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RESUMO

Algoritmos de detecção de colisão são muito importantes em várias áreas, tais como
robótica, física computacional, computação gráfica, e outras. Ao longo do tempo, o
número de vértices de modelos tridimensionais vem aumentando cada vez mais. Isso acaba
demandando algoritmos cada vez mais rápidos em detecção de colisão de fase estreita. Um
dos algoritmos mais versáteis e rápidos para isso é o algoritmo Gilbert-Johnson-Keerthi,
ou simplesmente GJK, que é um algoritmo famoso para computar a distância entre dois
politopos convexos. O objetivo principal desse trabalho é revisar o artigo original do
algoritmo GJK, apresentando uma descrição completa e a prova de sua corretude (e
que o algoritmo sempre termina). Como esse algoritmo depende de um subalgoritmo
de distância, uma descrição completa do subalgoritmo de distância de Johnson e uma
revisão da prova de sua corretude e que o algoritmo sempre termina também estão inclusos
aqui. Ademais, esse trabalho também apresenta uma descrição completa de uma melhoria
que usa hill climbing para alcançar uma complexidade de tempo quase constante e uma
modificação para computar um eixo de separação, além de mencionar brevemente outras
modificações: a primeira serve para resolver detecção de colisão contínua; a outra é o
Algoritmo da Expansão de Politopo, ou simplesmente EPA, para computar a profundidade
de penetração.

Palavras-chave: detecção de colisão; algoritmo.



ABSTRACT

Collision detection algorithms are very important in many fields such as robotics, com-
putational physics, computer graphics, and more. Over time, the number of vertices in
three-dimensional models has been growing more and more, demanding faster algorithms
in narrow-phase collision detection. One of the most versatile and fast algorithms for that
is the Gilbert-Johnson-Keerthi algorithm, GJK for short, which is a famous algorithm for
computing the distance between two convex polytopes. The main objective of this work is
to review the original paper of the GJK algorithm by presenting a full description of the
algorithm, along with a proof of its correctness and termination. Since the algorithm relies
on a distance sub-algorithm, a complete description of Johnson’s distance sub-algorithm
and a review of its correctness and termination proof are covered here as well. In addi-
tion, this work also presents a full description of an improvement that uses hill climbing to
achieve an almost constant time complexity and a modification for computing a separat-
ing axis, and it briefly mentions two other possible modifications: the first one addresses
continuous collision detection; the other one is the Expanding Polytope Algorithm, EPA
for short, for computing penetration depth.

Keywords: collision detection; algorithm.
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1 INTRODUCTION

Collision detection is a term that encompasses a collection of problems arising from

the apparently simple classical problem of detecting whether two geometrical objects

intersect. From there, new problems came to light, and they bifurcated into two classes of

collision detection: broad-phase and narrow-phase ones. Broad-phase collision detection

is the class of problems related to reducing the number of collision tests between two

objects from a large number of objects in space. Narrow-phase collision detection is the

class of problems aimed at detecting collision between two objects, or even computing

further information like the distance between the objects or the contact points in case

of intersection. These and other concepts about collision detection are well covered in

(ERICSON, 2004). Naturally, collision detection is one of the main problems in fields like

robotics, computational physics, computer graphics, etc, as mentioned in the introductory

sessions of (GILBERT; JOHNSON; KEERTHI, 1988; CAMERON, 1997; MONTANARI;

PETRINIC, 2016).

The Gilbert-Johnson-Keerthi algorithm, or GJK for short, is an algorithm for com-

puting the distance between two convex polytopes (GILBERT; JOHNSON; KEERTHI,

1988). Empirical experiments have shown this algorithm runs in approximate linear time

(GILBERT; JOHNSON; KEERTHI, 1988). Furthermore, the GJK can be enhanced in or-

der to perform in almost constant time complexity (CAMERON, 1997; BERGEN, 1999),

while it is also possible to modify it for computing more information in narrow-phase

collision detection, among these: a pair of nearest points or a point of intersection (GIL-

BERT; JOHNSON; KEERTHI, 1988), penetration depth (BERGEN, 2001), separating

axis (BERGEN, 1999), time of impact (BERGEN, 2004), and perhaps other features.

This algorithm is not restricted only to polytopes because it can be adapted to work with

quadrics (BERGEN, 1999) and spherical extensions (GILBERT; JOHNSON; KEERTHI,

1988). Ellipses and capsules are some examples. Also, the GJK algorithm can solve

continuous collision detection for linear trajectories (BERGEN, 2004) since the algorithm

can be adapted to deal with affine transformations and Minkowski sums (GILBERT;

JOHNSON; KEERTHI, 1988). All these features lead the GJK algorithm to be conside-

red one of the most versatile algorithms, if not the most versatile, in collision detection.

Although the GJK algorithm was developed almost 40 years ago (GILBERT; JOHNSON;

KEERTHI, 1988), there are still contributions being made to improve the speed of GJK,

such as (LIDECN; SIVIC; CARPENTIER, 2022) , where they compare the GJK to a

similar, Gradient Descent, method called Frank-Wolfe and use the Nesterov acceleration

to improve the convergence speed. A relatively recent paper (MONTANARI; PETRINIC,

2016) shows the current most numerically stable distance sub-algorithm.

In Chapter 2, we cover some crucial concepts to fully understand the GJK algorithm,
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which are some definitions such as Minkowski difference, distance vector, support, and

simplex, as well as some important theorems. More importantly, we prove (17, 21) from

(GILBERT; JOHNSON; KEERTHI, 1988), which has not been proven, and we prove

theorem 2.2, which is crucial to understand the distance sub-algorithm. In Chapter 3,

we describe the GJK algorithm, we show a different yet detailed proof of theorem 1 from

(GILBERT; JOHNSON; KEERTHI, 1988) for its correctness, and we revisit theorem 2

from (GILBERT; JOHNSON; KEERTHI, 1988) for its termination. In Chapter 4, we

cover the distance sub-algorithm and fully describe in detail the whole theory behind

Johnson’s distance sub-algorithm, which is the one used in the original paper (GILBERT;

JOHNSON; KEERTHI, 1988). We also show a step-by-step proof of theorem 3 from

(GILBERT; JOHNSON; KEERTHI, 1988). In Chapter 5, we discuss the time complexity

of the GJK algorithm and present an improvement that uses hill climbing (CAMERON,

1997) to achieve almost constant time complexity. We construct a counterexample to

prove the hill climbing method is actually incorrect, yet we show a procedure that corrects

it. Also, we show a modification called Incremental Separating Axis GJK or ISA-GJK for

short (BERGEN, 1999), and cover briefly two other modifications, which are ray casting

with GJK (BERGEN, 2004) and the Expanding Polytope Algorithm or EPA for short

(BERGEN, 2001).
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2 MAIN CONCEPTS

In order to fully understand the Gilbert-Johnson-Keerthi algorithm and its enhanced

version, some important concepts and their properties that will be used throughout this

paper must be defined beforehand. Those concepts are, in order: Minkowski sum and

difference, convexity, distance, support, and simplex.

All those concepts can be generalized to some more abstract algebraic structures.

However, for the sake of simplicity, the term region will henceforth mean a non-empty

compact subset of the Euclidean affine space, often represented by a set X ¢ R
n so we can

have strong properties from real analysis. For example, using that definition of a region,

we could use minimum and maximum without concerns about infimum or supremum.

Definition 2.1 (Minkowski Sum and Minkowski Difference). Given two sets A and B,

the Minkowski sum A·B is the set of all sums between an element from A and an element

from B. More formally:

A· B = {a+ b | a ∈ A, b ∈ B}.

