

Mapeamento das Cores de Soluções de Corantes e Correlação com suas Estruturas por meio de Descritores Moleculares

Pamella Cristina Gonzaga Nascimento Nazareth

Projeto Final de Curso em Química Industrial

Orientadores:

Débora França de Andrade (DQA-IQ-UFRJ), D.Sc

Rafael Cavalcante dos Santos (LABCADS-EQ-UFRJ), M.Sc

Luiz Antonio d'Avila (DPO-EQ-UFRJ), D.Sc

Março de 2022

MAPEAMENTO DAS CORES DE SOLUÇÕES DE CORANTES E CORRELAÇÃO COM SUAS ESTRUTURAS POR MEIO DE DESCRITORES MOLECULARES

Pamella Cristina Gonzaga Nascimento Nazareth

Projeto de Final de Curso em química industrial submetida ao Corpo Docente da Escola de Química, como parte dos requisitos à obtenção do grau de bacharel em Química Industrial.

Aprovado por:

Amaro Gomes Barreto Jr, D Sc

Daniella Lopez Vale, D Sc

Orientadores:

Débora França de Andrade, D.Sc

Rafael Cavalcante dos Santos, M.Sc

Luiz Antonio d'Avila, D.Sc

Rio de Janeiro, RJ - Brasil

Março de 2022

Nazareth, Pamella C. G. N.

Mapeamento das Cores de Soluções de Corantes e Correlação com suas Estruturas por meio de Descritores Moleculares. / Pamella Cristina Gonzaga Nascimento Nazareth. Rio de Janeiro: UFRJ/EQ, 2022

xviii,102p.; il.

Trabalho de Conclusão de Curso – Universidade Federal do Rio de Janeio, Escola de Química, 2022.

Orientadores: Débora França de Andrade, Rafael Cavalcante dos Santos e Luiz Antonio d'Avila.

Efeito Solvatocrômico 2. Descritores Moleculares 3. Análise Multivariada
 Trabalho de Conclusão de Curso (Graduação-UFRJ/EQ) 5. Débora
 França de Andrade e Rafael Cavalcante dos Santos e Luiz Antonio d'Avila.

I. Mapeamento das Cores de Soluções de Corantes e Correlação com suas Estruturas por meio de Descritores Moleculares.

"Uma vez que Deus pagou o infinito preço de Seu Filho por você, não é certo que Ele cuidará em prover tudo o que você precisa?"

John Piper

AGRADECIMENTOS

Em primeiro lugar, agradeço ao meu Pai Celestial, que me sustentou e capacitou por toda a graduação. À Deus todo meu amor, louvor e gratidão.

A toda a minha família e amigos, especialmente a, meus pais Claudinei e Sandra Mara, meu irmão Marcos Paulo e minha amiga Raphaela Weber que me ajudaram e sofreram junto comigo, compartilhando todos os momentos vividos ao longo desta jornada universitária. Essa conquista nossa.

Aos meus orientadores, Rafael Cavalcante, dono de uma inteligência admirável e da mente brilhante que conduziu este trabalho com muita paciência e dedicação, sempre disponível para compartilhar todo seu conhecimento, Cristiane Gimenes, Débora França e Luiz d'Avila por toda ajuda, conselho, sugestão, incentivo e apoio na elaboração deste projeto.

À minha parceira de curso e amiga, Thais Gouvea, que me apresentou o LABCOM e me permitiu compartilhar momentos incríveis com pessoas maravilhosas nesse laboratório.

Aos companheiros de LABCOM, em especial, Renan Muniz, Daniel Cozenday, Juliane Natalizi, Lívia Mello e Daniel Coelho por cada contribuição e sugestão a este trabalho, além de todas as conversas e risadas compartilhadas durante nossos cafés.

À Fundação Universitária José Bonifácio (FUJB) pelo incentivo à pesquisa e apoio financeiro.

A todos que participaram de forma direta ou indiretamente deste trabalho.

Resumo do Projeto de Final de Curso apresentado à Escola de Química como parte dos requisitos necessários para obtenção do grau de bacharel em Química Industrial.

MAPEAMENTO DAS CORES DE SOLUÇÕES DE CORANTES E CORRELAÇÃO COM SUAS ESTRUTURAS POR MEIO DE DESCRITORES MOLECULARES

Pamella Cristina Gonzaga Nascimento Nazareth Março, 2022

Orientadores: Mrs. Rafael Cavalcante dos Santos; Dra. Débora França de Andrade; Dr. Luiz Antonio d'Avila.

O efeito solvatocrômico descreve a mudança de posição, intensidade e forma de uma banda espectroscópica, de absorção ou emissão, de um composto dissolvido, causado pela alteração na polaridade do meio (CARDOZO, 2016), que tem sido analisado e aplicado em diversos métodos de quantificação rápida (EL SEOUD et al., 2011; RANKIN et al., 2012). O objetivo deste trabalho foi mapear as cores de corantes em diversos solventes e correlacioná-las às suas propriedades moleculares. Para tanto, estudou-se o comportamento de dezoito corantes (cloreto de azul do nilo, sulfato de azul do nilo, azul de metileno, azul de bromofenol, azul patente, azul de tripan, azul de toluidina, vermelho de metila, vermelho de fenol, vermelho de cresol, púrpura de bromocresol, púrpura de metacresol, nitroprussiato de sódio, nitrofenol, fenolftaleína, timolftaleína, fluoresceína ácida e ditizona) em treze solventes (metanol, etanol, 2-propanol, butanol, pentanol, octanol, hexano, tolueno, tetrahidrofurano, acetona, acetonitrila, água deionizada e acetato de etila) de diferentes polaridades, por meio de testes de solubilidade e coloração, feitos em tubos de ensaio e as soluções preparadas em meios neutro (pH 7,0), ácido (pH 1,0) e alcalino (pH 10,0) e posteriormente diluídas (1:19 v/v), para registro das cores. Utilizando um smartphone, foram registradas, fotografias das soluções resultantes, dispostas em cubeta de vidro, dentro de uma câmara fotográfica, para que fossem mantidas as condições de análise, contribuindo para a reprodutibilidade. Os parâmetros parciais de polaridade dos solventes foram obtidos utilizando o software HSPiP com os quais foi organizado visualmente mapa de cores, agrupados em relação à polaridade dos solventes, similaridade de cores e solubilidades. O tratamento posterior das imagens foi feito pelo software ImageJ, no qual coletaram-se valores de média, desvio padrão e coeficiente de variação percentual dos componentes das cores, no padrão RGB (sistema de cores aditivas em que vermelho (R), verde (G) e azul (B) se combinam de várias formas gerando um largo espectro cromático). Identificou-se o canal B como mais sensível após criação de mapas de contorno para todos os canais nos três meios. Um segundo mapa de cores foi organizado em relação à polaridade dos solventes e o índice de variabilidade das médias do canal azul de cada corante para todos os solventes. Foram gerados descritores moleculares a fim auxiliarem na montagem de uma nova versão do mapa de cores, com auxílio de técnicas multivariadas, a fim de encontrar correlações entre os descritores moleculares e os valores RGB manifestados pelos corantes nos solventes testados. O estudo gerou dois mapas de cores, onde o primeiro, apresentou mais fluidez na variação de cores, enquanto o segundo, agrupou cores de matiz azul-verde e vermelhalaranja em partes distintas do mapa. A análise de componente principal permitiu reduzir o número de variáveis iniciais (descritores moleculares) em 88%, utilizando apenas 3 componentes principais que explicaram 79,92% da variância por todo conjunto de dados original. A análise fatorial indicou o canal *red* como o que carrega mais informação ao estudo, apresentando uma tendência de comportamento e correlação com os descritores similar entre os três meios estudados e mostrou que descritores do tipo eletrônicos e eletrostáticos são os que mais influenciam a resposta colorimétrica dos corantes.

ABSTRACT

COLOR MAPPING OF DYE SOLUTIONS AND CORRELATION THEM TO THEIR STRUCTURES THROUGH MOLECULAR DESCRIPTORS

Solvatochromic effect describes the change in position, intensity and shape of a spectroscopic band, whether absorption or emission, of a dissolved compound, caused by some change in the polarity of the medium (CARDOZO, 2016), which has been analyzed and applied in several methods of rapid guantification (EL SEOUD et al., 2011; RANKIN et al., 2012). The aim of this work was mapping the colors of different dyes in different solvents and correlate them to their molecular properties. Therefore, the behavior of eighteen dyes (nile blue chloride, nile blue sulfate, methylene blue, bromophenol blue, patent blue, trypan blue, toluidine blue, methyl red, phenol red, cresol red, bromocresol purple, sodium nitroprusside. nitrophenol, phenolphthalein, metacresol purple. thymolphthalein, acid fluorescein and dithizone) in thirteen solvents (methanol, ethanol, 2-propanol, butanol, pentanol, octanol, hexane, toluene, tetrahydrofuran, acetone, acetonitrile, deionized water and ethyl acetate) of different polarities, by means of solubility and coloring tests, made in test tubes, and the solutions prepared in neutral (pH 7.0), acid (pH 1, 0) and alkaline (pH 10.0) and later diluted (1:19 v/v), to register the colors. Using a smartphone, photographs of the resulting solutions were recorded, arranged in a glass cuvette, inside a photographic camera, so that the conditions of analysis were maintained, contributing to reproducibility. The partial parameters of solvent polarity were obtained using HSPiP software, with which a color map was visually organized, grouped in relation to solvent polarity, color similarity and solubilities. The subsequent treatment of the images was made by ImageJ software, in which values of mean, standard deviation and percentage variation coefficient of the color components were collected, in the RGB standard (additive color system in which red (R), green (G) and blue (B) combine in various ways generating a broad chromatic spectrum). Channel B was identified as the most sensitive after creating contour maps for all channels in the three media. A second color map was organized in relation to solvent polarity and the variability index of the blue channel averages of each dye for all solvents. Molecular descriptors were generated in order to assist in the assembly of a new version of the color map, with the aid of multivariate techniques, in order to find correlations between the molecular descriptors and the RGB values expressed by the dyes in the solvents tested. The study generated two color maps, where the first one presented more fluidity in the color variation, while the second grouped blue-green and red-orange colors in different parts of the map. Main component analysis allowed to reduce the number of initial variables (molecular descriptors) by 88%, using only 3 principal components that explained 79.92% of the variance across the original dataset. The factor analysis indicated the red channel as the one that carries more information to the study, presenting a similar behavior trend and correlation with the descriptors among the three studied media and showed that electronic and

electrostatic descriptors are the ones that most influence the colorimetric response of the dyes.

ÍNDICE DE FIGURAS

Figura 1 - Representação esquemática do solvatocromismo negativo e
positivo5
Figura 2 - Cores, comprimento de onda e frequência no espectro visível 8
Figura 3 - Absorção da luz pelos cones vermelho, verde e azul no olho humano
como uma função do comprimento de onda9
Figura 4 - Cores primárias e secundárias de luz10
Figura 5 - Esquema do cubo de cores RGB. 11
Figura 6 - Cubo de cores RGB de 24 bits 12
Figura 7 - Sistema subtrativo de cores CMY
Figura 8 - Espaço de cor HSV14
Figura 9 - Exemplo de dendrograma vertical
Figura 10 - Representação esquemática da câmara fotográfica com iluminação
a base de LEDs de alta potência
Figura 11 - Coloração de soluções diluídas dos 18 corantes testados em pH
neutro, nos solventes metanol, etanol, 2-propanol, butanol, pentanol, octanol e
água
Figura 12 - Coloração de soluções diluídas dos 18 corantes testados em pH
neutro, nos solventes IHF, acetona, acetonitrila, acetato de etila, tolueno e
nexano
Figura 13 - Coloração de soluções diluídas dos 18 corantes testados em pH
aicalino, nos solventes metanol, etanol, 2-propanol, butanol, pentanol e
agua
rigura 14 - Coloração de soluções diluídas dos 18 corantes testados em pr
Eigure 15 Distribuição dos valores do Sp. dos solventos estudados posto
rigura 15 - Distribuição dos valores de op. dos solventes estudados neste
Figura 16 - Manas para as soluções dos 18 corantes organizados por
similaridade visual de cor (vertical) e polaridade dos solventes (borizontal)
contemplando os meios ácido (\mathbf{a}) neutro (\mathbf{b}) e alcalino (\mathbf{c}) 49
Figura 17 - Manas de contorno para os valores RED (a) GREEN (b) e BLUE (c)
obtidos após processamento de imagens para cada corante dissolvido em cada
solvente utilizando meio neutro 51
Figura 18 - Mapas de contorno para os valores RED (a), GREEN (b) e BI UE (c)
obtidos após processamento de imagens para cada corante dissolvido em cada
solvente, utilizando meio alcalino
Figura 19 - Mapas de contorno para os valores RED (a). GREEN (b) e BLUE (c)
obtidos após processamento de imagens para cada corante dissolvido em cada
solvente, utilizando meio ácido
Figura 20 - Mapas para as soluções dos 18 corantes organizados por ordem de
índice de variabilidade (vertical) e polaridade dos solventes (horizontal)
contemplando os meios ácido (a), neutro (b) e alcalino (c)
Figura 21 - Grafo de correlação entre os 25 descritores
Figura 22 - Gráficos que representam a relação das variáveis originais e a
componente principal 1 e a componente principal 2 (a), a componente principal

1 e a componente principal 3 (b) e a componente principal 2 e a componente
principal 3 (c) gerados para análise com eixos não rotacionados
Figura 23 - Gráficos que representam a relação das variáveis originais e a
componente principal 1 e a componente principal 2 (a), a componente principal
1 e a componente principal 3 (b) e a componente principal 2 e a componente
principal 3 (c) gerados para análise varimax normalizada
Figura 24 - Gráfico de distribuição da nuvem de variáveis para canal RED (a),
GREEN (b) e BLUE (c) em meio neutro 70
Figura 25 - Complementos do círculo de cores (GONZALEZ et al., 2010) 72
Figura 26 - Gráfico de distribuição da nuvem de variáveis para canal RED (a),
GREEN (b) e BLUE (c) em meio alcalino
Figura 27 - Gráfico de distribuição da nuvem de variáveis para canal RED (a),
GREEN (b) e BLUE (c) em meio ácido
Figura 28 - Gráfico da distribuição da nuvem de pontos dos corantes77

ÍNDICE DE TABELAS

Tabela 1 - Dados de média, desvio padrão e índice de variabilidade dos valores de intensidade dos canais Red, Green e Blue de cada resposta colorimétrica obtida para cada corante estudado em todos os solventes testados, em pH Tabela 2 - Dados de média, desvio padrão e índice de variabilidade dos valores de intensidade dos canais Red, Green e Blue de cada resposta colorimétrica obtida para cada corante estudado em todos os solventes testados, em pH Tabela 3 - Dados de média, desvio padrão e índice de variabilidade dos valores de intensidade dos canais Red, Green e Blue de cada resposta colorimétrica obtida para cada corante estudado em todos os solventes testados, em pH ácido. Tabela 4 - Parâmetros de solubilidade de Hansen dos solventes estudados neste Tabela 5 - Total de correlação dos 25 descritores moleculares entre si. 58 Tabela 6 - Resultado dos autovalores, porcentagem de variância explicada por cada componente e variância acumulada pelas componentes principais Tabela 7 - Resultados dos autovetores das componentes principais 1, 2 e 3. 63 Tabela 8 - Valores da componentes principais 1, 2 e 3 para os 16 corantes estudados......64 Tabela 9 - Contribuição de cada variável nas componentes principais 1, 2 e 3. Tabela 10 - Contribuição de cada variável nas componentes principais 1, 2 e 3 após rotação dos eixos. 67

ÍNDICE DE QUADROS

Quadro 1 - Ângulos correspondente as cores no espaço HSV	14
Quadro 2 - Tipo, simbologia e descrição dos descritores moleculares utilizad	os
no presente trabalho	29
Quadro 3 - Periculosidade e incompatibilidades dos corantes estudados nes	ste
projeto	33
Quadro 4 - Soluções que apresentaram mudanças na coloração ap	ós
diluição	40

LISTA DE ABREVIATURAS

AA	Análise de Agrupamentos
ACP	Análise de Componentes Principais
AF	Análise Fatorial
В	Blue
С	Cyan
CA	Cluster Analysis
СР	Componentes Principais
CV	Coeficiente de Variação
FISPQ	Fichas de Informação de Segurança de Produtos Químicos
G	Green
н	Hue
InChl	Identificador Químico Internacional IUPAC
IV	Índice de Variabilidade
K	Key/black
LCSS	Laboratory Chemical Safety Summary
Μ	Magenta
MSDS	Material Safety Data Sheet
PCA	Principal Components Analysis
R	Red
S	Saturation
SVH	Sistema de Visão Humana
V	Value
Y	Yellow

LISTA DE SÍMBOLOS

MM	Massa Molar
N _c	Número de Carbonos
N _{het}	Número de Heteroátomos
N _n	Número de Nitrogênios
No	Número de Oxigênios
N _{lig}	Número de Ligações
N _{atmar}	Número de Átomos Aromáticos
N _{ar}	Número de Anéis Aromáticos
N _{nar}	Número de Anéis Não Aromáticos
NT	Número Total de Anéis
δ _d	Parâmetro de Dispersão de Hansen
δ_p	Parâmetro de Polaridade de Hansen
δ_h	Parâmetro de Ligações de Hidrogênio de Hansen
DPSA-1	Área de Superfície Parcial Carregada
A _{cc}	Aceitadores de Ligação de Hidrogênio
D _{on}	Doadores de Ligação de Hidrogênio
ТороА	Área de Superfície Topológica
GRAV-1	Índice Gravitacional
LOB _{Máx}	Comprimento sobre a Largura
R _g	Raio de Giração
VdW	Raio de Van der Waals
E _{cc}	Índice de Conectividade Excêntrica
W _{PATH}	Número de Wiener
W _{POL}	Número de Wiener
Z _{ag}	Índice de Zagreb

SUMÁRIO

1.INTRODUÇÃO	1
2.OBJETIVOS	3
2.1.Objetivo Geral	3
2.2.Objetivos Específicos	3
3. REVISÃO BIBLIOGRÁFICA	4
3.1.O efeito solvatocrômico	4
3.2. Os parâmetros de solubilidade de Hansen	6
3.3. A teoria de cor	8
3.3.1 O modelo RGB	11
3.3.2 O modelo CMY	12
3.3.3 O modelo HSV	14
3.4. Os descritores moleculares	16
3.5. A análise multivariada	18
3.5.1 A análise de agrupamentos	19
3.5.2 A análise de componentes principais	21
3.5.3 A análise fatorial	22
4. MATERIAIS E MÉTODOS	24
4.1. A investigação da periculosidade dos corantes	24
4.2. Os testes de solubilidade dos corantes	24
4.2.1 Os corantes	24
4.2.2 Os solventes	24
4.2.3 O preparo das soluções	25
4.2.4 A diluição das soluções	25
4.3. A aquisição e tratamento das imagens	25
4.3.1 A captura das imagens	25
4.3.2 A coleta dos valores RGB	26
4.4. A coleta dos parâmetros de solubilidade de Hansen	27
4.5. A elaboração e a organização dos mapas de cores	27
4.5.1 Primeiro Mapa de Cores: Critério da similaridade visual	27
4.5.2 Segundo Mapa de Cores: Critério do índice de variabilidade	27
4.6. Os descritores moleculares	28
4.6.1 A obtenção dos descritores moleculares	28

4.6.2 A análise de correlação dos descritores moleculares	
4.7. A análise multivariada	
4.7.1 Análise de componentes principais e análise fatorial	
5. RESULTADOS E DISCUSSÃO	33
5.1. A investigação da periculosidade dos corantes	33
5.2. Os testes de solubilidade dos corantes	
5.3. O tratamento das imagens digitais	41
5.3.1 A intensidade dos canais RGB	41
5.4. Os parâmetros de solubilidade de Hansen dos solventes	
5.5. A elaboração e a organização dos mapas de cores	47
5.6. Os Mapas de Contorno	50
5.7. Segundo Mapa de Cores: Critério do índice de variabilidade	55
5.6. Os descritores moleculares	57
5.6.1 A obtenção dos descritores moleculares	57
5.6.2 A análise de correlação dos descritores moleculares	57
5.7. A análise multivariada	62
5.7.1 Análise de componentes principais e análise fatorial	62
6. CONCLUSÕES	79
7. PERSPECTIVAS FUTURAS	81
8. REFERÊNCIAS	82
9. APÊNDICES	
APÊNDICE 01 - Valores de intensidade dos canais <i>Red</i> , <i>Green</i> e <i>Bla</i> resposta colorimétrica obtida para cada corante estudado em todos os testados, em pH neutro.	Je de cada s solventes 88
APÊNDICE 02 - Valores de intensidade dos canais Red, Green e Blu resposta colorimétrica obtida para cada corante estudado em 6 testados, em pH alcalino	ue de cada solventes 94
APÊNDICE 03 - Valores de intensidade dos canais <i>Red</i> , <i>Green</i> e <i>Bla</i> resposta colorimétrica obtida para cada corante estudado em 6 testados, em pH ácido	<i>le</i> de cada solventes 97
APÊNDICE 04 - Descritores moleculares obtidos pelo software Biocli	ose 100
10. ANEXO	102
ANEXO 01 – Menção Honrosa 42ª JICTAC/UFRJ	102

1. INTRODUÇÃO

Ao longo do tempo, estudos sobre o efeito do solvente vêm sendo aprofundados. Em 1862, Berthelot e Péan de Saint-Gilles observaram pela primeira vez a influência dos solventes nas taxas de reações químicas. Menschutkin, em 1890, descobriu que nas reações líquido-líquido, um dos solventes podia ser desfavorável, impactando na quantidade essencial necessária para a preparação de um composto e relacionou a influência dos solventes principalmente com às suas propriedades químicas e não às físicas (REICHARDT *et al.*, 2011).

Juntamente com a descoberta do tautomerismo ceto-enólico, em 1896, Wislicenus afirmou que a razão pela qual as duas formas tautoméricas coexistem provavelmente depende da natureza do solvente e de sua capacidade de dissociação, expondo o efeito do solvente sobre o equilíbrio químico. Em seguida, Stobbe revisou essa descoberta e classificou os solventes como próticos e apróticos, baseado na capacidade de isomerizar compostos tautoméricos (REICHARDT *et al.*, 2011).

