortional bifurcation D-G interaction (SDI). In the sense of illustrating 

graphically the D-G interaction nature investigation, Figure 5.15 shows the signature 

curve in contrast with the pure local, distortional and global buckling mode curves. Figure 

5.15 displays the same analysis illustrated in Figure 2.13, however, Figure 5.15 shows the 

signature curve in function of the D-G slenderness ratio, ���� = �� ��⁄ = ����� ����⁄ . 

This ratio measures how far the critical loads of global and distortional modes are from 

each other. According to Martins et al. [82], when 0.95 < ���� < 1.05 there is TI, 

���� ≥ 1.05 there is SDI and ���� ≤ 0.95 there is SGI (where ���� = �1/���, since 

 

13 The types of D-G coupled phenomenon natures studied at this research is well commented in 

subsection 2.5.1 (Distortional-Global Interaction concepts). 
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this author employs ���  =  ���� / ���� as the main factor for the evaluation of D-G 

buckling interaction). 

Notice in Figure 5.15 that ���� = 0.84 represents the length of 1500 mm, ���� =

1.10 is correlated with length of 1850 mm and ���� = 1.18 is associated with length of 

2200 mm. As can be observed, the range of SGI and SDI is not that extensive, because 

the analysis is limited to only one cross-section geometry. For a deeper understanding of 

the D-G buckling interaction nature, it would be necessary a wider variety of cross-section 

geometries (larger ���� range). The analysis performed in this research is focused on the 

TI nature, with fewer columns in the SGI and SDI regions. 

Before starting the parametric analysis, it is important to define the initial 

geometric imperfection. In this investigation, two different types of initial geometric 

imperfection are concerned: 100% Global (1G+0D) buckling mode initial imperfection 

and 50% Distortional + 50% Global buckling mode initial imperfection (0.5G+0.5D). The 

reason of adopting these two initial imperfections is based on the results from the last 

study in the subsection 5.1 (Study of Initial Geometric Imperfection Combination). 

Founded on that study, it is concluded that for columns with higher yield strength, 1G+0D 

mode presents the lower ultimate column capacity. However, for columns with lower 

yield strength, the 0.5G+0.5D mode combination can give the lower column strength. 

 

Figure 5.15. Critical load vs. ���� for LC 100x70x15x2.70 mm, illustrating SGI, TI and SDI regions 
in all mode analysis (signature curve) and pure mode analysis. 
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These results revealed that a parametric study taking both initial imperfections could 

indicate a difference in the column’s strength, and consequently, some unconformity with 

the Direct Strength Method (DSM). 

As a result of the initial geometric imperfection combination analysis, the 

following parametric study consists of using two different initial geometric imperfection 

(1G+0D and 0.5G+0.5D) for three different yielding stress, 345 MPa, 508 MPa and 1016 

MPa, i.e. applying 1G+0D with the three yield stress, and 0.5G+0.5D with also the three 

yield stress. For each of these yield stresses, the column strength capacity is reached, for 

15 lengths (from 1500 mm to 2200 mm with increment step of 50 mm), and compared 

with the actual distortional (Eq. (2.63)) and global direct strength method (Eq. (2.61)). In 

addition, the strength is also compared to the proposed D-G buckling interaction 

equations, proposed by Schafer [95] (Eq. (2.69)) and by Martins et al. [82] (Eq. (2.70)). 

To sum up, 15 columns with different lengths, 3 types of yield stress and 2 

different initial geometric imperfection, totalizing 90 columns, are analyzed. The critical 

loads, slenderness factors, ultimate loads and nominal axial strength for the 90 columns 

are reported in APPENDIX C. With the purpose of a clear data visualization, Figure 5.16, 

Figure 5.17 and Figure 5.18 illustrates graphically all the columns strength compared with 

normative equations, divided into its yielding and initial geometric imperfection. Each 

graph shows a comparison with the distortional (Eq. (2.63)), global (Eq. (2.61)), 

distortional-global (Eq. (2.69)) and global-distortional (Eq. (2.70)) equations. More 

specifically, Figure 5.16 shows the results for 345 MPa, Figure 5.17 displays the results 

for 508 MPa and Figure 5.18 reveal the results for 1016 MPa. 

 

 (a) (b) 

Figure 5.16. Ultimate Load over Nominal Axial Strength vs D-G slenderness ratio, for distortional 
(Eq. 2.63), global (Eq. 2.61), distortional-global (Eq. 2.69) and global-distortional (Eq. 2.70) DSM 

equations, with yielding of 345 MPa and (a) 0.5G+0.5D and (b) 1G+0D initial imperfection. 
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Several observations can be draw from Figure 5.16. First of all, the strength 

equation global-distortional, ����,  (Eq. (2.70)) provides the most conservative approach, 

compared to the distortional-global (Eq. (2.69)) and global (Eq. (2.61)) equations, 

respectively ���� and ���. Secondly, the nominal axial strength for global buckling (Eq. 

(2.61)), gives explicit the lowest nominal strength, when compared to the nominal 

strength for distortional buckling, ���, (Eq. (2.63)), because all the ��/��� data is below 

the ��/��� data, and since the �� value is constant for both cases, it means that ��� is 

higher than ���. Thirdly, in Figure 5.16-a it is noticed a small discontinuous gap for all 

the ��/�� ratios (���� ≈ 1.07). The reason for this gap refers to the half-wave switch 

from 4 to 5 waves, in the distortional buckling mode as initial geometric imperfection. 