Figure 1 – Visualization of Minkowski sum

Analogously and more importantly, the Minkowski difference A ¸ B is the set of all

subtractions between an element from A and an element from B in that order, meaning:

A¸ B = {a− b | a ∈ A, b ∈ B}.
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Figure 2 – Visualization of Minkowski difference and distance vector

v(A¸ B) is the distance vector to A from B.

Definition 2.2 (Affine Hull and Convex hull). For a set of points P ¢ R
n, the affine hull

of P , denoted by aff(P ), is a set of all affine combinations of points in P . More formally:

aff P =

{

∑

p∈P

¼pp | p ∈ P, ¼p ∈ R,
∑

p∈P

¼p = 1

}

that is, the linear combination of point p ∈ P with coordinates ¼p is a point in aff(P ) iff

the sum of all coordinates ¼p is equal to 1.

Similarly, the convex hull of P , denoted by conv(P ), is a subset of the affine hull where

all the coordinates ¼p must be non-negative. More formally:

convP =

{

∑

p∈P

¼pp | p ∈ P, 0 f ¼p,
∑

p∈P

¼p = 1

}

Definition 2.3 (Distance). The distance between two regions A,B is defined as the

minimum distance between two points a ∈ A, b ∈ B. More formally:

d(A,B) = min{∥a− b∥ | a ∈ A, b ∈ B}

where d(A,B) is the distance between A and B. Equivalently, using the Minkowski

difference:

d(A,B) = min{∥x∥ | x ∈ A¸ B}.

The immediate conclusion is that the distance between two regions can be viewed as

the norm of some vector of the Minkowski difference that has the smallest norm. From
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this perspective, similarly to (GILBERT; JOHNSON; KEERTHI, 1988), a minimum norm

vector v(X) can be defined as:

v(X) ∈ X, ∥v(X)∥ = min{∥x∥ | x ∈ X}

and then we conclude that:

∥v(A¸ B)∥ = min{∥x∥ | x ∈ A¸ B} = d(A,B).

From this result, v(A¸ B) is called a distance vector to A from B (see figure 2).

When considering vector spaces as affine spaces, the distance between two regions

may be viewed as the distance of a nearest point to the origin in the Minkowski difference

with the origin being the zero vector, as considered by some important authors (MONTA-

NARI; PETRINIC, 2016; GILBERT; JOHNSON; KEERTHI, 1988; CAMERON, 1997;

BERGEN, 1999) to name but a few. Depending on the shape of the region, there might

be more than one vector with the same minimum norm, so the distance vector is not

always unique (see figure 3).

Figure 3 – A region where the minimum norm vector is not unique

In this non-convex region, all points in the blue arc are minimum norm vectors.

Theorem 2.1. Given a convex region X ¢ R
n, if X is convex, then v(X) is unique.

Proof. Let us suppose by contradiction that there are two distinct minimum norm vectors

v1, v2 ∈ X, that is, v1 ̸= v2 and ∥v1∥ = ∥v2∥ = ℓ. Because X is convex, the line segment

conv{v1, v2} is a subset of X. Also, conv{v1, v2} is a chord in the sphere of radius ℓ

centered at 0, hence there is a vector in the chord whose norm is less than ℓ, which is a

contradiction.
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From that result, as long X is convex, an equivalently way to redefine v(X) using

destructuring is:

{v(X)} = argmin
x∈X

∥x∥.

Corollary 2.1.1. If two regions are convex, then there is a unique distance vector.

Proof. Assume two convex regions A,B ¢ R
n. A ¸ B can be easily proven convex by

theorem 1.1.2 in (SCHNEIDER, 1993). Consequently, the distance vector v(A ¸ B) is

proven to be unique by 2.1.

Theorem 2.2. Let P ¢ R
n be any set of points and let three statements be:

1. There are all positive coordinates for v(conv(P )),

2. There are all positive coordinates for v(aff(P )),

3. v(aff(P )) = v(conv(P )).

Therefore:

(1.)⇐⇒ (2.)

(1.) ( (2.) =⇒ (3.)

Proof. Let vc = v(conv(P )) and va = v(aff(P )).

To prove (1.) =⇒ (3.), suppose there are all positive coordinates for vc. Since

conv(P ) ¢ aff(P ), ∥va∥ f ∥vc∥. Now, suppose by contradiction that ∥va∥ < ∥vc∥.

Because all coordinates are positive, vc is an interior point of conv(P ), therefore, there is

a point p ∈ conv(P ) in the line segment between conv{vc,va} where ∥p∥ < ∥vc∥, which

is a contradiction. Consequently, ∥va∥ = ∥vc∥. By theorem 2.1, va = vc.

To prove (2.) =⇒ (3.), (2.) implies that va ∈ conv(P ), therefore, ∥vc∥ f ∥va∥. Since

conv(P ) ¢ aff(P ), ∥va∥ f ∥vc∥. Therefore, va = vc.

To prove (1.) =⇒ (2.), assume (1.), therefore, (3.). A convex combination is a special

case of an affine combination, therefore, since all coordinates for vc = va are positive, we

conclude (2.).

To prove (2.) =⇒ (1.), assume (2.), therefore, (3.). Since all coordinates for va = vc

are positive, we conclude (1.).

Definition 2.4 (Support). Let X ¢ R
n be a region, x ∈ X a point, and H ¢ R

n a

hyperplane. It is said that H supports X at x iff: x is a point of both X and H, and X

is entirely contained in one of the half-spaces of H (since a hyperplane divides the space

in two).
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To construct hyperplanes, let the hyperplane H(a, b) be defined as:

H(a, b) = {p | p ∈ R
n, a¦p = b},

where the non zero vector a ∈ R
n \ {0} is orthogonal to the hyperplane and b ∈ R is the

offset to the origin in the a direction. Analogously, H+(a, b) and H−(a, b) are the positive

and negative half-spaces respectively, defined as:

H+(a, b) = {p | p ∈ R
n, a¦p g b}

H−(a, b) = {p | p ∈ R
n, a¦p f b}.

A trivial, but important, property is that H+(−a,−b) = H−(a, b). To define more for-

mally the concept of a supporting hyperplane, H(a, b) supports X at x iff:

(

x ∈ X ∩H
)

'

(

(

X ¦ H+(a, b)
)

(
(

X ¦ H−(a, b)
)

)

.

Given a vector d ∈ R
n, a support point of X in the direction d is a point s ∈ X

furthest in the direction d. More formally:

d¦s = max{d¦x | x ∈ X}.

Figure 4 – Visualization of the concepts of support

Another way of thinking about a support point is by projecting all points of X in the

axis that is passing through the vector d and taking a point of X that is furthest in that

axis. The greater the inner product is, the further the projection is in the d’s axis. A

support point s in the direction d means that all points of x ∈ X are not further than s

in the direction d, which means that, for all x ∈ X:

d¦x f d¦s.
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The name support point comes from the fact that H(d, d¦s) is a supporting hyperplane

since s ∈ X ∩ H(d, d¦s) and X ¢ H−(d, d¦s), which is an immediate result from the

inequality above.

On top of that, we define the support function hX(d) : R
n → R by:

hX(d) = max{d¦x | x ∈ X}.

Equivalently, we can define the support point s as a point that satisfies:

d¦s = hX(d).

As a consequence, H(d, hX(d)) is a supporting hyperplane as well as X ¢ H−(d, hX(d)).

An intuitive interpretation of the support function is that hX(d)
∥d∥

can be viewed as the

signed Euclidean distance from its supporting hyperplane H(d, hX(d)) to the origin (see

lemma 2.6).

