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Este estudo abordará o comportamento termo-químico-mecânico do concreto 

considerando envelhecimento e dano. Para tanto, modelos matemáticos serão 

desenvolvidos e resolvidos por meio do Método dos Elementos Finitos. A análise será 

composta por dois modelos, a saber: termo-químico e termo-mecânico. Primeiro, o 

modelo termo-químico será deduzido usando a termodinâmica aplicada a meios porosos 

quimicamente reativos. Um dos exemplos usados para validar o modelo termo-químico 

consiste em uma estrutura de concreto construída em camadas. Para esse caso, foi 

desenvolvida uma estratégia de renumeração dos nós da malha. Depois, o modelo termo-

mecânico será apresentado bem como uma discussão sobre a necessidade de usar uma 

equação constitutiva incremental para modelar o envelhecimento do concreto. O 

envelhecimento é traduzido pelo aumento do modulo de Young com o tempo, isto é, pela 

hidratação do cimento. Em seguida, um modelo de dano isotrópico será incorporado ao 

modelo termo-mecânico com envelhecimento e uma estratégia de integração Não-local 

será adotada para evitar a falta de objetividade devido a localização de deformações. 

Finalmente, o modelo termo-químico-mecânico será apresentado por meio de dois 

exemplos teóricos: um corpo-de-prova de concreto e um muro de concreto genérico. Os 

resultados mostrarão que microfissuras e tensões residuais podem aparecer devido a 

hidratação do cimento. Isso, por sua vez, pode levar ao colapso prematuro da estrutura. 
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the 

requirements for the degree of Master of Science (M.Sc.) 
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ANALYSIS OF CONCRETE STRUCTURES REGARDING AGEING AND 

DAMAGE 

Gustavo Luz Xavier da Costa 
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This study will address the thermo-chemo-mechanical behaviour of concrete 

considering ageing and damage. To this end, mathematical models will be developed and 

worked out through the Finite Element Method. The analysis will be composed of two 

models, namely: thermo-chemical and thermo-mechanical. First, the thermo-chemical 

model will be deduced using thermodynamics applied to chemically reactive porous 

media. One of the examples used to validate the thermo-chemical model consists of a 

concrete structure built by layers. For this case, it was developed a renumbering strategy 

for the nodes of the mesh. Then, the thermo-mechanical model will be presented as well 

as the necessity for an incremental constitutive equation for modelling concrete ageing. 

The ageing is translated by the increase of Young’s modulus, that is, by the cement 

hydration. Next, an isotropic damage model will be incorporated to the thermo-

mechanical model with ageing and a Nonlocal integral-type strategy will be adopted to 

avoid lack of objectivity due to strain localization. Finally, the thermo-chemo-mechanical 

model will be presented by means of two theoretical examples: a concrete specimen and 

a generic concrete wall. The results will show that microcracks and residual stresses might 

take place due to hydration of cement. This in turn might lead to the premature collapse 

of the structure. 
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1  Introduction 

1.1  General background 

Concrete’s properties are one of the main concerns of civil engineering community 

since its first usage as a structural material. One of its principal features is the ability to 

harden with time accompanied by the increase of its strength. However, this happens at the 

expense of considerable amount of heat generation. For massive concrete structures without 

reinforcement, for instance, this is responsible for cracking in the early age. In this context, 

the process of concrete hydration has been under intensive research by the scientific com-

munity because it will generally dictate the future behaviour of the structure. 

The interest in understanding the hydration process is not in vain. The first days 

after concrete starts setting and hardening are crucial because that’s when concrete start 

developing cracks that might reduce to a great extent its strength during its service life. 

Besides, unlike other materials, concrete starts as a viscoplastic material when it’s mixed 

with water and ends as a majorly elastic material after setting finishes. A mathematical 

model that encompasses all these features is not trivial because they are usually coupled, 

meaning that one cannot analyze separately. Although its simplifications, several models 

have been developed during the last decades. They take into account the main features dur-

ing concrete setting such as ageing, creep, autogenous shrinkage, plasticity, etc. The wide 

spread of numerical methods in the last century allowed one to test these models which 

have been demonstrating a good agreement with experimental data. 

As previously stated, the aforementioned attributes of concrete will govern the re-

sponse of structure when it is already set because one of the most critical issues is the growth 

of cracks due to thermal strains. Superficial cracks are sometimes observable with unaided 

eye or, if smaller, measured with an appropriate apparatus. Interior cracks, on the other 

hand, are more difficult to assess and one usually must resort to non-destructive methods 

to determine the magnitude of the damage.  

Another serious problem caused by the combination of thermal expansion due to 

hydration of cement paste and mechanical restraints is the phenomenon of residual stresses 

even without apparent strains. It might occur if the placing temperature is approximately 
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equal to that when concrete is already set and the restraints allow the structure to return to 

its original dimensions at the time it was placed (an illustrative example will be presented 

later). Residual stresses are undesirable because, as opposed to strains, stresses are not eas-

ily measurable. This, in turn, might make the structure collapses with lower strains than 

predicted in the design stage.  

The hydration of the cement paste present in concrete as well as its thermal and 

mechanical effects is referred to its thermo-chemo-mechanical behaviour. The chemical 

reactions take place as soon as the cement paste is mixed with water which in turn lead to 

thermo-mechanical strains and vice versa. For concrete, in general, it can be assumed that 

temperature variations induce mechanical strains but not the other way around (it will be 

discussed later). Since one would like to evaluate the temperature evolution of concrete 

with time as well as its mechanical response, the differential equations that describe this 

behaviour are nonlinear and time-dependent. For this reason, it goes without saying that 

numerical methods are preferable for these models. 

The widely known Finite Element Method, employed in the present study, is well 

suited when one wants to analyze the thermo-chemo-mechanical response of the structure 

when neglecting crack growth. Actually, it is appropriate even for crack propagation prob-

lems but it hinges on the methodology chosen to analyze it. Damage models, which are 

based on Continuum Damage Mechanics, suffer from an enormous drawback for softening 

problems. When one is modelling a problem by means of the FEM, it is usually expected 

that it converges as the mesh is refined. For damage models with softening, this is not the 

case and the results converge to a rupture with zero energy dissipation, which is completely 

unacceptable. This pathological behaviour including the remedies to circumvent it will be 

examined later. In any case, one can state in advance that it is a weakness of local numerical 

methods, that is, those for which equations are written at element level. In this context, 

Meshless methods have gained attention for crack propagation problems as they do not 

suffer from this deficiency. 

Shortcomings aside, FEM is still adequate for the modelling of concrete if proper 

precautions are taken. Hence, the goal of the scientific community has been to develop 

mathematical models that more and more encompass a broad range of features. It is still 

challenging since engineers are usually interested in the macroscopic level of material de-

scription but important processes generally take place at lower scales. 
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1.2  Rationale and motivation 

The development of this study aims at demonstrating the importance of the hydra-

tion of the cement paste present in concrete as well as its mechanical effects. The reason is 

because the chemical reaction of hydration usually takes place very rapidly, making the 

structure behave differently for each time instant. For massive concrete structures like dams 

or large foundations, for example, this is driving force behind crack growth in the early 

ages. Due to the importance of these structures and the difficulty to fix these pathologies 

one must resort to a methodology that consider all these phenomena. The most reasonable 

way to do this analysis is to resort to numerical methods. Thus, this research intends to work 

out the governing equations numerically by means of the Finite Element Method. 

The methodology adopted to derive the thermo-chemical model is based on a con-

sistent theoretical framework. The thermodynamics is the key theory behind this model 

which in turn guarantees the irreversibility of the hydration reaction. Besides, the resulting 

Finite Element formulation is easily implemented in an existing code. This methodology 

can be used to predict the temperature evolution for adiabatic, semi-adiabatic and isother-

mal conditions. Another important aspect is the node renumbering when simulating layered 

constructions. Hence, a strategy to reorder the labels of the nodes will be presented. 

One of the reasons for using an isotropic damage model for crack modelling is the 

fact that it’s vastly addressed in the literature. Consequently, it’s easy to compare with ex-

isting experimental data. Besides, it’s suitable for engineering purposes since an existing 

Finite Element code can incorporate it only by adding a new subroutine. This study will 

adopt an elastic damage model which is a simplification but shows a good agreement for 

quasi-static and cyclic loadings. It is also thermodynamically consistent which is translated 

by the fact that the damage variable always increases. Since the proposed damage model 

presents softening, a remedy must be adopted to avoid lack of objectivity. This research 

employed a nonlocal integral-type technique due to its feasibility. 

In summary, the present study aims at contributing to the investigation of the 

thermo-chemo-mechanical behaviour of concrete in the early ages. Two important aspects 

that will be considered here are ageing and damage. Although both are widely known, 

mathematical models that comprise both aspects are not widespread yet. It must be demon-

strated the importance of using an incremental constitutive equation when taking ageing 
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into consideration as well as its effects on the damage model. Thus, this research is also an 

endeavor with the purpose of filling this gap in the literature. 

 

1.3  Methodology and objectives 

In this dissertation, mathematical formulations will be presented to study the 

thermo-chemo-mechanical behaviour of concrete due to hydration of the cement paste. 

These models, represented by differential equations, will be obtained using the thermody-

namics. The thermo-chemo-mechanical modelling will be divided into two analysis, 

namely: thermo-chemical and thermo-mechanical.  

In the thermo-chemical model, concrete will be assumed as a closed system (mass 

control) which is composed of a deformable solid skeleton with micropore saturated with 

water. Then, the theory of chemically reactive porous media will be applied. The method-

ology will also consider the thermally activated nature of the hydration process, that is, the 

effect of the temperature on the chemical reaction. Once the governing equations are de-

rived, the Galerkin method will be used to develop its Finite Element formulation which 

consists of a time-dependent and nonlinear system of equations. The Euler-backward 

scheme will be used to discretize the equations in time and the Newton’s method will be 

implemented to solve the linearized system iteratively. In addition, it will be proposed a 

node renumbering strategy for the purpose of modelling layered placing of concrete. 

Then, the thermo-mechanical model will be developed and the necessity of an in-

cremental constitutive equation for modelling ageing materials will be discussed. Then, an 

isotropic damage model will be incorporated to it, using the concept of Effective Stress and 

the Principle of Strain-Equivalence. It will be possible to derive a constitutive equation that 

considers both ageing and damage. Then, a Finite Element formulation for it will be pre-

sented. The resulting system of equations is static and nonlinear because damage is a func-

tion of displacements and vice versa. The present study will use the Newton’s method to 

solve the nonlinear system. In addition, a nonlocal integral-type technique will be presented 

in order to tackle the issue of lack of objectivity due to strain localization. This approach is 

quite attractive since the key idea of damage remains the same and only few changes are 

necessary for an existing Finite Element code. 
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Finally, the coupled thermo-chemo-mechanical analysis will be introduced. The hy-

pothesis of weak coupling allows one to solve the thermo-chemical model first and the 

thermo-mechanical problem subsequently. This assumption means that temperature varia-

tions provoke mechanical strains and stresses but not the other way around. Finally, some 

numerical applications will be presented in order to demonstrate damage propagation due 

to thermal effects and the phenomenon of residual stresses without observable strains. It is 

expected that the obtained numerical results show the feasibility of the proposed method-

ology. 

 

1.4  Dissertation organization 

This first chapter gave a general overview of the problem that will be analyzed 

which is the thermo-chemo-mechanical analysis of concrete structures considering both 

ageing and damage. 

The second chapter will briefly discuss some features of concrete. It will be exposed 

properties such as its main chemical components and its effects on the hydration reaction, 

factors influencing the concrete strength and a short description of the material at the mi-

crolevel. 

The third chapter will develop the thermo-chemical model based on the thermody-

namics of chemically reactive porous media. It will take into account the exothermic and 

thermally activated nature of the hydration of the cement paste. Some numerical applica-

tions will be presented in order to validate the model. 

The fourth chapter will discuss the thermo-mechanical model regarding ageing and 

damage. It will also discuss the problem of lack of objectivity due to strain softening and a 

nonlocal technique as a remedy to circumvent it. The proposed formulation will be used in 

numerical applications and some of them compared with experimental data. 

The fifth chapter will formulate the coupled thermo-chemo-mechanical model 

along with a flowchart with the view to demonstrate the logical scheme adopted. Two the-

oretical examples will be worked out in order to show the phenomena of microcracks and 

residual stresses on concrete structures due to hydration. 
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The sixth chapter will present concluding remarks of this research. It will summa-

rize the key ideas exposed here and inferences that can be drawn from it. 

Finally, the references used to develop this study will be given in chapter seven. 
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2  A brief overview of concrete 

2.1  Main features 

According to NEVILLE and BROOKS [1], the ancient Romans were perhaps the 

first to use concrete, from Latin concretus, a word that means “to grow together” (cf. LI [2] 

and MINDESS et al. [3]). The cement properties of water resistance and hardening with 

time made its use widespread. After some centuries in disuse, Roman cement was redis-

covered and in the 19th century Joseph Aspdin coined the term Portland cement. Today, 

this word is employed to describe a broad range of cements that share some features in 

common but differ in its applications. 

The production of Portland cement is made through the combination of raw mate-

rials. These are majorly composed by calcareous components such as limestone or chalk 

and argillaceous materials like clay or shale. They are grinded into powder, mixed in the 

right proportions and them placed inside a burning rotary kiln. The resulting material, 

known as clinker, is cooled, combined with gypsum and grinded once again. The outcome 

is what is known today as the Portland cement. 