Realize that this half-wave change interfered in the ultimate load, resulting in a slight 

reduction of the column strength. With respect to the type of initial imperfection, notice 

that the 1G+0D initial imperfection has showed a smoother changing of the ultimate load, 

without discontinuous gaps. Finally, another interesting observation is the variation of the 

ratio ��/���, which displays continuous decreasing related to the ratio ����. This 

illustrates the fact that the column is approaching a global critical buckling region, since 

it is “leaving” the distortional critical buckling region. 

There are a few remarks concerning to the results for yield stress of 508 MPa, 

displayed in  Figure 5.17, that analogous of those for yielding stress of 345 MPa in Figure 

5.16. As reported by yielding of 345 MPa, the strength equation global-distortional ���� 

(Eq. (2.70)) provides the most conservative approach. Moreover, the nominal axial 

 

 (a) (b) 

Figure 5.17. Ultimate Load over Nominal Axial Strength vs D-G slenderness ratio, for distortional 
(Eq. 2.63), global (Eq. 2.61), distortional-global (Eq. 2.69) and global-distortional (Eq. 2.70) DSM 

equations, with yielding of 345 MPa and (a) 0.5G+0.5D and (b) 1G+0D initial imperfection. 
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strength for global buckling, ���, is lower than the ��� equation, which according to the 

DSM, the global buckling mode is the one which governs the instability limit state of the 

structural element in all ���� range. Related to the initial geometric imperfection, the 

1G+0D combination also has shown a softer changing of the ultimate load, without 

discontinuous gaps. As a final remark, the ratio ��/��� has also demonstrated a similar 

behavior, as well as for yielding of 345 MPa. This undoubtedly emphasizes the 

assumption of the columns reaching to a global critical buckling region. 

One important observation in Figure 5.17-a is the presence of two discontinuous 

gaps (���� ≈ 0.87 and ���� ≈ 1.07). These gaps are related to the change of the half-

wave number of the initial geometric imperfection for the distortional buckling mode. 

Notice that the first gap corresponds to the half-wave switch from 3 to 4 waves, and the 

second gap from 4 to 5 half-waves. It might be advisable to perceive that with even 

numbers of half-waves, there is a slight increase in the ultimate load. The possible reason 

for this strength rise is due to the initial imperfection maximum displacement. When the 

half-wave number is odd, the maximum displacement from global and distortional modes 

coincides in the same cross-section, which is at mid span. Consequently, the maximum 

initial imperfection amplitude from each mode amplifies the maximum total displacement 

in the column, which end up resulting in a lower column strength capacity. 

Even though the data results for yielding of 345 and 508 MPa are similar in some 

aspects, the results for yield stress of 1016 MPa, included in Figure 5.18, has shown a 

particular response. Since the columns with yield strength of 1016 MPa became further 

 

 (a) (b) 

Figure 5.18. Ultimate Load over Nominal Axial Strength vs D-G slenderness ratio, for distortional 
(Eq. 2.63), global (Eq. 2.61), distortional-global (Eq. 2.69) and global-distortional (Eq. 2.70) DSM 

equations, with yielding of 345 MPa and (a) 0.5G+0.5D and (b) 1G+0D initial imperfection. 
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elastic, the behavior of the ultimate load has changed. It is noticed that the ratio ��/��� 

decreases faster when ���� is increased. Furthermore, the ��/��� begins with 0.84 and 

speedily rise to 1.06 in both cases of initial geometric imperfection, showing that the 

ultimate load from the FEM approaches to the DSM global equation quickly. On the other 

hand, the distortional-global ���� (Eq. (2.69)) and global-distortional ���� (Eq. (2.70)) 

interaction equations seems to stabilize on a plateau, with no harsh changes. 

So far, the FEM results data is analyzed with the four possible equations 

separately. In order to compare the ultimate load with the available standard DSM 

approach, Figure 5.19 provides a graphical  illustration, where ����� =

���(����, ���,  ���), and ���� is given by Eq. (2.64), ��� by Eq. (2.63) and  ��� by Eq. 

(2.61). Figure 5.19-a shows the results for 50% distortional + 50% global initial 

imperfection combination, and Figure 5.19-b exhibit the results for 100% global initial 

imperfection combination. 

It is noticeable that as the larger is the elastic behavior range, corresponding to 

higher yielding stress, the lower is the ��/����� ratio, for ���� < 1.08 with 0.5G+0.5D 

initial geometric imperfection combination, and for ���� < 1.15 with 1G+0D initial 

geometric imperfection combination. Additionally, these columns with lower values of 

 

 (a) (b) 

Figure 5.19. Ultimate Load over DSM Nominal Axial Strength versus D-G slenderness ratio, 
considering (a) 50% global + 50% distortional initial imperfection and (b) 100% global initial 

imperfection. 
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���� and higher yielding, seem to diverge from the original DSM equation, due to a 

possible high evidence of D-G buckling interaction in a secondary-global bifurcation D-

G interaction (SGI) region. Lastly, comparing the two cases of initial imperfection 

combination, it is noticed that the mean, maximum and minimum value of ��/����� 

ratio, are similar to each type of imperfection, while the 0.5G+0.5D initial imperfection 

combination presents the lower standard deviation and coefficient of variation. 

Another approach to visualize the FEM results �� in Figure 5.19, is to display the 

corresponding data into the traditional column strength design curve (��/��) versus 

global slenderness factor (��), taking the nominal column strength equation (Eq. (2.61)), 

restricted to the global buckling mode. This graphical data illustration is exposed in 

Figure 5.20. This figure basically shows all the 90 columns strength over squash load 

ratio versus the global buckling slenderness factor, in addition with the global DSM 

equation and the Euler column curve for reference 1 ��
�⁄ . 