With all those concepts at hand, we can define the support mapping sX(d) to return

a support point of X in the direction d. Although there might be more than one support

point given a region and a direction, one can define the support mapping so it picks a pre-

selected random support point to guarantee the univalent property. From this definition,

we can roughly define the support mapping as:

sX(d) ∈ argmax
x∈X

d¦x.

Theorem 2.3. (Support Computability) For all sets of points P ¢ R
n and directions

d ∈ R
n:

hP (d) = hconv(P )(d).

Proof. There are only three possibilities:

1. hP (d) > hconv(P )(d),

2. hP (d) = hconv(P )(d),

3. hP (d) < hconv(P )(d).

The first one is impossible because P ¢ conv(P ), so, if true, there would be a point

p ∈ P , where d¦p > hconv(P )(d), but also p ∈ conv(P ) since P ¢ conv(P ), which would

be a contradiction. The last one is also impossible. To prove it, assume s to be a support

point of conv(P ) in the direction d, i.e.:

d¦s = hconv(P )(d).

Since s is a point of conv(P ), s must be a convex combination of points in P , i.e.:

s =
∑

p∈P

¼pp
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∑

p∈P

¼p = 1

∀p ∈ P (0 f ¼p) .

Expanding s in d¦s, we get:

d¦s =
∑

p∈P

¼pd
¦p.

Since d¦s = hconv(P )(d) and we assumed that hP (d) < hconv(P )(d), for all points p ∈ P :

d¦p < d¦s,

therefore:
∑

p∈P

¼pd
¦p <

∑

p∈P

¼pd
¦s.

Because there is a ¼p ̸= 0, we can keep the strict inequality “<” above. Expanding the

expression above:

d¦s =
∑

p∈P

¼pd
¦p <

∑

p∈P

¼pd
¦s = d¦s

(

∑

p∈P

¼p

)

= d¦s,

in conclusion:

d¦s < d¦s,

which is a contradiction, therefore, the only left possibility is:

hP (d) = hconv(P )(d).

The property above is the (17) from (GILBERT; JOHNSON; KEERTHI, 1988) whose

prove has been omitted. This allows us to compute a support point of the convex hull of

P in the direction d by searching for a point p ∈ P that gives the maximum d¦p, which

shows an explicit construction of a support mapping:

sP (d) = sconv(P )(d).

Lemma 2.4. (Maximum of sum)

maxA· B = maxA+maxB.

Proof. Assume a+ b = maxA· B, thus:

maxA+maxB f a+ b.

By definition, a f maxA and b f maxB, hence:

a+ b f maxA+ b f maxA+maxB
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by transitivity, we have:

maxA+maxB f a+ b f maxA+maxB.

Therefore:

maxA· B = a+ b = maxA+maxB.

Theorem 2.5. (Support Mapping of the Minkowski Difference)

sA¸B(d) = sA(d)− sB(−d).

Proof. Let sm = sA¸B(d). By the definition of support function:

d¦sm = hA¸B(d) = max{d¦m | m ∈ A¸ B},

which is the same as:

d¦sm = max{d¦(a− b) | a ∈ A, b ∈ B}

d¦sm = max{d¦a− d¦b | a ∈ A, b ∈ B}

d¦sm = max
(

{d¦a | a ∈ A} · {−d¦b | b ∈ B}
)

.

Using lemma 2.4, we conclude:

d¦sm = max{d¦a | a ∈ A}+max{−d¦b | b ∈ B}.

From those two maxima, let sa = sA(d) and sb = sB(−d). By the definition of support

points:

d¦sa = max{d¦a | a ∈ A}

−d¦sb = max{−d¦b | b ∈ B}.

Applying substitution on the last d¦sm equality, we get:

d¦sm = d¦sa − d¦sb

d¦sm = d¦(sa − sb).

As result, we conclude that sa − sb is a support point since, by substitution:

d¦(sa − sb) = d¦sm = hA¸B(d),

therefore, we can compute the support function of the Minkowski difference by doing:

sA¸B(d) = sA(d)− sB(−d).
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The property above is (21) from (GILBERT; JOHNSON; KEERTHI, 1988) whose

prove has been omitted as well. This is one of the most important results in the GJK

algorithm because it allows us to find a support point without explicitly computing the

Minkowsky difference.

Lemma 2.6. For all a ∈ R
n and for all b ∈ Rg0:

v(H+(a, b)) =







b
a¦a

a, if 0 < b

0, otherwise

Proof. If b f 0, then a¦0 = b, therefore 0 ∈ H+(a, b). If 0 < b, then v(H+(a, b)) must be

in the boundary of H+(a, b), which is H(a, b). Therefore:

v(H+(a, b)) = v(H(a, b)).

It is easy to verify that:
b

a¦a
a ∈ H(a, b).

Since this vector is also orthogonal to H(a, b):

b

a¦a
a = v(H(a, b)) = v(H+(a, b)).

Definition 2.5. (Simplex)

A simplex is the convex hull of an affine basis. More formally, a region Sk ¢ R
n is a

k-simplex iff there exist a set of k + 1 affinely independent points P ¢ R
n such that:

Sk = conv(P ).

If conv(P ) is a simplex and P is a finite set of affinely independent points, then P is called

a simplex set.

Another way of thinking of a simplex is as the generalization of a point, a line, a

triangle, and a tetrahedron, but for any number of dimensions. Roughly speaking, a

k-simplex is a k-dimension polytope with the least amount of vertices (k + 1 vertices to

be precise), so a 0-simplex is a point, a 1-simplex is a line, a 2-simplex is a triangle, a

3-simplex is a tetrahedron, and so on.

With all those essential concepts and properties explained, we are ready to fully un-

derstand the GJK algorithm as well as the next chapters.
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Figure 5 – Visualization of simplices



22

3 THE GILBERT-JOHNSON-KEERTHI ALGORITHM

Given two finite sets of points A,B ¢ R
n, the Gilbert-Johnson-Keerthi algorithm

(GJK for short) computes the distance vector to the convex hull of A from the convex

hull of B. The main strategy of the GJK algorithm is to find the v(conv(A ¸ B)) by

constructing a sequence of simplices where, for any simplex in the sequence, the next one

is constructed using a support point in a way that it is strictly closer to the origin.

3.1 A BRIEF DESCRIPTION OF THE ALGORITHM

As input, we have a set of points A,B ¢ R
n representing the convex polytopes

conv(A), conv(B). The algorithm starts by picking any simplex set W0 ¢ R
n, i.e., any

finite set of affinely independent points representing the simplex conv(W0). It also assigns

v0 = v(W0) to be the point of the simplex nearest to the origin.

While the current distance vector is not the zero vector, that is, vi ̸= 0 (first halt

condition), it proceeds by computing the support point towards the origin from vi, that

is, si = sA¸B(−vi). Using theorem 2.5, the computation of the support point can be done

by si = sA(−vi)− sB(vi).

If v¦
i (vi − si) = 0 (second halt condition), then vi is a proven distance vector and

we break the while-loop. Otherwise, proceed to call the distance sub-algorithm in the

simplex set Wi ∪ {si} to calculate the new distance vector vi+1 = v(conv(Wi ∪ {si})) and

the smallest simplex set Wi+1 ¦ Wi ∪ {si} such that vi+1 ∈ conv(Wi+1), and then we go

back to the while-loop above.

After the while-loop, we return the proven distance vector vk.

Figure 6 – Visualization of the GJK algorithm
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Before giving a complete description of the GJK algorithm, there are some important

properties for the correctness and termination proof.