Em 1878, Kundt propôs que o aumento da dispersão (ou do índice de refração) está relacionado com o deslocamento do comprimento de onda e a absorção máxima para valores maiores e que o efeito do solvente nessas moléculas é derivado das propriedades dipolares das moléculas dissolvidas. O meio pode influenciar os espectros de absorção ao mudar de estado físico (passar de fase gasosa para solução) ou ao variar a natureza do solvente. Devido à dificuldade de medir o espectro de absorção em fase gasosa, muitos estudos são focados em analisar o comportamento dos solutos desta última

forma mencionada. As mudanças que ocorrem nos espectros são usadas para fornecer informações sobre as interações entre soluto e solvente (REICHARDT *et al.*, 2011).

O efeito solvatocrômico descreve a mudança de posição, intensidade e forma de uma banda espectroscópica, de absorção ou emissão, de um composto dissolvido, causado pela alteração na polaridade do meio e é uma das estratégias mais comumente empregadas para o estudo das propriedades que impactam na resposta obtida pela interação soluto-solvente. Os corantes solvatocrômicos são utilizados como sondas e auxiliam na criação de escalas empíricas de polaridade. As escalas mais conhecidas são a escala Z de Kosower e a escala ET(30) de Reichardt (CARDOZO, 2016). Os corantes solvatocrômicos também têm sido aplicados em diversos métodos de quantificação rápida, como na análise de biocombustíveis em óleo diesel combustível (EL SEOUD *et al.*, 2011), na detecção de adulteração de gasolina com etanol ou querosene (GOTOR *et al.*, 2018) e na discriminação de diferentes solventes entre si com o uso de uma matriz semilíquida (RANKIN *et al.*, 2012).

No presente trabalho foram utilizados dezoito corantes para fazer um mapeamento das cores obtidas quando dissolvidos em treze solventes de diferentes polaridades. O comportamento das misturas foi analisado por meio de testes de solubilidade e coloração, e as soluções em estudo foram preparadas em meios neutro, ácido e alcalino. Buscando-se avaliar a relação entre as cores manifestadas pelos corantes e as características químicas dos mesmos, gerouse descritores moleculares e com o auxílio de técnicas multivariadas encontrouse melhores correlações entre os descritores e as respostas obtidas pelos valores RGB manifestados nos solventes testados.

2. OBJETIVOS

2.1. Objetivo Geral

Mapear as cores de diferentes corantes em diversos solventes e correlacioná-las às suas propriedades moleculares.

2.2. Objetivos Específicos

- Registrar a resposta colorimétrica dos corantes obtida através de testes de solubilidade e coloração nos solventes selecionados em meios neutro, ácido e alcalino;
- b. Converter as informações contidas nos registros em valores RGB por meio de processamento de imagem;
- c. Obter mapa de cores para selecionar corantes e solventes em que haja mudança acentuada da cor;
- d. Organizar os mapas de cores aplicando o critério de similaridade visual entre as cores e a magnitude do coeficiente de correlação;
- e. Elaborar um banco de dados com informações sobre descritores moleculares para cada estrutura química dos corantes estudados e
- f. Aplicar a técnica de análise de componentes principais para avaliar a relação entre as características estruturais (descritores moleculares) e as respostas colorimétricas.

3. REVISÃO BIBLIOGRÁFICA

3.1. O efeito solvatocrômico

O solvatocromismo descreve a mudança que ocorre na posição e, em alguns casos, na intensidade de uma banda de absorção de ultravioleta/visível que acompanha uma variação na polaridade do meio. Se, com o aumento da polaridade, ocorrer um deslocamento do comprimento de onda máximo para valores menores, diz-se que houve um deslocamento hipsocrômico caracterizando um solvatocromismo negativo. Já, se o deslocamento ocorrer para maiores valores de comprimento de onda, houve deslocamento batocrômico e caracteriza um solvatocromismo positivo (CARDOZO, 2016).

A solvatação diferencial causada pelo efeito solvatocrômico pode ser explicada pela diferença de interação soluto-solvente nos estados fundamental e excitado da molécula. Dessa forma, se com o aumento da polaridade, o estado fundamental for melhor estabilizado pela solvatação que o estado excitado, tem-se a ocorrência de um solvatocromismo negativo e a transição entre esses estados é deslocada para o azul. Por outro lado, se a melhor estabilização ocorrer no estado excitado com o aumento da polaridade, trata-se de um solvatocromismo positivo com transição entre os estados se deslocando para o vermelho (CARDOZO, 2016). A **Figura 1** ilustra esses dois tipos de solvatocromismo.

Figura 1 — Representação esquemática do solvatocromismo negativo e positivo (CARDOZO, 2016).

O efeito do solvente sobre uma molécula é estudado há bastante tempo. Propriedades físico-químicas do solvente são importantes para o entendimento das interações soluto-solvente e auxiliam na compreensão da resposta obtida por um soluto na presença de determinado solvente. A polaridade do solvente geralmente é uma forma de analisar esses efeitos, mas é uma propriedade que dificilmente consegue-se definir quantitativamente. Embora, seja representada pelo momento dipolar (μ_D), a informação por ele expressa é limitada pois não considera todas as interações com as moléculas do solvente (POLING *et al.*, 2000). Em termos qualitativos, polaridade é a capacidade de um solvente de solvatar espécies dissolvidas carregadas ou neutras, apolares ou dipolares. Pode-se definir, então, polaridade como a capacidade total de solvatação dos solventes, a qual inclui todas as interações intermoleculares específicas e não todas as propriedades moleculares responsáveis por todas as forças de interação (REICHARDT, 2003).

O espectro de absorção de um soluto quando medido em solventes de diferentes polaridades pode exibir mudanças na posição, forma ou intensidade das bandas de absorção. A polaridade desses solventes vem sendo estudada através da energia de transição de corantes solvatocrômicos. Dessa forma, é possível obter valores empíricos de polaridade dos solventes por meio de valores medidos de UV/Vis. Os estudos com corantes solvatocrômicos continuam com o propósito de encontrar uma escala empírica de polaridade que poderá ser usada como referência (NOVAKI *et al.*, 1997; REICHARDT, 2003).

Na literatura, pode-se observar alguns estudos para análise da qualidade de combustíveis através da aplicação de corantes solvatocrômicos: adulteração de gasolina (ISOPPO *et al.*, 2020; GOTOR *et al.*, 2018; TANAKA *et al.*, 2011; FLUMIGNAN *et al.*, 2008; LEE *et al.*, 2011), octanagem da gasolina (HUBERT *et al.*, 1995), adulteração de diesel (GOTOR *et al.*, 2017), composição de misturas de biodiesel/diesel e bioetanol/diesel (EL SEOUD *et al.*, 2011; SANTOS *et al.*, 2020), composição de misturas de bioetanol/diesel e bioetanol/diesel (GALGANO *et al.*, 2011).

3.2. Os parâmetros de solubilidade de Hansen

Os parâmetros de solubilidade são parâmetros físico-químicos, largamente utilizados para prever a compatibilidade entre solutos e solventes, baseado nas suas interações moleculares. Os parâmetros de Hansen (2007) são uma extensão do parâmetro de solubilidade de Hildebrand (1950) e são conhecidos por parâmetros de energia de coesão, porque derivam da energia necessária para conversão de um líquido em um gás (HANSEN, 2007; NOVO, 2012).

Hansen propôs que a solubilização acontece devido a um conjunto de interações moleculares que ocorrem simultaneamente. A energia coesiva total $(\delta_t, \text{Eq. 1})$ é obtida pela soma da contribuição parcial das energias de interação dispersiva (δ_d) , polar (δ_p) e de ligações de hidrogênio (δ_h) das moléculas e também está correlacionada a energia de vaporização do líquido (ΔE_{vap}) (HANSEN, 2007).

$$\Delta_{\rm t} = \sqrt{\frac{\Delta E_{\rm vap}}{V_{\rm mol}}} = \sqrt{\frac{\Delta E_{\rm d}}{V_{\rm mol}} + \frac{\Delta E_{\rm p}}{V_{\rm mol}} + \frac{\Delta E_{\rm h}}{V_{\rm mol}}} = \sqrt{\delta_{\rm d}^2 + \delta_{\rm p}^2 + \delta_{\rm h}^2}$$
(1)

Os parâmetros de solubilidade são utilizados para auxiliar na escolha de solventes ideais para dissolução de determinados solutos. A dissolução de um soluto em um solvente pode ser prevista pelo método desenvolvido por Hansen (2007) que consiste no cálculo de uma esfera com centro nos parâmetros de solubilidade do soluto em questão em um espaço tridimensional. O raio de interação, R_o , é o raio da esfera, o qual determina um limite de forma que os "bons" solventes estejam a uma distância R_a (**Eq. 2**) do centro da esfera, em que $R_a < R_o$ (HANSEN, 2007).

$$R_a^{\ 2} = [4 \times (\delta_{d^{1-}} \delta_{d^2})^2 + (\delta_{p^{1-}} \delta_{p^2})^2 + (\delta_{h^{1-}} \delta_{h^2})^2]$$
(2)

 R_a é a distância calculada entre o solvente (1) e o soluto de interesse (2). A razão entre R_a e R_o é chamada diferença de energia relativa, RED, e é utilizado para verificar se o material está dentro da esfera de afinidade e prever a solubilidade entre soluto e solvente. Valores de RED menores que 1,0 indicam que o soluto irá se dissolver no solvente em questão. Se os valores forem maiores que 1,0, não há dissolução. E, por fim, se os valores forem muito próximos ou iguais à 1,0, o sistema encontra-se na condição de fronteira ou condição limite de solubilização e não é possível confirmar com precisão o comportamento da mistura (HANSEN, 2007; NOVO, 2012).

3.3. A teoria de cor

A natureza física da cor pode ser formalmente expressa por experimentais e teóricos. Newton, em 1666, descobriu que quando um feixe de luz branca atravessa um prisma de vidro, o feixe de luz resultante consiste em um espectro contínuo de cores variando do violeta ao vermelho. A luz cromática percebida corresponde ao espectro de energia eletromagnética na região do visível (380nm a 740nm) e a luz branca é formada por sete cores presentes ao longo desse espectro, conforme exibido na **Figura 2**.

Cor	Comprimento de onda	Frequência
vermelho	~ 625-740 nm	~ 480-405 THz
laranja	~ 590-625 nm	~ 510-480 THz
amarelo	~ 565-590 nm	~ 530-510 THz
verde	~ 500-565 nm	~ 600-530 THz
ciano	~ 485-500 nm	~ 620-600 THz
azul	~ 440-485 nm	~ 680-620 THz
violeta	~ 380-440 nm	~ 790-680 THz

Figura 2 — Cores, comprimento de onda e frequência no espectro visível. Fonte: GOOGLE IMAGENS (2022).

As cores são fenômenos percebidos e relativos que variam de acordo com o observador. A quantidade de células na retina varia de indivíduo para indivíduo, por exemplo, e a percepção das cores difere seguindo o número de cones presentes no sistema de visão humana (SVH) individual (COSTA, 2015). Os cones são os sensores dos olhos e podem ser divididos em três principais categorias: vermelho, verde e azul. Estudos comprovam que 65% dos cones existentes no SVH são sensíveis à luz vermelha, 33% à luz verde e apenas 2%, à luz azul (GONZALEZ *et al.*, 2010). A **Figura 3** mostra as curvas experimentais médias da absorção da luz pelos cones vermelho, verde e azul do olho humano.

Figura 3 — Absorção da luz pelos cones vermelho, verde e azul no olho humano como uma função do comprimento de onda (GONZALEZ et al., 2010).

Em consequência dessas características da SVH, o vermelho (R, de *red*), o verde (G, de *green*) e o azul (B, de *blue*) são chamadas de cores primárias e as outras cores são uma combinação dessas três. As cores primárias podem ser somadas para produzir as cores secundárias, magenta (vermelho e azul), ciano (verde e azul) e amarelo (vermelho e verde), conforme mostrado na **Figura 4**.

Figura 4 — Cores primárias e secundárias de luz. Fonte: GOOGLE IMAGENS (2022)

Existem diferentes maneiras de estudar as cores e os sistemas mais usuais são: modelo RGB para corpos que emitem luz, o modelo CMY para corpos opacos e o modelo HSV.

Uma forma de estudar imagens e seu processamento é através da visão computacional. Este é um campo científico interdisciplinar que trata de como os computadores podem obter uma compreensão de alto nível a partir de imagens ou vídeos digitais. Do ponto de vista da engenharia, busca entender e automatizar tarefas que o sistema visual humano pode realizar, como métodos para aquisição, processamento, análise e compreensão de imagens digitais e extração de dados de alta dimensão do mundo real para produzir informações numéricas ou simbólicas. É um estudo antigo, mas que nos tempos atuais tem ficado em maior evidência devido ao avanço de tecnologias capazes de utilizar um conjunto com técnicas de aprendizado de máquina e estruturas de otimização complexas (KLETEE, 2014).

3.3.1 O modelo RGB

Um modelo de cor tem como objetivo facilitar a especificação das cores de forma padronizada e é uma especificação de um sistema de coordenadas e um subespaço onde cada cor é representada por um único ponto (GONZALEZ *et al.*, 2010). O modelo RGB é intimamente associado às superfícies emissoras de luz. Por essa razão é quase universalmente usado em equipamentos eletrônicos, como monitores de TV, computador e câmeras fotográficas. A cor é expressa como um tripleto RGB (r, g, b), cada componente do qual pode variar de zero a um valor máximo definido. Se todos os componentes estiverem em zero, o resultado será preto; se todos estiverem no máximo, o resultado será o branco. Em computadores, os valores dos componentes geralmente são armazenados como números inteiros sem sinal no intervalo de 0 a 255, o intervalo equivalente à um único byte (GONZALEZ *et al.*, 2010).

O modelo se baseia no sistema de coordenadas cartesianas o subespaço de interesse é um cubo, conforme mostrado na **Figura 5**. Considera-se que os valores são normalizados, por isso o cubo é um cubo unitário. Todas as cores são pontos no cubo ou dentro dele e são definidas por vetores que se estendem a partir da origem. A escala de cinza, onde os valores de R, G e B são iguais, é representada pela diagonal do cubo, que liga os pontos correspondentes ao preto e ao branco.

Uma imagem, quando representada pelo modelo RGB, é composta por três componentes de imagem para cada cor primária que se combinam na tela do monitor. Quando cada componente da imagem é uma imagem de 8 bits, dizse que cada pixel de cores RGB tem profundidade de 24 bits e, nessas condições, tem-se uma imagem colorida ou uma imagem *full-color* (GONZALEZ *et al.*, 2010). O cubo de cores RGB de 24 bits é mostrado na **Figura 6**.

Figura 6 — Cubo de cores RGB de 24 bits (Gonzalez et al., 2010).

3.3.2 O modelo CMY

O modelo CMY é baseado nas cores ciano (C, de *cyan*), magenta (M, de *magenta*) e amarelo (Y, de *yellow*), que são cores secundárias de luz. Quando uma luz branca incide em uma superfície, existem comprimentos de onda em que a luz é absorvida e em outros, refletida. Pelo SVH, a cor que se enxerga em uma superfície é aquela que compõe o comprimento de onda da luz refletida. Uma superfície ciano corresponde aquela cujo comprimento de onda na região

do vermelho foi absorvido e, por isso, é constituída apenas por verde e azul na luz refletida. Por isso, o modelo CMY é denominado modelo subtrativo de cor e as cores ciano, magenta e amarelo também podem ser classificadas como cores primárias subtrativas pois resultam da subtração do vermelho, verde e azul à cor branca, conforme é mostrado na **Figura 7** (LOPES, 2013).

Figura 7 — Sistema subtrativo de cores CMY. Fonte: GOOGLE IMAGENS (2022).

O espaço CMY é construído de maneira semelhante ao modelo RGB. Um cubo de aresta igual à 1, com valores normalizados, e as coordenadas passam a ser as cores primárias subtrativas. É possível fazer uma conversão de valores RGB para valores CMY conforme mostrado na **Eq.3** (GONZALEZ *et al.*, 2010).

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$
(3)

Conforme a **Figura 7**, espera-se obter a cor preta quando quantidades iguais de pigmentos ciano, magenta e amarelo forem misturados, mas, na prática, essa combinação resulta em um preto de aparência turva. Por isso, para produzir a cor preta verdadeira, predominante em impressões, é adicionada uma

quarta cor, o preto (K, de *key/black*), formando o modelo de cor CMYK (GONZALEZ et al., 2010).

3.3.3 O modelo HSV

O modelo HVS é modelo mais intuitivo, pois é mais fácil para o SVH descrever uma cor em função de tonalidades do que de uma combinação de vermelho, verde e azul. As variáveis que compõem o modelo são matiz ou cor (H, de *hue*), saturação (S, de *saturation*) e valor (V, de *value*) e podem ser representados no espaço conforme ilustrado na **Figura 8**.

Figura 8 — Espaço de cor HSV (LOPES, 2013).

A matiz representa a cor dominante percebida pelo observador. As cores primárias se localizam nos vértices do hexano e estão posicionadas de acordo com os ângulos correspondentes, segundo o **Quadro 1**.

Quadro 1 — Ângulos correspondente as cores no espaço HSV (LOPES, 2013).

Cor	Ângulo
Vermelho	0°

Amarelo	60°
Verde	120º
Ciano	180º
Azul	240°
Magenta	300°

A saturação corresponde a quantidade de luz branca presente em uma cor. Uma cor pura no espectro é uma cor totalmente saturada [S=1], enquanto que cores com rosa (vermelho e branco) e lilás (violeta e branco) são menos saturadas. Ou seja, a saturação de uma cor varia de maneira inversamente proporcional à quantidade de luz branca adicionada. O parâmetro V regula o brilho da cor e varia de 0 a 1, onde 0 corresponde a brilho nulo, ou seja, a cor preta e 1, brilho máximo (GONZALEZ *et al.*, 2010; LOPES, 2013).

A análise quantitativa e a interpretação de imagens representam atualmente um ponto de apoio importante em diversos estudos científicos na área de química. O processamento de imagens digitais tem sido empregado como uma alteranativa aos custosos métodos espectroscópicos e encontra grande aplicação na detecção de cor em processos ou reações colorimétricas. Em 2017, Soares *et al.*, desenvolveram um *spot test*, baseado em processamento de imagem e identificaram indiretamente o iodo em biodiesel. Soares *et al.* (2019) desenvolveram *spot test* com imagens digitais adquiridas por *smartphone* e obtiveram os valores RGB por meio de um aplicativo para identificação da presença de metanol em biodiesel. Em 2020, a determinação do teor de biodiesel em misturas com o óleo diesel também foi objetivo de estudo de Soares *et al.* e Dos Santos *et al.*

3.4. Os descritores moleculares

A relação quantitativa estrutura-atividade (quantitative structure-activity relantionship — QSAR) e relação quantitativa estrutura-propriedade (quantitative structure-property relatonship – QSPR) prevê as atividades e propriedades de um composto dependendo do seu substituinte molecular, assim se torna um meio de modelar novos compostos químicos pois é capaz de prever propriedades físico-químicas em função de características estruturais. Caso um composto novo e não utilizado na criação do modelo possua características semelhantes a algum que pertença ao modelo, admite-se que este primeiro assume propriedades/atividades também semelhantes (NANTASENAMAT *et al.*, 2009).

Um dos primeiros estudos propostos usando a QSPR foi realizado por Edmund Mills (1884) onde ele buscou relacionar as temperaturas de fusão e ebulição de diversos compostos orgânicos com o número de grupos -*CH*₂. Em 2011, Hirjani *et al.* predisseram o tempo de retenção de alguns compostos orgânicos em cromatografia líquida de alta eficiência baseado em estudos QSPR. Xu *et al.* (2018) utilizaram um estudo QSPR para absorção máxima de corantes azobenzenos.

Os descritores moleculares desempenham um papel fundamental em QSAR/QSPR pois são uma representação simbólica de uma molécula em um número útil derivado da informação química nela contida e obtida por procedimentos matemáticos e lógicos. Os descritores são ferramentas importantes para predizer propriedades de moléculas e avaliar as possíveis interações entre sistemas e por isso são muito utilizados em modelos a fim de evitar sínteses e reduzir testes experimentais que são custosos e demorados.

São tidos como peças significativas para resolver questões sobre relação estrutura-atividade, por isso a busca por diferentes tipos de descritores é grande (SILVA, 2017; PEREIRA, 2016).

Os descritores podem ser classificados de acordo com a natureza, podendo ser: constitucionais, são relacionados a estrutura molecular e às ligações existentes na molécula, não codificam informações sobre topologia nem geometria; topológicos, que levam em consideração a conectividade entre os átomos, são números que dão informação sobre o arranjo de ligações em uma molécula, sem considerar características geométricas; geométricos, calculados baseado na estrutura tridimensional, em que o arranjo espacial dos átomos é moldado de acordo com a geometria molecular; e, eletrônicos, são referentes a densidade de distribuição eletrônica levando em consideração os grupos substituintes e são obtidos através de cálculos computacionais químico-quântico (SILVA, 2017; PEREIRA, 2016).

Os descritores moleculares podem ser obtidos através de diversos programas de computador e *softwares* disponíveis, como DRAGON[®], CDK[®], CODESSA[®] RDKit, Bioclise, PaDEL Descriptor, entre outros (ALVES *et al.*, 2017).

Na literatura, encontram-se diferentes estudos com o uso de descritores moleculares, principalmente acoplados a técnicas multivariadas de análise. Rodrigez *et al.* (2005) avaliaram o desempenho do uso de farmacóforos de quatro pontos como descritores moleculares juntamente com a análise de agrupamento para estudo da diversidade molecular. Sahoo *et al.* (2014) estudaram a relação quantitativa entre estrutura e propriedades físico-químicas de diversos aminoácidos pela combinação de descritores moleculares do tipo

topológico e quântico e para otimizar o modelo de regressão, utilizaram a análise de componentes principais visando o número mínimo de variáveis ortogonais.

3.5. A análise multivariada

A análise multivariada corresponde a um grande número de métodos e técnicas que utilizam, simultaneamente, as variáveis na interpretação teórica do conjunto de dados obtidos. Conhecidas também como técnicas de interdependência, as técnicas multivariadas exploratórias são utilizadas quando o objetivo é estudar a relação entre variáveis de um banco de dados. São pertinentes quando a finalidade é desenvolver um diagnóstico acerca do comportamento dos dados analisados, podendo ser usadas de forma preliminar ou simultânea à aplicação de um modelo confirmatório.

Os modelos exploratórios são escolhidos dependendo da finalidade da pesquisa, uma vez que cada método tem sua fundamentação teórica e sua aplicabilidade. Redução ou simplificação estrutural dos dados, classificação ou agrupamento de observações e variáveis, investigação da existência de correlação entre variáveis métricas ou associação entre variáveis categóricas e entre suas categorias são alguns dos principais objetivos procurados ao analisar os dados com técnicas multivariadas (MILLER *et al.*, 2002).