Notice in Figure 5.20, that the difference of the 0.5G+0.5D and 1G+0D initial 

geometric imperfection in the global DSM equation is negligible. One important 

observation is the influence of the yielding stress. For yielding of 345 and 508 MPa, the 

��/�� ratios are above the ��� equation, while for yielding of 1016 MPa, the ��/�� ratios 

are mostly below the ��� equation. These results indicate that the global DSM equation 

 

Figure 5.20. Column strength over Squash Load versus global slenderness factor for all the 90 FEM 
results fo columns, with different yield stress and initial geometric imperfection, compared with the 

global DSM equation (Eq. (2.61)) and Euler � ��
�⁄  curve. 

1/λG
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.4 0.8 1.2 1.6 2.0

P
u

/ 
P

y

λG

345 MPa (1G+0D)
508 MPa (1G+0D)
1016 MPa (1G+0D)
345 MPa (0.5G+0.5D)
508 MPa (0.5G+0.5D)
1016 MPa (0.5G+0.5D)
PnG/Py



João Alfredo De Lazzari 

117 

handle well the columns under different D-G types of buckling interaction nature (i.e. TI, 

SDI and SGI). 

One important observation can be retrieved from Figure 5.20, related to the data 

from 1016 MPa. The data with ��/�� in the range of ���� < 0.87 (i.e. �� ≈ 1.20) seems 

to be far from the nominal axial strength for global buckling. However, these values of 

nominal strength, are close to the distortional equation. Because of this, these columns 

are probably in a region of distortional or D-G coupled phenomenon failure. 

 Finally, the FEM results are compared with the proposed distortional-global 

equation (Eq. (2.69)) and global-distortional equation (Eq. (2.70)). Figure 5.21 and Figure 

5.22 display the finite element column strength over nominal axial strength (��/��) versus 

D-G slenderness ratio (����). The graphs illustrate the effectivity of the formulations 

considering the D-G buckling interaction studied in this work, where Figure 5.21 and 

Figure 5.22 are addressed to 0.5G+0.5D and 1G+0D initial imperfection combination, 

respectively. 

 

 

Figure 5.21. Ultimate Load over Nominal Axial Strength versus D-G slenderness ratio for 
distortional-global (Eq. 2.69) and global-distortional (Eq. 2.70) equations taking 50% global + 50% 

distortional initial imperfection. 
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Overall, Figure 5.21 and Figure 5.22 has shown that the proposed equations by 

Schafer [95] (Eq. (2.69)) and by Martins et al. [82] (Eq. (2.70)) show good agreement. 

Even though the standard deviation and coefficient of variation for both equations and 

both initial geometric imperfection combinations are relatively low, the mean, maximum, 

and minimum values have demonstrated that the proposed formulations are conservative. 

This means that the nominal axial strength for the global buckling presented in the codes 

(Eq. (2.61)) is accurate enough for D-G buckling interaction. These results are obviously 

limited by set of the available column results. Meanwhile, the proposed D-G buckling 

interaction equations handle quite conservative the nominal strength comparing to the 

ultimate load from the FEM. More specifically, note that the ���� equation is less 

conservative than the ����, which can be justified by comparing the mean, standard 

deviation, coefficient of variation, minimum and maximum values. Note that ���� 

provides a lower mean, minimum and maximum value. In the meantime, the ���� and 

���� equations give values of standard deviation and coefficient of variation relatively 

low (less than 0.044 and 3.6%, respectively). 

In addition, it is noticed that the influence of the initial geometric imperfection 

type is not a relevant factor for the FEM performance of the columns. Even though the 

 

Figure 5.22. Ultimate Load over Nominal Axial Strength versus D-G slenderness ratio for 
distortional-global (Eq. 2.69) and global-distortional (Eq. 2.70) equations taking 100% global initial 

imperfection. 
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1G+0D initial imperfection combination (Figure 5.22) has shown a sparser data for the 

���� equation, compared to the results from the ���� equation with the 0.5G+0.5D initial 

imperfection (Figure 5.21), the influence in the ultimate load is minimal. On the other 

hand, the ���� equation revealed to have a minor impact in the data dispersion, comparing 

both initial imperfections standard deviation and coefficient of variation. 

Comparing the ����, ���� and ��� approaches, it is drawn the conclusion that the 

��� procedure, already presented in the codes, handle the D-G coupled phenomenon 

properly, for lipped channel columns. The nominal axial strength equation for global 

buckling from the DSM, was calibrated with many experiments of columns under global 

buckling. The coefficients calibrated for this equation, was revised for many authors, and 

it is a quite consolidated formulation. It is plausible that some of these experiments has 

considered columns with D-G buckling interaction failure. However, this is only a 

hypothesis, that should be investigated. 

 

Section Finish, next page 

 

 



 Concluding Remarks 
______________________________________________________________________ 

The present research mainly provided (i) an FSM-based elastic buckling 

computational analysis tool and (ii) the improvement of the comprehension of the 

distortional-global interaction buckling phenomenon, including both (ii-a) its post-

buckling behavior and (ii-b) the column ultimate load and strength. The investigation was 

addressed to CFS lipped channel columns, since these are CFS widely applied in steel 

construction and are prone to develop D-G of buckling interaction. The final conclusions 

are separated into three parts: (i) FStr Computer Application Program, (ii) Finite Element 

nonlinear Analysis and (iii) Distortional-Global Buckling Interaction. 