3.2 IMPORTANT PROPERTIES

Here is an alternative proof of theorem 1 in (GILBERT; JOHNSON; KEERTHI, 1988):

Theorem 3.1 (GJK’s second halt condition). For any convex region X ¢ R
n and x ∈ X:

1. if 0 < x¦(x − sX(−x)), there is a vector y in the line segment conv{x, sX(−x)}

where ∥y∥ < ∥x∥.

2. x¦(x− sX(−x)) = 0 iff x = v(X).

3. ∥x− v(X)∥2 f x¦(x− sX(−x)).

Proof. By the definition of support points, for all points y ∈ X:

(−x)¦y f (−x)¦sX(−x),

therefore:

(−x)¦x f (−x)¦sX(−x)

0 f x¦(x− sX(−x)),

so there are two possible cases

case 1: 0 = x¦(x− sX(−x)),

case 2: 0 < x¦(x− sX(−x)).

First, suppose the first case is true, therefore:

(−x)¦x = (−x)¦sX(−x).

The equality above means that x is a support point of X in the direction −x, which means

that:

X ¢ H−(−x,−x¦x),

equivalently:

X ¢ H+(x, x¦x).

By using lemma 2.6, we conclude that:

v(H+(x, x¦x)) = x.

Since X ¢ H+(x, x¦x):

v(X) = x,
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which proves that (2.): x¦(x− sX(−x)) = 0 =⇒ x = v(X).

Second, suppose that the second case is true. By multiplying both sides by −2:

2x¦(sX(−x)− x) < 0

Suppose y ∈ R
n is a point in the line segment between conv{x, sX(−x)}, that is:

y = (1− ¼)x+ ¼sX(−x)

0 f ¼ f 1,

so y ∈ X as X is convex. The derivative of y¦y with respect to ¼ is:

∂λy
¦y = 2y¦∂λy,

so, when ¼ = 0:

∂λy
¦y = 2x¦(sX(−x)− x) < 0.

Since y = x when ¼ = 0, from the definition of derivative, there is a ¼ > 0 where

y¦y < x¦x, proving (1.). As a consequence, if x = v(X), then the first case is the only

one actually possible:

0 = y¦y + hX(−y),

proving (2.): x¦(x− sX(−x)) = 0⇐= x = v(X).

Third, suppose v = v(X). By the already proven (2.):

v¦(v − sX(−v)) = 0

v¦v + (−v)¦sX(−v) = 0

(−v)¦v = (−v)¦sX(−v)

By the definition of support points, for all points x ∈ X:

(−v)¦x f (−v)¦sX(−v)

substituting (−v)¦v = (−v)¦sX(−v):

(−v)¦x f (−v)¦v

(−v)¦x+ v¦v f 0

adding both sides by x¦x− v¦x:

x¦x− 2v¦x+ v¦v f x¦x− v¦x

∥x− v∥2 f x¦x− v¦x.
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Again, by the definition of support points:

(−x)¦v f (−x)¦sX(−x)

adding x¦x both sides:

x¦x− x¦v f x¦x− x¦sX(−x)

x¦x− v¦x f x¦(x− sX(−x)).

Therefore:

∥x− v∥2 f x¦x− v¦x f x¦(x− sX(−x)),

finally proving (3.).

3.3 PSEUDO-CODE, CORRECTNESS AND TERMINATION PROOF

The description of the GJK algorithm presented in (GILBERT; JOHNSON; KE-

ERTHI, 1988) can be defined, based on a pseudo-code from (BERGEN, 1999), as:

Algorithm 1: GJK algorithm
Data: A,B ¢ R

n

Result: ∥v(conv(A¸ B))∥

W ← “arbitrary simplex set from A¸ B”

v← “precomputed v(conv(W ))”

while v ̸= 0 do
s← sA(−v)− sB(v)

if v¦(v − s) = 0 then
break

end

(W,v)← distanceSubalgorithm(W ∪ {s})

end

return v

Given a finite set of affinely independent points Y representing a simplex, the dis-

tance sub-algorithm computes v(conv(Y )) as well as the smallest set X ¦ Y such that

v(conv(Y )) ∈ conv(X). There are three different distance sub-algorithms such as John-

son’s distance sub-algorithm (GILBERT; JOHNSON; KEERTHI, 1988), Ericson’s method

(ERICSON, 2004) also called Voronoi search, and the Signed Volumes method (MONTA-

NARI; PETRINIC, 2016). In the next chapter, only Johnson’s algorithm will be covered

since it is the one used in the original GJK algorithm.
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Before proving the correctness and the termination proof of the GJK algorithm, here

are some notations and useful properties:

1. For any two finite sets of points A,B ¢ R
n, let X = A¸B represent the Minkowsky

difference.

2. Let Wi be the sequence of simplex sets assigned, in order, to the variable W , where

W0 is the first value assigned to W , that is, an arbitrary simplex set:

W0 ¦ X.

3. Let vi be the sequence of current distance vectors assigned, in order, to the variable

v, where v0 is assigned to be v(conv(W0)).

4. Let si be the sequence of support points assigned, in order, to the variable s. The

only line of code where the variable s is assigned implies that, for all si of the

sequence:

si = sX(−vi).

5. The distance sub-algorithm guarantees that vi = v(conv(Wi ∪ {si})) as well as it

guarantees the simplex set Wi+1 ¦ Wi ∪ {si} is the minimum subset such that the

simplex conv(Wi+1) contains vi. More formally:

Wi+1 ¦ Wi ∪ {si}

v(conv(Wi ∪ {si})) ∈ conv(Wi+1).

Therefore, for all vi of the sequence:

vi = v(conv(Wi)).

6. In the GJK algorithm, the first simplex set W0 is an arbitrary one such that:

W0 ¦ X.

By the distance sub-algorithm, for all Wi of the sequence:

Wi+1 ¦ Wi ∪ {s}.

Therefore, one can conclude that:

Wi ¦ X.
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Theorem 3.2 (Correctness of the GJK algorithm). For any two finite sets of points

A,B ¢ R
n as inputs, the GJK algorithm returns v(conv(A¸ B)).

Proof. The idea is to prove that v = v(conv(X)) after the while-loop. The final value of

v comes from the last assigned value before the first or second halt conditions.

For the first halt condition, if vi = 0, then the while-loop breaks, and the zero vector

is returned as the distance vector. From the properties above, vi = v(conv(Wi)) and

Wi ¦ X, hence vi is also a point of conv(X). If vi = 0, then 0 ∈ conv(X), therefore,

v(conv(X)) = 0, and the algorithm returns a proven distance vector.

For the second halt condition, if v¦
i (vi − si) = 0, then vi = v(conv(X)) by theorem

3.1, the while-loop breaks, and the algorithm returns a proven distance vector.

As those are the only two halt conditions possible for the GJK algorithm, if the GJK

algorithm halts for some inputs, the output is proven to be correct. The next problem is

to prove that the GJK algorithm always halts for any input.

Theorem 3.3 (Termination proof of the GJK algorithm). For any two finite sets of points

A,B ¢ R
n as inputs, the GJK algorithm always halts.

Proof. In the i-step, suppose the GJK algorithm didn’t halt, hence v¦
i (vi − si) ̸= 0.