A análise de dados pode ser dita como supervisionada e não supervisionada. A primeira ocorre quando busca-se responder um *target*, ou seja, quando existe uma classe, ou um atributo com o qual se pode comparar e validar um resultado. Um exemplo de método supervisionado é a classificação ou a regressão. Já uma análise não supervisionada ocorre quando não existe uma classe, assim busca-se identificar grupos ou padrões a partir dos dados. Agrupamentos são exemplos de método não supervisionado (AMARAL, 2016). Na literatura, encontram-se vários estudos que demonstram o uso de técnicas multivariadas, em conjunto com outras técnicas, na análise de combustíveis: adulteração de etanol com metanol (SILVA *et al.*, 2013), classificação de biodiesel derivado de diferentes matérias primas (VERAS *et al.*, 2010); inferência do número de cetano do biodiesel (NADAI *et al.*, 2013), caracterização de óleo diesel (NOVÁK *et al.*, 2017), adulteração de óleo diesel com óleos e gorduras vegetais (BRANDÃO *et al.*, 2012), classificação de gasolina de acordo com sua fonte (refinaria ou processo) e tipo (BALABIN *et al.*, 2010), identificação e quantificação de adulterantes comuns de gasolina (ARDILA *et al.*, 2017; RUSCHEL *et al.*, 2017; DE PAULO *et al.*, 2012; SKROBOT *et al.*, 2005).

3.5.1 A análise de agrupamentos

A análise de agrupamentos (AA) ou Cluster Analysis (CA) é uma técnica multivariada com o objetivo de classificar, dentro de um conjunto de dados, os indivíduos com características comuns em grupos, de modo que exista homogeneidade intragrupo e heterogeneidade entre grupos. Dessa forma, quando representados em um gráfico, os dados que se encontram dentro de um mesmo agrupamento estarão muito próximos e os demais agrupamentos estarão afastados (VICINI *et al.*, 2018, PINTO *et al.*, 2013).

Baseado em cálculos de distância, é um método simples no qual não necessita de conhecimentos ou suposições prévios de estatística. Geralmente é utilizada em conjunto com outras técnicas multivariadas, pois a CA não faz distinção entre variáveis dependentes e independentes e também não estuda relações de causa e efeito (VICINI, 2005).
Uma das classificações da CA é a análise de agrupamentos hierárquicos, onde os dados são aglomerados de acordo com uma hierarquia, produzindo um dendrograma (**Figura 9**). Uma das interpretações baseia-se na distância euclidiana entre o clusters formados, de forma que quanto menor distância, maior a semelhança entre as amostras (VICINI *et al.*, 2018; VICINI, 2005).

Figura 9 — Exemplo de dendrograma vertical. Fonte: GOOGLE IMAGENS (2022)

Na literatura, observa-se estudos com CA frequentemente. Rankin *et al.* (2012) desenvolveram um sensor colorimétrico com corantes solvatocrômicos capaz de diferenciar onze solventes orgânicos. O uso de um dendrograma mostrou que os solventes utilizados se agrupavam perfeitamente nos clusters de acordo com suas polaridades. Rocha *et al.* (2012) utilizaram CA como umas das técnicas não supervisionadas para agrupar um conjunto de amostras de biodiesel feitos de óleos de amendoim, milho e canola. O objetivo era combinar em um mesmo cluster todas as amostras feitas pela mesma matéria prima, no

entanto, nem todas as amostras foram classificadas corretamente, provavelmente devido à similaridade dos espectros obtidos inicialmente nas análises de infravermelho próximo dos óleos de milho e canola.

3.5.2 A análise de componentes principais

A análise de componentes principais (ACP) ou PCA (*principal componentes analysis*) é utilizada quando o objetivo é reduzir o conjunto de dados sem perda significativa de informações. Essa redução é feita transformando o conjunto de variáveis originais em um novo conjunto de variáveis que mantém, ao máximo, a variabilidade do conjunto. Todas as variáveis originais são representadas por combinações lineares e são selecionadas para a análise apenas as combinações lineares com maior representatividade de informação, sendo denominados componentes principais (CP), os quais preservam a maior quantidade de informação das variáveis originais (VICINI, 2005).

Os CP são determinados através do cálculo da matriz de variânciacovariância ou da matriz de correlação, seguido por encontrar os autovalores e autovetores e então, escrever as combinações lineares que se tornaram as novas variáveis do estudo. A quantidade de CP gerada é a mesma das variáveis originais, porém, geralmente, é comum que nas primeiras componentes principais estejam contidas uma grande porcentagem da informação original. Existem dois critérios para escolha do número de CP que serão utilizados na análise: são utilizadas todas aquelas que representam uma variância acumulada em torno de 70% ou aquelas que possuem autovalor associado maior que 1. (VICINI *et al.*, 2018; VICINI, 2005; NETO *et al.*, 1997). O uso da PCA em conjunto com descritores moleculares pode ser encontrado em diversos temas da literatura. Lauria *et al.* (2009) mostram quais descritores moleculares têm maior importância nas interações de ligação das classes de uma proteína inibidora de células cancerígenas, a partir das conformações existentes deste inibidor, são gerados mais de duzentos descritores moleculares e com o uso da PCA estes são agrupados de acordo com suas classes estruturais e seus perfis de atividade. Em 2012, Jin *et al.* estudaram micropoluentes representativos de outros contaminantes no tratamento de água potável e esses foram agrupados de acordo com suas propriedades físico-químicas e estruturais após o uso da PCA garantindo apenas os independentes entre si de um conjunto de dados inicialmente grande, cerca de duzentas variáveis entre micropoluentes e descritores.

3.5.3 A análise fatorial

A análise fatorial (AF) ou Factor Analysis (FA) é utilizada quando a finalidade é investigar os padrões ou as relações presentes em um número grande de variáveis reduzindo o número de dados inicial com a menor perda possível de informação. Um fator pode ser definido como uma combinação linear das variáveis originais e explica a variância dessas pelas correlações entre as variáveis estatísticas analisadas (MATOS *et al.*, 2019; VICINI *et al.*, 2018).

A forma mais conhecida de extrair os fatores é a análise de componentes principais. Ambas as técnicas geram combinações lineares das variáveis originais que descrevem o máximo possível a variância desses dados iniciais. Na maioria dos casos, tanto a FA quanto a PCA chegam aos mesmos resultados se o número de variáveis for maior que 30. A PCA pode atuar como um primeiro passo na FA e auxiliar na determinação do número ideal de fatores (MATOS *et al.,* 2019).

Diferentes estudos utilizando a análise fatorial podem ser encontrados na literatura. Dossus *et al.* (2013) utilizaram a análise fatorial buscando identificar riscos associados ao câncer endometrial na pós menopausa e três fatores puderam ser rotulados. A FA também foi parte do estudo de Gambetta *et al.* (2017) a fim de relacionar a características de qualidade e composição química de uvas com a origem geográfica da vinícola. Em 2019, Latreille *et al.* caracterizaram a diferenciação genética do mosquito *Aedes albopictus* em dezenove locais diferentes e a análise fatorial foi utilizada para agrupá-los de acordo com suas características ambientais.

4. MATERIAIS E MÉTODOS

4.1. A investigação da periculosidade dos corantes

Inicialmente, realizou-se uma pesquisa sobre os perigos e as incompatibilidades em relação aos corantes utilizados neste estudo. Através de fichas de informação de segurança de produtos químicos (FISPQs), foram listadas as informações sobre a segurança do trabalho com os corantes nas condições propostas para a análise.

4.2. Os testes de solubilidade dos corantes

Para estudar a resposta colorimétrica dos corantes nos solventes de diferentes polaridades, foram realizados testes de solubilidade em diferentes meios com valores distintos de pH.

4.2.1 Os corantes

Para o preparo das soluções, foram utilizados 18 corantes obtidos de fontes comerciais: cloreto de azul do 24ome (InLab), sulfato de azul do 24ome (Sigma-Aldrich), azul de metileno (InLab), azul de bromofenol (BioGrade), azul patente (InLab), azul de tripan (InLab), azul de toluidina (InLab), vermelho de metila (Vetec), vermelho de fenol (Vetec), vermelho de cresol (Vetec), púrpura de 24omercial2424 (sigma-Aldrich), púrpura de 24omercial2424 (Vetec), nitroprussiato de sódio (Vetec), nitrofenol (Vetec), fenolftaleína (Vetec), timolftaleína (Vetec), fluoresceína ácida (Vetec) e ditizona (Merck).

4.2.2 Os solventes

Foram utilizados 13 solventes puros, também obtidos comercialmente: metanol (BioGrade), etanol (Isofar), 2-propanol (Vetec), butanol (Vetec), pentanol (Vetec), octanol (Vetec), hexano (Vetec), tolueno (Vetec), tetrahidrofurano-THF (BioGrade), acetona (Sigma-Aldrich), acetonitrila (BioGrade) e acetato de etila (Vetec) e água deionizada — Milli-Q (Millipore).

4.2.3 O preparo das soluções

As soluções dos corantes, em meio neutro, foram preparadas dissolvendo o corante sólido nos solventes na faixa de concentração de 0,01 – 0,05 g/L (DOS SANTOS, 2020). Em seguida, foram diluídas para registro na câmara de fotografia.

Para o estudo em meio alcalino, utilizou-se NaOH (pastilhas), obtidos pela Isofar, dissolvido nos solventes de modo que a solução em água se encontrasse em pH igual a 12,0 e as demais, em pH igual a 10,0. Da mesma forma, para meio ácido, utilizou-se HCI, (solvente) obtido pela Isofar, diluído nos solventes até que o pH para análise das soluções fosse igual a 1,0. Para estas duas etapas, utilizou-se apenas 6 solventes (metanol, etanol, 2-propanol, butanol, pentanol e água deionizada).

4.2.4 A diluição das soluções

Um volume de 100 µL de todas as soluções inicialmente preparadas foi diluído a 2 mL com o respectivo solvente. Essa etapa foi realizada para obter uma melhor visualização da cor resultante da mistura.

4.3. A aquisição e tratamento das imagens

4.3.1 A captura das imagens

Utilizando um *smartphone* (Motorola Moto G 5S Plus, câmera de 13Mp, resolução 4160x3120 pixel e tamanho de abertura F2), foram registradas

fotografias das soluções resultantes, dispostas em cubeta de vidro (12,5mm X 12,5 X 45mm), dentro de uma câmara fotográfica para que fossem mantidas as condições de análise, contribuindo para a reprodutibilidade das imagens. Dentro na câmara, a cubeta foi apoiada em um suporte, o celular foi mantido a uma distância igual em todas as fotografias registradas, conforme mostrado na **Figura 10**. As imagens capturadas foram recortadas e ajustadas, no computador, de modo a manter apenas a cubeta como registro final.

Figura 10 — Representação esquemática da câmara fotográfica com iluminação a base de LEDs de alta potência (DOS SANTOS et al., 2020).

4.3.2 A coleta dos valores RGB

O tratamento posterior das imagens foi feito pelo *software*, de domínio público, ImageJ (https://imagej.net/software/fiji/), no qual coletaram-se valores de média, desvio padrão e coeficiente de variação percentual, utilizado com índice de variabilidade, dos componentes das cores, no padrão RGB que é um sistema de cores aditivas em que vermelho na, verde (G) e azul (B) se combinam de várias formas gerando um largo espectro cromático.

4.4. A coleta dos parâmetros de solubilidade de Hansen

Através da base de dados PubChem (https://pubchem.ncbi.nlm.nih.gov/), coletou-se informações como o InChI (identificador químico internacional IUPAC) de cada molécula. Eles foram utilizados no *software* HSPiP (https://www.hansen-solubility.com/downloads.php) para que os parâmetros parciais de polaridade (δ_p) dos solventes fossem obtidos.

Os três parâmetros de solubilidade (δ_d , $\delta_p \in \delta_h$) foram gerados, através do mesmo software, para todos os corantes utilizados no estudo. Os dados obtidos foram utilizados, posteriormente, junto aos descritores moleculares nas análises multivariadas. Os parâmetros de Hansen foram usados como aproximação e não há como saber se são, de fato, aplicáveis uma vez que não há dados experimentais que suportem o cálculo dos mesmos.

4.5. A elaboração e a organização dos mapas de cores

4.5.1 Primeiro Mapa de Cores: Critério da similaridade visual

Organizado de forma visual, o mapa de cores foi desenvolvido agrupando as cores em relação à polaridade dos solventes, similaridade de cores e solubilidade. Os parâmetros parciais de polaridade de Hansen foram obtidos para que tivéssemos uma ordenação dos solventes, quanto a polaridade. Os corantes insolúveis foram colocados de forma que ocupassem as laterais e a parte inferior do mapa.

4.5.2 Segundo Mapa de Cores: Critério do índice de variabilidade

Um segundo mapa de cores foi organizado em relação à polaridade dos solventes e o índice de variabilidade das médias do canal azul de cada corante para todos os solventes. Isto porque identificou-se o canal B como mais sensível após criação de mapas de contorno para todos os canais nos três meios (alcalino, neutro e ácido).

4.6. Os descritores moleculares

4.6.1 A obtenção dos descritores moleculares

Pesquisou-se alguns descritores moleculares com a intenção de encontrar correlações entre os descritores moleculares e os valores RGB manifestados pelos corantes nos solventes testados.

Para gerar os descritores moleculares, buscou-se o arquivo .SDF de cada corante na base de dados PubChem. O arquivo traz informações sobre a conformação tridimensional da molécula e é essencial para obtenção dos descritores pelo *software* Bioclipse (http://www.bioclipse.net/).

Ao todo, foram gerados 25 descritores moleculares para estudo: massa molar (*MM*), número de carbonos (N_c), número de heteroátomos (N_{het}), número de nitrogênios (N_n), número de oxigênios (N_o), número de ligações (N_{lig}), número de átomos aromáticos (N_{atmar}), número de anéis aromáticos (N_{ar}), número de anéis não aromáticos (N_{nar}), número total de anéis (*NT*), parâmetro de dispersão de Hansen (δ_d), parâmetro de polaridade de Hansen (δ_p), parâmetro de ligações de hidrogênio de Hansen (δ_h), área de superfície parcial carregada (*DPSA-1*), aceitadores de ligação de hidrogênio (A_{cc}), doadores de ligação de hidrogênio (D_{on}), área de superfície topológica (*TopoA*), índice gravitacional (*GRAV-1*), comprimento sobre a largura (LOB_{máx}), raio de giração (R_g), raio de Van Der Waals (*VdW*), índice de conectividade excêntrica (E_{cc}), número de Wiener (W_{PATH}), número de Wiener (W_{POL}) e índice de Zagreb (Z_{ag}) (TODECHINI *et al.*,

2000). Informações sobre esses descritores moleculares podem ser encontradas

no **Quadro 2**.

Quadro 2 - Tipo, simbologia e descrição dos descritores moleculares utilizados no presente trabalho (TODECHINI et al., 2000).

Descritor	Símbolos	Тіро	Descrição			
Massa Molar	ММ	Constitucional	Descreve a massa molecular, em g.mol-1			
Número de Carbonos	Nc	Constitucional	Descreve o número de átomos de carbono da molécula.			
Número de Heteroátomos	Nhet	Constitucional	Descreve o número de heteroátomos da molécula.			
Número de Nitrogênios	Nn	Constitucional	Descreve o número de átomos de nitrogênio da molécula.			
Número de Oxigênios	No	Constitucional	Descreve o número de átomos de oxigênio da molécula.			
Número de Ligações (Nlig)	N _{lig}	Constitucional	Descreve o número de ligações duplas e triplas da molécula.			
Número de Átomos Aromáticos (Natmar)	Natmar	Constitucional	Descreve o número de átomos aromáticos da molécula.			
Número de Anéis Aromáticos (Nar)	Nar	Constitucional	Descreve o número de anéis aromáticos da molécula.			
Número de Anéis Não Aromáticos (Nnar)	Nnar	Constitucional	Descreve o número de anéis não aromáticos da molécula.			
Número Total de Anéis (NT)	NT	Constitucional	Descreve o número total de anéis da molécula.			
Parâmetro de Dispersão de Hansen	δ_d	Eletrostático	Contribuição das energias de interação dispersivas.			
Parâmetro de Polaridade de Hansen	δ_p	Eletrostático	Contribuição das energias de interação polares.			
Parâmetro de Ligações de	δ_h	Eletrostático	Contribuição das energias de interação das ligações de hidrogênio.			

Llidrogânio do			
Hansen			
Папзен			
Área de	DPSA-1	Eletrônico	Distribuição de carga parcial
Superfície			sobre a superfície molecular.
Parcial			
Carregada			
Aceitadores de	Acc	Eletrônico	Cálculo do número de
Ligação de			aceitadores de ligações de
Hidrogênio			hidrogênio.
Doadores de	Don	Eletrônico	Cálculo do número de
Ligação de			doadores de ligações de
Hidrogênio			hidrogênio.
Área de	ТороА	Eletrônico	Cálculo da área de superfície
Superfície			polar topológica.
Topológica			
Indice	GRAV-1	Geométrico	Caracteriza a distribuição de
Gravitacional			massa da molécula.
Comprimento	LOBмáx	Geométrico	Cálculo da relação entre
Sobre a Largura			comprimento e largura máximo
Ŭ			da molécula.
Raio de Giração	R_g	Geométrico	Distância quadrada média das
-	-		partes dos objetos de seu
			centro de gravidade ou de um
			eixo.
			É aproximadamente a raiz
			quadrada da massa molar
Raio de Van	VdW	Geométrico	Descreve o raio de Van der
Der Waals			Waals da molécula.
Índice de	Ecc	Topológico	Combina informações de
Conectividade			distância e adjacência.
Excêntrica			-
Número de	Wpath	Topológico	Soma das contagens de
Wiener			arestas nos caminhos mais
			curtos entre todos os pares de
			átomos que não são de
			hidrogênio. PATH se refere ao
			caminho de Wiener
Número de	Wpol	Topológico	Soma das contagens de
Wiener			arestas nos caminhos mais
			curtos entre todos os pares de
			atomos que nao sao de
			niurogenio. POL se refere a
Índico do	7	Topológico	Polaridade de Wiener
	Lag	ιοροιοφιού	do átomo sobro todos os
Layien			atomos pesados
			aiumus pesauus.

4.6.2 A análise de correlação dos descritores moleculares

Sabe-se que um descritor pode refletir a informação de outro quando estes estão fortemente correlacionados. Então, realizou-se uma análise dos descritores entre si, através de uma matriz de correlação. Os descritores com correlação maior de 0,8, em módulo, foram considerados bem correlacionados. Esta etapa reduziu o conjunto de dados, mantendo apenas os descritores mais significativos e evitando redundâncias nas análises posteriores.

4.7. A análise multivariada

4.7.1 Análise de componentes principais e análise fatorial

Os descritores selecionados após a análise prévia de correlação foram organizados em uma nova tabela no *software* Statistica 8.0 (Statsoft Ins., EUA). A partir deles, foram gerados os autovalores que seriam utilizados posteriormente na formação das combinações lineares. Foi tabulado também a porcentagem acumulada da variância explicada por cada autovalor gerado. Após, encontrou-se a contribuição de cada variável nas componentes principais através de uma matriz de correlação entre elas. Esta etapa é importante porque consegue-se destacar quais variáveis melhor explicam cada componente principal utilizado na análise.

Em busca de uma melhor identificação dos tipos de descritores que compunham cada fator, foi realizada rotação dos eixos através da rotação varimax normalizada. Por fim, foram utilizados círculos unitários onde é possível identificar visualmente quais variáveis estão relacionadas com a resposta colorimétrica obtida pelos corantes.

5. RESULTADOS E DISCUSSÃO

5.1. A investigação da periculosidade dos corantes

No Quadro 3 é possível observar a periculosidade e incompatibilidade

dos corantes estudados neste projeto (Material Safety Data Sheet (MSDS),

Sigma-Aldrich; Laboratory Chemical Safety Summary (LCSS), PubChem).

Quadro 3 - Periculosidade e incompatibilidades dos corantes estudados neste projeto.

Corante	Perigos e Incompatibilidades
Cloreto de Azul do Nilo	Não é uma substância perigosa.
	Incompatível com agentes oxidantes fortes.
Sulfato de Azul do Nilo	Não é uma substância perigosa.
	Incompatível com agentes oxidantes fortes.
Azul de Metileno	Corrosivo, irritante.
	Incompatível com agentes oxidantes fortes, agentes redutores, álcalis cáusticos, álcalis iodetos e dicromatos.
Azul de Bromofenol	Não é uma substância perigosa.
	Incompatível com agentes oxidantes fortes.
Azul Patente	Não é uma substância perigosa.
	Incompatível com agentes oxidantes fortes.
Azul de Tripan	Perigoso.
	Incompatível com agentes oxidantes fortes e ácidos fortes.
	Combinações explosivas podem ocorrer com agentes oxidantes fortes, sais metálicos, peróxidos e sulfetos.
Azul de Toluidina	Não é uma substância perigosa.
	Incompatível com agentes oxidantes fortes.
	Irritante.
Vermelho de Metila	Não é uma substância perigosa.
	Incompatível com agentes oxidantes fortes.
Vermelho de Fenol	Não é uma substância perigosa.
	Incompatível com agentes oxidantes fortes.
	Irritante.
Vermelho de Cresol	Não é uma substância perigosa.
	Incompatível com agentes oxidantes fortes.
	Irritante.
Purpúra de Bromocresol	Não é uma substância perigosa.
	Incompatível com agentes oxidantes fortes.
	Irritante.
Purpúra de Metacresol	Não é uma substância perigosa.

	Incompatível com agentes oxidantes fortes.						
Nitroprussianato de Sódio	Perigoso.						
	Incompatível com agentes oxidantes fortes.						
	Toxicidade Aguda.						
Nitrofenol	Toxicidade Aguda.						
	Incompatível com agentes oxidantes fortes e bases fortes.						
	Irritante.						
	Misturas com fosfito dietílico podem explodir quando aquecidas.						
	Misturas sólidas de 4-nitrofenol com hidróxido de potássio (1: 1,5 mol) deflagram facilmente, a uma taxa rápida de 30 cm / min.						
Fenolftaleína	Perigoso.						
	Incompatível com agentes oxidantes fortes.						
	Incompatível com alcaloides.						
Timolftaleína	Não é uma substância perigosa.						
	Incompatível com agentes oxidantes fortes.						
	Inflamável.						
Fluoresceína Ácida	Irritante.						
	Incompatível com agentes oxidantes fortes.						
	Também incompatível com ácidos, sais ácidos e sais de metais pesados.						
Ditizona	Incompatível com agentes oxidantes fortes.						
	Irritante.						