6.1 Finite strip method computational tool 

The FSM computer application program FStr was developed, in order to assist the 

elastic buckling analysis. The program implemented in MATLAB, has an accessible and 

easy graphical user interface, and was conceived to attend research activities as well as 

engineering design of steel thin-walled structures. The FStr was validated with the help 

of several models in different types of validation: 

(i) For the end boundary condition validation, 5 models of flat rectangular 

plates with free longitudinal edges and different end boundary condition, 

under compression, were analyzed; 

(ii) For local buckling validation, five more models were analyzed, but with 

all longitudinal edges clamped and different end boundary conditions, in 

order to force the flat plate to develop the local buckling; 

(iii) An analytical validation was performed, comparing the results from the 

FStr program with analytical procedures for local, distortional and global 

elastic buckling, for a single lipped-channel section model and simply-

simply end boundary condition, under uniform compression; 

(iv) A validation with the finite element method was also performed, in order 

to support a strong proof of analysis authentication, which was carried out 
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with a lipped-channel column under axial compression and clamped-

clamped end boundary condition; 

(v) For an unrestricted bending validation, two different beams were analyzed, 

a lipped channel section with web stiffener and an unsymmetrical zed 

section, in order to approve the uniform bending load condition and the 

accuracy of unsymmetrical sections. 

In summary, with all these validations the FStr Computer Application Program is 

certified as a reliable source for an elastic buckling analysis. 

6.2 Finite element method nonlinear analysis 

The non-linear analysis of a large set of lipped channel columns displaying D-G 

buckling interaction was performed, based on a developed finite element method model. 

The finite element model was described in detail and validated with experimental test 

results from the literature. The available experimental results allowed calibration of the 

FEM model, which proved to be accurate to accomplish the equilibrium path of the 

columns under D-G interaction. The FEM model includes the ductile material (steel) and 

initial geometric imperfections, the former described from tensile standard tests and the 

later obtained with the help of the FStr computational tool, including appropriate buckling 

modes combinations (G and D in the present study). To sum up, the finite element model 

has shown good agreement with global and distortional post-buckling analysis. 

6.3 The Global-Distortional buckling mode of CFS lipped channel columns 

Based on the previous results and the numerical/computational support, the 

parametric study on distortional-global buckling interaction was carried out. The 

parametric analysis involved the FStr program for the definition of the initial geometric 

imperfections to be considered by the FEM non-linear analysis. Basically, only one cross-

section of a lipped-channel was considered, with many combinations of the yield stress 

�� and the column length �. The study was separated into two different investigations: (i) 

initial geometric imperfection combination and (ii) distortional-global buckling 

interaction nature, namely Secondary Distortional, Secondary Global and True 

Interaction, respectively SDI, SGI and TI.  
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With respect to the initial geometric imperfection combination, the following 

remarks must be pointed out:  

(i) Combining the initial geometric imperfection as first and second mode 

(which were classified as global and distortional mode), was an approach 

to include the distortional-global coupled phenomenon behavior into the 

post-buckling analysis, which was not clearly predictable by the elastic 

buckling analysis; 

(ii) Using an initial imperfection combination parameter �, the initial 

geometric imperfection was modified, combining the global (flexural-

torsional) with the distortional mode in different participation levels. 

Through this combination, the column strength analysis was performed 

and it was concluded that when � belongs to the first and second quadrant, 

it was noticeable a symmetric behavior with the third and fourth quadrant. 

Indeed, the columns with initial imperfection combination with 0� < � <

 180� show the same results of the columns with 180� < � <  360�, 

because in theory, the initial geometric imperfections were basically 

rotated, i.e. the modes were multiplied by minus one. 

(iii) In addition to the initial imperfection combination parameter �, it was 

noticed an additional cyclic behavior. The post-buckling equilibrium path 

results, with 0� ≤ � ≤  180�, show “mirroring” behavior in the ranges 

0� < � <  90� and 90� < � <  180�. This conclusion indicate next FEM 

analyses will be satisfactorily completed by simply varying � from 0� to 

90�; 

(iv) Surprisingly, the columns with only distortional initial geometric 

imperfection (� =  90�) has shown a post-buckling behavior completely 

different from columns 0� ≤ � < 90�. This curious behavior was 

probably triggered by the missing of the global buckling mode. On the 

other hand, the columns at the range 0� ≤ � < 90� has shown a 

predictable transitional behavior in the stability path. 

(v) For the columns with higher yield stress (developing larger elastic 

equilibrium path) and the geometric imperfections in the range 0� ≤ � <

90�, it was evident the predominance of the global mode with larger 

displacements. On the other hand, columns with lower yield strength (less 
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slender columns) developed pronounced distortional buckling mode in the 

very beginning of the loading process, showing the distortional initial 

imperfection has a significant influence at the early steps of the loading; 

(vi) It has been shown that columns with lower yield strength, the distortional 

initial geometric imperfection (0G+1D) provides the lower ultimate load. 

For columns with intermediate slenderness, controlled in the present study 

by the variation of the yield stress, the combined initial geometric 

imperfection with 50% of global and 50% of distortional mode 

(0.5G+0.5D) gives the lower ultimate load. While for columns with very 

high yielding, the most detrimental ultimate load takes place with only 

global initial geometric imperfection (1G+0D). In conclusion, this analysis 

has shown that the initial geometric imperfection may affect the ultimate 

load and the column strength in different manners, according to the nature 

of D-G buckling interaction. 

6.4 The role of the nature of the D-G buckling interaction in the behavior of the 

columns 

Regarding the investigation of the distortional-global buckling interaction nature, 

the following observations were reported: 

(i) It has been noticed that for high yield strength columns in secondary-

global bifurcation D-G interaction region (which means lower values of 

����) appears to diverge from the original direct strength method, which 

indicates a strong evidence of D-G buckling interaction; 

(ii) Comparing the results with the two types of initial geometric imperfection 

considered (0.5G+0.5D and 1G+0D), it was concluded that the influence 

of the initial imperfection form was negligible in the ultimate load. 