Substituting si = sX(−vi):

v¦
i (vi − sX(−vi)) ̸= 0

By definition, (−vi)
¦x f (−vi)

¦si for all x ∈ X. Because Wi ∪ {si} ¦ X, then si is also

a support point of Wi ∪ {si} in the direction −vi, therefore:

sX(−vi) = sWi∪{si}(−vi)

and, by substitution:

v¦
i (vi − sWi∪{si}(−vi)) ̸= 0

by the support computability theorem 2.3:

v¦
i (vi − sconv(Wi∪{si})(−vi)) ̸= 0

As consequence of theorem 3.1, vi ̸= v(conv(Wi ∪ {si})), which means that v(conv(Wi ∪

{si})) is strictly closer to the origin than vi. From the definition of the distance sub-

algorithm, vi+1 = v(conv(Wi ∪ {si})) = v(conv(Wi+1)). Therefore, for all elements vi of

the sequence:

∥vi∥ < ∥vi+1∥.

Let di be the sequence defined as:

di = ∥vi∥,
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which is, by the property above, a strictly decreasing sequence. Suppose by contradiction

that Wi = Wj for some i ̸= j. Thus:

v(conv(Wi)) = v(conv(Wj))

∥v(conv(Wi))∥ = ∥v(conv(Wj))∥

di = dj,

which is a contradiction. Therefore, the sequence Wi has distinct elements. the set X is

finite by definition, hence the power set P(X) is finite. Since the sequence Wi has distinct

elements that are also subsets from X, the sequence Wi is finite as well, so the algorithm

always halts.

To prove the correctness of the GJK algorithm completely, the next chapter covers

Johnson’s distance sub-algorithm, its correctness, and termination proof.
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4 DISTANCE SUB-ALGORITHM

As mentioned before, given a simplex set Y , the distance sub-algorithm compu-

tes v(conv(Y )) and the smallest subset X ¦ Y such that the minimum norm vector

v(conv(Y )) is also a vector of the simplex conv(X). To understand better what is

this smallest subset, let I = {1, . . . , n} be the index set, Y = {y1, . . . , yn} ¢ R
r, and

v = v(conv(Y )). Because v ∈ conv(Y ), this minimum norm vector can be expressed by

its barycentric coordinates:

v =
∑

i∈I

¼iyi

where
∑

i∈I

¼i = 1

∀i ∈ I(0 f ¼i).

If there is any coordinate ¼i = 0, then the point yi can be safely removed from the

summation, thus it is possible to remove all points of zero coordinates, that is, to select

only the points with positive coordinates. From this idea, let I+ ¦ I be the index subset

defined as:

I+ = {i | i ∈ I, 0 < ¼i}.

In other words, I+ is the index subset of all positive coordinates. Also, let Y+ = {yi | i ∈

I+}, therefore:

v =
∑

i∈I+

¼iyi

where
∑

i∈I+

¼i = 1

∀i ∈ I+(0 < ¼i).

Since the points of Y are affinely independent, the coordinates of v are unique, therefore

Y+ is the smallest subset of Y where v ∈ conv(Y+). Let v+ = v(conv(Y+)), so another

property is that v = v+. The proof follows:

v ∈ conv(Y+), thus ∥v+∥ f ∥v∥. v+ ∈ conv(Y+) ¢ conv Y , thus ∥v∥ f ∥v+∥.

Therefore:

∥v∥ = ∥v+∥.

By theorem 2.1, v = v+.

From the result above, since all coordinates of v are positive, v+ shares the same

property, hence, by theorem 2.2, v+ = v(aff(Y+)).
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4.1 INTRODUCTION TO JOHNSON’S DISTANCE SUB-ALGORITHM

The first proposal for the distance sub-algorithm is one made by Daniel W. Johnson

described in (GILBERT; JOHNSON; KEERTHI, 1988). This algorithm uses dynamic

programming on top of a recursive formula based on Cramer’s rule and Laplace expansion

to compute the barycentric coordinates of v(aff(Ys)), traversing each non-empty subset

Ys ¦ Y until v(conv(Y )) = v(aff(Ys)) is satisfied. In order to better understand the idea

behind this algorithm, let Ys be any non-empty subset of Y where Ys = {y1, . . . , yn}, n f

#Y and let x1, . . . , xn be any ordering of Ys elements. Any point y ∈ aff(Ys) can be

modeled as:

y =
n
∑

i∈1

¼ixi

where
n
∑

i∈1

¼i = 1.

This approach constrains the coordinates ¼i, so another way of modeling y with uncons-

trained coordinates is:

¼1 = 1−
n
∑

i∈2

¼i

and then:

y = x1 +
n
∑

i∈2

¼i(xi − x1)

where ¼i, 2 f i f n can be any real number. In order to compute v(aff(Ys)), we must

find the coordinates ¼i, 2 f i f n that minimizes the function y¦y, which is equivalent of

solving the coordinates where the gradient is zero, that is, for all 2 f j f n:

∂λj
(y¦y) = 2y¦∂λj

(y) = 0

y¦∂λj
(y) = 0

substituting y by its affine combination and ∂λj
(y) = (xj − x1):

n
∑

i=1

¼ix
¦
i (xj − x1) = 0.

The result above can be modeled as a linear system As¼ = b, that is:












1 . . . 1

(x2 − x1)
¦x1 . . . (x2 − x1)

¦xn

...
. . .

...

(xn − x1)
¦x1 . . . (xn − x1)

¦xn

























¼1

¼2

...

¼n













=













1

0
...

0













.
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Using Cramer’s rule, we get:

¼j =
detAj

s

detAs

where Aj
s is the matrix As with the j-th column substituted by b. Using Laplace expansion

of Aj
s on the first row, we get:

detAj
s = (−1)1+j detA1,j

s

where A1,j
s is the matrix As with the first row and the j-th column removed. Combining

both results, one can easily verify that:

¼j =
(−1)1+j detA1,j

s

detAs

.

Before describing how Johnson’s method computes the coordinates recursively, here are

some important properties of detAs:

1. detAs is invariant under the choice of x1, . . . , xn ∈ Ys. To prove this:

Suppose we replace xi with xj where 2 f i f j f n, that is, keeping x1 in

(xi − x1)
¦xj. Since the determinant is anti-symmetric, one can easily swap the

i-th row with the j-th row and the i-th column with the j-th columns to restore the

original matrix. Since we only swapped rows or columns two times, we flipped the

determinant signal two times, which does not change detAs.

Now, suppose we want to replace x1 with xk where 2 f k f n, that is, we want to

change the terms (xi − x1)
¦xj to (xi − xk)

¦xj. To restore the original matrix, we

can take the k-th row, which is:
[

(xk − x1)
¦x1 . . . (xk − x1)

¦xn

]

and subtract all rows of the matrix by the k-th row, except for the first row and the

k-row, so all the terms where i ̸= 1, i ̸= k will be (xi − xk)
¦xj as intended. Here,

the determinant is still invariant because of its alternating nature. After that, we

first multiply the k-th row by −1, and then we swap the second row by the k-row.

By doing it, we again flip the signal two times, which does not change detAs.

2. detAs is strictly positive. Suppose that, for every 2 f i f n, we subtract the i-th

row by the 1-row multiplied by (xi − x1)
¦x1, that is:

[

(xi − x1)
¦x1 . . . (xi − x1)

¦xn

]

−
(

(xi − x1)
¦x1

) [

1 . . . 1
]

.

This will give a modified matrix A′
s whose terms are A′

s[i, j] = (xi − x1)
¦(xj − x1),

that is:

A′
s =













1 1 . . . 1

0 (x2 − x1)
¦(x2 − x1) . . . (x2 − x1)

¦xn

...
...

. . .
...

0 (xn − x1)
¦(xn − x1) . . . (xn − x1)

¦xn













.
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From there, the determinant is still the same by its alternating property. Let Gs to

be the matrix:

Gs =







| |

(x2 − x1) . . . (xn − x1)

| |






.