A partir das informações descritas no **Quadro 3** prosseguiu-se com o estudo pois observou que nenhum corante apresentava incompatibilidade com os solventes utilizados nas análises.

5.2. Os testes de solubilidade dos corantes

Os resultados obtidos pelos testes de solubilidade dos corantes nos solventes, referentes aos três meios estudados (neutro, alcalino e ácido), estão apresentados nas Figuras 11 a 14.

Figura 11 - Coloração de soluções diluídas dos 18 corantes testados em pH neutro, nos solventes metanol, etanol, 2-propanol, butanol, pentanol, octanol e água. O retângulo cortado em branco indica que o corante é insolúvel no respectivo solvente.

36

Figura 12 - Coloração de soluções diluídas dos 18 corantes testados em pH **neutro**, nos solventes THF, acetona, acetonitrila, acetato de etila, tolueno e hexano. O retângulo cortado em branco indica que o corante é insolúvel no respectivo solvente.

Figura 13 - Coloração de soluções diluídas dos 18 corantes testados em pH **alcalino**, nos solventes metanol, etanol, 2-propanol, butanol, pentanol e água. O retângulo cortado em branco indica que o corante é insolúvel no respectivo solvente.

•

Figura 14 - Coloração de soluções diluídas dos 18 corantes testados em pH **ácido**, nos solventes metanol, etanol, 2-propanol, butanol, pentanol e água. O retângulo cortado em branco indica que o corante é insolúvel no respectivo solvente.

O corante nitroprussiato de sódio foi solúvel em metanol, etanol (apenas no meio alcalino) e em água apenas após 5 minutos no ultrassom. É importante ressaltar que a fluoresceína ácida em butanol apresentou coloração laranja no primeiro instante e em seguida assumiu coloração amarelada. Após realizados os testes em pH neutro, verificou-se que diversos corantes eram insolúveis nos solventes de baixa polaridade e, pela dificuldade de alterar o pH de solvente orgânicos, os testes realizados em pH alcalino e pH ácido se utilizou apenas seis solventes.

A partir dos resultados apresentados nas **Figuras 11 a 14**, pode-se observar que os corantes azul de tripan e nitroprussiato de sódio são insolúveis na maioria dos solventes testados, nos três meios. Quando solúveis, são apenas naqueles de maior polaridade. Os solventes tolueno e hexano são os que menos solubilizaram os corantes, apenas sulfato de azul do Nilo, no primeiro, vermelho de metila e ditizona, em ambos, no meio neutro.

Na **figura 12**, pode-se observar que, nos solventes representados, os corantes se apresentam de forma incolor ou com colorações de intensidade de cor muito leves. Ao contrário do vermelho de metila e ditizona, que mantiveram coloração intensa em quase todos os solventes representados nessa figura.

Nas **figuras 13 e 14**, nota-se que poucos são os corantes insolúveis em meio alcalino e ácido. Em pH alcalino, destaca-se o gradiente de matiz única (monocromático) formado pelas cores das soluções no mesmo corante conforme diminui a polaridade dos solventes. Outra característica marcante observada por essas figuras é a intensidade das cores das soluções obtidas em cada meio. Em pH ácido, as cores são menos intensas quando comparadas ao meio alcalino.

Algumas soluções apresentaram mudanças na coloração após diluição, conforme descrito no **Quadro 4**, mostrando que a resposta colorimétrica obtida é dependente da concentração. A concentração das soluções utilizadas neste estudo está em uma faixa de 0,01g/L a 0,5 g/L.

pH Neutro						
Corante	Solventes					
Cloreto de Azul do Nilo	Octanol, THF, Acetato De Etila, Acetona, Água					
Sulfato de Azul do Nilo	Tolueno, Octanol, THF, Acetato De Etila, Acetona					
Azul de Metileno	THF, Pentanol, Acetona					
Azul de Bromofenol	2-Propanol, Água					
Azul Patente	THF, Acetona					
Azul de Toluidina	Acetona					
Vermelho de Metila	Tolueno, Octanol, THF, Pentanol, Butanol, 2-Propanol, Acetona, Etanol, Metanol, Água, Acetonitrila					
Vermelho de Fenol	Octanol, THF, Pentanol, Acetato De Etila, Butanol, 2- Propanol, Acetona, Etanol, Metanol, Água					
Vermelho de Cresol	THF, Pentanol, Acetato De Etila, Butanol, 2-Propanol, Acetona, Etanol, Metanol, Água, Acetonitrila					
Purpúra de Bromocresol	THF, 2-Propanol, Acetona, Etanol, Metanol, Água					
Purpúra de Metacresol	Octanol, Pentanol, Butanol, 2-Propanol, Etanol, Metanol, Água					
Nitrofenol	Pentanol					
Fluoresceína Ácida	THF, Acetato De Etila, 2-Propanol, Acetona, Etanol, Água, Acetonitrila					
Ditizona	Pentanol, Butanol, Água					
	pH Alcalino					
Corante	Solventes					
Cloreto de Azul do Nilo	Água					
Sulfato de Azul do Nilo	Água					
Azul de Metileno	Pentanol, Butanol, 2-Propanol, Etanol					
Azul de Tripan	Etanol					
Nitroprussianato de Sódio	2-Propanol, Etanol, Metanol, Água					
	pH Ácido					
Corante	Solventes					
Cloreto de Azul do Nilo	2-Propanol, Água					
Sulfato de Azul do Nilo	2-Propanol, Água					
Azul de Metileno	Pentanol, 2-Propanol					
Azul de Bromofenol	Água					
Azul Patente	Água					
Azul de Tripan	Butanol, 2-Propanol, Etanol					
Vermelho de Fenol	Butanol, Etanol, Metanol					

• • • •	<u>~ - ~</u>						~	,	1.1.1.1.1	~
Ulladro 4 -	Solucoes d	nne a	nresentaram	mudanca	is na	colorad	າລດ ລ	nns	dili iic	าลก
Quuul V T		լսս ս	presentarum	maaanyo	10 110	ooloruq	,uu u	p00	anaių	<i>u</i> o.

Vermelho de Cresol	Pentanol, Butanol, 2-Propanol, Água
Purpúra de Bromocresol	Água
Purpúra de Metacresol	Pentanol, Água
Nitroprussiato de Sódio	Metanol, Água
Ditizona	2-Propanol, Etanol, Metanol, Água

5.3. O tratamento das imagens digitais

5.3.1 A intensidade dos canais RGB

As imagens digitais foram adquiridas e tratadas conforme descrito no item 4.3 (A aquisição e tratamento das imagens, pág. 26) e os valores de intensidade dos canais R, G e B de cada resposta colorimétrica, obtida por cada corante, em todos os solventes testados encontram-se apresentados no **apêndice 01 (pág. 88)**, **apêndice 02 (pág. 94)** e **apêndice 03 (pág. 97)** para os meios neutro, alcalino e ácido, respectivamente.

A partir desses valores de intensidade obtidos, calculou-se a média, o desvio padrão e o desvio padrão relativo (ou coeficiente de variação, para uma medida de variabilidade) da intensidade de cada canal R, G e B, em cada corante, nos diferentes meios estudados (neutro, **Tabela 1**; alcalino, **Tabela 2** e ácido, **Tabela 3**).

Tabela 1 - Dados de média, desvio padrão e índice de variabilidade dos valores de intensidade dos canais Red, Green e Blue de cada resposta colorimétrica obtida para cada corante estudado em todos os solventes testados, em pH neutro.

	Corantes		RED			GREEN			BLUE	
		Média	Desvio Padrão	IV*	Média	Desvio Padrão	IV*	Média	Desvio Padrão	IV*
		04.04		04.00	400.55	54 07	40 5	400.00		
1	Cloreto de Azul do Nilo	94,04	57,45	61,09	106,55	51,67	48,5	123,86	55,01	44,41
2	Sulfato de Azul do Nilo	87,66	54,28	61,92	109	41,28	37,87	136,03	41,22	30,3
3	Azul de Metileno	62,07	64,57	104,02	81,5	64,94	79,68	101,73	70,62	69,41
4	Azul de Bromofenol	119,06	54,54	45,81	114,36	54,12	47,32	57,96	60,2	103,85
5	Azul Patente	56,05	59,81	106,71	91,73	58,25	63,5	108,26	72,76	67,21
6	Azul de Tripan	8,58	24,74	288,33	8,11	25,83	318,61	22,66	55,32	244,11
7	Azul de Toluidina	69,93	62,34	89,15	89,29	62,88	70,42	112,24	65,05	57,95
8	Vermelho de Metila	154,99	5,75	3,71	100,72	23,44	23,27	30,27	50,25	166,01
9	Vermelho de Fenol	125,19	55,82	44,59	117,57	52,71	44,84	57,8	66,1	114,36
10	Vermelho de Cresol	129,3	57,8	44,71	100,41	50,64	50,43	70,21	67,38	95,97
11	Purpúra de Bromocresol	123,37	54,87	44,47	110,76	60,72	54,82	51	60,32	118,27
12	Purpúra de Metacresol	78,56	75,73	96,39	74,91	72,3	96,52	66,81	66,52	99,55
13	Nitroprussianato de Sódio	22,2	54,21	244,12	21,5	52,5	244,14	22,14	54,04	244,12
14	Nitrofenol	111,97	63,85	57,03	109,12	62,25	57,04	112,36	64,18	57,12
15	Fenolftaleína	102,43	71,98	70,27	99,94	70,3	70,34	103,81	73,14	70,45
16	Timolftaleína	111,63	63,71	57,07	109,57	62,5	57,04	113,92	64,99	57,05
17	Fluoresceína Ácida	113,31	64,64	57,05	123,1	55,02	44,7	108,02	52,62	48,71
18	Ditizona	87,79	45,7	52,06	112,84	19,25	17,06	95,49	31,84	33,35

*IV: Índice de variabilidade

Tabela 2 - Dados de média, desvio padrão e índice de variabilidade dos valores de intensidade dos canais *Red, Green e Blue* de cada resposta colorimétrica obtida para cada corante estudado em todos os solventes testados, em pH alcalino.

	Corantes		RED			GREEN			BLUE	
		Média	Desvio Padrão	IV*	Média	Desvio Padrão	IV*	Média	Desvio Padrão	IV*
1	Cloreto de Azul do Nilo	163,38	27,10	16,59	88,50	45,77	51,72	87,06	50,36	57,85
2	Sulfato de Azul do Nilo	169,66	27,20	16,03	83,58	44,16	52,83	78,70	48,08	61,09
3	Azul de Metileno	80,88	56,18	69,46	89,21	42,68	47,84	118,64	45,62	38,45
4	Azul de Bromofenol	62,78	9,16	14,58	66,55	36,61	55,01	161,24	15,67	9,72
5	Azul Patente	78,11	64,94	83,15	114,82	29,67	25,84	145,90	7,95	5,45
6	Azul de Tripan	36,77	55,84	151,87	36,12	54,30	150,34	66,39	73,13	110,15
7	Azul de Toluidina	129,73	16,41	12,65	75,96	46,50	61,21	124,81	22,95	18,39
8	Vermelho de Metila	145,89	4,41	3,02	142,38	2,36	1,66	64,58	55,84	86,47
9	Vermelho de Fenol	124,02	20,67	16,67	46,25	46,98	101,57	128,19	47,59	37,12
10	Vermelho de Cresol	94,39	17,08	18,09	30,62	33,77	110,29	134,41	39,19	29,15
11	Purpúra de Bromocresol	79,62	13,11	16,46	72,99	43,76	59,95	160,45	24,84	15,48
12	Purpúra de Metacresol	74,27	25,32	34,09	56,98	43,75	76,78	144,82	36,19	24,99
13	Nitroprussianato de Sódio	93,87	72,73	77,48	90,44	70,08	77,49	71,05	71,73	100,96
14	Nitrofenol	142,06	1,79	1,26	145,98	1,71	1,17	66,95	39,85	59,51
15	Fenolftaleína	141,45	10,28	7,27	101,47	19,49	19,20	152,08	10,35	6,80
16	Timolftaleína	87,25	25,90	29,69	109,54	19,00	17,34	153,95	3,90	2,53
17	Fluoresceína Ácida	148,39	3,73	2,51	159,73	5,35	3,35	46,64	42,50	91,13
18	Ditizona	150,71	5,78	3,83	120,38	8,88	7,38	67,65	41,59	61,48

IV: Índice de variabilidade*Tabela 3** - Dados de média, desvio padrão e índice de variabilidade dos valores de intensidade dos canais *Red, Green e Blue* de cada resposta colorimétrica obtida para cada corante estudado em todos os solventes testados, em pH ácido.

	Corantes		RED			GREEN			BLUE	
		Média	Desvio Padrão	IV*	Média	Desvio Padrão	IV*	Média	Desvio Padrão	IV*
	Clarata da Arul da Nila	420.00	04.04	40.50	407 70	0.74	C 00	140.40	F 44	0.7
		130,69	21,64	10,50	137,73	8,71	6,32	146,13	5,41	3,7
2	Sulfato de Azul do Nilo	127,58	24,44	19,16	138,14	6,14	4,45	148,69	2,7	1,82
3	Azul de Metileno	116,67	37,47	32,12	138,47	7,52	5,43	148,42	4,64	3,13
4	Azul de Bromofenol	144,99	5,14	3,55	142,99	4,61	3,23	127,48	15,97	12,52
5	Azul Patente	121,77	26,04	21,38	139,54	7,28	5,22	128,38	25,3	19,7
6	Azul de Tripan	110,46	58,39	52,86	109,78	56,98	51,91	122,6	60,1	49,02
7	Azul de Toluidina	118,32	15	12,68	137,79	3,18	2,3	149,46	5,21	3,48
8	Vermelho de Metila	157,29	4,91	3,12	105,46	17,82	16,9	145,14	3,15	2,17
9	Vermelho de Fenol	150,2	6,22	4,14	119,75	9,17	7,66	137,13	12,63	9,21
10	Vermelho de Cresol	159,11	12,67	7,97	104,42	15,22	14,58	151,15	10,1	6,68
11	Purpúra de Bromocresol	146,04	3,64	2,49	143,1	3,88	2,71	136,33	4,62	3,39
12	Purpúra de Metacresol	144,67	3,25	2,25	120,37	28,24	23,46	142,33	6,54	4,59
13	Nitroprussianato de Sódio	50,68	78,51	154,92	49,02	75,94	154,92	50,45	78,15	154,92
14	Nitrofenol	146,84	6,06	4,13	142,95	5,75	4,02	148,27	5,22	3,52
15	Fenolftaleína	145,43	7,82	5,37	142,22	6,6	4,64	147,24	6,78	4,6
16	Timolftaleína	146,59	2,49	1,7	143,11	3,65	2,55	147,88	3,26	2,2
17	Fluoresceína Ácida	143,01	5,76	4,03	153,28	7,65	4,99	86,48	35,66	41,23
18	Ditizona	142,2	8,31	5,85	141,71	4,62	3,26	146,42	3,5	2,39

*IV: Índice de variabilidade

Os valores de desvio padrão e índice de variabilidade observados nas **tabelas 1, 2 e 3** foram obtidos como uma forma de medir a variabilidade dos valores de intensidade das soluções. Eles foram calculados para todos os corantes, visando a obtenção de uma métrica de variação de cor entre os solventes estudados. Azul de tripan e nitroprussiato de sódio são os corantes que apresentaram soluções com maior IV, embora sejam os que menos solubilizaram nos solventes testados. Os valores encontrados de intensidade dos canais R, G e B, nas soluções desses corantes são discrepantes, ao ponto de saírem de valores próximos a 10-20 em metanol para valores entre 80-90 em água, em meio neutro (**Apêndice 01**).

O contrário pode ser observado para os corantes que apresentam menor CV%: em meio neutro, vermelho de metila (R), ditizona (G) e sulfato de azul do Nilo (B); em meio alcalino, nitrofenol (R, G), timolftaleína (B); e, em meio ácido, timolftaleína(R), azul de toluidina (G) e sulfato de azul do Nilo (B). Os valores de intensidade de cada canal variam pouco de um solvente para o outro (**Apêndice 01**; **Apêndice 02**; **e Apêndice 03**).

O efeito do pH também pode ser observado ao analisar as **tabelas 1, 2 e 3**. As soluções em meio neutro foram as que apresentaram maior variabilidade na intensidade dos canais, o que pode ser percebido pela presença de valores de índice de variabilidade frequentemente maiores. Enquanto que no meio ácido, os valores de IV são menores.

5.4. Os parâmetros de solubilidade de Hansen dos solventes

Os parâmetros de solubilidade de Hansen baseiam-se na teoria de que a energia coesiva total pode ser dividida em três componentes individuais: forças de dispersão, interações polares e ligações de hidrogênio. São parâmetros utilizados, geralmente, para avaliar a compatibilidade e solubilidade entre matérias. Neste sentido, os parâmetros de solubilidade de Hansen foram obtidos para que tivéssemos uma ordenação dos solventes, quanto a polaridade, na direção horizontal do mapa de cores. Os valores de parâmetro de solubilidade (δ_p) dos solventes estudados neste projeto podem ser observados na **Tabela 4**.

Tabela 4 - Parâmetros de solubilidade de Hansen dos solventes estudados nest	е
projeto, obtidos pelo software HSPiP.	

Solvente	δр
Hexano	0,1
Tolueno	2,6
Octanol	4,4
Tetrahidrofurano	4,9
Pentanol	5,8
Acetato de Etila	6,3
2 - Propanol	7,3
Acetona	9,1
Etanol	9,3
Metanol	12,3
Água Deionizada	12,8
Acetonitrila	16,6

A partir dos resultados apresentados na **Tabela 4** podemos observar a seguinte ordem crescente de polaridade dos solvestes estudados: hexano < tolueno < octanol < tetrahidrofurano < pentanol < acetato de etila < butanol < 2-propanol < acetona < etanol < metanol < água deionizada < acetonitrila.

A presença de elementos eletronegativos nos solventes acetonitrila, água, metanol e etanol justifica a posição que esses solventes se encontram na ordem crescente de polaridade encontrada. Uma vez que a diferença de eletronegatividade entre dois átomos é uma medida da polaridade da ligação e pode impactar também na polaridade da molécula (BROWN *et al.*, 2005).

Os resultados da **Tabela 4** foram organizados de forma gráfica, conforme mostra a **Figura 15**.

Figura 15 - Distribuição dos valores de δp. dos solventes estudados neste projeto.

A partir da **Figura 15**, observa-se uma boa distribuição de polaridade entre os solventes testados, o que torna os resultados posteriores não tendenciosos para esta determinada faixa de polaridade.

5.5. A elaboração e a organização dos mapas de cores

5.1 Primeiro Mapa de Cores: Critério da similaridade visual

O primeiro mapa de cores, organizado por similaridade visual de cores, para os meios neutro, alcalino e ácido, pode ser visto na **Figura 16**. Os solventes foram colocados no eixo horizontal em ordem crescente de polaridade de acordo com os valores do parâmetro de polaridade de Hansen (ver **Tabela 4** e **Figura 15**).

Uma aplicação prática do mapa de cores é dar suporte aos estudos do nosso grupo de pesquisa, nos quais visa-se utilizar os corantes solvatocrômicos na análise de combustíveis, como determinação do teor de: a) metanol em etanol combustível, b) etanol em gasolina, c) óleo diesel em gasolina e d) biodiesel em óleo diesel. O mapa de cores pode ser usado, por exemplo, para auxiliar na seleção dos melhores solventes e corantes para o desenvolvimento de métodos.

Ao observar os mapas de cores, consegue-se notar o efeito do pH na mudança da resposta colorimétrica de um mesmo corante. Um exemplo é o corante vermelho de metila que em pH neutro, apresenta coloração laranja, em pH alcalino, vermelha e em pH ácido, rosa. O azul de bromofenol também adquire uma mudança significativa ao se apresentar amarelo em pH neutro e azul em pH alcalino. Da mesma forma, cloreto de azul do Nilo e sulfato de azul do Nilo, exibem coloração azul em pH neutro e vermelha em pH alcalino.

Essa variável já foi objeto de estudo em 2020 por Dos Santos *et al.* onde concluíram que o pH apresenta influência sobre a cor de corantes solvatocrômicos em solução. Dessa forma, uma outra aplicação do mapa de cores é auxiliar na escolha de corantes que possam ser úteis como indicadores de pH.

5.6. Os Mapas de Contorno

Para uma melhor visualização da variação de intensidade de cada canal, criaram-se mapas de contorno. A projeção de um gráfico de superfície em um plano representa a alteração dos valores numéricos através de contornos e uma variação gradativa da cor de acordo com uma escala.

A organização dos mapas de contorno foi feita usando o índice de variabilidade (**Tabelas 1, 2 e 3**), obtidos conforme descritos no item 5.3.1 (A intensidade dos canais RGB, pág. 41) de cada canal R, G e B como critério de ordenação dos corantes no eixo horizontal. O eixo vertical seguiu a sequência dos solventes em ordem crescente de polaridade, seguindo o parâmetro de polaridade de Hansen.

Os gráficos de contorno de cada canal R, G e B, em cada corante e solvente empregado, nos diferentes meios estudados (neutro, alcalino e ácido) podem ser encontrados, respectivamente nas **Figuras 17**, **18** e **19**.

Figura 17 - Mapas de contorno para os valores RED (**a**), GREEN (**b**) e BLUE (**c**) obtidos após processamento de imagens para cada corante dissolvido em cada solvente, utilizando meio **neutro**. A dimensão horizontal foi organizada em ordem crescente (esquerda para direita) de índice de variabilidade calculado para cada corante, em relação à reposta colorimétrica obtida em todos os solventes. A dimensão vertical foi organizada em ordem crescente (de baixo para cima) de polaridade dos solventes.

Figura 18 - Mapas de contorno para os valores RED (**a**), GREEN (**b**) e BLUE (**c**) obtidos após processamento de imagens para cada corante dissolvido em cada solvente, utilizando meio **alcalino**. A dimensão horizontal foi organizada em ordem crescente (esquerda para direita) de índice de variabilidade calculado para cada corante, em relação à reposta colorimétrica obtida em todos os solventes. A dimensão vertical foi organizada em ordem crescente (de baixo para cima) de polaridade dos solventes.

Figura 19 - Mapas de contorno para os valores RED (**a**), GREEN (**b**) e BLUE (**c**) obtidos após processamento de imagens para cada corante dissolvido em cada solvente, utilizando meio **ácido**. A dimensão horizontal foi organizada em ordem crescente (esquerda para direita) do índice de variabilidade calculado para cada corante, em relação à reposta colorimétrica obtida em todos os solventes. A dimensão vertical foi organizada em ordem crescente (de baixo para cima) de polaridade dos solventes.