The major components that constitute cement are basically four oxides, namely: 

3CaO.SiO2, 2CaO.SiO2, 3CaO.Al2O3 and 4CaO.Al2O3.Fe2O3 which are usually referred to 

as C3S, C2S, C3A and C4AF, respectively. In spite of the fact that they constitute the major 

part of the cement composition, it does not mean other minor components do not play a 

significant role in the concrete behaviour it just means that they constitute the majority of 

mass composition of the cement. 

The oxides present in cement have its own particularities. Usually the reduction of 

one of them might improve some characteristics but worsen others. As will be seen, some 

of these components are responsible for a great amount of heat generation but also for its 

strength when concrete is set. Besides, the usage of cement in concrete is generally accom-

panied by the addition of admixtures because they enhance important properties such as 

strength and setting time. However, appropriate precautions must be taken when using it, 

otherwise it might lead to pathologies in the structure. 
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2.2  Hydration reaction 

As soon as cement paste is mixed with water to compose concrete, a complex set of 

chemical and physical processes take place. For this research, the main concern regarding 

cement hydration is related to its capability of increasing its temperature due to heat gener-

ation. This section will deal with the mechanism behind the hydration process and which 

components of cement are responsible for this behaviour. A mathematical description of 

the problem will be presented in chapter 3. 

When water reaches cement, all the four major components previously mentioned 

reacts with it to form hydrates. These reactions are not fully understood yet because they 

occur simultaneously which makes such analysis complex and an object under intensive 

research yet. For the sake of simplicity, one may consider these processes happening sepa-

rately (cf. NEVILLE and BROOKS [1] and LI [2]) which correspond to assuming that they 

do not interact with each other.  

The calcium silicates C2S and C3S produce quite similar compounds during the hy-

dration reaction. Together they produce hydrates known as tobermorite gel or simply C-S-

H gel (cf. MEHTA and MONTEIRO [4]). This poorly crystallized porous component (cf. 

POPOVICS [5])  is responsible for the strength of concrete and is one of the most important 

outcomes of the hydration reaction because it will influence the mechanical behaviour 

throughout the whole service life of concrete. However, the rate at which their reactions 

occur is completely different since C3S reacts faster than C2S which makes C3S responsible 

for the early age strength of concrete while C2S contributes to its long-term strength. 

The chemical reaction of C3A and water must be remarked as well. This compound 

sets very quickly when combined with water and that is why gypsum is added with clinker. 

In this context, the hydration of C3A per se is not so important for practical engineering 

problems but rather its occurrence in the presence of gypsum. The outcome of the reaction 

is a component referred to as ettringite which may be either beneficial or malefic depending 

on how the process will develop. If ettringite is formed before the cement paste is set then 

it will act as a natural reinforcement and increase the concrete strength. If that does not 

happen, ettringite might grow to an extent that will break the hardened products already 

formed which might lead to cracking in the early age. 
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There are two compounds that are responsible for the majority of heat generated 

during concrete setting, namely: C3A and C3S. For engineers, though, the total amount of 

heat is not the most important aspect but rather the rate at which it takes place. Indeed, if 

temperature increase slower than the capacity of the structure to dissipate it then it will not 

become a problem. Massive structures, for instance, dissipate heat is very slowly. This in 

turn will lead to thermal cracks during setting. Something important to keep in mind is that 

heat generated due to hydration of cement paste is not always malefic. For concrete placing 

during winter in cold-weather places it might be beneficial since it will accelerate the setting 

time. 

Considering that the rate of heat generation is the important feature to be analyzed 

then some observations can be made. The fineness of the cement, for instance, can change 

the velocity of hydration reaction but not the total amount of heat generated which is gen-

erally dictated by cement content present in concrete (cf. NEVILLE and BROOKS [1]). In 

addition, the usage of cold water is sometimes recommended because it may decrease the 

reaction velocity. This procedure is usually adopted in the construction of large dams where 

cold water or even ice is mixed with concrete during its preparation. More information 

about prevention of thermal cracks in concrete structures can be found in the reports pre-

sented by SPRINGENSCHMID [6]. 

Another interesting characteristic of hydration reaction is related to its exothermic 

and thermally activated behaviour. In summary, it means that temperature increase due to 

hydration reaction (exothermic) and the temperature rise itself hasten the kinetics of hydra-

tion (thermal activation). This property becomes more noticeable in massive structures but 

it might be an issue for daily structures as well. From a mathematical point of view, the 

thermal activation is regarded as a nonlinearity because the temperature will depend on the 

hydration extent and vice versa. 

The process of hydration of cement paste is still under intensive research. The sci-

entific community is not completely aware of the role played by each compound and how 

exactly they interact with each other during setting. So far, simplified models have been 

presented and demonstrated good agreement with experimental data but a more satisfactory 

understanding is still to be achieved. 
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2.3  Mechanical aspects 

From the previous discussion one can conclude that thermal strains will take place 

as a result of temperature variations. Instead of focusing only on the mechanical effects in 

the structure due to hydration, this section will present mechanical features of concrete as 

a whole. However, one cannot separate it completely from hydration reaction because the 

mechanical response will be dictated by the components formed when concrete is still set-

ting. 

Concrete strength along with its durability and water resistance is usually consid-

ered as the most remarkable features of concrete. Its considerable capability to endure large 

compressive loads without failing is one of the reasons that makes it suitable for practical 

engineering situations. However, something interesting to note is that by analyzing the me-

chanical properties of coarse aggregate, cement paste, mortar and concrete separately one 

can conclude that their stress-strain curve behave quite differently as shown in Figure 1. 

 

Figure 1. Stress-strain curve for concrete components 

One would like to expect that concrete would possess at least the strength of the 

weaker component which is not the case. This apparent paradox is caused by imperfections 

that arise when concrete is setting. Micropore and voids, for instance, are responsible for 

stress concentrations leading to the collapse of the structure with lower stresses than theo-

retically predicted. A region that play an important role in this behaviour is situated between 
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the coarse aggregate and bulk cement paste and is usually referred to as Interfacial Transi-

tion Zone (ITZ) (cf. [1]–[5]). An interesting survey about its properties and influences on 

the mechanical behaviour of concrete is found in MASO [7]. This zone is generally con-

sidered the weakest link in concrete because that is where a great amount of imperfections, 

such as porosities and voids, is present. 

When fractures start to emerge, they will almost always propagate in ITZ. Decrease 

the water-cement ratio can increase the strength of the cement paste matrix but it will not 

be the case for ITZ. MINDESS [3] states that silica fume can be employed as a remedy to 

improve the strength of ITZ because it will partially eliminate the quantity of pores. In any 

case, the evaluation of its strength depends on various factors that are usually difficult to 

evaluate by daily tests which makes its assessment challenging. 

Outside ITZ, imperfections and flaws are also present, specially in the form of po-

rosities. For heterogeneous solids like concrete, it is one of the main causes for strength-

limiting and a parameter commonly used to estimate it is the water-cement ratio. However, 

other aspects such as aggregate size, curing conditions and rate of loading will influence in 

a considerable way the mechanical response of the structure (cf. MEHTA and MONTEIRO 

[4]). In any case, water-cement ratio is a variable which is easy to measure and for practical 

purposes it still represents a useful criterion to predict some properties of concrete. 
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3  Thermo-chemical analysis 

In order to simulate temperature variations due to hydration of the cement paste, 

ULM and COUSSY [8], [9] proposed a theoretical framework based on thermodynamics. 

It considers the cement paste as a chemically reactive porous media, as presented by 

COUSSY [10]. This methodology was already employed by other researchers such as 

RITA et al. [11], EVSUKOFF et al. [12], FERREIRA [13], FERREIRA [14], SILVOSO 

[15], VALENTIM [16], CERVERA et al. [17] and CERVERA et al. [18]. In this context, 

the present chapter will follow the reasoning proposed by ULM and COUSSY [8], ULM 

and COUSSY [9], COUSSY [10], ULM and COUSSY [19] and ULM and COUSSY [20] 

to develop a mathematical model that describes the kinetics of hydration reaction. 

 

3.1  Mathematical modelling 

Consider the sketch depicted in Figure 2. It represents a picture of the cement paste 

for a given time instant and at the microscopic level. It consists of free water, hydrated 

cement, anhydrous cement and micropores. An essential prerequisite of the hydration reac-

tion is that free water must go through the micropores (a process called diffusion) and meet 

anhydrous cement. When they meet, new layers of hydrate are formed almost instantane-

ously when compared to diffusion process. Hence, it can be assumed that diffusion is the 

dominant mechanism behind hydration reaction because it will dictate the formation of hy-

drated cement. 

 

Figure 2. Cement at the microlevel of material description 
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The scheme represented by Figure 2 can be regarded as a closed system (mass con-

trol). It means that matter will not be exchanged with the surrounding medium, only energy. 

In other words, it implies that, for a given time interval, the change of water mass that 

combined to form the skeleton (hydrated cement) plus the change of water mass of free 

water equals zero. Mathematically, it is written as 

 sk fwdm dm
0

dt dt
 (3.1) 

The second law of thermodynamics, which can be given by the Clausius-Duhem 

inequality, states that the variation of entropy in a closed system is always greater than or 

equal to the entropy supplied from the surrounding medium. Since closed systems do not 

exchange matter with the exterior, the source of entropy variation can only be attributed to 

the heat supplied from the outside 

 ref

ref

dS Q dS
T Q

dt T dt
 (3.2) 

with Tref as a reference temperature. The difference between the left and the right-

hand side of Equation 3.2 is equal to the dissipation φ due to hydration reaction 

 ref

dS
φ T Q

dt
 (3.3) 

ULM and COUSSY [9] assume that dissipation is represented by 

   sk sk
m

dm dm
φ g G A 0

dt dt
     (3.4) 

with g and G as the chemical potential of the free water and of the hydrated cement, 

respectively. The difference between them can be regarded as the affinity Am of the reac-

tion. As the thermodynamic imbalance between free water and anhydrous cement increases, 

affinity grows. ULM and COUSSY [9] assume that dissipation is associated to both irre-

versible skeleton evolution (chemo-plastic) and hydration reaction (thermo-chemical). In 

the present study, the former will be neglected. 

The dissipation for a closed system, disregarding mechanical effects, is written as 
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 φdt σ :dε SdT dψ 0  (3.5) 

where ψ denotes the Helmholtz Free Energy. It will be assumed that it is a function 

of two state variables: temperature (T) and water mass that reacted with cement to form the 

skeleton (msk). Temperature is an external (observable) variable. On the other hand, water 

mass is considered an internal (hidden) variable which means that it is not controlled from 

the exterior (cf. ULM [19]). The designation of external and internal variables will depend 

on whether they are observable from outside the system or not. 

  skψ ψ T,m  (3.6) 

The total differential for a function f(x1, x2, x3…xn) is 

 1 2 3 n

1 2 3 n

f f f f
df dx dx dx ... dx

x x x x

   
    
   

 (3.7) 

Hence, the total differential of (3.6) will be 

 sk

sk

ψ ψ
dψ dT dm

T m

 
 
 

 (3.8) 

Substituting (3.4) and (3.5) in (3.8) and rearranging it 

 
m sk sk

sk

ψ ψ
SdT A dm dT dm 0

T m
 (3.9) 

Comparing the left and right-hand sides of (3.9) leads to 

  sk

ψ
S T,m

T


 


 (3.10) 

and 

  m sk

sk

ψ
A T,m

m


 


 (3.11) 

Because ψ is a function of T and msk, so will be S and Am. Taking the total differ-

ential of (3.10) and (3.11) 
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2 2

sk2

sk

ψ ψ
dS dT dm

T T m

 
  

  
 (3.12) 

 

2 2

m sk2

sk sk

ψ ψ
dA dT dm

T m m

 
  

  
 (3.13) 

Using (3.12) and (3.3) 

 

2 2

sk
ref ref th m sk2

sk

dmψ dT ψ
T T Q φ C T L m Q φ 0

T dt T m dt

 
       

  
 (3.14) 

with Cth denoting the heat capacity and Lm the latent heat. The dissipation term is 

small when compared to the latent heat of hydration which makes it negligible. Thus, in the 

absence of volumetric heat sources, (3.14) can be given by 

  th m sk th m skC T L m Q C T L m . k T 0        (3.15) 

with Q as the heat supplied from the exterior and k a scalar denoting the isotropic 

thermal conductivity. Equation (3.15) is very similar to the standard heat equation. 

As mentioned previously, the diffusion of free water through the layers of hydrated 

cement is considered as the rate-determining (dominant) mechanism behind hydration re-

action. Something important to keep in mind is that this process is nonlinear. In other words, 

as free water combines with anhydrous cement, the layers of hydrate will become thicker, 

decreasing the velocity of reaction. To illustrate this, consider the following scheme 

 

Figure 3. Progressive hydration of the cement paste. 
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According to Figure 3, as the layers of hydrates become thicker, free water must go 

through a longer distance to reach anhydrous cement which in turn reduce the affinity. This 

phenomenon is confirmed by relations D3 - D2 = D2 - D1 and t3 – t2 > t2 – t1. These equations 

reveal that the time to form a layer of a given thickness increases as time goes by. To trans-

late it mathematically, ULM and COUSSY [9] proposed an Arrhenius-type law to describe 

it 

  
aE

RTsk
m

dm
A η ξ e

dt

 
 
   (3.16) 

with η(ξ) accounting for the increase of thickness of the layers of hydrate. In addi-

tion, the exponential term considers the thermally activated behaviour. 