Thereby, using an initial geometric imperfection with only global 

(flexural-torsional) mode shape is sufficient to perform a parametric study 

on distortional-flexural-torsional coupled phenomenon; 

(iii) Generally speaking, the direct strength method equation addressed to 

global buckling is able to handle quite well the columns under the different 

D-G nature (of the buckling interaction). However, the limits of the present 

investigation must be pointed, addressed only to lipped channel columns. 
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Additional results of columns with different cross-section shapes are 

needed to strengthen this assumption as a general rule; 

(iv) The proposed equations by Schafer [95] (Eq. (2.69)) and Martins et al. 

[82] (Eq. (2.70)) addressed somewhat conservative results for the strength 

of the lipped channel columns described in the present research. More 

specifically, between the two approaches investigated here, the ���� 

equation (Eq. (2.70)) has demonstrated more conservative than the ���� 

(Eq. (2.69)) approach. 

The conclusions obtained from the D-G buckling interaction behavior are 

basically aligned with the ones found in  and Martins et al. [82], Dinis and Camotim [103] 

and Martins et al. [104]. However, more investigations on this topic, is still needed, in 

order to better understands the phenomenon, since there is a lack of experimental tests of 

columns experiencing the distortional-global buckling interaction, in different types of 

nature. 

To sum up, this work was mainly responsible for a deeper understanding of cold-

formed lipped-channel columns under D-G buckling interaction, with assistance of an 

elastic buckling analysis by the finite strip method, complimented by nonlinear FEM 

analysis. As initially proposed, the goal of this study has been achieved, with possible 

open topics that may be investigate in future research activities. 

6.5 Suggestions for future works 

The results and conclusions given by this research has shown some gaps, that may 

be filled in future works. Therefore, the present author suggests the following topics to 

be carried out: 

(i) Perform a mesh convergence study of the finite element model using the 

element SHEL281, with the purpose of rise the element size, and 

consequently, decrease the total number of elements, which results in a 

faster non-linear analysis; 

(ii) Conduct an initial geometric imperfection sensitivity study, in order to see 

the influence of the maximum global and distortional amplitude; 

(iii) Add several updates in the next FStr Computer Application Program 

version: save results option; easy geometry generation; geometric 

properties of cross-section; Portuguese/English swap language; modal 
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participation calculation; direct strength method automatic calculation; 

finite element model generator for a finite element analysis; 

(iv) Preform a more robust parametric study on secondary-distortional and 

secondary-global bifurcation D-G interaction natures; 

(v) Varying cross-section parameters, such as ��/��, ��/�� and ��/� for 

investigating the influence of the geometry in the D-G buckling 

interaction; 

(vi) Verify the columns studied in this work with the new global and 

distortional calibrated equations proposed in the literature by many authors 

(e.g. Dinis et al. [150] & [151] and Landesmann and Camotim [152] ); 

(vii) Expand the analysis with experimental tests, in order to confirm the finite 

element model and the D-G buckling interaction behavior; 

(viii) Include new types of cross-sections geometries (e.g. rack, zeta and lipped-

channel with intermediate stiffeners), in the behavior and strength analysis 

in order to determine a general equation, that might include not only the 

D-G interaction, but a L-D-G buckling interaction. 

In the future, it is expected that the contribution of this research becomes useful 

for the development of general solution taking into account all the possible buckling 

modes interaction. In this case, the design approach should be efficient with respect to 

take into account all the possible failure events. 
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Analytical solution for integrals ��, ��, ��, �� and ��, for different end boundary condition. 

(Source: K. Li [22] and Bradford and Azhari, [19]) 
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APPENDIX B 
 

Post-buckling equilibrium paths for different type of initial geometric imperfection 

combination, and different yield stress of LC 100x70x15x2.70 mm, L=1850 mm. 

 

 

 

 

Figure B.1. Post-buckling equilibrium paths, load steps vs. out-of-plane displacements (a) NT1, (b) 

NT2, (c) NT3, (d) NT4 and (e) NT5, with �
�

 =  ��� ���  and ���  =  ���. � �� (��/���  =  �. �) 

at �. ��, from � = [��, ���]. 
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Figure B.2. Post-buckling equilibrium paths, load steps vs. out-of-plane displacements (a) NT1, (b) 
NT2, (c) NT3, (d) NT4 and (e) NT5, with ��  =  ���� ���  and ���  =  ���. � �� (��/���  =  �. �) 

at �. ��, from � = [��, ���]. 
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Figure B.3. Post-buckling equilibrium paths, load steps vs. out-of-plane displacements (a) NT1, (b) 
NT2, (c) NT3, (d) NT4 and (e) NT5, with ��  =  ���� ���  and ���  =  ���. � �� (��/���  =  �. �) 

at �. ��, from � = [��, ���]. 
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Figure B.4. Post-buckling equilibrium paths, load steps vs. out-of-plane displacements (a) NT1, (b) 
NT2, (c) NT3, (d) NT4 and (e) NT5, with ��  =  ���. ���  and ���  =  ���. � �� (elastic behavior) 

at �. ��, from � = [��, ���]. 