Para melhor apreciação dos mapas de contorno, exemplifica-se a interpretação do gráfico para o canal B referente ao conjunto de dados obtidos para o meio neutro (**Figura 17.c**). No gráfico mencionado, são plotados os valores do canal B observados para cada corante em cada solvente testado. O eixo vertical do mapa está ordenado do solvente menos polar para o mais polar (de baixo para cima). O eixo horizontal ordena os corantes segundo a variabilidade observada para os valores do canal B, ou seja, os corantes mais à esquerda do mapa, apresentaram menor variabilidade do canal B, enquanto que os corantes mais à direita do mapa, apresentaram maior variabilidade do canal B. Em outras palavras, esse critério de organização tende a agrupar, espacialmente, os corantes que apresentam alta variação de cor (medido por um dos canais R, G ou B) numa dada região do mapa.

A partir dos mapas de contorno apresentados nas **Figuras 17, 18 e 19**, podemos concluir que o canal azul foi o canal que apresentou maior variação em função da mudança de cor do corante analisado e do meio testado. Dessa forma, os valores de índice de variabilidade desse canal foi escolhido para organizar o segundo mapa de cores na dimensão dos corantes, como forma de organizar as cores de acordo com a variabilidade da intensidade do canal B.

Importante destacar que a diversidade das cores percebida na primeira organização do mapa de cores também pode ser verificada pelos mapas de contorno. A **Figura 19** apresenta mapas de contorno com um único tom de vermelho, verde e azul predominante, mostrando que a variabilidade da intensidade dos canais é baixa, refletindo a que as cores enxergadas não variam muito (**Figura 16.a**). O contrário pode ser observado nas **Figuras 17 e 18**, onde os tons das cores R, G, B variam bastante, demostrando a alta variabilidade da intensidade de cada canal, expressa

visualmente pelas variadas cores observadas nas soluções em meio neutro e alcalino (Figura 16.b e 16.c).

5.7. Segundo Mapa de Cores: Critério do índice de variabilidade

A segunda organização dos mapas de cores, baseada no índice de variabilidade do canal azul, para os três meios pode ser visto na **Figura 20**. Os corantes foram organizados em ordem crescente de índice de variabilidade e os solventes, em ordem crescente de polaridade de acordo com os valores do parâmetro de polaridade de Hansen (ver **Tabela 4** e **Figura 15**).

Figura 20 - Mapas para as soluções dos 18 corantes organizados por ordem de índice de variabilidade (vertical) e polaridade dos solventes (horizontal) contemplando os meios ácido (**a**), neutro (**b**) e alcalino (**c**). Na dimensão horizontal, os solventes estão organizados por ordem de polaridade crescente (esquerda para direita), de acordo com seus respectivos valores de δp (parâmetro parcial de solubilidade de Hansen). Na dimensão vertical, as cores foram organizadas em ordem crescente (de baixo para cima) de índice de variabilidade BLUE calculado para cada corante, contemplando todos os solventes. As células representam a região de interesse extraída das imagens originais das soluções diluídas. Células em branco indicam que o corante é insolúvel no respectivo solvente.

A partir do resultado apresentado na **Figura 20**, percebe-se que a organização de acordo com o índice de variabilidade tendencia a agrupar as soluções dos corantes com matiz azul e verde na parte superior do mapa e com matiz vermelha e laranja, na parte inferior. A exceção do corante azul de tripan, que se localiza na parte de baixo do mapa apesar se apresentar coloração azul. Uma explicação possível é que este corante é solúvel em poucos solventes, o que impactou no cálculo do CV%, gerando um valor mais alto.

3.1. Os descritores moleculares

5.6.1 A obtenção dos descritores moleculares

Em busca de novos parâmetros que auxiliem na predeterminação da cor resultante de um corante em uma solução, alguns descritores moleculares dos corantes foram gerados através do *software* Bioclipse (versão 2.6.2). Um total de 25 descritores (ver item 5.6.1 – A obtenção dos descritores moleculares, pág. 57) foram coletados para compor o banco de dados inicial, e os resultados obtidos podem ser observados no **apêndice 04, pág. 100**.

5.6.2 A análise de correlação dos descritores moleculares

Foi realizada uma análise de correlação dos descritores entre si para evitar redundância dos dados nas etapas posteriores de análise. Através de uma matriz de correlação, onde os valores dos descritores são normalizados, aqueles com correlação maior ou igual a 0,8, em módulo, foram considerados bem correlacionados. Os resultados obtidos podem ser observados na **Tabela 5**.

Descritores	Total de Correlações
Índice Gravitacional (GRAV-1)	6
Raio de Giração (R _g)	6
Raio de Van Der Waals (VdW)	6
Índice de Conectividade Excêntrica (E _{cc})	6
Índice de Zagreb (Z _{ag})	6
Número de Wiener (W _{PATH})	5
Número de Wiener (W _{POL})	5
Número de Heteroátomos (N _{het})	4
Número de Ligações (N _{lig})	4
Massa Molar (MM)	3
Número de Carbonos (N _c)	3
Número Total de Anéis (NT)	3
Número de Átomos Aromáticos (<i>Natmar</i>)	2
Parâmetro de Polaridade de Hansen (δ_p)	2
Parâmetro de Ligação de Hidrogênio de Hansen (δ_h)	2
Número de Oxigênios (N _o)	1
Número de Anéis Não Aromáticos (N _{nar})	1
Parâmetro Dispersão de Hansen (δ_d)	1
Doadores de Ligação de Hidrogênio (Don)	1
Comprimento Sobre a Largura (LOB _{máx})	1
Número de Nitrogênios (N _n)	0
Número de Anéis Aromáticos (N _{ar})	0
Área de Superfície Parcial Carregada (DPSA-1)	0
Aceitadores de Ligação de Hidrogênio (Acc)	0
Área de Superfície Topológica (TopoA)	0

Tabela 5 - Total de correlação dos 25 descritores moleculares entre si.

A partir da **Tabela 5** pode-se observar que alguns descritores apresentam alto grau de correlação entre si. Os descritores raio de giração, índice gravitacional e raio de Van der Waals, por exemplo, todos classificados como geométricos, descrevem propriedades que expressam o tamanho da molécula, mas cada um em uma escala diferente, o que os torna muito bem correlacionados. A Figura 21 apresenta um grafo das correlações dos 25 descritores entre

si.

Figura 21 - Grafo de correlação entre os 25 descritores. As linhas representam as correlações existentes para cada descritor e os números indicam a quantidade de pares de correlação (> 0,8) para cada variável.

O grafo de correlações mostra as variáveis independentes e todas as suas correlações através das linhas. Em negrito estão os descritores que foram mantidos e utilizados nas análises posteriores e em cinza, os descritores que foram excluídos seguindo os critérios:

O raio de giração (R_g) tem melhor interpretação física que o índice gravitacional (*GRAV -1*). É fácil de calcular podendo ser obtido como a raiz

quadrada da massa molar do composto (POLING *et al.*, 2000). Optou-se por mantê-lo ao invés do índice gravitacional pois os dois são bem correlacionados com os mesmos outros seis descritores.

O índice de conectividade excêntrica (E_{cc}) também está bem correlacionado com os mesmos descritores que o raio de giração. E por ser um descritor do tipo topológico e traz informações diferentes deste último. Relaciona-se bem com diversas propriedades físicas e tem boa capacidade discriminatória. Apesar disso, optou-se por excluí-lo uma vez que pode ser bem representado pelo raio de giração.

O raio de Van der Waals (VdW) e o índice de Zagreb (Z_{ag}) são também bem correlacionados com os mesmos seis descritores que o raio de giração. Decidiu-se excluí-los para evitar redundâncias na análise.

Os números de Wiener ($W_{PATH} e W_{POL}$) são descritores topológicos, fáceis de serem calculados através de uma estrutura 2D mas, por vezes, é difícil de ser interpretado fisicamente. Os números de Wiener são, do ponto de vista físico, descritores que caracterizam a ramificação em uma estrutura molecular; o W_{PATH} se refere ao caminho de Wiener, enquanto que W_{POL} , à polaridade de Wiener. Está bem correlacionado com outros cinco descritores que são bem correlacionas também com o raio de giração. Por esses critérios, esses descritores foram excluídos.

O número de nitrogênio (N_n), área de superfície parcial carregada (DPSA-1), aceitadores de ligação de hidrogênio (A_{cc}) e área de superfície topológica (TopoA) são descritores que não se correlacionam com nenhum outro e, por isso, trazem informações novas para a análise. Sendo assim, optou-se por mantêlos.

O número de carbonos (N_c) é um descritor de fácil obtenção e se correlaciona bem com os outros três descritores, massa molar (MM), número de ligação (N_{lig}) e número de anéis totais (NT). O primeiro foi mantido, e os três últimos foram excluídos. O número de anéis não aromáticos (N_{nar}) se manteve após sua única correlação ser excluída.

Os parâmetros de solubilidade de Hansen (δ_p , $\delta_h \in \delta_d$) foram mantidos, pois, juntos trazem informações importantes sobre as diferentes forças de interação que atuam nas moléculas dos corantes em análise. O número de heteroátomos (N_{het}) é um descritor de fácil de obtenção, mas que pode ser bem representado por $\delta_p \in \delta_h$, por isso foi excluído. Da mesma forma, o número de oxigênios (N_o), bem correlacionado com δ_d , foi excluído.

Por fim, o número de átomos aromáticos (N_{atmar}) e o comprimento sobre largura (LOB_{MÁX}) se mantiveram e excluiu-se o número de anéis aromáticos (N_{ar}) e doadores de ligação de hidrogênio (D_{on}) porque são bem correlacionados entre si.

Após a análise de correlação, os descritores utilizados nas próximas etapas do estudo se resumem em 12: número de carbonos (N_c), número de nitrogênios (N_n), número de átomos aromáticos (N_{atmar}), número de anéis não aromáticos (N_{nar}), parâmetro de dispersão de Hansen (δ_d), parâmetro de polaridade de Hansen (δ_p), parâmetro de ligações de hidrogênio de Hansen (δ_h), área de superfície parcial carregada (*DPSA-1*), aceitadores de ligação de

hidrogênio (A_{cc}), área de superfície topológica (*TopoA*), comprimento sobre a largura ($LOB_{máx}$) e raio de giração (R_g).

5.7 A análise multivariada

5.7.1 Análise de componentes principais e análise fatorial

Os descritores mantidos após análise de correlação são as variáveis originais na análise de componentes principais. A partir destes, foram gerados os autovalores para formação das combinações lineares utilizadas na análise. As variáveis são padronizadas pelo software para eliminar a influência que uma variável pode causar sobre outra na formação das componentes principais. Os autovalores podem ser observados na **Tabela 6**.

Tabela 6 - Resultado dos autovalores, porcentagem de variância explicada por cada componente e variância acumulada pelas componentes principais extraídas.

Componente Principal (CP)	Autovalores	Variância explicada (%)	Autovalores acumulados	Variância explicada acumulada (%)
1	4,62	38,54	4,62	38,54
2	3,02	25,20	7,65	63,74
3	1,94	16,18	9,59	79,92
4	1,17	9,71	10,76	89,63
5	0,49	4,12	11,25	93,75
6	0,33	2,71	11,58	96,46
7	0,20	1,66	11,77	98,12
8	0,11	0,89	11,88	99,01
9	0,08	0,65	11,96	99,66
10	0,02	0,20	11,98	99,86
11	0,01	0,09	11,99	99,95
12	0,01	0,05	12,00	100,00

A partir dos resultados apresentados na **Tabela 6** é possível observar que foram gerados doze autovalores correspondentes as doze variáveis originais. A escolha do número de fatores, o total de componentes, que melhor explicam o conjunto de variáveis originais, baseou-se no critério sugerido por Kaizer (1960) e Mardia *et al.* (1979) onde a seleção inclui apenas as componentes com autovalor maior que 1 e conseguem sintetizar uma variância acumulada em torno de 70%. Na **Tabela 6**, observa-se que as três primeiras componentes principais possuem autovalores maiores que 1 (dados em negrito) e explicam 79,92% (variância explicada acumulada) das variações das variáveis originais.

Em seguida, foram gerados os autovetores que definem a direção dos eixos na APC. Os resultados, para as CP anteriormente selecionados, podem ser observados na **Tabela 7**.

Variável	CP1	CP2	CP3
Número de Carbonos (N _c)	0,13	-0,22	0,07
Número de Nitrogênios (N _n)	-0,04	-0,09	0,41
Número de Átomos Aromáticos (<i>N_{atmar}</i>)	0,12	0,13	0,25
Número de Anéis Não Aromáticos (N _{nar})	0,01	-0,29	0,14
Parâmetro Dispersão de Hansen (δ_d)	0,19	-0,02	0,19
Parâmetro de Polaridade de Hansen (δ_p)	0,17	-0,11	-0,02
Parâmetro de Ligação de Hidrogênio de Hansen ($\delta_{\rm h})$	0,13	-0,21	-0,03
Área de Superfície Parcial Carregada (DPSA-1)	-0,04	-0,23	-0,23
Aceitadores de Ligação de Hidrogênio (A _{cc})	0,14	0,04	-0,34
Área de Superfície Topológica (TopoA)	0,17	0,15	-0,13
Comprimento Sobre a Largura ($LOB_{máx}$)	-0,15	-0,19	-0,17
Raio de Giração (R _g)	0,17	-0,03	-0,09

Tabela 7 - Resultados dos autovetores das componentes principais 1, 2 e 3.

As coordenadas de cada corante descritos em termos das componentes principais encontradas na análise podem ser observadas na **Tabela 8**. Os corantes azul de tripan e nitroprussiato de sódio não entraram na análise pois os

arquivos .SDF utilizados para gerar os descritores no software Bioclipse (versão

2.6.2) não estavam disponíveis na base de dados do PubChem.

Tabela 8 -	Valores	das	componentes	principais	1,	2 €	3 3	para	os	16	coran	tes
estudados.												

Corantes	Componente Principal 1	Componente Principal 2	Componente Principal 3
Cloreto de Azul do Nilo	-1,06	-0,66	-0,05
Sulfato de Azul do Nilo	0,76	-2,95	0,71
Azul de Metileno	-1,34	-1,14	-0,47
Azul de Bromofenol	0,81	0,93	1,06
Azul Patente	2,40	-0,51	-1,76
Azul de Toluidina	-1,37	-0,43	-1,10
Vermelho de Metila	-0,57	0,45	-1,49
Vermelho de Fenol	0,41	0,66	-0,09
Vermelho de Cresol	0,57	0,55	-0,03
Purpúra de Bromocresol	0,63	0,71	0,00
Purpúra de Metacresol	0,40	0,56	-0,11
Nitrofenol	-1,27	0,58	0,63
Fenolftaleína	0,04	0,29	1,27
Timolftaleína	-0,18	-0,12	0,23
Fluoresceína Ácida	0,18	0,05	1,98
Ditizona	-0,40	1,02	-0,79

A contribuição de cada variável nas componentes principais foi calculada por meio de uma matriz de correlação entre as variáveis originais e as CP (VICINI *et al.*, 2018). O resultado pode ser observado na **Tabela 9**.

Tabela 9 - Contribuição de cada variável nas componentes principais	1, 2 e 3.
---	-----------

Variável	CP1	CP2	CP3
Número de Carbonos (N _c)	0,60	-0,67	0,13
Número de Nitrogênios (N _n)	-0,21	-0,27	0,79
Número de Átomos Aromáticos (<i>N</i> atmar)	0,56	0,38	0,48
Número de Anéis Não Aromáticos (N _{nar})	0,06	-0,87	0,28
Parâmetro Dispersão de Hansen (δ_d)	0,87	-0,06	0,38
Parâmetro de Polaridade de Hansen (δ_p)	0,79	-0,34	-0,04
Parâmetro de Ligação de Hidrogênio de Hansen ($\delta_{\rm h})$	0,62	-0,65	-0,06
Área de Superfície Parcial Carregada (DPSA-1)	-0,17	-0,70	-0,46

Aceitadores de Ligação de Hidrogênio (A _{cc})	0,63	0,13	-0,65
Área de Superfície Topológica (TopoA)	0,80	0,46	-0,26
Comprimento Sobre a Largura $(LOB_{máx})$	-0,69	-0,58	-0,33
Raio de Giração (R _g)	0,78	-0,08	-0,18

Através da matriz de correlação e considerando as correlações acima de 0,7 (em negrito na **Tabela 9**) (MATOS *et al.*, 2019), em módulo, pode-se concluir que na CP1, as variáveis que mais contribuem são δ_d , δ_p , *TopoA* e R_g. Enquanto que CP2 é explicada pelas variáveis N_{nar} e *DPSA-1* e a CP3 pela variável N_n. Essa interpretação pode ser observada nos planos fatoriais da **Figura 22**, nos quais verifica-se qual variável ou conjunto de variáveis está localizado mais distante da origem, pois são essas que exercem maior influência em relação ao fator analisado (VICINI *et al.*, 2018).

Figura 22 - Gráficos que representam a relação das variáveis originais e a componente principal 1 e a componente principal 2 (**a**), a componente principal 1 e a componente principal 3 (**b**) e a componente principal 2 e a componente principal 3 (**c**) gerados para análise com eixos não rotacionados. As variáveis destacadas são as que mais contribuem para as CP.

-0,2

Factor 2

Acc

0,2

0,4

0,6

0,0

-0,6

-0,8

-0,8

-0,6

-0,4

A partir dos resultados apresentados na **Figura 22** observa-se que é difícil atribuir um rótulo para cada fator pois as variáveis que melhor explicam cada um pertencem a grupos de descritores diferentes. As variáveis que melhor representam a CP1 (fator 1) pertencem a classe de descritores: eletrônicos, geométricos e parâmetros de Hansen. A CP2 (fator 2) é bem representada por descritores do tipo eletrônico e constitucional (ver **Quadro 2**, pág. 29).

Não é possível identificar um conjunto único de variáveis que representa cada fator, por isso recorreu-se à realização de rotações. Com os eixos rotacionados, obtém-se uma melhor visualização da disposição dos pontos, pois coloca os fatores em posições associadas às variáveis relacionadas. O tipo de rotação utilizada neste estudo foi a varimax normalizada que mantém os eixos perpendiculares entre si e procura diminuir o número de variáveis com alta contribuição em um fator. A rotação não muda a variação percentual explicada nos fatores nem altera a comunalidade (contribuição da variável no modelo construído pela AF) das variáveis (VICINI *et al.*, 2018).

Os valores das contribuições de cada variável das componentes principais 1, 2 e 3, após a rotação dos eixos, podem ser visualizados na **Tabela 10**.

Variável	CP1	CP2	CP3
Número de Carbonos (N _c)	0,86	0,40	0,04
Número de Nitrogênios (N _n)	0,11	0,08	-0,84
Número de Átomos Aromáticos (Natmar)	0,19	-0,11	0,03
Número de Anéis Não Aromáticos (N _{nar})	0,78	0,26	-0,40
Parâmetro Dispersão de Hansen (δ_d)	0,14	0,71	0,01
Parâmetro de Polaridade de Hansen (δ_p)	0,13	0,95	0,20
Parâmetro de Ligação de Hidrogênio de Hansen (δ_h)	0,35	0,92	0,07
Área de Superfície Parcial Carregada (DPSA-1)	0,65	-0,06	0,18
Aceitadores de Ligação de Hidrogênio (A _{cc})	0,09	0,25	0,88
Área de Superfície Topológica (TopoA)	-0,21	0,37	0,67
Comprimento Sobre a Largura ($LOB_{máx}$)	0,25	-0,21	-0,17
Raio de Giração (R _g)	0,52	0,21	0,55

Tabela 10 - Contribuição de cada variável nas componentes principais 1, 2 e 3 após rotação dos eixos.

A partir dos resultados apresentados na Tabela 10 observa-se que a rotação possibilitou uma melhor visualização das componentes principais em relação ao tipo de descritor (ver Quadro 2, pág. 29) que melhor representa cada CP. Observando os valores destacados na tabela (em negrito), pode-se concluir que a CP1 possui maior contribuição de dois descritores do tipo constitucional. A CP2, dos parâmetros de solubilidade de Hansen são do tipo eletrostático. A CP3, de um descritor constitucional e um eletrônico. A visualização das variáveis no plano pode ser observada na Figura 23.

Торо

-0.2

1.0

0,8

0,6

0,4 Factor 2

0.2

0.0

-0,2

-0,4 ∟ -0,4

0,6

Rg

DeltaH

DeltaD

Acc

Nn

0,0

Natma

0,2

LOBMAX

Fai

0,4

Figura 23 - Gráficos que representam a relação das variáveis originais e a componente principal 1 e a componente principal 2 (a), a componente principal

1 e a componente principal 3 (**b**) e a componente principal 2 e a componente principal 3 (**c**) gerados para análise varimax normalizada. As variáveis destacadas são as que mais contribuem para o fator e são agrupadas por similaridade de classificação.

Através dos gráficos apresentados na **Figura 23**, pode-se concluir que a rotação proporciona melhor separação dos descritores de forma que auxilia uma melhor interpretação física das componentes principais. Isso porque quando uma variável, ou conjunto de variáveis, se encontra mais distante da origem, porém próxima aos eixos, expressam alta representatividade naquele fator correspondente ao eixo (VICINI *et al.*, 2018).

Foram gerados círculos de correlação unitários, utilizando a nuvem de variáveis total deste estudo (valores RGB, descritores moleculares e pH do meio) em busca de interpretar o comportamento de cada corante. Os círculos obtidos em meio neutro podem ser observados na **Figura 24**.

Figura 24 - Gráfico de distribuição da nuvem de variáveis para canal RED (**a**), GREEN (**b**) e BLUE (**c**) em meio **neutro**. Os gráficos foram plotados para estudar a relação entre CP1 e CP2, que são as componentes que, juntas, possuem a variância acumulada explicada de 63,74%.