Regarding (3.13), ULM and COUSSY [9] states that the first term of the right-hand 

side is negligible and, integrating this equation, one has 

  
aE 2

RTsk
m m0 sk sk sk2

sk

dm ψ
A A a(m ) η ξ e , with a(m ) dm

dt m

 
 
 


  

  (3.17) 

with Am0 as the initial affinity, i.e., the chemical imbalance between free water and 

the solid phase and a(m) as the balanced part of this potential difference. Now, defining the 

hydration degree as 

  
 

 

 

 
sk sk

sk sk

m t m t
ξ t

m t m
 

 
 (3.18) 

and taking its time derivative 

 
 

 sk sk
sk

sk

dm dmdξ 1 dξ
m

dt m dt dt dt
   


 (3.19) 

Using (3.16) and (3.19) 

        
a a aE E E

RT RT RT

m sk

dξ dξ dξ
A η ξ m e A ξ e A ξ e

dt dt dt

     
     

            (3.20) 

with       m skA ξ A η ξ m   denoting the normalized affinity which accounts for 

the chemical imbalance and the microdiffusion process given by (3.17). 
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Considering adiabatic conditions and disregarding spatial gradients, equations 

(3.15) and (3.19) leads to 

 th ad m sk th ad m sk th adC T L m C dT L dm C dT Ldξ 0       (3.21) 

where  m skL L m   is defined by ULM and COUSSY [9] as the latent heat per 

unit of hydration degree. Integrating (3.21) with respect to time 

          th ad th ad ad

t t

0 0

C dT dt Ldξ dt C T t T 0 L ξ t ξ 0 0        (3.22) 

with Tad denoting the temperature for adiabatic conditions. For 0t   the hydration 

degree is zero, that is, concrete is anhydrous ξ(0) = 0 

       th
ad ad

C
ξ t T t T 0

L
   (3.23) 

Considering that for t   concrete is completely hydrated, that is, ξ(t∞) = 1 

     ad ad

th

L
T t T 0

C
   (3.24) 

Using (3.23) and (3.22), the hydration degree can be evaluated as follows 

  
    
    

ad ad

ad ad

T t T 0
ξ t

T t T 0





 (3.25) 

Equations (3.20) and (3.25) are very important in the thermo-chemical analysis. 

Given an adiabatic temperature curve, the latter allows one to obtain the hydration degree 

for each time instant while the former is used to evaluate the normalized affinity as a func-

tion of the hydration degree which is an input data for the Finite Element modeling. 

With the adiabatic temperature curve, one can fit it to obtain Tad(t). Then, one may 

use (3.25) to evaluate ξ(t) from which it’s possible to calculate ξ(t) . Finally, one can use 

the derivative of the hydration degree in (3.20) to calculate  A ξ . These calculations are 

made before the FEM simulation. 
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3.2  Finite Element formulation 

The equations derived in the last section describe the temperature evolution due to 

hydration reaction. It accounts for the coupling between chemical and thermal processes. 

Now, they will be used to develop a Finite Element formulation. Considering Cth as the 

product of the density ρ by the specific heat capacity cp, the governing equations will be 

  p eρc T Lξ k T for Ω Temperature field    (3.26) 

 eq k T for Ω Constitutive equation (Fourier 's law)    (3.27) 

 dT T for Γ (Dirichlet boundary condition)  (3.28) 

 nk T.n q for Γ (Neumann boundary condition)  (3.29) 

  ref rk T.n h T T for Γ (Robin boundary condition)     (3.30) 

The Finite Element formulation is easily derived after employing Galerkin method 

and Euler-backward scheme for the time derivatives. In this case, the nonlinear system of 

equations is given by 

     t 1 t

ct hf chem convM t K H T F F t F F MT        (3.31) 

with 

 T

p e

e

M N ρc NdΩ



   (3.32) 

 T

e

e

K B k BdΩ



   (3.33) 

 T

r

rΓ

H B hBdΓ  (3.34) 
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    t 1

ctF M t K H T      (3.35) 

 T

hf n

nΓ

F B q dΓ   (3.36) 

 T t 1

chem e

e

F B Lξ dΩ



   (3.37) 

 T

conv ref r

rΓ

F B hT dΓ   (3.38) 

with (3.35) accounting for the contribution of the prescribed temperature in the 

right-hand side vector.  

Equation (3.31) can be shortly written as 

 t 1AT b   (3.39) 

with 

   A M t K H    (3.40) 

   t

ct hf chem convb F F t F F MT      (3.41) 

The above system of equations is nonlinear because the temperature depends on the 

hydration degree and vice versa. This means that the thermo-chemical problem is time-

dependent and nonlinear, that is, one must solve it iteratively for each timestep. In this con-

text, the present study employed the Newton-Raphson method to solve it for each timestep 

due to its good convergence properties, although any other method could be chosen. 

Before solving (3.31) one must evaluate the hydration degree for each element. To 

this end, one must first solve (3.20) iteratively at element level. Applying the Euler-back-

ward scheme for the time derivative (3.20) can be rewritten as 
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  
t 1

a kE T

Rt 1 t t 1

k kξ ξ t A ξ e

 
 
        (3.42) 

where t 1

kξ
  denotes the hydration degree for the current time instant t+1 and an iter-

ation k. Therefore, solving (3.42) means finding the zero of a function and in the present 

study the regula-falsi method was applied. The normalized affinity as a function of the 

hydration degree is an input data, as remarked in the last section. Besides, (3.42) requires a 

temperature t 1

kT   but an element usually has different temperatures for each node. For linear 

elements, the average temperature of the nodes is a good approximation. For high-order 

elements, one can calculate the average temperature of the Gauss points. 

 

3.3  Flowchart for the thermo-chemical model 

The logical reasoning for the solution of the thermo-chemical problem is depicted 

in Figure 4. The condition  t 1 t t 1 t t 1 t 1

k 1 k 1 k 1 k 1if ξ ξ ξ ξ , else ξ ξ   

        states that the hydra-

tion degree for the current time instant is always greater than or equal to the hydration de-

gree of the previous time instant. Following the same reasoning, the condition that 

 t 1 t 1 t 1 t 1 t 1 t 1

k 1 k k 1 k k 1 k 1if ξ ξ ξ ξ , else ξ ξ     

        means that the hydration degree for the cur-

rent iteration k + 1 is always greater than or equal to the hydration degree of the previous 

iteration k. These restrictions imply that the thermo-chemical model is thermodynamically 

consistent, that is, it obeys the Second Law of Thermodynamics. 

The following flowchart presents the general idea of the thermo-chemical analysis 

so that it is valid for any method for solving nonlinear system of equations. The residual is 

a function only of the right-hand side vector so it is written as P(Tt+1) = ATt+1 - b(Tt+1). In 

addition, 
N

P denotes the normalized norm of the residual vector. In summary, the step-

by-step is: 

Step 1) Solve (3.42) iteratively for ξt+1 for at element level; 

Step 2) Assembly the system of equations (3.31); 

Step 3) Solve (3.31) iteratively for Tt+1 at global level; 

Step 4) Go to the next timestep. 
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Figure 4. Flowchart for the thermo-chemical model. 

 

Given ξt and k = 0, loop over elements to: solve (3.42) 

for t 1

k 1ξ 


  t 1 t t 1 t t 1 t 1

k 1 k 1 k 1 k 1if ξ ξ ξ ξ , else ξ ξ   

       , cal-

culate (3.32) - (3.38) and assembly (3.31). 

Solve (3.31) for t 1T   

If 

 t 1

N
P T tol   

If 

 t 1

N
P T tol   

Loop over elements to: solve (3.42) for t 1

k 1ξ 


 

 t 1 t 1 t 1 t 1 t 1 t 1

k 1 k k 1 k k 1 k 1if ξ ξ ξ ξ , else ξ ξ     

       , 

update (3.37) and assembly (3.31). 

 

Solve (3.31) for t 1T   

If 

 t 1

N
P T tol   

If 

 t 1

N
P T tol   

t = t + 1 

t = t + 1 
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3.4  Numerical applications 

3.4.1  Adiabatic experiment 

Now, two numerical applications of the thermo-chemical model will be presented 

and compared with experimental data. The analysis is the adiabatic experiment of two con-

cretes whose properties are showed in Table 1. Figure 5 and Figure 6 presented both exper-

imental and numerical results. The agreement between them is qualitatively acceptable. 

Properties Concrete type 1 Concrete type 2 

Ea/R (K) 4400.00 4300.00 

Adiabatic temperature rise (ºC) 25.60 18.30 

Initial temperature (ºC) 20.09 7.21 

Table 1. Properties of concretes for adiabatic experiment. 

 

Figure 5. Adiabatic curve for concrete type 1. 
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Figure 6. Adiabatic curve for concrete type 2. 

3.4.2  Layered simulations 

The next example simulates a situation where concrete is placed layer-by-layer. In 

the pre-processing step, the mesh is generated with a node numbering that, in general, the 

user cannot control. Thus, to simulate situations like this it is interesting to reorder nodes 

so that its labels increase with height. This procedure will also be adopted in chapter 5 for 

a theoretical example of a concrete wall built by layers. The time complexity of this meth-

odology hinges on doing it properly. 

Consider the mesh shown in Figure 7 along with its connectivity C and coordinates 

X arrays. Consider also that this structure will be built layer-by-layer as depicted in Figure 

7. 
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Figure 7. Initial mesh along with its initial connectivity and coordinates arrays. 

The reordering procedure is the following 

Step 1) Reorder the connectivity array in a way that the first n rows correspond to 

the n elements of the 1st layer, rows n + 1 until n + k correspond to the k elements of the 2nd 

layer and so on. The coordinates array remains the same for a while. Figure 8 illustrates it. 

 

Figure 8. First reordering of the connectivity array. 

Step 2) Then, reorder both connectivity and coordinates arrays as follows 

 

Set k = 1 

Do i = 1, 2…nº of elements 

    Do j = 1, 2…nº of nodes per element 

Nodes 

labels
x y

1 0.00 3.00

2 1.00 1.00

3 7 6 3 1.00 2.00

5 6 3 4 0.00 0.00

7 4 2 5 1.00 3.00

1 5 6 6 0.00 2.00

2 7 3 7 0.00 1.00

8 4 2 8 1.00 0.00

Coordinates

Nodes labels

Connectivity

Nodes 

labels
x y

1 0.00 3.00

2 1.00 1.00

7 4 2 3 1.00 2.00

8 4 2 4 0.00 0.00

2 7 3 5 1.00 3.00

3 7 6 6 0.00 2.00

1 5 6 7 0.00 1.00

5 6 3 8 1.00 0.00

Coordinates

Connectivity

Nodes labels
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        If (k ≤ Ci,j) then 

             In the connectivity array, interchange where C = k and C = Ci,j. 

             In the coordinates array, interchange rows Ci,j and k. 

  k ← k + 1 

        Else 

            Continue 

        End if 

         If (k = total nº of nodes in the mesh) then 

             Stop 

        End if 

    End do 

End do 

The above reasoning is presented in Figure 9 below 

 

 

x y x y

0.00 3.00 0.00 1.00

i = 1 1.00 1.00 1.00 1.00

j = 1 7 4 2 1.00 2.00 1 4 2 1.00 2.00

k = 1 8 4 2 0.00 0.00 8 4 2 0.00 0.00

Ci,j = 7 2 7 3 1.00 3.00 2 1 3 1.00 3.00

3 7 6 0.00 2.00 3 1 6 0.00 2.00

1 5 6 0.00 1.00 7 5 6 0.00 3.00

5 6 3 1.00 0.00 5 6 3 1.00 0.00

New connectivity and coodinates arraysOld connectivity and coodinates arrays

Since k ≤ Ci,j 

obtain new 

connectivities 

and 

coordinates 

arrays.

k = k + 1

Coord.

Connectivity

Nodes labels

Coord.

Connectivity

Nodes labels

x y x y

0.00 1.00 0.00 1.00

i = 1 1.00 1.00 0.00 0.00

j = 2 1 4 2 1.00 2.00 1 2 4 1.00 2.00

k = 2 8 4 2 0.00 0.00 8 2 4 1.00 1.00

Ci,j = 4 2 1 3 1.00 3.00 4 1 3 1.00 3.00

3 1 6 0.00 2.00 3 1 6 0.00 2.00

7 5 6 0.00 3.00 7 5 6 0.00 3.00

5 6 3 1.00 0.00 5 6 3 1.00 0.00

Connectivity

Nodes labels Nodes labels

Old connectivity and coodinates arrays

Since k ≤ Ci,j 

obtain new 

connectivities 

and 

coordinates 

arrays.

New connectivity and coodinates arrays

k = k + 1

Coord. Coord.