Therefore, by the Laplace expansion of A′
s on the first row, detAs = detA′

s =

det(G¦
s Gs). Because G¦

s Gs is a Gram matrix, 0 < det(G¦
s Gs) iff the columns of Gs

are linear independent, proving that 0 < detAs.

By the property (1.), the coordinates ¼j are indeed invariant under the choice of

x1, . . . , xn ∈ Ys. From this idea, define ∆i(Ys) to be:

∆i(Ys) = (−1)1+j detA1,j
s

where xj = yi. In other words, ∆i(Ys) is the cofactor C1,j of the matrix As. Again, by

Laplace expansion:

detAs =
n
∑

j=1

C1,j =
∑

i∈Is

∆i(Ys).

From this idea, define ∆(Ys) to be:

∆(Ys) =
∑

i∈Is

∆i(Ys).

As consequence, the coordinates ¼j, 1 f j f n can be expressed as:

¼j =
∆i(Ys)

∆(Ys)

satisfying xj = yi. By the property (2.), 0 < ∆(Ys), thus it is easy to show that:

sign(¼j) = sign(∆i(Ys))

where:

sign(x) =



















1, if x > 0

0, if x = 0

−1, if x < 0

This property is extremely important to remember because the concept of convexity can

be evaluated by this. In other words, v(aff(Ys)) ∈ conv(Ys) iff 0 f ¼j for all 1 f j f n,

which is equivalent of 0 f ∆i(Ys) for all i ∈ Is.

The recursion of Johnson’s distance sub-algorithm tells us that:

∆j(Ys ∪ {yj}) =
∑

i∈Is

∆i(Ys)(yk − yj)
¦yi
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for any k ∈ Is and any j /∈ Is. In advance, let Ys+ = Ys ∪ {yj}. To understand how this

recursion is correct, suppose we want to add xn+1 = yj into the matrix As to construct

As+, that is:

As+ =













1 . . . 1

(x2 − x1)
¦x1 . . . (x2 − x1)

¦xn+1

...
. . .

...

(xn+1 − x1)
¦x1 . . . (xn+1 − x1)

¦xn+1













.

By definition, we have that:

∆j(Ys ∪ {yj}) = (−1)1+(n+1) detA
1,(n+1)
s+ = (−1)n detA

1,(n+1)
s+

By Laplace expansion of A1,(n+1)
s+ on the last row, one can verify that:

detA
1,(n+1)
s+ =

n
∑

i=1

(−1)n+i
(

(xn+1 − x1)
¦xi

)

detA1,i
s .

Therefore:

∆j(Ys ∪ {yj}) = (−1)n detA
1,(n+1)
s+

∆j(Ys ∪ {yj}) = (−1)n
n
∑

i=1

(−1)2n+i
(

(xn+1 − x1)
¦xi

)

detA1,i
s

∆j(Ys ∪ {yj}) =
n
∑

i=1

(−1)i
(

(xn+1 − x1)
¦xi

)

detA1,i
s

∆j(Ys ∪ {yj}) =
n
∑

i=1

(−1)1+i
(

(x1 − xn+1)
¦xi

)

detA1,i
s

∆j(Ys ∪ {yj}) =
∑

i∈Is

∆i(Ys)(x1 − xn+1)
¦yi.

Since x1 could be yk for any k ∈ Is, the recursive formula is correct.

In summary, let Is ¦ I = {1, . . . , n} be any non-empty subset, let Ys = {yi | i ∈ Is} ¦

Y , and let the affine combination of v(aff(Ys)) be:

v(aff(Ys)) =
∑

i∈Is

¼iyi

where:
∑

i∈Is

¼i = 1.

The Johnson’s distance sub-algorithm express the coordinates ¼i, i ∈ Is by:

¼i =
∆i(Ys)

∆(Ys)
.

To do so, it starts by defining, for all i ∈ Is:

∆i({yi}) = 1.
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Then, it uses tabulation by doing:

∆j(Ys ∪ {yj}) =
∑

i∈Is

∆i(Ys)(yk − yj)
¦yi,

to compute the coordinates ¼i, i ∈ Is.

So far, we have shown how Johnson’s sub-algorithm can compute v(aff(Ys)) for every

non-empty Ys ¦ Y . But, to verify if v(conv(Y )) = v(aff(Ys)), the sub-algorithm also

relies on a theorem for one of the halt conditions. Basically, during the traversal of the

subsets Ys, the sub-algorithm checks two things:

1. if, for all i ∈ Is, 0 < ∆i(Ys)

2. if, for all j ∈ I \ Is, ∆j(Ys) f 0

If both conditions are met, then Ys = Y+, that is, Ys is guaranteed to be the minimum

subset where v(conv(Y )) ∈ conv(Ys). It is important to remember that (1.) implies that

v(aff(Ys)) ∈ conv(Y ) since both the coordinate and the ∆ term have the same sign.

Before jumping to the algorithm, here is the proof of the mentioned theorem, which

is an alternative version of theorem 3 in (GILBERT; JOHNSON; KEERTHI, 1988):

Theorem 4.1 (Johnson’s sub-algorithm halt condition). Let Ys ¦ Y be any subset where,

for all i ∈ Is, 0 < ∆i(Ys).

v(conv(Y )) = v(aff(Ys))

iff, for all j ∈ I \ Is:

∆j(Ys ∪ {yj}) f 0.

Proof. For the sake of simplicity, let v = v(conv(Y )) and vs = v(aff(Ys)). First, we prove

these two auxiliary properties below:

1. For all i ∈ I, v¦(v − yi) f 0,

2. For all k ∈ Is, v¦
s (vs − yk) = 0.

To prove (1.), we use theorem 3.1 to conclude that:

v¦(v − sY (−v)) = 0.

By the definition of support points, for all points x ∈ conv(Y ):

(−v)¦x f (−v)¦sX(−v)

adding v¦v both sides, we get:

v¦(v − x) f v¦(v − sY (−v)) = 0.



35

Since x could be any point of conv(Y ) and Y ¦ conv(Y ), we conclude that, for all i ∈ I:

v¦(v − yi) f 0.

To prove (2.), we borrow the idea from before used to build the linear system As¼ = b,

which is the function:

y = x1 +
n
∑

i∈2

¼i(xi − x1),

where n = #Ys and x1, . . . , xn is any ordering of Ys elements. For the function y¦y, let

us recall that:

∂λj
y¦y = 2y¦(xj − x1).

Because vs is, by definition, the vector from aff(Ys) that minimizes the function y¦y, we

know that, for all 2 f j f n:

∂λj
y¦y(vs) = 2v¦

s (xj − x1) = 0.

Therefore, for all i, k ∈ Is:

v¦
s (yi − yk) = 0.

Let ¼i be the coordinates from the affine combination of vs, that is:

vs =
∑

i∈Is

¼iyi.

Therefore, for all k ∈ Is:
∑

i∈Is

¼i0 = 0

∑

i∈Is

¼iv
¦
s (yi − yk) = 0

v¦
s

(

∑

i∈Is

¼iyi

)

− v¦
s yk

(

∑

i∈Is

¼i

)

= 0

v¦
s vs − v¦

s yk = 0

v¦
s (vs − yk) = 0.

Now that (1.) and (2.) are proved, we proceed by using (1.) to conclude that, for all

i ∈ I:

v = vs =⇒ v¦
s (vs − yi) f 0.

Next, it is desired to prove that, for all i ∈ I:

v = vs ⇐= v¦
s (vs − yi) f 0.