0

50

100

150

200

250

300

350

400

-5 0 5 10 15 20

L
oa

d 
[k

N
]

Out-of-plane displacement [mm]

NT1 Elastic

θ = 0
θ = 15
θ = 30  
θ = 45  
θ = 60  
θ = 75 
θ = 90 

0

50

100

150

200

250

300

350

400

-16 -12 -8 -4 0 4

L
oa

d 
[k

N
]

Out-of-plane displacement [mm]

NT2 Elastic

θ = 0
θ = 15
θ = 30  
θ = 45  
θ = 60  
θ = 75 
θ = 90 

0

50

100

150

200

250

300

350

400

-50 -30 -10

L
oa

d
 [

kN
]

Out-of-plane displacement [mm]

NT3 Elastic

θ = 0
θ = 15
θ = 30  
θ = 45  
θ = 60  
θ = 75 
θ = 90 

0

50

100

150

200

250

300

350

400

-100 -80 -60 -40 -20 0 20

L
oa

d 
[k

N
]

Out-of-plane displacement [mm]

NT4 Elastic

θ = 0
θ = 15
θ = 30  
θ = 45  
θ = 60  
θ = 75 
θ = 90 

0

50

100

150

200

250

300

350

400

-80 -60 -40 -20 0

L
oa

d 
[k

N
]

Out-of-plane displacement [mm]

NT5 Elastic

θ = 0
θ = 15
θ = 30  
θ = 45  
θ = 60  
θ = 75 
θ = 90 



João Alfredo De Lazzari 

150 

 

 

 

Figure B.5. Post-buckling equilibrium paths, �/��� vs. �/� of displacement NT5 at �. ��, with � =
��� (79% Global and 21% Distortional mode), for different ratios of ��/���, where ���  =

 ���. � �� and � = �. �� ��. 

 

Figure B.6. Post-buckling equilibrium paths, �/��� vs. �/� of displacement NT5 at �. ��, with � =
��� (63% Global and 37% Distortional mode), for different ratios of ��/���, where ���  =

 ���. � �� and � = �. �� ��. 
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Figure B.7. Post-buckling equilibrium paths, �/��� vs. �/� of displacement NT5 at �. ��, with � =
��� (37% Global and 63% Distortional mode), for different ratios of ��/���, where ���  =

 ���. � �� and � = �. �� ��. 
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APPENDIX C 
 

Table C.1. Complete modal participation of LC 100x70x15x2.70 mm columns with different 
lengths, for first and second mode. 

Initial geometric imperfections Information 

Imp. 
Mode 

L Mode 
Type* 

Critical 
Load 

Half-
wave 

Modal Participation 
(CUFSM Vector Norm) 

Global Distortional Local Other 

[mm] [kN] [#] [%] [%] [%] [%] 

First 
Mode 

(Signature 
Curve) 

1500 D 1 367.6 3 2.8% 94.3% 2.7% 0.1% 

1550 D 1 367.3 3 3.0% 94.2% 2.8% 0.1% 

1600 D 1 365.5 4 1.6% 95.4% 2.9% 0.1% 

1650 D 1 362.5 4 1.6% 95.5% 2.7% 0.1% 

1700 D 1 360.1 4 1.6% 95.7% 2.6% 0.1% 

1750 D 1 358.3 4 1.6% 95.8% 2.5% 0.1% 

1800 D 1 357.0 4 1.6% 95.8% 2.5% 0.1% 

1850 G 1 354.5 1 88.6% 11.0% 0.3% 0.1% 

1900 G 1 339.6 1 89.7% 9.9% 0.3% 0.1% 

1950 G 1 325.4 1 90.7% 9.0% 0.3% 0.1% 

2000 G 1 312.0 1 91.5% 8.2% 0.3% 0.1% 

2050 G 1 299.4 1 92.3% 7.4% 0.2% 0.1% 

2100 G 1 287.4 1 92.9% 6.8% 0.2% 0.1% 

2150 G 1 276.2 1 93.5% 6.2% 0.2% 0.1% 

2200 G 1 265.5 1 94.1% 5.7% 0.2% 0.1% 

Superior 
Mode 

1500 G 4 473.1 1 73.1% 26.1% 0.7% 0.1% 

1550 G 4 456.5 1 76.8% 22.5% 0.6% 0.1% 

1600 G 3 438.9 1 79.8% 19.6% 0.6% 0.1% 

1650 G 3 421.1 1 82.2% 17.2% 0.5% 0.1% 

1700 G 3 403.6 1 84.2% 15.3% 0.5% 0.1% 

1750 G 3 386.5 1 85.9% 13.6% 0.4% 0.1% 

1800 G 3 370.1 1 87.3% 12.2% 0.4% 0.1% 

1850 D 2 356.2 4 1.6% 95.8% 2.4% 0.1% 

1900 D 2 355.7 4 1.7% 95.8% 2.5% 0.1% 

1950 D 2 355.5 4 1.7% 95.7% 2.5% 0.1% 

2000 D 2 355.1 5 1.7% 95.5% 2.6% 0.1% 

2050 D 2 353.5 5 2.0% 95.4% 2.5% 0.1% 

2100 D 2 352.1 5 2.3% 95.3% 2.3% 0.1% 

2150 D 2 351.1 5 2.6% 95.0% 2.2% 0.1% 

2200 D 2 350.3 5 2.9% 94.8% 2.2% 0.1% 

* Mode abbreviation name and superior buckling order, e.g.  D 2: Distortional Second 
Buckling Mode, G 1: Global (Flexural-Torsional) First Buckling Mode  
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Table C.2. Modal combination of all modes and pure modes for distortional and global modal 
shapes, of LC 100x70x15x2.70 mm columns with different lengths. 