Connectivity
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x y x y

0.00 1.00 0.00 1.00

i = 1 0.00 0.00 0.00 0.00

j = 3 1 2 4 1.00 2.00 1 2 3 1.00 1.00

k = 3 8 2 4 1.00 1.00 8 2 3 1.00 2.00

Ci,j = 4 4 1 3 1.00 3.00 3 1 4 1.00 3.00

3 1 6 0.00 2.00 4 1 6 0.00 2.00

7 5 6 0.00 3.00 7 5 6 0.00 3.00

5 6 3 1.00 0.00 5 6 4 1.00 0.00

k = k + 1

Coord. Coord.

Connectivity Connectivity

Nodes labels Nodes labels

Old connectivity and coodinates arrays

Since k ≤ Ci,j 

obtain new 

connectivities 

and 

coordinates 

arrays.

New connectivity and coodinates arrays

x y x y

0.00 1.00 0.00 1.00

i = 2 0.00 0.00 0.00 0.00

j = 1 1 2 3 1.00 1.00 1 2 3 1.00 1.00

k = 4 8 2 3 1.00 2.00 4 2 3 1.00 0.00

Ci,j = 8 3 1 4 1.00 3.00 3 1 8 1.00 3.00

4 1 6 0.00 2.00 8 1 6 0.00 2.00

7 5 6 0.00 3.00 7 5 6 0.00 3.00

5 6 4 1.00 0.00 5 6 8 1.00 2.00

New connectivity and coodinates arrays

k = k + 1

Coord. Coord.

Connectivity Connectivity

Nodes labels Nodes labels

Since k ≤ Ci,j 

obtain new 

connectivities 

and 
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Figure 9. Reordering procedure for the connectivity array. 

x y x y

0.00 1.00 0.00 1.00

i = 4 0.00 0.00 0.00 0.00

j = 2 1 2 3 1.00 1.00 1 2 3 1.00 1.00

k = 6 4 2 3 1.00 0.00 4 2 3 1.00 0.00

Ci,j = 1 3 1 5 1.00 2.00 3 1 5 1.00 2.00

5 1 6 0.00 2.00 5 1 6 0.00 2.00

7 8 6 0.00 3.00 7 8 6 0.00 3.00

8 6 5 1.00 3.00 8 6 5 1.00 3.00

Connectivity

Nodes labels Nodes labels

Old connectivity and coodinates arrays

Since k > Ci,j 

no change is 

needed.

New connectivity and coodinates arrays

k = k

Coord. Coord.

Connectivity

x y x y

0.00 1.00 0.00 1.00

i = 4 0.00 0.00 0.00 0.00

j = 3 1 2 3 1.00 1.00 1 2 3 1.00 1.00

k = 6 4 2 3 1.00 0.00 4 2 3 1.00 0.00

Ci,j = 6 3 1 5 1.00 2.00 3 1 5 1.00 2.00

5 1 6 0.00 2.00 5 1 6 0.00 2.00

7 8 6 0.00 3.00 7 8 6 0.00 3.00

8 6 5 1.00 3.00 8 6 5 1.00 3.00

k = k + 1

Coord. Coord.

Connectivity Connectivity

Nodes labels Nodes labels

Old connectivity and coodinates arrays

Since k ≤ Ci,j 

obtain new 

connectivities 

and 

coordinates 

arrays.

New connectivity and coodinates arrays

x y x y

0.00 1.00 0.00 1.00

i = 5 0.00 0.00 0.00 0.00

j = 1 1 2 3 1.00 1.00 1 2 3 1.00 1.00

k = 7 4 2 3 1.00 0.00 4 2 3 1.00 0.00

Ci,j = 7 3 1 5 1.00 2.00 3 1 5 1.00 2.00

5 1 6 0.00 2.00 5 1 6 0.00 2.00

7 8 6 0.00 3.00 7 8 6 0.00 3.00

8 6 5 1.00 3.00 8 6 5 1.00 3.00

Coord.

Connectivity

k = k + 1

New connectivity and coodinates arrays

Nodes labels

Since k ≤ Ci,j 

obtain new 

connectivities 

and 

coordinates 

arrays.

Coord.

Connectivity

Nodes labels

Old connectivity and coodinates arrays

x y x y

0.00 1.00 0.00 1.00

i = 5 0.00 0.00 0.00 0.00

j = 2 1 2 3 1.00 1.00 1 2 3 1.00 1.00

k = 8 4 2 3 1.00 0.00 4 2 3 1.00 0.00

Ci,j = 8 3 1 5 1.00 2.00 3 1 5 1.00 2.00

5 1 6 0.00 2.00 5 1 6 0.00 2.00

7 8 6 0.00 3.00 7 8 6 0.00 3.00

8 6 5 1.00 3.00 8 6 5 1.00 3.00

Connectivity

Nodes labels Nodes labels

Old connectivity and coodinates arrays

Since k ≤ Ci,j 

obtain new 

connectivities 

and 

coordinates 

arrays.

New connectivity and coodinates arrays

k = nº of 

nodes → 

stop 

computati

ons

Coord. Coord.

Connectivity



 

29 

 

Finally, the obtained reordered mesh is depicted in Figure 10. 

  

Figure 10. Mesh with new nodes' labels and final connectivity and coordinates arrays. 

3.4.2.1  Concrete block 

This exampled is explored by MEHTA and MONTEIRO [4] and consists in the 

layered building of a concrete block over a rock foundation which is depicted in Figure 11. 

The objective of the present analysis is to study the influence of the following parameters 

on the thermo-chemical behaviour of concrete. 

 Pozzolan addition; 

 Type of aggregate; 

 Placing temperature; 

 Number of layers. 
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Figure 11. Concrete block built over a rock foundation. 

The properties necessary to determine the adiabatic curve are in Table 2. Figure 12, 

Figure 13 and Figure 14 compare the adiabatic curve for different quantities of Pozzolan. 

These curves are independent of the type of aggregate used. 

Properties 0% Pozzolan 30% Pozzolan 50% Pozzolan 

Ea/R (K) 3900.00 3900.00 3900.00 

Adiabatic temperature rise (°C) 49.00 44.00 41.00 

Initial temperature (°C) 0.00 0.00 0.00 

Table 2. Properties of concrete for different portions of Pozzolan. 
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Figure 12. Adiabatic curve for 0% of Pozzolan. 

 

Figure 13. Adiabatic curve for 30% of Pozzolan. 

 

Figure 14. Adiabatic curve for 50% of Pozzolan. 
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Figure 15 present the nodes that were used to generate the mesh, except point A 

which is only for temperature evaluation. The coordinates of these nodes are exhibited in 

Table 3. Similarly, the mesh is in Figure 16 and it has 513 nodes and 955 linear triangular 

elements. 

 

Figure 15. Nodes used to generate the mesh. 

Label 1 2 3 4 5 6 7 8 A 

x 0.00 10.8 10.8 8.40 8.40 2.40 2.40 0.00 5.40 

y 0.00 0.00 5.40 5.40 8.40 8.40 5.40 5.40 6.90 

Table 3. Nodes' coordinates of the concrete block. 

 

Figure 16. Discretization of the concrete block and rock foundation. 
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In Table 4 are the properties for the rock foundation and for the aggregates (basalt, 

granite and gravel). The value of the convective heat transfer coefficient was not provided 

by MEHTA and MONTEIRO [4]. Thus, it was adopted 20 J.s-1.m-2.ºC-1. 

Properties Basalt Granite Gravel Rock 

Thermal conductivity 

(J.s-1.m-1.ºC-1) 
2.02 2.75 4.29 3.25 

Specific heat capacity (J.kg-1.ºC -1) 1004.16 962.32 920.48 836.80 

Density (kg.m-3) 2500.00 2450.00 2400.00 2800.00 

Ea/R (K) 3900.00 3900.00 3900.00 -- 

Convective heat transfer coefficient  

(J.s-1.m-2.ºC-1) 
20.00 20.00 20.00 0.00 

Table 4. Properties for each aggregate and rock foundation. 

In the first and second analyses, it’s investigated the influence of the number of 

layers. For the first analysis, the parameters are in Table 5. The results for 7 days, which 

presented the maximum temperature distribution, are in Figure 17 and Figure 18. 

Aggregate Granite 

Number of layers 2 

Placing temperature (ºC) 17.00 

Pozzolan addition (%) 0.00 

Surrounding temperature (ºC) 17.00 

Time interval between each layer (days) 3.00 

Layer height (m) 1.50 

Table 5. Parameters used in the first analysis. 
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Figure 17. Contour plot for temperature: first analysis (MEHTA and MONTEIRO [4]). 

 

Figure 18. Contour plot for temperature: first analysis (present study). 

The parameters for the second analysis are in Table 6. Results for 7 days, which 

presented the maximum temperature distribution, are in Figure 19 and Figure 20. 

Aggregate Granite 

Number of layers 1 

Placing temperature (ºC) 17.00 

Pozzolan addition (%) 0.00 

Surrounding temperature (ºC) 17.00 

Layer height (m) 1.50 

Table 6. Parameters: second analysis. 
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Figure 19. Contour plot for temperature: second analysis (MEHTA and MONTEIRO [4]). 

 

Figure 20. Contour plot for temperature obtained by the present study. 

In the third analysis, it was analyzed the effect of the aggregate on the maximum 

temperature at point A. The parameters are in Table 7 while the results are in Figure 21 and 

Figure 22. 

Number of layers 2 

Placing temperature (ºC) 17.00 

Pozzolan addition (%) 0.00 

Surrounding temperature (ºC) 17.00 

Time interval between each layer (days) 3.00 

Layer height (m) 1.50 

Table 7. Parameters for the third analysis. 
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Figure 21. Temperature at point A: third analysis (MEHTA and MONTEIRO [4]). 

 

Figure 22. Temperature at point A: third analysis (present study). 

In the fourth analysis, it’s analyzed the influence of Pozzolan addition on the tem-

perature evolution at point A. In Table 8 are the parameters while results are presented in 

Figure 23 and Figure 24. 

Aggregate Granite 

Number of layers 2 

Placing temperature (ºC) 17.00 

Surrounding temperature (ºC) 17.00 

Time interval between each layer (days) 3.00 

Layer height (m) 1.50 

Table 8. Parameters for the fourth analysis. 
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Figure 23. Temperature at point A: fourth analysis (MEHTA and MONTEIRO [4]). 

 

Figure 24. Temperature at point A: fourth analysis (present study). 

In fifth and sixth analyses, it was investigated the influence of the placing tempera-

ture. For the fifth analysis, the parameters are in Table 9 while results for 7 days, which 

presented the maximum temperature distribution, are in Figure 25 and Figure 26. 

Aggregate Granite 

Number of layers 2 

Placing temperature (ºC) 10.00 

Surrounding temperature (ºC) 17.00 
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Time interval between each layer (days) 3.00 

Layer height (m) 1.50 

Table 9. Parameters for the fifth analysis. 

 

Figure 25. Contour plot for temperature: fifth analysis (MEHTA and MONTEIRO [4]). 

 

Figure 26. Contour plot for temperature: fifth analysis (present study). 

For the sixth analysis, the parameters are in Table 10 while the results for 7 days are 

in Figure 27 and Figure 28. 
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Aggregate Granite 

Number of layers 2 

Placing temperature (ºC) 25.00 

Surrounding temperature (ºC) 17.00 

Time interval between each layer (days) 3.00 

Layer height (m) 1.50 

Table 10. Parameters for the sixth analysis. 

 

Figure 27. Contour plot for temperature: sixth analysis (MEHTA and MONTEIRO [4]). 

 

Figure 28. Contour plot for temperature: sixth analysis (present study). 
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4  Thermo-mechanical model regarding ageing and damage 

In the previous chapter, the thermo-chemical model was introduced by using the 

thermodynamics of chemically reactive porous media. Those equations describe the tem-

perature increase of concrete due to hydration of cement paste. These temperature varia-

tions will lead to thermal strains. To this end, this chapter will present a thermo-mechanical 

model that considers the influence of temperature variations, ageing and damage on the 

mechanical behaviour of an isotropic and elastic material. 

 

4.1  Constitutive equation for elastic materials with ageing 

Before discussing the damage model, it is necessary to make some remarks about 

elastic materials that present ageing. For these materials, it will not be used the usual con-

stitutive equation t 1 t 1 t 1

elasticσ ε   . Instead, it will be followed the reasoning of MARQUES 

and CREUS [21], which adopted a different constitutive relationship to model the ageing 

behaviour. Therefore, the incremental constitutive equation t 1 t 1 t 1

elasticσ ε    can be used 

and this relation preclude that, for a constant stress state, strains decrease with time. This 

study will not focus on the derivation of the constitutive equation but rather on its usage. A 

good discussion regarding constitutive equations is presented in OTTOSEN and RISTIN-

MAA [22], ODEN [23], BAŞAR and WEICHERT [24], TRUESDELL and DILL [25], 

TRUESDELL [26], LIU [27], HAUPT [28], CAPALDI [29], COMAN [30], REDDY [31], 

BYSKOV [32] and DIMITRIENKO [33]. 