0,0

Factor 1 : 38,54%

0,5

Active
 Suppl

1,0

-0,5

-1,0

-1,0

-0,5

Nos círculos, deve-se levar em consideração que quanto mais próximas a circunferência do círculo, mais as variáveis suplementares (solventes) contribuem para o fator e, consequentemente, correlacionam-se aos descritores que mais contribuem para esse fator. As variáveis que aparecem sobrepostas, possuem a mesma representatividade no gráfico (VICINI *et al.*, 2018). A partir dos gráficos apresentados na Figura 24, nota-se que os solventes, num geral, se correlacionam bem com o fator 2 nos três canais RGB pois estão próximas ao eixo que representa esse fator. O fator 2, segundo a **Tabela 9**, é melhor representado pelos descritores *DPSA-1* e *N*_{nar}. O primeiro faz parte de um conjunto de descritores que combinam informações sobre área de superfície e carga parcial, *DPSA-1* é diferença entre *PPSA-1* (área superfícial positiva parcial) e *PNSA-1* (área superficial negativa parcial). O segundo representa o número de anéis não aromáticos presente na molécula (TODECHINI *et al.*, 2000). Para o canal *Red*, pode-se interpretar que corantes com valores altos de *DPSA-1*, em solventes com maior polaridade, possuem baixos valores de intensidade do canal. Interpretação semelhante se obtém para o fator. E também, conclui-se que solventes mais polares ou polares orgânicos contribuem mais para intensidade do canal R nas respostas colorimétricas, uma vez que esses solventes são representados mais próximos do círculo unitário.

No gráfico referente ao canal *Blue* (**Figura 24.c**), observa-se comportamento semelhante em relação aos solventes polares e a correlação com o fator 2. Porém, em comparação com o canal *Red* (**Figura 24.a**), o conjunto de variáveis suplementares se projeta para o quadrante oposto e por isso estão correlacionados positivamente com os descritores *DPSA-1* e *N_{nar}*. Dessa forma, corantes com valores altos de *DPSA-1*, em solventes com maior polaridade, possuem altos valores de intensidade do canal azul. O comportamento "espelhado" entre os canais *Red* e *Blue* nos gráficos (Figura 24.a e Figura 24.c) pode ser explicado pela teoria de cor, na qual, diz que as cores azul e vermelha possuem uma certa complementaridade (**Figura 25**). Por isso, cores com

grandes quantidades de vermelho, possuem pouca quantidade de azul, uma vez que a proporção de qualquer cor pode ser aumentada reduzindo a quantidade da cor complementar na imagem (GONZALEZ *et al.*, 2010).

Figura 25 - Complementos do círculo de cores (GONZALEZ et al., 2010).

O canal *Green* é um canal que não expressa uma correlação relevante com nenhum dos fatores. Isso porque as variáveis suplementares estão bem próximas a origem do gráfico.

Os círculos obtidos em meio alcalino podem ser observados na Figura 26.

Figura 26 - Gráfico de distribuição da nuvem de variáveis para canal RED (**a**), GREEN (**b**) e BLUE (**c**) em meio **alcalino**. Os gráficos foram plotados para estudar a relação entre CP1 e CP2, que são as componentes que, juntas, possuem a variância acumulada explicada de 63,74%.

A partir dos resultados em meio alcalino, apresentados na **Figura 26**, observa-se que os solventes continuam sendo bem correlacionados com o fator 2, porém não tanto quanto em meio neutro (**Figura 24**). Para o canal *Red* (**Figura 26.a**), pode-se interpretar que corantes com valores altos de *DPSA-1*, em solventes com polaridade média (como pentanol e butanol), possuem altos valores de intensidade do canal vermelho. Para o canal *Blue* (**Figura 26.c**), visualiza-se o efeito contrário devida complementaridade das cores: valores altos

de *DPSA-1*, em solventes com polaridade média (como pentanol e butanol), possuem baixos valores de intensidade do canal vermelho.

Em meio alcalino, os solventes foram mais distribuídos no círculo unitário, o que permite a correlação de algumas variáveis suplementares, como metanol e água, com o fator 1. O fator 1 é bem representado pelo descritor *TopoA* que é a soma das áreas de superfície acessíveis ao solvente de átomos com valor absoluto de cargas parciais maiores ou iguais a 0,2 (TODECHINI *et al.*, 2000). Esse descritor aparece no gráfico próximo ao círculo unitário, demostrando que possui uma contribuição alta na análise. Sua correlação com os solventes de média polaridade no canal *Red* é inversamente proporcional, de forma que corantes com valores altos de *TopoA*, em solventes com polaridade média, possuem valores baixos de intensidade do canal vermelho. Pode-se destacar também os descritores *DPSA-1*, *LOB_{Max}* e *N_n* tem grande influência sobre a intensidade de vermelho pois estão localizados no mesmo quadrante (II) (VICINI *et al.*, 2018).

No canal *Blue* observa-se o comportamento contrário, em relação ao descritor *TopoA:* corantes com valores altos do descritor, em solventes com polaridade média, possuem valores altos de intensidade do canal. A intensidade do canal *Green* apresenta o comportamento semelhante ao observado em meio neutro, as variáveis suplementares encontram-se próximas a origem, além de estarem em um quadrante onde não se localiza nenhum descritor, não apresentando nenhuma correlação relevante.

Os círculos obtidos em meio ácido podem ser observados na Figura 27.

Figura 27 - Gráfico de distribuição da nuvem de variáveis para canal RED (**a**), GREEN (**b**) e BLUE (**c**) em meio **ácido**. Os gráficos foram plotados para estudar a relação entre CP1 e CP2, que são as componentes que, juntas, possuem a variância acumulada explicada de 63,74%.

A partir dos resultados em meio ácido, apresentados na **Figura 27**, observa-se um comportamento da intensidade do canal *Red* semelhante ao encontrado em meio neutro (**Figura 24**). As variáveis são bem correlacionadas com o fator 2 que possui contribuição alta dos descritores *DPSA-1* e *N_{nar}*. Por isso, corantes com valores altos dos descritores, em solventes com polaridade alta, possuem valores altos de intensidade do canal.

No canal *Blue* (**Figura 27.c**) observa-se que as variáveis suplementares estão próximas ao eixo do fator 1, identificando uma correlação significativa com esse fator. Das variáveis originas que mais contribuem para esse fator, tem-se R_{g} , $\delta_d e \delta_p$. O raio de giração pode ser definido como um descritor de tamanho para distribuição de massas atômicas em uma molécula e também pode ser calculado a partir dos momentos de inércia principais (TODECHINI *et al.*, 2000). Pelo gráfico, tem-se que corantes com valores altos do descritor R_{g} , em solventes polares, possuem valores baixos de intensidade do canal *Blue* (**Figura 27.c**). O canal *Green* (**Figura 27.b**) apresenta mesmo comportamento conforme já observado nos meios neutro (**Figura 24.b**) e alcalino (**Figura 26.b**).

Assim sendo, de modo geral para análise com eixos não rotacionados, o canal *Red* é o que traz mais informação ao estudo além de apresentar uma tendência de comportamento e correlação com os fatores e descritores similar entre os três meios (alcalino, neutro e ácido) testados.

A Figura 28 mostra o plano fatorial, com a nuvem de pontos dos corantes.

Figura 288 - Gráfico da distribuição da nuvem de pontos dos corantes. O gráfico foi plotado para estudar a relação que CP1 e CP2 possuem sobre os corantes, baseada nos descritores que melhor explicam cada componente principal.

A partir dos resultados apresentados na **Figura 28** pode-se concluir que os corantes que mais contribuem para formação da combinação linear do fator 1 (R_{g} , δ_d , δ_p e *TopoA*) é o azul patente e, de forma oposta, o azul de toluidina, azul de metileno e cloreto de azul do Nilo. O azul patente dentre todos os outros corantes analisados apresenta os maiores valores de descritores, se destacando dos demais. Os outros três corantes apresentam valores próximos, entre si, dos descritores que melhor contribuem para o fator 1.

Para o fator 2 (*DPSA-1* e N_{nar}), o corante que mais contribui é o sulfato de azul do Nilo. Esse corante é o que possui o maior número de anéis não aromáticos dentre todos os outros corantes testados. E também compartilha com o cloreto de azul, o maior valor do descritor *DPSA-1* dentro da base de dados

estudada. O restante dos descritores e corantes não apresentaram representatividade significativa em relação a estes dois fatores.

6. CONCLUSÕES

O estudo realizado utilizou a relação estrutura – propriedade para a avaliação da possível relação da resposta colorimétrica obtida em dezoito corantes diferentes, em treze solventes distintos e em três meios (alcalino, neutro e ácido). Os mapas de cores foram obtidos por meio de duas organizações, na qual uma delas, a similaridade de cores, apresentou sentido e fluidez na variação das cores de forma mais intuitiva, enquanto que a outra, a organização por índice de variabilidade, permitiu um agrupamento das cores em relação a matiz azulverde e vermelho-laranja em partes distintas do mapa. A cor resultante de alguns corantes em solução sofre efeito direto do pH do meio e da polaridade dos solventes. O uso do parâmetro de polaridade de Hansen foi efetivo na ordenação da polaridade dos solventes apresentados nos mapas de cores.

O processamento das imagens obtidas permitiu coletar os valores de intensidade dos canais *Red*, *Green* e *Blue*, que foram utilizados como variáveis suplementares na análise multivariada. Os canais RGB podem ser usados para estudar a variação de cor em termos quantitativos. No segundo mapa de cores proposto, o canal *Blue* apresentou variação significativa de intensidade do canal e, por isso, seu índice de variabilidade foi utilizado como critério de organização.

Ao utilizar a análise de componentes principais, conseguiu-se reduzir o banco de dados inicial em 88%, uma vez, que da coleta inicial de 25 descritores moleculares variáveis originais, a amostra pôde ser bem representada por apenas 3 componentes principais (variáveis estatísticas), que possuem autovalores que explicam 79,92% das variações totais das variáveis originais.

Na análise fatorial, o círculo de correlações, com eixos não rotacionados, permitiu perceber que o canal *Red* é o que carrega mais informação ao estudo,

apresentando uma tendência de comportamento e correlação com os descritores similar entre os três meios estudados. De modo geral, a partir dos resultados obtidos, os descritores eletrônicos e eletrostáticos são os que mais influenciam a resposta colorimétrica dos corantes que dependendo do meio, pode ser direta ou indiretamente proporcional ao valor da intensidade do canal.

Os canais *Red* e *Blue* foram os mais importantes para o mapeamento das cores das soluções e o comportamento espelhado dos canais pode ser explicado através da complementaridade de suas cores expressa no círculo cromático. O canal *Green* não apresentou comportamento relevante para análise das respostas colorimétricas ao longo do estudo.

7. PERSPECTIVAS FUTURAS

- Aplicar a análise de agrupamentos como forma de confirmar se as variáveis que estão num mesmo grupo são as mesmas que explicam determinados fatores;
- b. Aplicar a análise fatorial utilizando os valores HSV das imagens capturadas como variáveis suplementares;
- c. Expandir o mapeamento para corantes em misturas de solventes;
- Avaliar o efeito da identidade química dos solventes de polaridades próximas;
- e. Avaliar o efeito da presença e concentração de íons sob as cores em solventes polares.

8. REFERÊNCIAS

ALVES, V. M., BRAGA, R.C., MURATOV, E. N., ANDRADE, C. H. **Quimioinformática: Uma Introdução.** Química Nova, v. XY, n. 00, p. 1-11, 2017.

AMARAL, F. **Aprenda Mineração de Dados – Teoria e Prática**. Alta Books. Rio de Janeiro, 2016.

ARDILA, J. A., SOARES, F. L. F., FARIAS, M. A. S., CARNEIRO, R. L. Characterization of Gasoline by Raman Spectroscopy with Chemometric Analysis. Analytical Letters, v. 50, p. 1126-1138, 2017.

BALABIN, R. M., SAFIEVA, R. Z., LOMAKINA, E. I. Gasoline Classification Using Near Infrared (NIR) Spectroscopy Data: Comparison Of Multivariate Techniques. Analytica Chimica Acta, v. 671, p. 27–35, 2010.

BRANDÃO, L. F. P., BRAGA, J. W. B., SUAREZ, P. A. Z. Determination Of Vegetables Oils And Fats Adulterants In Diesel Oil By High Performance Liquid Chromatography And Multivariate Methods. Journal of Chromatography A, v. 1225, p. 150-157, 2012.

BROWN, T., LEMAY, H. E., BURSTEN, B. E. **Química: a ciência centra**l. 9ed. Prentice Hall, 2005.

CARDOZO, A. P., **Síntese e Avaliação do Solvatocromismo de Dois Piridino-N-Fenolatos em Solventes Puros**. Relatório. Universidade Federal De Santa Catarina, Florianópolis, 2016.

COSTA, D. L. N. **Métodos De Processamento De Imagens Para Visão Computacional No Cubo De Rubik**. Trabalho de Conclusão de Curso. Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, 2015.

DE PAULO, J. M., MENDES, G., BARROS, J. E. M., BARBEIRA, P. J. S. A Study Of Adulteration In Gasoline Samples Using Flame Emission Spectroscopy And Chemometrics Tools. The Analyst, v. 137, p. 5919-5924, 2012.

DOS SANTOS, R. C., CAVALCANTI, J. N. C., DO CARMO, E. C. W., DE SOUZA, F. C., SOARES, W. G., DE SOUZA, C. G., DE ANDRADE, D. F., D'AVILA, L. A. Approaching Diesel Fuel Quality in Chemistry Lab Classes: Undergraduate Student's Achievements on Determination of Biodiesel Content in Diesel Oil Applying Solvatochromic Effect. Journal of Chemical Education, v.97, n. 12, p. 4462-4468, 2020.

DOSSUS, L.; LUKANOVA, A.; RINALDI, S.; ALLEN, N.; CUST, A. E.; BECKER, S.; TJONNELAND, A.; HANSEN, L.; OVERVAD, K.; CHABBERT-BUFFET, N.; MESRINE, S.; CLAVEL-CHAPELON, F.; TEUCHER, B.; CHANG-CLAUDE, J.; BOEING, H.; DROGAN, D.; TRICHOPOULOU, A.; BENETOU, V.; BAMIA, C.; PALLI, D.; AGNOLI, C.; GALASSO, R.; TUMINO, R.; SACERDOTE, C.; BUENO-DE-MESQUITA, H. B.; VAN DUIJNHOVEN, F. J. B.; PEETERS, P. H. M.; ONLAND-MORET, N. C.; REDONDO, M.-L.; TRAVIER, N.; SANCHEZ, M.-J.; ALTZIBAR, J. M.; CHIRLAQUE, M.-D.; BARRICARTE, A.; LUNDIN, E.; KHAW, K.-T.; WAREHAM, N.; FEDIRKO, V.; ROMIEU, I.; ROMAGUERA, D.; NORAT, T.; RIBOLI, E.; KAAKS, R. Hormonal, Metabolic, and Inflammatory Profiles and Endometrial Cancer Risk Within the EPIC Coh—t--A Factor Analysis. American Journal of Epidemiology, v. 177, n.8, p.787–799, 2013.

EL SEOUD, O. A., LOFFREDO, C., GALGANO, P. D., SATO, B. M., REICHARDT, C. Have Biofuel, Will Travel: A Colorful Experiment and a Different Approach To Teach the Undergraduate Laboratory. Journal of Chemical Education, v. 88, p. 1293-1297, 2011.

FLUMIGNAN, D. L., FERREIRA, F. O; TININIS, A. G., DE OLIVEIRA, J. E. **Multivariate calibrations in gas chromatographic profiles for prediction of several physicochemical parameters of Brazili83omercialial gasoline.** Chemometrics and Intelligent Laboratory Systems, v. 92, n. 1, p. 53–60, 2008.

GALGANO, P.D., LOFFREDO, C., B. M. SATO, B. M., REICHARDT. C., EL SEOUD, O. A. Introducing education for sustainable development in the undergraduate laboratory: quantitative analysis of bioethanol fuel and its blends with gasoline by using solvatochromic dyes. Chemistry Education Research and Practice, v. 13, p. 147–153, 2012.

GAMBETTA, J., COZZOLINO, D., BASTIAN, S., JEFFERY, D. **Exploring the Effects of Geographic830mercial on the Chemical Composition and Quality Grading of Vit830merciaera L. cv. Chardonnay Grapes**. Molecules, v. 22, n. 2, p. 218–235, 2017.

GONZALEZ, R.C., WOODS, R.C., **Processamento Digital de Imagens**. São Paulo, SP, 3ed, Pearson Prentice Hall, 2010.

GOTOR, R., BELL, J., RURACK, K. **Tailored Fluorescent Solvatochromic Test Strips for Quantitative On-Site Detection of Gasoline Fuel Adulteration.** Journal of Materials Chemistry, v. 7, p. 2250-2256, 2018.

GOTOR, R; TIEBE, C; SCHLISCHKA, J; BELL, J; RURACK, K. Detection of Adulterated Diesel Using Fluorescent Test Strips and Smartphone Readout. Energy & Fuels, v.X, n.X, p. A-G, 2017.

HANSEN, C.M. Hansen Solubility Parameters: a user's handbook. Boca Raton: CRC Press, 2007.

HIRJANI, H., MUDASIR, M., PRANOWO, H.D. Prediction of High Performance Liquid Chromatography Retention Time for Some Organic Compounds Based on Ab initio QSPR Study. Acta. Chim. Asiana, v. 1, n.1, p. 24 – 29, 2018.

HUBERT, C., FICHOU, D., VALAT, P., GARNIER, F., VILLERET, B. A solvatochromic dye-dop83omercimer for detection of pol83omerciaves in hydrocarbon blends. Polymer, v. 36, n. 13, p. 2663–2666, 1995.

ISOPPO, V. G., GIL, E. S., GONÇALVES, P. F. B., RODEMBUSCH, F. S., MORO, A. V. High83omercial8383eent lipophilic 2,1,3-benzothiadiazole

fluorophores as optical sensors for tagging material and gasoline adulteration wi84omercnol. Sensors and Actuators B: Chemical, v.309, n. 127701, p. 1-10, 2020.

JIN, X., PELDSZUS, S. Selection of representative emerging micropollutants for drinking water treatment studies: A systematic approach. Science of the Total Environment, v.414, p. 653-663, 2012.

KAISER, H. F. **The variamx criterion for analytic rotatio in fator analysis.** Psychometrika, v. 23, p. 187-200, 1960.

KLETTE, R. Concise Computer Vision - An Introduction into Theory and Algorithms. Springer London, 2014.

LATREILLE, A. C., MILESI, P., MAGALON, H., MAVINGUI, P., ATYAME, C. M. High genetic diversity but no geographical structure of Aedes albopictus populations in Réunion Island. Parasites & Vectors, v. 12, n. 1, p. 597–609, 2019.

LAURIA, A., IPPOLITO, M., ALMERICO, A.M. Princip84omercial84ent analysis on molecular descriptors na an alternative point of view in t84omercrch of new Hsp90 inhibitors. Computational Biology and Chemistry, v. 33, p. 386-39, 2009.

LEE, J., BALAKRISHNAN, S., CHO, J., JEON, S., KIM, J. **Detection of** adulterated gasoline using colorimetric organic microfibers. Journal of Materials Chemistry, v. 21, n. 8, p. 2648–2655, 2011.

LOPES, J. M. B. **Computação Gráfca: Cor e Luz**. Universidade Técnica de Lisboa, Lisboa, 2013.

MARDIA, K. V; KENT, J. T; BIBBY, J. M. **Multivariate analysis**. London: Academic, 1979.

MILLER, J. N., MILLER, J. C. **Análisis Multivariante**. Estadística Y Quimiometría Para Química Analítica, 4^a ed., Pearson Educación. S.A., p. 224-232.

MILLS, E. J. **On melting-point and boiling-point as related 84omerciacal composition**, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 17:105, 173-187, 1884.

NADAI, D. V., SIMÕES, J. B., GATTS, C. E. N., MIRANDA, P. C. M. I. Inference Of The Biodiesel Cetane Number By Multivariate Techniques. Fuel, v. 105, p. 325-330, 2013.

NANTASENAMAT, C., ISARANKURA-NA-AYUDHYA, C., NAENNA, T., PRACHAYASITTIKUL, V., **A Practical Overview of Quantitative Structure-Activity Relationship**. EXCLI Journal, v.8, p. 74-88, 2009.

NETO, J. M. M., MOITA, G. C. Uma Introdução à Análise Exploratória De Dados Multivariados. Química Nova, v.21, n.4, p. 467-469, 1998.

NOVÁK, M., PAPLYA, D., BODAI, Z., NYIRI, Z., MAGYAR, N., KOVÁCS, J., EKE, Z. Combined Cluster And Discriminant Analysina An Efficient Chemometric Approach In Diesel Fuel Characterization. Forensic Science International, v. 270, p. 61-69, 2017.

NOVAKI, P.L.; EL SOUD, O.A. **Solvatochromism in Binary Solvent Mixtures Effecs of the Molecular Structure of Probe.** Journal of Physical Organic Chemistry, v.13, n.11, p.679-687. 1997.

NOVO, L.P. Determinação da Relação dos Parâmetros de Hansen de Solventes Orgânicos com a Deslignificação Organossolve de Bagaço de Cana de Açúcar. Dissertação de Mestrado. Instituto de Química de São Carlos, USP, São Paulo, 2012.

PEREIRA, F. S. Estudo QSAR da Artemisinina e Derivados com Atividade Antimalárica. Tese de Doutorado. Instituto de Química, Unicamp, São Paulo, 2016.

PINTO, W.S., DE QUEIROZ, W. T., TOURINHO, M. M., DA SILVA, P. T. E. **Uso de análise multivariada no agrupamento de comunidades rurais.** Amazonian Journal, v. 57, n. 2, p. 194-198, 2013.

POLING, B. E., PRAUNSTIZ, J. M., O'CONNEL, J. P. The Properties of Gases and Liquids. Nova York, NY, 5ed, McGraw Hill, 2000.

RANKIN, J. M., ZHANG, Q., LAGASSE, M. K., ZHANG, Y., ASKIM, J. R., SUSLICK, K. S. Solvatochromic Sensor Array for the Identification of Common Organic Solvents. Analyst, p. 1-4, 2012.

REICHARDT, C. **Solvents and Solvent Effects in Organic Chemistry**. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Terceira edição, 2003.

REICHARDT, C., WELTON, T. Solvents and Solvent Effects in Organic Chemistry. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Quarta edição, 2011.

ROCHA, W. F. C., VAZ, B. G., SARMANHO, G. F., LEAL, L. H. C., NOGUEIRA, R., SILVA, V. F., BORGES C. N. Chemometric Techniques Applied For Classification And Quantification Of Binary Biodiesel/Diesel Blends. Analytical Letters, v.45, p.2398–2411, 2012.

RODRIGUEZ, A., TOMAS, M. S., PEREZ, J. J., RUBIO-MARTINEZ, J. Assessment of the performance of cluster analysis grouping using pharmacophores as moleculars descriptors. Journal of Molecular Structure: THEOCHEM, v. 727, p. 81-87, 2005.