Analysis 
Type 

L 

Distortional Buckling Mode Global Buckling Mode 

Mode* 
Half-
wave 

%Dist.† ���� Mode* 
Half-
wave 

%Global† ���� 

[mm] [#] [#] [%] [kN] [#] [#] [%] [kN] 

All 
Modes 

(Signature 
Curve) 

1500 1 3 94.3% 367.6 4 1 73.1% 473.1 

1550 1 3 94.2% 367.3 4 1 76.8% 456.5 

1600 1 4 95.4% 365.5 3 1 79.8% 438.9 

1650 1 4 95.5% 362.5 3 1 82.2% 421.1 

1700 1 4 95.7% 360.1 3 1 84.2% 403.6 

1750 1 4 95.8% 358.3 3 1 85.9% 386.5 

1800 1 4 95.8% 357.0 3 1 87.3% 370.1 

1850 2 4 95.8% 356.2 1 1 88.6% 354.5 

1900 2 4 95.8% 355.7 1 1 89.7% 339.6 

1950 2 4 95.7% 355.5 1 1 90.7% 325.4 

2000 2 5 95.5% 355.1 1 1 91.5% 312.0 

2050 2 5 95.4% 353.5 1 1 92.3% 299.4 

2100 2 5 95.3% 352.1 1 1 92.9% 287.4 

2150 2 5 95.0% 351.1 1 1 93.5% 276.2 

2200 2 5 94.8% 350.3 1 1 94.1% 265.5 

Pure 
Modes‡ 

1500 1 3 100% 396.5 2 1 100% 561.9 

1550 1 3 100% 395.8 2 1 100% 527.4 

1600 1 3 100% 395.6 2 1 100% 496.1 

1650 1 4 100% 393.8 2 1 100% 467.7 

1700 1 4 100% 390.1 2 1 100% 441.7 

1750 1 4 100% 387.2 2 1 100% 417.8 

1800 1 4 100% 384.9 2 1 100% 396.0 

1850 1 4 100% 383.3 2 1 100% 375.9 

1900 1 4 100% 382.3 2 1 100% 357.3 

1950 2 4 100% 381.7 1 1 100% 340.2 

2000 2 4 100% 381.5 1 1 100% 324.3 

2050 2 5 100% 381.4 1 1 100% 309.6 

2100 2 5 100% 379.8 1 1 100% 295.9 

2150 2 5 100% 378.0 1 1 100% 283.2 

2200 2 5 100% 376.6 1 1 100% 271.3 

* Buckling mode order number 
† Modal Participation from CUFSM in Vector Norm 
‡ Pure modes obtained with CUFSM 

 

 

 

 

 



João Alfredo De Lazzari 

154 

 

Table C.3. Ultimate load of LC 100x70x15x2.70 mm columns under different type of initial 
geometric imperfection combination with L=1850 mm. 

fy Theta Pu 

[MPa] [Degrees] [kN] 

345 0 204.6 

15 204.2 

30 202.5 

45 201.7 

60 201.7 

75 201.8 

90 200.6 

105 201.8 

120 201.7 

135 201.7 

150 202.5 

165 204.2 

180 204.6 

195 204.2 

210 202.5 

225 201.7 

240 201.7 

255 201.8 

270 200.6 

285 201.8 

300 201.7 

315 201.7 

330 202.5 

345 204.2 

508 0 255.2 

15 246.8 

30 246.4 

45 246.2 

60 247.0 

75 249.5 

90 261.7 

1016 0 294.5 

15 297.6 

30 300.0 

45 301.9 

60 303.8 

75 306.0 

90 348.4 

1523 0 339.4 

15 340.4 

30 341.2 

45 342.1 

60 343.1 

75 344.0 

90 Not Conv. 
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Table C.4. Slenderness and ratios of LC 100x70x15x2.70 mm column, with different yield 
stress and length. 

fy L 

Pure 
Critical 
Load* λD λG λmax RλGD RGD 

PcrD PcrG 

[MPa] [mm] [kN] [kN] 