To illustrate this issue, a Finite Element example will be presented. Consider the 

governing equations for the mechanical problem using the incremental constitutive equa-

tion 

 t 1 t 1

e.σ b 0 for Ω Equilibrium (momentum) equation     (4.1) 

  t 1 t 1 t 1 t 1 t 1 t t 1 t 1 t

elastic elastic elastic elasticσ ε σ ε σ σ ε ε                (4.2) 

 t 1 t 1

totalε u Strain displacement equation     (4.3) 
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 du u for Γ Dirichlet (essential) boundary condition  (4.4) 

 nσ.n t for Γ Neumann (natural) boundary condition  (4.5) 

with   denoting the tensor for infinitesimal strains. Employing the Galerkin 

method, the Finite Element formulation is given by 

 t 1 t 1 t 1 t t 1 t 1 t 1

cd int tf dl pdK U F F F F F           (4.6) 

 t 1 T t 1

e

eΩ

K B BdΩ    (4.7) 

 
t 1 t 1 t 1

cdF K U     (4.8) 

 t T t

int e

eΩ

F B σ dΩ   (4.9) 

 t 1 T t 1

tf n

nΓ

F B t dΓ    (4.10) 

 t 1 T t 1

dl e

eΩ

F B b dΩ    (4.11) 

 t 1 T t 1 t t 1 t

pd e

eΩ

F B BdΩ U K U     (4.12) 

with (4.8) accounting for the contribution of the prescribed displacements on the 

right-hand side vector. Now, it will be demonstrated the difference between the non-incre-

mental and incremental constitutive equations for modelling ageing. Consider a concrete 

specimen along with its boundary conditions and mesh discretization depicted in Figure 29. 

It has 0.3m length, 0.1m height and 0.1m width. It will be loaded in tension by a constant 

displacement of 1mm on the right-hand edge when t = 1 hour. The Young’s modulus is 

assumed to evolve with time through the following function 
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   0

f

t
E t E t 0

t
    (4.13) 

with tf as the final instant time analyzed (10 hours for this analysis), E0 the initial 

Young’s modulus which was chosen as 3 GPa and ν = 0.30 for the Poisson coefficient. The 

analysis was made using the Plane Stress theory and time interval Δt = 1 hour. The evolu-

tion of Young’s modulus is in Figure 30 and the results of the simulation are in Figure 31. 

When using the non-incremental constitutive equation, stresses increase with time for a 

constant strain state which is not correct. For the incremental constitutive equation, stress 

remain constant for a constant strain state which is physically coherent.  

 

Figure 29. Concrete specimen and its boundary conditions. 

 

Figure 30. Evolution of Young's modulus. 
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Figure 31. Evolution of stress measured on the support for both incremental and non-in-

cremental constitutive equation. 

 

4.2  Mathematical modelling regarding ageing and damage 

The word “damage” in the context of Continuum Damage Mechanics is generally 

used to describe the deterioration of a material due to loss of stiffness. The concept of dam-

age was first proposed by KACHANOV [34] when studying creep and the author used a 

scalar variable to evaluate the damage state of the material. The idea was further developed 

by RABOTNOV [35], HAYHURST [36], KRAJCINOVIC and FONSEKA [37], KRAJCI-

NOVIC and FONSEKA [38], LECKIE and HAYHURST [39], LEMAITRE and 

CHABOCHE [40], LEMAITRE [41], LEMAITRE and DESMORAT [42], MURAKAMI 

[43], among others. 

Now, a mathematical model that takes into account both ageing and damage will be 

derived. The consideration of ageing is linked to the incremental constitutive equation dis-

cussed in the previous section. Hence, damage must be incorporated to it and that’s the 

main concern of this section. To discuss damage, two fundamental concepts must be pre-

sented, namely: Effective Stress and Principle of Strain-Equivalence. 
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4.2.1  Effective Stress 

Consider a small region of a mesoscale taken from a body under external loads 

(Figure 32). The dimensions of this region are such that its defects and mechanical proper-

ties are statistically homogeneous. The smallest volume that satisfies these conditions is 

referred to as Representative Volume Element (RVE). 

 

Figure 32. Body under external loads and its Representative Volume Element. 

Consider a plane cutting the RVE, as depicted in Figure 32. For a given time instant, 

a force dF acts on it. Besides, its total area is written as 

 t 1 t 1

total damaged undamageddA dA dA    (4.14) 

Considering damage as a scalar variable, it can be given by 

 

t 1

damagedt 1 t 1 t 1

damaged total

total

dA
D dA D dA

dA



      (4.15) 

Thus, the material is undamaged for D = 0, that is, in the absence of defects and 

completely damaged for D = 1, i.e., when the damaged area corresponds to the total area 

and the material loses its load-carrying capacity. 
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The nominal stress is given by 

 

t 1
t 1

total

dF
σ

dA


   (4.16) 

while the effective stress is written as 

 
t 1

t 1

t 1

undamaged

dF
σ

dA





  (4.17) 

Using (4.14), (4.15), (4.16) and (4.17) the relation between nominal and effective 

stresses is given by 

 

 

 

t 1 t 1 t 1t 1
undamaged total damaged t 1total total

t 1

total total total

t 1
t 1

t 1

dA dA dA dA D dAσ
1 D

σ dA dA dA

σ
σ

1 D

  









 
    

 


 (4.18) 

4.2.2  Principle of Strain-Equivalence 

The Principle of Strain-Equivalence (cf. LEMAITRE [40] and MURAKAMI [43]), 

illustrated in Figure 33, affirms that the strain state for an undamaged material subjected to 

effective stress is equal to the strain state for a damaged material under nominal stress. 

 

Figure 33. Principle of Strain-Equivalence showing the equivalence of the strain state be-

tween a damaged and an undamaged body. 
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The undamaged material has Young’s modulus E so that its constitutive matrix is 

. The damaged material has modulus Ẽ which makes its constitutive matrix be . Using 

the incremental constitutive equation, the strain for a given time instant t+1 is 

  t 1 1 t 1 t t

elastic elasticε σ σ ε      (4.19) 

Mathematically, the hypothesis of strain-equivalence is written as 

 
   

   

1 t 1 t t 1 t 1 t t

elastic elastic

1 t 1 t 1 t 1 t

σ σ ε σ σ ε

σ σ σ σ

   

   

     

  
 (4.20) 

Using the concept of effective stress, equation (4.20) is rewritten as 

 
   

 
t 1 t

1 1 t 1 t

t 1 t

σ σ
σ σ

1 D 1 D


  



 
   
  
 

 (4.21) 

Rearranging (4.21) 

 
 
  

t 1 t t t 1

1

t 1 t

σ σ D σ D
σ

1 D 1 D

 





  
 

 
 (4.22) 

In addition, the constitutive equation for a damaged material is 

 
elasticσ ε    (4.23) 

Hence, combining (4.22) and (4.23), the constitutive equation that considers ageing 

and damage is written as 

  
 
 

t 1

t 1 t 1 t

elastic t

1 D
σ 1 D ε σ

1 D



 


   


 (4.24) 

noting that in the absence of damage, equation (4.24) becomes the incremental con-

stitutive relation (4.2). 
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4.2.3  Finite Element formulation 

Now, the mathematical model developed previously will be used to derive its nu-

merical formulation using the FEM. To this end, consider the governing equations 

 t 1 t 1

e.σ b 0 for Ω Equilibrium (momentum) equation     (4.25) 

  
 
 

t 1

t 1 t 1 t

elastic t

1 D
σ 1 D ε σ Constitutive equation

1 D



 


   


 (4.26) 

 t 1 t 1

totalε u Strain displacement equation     (4.27) 

 u u Dirichlet boundary condition  (4.28) 

 σ.n t Neumann boundary condition  (4.29) 

For the thermo-mechanical problem, the total (observable) strain is the sum of elas-

tic and thermal strains 

 t 1 t 1 t 1

total elastic thermalε ε ε     (4.30) 

Using the Galerkin method, the Finite Element formulation of the thermo-mechan-

ical model considering ageing and damage is given by 

 t 1 t 1 t 1 t t 1 t 1 t 1 t 1

cd int term tf dl pdK U F F F F F F             (4.31) 

  t 1 t 1 T t 1

e

eΩ

K 1 D B BdΩ      (4.32) 

  t 1 t 1 t 1 t 1

cdF 1 D K U       (4.33) 

 
 
 

t 1

t T t

int et

eΩ

1 D
F B σ dΩ

1 D


 

   (4.34) 
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    t 1 t 1 T t 1 t 1 t

term e

eΩ

F 1 D αB T T dΩ       (4.35) 

 t 1 T t 1

tf n

nΓ

F B t dΓ    (4.36) 

 t 1 T t 1

dl e

eΩ

F B b dΩ    (4.37) 

    t 1 t 1 T t 1 t t 1 t 1 t

pd e

eΩ

F 1 D B BdΩ U 1 D K U         (4.38) 

with (4.33) taking into account the contribution of prescribed displacements on the 

right-hand side vector. Equation (4.31) can be shortly written ass 

    t 1 t 1 t 1A U U b U    (4.39) 

where 

  t 1 t 1A U K   (4.40) 

  t 1 t 1 t t 1 t 1 t 1 t 1

cd int term tf dl pdb U F F F F F F            (4.41) 

The two major parts of a FEM simulation are the loop on the elements to assembly 

the system of equations and the solution of the system of equations, where the latter is 

usually the most time-consuming part. Usually, non-stationary iterative methods are used 

for solving the system of equations and their efficiency hinge on the condition number of 

the matrix. The problem is that, as damage develops, the stiffness matrix Kt+1 of the element 

approaches zero which in turn increase the ill-conditioning of the system of equations. 

Hence, iterative methods will take more iterations to converge as damage advances. From 

a numerical point of view, this aspect is one of the greatest drawbacks of damage models. 
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4.2.4  Flowchart of the thermo-mechanical model 

The flowchart for the thermo-mechanical model with ageing and damage is depicted 

in Figure 34. Its reasoning is similar to thermo-chemical, presented in section 3.3. Note that 

both matrix A and right-hand side vector b are nonlinear. Hence, both must be updated 

during the computations. The residual vector is P(Ut+1) = A(Ut+1) Ut+1 - b(Ut+1). ||P||N denotes 

the normalized norm of the residual vector. Similar to the hydration degree in the thermo-

chemical model, damage always increases in order to be thermodynamically consistent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Flowchart for the thermo-mechanical model. 

Given Dt and k = 0, loop over elements to: evaluate 

t 1

k 1D 


  t 1 t t 1 t 1 t 1 t 1

k 1 k 1 k k 1 k 1if D D D D , else D D    

       , 

calculate (4.32) - (4.38) and assembly (4.31). 

Solve (4.31) for Ut+1 

If 

 t 1

N
P U tol   

If 

 t 1

N
P U tol   

Solve (4.31) for t 1U   

If 

 t 1

N
P U tol   

If 

 t 1

N
P U tol   

Loop over elements to: evaluate t 1

k 1D 


 

 t 1 t 1 t 1 t 1 t 1 t 1

k 1 k k 1 k k 1 k 1if D D D D , else D D     

       , update 

(4.32), (4.33), (4.34), (4.35) and (4.38) and assembly (4.31). 

t = t + 1 

t = t + 1 



 

50 

 

4.3  Lack of objectivity due to strain localization 

As mentioned by JIRÁSEK [44], strain-softening models were not immediately ac-

cepted by the scientific community because they did not converge to results physically co-

herent. Upon mesh refinement, these models used to converge to crack propagation with 

less energy dissipation. This behaviour is related to the transformation of a continuum prob-

lem into a discrete one. Hence, this issue is not related to the damage model. In addition, it 

is not associated with the Finite Element Method but actually with the discretization. From 

a physical point of view, it can be regarded as a instability problem and BAŽANT and 

CEDOLIN [45] present a good discussion about it. 

To illustrate the problem of lack of objectivity due to strain localization caused by 

softening, consider the rod of length L in Figure 35 and its discretization by n elements with 

length l each. It will be assumed that the material has the stress-strain curve also depicted 

in Figure 35. It is linear-elastic until its tensile strength ft = Eεd0. Beyond this point, that is, 

between εd0 and εult, the material starts to damage (microcrack), following a linear softening 

until it reaches its ultimate strain εult where the material is completely damaged (an observ-

able macrocrack appears), that is, the material loses its load-carrying capacity. 

 

Figure 35. FEM discretization of a rod (left) and stress-strain curve for its material (right). 

 Consider that the rod is loaded in tension by a prescribed displacement in the upper 

edge. From the initial state until it attains the tensile strength, all the elements have the same 

stress-strain behaviour. Strains, stresses and displacements evolutions throughout the rod 

are in Figure 36, Figure 37 and Figure 38, respectively. Until now, no problem at all.  
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Figure 36. Evolution of strains until the tensile strength. 

 

Figure 37. Evolution of stresses until tensile strength. 

 

Figure 38. Evolution of displacements until tensile strength. 
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Real materials contain already in the initial state a multitude of defects (cf. GROSS 

and SEELIG [46]). In order to consider these defects, assume that the tensile strength of a 

given element is slightly lower than the rest of the mesh. When the weaker element reaches 

its tensile strength, it will start to soften, that is, decrease its stress and increase its strain. 

On the other hand, the other elements will unload elastically which means that their stresses 

will also decrease but their strains will decrease since their tensile strength were not ex-

ceeded. This means that, beyond εd0, strains will localize in the weaker element and any 

additional deformation of the rod is related to the deformation of the weaker element. This 

phenomenon is called strain localization and is demonstrated graphically in Figure 39. 