RUSCHEL, C. F. C., MARCELO, M. C. A., DOS SANTOS, F. P., FERRÃO, M. F. Characterization Of Gasoline By ¹H Nuclear Magnetic Resonance And Chemometrics. Analytical Letters, v. 50, n. 11, p. 1767-1777, 2017.

SAHOO, S., PATEL, S., MISHRA, B. K. Quantitative relationships between structure and physicochemical properties of natural amino acids using topological and quantum-chemical molecular descriptors. Indian Journalof Chemistry, v. 53, p. 1324-1331, 2014.

SANTOS, A., SILVA, K., BORGES, G., D'AVILA, L. Fuel Quality Monitoring by Color Detection. Intech Open, 2019.

SILVA, A. C., PAZ, J. E. M., PONTES, L. F. B. L., LEMOS, S. G., PONTES, M. J. C. Na Electroanalytical Method To Detect Adulteration Of Etanol Fuel By Using Multivariate Analysis. Electrochimica Acta, v. 111, p. 160-164, 2013.

SILVA, M. A. Modelos Preditivo Baseados em Descritores Moleculares e Modos de Interação Receptor-Ligante para Inibidores de Acetilcolinesterase. Tese de Doutorado. Instituto de Física, UnB, Brasília, 2017.

SKROBOT, V. L., CASTRO, E. V. R., PEREIRA, R. C. C., PASA, V. M. D., FORTES, I. C. P. Identification of Adulteration of Gasoline Applying Multivariate Data Analysis Techniques HCA and KNN in Chromatographic Data. Energy & Fuels, v. 19, p. 2350–2356, 2005.

SOARES, S. ROCHA, F. R. P. A simple and low-cost approach for microdistillation: Application 86omercinol determination in biodiesel exploiting smartphone-based digital images. Talanta, v. 199, p. 285-289, 2019.

SOARES, S. TORRES, K. G., PIMENTEL, E. L., MARTELLI, P. B., ROCHA, F. R. P. **A novel spot test based on digital images for determination 86omercinol in biodiesel.** Talanta, v. 195, p. 299-235, 2019.

SOARES, S., LIMA, M. J. A., ROCHA, F. R. P. A spot test for iodine value determination in biodiesel based on digital images exploiting a smartphone. Microchemical Journal, v. 133, p. 195-199, 2017.

SOARES, S., NUNES, L. C., MELCHERT, W. R., ROCHA, F. R. P. **Spot test** exploiting smartphone-based digital images for determination of biodiesel in diesel blends. Microchemical Journal, v.152, p. 1-6, 2020.

TANAKA, G, T., FERREIRA, F. O., DA SILVA, C. E. F., FLUMIGNAN, D. L., DE OLIVEIRA, J. E. Chemometrics in fu86omercince: demonstration of the feasibility of chemometrics analys86omerciaed to physicochemical parameters to scre86omerciaent tracers in Brazili86omercialial gasoline. Jounal of Chemometrics. V. 25, n. 9, p. 487–495, 2011.

TODESCHINI, R., CONSONNI, V. **Handbook of Molecular Descriptors**. Methods and Principles in Medicinal Chemistry, 1ed., v.11, 2000.

VERAS, G., GOMES, A, A., DA SILVA, A. C., DE BRITO, A. L. B., DE ALMEIDA, P. B. A., DE MEDEIROS, E. P. Classification Of Biodiesel Using NIR Spectrometry And Multivariate Techniques. Talanta, v. 83, p. 565-568, 2010. VICINI, L. Análise multivariada da teoria à prática. Monografia, Universidade Federal de Santa Maria, 2005.

VICINI, L., SOUZA, A. M., MORALES, F. E. C., SOUZA, F. M. Técnicas Multivariadas Exploratórias: Teorias e Aplicações no Software Statistica. Editora UFSM. Santa Maria, Rio Grande do Sul, 2018.

XU, J., WANG, L., LIU, L., BAI, Z., WANG, L. **QSPR Study of the Absorption Maxima of Azobenzene Dyes**. Bulletin of the Korean Chemical Society v. 32, n. 11, p. 3865–72, 2011.

APÊNDICE 01

Valores de intensidade dos canais *Red*, *Green* e *Blue* de cada resposta colorimétrica obtida para cada corante estudado em todos os solventes testados, em pH neutro.

	Corante	Solvente	Red	Green	Blue
1	Cloreto de Azul do Nilo	Hexano	0,00	0,00	0,00
1	Cloreto de Azul do Nilo	Tolueno	0,00	0,00	0,00
1	Cloreto de Azul do Nilo	Octanol	145,58	140,58	140,58
1	Cloreto de Azul do Nilo	THF	145,20	143,06	143,06
1	Cloreto de Azul do Nilo	Pentanol	119,14	126,79	126,79
1	Cloreto de Azul do Nilo	Acetato de Etila	146,53	143,49	143,49
1	Cloreto de Azul do Nilo	Butanol	95,60	110,31	110,31
1	Cloreto de Azul do Nilo	2-propanol	111,09	127,00	127,00
1	Cloreto de Azul do Nilo	Acetona	145,10	140,10	140,10
1	Cloreto de Azul do Nilo	Etanol	46,10	108,22	108,22
1	Cloreto de Azul do Nilo	Metanol	17,19	68,57	68,57
1	Cloreto de Azul do Nilo	Água Deionizada	134,94	141,94	141,94
1	Cloreto de Azul do Nilo	Acetonitrila	116,04	135,12	135,12
2	Sulfato de Azul do Nilo	Hexano	0,00	0,00	0,00
2	Sulfato de Azul do Nilo	Tolueno	142,71	140,71	141,71
2	Sulfato de Azul do Nilo	Octanol	137,17	132,17	139,17
2	Sulfato de Azul do Nilo	THF	145,79	140,79	144,79
2	Sulfato de Azul do Nilo	Pentanol	87,03	112,74	147,89
2	Sulfato de Azul do Nilo	Acetato de Etila	147,01	144,80	149,87
2	Sulfato de Azul do Nilo	Butanol	82,96	100,92	140,95
2	Sulfato de Azul do Nilo	2-propanol	81,74	119,98	153,13
2	Sulfato de Azul do Nilo	Acetona	146,36	141,36	147,36
2	Sulfato de Azul do Nilo	Etanol	14,15	78,22	151,87
2	Sulfato de Azul do Nilo	Metanol	17,00	62,00	147,61
2	Sulfato de Azul do Nilo	Água Deionizada	50,41	119,89	158,70
2	Sulfato de Azul do Nilo	Acetonitrila	87,21	123,38	145,32
3	Azul de Metileno	Hexano	0,00	0,00	0,00
3	Azul de Metileno	Tolueno	0,00	0,00	0,00
3	Azul de Metileno	Octanol	0,00	0,00	0,00
3	Azul de Metileno	THF	142,86	139,86	146,86
3	Azul de Metileno	Pentanol	139,02	139,53	149,67
3	Azul de Metileno	Acetato de Etila	0,00	0,00	0,00
3	Azul de Metileno	Butanol	126,93	139,93	147,93
3	Azul de Metileno	2-propanol	136,51	141,15	145,34
3	Azul de Metileno	Acetona	142,81	140,97	145,36
3	Azul de Metileno	Etanol	50,34	125,46	148,38

3	Azul de Metileno	Metanol	1,22	81,22	142,22
3	Azul de Metileno	Água Deionizada	18,67	26,91	149,37
3	Azul de Metileno	Acetonitrila	48,60	124,47	147,41
4	Azul de Bromofenol	Hexano	0,00	0,00	0,00
4	Azul de Bromofenol	Tolueno	0,00	0,00	0,00
4	Azul de Bromofenol	Octanol	139,56	139,64	111,71
4	Azul de Bromofenol	THF	152,37	149,37	143,97
4	Azul de Bromofenol	Pentanol	143,79	142,82	50,50
4	Azul de Bromofenol	Acetato de Etila	146,44	143,40	140,01
4	Azul de Bromofenol	Butanol	147,47	143,87	10,79
4	Azul de Bromofenol	2-propanol	144,48	137,15	1,81
4	Azul de Bromofenol	Acetona	145,17	143,17	131,17
4	Azul de Bromofenol	Etanol	145,29	132,29	2,08
4	Azul de Bromofenol	Metanol	145,45	135,45	1,70
4	Azul de Bromofenol	Água Deionizada	97,28	74,83	109,06
4	Azul de Bromofenol	Acetonitrila	140,53	144,74	50,74
5	Azul Patente	Hexano	0,00	0,00	0,00
5	Azul Patente	Tolueno	0,00	0,00	0,00
5	Azul Patente	Octanol	133,07	146,20	152,09
5	Azul Patente	THF	144,07	143,07	148,07
5	Azul Patente	Pentanol	102,29	135,71	152,03
5	Azul Patente	Acetato de Etila	0,00	0,00	0,00
5	Azul Patente	Butanol	63,09	126,81	151,74
5	Azul Patente	2-propanol	44,98	121,19	152,05
5	Azul Patente	Acetona	143,39	146,93	158,17
5	Azul Patente	Etanol	1,68	97,23	158,41
5	Azul Patente	Metanol	3,83	60,45	15,47
5	Azul Patente	Água Deionizada	1,39	82,07	170,63
5	Azul Patente	Acetonitrila	90,81	132,76	148,73
6	Azul de Tripan	Hexano	0,00	0,00	0,00
6	Azul de Tripan	Tolueno	0,00	0,00	0,00
6	Azul de Tripan	Octanol	0,00	0,00	0,00
6	Azul de Tripan	THF	0,00	0,00	0,00
6	Azul de Tripan	Pentanol	0,00	0,00	0,00
6	Azul de Tripan	Acetato de Etila	0,00	0,00	0,00
6	Azul de Tripan	Butanol	0,00	0,00	0,00
6	Azul de Tripan	2-propanol	0,00	0,00	0,00
6	Azul de Tripan	Acetona	0,00	0,00	0,00
6	Azul de Tripan	Etanol	0,00	0,00	0,00
6	Azul de Tripan	Metanol	88,03	93,37	148,76
6	Azul de Tripan	Água Deionizada	23,52	12,04	145,82
6	Azul de Tripan	Acetonitrila	0,00	0,00	0,00
7	Azul de Toluidina	Hexano	0,00	0,00	0,00
7	Azul de Toluidina	Tolueno	0,00	0,00	0,00
7	Azul de Toluidina	Octanol	149,52	145,38	151,09
7	Azul de Toluidina	THF	150,62	145,62	151,62

7	Azul de Toluidina	Pentanol	120,69	132,64	148,66
7	Azul de Toluidina	Acetato de Etila	0,00	0,00	0,00
7	Azul de Toluidina	Butanol	102,83	137,83	156,83
7	Azul de Toluidina	2-propanol	106,80	129,69	143,64
7	Azul de Toluidina	Acetona	135,83	139,06	145,97
7	Azul de Toluidina	Etanol	24,01	108,61	147,88
7	Azul de Toluidina	Metanol	8,20	82,86	150,86
7	Azul de Toluidina	Água Deionizada	13,99	7,63	109,04
7	Azul de Toluidina	Acetonitrila	96,61	131,48	153,56
8	Vermelho de Metila	Hexano	147,12	145,12	132,09
8	Vermelho de Metila	Tolueno	157,93	107,31	2,31
8	Vermelho de Metila	Octanol	151,53	110,97	24,38
8	Vermelho de Metila	THF	154,69	89,86	2,21
8	Vermelho de Metila	Pentanol	150,66	107,48	56,51
8	Vermelho de Metila	Acetato de Etila	167,39	114,23	2,31
8	Vermelho de Metila	Butanol	154,37	99,70	19,29
8	Vermelho de Metila	2-propanol	155,10	93,81	3,37
8	Vermelho de Metila	Acetona	157,89	78,91	1,95
8	Vermelho de Metila	Etanol	156,97	74,97	1,65
8	Vermelho de Metila	Metanol	157,95	75,77	1,96
8	Vermelho de Metila	Água Deionizada	144,64	139,30	143,37
8	Vermelho de Metila	Acetonitrila	158,61	71,93	2,06
9	Vermelho de Fenol	Hexano	0,00	0,00	0,00
9	Vermelho de Fenol	Tolueno	0,00	0,00	0,00
9	Vermelho de Fenol	Octanol	152,08	148,08	147,08
9	Vermelho de Fenol	THF	146,77	143,11	139,43
9	Vermelho de Fenol	Pentanol	143,14	139,17	30,74
9	Vermelho de Fenol	Acetato de Etila	144,67	139,94	143,85
9	Vermelho de Fenol	Butanol	146,51	143,72	29,15
9	Vermelho de Fenol	2-propanol	146,15	140,15	2,15
9	Vermelho de Fenol	Acetona	144,77	141,77	134,77
9	Vermelho de Fenol	Etanol	146,60	125,27	1,27
9	Vermelho de Fenol	Metanol	147,28	121,26	1,84
9	Vermelho de Fenol	Água Deionizada	164,36	141,36	2,27
9	Vermelho de Fenol	Acetonitrila	145,10	144,62	118,86
10	Vermelho de Cresol	Hexano	0,00	0,00	0,00
10	Vermelho de Cresol	Tolueno	0,00	0,00	0,00
10	Vermelho de Cresol	Octanol	155,36	131,45	153,41
10	Vermelho de Cresol	THF	141,96	139,54	140,13
10	Vermelho de Cresol	Pentanol	154,04	92,02	99,78
10	Vermelho de Cresol	Acetato de Etila	142,79	141,24	146,10
10	Vermelho de Cresol	Butanol	153,58	96,70	59,70
10	Vermelho de Cresol	2-propanol	162,78	98,86	21,93
10	Vermelho de Cresol	Acetona	145,58	141,10	144,19
10	Vermelho de Cresol	Etanol	158,72	78,22	5,08
10	Vermelho de Cresol	Metanol	154,95	94,15	1,98

10	Vermelho de Cresol	Água Deionizada	164,09	148,07	1,79
10	Vermelho de Cresol	Acetonitrila	147,00	144,04	138,61
11	Purpúra de Bromocresol	Hexano	0,00	0,00	0,00
11	Purpúra de Bromocresol	Tolueno	0,00	0,00	0,00
11	Purpúra de Bromocresol	Octanol	147,04	148,04	79,89
11	Purpúra de Bromocresol	THF	145,78	144,58	147,18
11	Purpúra de Bromocresol	Pentanol	142,52	142,03	55,03
11	Purpúra de Bromocresol	Acetato de Etila	143,82	142,82	140,82
11	Purpúra de Bromocresol	Butanol	142,64	142,29	13,13
11	Purpúra de Bromocresol	2-propanol	145,38	139,38	1,45
11	Purpúra de Bromocresol	Acetona	139,23	137,46	142,46
11	Purpúra de Bromocresol	Etanol	147,35	135,73	1,61
11	Purpúra de Bromocresol	Metanol	147,27	13,91	1,57
11	Purpúra de Bromocresol	Água Deionizada	153,85	142,73	1,81
11	Purpúra de Bromocresol	Acetonitrila	148,95	150,91	78,01
12	Purpúra de Metacresol	Hexano	0,00	0,00	0,00
12	Purpúra de Metacresol	Tolueno	0,00	0,00	0,00
12	Purpúra de Metacresol	Octanol	148,08	144,90	148,30
12	Purpúra de Metacresol	THF	0,00	0,00	0,00
12	Purpúra de Metacresol	Pentanol	143,72	140,88	143,99
12	Purpúra de Metacresol	Acetato de Etila	0,00	0,00	0,00
12	Purpúra de Metacresol	Butanol	143,81	139,81	139,00
12	Purpúra de Metacresol	2-propanol	143,16	139,96	134,91
12	Purpúra de Metacresol	Acetona	0,00	0,00	0,00
12	Purpúra de Metacresol	Etanol	146,64	131,42	113,09
12	Purpúra de Metacresol	Metanol	145,29	131,29	85,35
12	Purpúra de Metacresol	Água Deionizada	150,59	145,59	103,95
12	Purpúra de Metacresol	Acetonitrila	0,00	0,00	0,00
13	Nitroprussianato de Sódio	Hexano	0,00	0,00	0,00
13	Nitroprussianato de Sódio	Tolueno	0,00	0,00	0,00
13	Nitroprussianato de Sódio	Octanol	0,00	0,00	0,00
13	Nitroprussianato de Sódio	THF	0,00	0,00	0,00
13	Nitroprussianato de Sódio	Pentanol	0,00	0,00	0,00
13	Nitroprussianato de Sódio	Acetato de Etila	0,00	0,00	0,00
13	Nitroprussianato de Sódio	Butanol	0,00	0,00	0,00
13	Nitroprussianato de Sódio	2-propanol	0,00	0,00	0,00
13	Nitroprussianato de Sódio	Acetona	0,00	0,00	0,00
13	Nitroprussianato de Sódio	Etanol	0,00	0,00	0,00
13	Nitroprussianato de Sódio	Metanol	142,46	137,46	141,94
13	Nitroprussianato de Sódio	Agua Deionizada	146,20	142,09	145,82
13	Nitroprussianato de Sódio	Acetonitrila	0,00	0,00	0,00
14	Nitrofenol	Hexano	0,00	0,00	0,00
14	Nitrotenol		0,00	0,00	0,00
14			146,20	145,56	150,90
14	Nitrofenol		141,76	139,66	149,81
14	NITROTENOI	Pentanol	146,20	139,59	142,80
14	Nitrofenol	Acetato de Etila	148,44	143,44	149,44
----	--------------------	------------------	--------	--------	--------
14	Nitrofenol	Butanol	146,20	141,04	136,13
14	Nitrofenol	2-propanol	146,20	143,11	148,18
14	Nitrofenol	Acetona	142,36	137,36	143,36
14	Nitrofenol	Etanol	146,20	142,59	147,16
14	Nitrofenol	Metanol	146,20	144,71	149,71
14	Nitrofenol	Água Deionizada	0,00	0,00	0,00
14	Nitrofenol	Acetonitrila	145,84	141,54	143,17
15	Fenolftaleína	Hexano	0,00	0,00	0,00
15	Fenolftaleína	Tolueno	0,00	0,00	0,00
15	Fenolftaleína	Octanol	0,00	0,00	0,00
15	Fenolftaleína	THF	142,75	139,19	144,71
15	Fenolftaleína	Pentanol	139,81	137,81	148,81
15	Fenolftaleína	Acetato de Etila	143,35	138,35	145,12
15	Fenolftaleína	Butanol	184,91	181,77	190,14
15	Fenolftaleína	2-propanol	142,54	137,80	143,71
15	Fenolftaleína	Acetona	143,86	138,86	144,86
15	Fenolftaleína	Etanol	144,29	141,53	144,78
15	Fenolftaleína	Metanol	144,71	141,71	150,08
15	Fenolftaleína	Água Deionizada	0,00	0,00	0,00
15	Fenolftaleína	Acetonitrila	145,36	142,25	137,37
16	Timolftaleína	Hexano	0,00	0,00	0,00
16	Timolftaleína	Tolueno	0,00	0,00	0,00
16	Timolftaleína	Octanol	152,20	147,20	153,20
16	Timolftaleína	THF	148,84	143,84	149,01
16	Timolftaleína	Pentanol	144,71	140,65	146,33
16	Timolftaleína	Acetato de Etila	143,17	140,82	145,75
16	Timolftaleína	Butanol	144,04	141,66	146,79
16	Timolftaleína	2-propanol	144,07	142,38	147,38
16	Timolftaleína	Acetona	143,81	143,05	151,20
16	Timolftaleína	Etanol	146,28	144,28	148,00
16	Timolftaleína	Metanol	139,00	137,99	144,07
16	Timolftaleína	Água Deionizada	0,00	0,00	0,00
16	Timolftaleína	Acetonitrila	145,02	142,52	149,26
17	Fluoresceína Acida	Hexano	0,00	0,00	0,00
17	Fluoresceína Acida	Tolueno	0,00	0,00	0,00
17	Fluoresceína Acida	Octanol	148,49	137,49	104,98
17	Fluoresceína Acida	THF	141,26	136,34	140,37
17	Fluoresceína Ácida	Pentanol	147,92	149,01	117,16
17	Fluoresceína Ácida	Acetato de Etila	145,54	140,54	146,01
17	Fluoresceína Ácida	Butanol	151,60	160,78	75,28
17	Fluoresceína Acida	2-propanol	146,53	145,82	133,47
17	Fluoresceína Acida	Acetona	147,70	146,47	155,00
17	Fluoresceína Acida	Etanol	147,04	146,09	136,88
17	Fluoresceína Acida	Metanol	149,00	153,23	109,09
17	Fluoresceína Acida	Agua Deionizada	147,89	144,40	149,90

17	Fluoresceína Ácida	Acetonitrila	0,00	140,15	136,10
18	Ditizona	Hexano	141,77	141,82	140,00
18	Ditizona	Tolueno	37,89	102,16	66,94
18	Ditizona	Octanol	103,82	114,87	106,85
18	Ditizona	THF	28,55	100,79	50,81
18	Ditizona	Pentanol	132,04	127,59	115,77
18	Ditizona	Acetato de Etila	51,69	113,21	78,74
18	Ditizona	Butanol	142,54	128,16	97,25
18	Ditizona	2-propanol	106,23	121,05	126,19
18	Ditizona	Acetona	16,46	82,66	46,56
18	Ditizona	Etanol	95,62	107,62	97,62
18	Ditizona	Metanol	74,97	89,38	79,80
18	Ditizona	Água Deionizada	146,06	143,98	149,07
18	Ditizona	Acetonitrila	63,62	93,70	85,83
TUE	Totrobidrofurono				

THF: Tetrahidrofurano

APÊNDICE 02

Valores de intensidade dos canais Red, Green e Blue de cada resposta colorimétrica obtida para cada corante estudado em 6 solventes testados, em pH alcalino.