In order to do it, assume that v¦
s (vs−yi) f 0 for all i ∈ I. Also, let ³i be the coordinates

of sY (−vs), that is:

sY (−vs) =
∑

i∈I

³iyi.



36

Therefore:
∑

i∈I

³iv
¦
s (vs − yi) f 0

v¦
s vs

(

∑

i∈I

³i

)

− v¦
s

(

∑

i∈I

³iyi

)

f 0

v¦
s vs − v¦

s sY (−vs) f 0

v¦
s (vs − sY (−vs)) f 0.

v¦
s (vs−sY (−vs)) < 0 is impossible due to the basic inequality d¦x f d¦s in the definition

of support points, therefore, we get:

v¦
s (vs − sY (−vs)) = 0.

As vs has positive coordinates, we conclude that vs ∈ conv(Ys) ¦ conv(Y ), which means

that we can use theorem 3.1 to get:

v = vs.

Combining both properties, we have that, for all i ∈ I:

v = vs ⇐⇒ v¦
s (vs − yi) f 0.

Just by (2.), v¦
s (vs − yi) f 0 holds by itself for i ∈ Is, so we can narrow the index and

get that, for all j ∈ I \ Is:

v = vs ⇐⇒ v¦
s (vs − yj) f 0.

If we take the inequality v¦
s (vs − yj) f 0 and subtract both sides by (2.), then, for all

k ∈ Is and j ∈ I \ Is:

v = vs ⇐⇒ v¦
s (yk − yj) f 0.

Again, as in (2.), for i ∈ Is, let ¼i be the coordinates of vs. Let us recall two properties

of the ∆ notation defined in this section:

¼i =
∆i(Ys)

∆(Ys)
,

0 < ∆(Ys).

Substituting vs by its affine combination in the inequality v¦
s (yk − yj) f 0, we get:

∑

i∈Is

¼iy
¦
i (yk − yj) f 0

∑

i∈Is

∆i(Ys)

∆(Ys)
y¦i (yk − yj) f 0
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multiplying both sides by ∆(Ys):

∑

i∈Is

∆(Ys)y
¦
i (yk − yj) f 0

∆j(Ys ∪ {yj}) f 0.

Finally, we conclude that, for all j ∈ I \ Is:

v = vs ⇐⇒ ∆j(Ys ∪ {yj}) f 0

as desired.

4.2 DESCRIPTION AND PSEUDO-CODE

As it was mentioned before, Johnson’s distance sub-algorithm traverses each non-

empty subset Ys ¦ Y until the conditions of theorem 4.1 are met. During the traversal,

the values of ∆i(Ys) for all i ∈ Is are computed and the halt condition is checked. We label

each subset with a positive integer s where its binary decomposition indicates whether an

element belongs to the subset. More formally:

s =
∑

i∈Is

2i−1.

Note that, if the first element of Y was y0, then the power of two in the summation above

would be just 2i. This model guarantees that s has a one-to-one correspondence to Ys

since the i-th bit is true iff yi ∈ Ys.

Briefly describing Johnson’s distance sub-algorithm, everything happens inside a for-

loop, counting a label s from 1 to 2n−1, where n = #Y . Inside, it computes ∆j(Ys∪{yj})

for all j ∈ I \ Is using the recursive formula:

∆j(Ys ∪ {yj}) =
∑

i∈Is

∆i(Ys)(yk − yj)
¦yi.

If 0 < ∆i(Ys) for all i ∈ Is and ∆j(Ys ∪ {yj}) f 0 for all j ∈ I \ Is, then we return Ys as

the smallest set containing v(conv(Y )) and v, where:

v =
∑

i∈Is

∆i(Ys)

∆(Ys)
yi = v(conv(Y )).

Here is a pseudo-code:
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Algorithm 2: Johnson’s distance sub-algorithm
Data: A simplex set Y ¢ R

n

Result: (Ys,v), where Ys = Y+ and v = v(conv(Y ))

for i ∈ I do
∆i({yi})← 1

end

for s ∈ {1, . . . , 2#Y−1} do
k ← “arbitrary value from Is”

for j ∈ I \ Is do
∆j(Ys ∪ {yj})←

∑

i∈I ∆i(Ys)(yk − yj)
¦yi

end

if ∀i ∈ I
(

0 < ∆i(Ys)
)

and ∀j ∈ I \ Is
(

∆j(Ys ∪ {yj}) f 0
)

then

∆(Ys)←
∑

i∈Is
∆i(Ys)

v← 1
∆(Ys)

∑

i∈Is
∆i(Ys)yi

return (Ys,v)

end

end

return error

In (GILBERT; JOHNSON; KEERTHI, 1988), they set k to be min Is. For termination

proof, the for-loops ensure that the algorithm always halts for any input. For correctness

proof, the algorithm just searches for every non-empty subset of Y until we get Y+,

which exists, is unique for every simplex set Y , and satisfies the halt condition from

theorem 4.1 since v(aff(Y+)) = v(conv(Y+)), so all that remains is to prove that, for all

s ∈ {1, . . . , 2n−1}, the values from ∆i(Ys) for all i ∈ Is are available when computing

∆j(Ys ∪ {yj}) for all j ∈ I \ Is. Here is a proof below:

Suppose the algorithm is in the s-th iteration. If #Is = 1, then ∆i(Ys) = 1 for all

i ∈ Is, hence suppose 2 f #Is and let i ∈ Is be any index, Ir = Is \{i}, and Yr = Ys \{yi}

so that, by the recursive formula, we get:

∆i(Ys) = ∆i(Yr ∪ {yi}) =
∑

h∈Ir

∆h(Yr)(yk − yi)
¦yh,

where k ∈ Ir. By the equation above, in order to have ∆i(Ys) already computed, we

must have processed Yr before Ys. Because Ir ¢ Is has one less element, the power-of-2

summation of r is the summation of s with one less positive number. Therefore:

r =
∑

i∈Ir

2i−1 =
∑

i∈Is

2i−1 − 2i <
∑

i∈Is

2i−1 = s

r < s,

which implies that Yr was processed before Ys.
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BACKUP PROCEDURE

Johnson’s distance sub-algorithm is mathematically correct, but the halt condition

from theorem 4.1 may never be satisfied due to numerical error, hence returning error. To

overcome this problem, a simpler approach made by (GILBERT; JOHNSON; KEERTHI,

1988) called the Backup Procedure is used whenever the first one fails. This procedure

is pretty similar to Johnson’s distance sub-algorithm except that, instead of checking for

the halt condition from theorem 4.1, it merely picks the vector with the least norm from

v(aff(Ys)) as long as its a point in conv(Y ). Equivalently, it searches only the minimum

norm vectors v(aff(Ys)) where 0 f ∆i(Ys) for all i ∈ Is, and picks the one with the

least norm. Since there is a unique Y+, this algorithm will pick v(aff(Y+)) = v(conv(Y ))

eventually, therefore it is correct and always halts. Here is a pseudo-code:

Algorithm 3: Backup Procedure distance sub-algorithm
Data: A simplex set Y ¢ R

n

Result: (Yp,v), where Yp = Y+ and v = v(conv(Y ))

p← 1

v← y1

for i ∈ I do
∆i({yi})← 1

end

for s ∈ {1, . . . , 2#Y−1} do
k ← “arbitrary value from Is”

for j ∈ I \ Is do
∆j(Ys ∪ {yj})←

∑

i∈I ∆i(Ys)(yk − yj)
¦yi

end

if ∀i ∈ I
(

0 < ∆i(Ys)
)

then

∆(Ys)←
∑

i∈Is
∆i(Ys)

w← 1
∆(Ys)

∑

i∈Is
∆i(Ys)yi

if ∥w∥ < ∥v∥ then
p← s

v← w

end

end

end

return (Yp,v)
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5 ANALYSIS, IMPROVEMENTS AND MODIFICATIONS

In all papers and books mentioned throughout this work and even in the original paper

(GILBERT; JOHNSON; KEERTHI, 1988), there is no formal proof for the average and

worst-time complexity of the GJK algorithm. Alternatively, numerical experiments de-

tailed in (GILBERT; JOHNSON; KEERTHI, 1988; CAMERON, 1997) infer, on average,

a linear time complexity in the total number of points from the two input sets, that is,

#A+#B.