 

 

Figure 39. Evolution of displacements, strains and stresses throughout the rod during 

softening. 
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 Remember that the stress-strain response is given by the stress σ measured in the 

support versus the strain ΔL of the rod. Once localization occurs, strains will be limited to 

the weaker element which from the onset of damage (microcrack) until the completely fail-

ure of the element (macrocrack) will stretch by εd0 - εult = Δl/l. Therefore, the weaker ele-

ment will dictate the post-peak behaviour of the structure because a decrease in l will reduce 

the weaker element strain Δl which in turn will diminish ΔL.  

To illustrate it, consider again that the rod from Figure 35 but now its discretization 

by an increasing number n of elements with the hatched element weaker than the others 

(Figure 40). As n → ∞, then Δl → 0. Therefore, ΔL → 0 which in turn leads to ΔL/L → 0. 

That’s why, as n approaches infinity, the post-peak strain of the bar is almost zero, i.e., it 

converges to a perfectly brittle rupture which is completely incorrect. This behaviour is 

usually referred to as Lack of objectivity or Non-objectivity and is in Figure 41. 

 

Figure 40. Increasing discretization of the rod with one of the elements weaker than the 

others. 

 

Figure 41. Non-objective stress-strain curve for increasing number of elements. 
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The discussion presented in this section leads one to conclude that the Lack of ob-

jectivity is not related to the Finite Element Method. In addition, it is not associated with 

damage since others nonlinear models such as plasticity also manifest it. In fact, this patho-

logical behaviour has to do with the discretization of softening problems. Thus, nonlinear 

models with hardening will not undergo Lack of objectivity because they will not develop 

strain localization. Actually, even the linear-elastic branch of the stress-strain curve can be 

regarded as a hardening, that is, increasing strains accompanied by growing stresses. 

Now, the Finite Element formulation developed in section 4.2 will be used to 

demonstrate the Lack of objectivity by simulating a tensile test through a Plane Stress anal-

ysis. To this end, the concrete specimen of Figure 29 will be considered again with three 

different meshes, as presented in Figure 42. Neither ageing nor temperature variations will 

be considered in this example. 

Height Width Thickness 
Young 

modulus 
Tensile strength  

0.3 m 0.1 m 0.1 m 30 GPa 
1.5 MPa (non-hatched 

elements) 

1.47 MPa (hatched el-

ements) 

Table 11. Properties of the concrete specimen. 

 

Figure 42. Discretization of the concrete specimen: Mesh 1 (left), Mesh 2 (center) and 

Mesh 3 (right). 
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For the sake of simplicity, the following linear damage law will be employed with 

εd0 = 5x10-5 as the strain related to the tensile strength and εfi = 5x10-4 the strain for which 

the material is completely damaged. 

 
 
 

eq d0

eq d0d0
eq d0 eq fi

eq fi d0

eq fi

0 ε ε

ε εε
D(ε ) 1 1 ε ε ε

ε ε ε

1 ε ε

 


  
      

   


 

 (4.42) 

The damage law (4.42) is a function of a variable called equivalent strain, εeq, which 

is commonly used to describe damage. Several definitions for it have been presented in the 

literature but throughout this study the Mazars’ definition (4.43) will be employed. Hence-

forth, the summation convention will be adopted. 

 p p

eq ii iiε ε ε  (4.43) 

with  denoting the Macaulay brackets and the upper-left superscript p denoting 

the principal tensor. Equation (4.43) is useful for materials like concrete since it considers 

that damage occur majorly due to tensile strains, that is, when the material is stretched. 

Although a bidimensional mesh was chosen, the analysis boils down to a case of a 

one-dimensional rod. In this case, εeq = ε and the stress-strain equation can be written as 

 
 

d0

eq d0

Eε ε ε
σ(ε)

1 D(ε ) Eε ε ε

 
 

  

 (4.44) 

The damage evolution using (4.42) as function of the equivalent strain is presented 

in Figure 43. The results of the FEM simulation for the stress (measured on the support) 

versus the strain of the bar is depicted in Figure 44. These results suffer from the lack of 

objectivity since it converges to a brittle rupture as the mesh is refined.  
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Figure 43. Damage evolution using equation (4.44). 

 

Figure 44. Non-objective stress-strain curve for the three meshes considered. 

Figure 45 - Figure 53 present the development of displacements, strains and stresses 

throughout the bar for Mesh 1. These figures demonstrate the phenomenon of strain local-

ization. 
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Figure 45. Displacement-length curve for Mesh 1 immediately before the weaker 

(hatched) elements reach their tensile strength. 

 

Figure 46. Displacement-length curve for Mesh 1 during the damage process. 

 

Figure 47. Displacement-length curve for Mesh 1 when damage is complete. 
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Figure 48. Strain-length curve for Mesh 1 immediately before the weaker (hatched) ele-

ments reach their tensile strength. 

 

Figure 49. Strain-length curve for Mesh 1 during the damage process. 

 

Figure 50. Strain-length curve for Mesh 1 when damage is complete. 
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Figure 51. Stress-length curve for Mesh 1 immediately before the weaker (hatched) ele-

ments reach their tensile strength. 

 

Figure 52. Stress-length curve for Mesh 1 during the damage process. 

 

Figure 53. Stress-length curve for Mesh 1 when damage is complete. 
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Considering Mesh 1 yet, Figure 54 presents the stress-strain curve for the hatched 

elements, i.e., those that undergo damage. Figure 55 shows the damage evolution for these 

elements and the graph is similar to Figure 43. In addition, Figure 56 present the stress-

strain curve for the elements that don’t undergo damage. Some interesting remarks must be 

made regarding these figures. First, Figure 54 shows that, at element level, the stress-strain 

response of the structure is still objective. Remember that the lack of objectivity discussed 

previously occur only when evaluating the global response of the structure but at the ele-

ment level it remains objective. Second, Figure 56 demonstrates that elements that do not 

undergo damage return to their initial configuration. This last remark is also depicted in 

Figure 57. 

 

Figure 54. Stress-strain curve for hatched elements (Mesh 1). 

 

Figure 55. Damage evolution for hatched elements (Mesh 1). 
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Figure 56. Stress-strain curve for an element without damage. 

 

Figure 57. Deformed shape of the rod for three different strain states: on the onset of dam-

age (left), during damage (center) and when damage is complete (right). 
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4.3.1  Nonlocal regularization technique 

In the last decades, some remedies have been proposed to circumvent the lack of 

objectivity, namely: integral-type Nonlocal, gradient-enhanced, Cosserat-type continua, 

Fracture Energy, etc. Nonlocal models were originally proposed by PIJAUDIER-CABOT 

and BAŽANT [47] and are quite appealing since they are easy to implement on an existing 

Finite Element code without much effort. Hence, that’s why the present study chose this 

technique. A didactic presentation of Nonlocal technique is presented by JIRÁSEK [48]. 

The main idea of Nonlocal models is to replace the local equivalent strain by its 

nonlocal counterpart. This aspect is what makes it attractive since the logical scheme to 

calculate damage remains the almost the same. Therefore, the only difference is that equiv-

alent strain will be evaluated considering the influence of near elements. With this in mind, 

the nonlocal equivalent strain is determined by equations (4.45), (4.46) and (4.47) if one 

adopts the Gauss distribution function (Figure 58) or (4.45), (4.46) and (4.48) if one em-

ploys the Truncated quartic polynomial (Figure 59), respectively.  

 eq eqε NLε  (4.45) 

 
j j 0 i j

ij k NGP

k k 0 i k

k 1

w J α (x ,x )
NL

w J α (x ,x )







  
 (4.46) 

 

 
2

x xi j

22d

0 i jα (x ,x ) e

 
 

 
  
   (4.47) 

 
 

2
2

i j

0 i j 2

x x
α (x ,x ) 1

d

 
 

  
 
 

 (4.48) 

with εeq and 
eqε denoting, respectively, the vectors of local equivalent strain and its 

nonlocal counterpart for each Gauss Point in the mesh. NPG denotes the number of Gauss 

points that interact with Gauss Point i, wj the integration weight for point j, |Jj| the determi-

nant of the Jacobian matrix at this point, d is an input parameter and stands for the maximum 
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distance for which two Gauss points interact with each other and ||xi - xj|| the distance be-

tween Gauss points i and j measured in some norm (usually Euclidian). 

 

Figure 58. Gauss distribution function. 

 

Figure 59. Truncated quartic polynomial. 

Higher interaction radius will lead to more accurate results. On the other hand, com-

putations will increase its complexity in terms of memory. However, these calculations are 
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done a single time only and can be made as soon as connectivity and coordinates are ob-

tained. These computations will generate the array NL in equation (4.45) that can be stored 

and reused during the evaluation of damage. 

Something important to keep in mind is that the calculation of strains, stresses, dis-

placements, etc. will remain the same. The only difference is that after evaluating the equiv-

alent strain (given by equation 4.43, for example) its nonlocal counterpart will be deter-

mined using the previous equations. 

Now, the same example presented in Figure 42 will be explored again but this time 

using the Nonlocal technique with Gauss distribution function and interaction radius of 

0.50m. The results for meshes 1, 2 and 3 are exhibited in Figure 60, Figure 61 and Figure 

62, respectively. The agreement between exact (analytical) and numerical solutions is qual-

itatively acceptable. Therefore, results became mesh-independent only by changing the way 

equivalent strains are evaluated. 

 

Figure 60. Regularized stress-strain curve for Mesh 1. 
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Figure 61. Regularized stress-strain curve for Mesh 2. 

 

Figure 62. Regularized stress-strain curve for Mesh 3. 
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4.4  Mazars damage model 

In the last section, a simple damage law was presented. Its usage was only for di-

dactic purposes. When material is subjected to any external influence it is interesting to 

consider a model that encompasses it. The Mazars damage model is a good starting point 

for concrete and it was originally proposed by MAZARS [49]. The main features of this 

model are: 

 It is elastic. Hence, permanent deformations are completely disregarded; 

 Damage is isotropic which is good for quasi-static or cyclic loadings but might be 

an oversimplification for other types of loadings; 

 Damage only take place when material is stretched as remarked by (4.43). 

Recall the relation between the effective (damaged) stress tensor σ  and the nominal 

(undamaged) stress tensor σ  

   eqσ 1 D ε σ   (4.49) 

The Mazars model determines damage through the following procedure (remem-

bering that the superscript p on the left-hand side denotes the tensor of principal stresses or 

strains) 

 
p p pσ σ σ    (4.50) 

  p p p

ij ij ij

1
σ σ σ

2
     (4.51) 

  p p p

ij ij ij

1
σ σ σ

2
     (4.52) 

 
p p p

T Cε ε ε   (4.53) 

 
p p p

T ij ij kk

1 ν ν
ε σ σ

E E
 


   (4.54) 

 
p p p

C ij ij kk

1 ν ν
ε σ σ

E E
 


   (4.55) 
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p p p

T T Tε ε ε    (4.56) 

  p p p

T ij T ij T ij

1
ε ε ε

2
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  p p p
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ε ε ε

2
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p p p

C C Cε ε ε    (4.59) 

  p p p

C ij C ij C ij

1
ε ε ε

2
     (4.60) 

  p p p

C ij C ij C ij

1
ε ε ε

2
     (4.61) 

 
p p
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 

 T eq d 0

d0 T T
T B ε ε

eq

ε 1 A A
D 1

ε e
 
 


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 

 C eq d 0

d0 C C
C B ε ε

eq

ε 1 A A
D 1

ε e
 
 


    (4.66) 

Finally, damage is calculated as 

 eq T T C CD(ε ) α D α D   (4.67) 

The parameters AT, BT, AC and BC are determined from experiments. SANTOS [50] 

states that the values suggested by MAZARS [49] are 

 
C CT T

4 5 3 30.7 A 1.0 10 B 10 1.0 A 1.5 10 B 2 10          (4.68) 
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Each one of them has a specific influence on the nonlinear branch of the stress-

strain curve. For an uniaxial tensile test, εeq = ε and the stress-strain equation will be 

 
 

 
 

T T

T

d0

d0
d0B ε εd0

Eε ε ε

σ(ε) ε 1 A A
1 D(ε) Eε Eε ε ε

ε e
  

 


  
       

 

 (4.69) 

 Considering ft = 3 MPa and E = 30 GPa, then εd0 = 10-4. The effects of AT and BT 

on the stress-strain equation (4.69) are, respectively, in Figure 63 and Figure 64. 

 

Figure 63. Influence of the parameter AT of the Mazars model on the stress-strain curve. 

 

Figure 64. Influence of the parameter BT of the Mazars model on the stress-strain curve. 
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For an uniaxial compression test, εeq = νε and the stress-strain equation will be 

 
 

 
 

C C

C

d0

d0
eq d0B νε εd0

Eε ε ε

σ(ε) ε 1 A A
1 D(ε ) Eε Eε ε ε

νε e
  

 


  
       

 

 (4.70) 

Considering ft = 3 MPa and E = 30 GPa, then εd0 = 10-4. The effects of AC and BC 

on the stress-strain equation (4.70) are, respectively, in Figure 65 and Figure 66. 

 

Figure 65. Influence of the parameter AC of the Mazars model on the stress-strain curve. 

 

Figure 66. Influence of the parameter BC of the Mazars model on the stress-strain curve. 
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4.4.1  Numerical application: Mazars beam 

Now, the Mazars damage model will be used for a numerical application. It’s con-

sists in a three-point bending test (Figure 67). It has a reinforcement composed by two 

rebars. Its properties are presented in Table 12. The beam is loaded by an applied force in 

the middle of the upper surface. The Nonlocal technique presented in section 4.3.1 was 

adopted in order to avoid lack of objectivity due to strain localization. 