	Corante	Solvente	Red	Green	Blue				
1	Cloreto de Azul do Nilo	Pentanol	168,863	112,638	119,009				
1	Cloreto de Azul do Nilo	Butanol	187,043	110,016	115,267				
1	Cloreto de Azul do Nilo	2-propanol	192,506	110,062	98,41				
1	Cloreto de Azul do Nilo	Etanol	169,734	49,066	36,482				
1	Cloreto de Azul do Nilo	Metanol	123,808	15,336	13,507				
1	Cloreto de Azul do Nilo	Água Deionizada	138,328	133,856	139,68				
2	Sulfato de Azul do Nilo	Pentanol	193,414	88,157	81,547				
2	Sulfato de Azul do Nilo	Butanol	182,504	94,368	97,696				
2	Sulfato de Azul do Nilo	2-propanol	196,403	119,403	110,603				
2	Sulfato de Azul do Nilo	Etanol	173,118	47,443	30,558				
2	Sulfato de Azul do Nilo	Metanol	133,661	17,275	13,31				
2	Sulfato de Azul do Nilo	Água Deionizada	138,867	134,838	138,507				
3	Azul de Metileno	Pentanol	136,24	134,722	141,278				
3	Azul de Metileno	Butanol	123,795	120,795	131,795				
3	Azul de Metileno	2-propanol	107,373	93,373	116,373				
3	Azul de Metileno	Etanol	96,643	94,278	116,51				
3	Azul de Metileno	Metanol	15,781	12,373	35,054				
3	Azul de Metileno	Água Deionizada	5,461	79,704	170,837				
4	Azul de Bromofenol	Pentanol	73,211	104,379	169,8				
4	Azul de Bromofenol	Butanol	58,979	85,765	161,002				
4	Azul de Bromofenol	2-propanol	57,166	83,686	162,301				
4	Azul de Bromofenol	Etanol	61,515	72,347	181,541				
4	Azul de Bromofenol	Metanol	51,432	0,352	134,132				
4	Azul de Bromofenol	Água Deionizada	74,354	52,75	158,693				
5	Azul Patente	Pentanol	135,434	139,434	142,434				
5	Azul Patente	Butanol	130,368	135,368	139,432				
5	Azul Patente	2-propanol	133,314	122,102	136,102				
5	Azul Patente	Etanol	67,698	133,584	147,566				
5	Azul Patente	Metanol	0,998	64,496	154,698				
5	Azul Patente	Agua Deionizada	0,846	93,965	155,182				
6	Azul de Tripan	Pentanol	0	0	0				
6	Azul de Tripan	Butanol	0	0	0				
6	Azul de Tripan	2-propanol	0	0	0				
6	Azul de Tripan	Etanol	144,099	140,074	145,749				
6	Azul de Tripan		40,811	40,811	130,811				
6	Azul de Tripan	Agua Deionizada	35,712	35,827	121,766				
7	Azul de Toluidina	Pentanol	148,45	128,248	144,989				
7	Azul de Toluidina	Butanol	134,894	83,906	131,715				
7	Azul de Toluidina	2-propanol	124,942	49,966	49,966 105.375				

7	Azul de Toluidina	Etanol	143,17	61,208	133,448	
7	Azul de Toluidina	Metanol	102,582	7,362	88,448	
7	Azul de Toluidina	Água Deionizada	124,347	125,094	144,894	
8	Vermelho de Metila	Pentanol	142,013	141,013	120,493	
8	Vermelho de Metila	Butanol	144,672	142,971	117,563	
8	Vermelho de Metila	2-propanol	149,102	145,237	106,834	
8	Vermelho de Metila	Etanol	139,96	138,448	22,4	
8	Vermelho de Metila	Metanol	148,27	142,883	1,275	
8	Vermelho de Metila	Água Deionizada	151,33	143,712	18,909	
9	Vermelho de Fenol	Pentanol	136,739	108,155	154,317	
9	Vermelho de Fenol	Butanol	118,902	27,555	152,666	
9	Vermelho de Fenol	2-propanol	139,278	103,278	167,278	
9	Vermelho de Fenol	Etanol	100,973	1,019	117,018	
9	Vermelho de Fenol	Metanol	99,762	14,077	37,419	
9	Vermelho de Fenol	Água Deionizada	148,442	23,442	140,442	
10	Vermelho de Cresol	Pentanol	98,854	70,054	157,454	
10	Vermelho de Cresol	Butanol	105,354	75,354	164,714	
10	Vermelho de Cresol	2-propanol	87,338	25,184	162,491	
10	Vermelho de Cresol	Etanol	68,002	0,184	108,739	
10	Vermelho de Cresol	Metanol	89,054	3,213	66,366	
10	Vermelho de Cresol	Água Deionizada	117,709	9,709	146,709	
11	Purpúra de Bromocresol	Pentanol	80,366	101,094	158,203	
11	Purpúra de Bromocresol	Butanol	94,97	111,554	152,026	
11	Purpúra de Bromocresol	2-propanol	81,309	107,04	181,04	
11	Purpúra de Bromocresol	Etanol	74,669	74,346	185,925	
11	Purpúra de Bromocresol	Metanol	57,194	0,413	117,16	
11	Purpúra de Bromocresol	Água Deionizada	89,235	43,507	168,354	
12	Purpúra de Metacresol	Pentanol	94,522	99,898	167,72	
12	Purpúra de Metacresol	Butanol	62,87	61,52	155,611	
12	Purpúra de Metacresol	2-propanol	77,683	91,754	166,754	
12	Purpúra de Metacresol	Etanol	52,752	5,539	142,816	
12	Purpúra de Metacresol	Metanol	46,144	0,493	73,368	
12	Purpúra de Metacresol	Agua Deionizada	111,67	82,67	162,67	
13	Nitroprussianato de Sódio	Pentanol	0	0	0	
13	Nitroprussianato de Sódio	Butanol	0	0	0	
13	Nitroprussianato de Sódio	2-propanol	142,664	137,701	141,944	
13	Nitroprussianato de Sódio	Etanol	138,922	132,416	130,931	
13	Nitroprussianato de Sódio	Metanol	138,742	134,742	135,666	
13	Nitroprussianato de Sódio	Agua Deionizada	142,866	137,766	17,742	
14	Nitrofenol	Pentanol	145,091	145,968	114,934	
14	Nitrofenol	Butanol	140,166	143,192	92,665	
14	Nitrofenol	2-propanol	142,302	146,97	21,83	
14	Nitrofenol	Etanol	142,186	148,366	23,942	
14	Nitrofenol	Metanol	140,315	145,51	51,981	
14	Nitrofenol	Agua Deionizada	142,318	145,845	96,368	
15	Fenolftaleína	Pentanol	139,909	126,909	144,909	

15	Fenolftaleína	Butanol	137,942	118,182	146,348	
15	Fenolftaleína	2-propanol	125,731	83,578	147,47	
15	Fenolftaleína	Etanol	150,89	75,957	170,851	
15	Fenolftaleína	Metanol	139,584	102,584	145,264	
15	Fenolftaleína	Água Deionizada	154,632	101,632	157,632	
16	Timolftaleína	Pentanol	109,394	126,315	153,397	
16	Timolftaleína	Butanol	88,277	116,459	155,987	
16	Timolftaleína	2-propanol	80,48	115,282	157,694	
16	Timolftaleína	Etanol	50,856	87,856	157,856	
16	Timolftaleína	Metanol	71,81	83,971	148,941	
16	Timolftaleína	Água Deionizada	122,658	127,376	149,818	
17	Fluoresceína Ácida	Pentanol	147,118	155,784	111,208	
17	Fluoresceína Ácida	Butanol	150,482	165,037	36,426	
17	Fluoresceína Ácida	2-propanol	151,978	156,03	69,285	
17	Fluoresceína Ácida	Etanol	147,092	159,518	59,865	
17	Fluoresceína Ácida	Metanol	151,525	154,595	2,067	
17	Fluoresceína Ácida	Água Deionizada	142,138	167,416	0,982	
18	Ditizona	Pentanol	148,33	131,15	101,323	
18	Ditizona	Butanol	147,994	129,994	105,994	
18	Ditizona	2-propanol	159,287	111,94	98,733	
18	Ditizona	Etanol	146,077	118,243	43,869	
18	Ditizona	Metanol	156,674	109,918	1,846	
18	Ditizona	Água Deionizada	145,878	121,048	54,13	

Valores de intensidade dos canais *Red*, *Green* e *Blue* de cada resposta colorimétrica obtida para cada corante estudado em 6 solventes testados, em pH ácido.

	Corante	Solvente	Red	Green	Blue
1	Cloreto de Azul do Nilo	Pentanol	148,16	147,14	152,14
1	Cloreto de Azul do Nilo	Butanol	132,60	133,11	139,60
1	Cloreto de Azul do Nilo	2-propanol	144,03	143,03	148,03
1	Cloreto de Azul do Nilo	Etanol	108,12	128,76	143,23
1	Cloreto de Azul do Nilo	Metanol	100,19	128,23	141,67
1	Cloreto de Azul do Nilo	Água Deionizada	151,04	146,13	152,10
2	Sulfato de Azul do Nilo	Pentanol	142,23	143,30	149,60
2	Sulfato de Azul do Nilo	Butanol	139,23	143,19	152,19
2	Sulfato de Azul do Nilo	2-propanol	138,22	138,91	144,85
2	Sulfato de Azul do Nilo	Etanol	120,12	136,12	149,12
2	Sulfato de Azul do Nilo	Metanol	80,96	126,89	150,18
2	Sulfato de Azul do Nilo	Água Deionizada	144,72	140,44	146,20
3	Azul de Metileno	Pentanol	150,43	148,43	151,83
3	Azul de Metileno	Butanol	130,84	141,61	147,71
3	Azul de Metileno	2-propanol	143,25	143,77	148,01
3	Azul de Metileno	Etanol	127,17	134,29	142,23
3	Azul de Metileno	Metanol	99,16	135,09	145,39
3	Azul de Metileno	Água Deionizada	49,16	127,67	155,33
4	Azul de Bromofenol	Pentanol	145,00	144,22	123,68
4	Azul de Bromofenol	Butanol	142,67	139,71	133,33
4	Azul de Bromofenol	2-propanol	138,71	136,10	126,37
4	Azul de Bromofenol	Etanol	146,10	145,10	117,10
4	Azul de Bromofenol	Metanol	143,36	143,32	109,05
4	Azul de Bromofenol	Água Deionizada	154,13	149,48	155,36
5	Azul Patente	Pentanol	135,19	136,06	141,43
5	Azul Patente	Butanol	131,88	145,90	145,84
5	Azul Patente	2-propanol	132,61	140,37	142,39
5	Azul Patente	Etanol	105,39	136,44	141,67
5	Azul Patente	Metanol	77,00	129,18	81,04
5	Azul Patente	Agua Deionizada	148,56	149,29	117,90
6	Azul de Tripan	Pentanol	0,00	0,00	0,00
6	Azul de Tripan	Butanol	144,35	142,35	146,85
6	Azul de Tripan	2-propanol	147,03	144,34	149,49
6	Azul de Tripan	Etanol	140,32	138,52	143,32
6	Azul de Tripan	Metanol	142,14	139,14	146,77
6	Azul de Tripan	Agua Deionizada	88,91	94,32	149,18
7	Azul de Toluidina	Pentanol	111,94	140,22	152,15
7	Azul de Toluidina	Butanol	130,51	137,51	145,37
7	Azul de Toluidina	2-propanol	139,33	142,29	149,96

7	Azul de Toluidina	Etanol	121,93	133,25	141,46
7	Azul de Toluidina	Metanol	100,13	135,91	151,99
7	Azul de Toluidina	Água Deionizada	106,08	137,56	155,86
8	Vermelho de Metila	Pentanol	158,56	92,57	143,23
8	Vermelho de Metila	Butanol	151,75	109,77	147,04
8	Vermelho de Metila	2-propanol	150,55	136,55	150,67
8	Vermelho de Metila	Etanol	162,08	92,08	144,08
8	Vermelho de Metila	Metanol	160,08	90,50	142,36
8	Vermelho de Metila	Água Deionizada	160,74	111,29	143,45
9	Vermelho de Fenol	Pentanol	150,58	125,54	146,72
9	Vermelho de Fenol	Butanol	161,80	127,80	153,52
9	Vermelho de Fenol	2-propanol	143,62	129,70	142,47
9	Vermelho de Fenol	Etanol	147,17	109,20	130,11
9	Vermelho de Fenol	Metanol	147,64	109,66	130,61
9	Vermelho de Fenol	Água Deionizada	150,39	116,58	119,34
10	Vermelho de Cresol	Pentanol	157,38	86,18	149,57
10	Vermelho de Cresol	Butanol	154,21	94,17	148,48
10	Vermelho de Cresol	2-propanol	173,20	105,99	167,16
10	Vermelho de Cresol	Etanol	146,18	125,04	147,76
10	Vermelho de Cresol	Metanol	175,90	95,90	156,90
10	Vermelho de Cresol	Água Deionizada	147,78	119,26	137,02
11	Purpúra de Bromocresol	Pentanol	144,21	141,17	131,97
11	Purpúra de Bromocresol	Butanol	148,90	145,90	138,90
11	Purpúra de Bromocresol	2-propanol	140,00	136,18	134,78
11	Purpúra de Bromocresol	Etanol	148,06	146,06	133,71
11	Purpúra de Bromocresol	Metanol	145,35	143,50	134,12
11	Purpúra de Bromocresol	Água Deionizada	149,74	145,76	144,50
12	Purpúra de Metacresol	Pentanol	145,19	142,20	147,53
12	Purpúra de Metacresol	Butanol	142,52	129,70	146,63
12	Purpúra de Metacresol	2-propanol	139,48	134,59	144,26
12	Purpúra de Metacresol	Etanol	148,58	68,81	129,61
12	Purpúra de Metacresol	Metanol	146,98	106,98	141,98
12	Purpúra de Metacresol	Água Deionizada	145,27	139,96	143,96
13	Nitroprussianato de Sódio	Pentanol	0,00	0,00	0,00
13	Nitroprussianato de Sódio	Butanol	0,00	0,00	0,00
13	Nitroprussianato de Sódio	2-propanol	0,00	0,00	0,00
13	Nitroprussianato de Sódio	Etanol	0,00	0,00	0,00
13	Nitroprussianato de Sódio	Metanol	151,62	146,62	151,33
13	Nitroprussianato de Sódio	Agua Deionizada	152,43	147,50	151,34
14	Nitrofenol	Pentanol	143,88	139,49	145,13
14	Nitrofenol	Butanol	152,32	147,68	153,56
14	Nitrofenol	2-propanol	136,21	133,21	140,21
14	Nitrotenol	Etanol	149,99	147,73	153,24
14	Nitrotenol		147,17	143,03	146,74
14	Nitrotenol	Agua Deionizada	151,50	146,59	150,73
15	Fenolftaleína	Pentanol	148,93	146,93	151,93

15	Fenolftaleína	Butanol	151,21	146,21	151,93
15	Fenolftaleína	2-propanol	139,35	136,36	143,35
15	Fenolftaleína	Etanol	133,52	133,26	136,05
15	Fenolftaleína	Metanol	145,13	140,45	146,28
15	Fenolftaleína	Água Deionizada	154,42	150,09	153,90
16	Timolftaleína	Pentanol	150,99	148,99	153,85
16	Timolftaleína	Butanol	147,05	142,05	146,61
16	Timolftaleína	2-propanol	147,28	145,28	148,32
16	Timolftaleína	Etanol	145,31	143,31	148,31
16	Timolftaleína	Metanol	144,20	139,25	145,22
16	Timolftaleína	Água Deionizada	144,72	139,77	144,97
17	Fluoresceína Ácida	Pentanol	139,66	152,43	83,73
17	Fluoresceína Ácida	Butanol	135,32	150,38	38,63
17	Fluoresceína Ácida	2-propanol	147,24	159,97	80,54
17	Fluoresceína Ácida	Etanol	142,17	157,25	128,88
17	Fluoresceína Ácida	Metanol	151,71	159,80	60,93
17	Fluoresceína Ácida	Água Deionizada	141,95	139,85	126,15
18	Ditizona	Pentanol	129,02	136,02	142,02
18	Ditizona	Butanol	142,99	143,98	147,97
18	Ditizona	2-propanol	141,23	140,33	148,33
18	Ditizona	Etanol	138,04	137,03	142,03
18	Ditizona	Metanol	150,90	145,90	150,16
18	Ditizona	Água Deionizada	151,00	147,00	148,00

APÊNDICE 04

Corantes	MM	N _c	N _{het}	Nn	No	N _{lig}	N _{atmar}	Nar	N _{nar}	NT	δ _d	δ _p	δ_h
Cloreto de Azul do Nilo	353,8	20	3	3	1	9	12	2	2	4	16,9	2,8	4,8
Sulfato de Azul do Nilo	732,8	40	3	3	6	18	12	4	4	8	21,4	23	42,9
Azul de Metileno	319,9	16	4	3	0	7	6	1	2	3	17,6	8	9,1
Azul de Bromofenol	670	19	3	3	5	11	18	3	1	4	21,3	12,8	9,6
Azul Patente	566,7	27	0	0	6	14	12	2	1	3	22,7	26,3	37,2
Azul de Tripan	960,8	34	0	0	14	18	-	6	0	6	18,4	20,6	28,3
Azul de Toluidina	305,8	15	0	0	0	7	6	1	2	3	17,2	2,2	3,1
Vermelho de Metila	269,3	15	0	0	2	8	12	2	0	2	17,6	6,6	8,3
Vermelho de Fenol	354,4	19	0	0	5	11	18	3	1	4	19,7	12,5	10,4
Vermelho de Cresol	382,4	21	1	0	5	11	18	3	1	4	21,1	10,8	9,1
Purpúra de Bromocresol	540,2	21	1	0	5	11	18	3	1	4	20,4	10,7	8,6
Purpúra de Metacresol	382,4	21	2	0	5	11	18	3	1	4	20,1	10,8	9,1
Nitroprussianato de Sódio	307,9	5	0	6	1	6	-	0	0	0	19,1	21,5	13,7
Nitrofenol	139,1	6	1	3	3	4	6	1	0	1	19	11,5	13,5
Fenolftaleína	318,3	20	0	4	4	10	18	3	1	4	20,9	8,8	9,2
Timolftaleína	430,5	28	2	2	4	10	18	3	1	4	18,9	4,4	4,4
Fluoresceína Ácida	332,3	20	0	6	5	10	20	3	2	5	21,2	9,4	9,9
Ditizona	256,33	13	0	1	0	8	12	2	0	2	17,2	8,4	4,8

Descritores moleculares obtidos pelo software Bioclipse (versão 2.6.2).

Onde: massa molar (*MM*), número de carbonos (N_c), número de heteroátomos (N_{het}), número de nitrogênios (N_n), número de oxigênios (N_o), número de ligações (N_{lig}), número de átomos aromáticos (N_{atmar}), número de anéis aromáticos (N_{ar}), número de anéis não aromáticos (N_{nar}), número total de anéis (*NT*), parâmetro de dispersão de Hansen (δ_d), parâmetro de polaridade de Hansen (δ_p), parâmetro de ligações de hidrogênio de Hansen (δ_h).

Corantes	DPSA-1	A _{cc}	Don	ТороА	GRAV-1	LOB _{máx}	Rg	VdW	E _{cc}	W _{PATH}	W _{POL}	Zag
Cloreto de Azul do Nilo	322,56	2	1	50,42	2085,11	1,85	7,34	2,4848	479	1301	44	132
Sulfato de Azul do Nilo	322,56	2	1	50,42	2085,11	1,85	7,34	2,4848	479	1301	44	132
Azul de Metileno	338	2	0	43,91	1802,1	2,31	6,65	2,2206	338	805	33	108
Azul de Bromofenol	-206,99	3	2	92,21	3673,29	1,16	8,66	3,1213	477	1851	59	166
Azul Patente	295,03	7	2	131,75	3883,84	1,14	9,65	4,0574	821	4216	64	192
Azul de Tripan	-	-	-	-	-	-	-	-	-	-	-	-
Azul de Toluidina	269,28	2	1	66,69	1706,56	2,21	6,37	2,0797	312	684	32	104
Vermelho de Metila	192,45	5	1	65,26	1726,53	1,89	6,8	2,0777	366	914	28	98
Vermelho de Fenol	84,08	3	2	92,21	2620,2	1,17	7,01	2,4213	409	1275	47	142
Vermelho de Cresol	162,44	3	2	92,21	2749,01	1,09	7,29	2,7031	443	1551	53	154
Purpúra de Bromocresol	47,6	3	2	92,21	3275,56	1,13	8,13	3,0531	477	1851	59	166
Purpúra de Metacresol	140,9	3	2	92,21	2748,8	1,17	6,97	2,7031	439	1515	53	154
Nitroprussianato de Sódio	-	-	-	-	-	-	-	-	-	-	-	-
Nitrofenol	17,8	0	1	63,37	915,56	1,51	4,2	0,9493	88	120	11	46
Fenolftaleína	100,24	2	2	66,76	2117,17	1,18	7,02	2,297	394	1164	44	134
Timolftaleína	320,18	2	2	66,76	2617,4	1,39	7,71	3,4242	534	2422	64	178
Fluoresceína Ácida	62,62	2	2	75,99	2321,55	1,19	6,91	2,2471	404	1221	51	148
Ditizona	81,07	4	2	80,87	1598,69	1,32	6,79	1,9418	355	745	20	84

Onde: área de superfície parcial carregada (*DPSA-1*), aceitadores de ligação de hidrogênio (A_{cc}), doadores de ligação de hidrogênio (D_{on}), área de superfície topológica (*TopoA*), índice gravitacional (*GRAV-1*), comprimento sobre a largura (LOB_{máx}), raio de giração (R_g), raio de Van Der Waals (*VdW*), índice de conectividade excêntrica (E_{cc}), número de Wiener (W_{PATH}), número de Wiener (W_{POL}) e índice de Zagreb (Z_{ag})

9. ANEXO

ANEXO 01 – Menção Honrosa 42ª JICTAC/UFRJ

Este trabalho foi apresentado na edição especial da 42^a da Jornada Giulio Massarani de Iniciação Científica, Tecnológica, Artística e Cultural, do ano de 2020, e foi condecorado com menção honrosa em maio de 2021.

Verifique o código de autenticidade 4081748.2295101.050761.5.39172455861313637416 em https://www.even3.com.br//documentos

CERTIFICADO

Certificamos que o trabalho Mapeamento das Cores de Soluções de Corantes e Correlação com suas Estruturas por meio de Descritores Moleculares, de autoria de Pamella Cristina Gonzaga Nascimento Nazareth, Rafael Cavalcante dos Santos, Renan de Oliveira Muniz, Cristiane Gimenes de Souza, Débora França de Andrade e Luiz Antonio d'Avila, recebeu Menção Honrosa em Sessão de Apresentação do Centro de Tecnologia (CT) na XLII Jornada Giulio Massarani de Iniciação Científica, Tecnológica, Artística e Cultural (JICTAC 2020 - Edição Especial), realizada de 22 a 26 de março de 2021.

Profa. Denise Maria Guimarães Freire Pró-reitora de Pós-graduação e Pesquisa / UFRJ

Profa. Gisele Viana Pires Pró-reitora de Graduação / UFRJ

Rio de Janeiro, 04 de maio de 2021

Travalsos

Prof. Leonardo Holanda Travassos Corrêa Coordenador da JICTAC / UFRJ