345 1500 396.5 561.9 0.78 0.66 0.78 0.84 1.42 

  1550 395.8 527.4 0.78 0.68 0.78 0.87 1.33 

  1600 395.6 496.1 0.78 0.70 0.78 0.89 1.25 

  1650 393.8 467.7 0.78 0.72 0.78 0.92 1.19 

  1700 390.1 441.7 0.79 0.74 0.79 0.94 1.13 

  1750 387.2 417.8 0.79 0.76 0.79 0.96 1.08 

  1800 384.9 396.0 0.79 0.78 0.79 0.99 1.03 

  1850 383.3 375.9 0.79 0.80 0.80 1.01 0.98 

  1900 382.3 357.3 0.79 0.82 0.82 1.03 0.93 

  1950 381.7 340.2 0.80 0.84 0.84 1.06 0.89 

  2000 381.5 324.3 0.80 0.86 0.86 1.08 0.85 

  2050 381.4 309.6 0.80 0.88 0.88 1.11 0.81 

  2100 379.8 295.9 0.80 0.90 0.90 1.13 0.78 

  2150 378.0 283.2 0.80 0.92 0.92 1.16 0.75 

  2200 376.6 271.3 0.80 0.94 0.94 1.18 0.72 

508 1500 396.5 561.9 0.95 0.80 0.95 0.84 1.42 

  1550 395.8 527.4 0.95 0.82 0.95 0.87 1.33 

  1600 395.6 496.1 0.95 0.85 0.95 0.89 1.25 

  1650 393.8 467.7 0.95 0.87 0.95 0.92 1.19 

  1700 390.1 441.7 0.95 0.90 0.95 0.94 1.13 

  1750 387.2 417.8 0.96 0.92 0.96 0.96 1.08 

  1800 384.9 396.0 0.96 0.95 0.96 0.99 1.03 

  1850 383.3 375.9 0.96 0.97 0.97 1.01 0.98 

  1900 382.3 357.3 0.96 1.00 1.00 1.03 0.93 

  1950 381.7 340.2 0.97 1.02 1.02 1.06 0.89 

  2000 381.5 324.3 0.97 1.05 1.05 1.08 0.85 

  2050 381.4 309.6 0.97 1.07 1.07 1.11 0.81 

  2100 379.8 295.9 0.97 1.10 1.10 1.13 0.78 

  2150 378.0 283.2 0.97 1.12 1.12 1.16 0.75 

  2200 376.6 271.3 0.97 1.14 1.14 1.18 0.72 

1016 1500 396.5 561.9 1.34 1.12 1.34 0.84 1.42 

  1550 395.8 527.4 1.34 1.16 1.34 0.87 1.33 

  1600 395.6 496.1 1.34 1.20 1.34 0.89 1.25 

  1650 393.8 467.7 1.34 1.23 1.34 0.92 1.19 

  1700 390.1 441.7 1.35 1.27 1.35 0.94 1.13 

  1750 387.2 417.8 1.36 1.30 1.36 0.96 1.08 

  1800 384.9 396.0 1.36 1.34 1.36 0.99 1.03 
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  1850 383.3 375.9 1.36 1.38 1.38 1.01 0.98 

  1900 382.3 357.3 1.36 1.41 1.41 1.03 0.93 

  1950 381.7 340.2 1.36 1.45 1.45 1.06 0.89 

  2000 381.5 324.3 1.37 1.48 1.48 1.08 0.85 

  2050 381.4 309.6 1.37 1.52 1.52 1.11 0.81 

  2100 379.8 295.9 1.37 1.55 1.55 1.13 0.78 

  2150 378.0 283.2 1.37 1.58 1.58 1.16 0.75 

  2200 376.6 271.3 1.37 1.62 1.62 1.18 0.72 

LC 100x70x15x2.70 mm, with area of the cross-section 699.8 mm2 
* Obtained as pure modes from CUFSM 

 

Table C.5.Ultimate load and nominal axial strength of LC 100x70x15x2.70 mm columns for 
different yield stress and length. 

 fy L 
Pu 

PnD PnG PnDG PnGD 

0.5G+0.5D 1G+0G 

[MPa] [mm] [kN] [kN] [kN] [kN] [kN] [kN] 

345 1500 209.8 217.70 215.7 201.7 189.1 183.7 

1550 208.3 216.25 215.6 199.3 187.3 181.7 

1600 208.3 214.73 215.5 197.0 185.6 179.7 

1650 207.1 212.89 215.2 194.5 183.6 177.5 

1700 206.0 211.16 214.6 192.1 181.5 175.1 

1750 204.5 209.00 214.2 189.6 179.3 172.8 

1800 203.1 206.93 213.8 187.1 177.2 170.5 

1850 201.4 204.86 213.5 184.5 175.2 168.3 

1900 199.7 202.14 213.3 182.0 173.2 166.2 

1950 197.7 199.53 213.2 179.4 171.2 164.0 

2000 189.7 196.75 213.2 176.8 169.2 161.9 

2050 187.7 193.85 213.2 174.2 167.2 159.8 

2100 185.6 190.83 212.9 171.6 165.1 157.5 

2150 183.5 187.68 212.6 169.0 162.9 155.3 

2200 181.3 184.39 212.3 166.4 160.7 153.0 

508 1500 267.5 284.0 278.3 272.8 234.6 226.2 

1550 262.4 281.8 278.1 268.1 231.7 223.0 

1600 266.2 279.5 278.0 263.4 228.9 219.9 

1650 262.2 275.8 277.5 258.6 225.8 216.5 

1700 258.1 271.2 276.5 253.8 222.2 212.8 

1750 253.9 266.0 275.7 249.0 218.8 209.2 

1800 249.6 260.8 275.1 244.2 215.4 205.7 

1850 245.3 255.3 274.7 239.3 212.2 202.3 

1900 240.9 249.7 274.4 234.4 209.0 199.0 

1950 236.2 243.8 274.2 229.6 205.8 195.7 

2000 221.8 237.9 274.1 224.7 202.7 192.5 

2050 217.7 232.1 274.1 219.9 199.5 189.2 

2100 213.6 226.2 273.7 215.0 196.1 185.8 
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2150 209.5 220.4 273.2 210.2 192.7 182.4 

2200 205.5 214.7 272.8 205.4 189.2 179.1 

1016 1500 349.9 351.9 412.7 418.7 307.2 303.5 

1550 340.7 344.8 412.3 404.4 300.7 297.2 

1600 348.7 336.8 412.2 390.3 294.3 291.1 

1650 337.6 328.2 411.3 376.3 287.4 284.7 

1700 327.5 319.5 409.5 362.4 279.8 277.8 

1750 318.5 310.3 408.0 348.8 272.5 271.1 

1800 310.0 301.4 406.9 335.3 265.3 264.7 

1850 302.1 294.5 406.1 322.1 258.3 258.4 

1900 294.5 287.8 405.6 309.2 251.4 252.2 

1950 287.4 281.4 405.3 296.5 244.6 246.2 

2000 275.8 275.1 405.2 284.1 237.9 240.2 

2050 269.8 269.1 405.1 271.5 230.9 234.3 

2100 264.1 263.2 404.3 259.5 223.7 228.2 

2150 258.5 257.6 403.4 248.4 216.8 222.2 

2200 253.1 252.1 402.7 237.9 210.2 216.4 
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