 

Figure 67. Sketch of the Mazars beam. 

Length Span Height Width Rebar area Cover Econcrete 

1.6 m 1.4 m 0.22 m 0.15 m 226.19 mm² 1.5 cm 30 GPa 

Esteel AT BT AC BC ft ν 

196 GPa 0.8 20000 1.4 1850 3.45 MPa 0.20 

Table 12. Properties of the Mazars beam. 
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The deformed beam as well as its crack pattern are exposed in Figure 68, Figure 69, 

Figure 70 and Figure 71. As expected, cracks start in the middle of the bottom edge because 

this part reaches the tensile strength first since it presents the maximum bending moment. 

Besides, one can observe that, as cracks distance from the middle, they start skewing. This 

behaviour is also expected and it is attributed to the influence of shear stresses. 

In the middle of the upper edge and in the left and the right of the bottom edge are 

little intermediate supports. They were used only for numerical purposes so that they do not 

damage due to the presence of stress concentration. However, its Young’s modulus is 10% 

of concrete’s modulus, that is, 3GPa so that it does not affect significantly the results. 

 

Figure 68. Deformed shape of Mazars beam for F = 15kN. 

 

Figure 69. Deformed shape of Mazars beam for F = 20kN. 
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Figure 70. Deformed shape of Mazars beam for F = 25kN. 

 

Figure 71. Deformed shape of Mazars beam for F = 30kN. 

This problem was analyzed originally by MAZARS [49] and later by SANTOS 

[50]. The results showed by these authors are compared with those obtained in the present 

study (Figure 72). The comparison between them demonstrate a good agreement. 

 

Figure 72. Force-displacement curve for the point where force is applied. 
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5  Thermo-chemo-mechanical model with ageing and damage 

So far, the thermo-chemical and thermo-mechanical models were discussed sepa-

rately. However, the main objective of this research is to model the thermo-chemo-mechan-

ical behaviour of concrete structures regarding ageing and damage and that is the main 

concern of the present chapter. The principal theoretical aspects of the thermo-chemo-me-

chanical analysis were already developed in chapters 3 and 4 when deriving the thermo-

chemical and thermo-mechanical models. Now, they will be combined in order to form the 

thermo-chemo-mechanical model which is nothing but solving, for each time instant, the 

thermo-chemical model first and thermo-mechanical model subsequently. 

This analysis is quite important for concrete structures specially for massive ones 

because concrete usually does not dissipate heat fast enough. Generally, this is not a prob-

lem for daily structures. However, as its dimensions increase, thermal effects might lead to 

propagation of cracks. In addition, when both ageing and thermal deformations are occur-

ring together residual stresses without observable strains can take place which might result 

in the rupture of the structure with lower strains than predicted. In this context, the present 

chapter will demonstrate the thermo-chemo-mechanical behaviour of concrete considering 

ageing and damage. To this end, two theoretical examples will be discussed: a concrete 

specimen and a generic concrete wall. Although theoretical, these examples indicate what 

happens to concrete structures when the hydration of the cement paste is no longer negligi-

ble. 

The thermo-chemo-mechanical FE analysis is composed by the thermo-chemical 

and thermo-mechanical problems which are solved one at time. First, the thermo-chemical 

model is solved obtaining the temperature for each node of the mesh. Then, the thermo-

mechanical problem is solved wherein displacements are calculated for each node. Some-

thing important to mention is that these two models are weakly coupled, that is, temperature 

variations cause deformations (thermo→mechanical) but not the other way around. In some 

situations, this assumption is not correct and the mechanical→thermal coupling must be 

considered as well. This is the case for some types of polymeric materials so that the full 

thermo-mechanical coupling should be taken into account because the deformation of the 

structure will increase its own temperature. 
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5.1  Flowchart for the thermo-chemo-mechanical analysis 

The flowchart for the thermo-chemo-mechanical model is the following 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given ξt and k = 0, loop over elements to: solve (3.42) 

for t 1

k 1ξ 


  t 1 t t 1 t t 1 t 1

k 1 k 1 k 1 k 1if ξ ξ ξ ξ , else ξ ξ   

       , cal-

culate (3.32) - (3.38) and assembly (3.31). 

Solve (3.31) for t 1T   

Given Dt and k = 0, loop over elements to: evaluate 

t 1

k 1D 

   t 1 t t 1 t t 1 t 1

k 1 k 1 k k 1 k 1if D D D D , else D D   

       , 

calculate (4.32) - (4.38) and assembly (4.31). 

If 

 t 1

N
P T tol   

If 

 t 1

N
P T tol   

Loop over elements to: solve (3.38) for t 1

k 1ξ 


 

 t 1 t 1 t 1 t 1 t 1 t 1

k 1 k k 1 k k 1 k 1if ξ ξ ξ ξ , else ξ ξ     

       , 

update (3.37) and assembly (3.31). 

 

Solve (3.31) for t 1T   

If 

 t 1

N
P T tol   

If 

 t 1

N
P T tol   
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Figure 73. Flowchart for the thermo-chemo-mechanical analysis. 

 

5.2  Numerical applications 

5.2.1  Concrete specimen 

The first example is a concrete specimen similar those already considered previous 

sections. Its geometry, boundary conditions and mesh are depicted in Figure 74. Its physical 

properties are presented in Table 13 where Young’s modulus is considered as functions of 

the hydration degree in order to take concrete ageing into account. Similar to previous anal-

ysis, the hatched elements in the middle have lower tensile strength than the rest of the 

mesh. The Mazars damage model was adopted to simulate the nonlinear behaviour and its 

parameters are also in Table 13. 

Solve (4.31) for Ut+1 

If 

 t 1

N
P U tol   

If 

 t 1

N
P U tol   

Solve (4.31) for t 1U   

If 

 t 1

N
P U tol   

If 

 t 1

N
P U tol   

Loop over elements to: evaluate t 1

k 1D 


 

 t 1 t 1 t 1 t 1 t 1 t 1

k 1 k k 1 k k 1 k 1if D D D D , else D D     

       , update 

(4.32), (4.33), (4.34), (4.35) and (4.38) and assembly (4.31). 

t = t + 1 

t = t + 1 
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Figure 74. Discretization of the concrete specimen with weaker elements in the middle. 

Length (m) 0.30 

Height (m) 0.10 

Width (m) 0.10 

Thermal conductivity (W.m-1.K-1) 2.00 

Adiabatic temperature rise (°C) 25.6 

Convective heat transfer coefficient (W.m-2.K-1) 0.85 

Density (kg.m-3) 2500.00 

Specific heat capacity (J.kg-1.K-1) 800.00 

Environment temperature (°C) 22.00 

Specimen’s initial temperature (°C) 22.00 

Poisson’s coefficient 0.30 

Dilatation coefficient (°C-1) 10-5 

Young’s modulus (GPa) 30.00ξ 

AT 0.98 

BT 20000.00 

Tensile strength for hatched elements (MPa) 1.47 

Tensile strength for non-hatched elements (MPa) 1.50 

Table 13. Properties of the concrete specimen for the thermo-chemo-mechanical analysis. 

The mechanical model was formulated using Plane Stress theory. Although its sim-

plicity, this example simulates what happens to concrete structures that are already re-

strained at the time of its placing (cf. HILAIRE et al. [51]). The main objective of this 

problem is to analyze the effect of residual stresses due to hydration reaction. 

Figure 75 shows the average temperature evolution of the bar. Figure 76 and Figure 

77 show the average strain evolution of the bar using non-incremental and incremental con-

stitutive equations, respectively. 
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Figure 75. Temperature evolution: average of all nodes. 

 

Figure 76. Strain evolution for non-incremental constitutive equation: average of all ele-

ments. 

 

Figure 77. Strain evolution for incremental constitutive equation: average of all elements. 
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Figure 78. Stress measured on the support for non-incremental and incremental constitu-

tive equations. 

Figure 78 show again the necessity of an incremental constitutive relation for ageing 

materials like concrete. Regarding Figure 76 and Figure 77, one can conclude that the 

strains development in the specimen are the same. However, when using the incremental 

constitutive equation, remaining stresses take place (correct) while for non-incremental re-

lation it does not happens (incorrect). The presence of residual stresses must be avoided 

because this will lead to the collapse of the structure with lower strains than predicted. 

To simulate it, a tensile test was conducted in the specimen 1500h after pouring so 

that the hydration process was already done. The sample was loaded in tension on the right-

hand edge by a prescribed displacement, similar to what was done in previous sections. To 

avoid lack of objectivity, the nonlocal technique was employed using the Gauss distribution 

and an interaction radius of 50 cm. In order to simulate the nonlinear behaviour, the Mazars 

damage model was adopted with parameters already mentioned in Table 13. Parameters AC 

and BC are not important for this analysis since it is a pure tensile test. The resulting stress-

strain curve is depicted in Figure 79 along with the curve for a specimen without initial 

stresses. 
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Figure 79. Effect of residual stresses on the stress-strain curve for the tensile test. 

Figure 79 exhibits what was expected: the specimen collapses before the one with-

out residual stresses. This situation is dramatic because such premature collapse is caused 

by lower strains than theoretically predicted. Therefore, this pathological behaviour should 

be avoided or at least took into account already in design stage given that it’s difficult to 

measure stresses accurately in daily concrete structures. 

 

5.2.2  Generic concrete wall 

The following example is a case study of a generic concrete wall, similar to a dam. 

Its sketch is in Figure 80. It’s was built layer-by-layer with a total number of 50 layers with 

the same height (1.07 m). They were built 7 days apart. The concretes used are the same as 

those presented in section 3.4.1. The main objective of this analysis is the investigation of 

damage propagation on a massive concrete structure due to thermal strains caused by hy-

dration of concrete. This example resembles a concrete dam which is a structure that com-

monly suffers the undesirable effects of concrete hydration. 
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Figure 80. Sketch of the concrete wall. 

In Figure 81 are the nodes used to generate the mesh and its coordinates are in Table 

14. 

 

Figure 81. Points used to generate the mesh of the concrete wall. 

Label 1 2 3 4 5 6 7 8 9 10 

x 0.00 123.96 123.96 93.96 88.69 69.35 61.03 36.64 30.00 0.00 

y 0.00 0.00 30.00 30.00 41.45 83.50 83.50 41.45 30.00 30.00 

Table 14. Coordinates for the nodes used to generate the mesh. 
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The discretization is in Figure 82. It consists of 11181 nodes and 22060 linear tri-

angular elements. The Plane Stress theory was adopted for the thermo-mechanical analysis. 

Robin (convection) boundary conditions were assumed throughout the whole boundary for 

the thermo-chemical model. For the thermo-mechanical problem, it was considered that 

boundary nodes with y ≥ 30m are constrained only in x direction, boundary nodes with y < 

30m are completely constrained and all the interior nodes are unconstrained. 

 

Figure 82. Discretization of the concrete wall. 

In Table 15 are the thermal and mechanical properties of the concrete wall 

Properties 
Concrete 

type 1 

Concrete 

type 2 

Rock 

foundation 

Thermal conductivity (W.m-1.K-1) 2.00 2.00 2.00 

Specific heat capacity (J.kg-1.K-1) 890.00 890.00 900.00 

Density (kg.m-3) 2600.00 2650.00 2950.00 

Ea/R (K) 4400.00 4300.00 -- 

Placement temperature of the layers (°C) 22.00 22.00 22.00 

Convective heat transfer coefficient (W.m-2.K-1) 10.00 10.00 0.00 

Young’s modulus (GPa) 42.00ξ 44.00ξ 50.00 

Poisson coefficient 0.20 0.20 0.30 

Coefficient of thermal expansion (°C-1) 8×10-6 8×10-6 2.5×10-6 
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Tensile strength (MPa) 2.80ξ 2.20ξ -- 

AT (Mazars model) 0.80 0.80 -- 

BT (Mazars model) 20000.00 20000.00 -- 

AC (Mazars model) 1.20 1.20 -- 

BC (Mazars model) 1850.00 1850.00 -- 

Gravity acceleration (m.s-2) 9.81 9.81 9.81 

Thickness in z direction (m) 10.00 10.00 10.00 

Table 15. Physical properties of the concrete wall. 

Both Young’s modulus and tensile strength were considered as a function of the 

hydration degree in order to consider ageing. In Figure 83 - Figure 98 are presented the 

obtained results for temperature, horizontal displacements, vertical displacements and dam-

age pattern. 

 

Figure 83. Temperature distribution for the concrete wall after 90 days. 

 

Figure 84. Temperature distribution for the concrete wall after 180 days. 
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Figure 85. Temperature distribution for the concrete wall after 270 days. 

 

Figure 86. Temperature distribution for the concrete wall after 360 days. 

 

Figure 87. Displacement in x direction for the concrete wall after 90 days. 
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Figure 88. Displacement in x direction for the concrete wall after 180 days. 

 

Figure 89. Displacement in x direction for the concrete wall after 270 days. 

 

Figure 90. Displacement in x direction for the concrete wall after 360 days. 
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Figure 91. Displacement in y direction for the concrete wall after 90 days. 

 

Figure 92. Displacement in y direction for the concrete wall after 180 days. 

 

Figure 93. Displacement in y direction for the concrete wall after 270 days. 
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Figure 94. Displacement in y direction for the concrete wall after 360 days. 

 

Figure 95. Damage pattern for the concrete wall after 90 days. 

 

Figure 96. Damage pattern for the concrete wall after 180 days. 
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Figure 97. Damage pattern for the concrete wall after 270 days. 

 

Figure 98. Damage pattern for the concrete wall after 360 days. 

From the results in Figure 83 - Figure 86 it’s possible to observe the core of the 

structure is always hotter than the boundary, as expected. It’s the same pattern that was 

obtained in section 3.4.2.1. 

Figure 87 - Figure 90 depict the displacement in x direction. These results are phys-

ically coherent because, as nodes approach the boundaries, their horizontal displacements 

increase. Similarly, the nodes close to the middle are zero. Since the geometry is not per-

fectly symmetric, the line with zero displacements isn’t exactly in the middle but near to it. 
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Besides, as nodes increase in y direction, their horizontal displacements decrease which is 

also coherent. 

Figure 91 - Figure 94 demonstrate the vertical displacements. The displacements 

near to the link between the concrete wall and the rock is negative, forming a region of 

negative displacements below the wall which is due to the dead load. In addition, it’s pos-

sible to observe that the vertical displacements near to the top of the layers are initially 

positive but, as next layers are placed, they become negative. This means that the thermal 

expansion is initially greater than the deformation due to dead load. However, as time goes 

by, the dead load becomes the predominant influence and these points present negative 

vertical displacements. 

Figure 95 - Figure 98 show the damage pattern of the concrete wall. It’s possible to 

observe that damage is present already in the early ages. Besides, there’s a high concentra-

tion of damaged elements near to the link between the rock foundation and the wall. This 

behaviour is commonly present in concrete dams. In addition, the wall hasn’t observable 

cracks because the maximum value reached for damage was approximately 0.97. Hence, 

the wall is only microcracked. In any case, the integrity of the structure is already prejudi-

cated already in the early age. This will lead to the premature rupture of the wall if not 

considered in the in advance. 
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6  Concluding remarks 

In the present study, the thermo-chemo-mechanical behaviour of concrete structures 

regarding ageing and damage was studied. To this end, it was developed mathematical 

models based on consistent frameworks. First, it was derived the thermo-chemical formu-

lation using the thermodynamics of chemically reactive porous media. The Second Law of 

thermodynamics allowed one to derive a robust model that considers irreversibility of hy-

dration process. Then, it was proposed a FEM formulation for the thermo-chemical model 

based on the Galerkin method. After, numerical applications were presented in order to 

demonstrate the feasibility of the proposed methodology. One of these examples consisted 

of a layered construction for which a node renumbering strategy was proposed. 

Subsequently, the thermo-mechanical model was exposed. It was discussed the im-

portance of an incremental constitutive equation for modelling ageing concrete. Then, using 

the concept of Effective Stress and the Principle of Strain-Equivalence, it was possible to 

derive a constitutive equation that considers both ageing and damage. In the following, it 

was introduced the problem of lack of objectivity due to strain localization. The Nonlocal 

technique was employed as a remedy to circumvent it. Then, the Mazars damage model 

was derived and a numerical application for a three-point bending test was presented. It was 

also briefly discussed the influence of damage models on iterative solvers. 

 Finally, the thermo-chemo-mechanical analysis considering ageing and damage 

was proposed. The hypothesis of weak coupling allowed to separate it in two models, 

namely: thermo-chemical and thermo-mechanical. The thermo-chemo-mechanical model 

is nothing but solving the thermo-chemical model first and thermo-mechanical subse-

quently. Two theoretical examples were discussed in order to demonstrate the mechanical 

effects in concrete structures due to hydration of concrete. In the first example, it was ex-

posed the phenomenon of residual stress without observable strains for a concrete speci-

men. In the second example, it was investigated the temperature and displacements evolu-

tion and damage pattern for a concrete wall which was built layer-by-layer. The results 

showed that microcracks took place already in the early age which might reduce to a great 

extent the load-carrying capacity of the concrete wall. This, in turn, might lead to the prem-

ature collapse of the structure. 



 

90 

 

7  References 

[1] A. M. Neville and J. J. Brooks, Concrete technology, 2nd ed. Prentice Hall, 2010. 

[2] Z. Li, Advanced Concrete Technology. John Wiley & Sons, Inc, 2011. 

[3] S. Mindess, J. F. Young, and D. Darwin, Concrete, 2nd ed. Prentice Hall, 2003. 

[4] P. K. Mehta and P. J. M. Monteiro, Concrete: microstructure, properties and 

materials. McGraw-Hill, 2006. 

[5] S. Popovics, Concrete materials: Properties, specifications and testing, 2nd ed. 

Noyes Publications, 1992. 

[6] R. Springenschmid, Prevention of Thermal Cracking in Concrete at Early Ages. E.& 

F.N. Spon, 1998. 

[7] J. C. Maso, Interfacial Transition Zone in Concrete: state-of-the-art report, 1st ed. 

E.& F.N. Spon, 1996. 

[8] F. J. Ulm and O. Coussy, “Modeling of thermochemomechanical couplings of 

concrete at early ages,” J. Eng. Mech., 1995, doi: 10.1061/(ASCE)0733-

9399(1995)121:7(785). 

[9] F. J. Ulm and O. Coussy, “Strength growth as chemo-plastic hardening in early age 

concrete,” J. Eng. Mech., 1996, doi: 10.1061/(ASCE)0733-

9399(1996)122:12(1123). 

[10] O. Coussy, Mechanics of Porous Continua. 1995. 

[11] M. Rita, E. Fairbairn, F. Ribeiro, H. Andrade, and H. Barbosa, “Optimization of 

mass concrete construction using a twofold parallel genetic algorithm,” Appl. Sci., 

2018, doi: 10.3390/app8030399. 

[12] A. G. Evsukoff, E. M. R. Fairbairn, É. F. Faria, M. M. Silvoso, and R. D. Toledo 

Filho, “Modeling adiabatic temperature rise during concrete hydration: A data 

mining approach,” Comput. Struct., vol. 84, no. 31–32, pp. 2351–2362, 2006, doi: 

10.1016/j.compstruc.2006.08.049. 



 

91 

 

[13] I. A. Ferreira, “Modelagem numérica do acoplamento térmico-químico-mecânico no 

concreto jovem,” Universidade Federal do Rio de Janeiro, 1998. 

[14] I. A. Ferreira, “Solução em paralelo de um modelo termo-químico-mecanico para 

concreto jovem,” Universidade Federal do Rio de Janeiro, 2008. 

[15] M. M. Silvoso, “Otimização da Fase Construtiva de Estruturas de Concreto em Face 

dos Efeitos da Hidratação via Algoritmos Genéticos,” Universidade Federal do Rio 

de Janeiro, 2003. 

[16] G. Valentim, “Estudo da fissuração térmica de blocos de contraforte da UHE Itaipu: 

Análise numérica termo-químico-mecanica,” Universidade Federal do Rio de 

Janeiro, 2020. 

[17] M. Cervera, J. Oliver, and T. Prato, “Thermo-chemo-mechanical model for concrete. 

II: Damage and creep,” J. Eng. Mech., 1999, doi: 10.1061/(asce)0733-

9399(1999)125:9(1028). 

[18] M. Cervera, R. Faria, J. Oliver, and T. Prato, “Numerical modelling of concrete 

curing, regarding hydration and temperature phenomena,” Comput. Struct., 2002, 

doi: 10.1016/S0045-7949(02)00104-9. 

[19] F. J. Ulm, J. M. Torrenti, B. Bissonette, and J. Marchand, “Modeling Concrete at an 

Early Age,” in Mechanical Behavior of Concrete, John Wiley & Sons, Inc, 2013, 

pp. 297–338. 

[20] F. J. Ulm and O. Coussy, “Couplings in early-age concrete: From material modeling 

to structural design,” Int. J. Solids Struct., vol. 35, no. 31–32, pp. 4295–4311, 1998, 

doi: 10.1016/S0020-7683(97)00317-X. 

[21] S. P. C. Marques and G. J. Creus, Computational viscoelasticity. Springer 

International Publishing, 2012. 

[22] N. Ottosen and M. Ristinmaa, The Mechanics of Constitutive Modeling. Elsevier 

Inc., 2005. 

[23] J. T. Oden, An Introduction to Mathematical Modeling: A Course in Mechanics. 

John Wiley & Sons, Inc, 2011. 



 

92 

 

[24] Y. Başar and D. Weichert, Nonlinear Continuum Mechanics of Solids, 1st ed. 

Springer, 2000. 

[25] C. Truesdell and E. H. Dill, The Elements of Continuum Mechanics. 1968. 

[26] C. A. Truesdell, A first course in Rational Continuum Mechanics, 2nd ed. Academic 

Press, Inc, 1991. 

[27] I. S. Liu, Continuum Mechanics, 1st ed. Springer, 2002. 

[28] P. Haupt, Continuum mechanics and theory of materials, 2nd ed. Springer, 2002. 

[29] F. M. Capaldi, Continuum mechanics: Constitutive modeling of Structural and 

Biological materials, 1st ed. Cambridge University Press, 2012. 

[30] C. D. Coman, Continuum Mechanics and Linear Elasticity: An Applied Mathematics 

introduction, 1st ed. Springer, 2019. 

[31] J. N. Reddy, An introduction to Continuum Mechanics with applications, 1st ed. 

Cambridge University Press, 2008. 

[32] E. Byskov, Elementary Continuum Mechanics for everyone: with applications to 

Structural Mechanics, 1st ed. Springer, 2013. 

[33] Y. I. Dimitrienko, Nonlinear Continuum Mechanics and large inelastic 

deformations, 1st ed. Springer, 2011. 

[34] L. M. Kachanov, “Time of rupture process under creep conditions,” Isv. Akad. Nauk. 

SSR. Otd Tekh. Nauk., 1958. 

[35] Y. N. Rabotnov, “Creep rupture,” Appl. Mech., pp. 342–349, 1969, doi: 

10.1007/978-3-642-85640-2_26. 

[36] D. R. Hayhurst, “Creep rupture under multi-axial states of stress,” J. Mech. Phys. 

Solids, vol. 20, no. 6, pp. 381–390, 1972, doi: 10.1016/0022-5096(72)90015-4. 

[37] F. Krajcinovic and G. U. Fonseka, “The Continuous Damage Theory of Brittle 

Materials, Part 1: General Theory,” J. Appl. Mech., vol. 48, no. 4, pp. 809–815, 1981, 

doi: 10.1115/1.3157739. 



 

93 

 

[38] F. Krajcinovic and G. U. Fonseka, “The Continuous Damage Theory of Brittle 

Materials, Part 2: Uniaxial and Plane Response Modes,” J. Appl. Mech., vol. 48, no. 

4, pp. 816–824, 1981, doi: 10.1115/1.3157740. 

[39] F. A. Leckie and D. R. Hayhurst, “Creep rupture of structures,” Proc. R. Soc., vol. 

340, no. 1622, pp. 323–347, 1974, doi: 10.1098/rspa.1974.0155. 

[40] J. Lemaitre and J.-L. Chaboche, Mechanics of solid materials. Cambridge University 

Press, 1990. 

[41] J. Lemaitre, A course on damage mechanics, 2nd ed. Springer, 1996. 

[42] J. Lemaitre and R. Desmorat, Engineering Damage Mechanics: Ductile, Creep, 

Fatigue and Brittle Failures, 1st ed. Springer, 2005. 

[43] S. A. Murakami, Continuum Damage Mechanics: A Continuum Mechanics 

approach to the analysis of damage and fracture, 1st ed. Springer, 2012. 

[44] M. Jirásek, “Damage and smeared crack models,” in CISM International Centre for 

Mechanical Sciences, Courses and Lectures, 2011. 

[45] Z. P. Bažant and L. Cedolin, Stability of structures: Elastic, inelastic, fracture and 

damage theories, 1st ed. World Scientific Publishing Inc., 2010. 

[46] D. Gross and T. Seelig, Fracture Mechanics: with an introduction to 

Micromechanics. Springer, 2018. 

[47] G. Pijaudier-Cabot and Z. P. Bažant, “Nonlocal damage theory,” J. Eng. Mech., vol. 

113, no. 10, pp. 1512–1533, 1987, doi: 10.1061/(ASCE)0733-

9399(1987)113:10(1512). 

[48] M. Jirásek, “Nonlocal damage mechanics,” Rev. Eur. génie Civ., vol. 11, no. 7–8, 

pp. 993–1021, 2007. 

[49] J. Mazars, “Application de la mecanique de l’endommagement au comportement 

non lineaire et a la rupture du beton de structure,” Universite Pierre et Marie Curie, 

1984. 

[50] N. Santos, “Modelos de dano para concreto,” Universidade Federal do Rio de 



 

94 

 

Janeiro, 2015. 

[51] A. Hilaire, F. Benboudjema, A. Darquennes, Y. Berthaud, and G. Nahas, “Modeling 

basic creep in concrete at early-age under compressive and tensile loading,” Nucl. 

Eng. Des., vol. 269, pp. 222–230, 2014, doi: 10.1016/j.nucengdes.2013.08.034. 

 