Three years after, a novel algorithm for computing the distance between two convex

polyhedra, the Lin-Canny algorithm (LIN; CANNY, 1991), achieved an impressive almost-

constant time complexity for scenarios with frame coherency (BERGEN, 1999), that is,

scenarios where pre-computed information from the previous frame could be used to speed

up computation for the next frame, e.g., two objects moving slowly. This method of using

previous data to speed up computation is also called tracking, which appears in (LIN;

CANNY, 1991; CAMERON, 1997; BERGEN, 1999). Because this novel algorithm is

limited only to polyhedra, new improvements to GJK were proposed in order to also

achieve the almost-constant time complexity.

In this chapter, we discuss the GJK time complexity, show, in detail, an improvement

for the GJK in (CAMERON, 1997) that uses the hill climbing optimization method and a

modification called Incremental Separating Axis GJK, or ISA-GJK for short, from (BER-

GEN, 1999). Regarding hill climbing, we show a counterexample where this method gives

an incorrect output, and so we show an extra step to ensure this method works correctly.

We also mention briefly a modification of GJK for continuous collision detection (BER-

GEN, 2004) and the Expanding Polytope Algorithm, or EPA for short, from (BERGEN,

2001), which computes penetration depth.

5.1 COMPLEXITY ANALYSIS

As described in Chapter 3, the GJK algorithm essentially computes a support point,

checks for the second halt condition, and runs the distance sub-algorithm, all until the

first halt condition is met in a while-loop. Depending on the choice for the distance sub-

algorithm, the number of steps can grow exponentially when increasing the number of

points of a simplex. Also, the GJK algorithm was designed to be used mainly in a 3D

environment as described in (GILBERT; JOHNSON; KEERTHI, 1988). Due to these two

issues, the number of dimensions of the Euclidean space is set constant.

The procedure for computing a support point is done by using theorem 2.5, which is

s← sA¸B(−v) = sA(−v)− sB(v). If the support mapping sX(d) is performed by testing

all elements in X and selecting the candidate that maximizes d¦x, x ∈ X, then the time
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complexity for computing a support point is Θ(n), where n is the total number of points

in A and B, that is, n = #A + #B. The space complexity is O(1) due to the selection

method. The second halt condition just checks if v¦(v− s) = 0, thus the time and space

complexity is O(1). The distance sub-algorithm is always O(1) in both time and space

complexity since the input is a simplex set of which the number of points is limited by

the number of dimensions, which is set constant, plus one. In short, one iteration inside

the while-loop of the GJK algorithm performs in Θ(n) time complexity and O(1) space

complexity. As a consequence, if numerical experiments infer O(n) on average, then the

average number of iterations must be O(1).

At the end of Section VII in (GILBERT; JOHNSON; KEERTHI, 1988), it is men-

tioned, but not shown, that there is a 2D class of inputs that causes a quadratic time

complexity. If such class exists, then the worst-case time complexity is Ω(n2). Even if

this class is two-dimensional, it is still a special case for higher dimensions. Since every

iteration costs Θ(n), then, in the worst-case scenario, the number of iterations is Ω(n).

In Chapter 4 from (BERGEN, 1999), there is an unproven assumption that the discarded

support points do not reappear. If this assumption is true, the number of iterations is

O(n). Combining Section VII in (GILBERT; JOHNSON; KEERTHI, 1988) with Chapter

4 from (BERGEN, 1999), we have that the worst-case scenario of the GJK algorithm has

Θ(n) number of iterations, that means, if using the original GJK, the worst-case scenario

is quadratic.

5.2 ENHANCED GJK: HILL CLIMBING

At 3.2 Enhancing GJK in (CAMERON, 1997), it is described a better method for

computing a support point that, by using hill climbing to maximize d¦x, x ∈ X, ma-

kes GJK achieve almost constant time complexity. Instead of using two sets of points

A,B ¢ R
k, the hill climbing relies on the input being two graphs represented as adja-

cency lists (A, adja), (B, adjb) of the polytopes conv(A), conv(B) respectively, where the

functions adja : A → P(A) and adjb : B → P(B) are the adjacent vertices of a given

vertex. A common way of converting a set of points to its convex hull adjacency list is

by using a convex hull algorithm such as the general Quickhull (BARBER; DOBKIN;

HUHDANPAA, 1995), which was used in (CAMERON, 1997).

For computing a support point, the algorithm starts at the previous support point sold.

In a for-loop, the algorithm takes the first adjacent vertex aM ∈ adj(sold) that increases

the function, that is:

d¦sold < d¦aM ,

then set sold ← aM and repeat the same process over again until there is no adjacent

vertex that increases the function. Here is a pseudo-code based on “3.2 Enhancing

GJK” from (CAMERON, 1997):
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Algorithm 4: Hill Climbing Support Mapping
Data: The adjacency list (X, adj) of a convex polytope, a direction d ∈ R

k, and

a vertex s ∈ X

Result: sX(d)

for a ∈ adj(s) do

if d¦s < d¦a then
return hillClimbing((X, adj), d, a) # recursion

end

end

return s

Figure 7 – Visualization of the hill climbing support mapping

The algorithm walks to adjacent vertices with higher values.
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In (CAMERON, 1997), it claims that, by caching the previous support point, if frame

coherency is high, we get 0 or 1 recursions most times, that is, we get a support mapping

with O(1) time complexity, hence we get a GJK algorithm with O(1) time complexity.

5.3 CORRECTING HILL CLIMBING

This algorithm is based on a property of convex functions, which is that a local mi-

nimum is also a global minimum, whose proof can be found in Section 1.5 from (SCH-

NEIDER, 1993). As a consequence, a local maximum is also a global maximum since it

can be converted to a minimum problem by multiplying the function by −1. On a convex

region X, the function f(x) = d¦x is a convex function because, for all x1, x2 ∈ X and

for all 0 f ¼ f 1:

d¦((1− ¼)x1 + ¼x2) = (1− ¼)d¦x1 + ¼d¦x2

f((1− ¼)x1 + ¼x2) f (1− ¼)f(x1) + ¼f(x2),

which follows the definition of a convex function.

Figure 8 – A counterexample for the hill climbing method

However, the problem with this algorithm is that, if d¦s = d¦a for all a ∈ adj(s),

then we cannot conclude that s is a support point. A counter-example that shows this

problem is an upright triangle with one extra vertex at the base edge. More formally, let

T = {t1, t2, t3, t4} ¢ R
2 where t1 = (−1, 0), t2 = (0, 0), t3 = (1, 0), t4(0, 1) and:

adj(t1) = adj(t3) = {t2, t4}

adj(t2) = adj(t4) = {t1, t3}

By doing hill climbing on (T, adj), d = (0, 1), s = t2, we get:

d¦t2 = d¦t1 = d¦t3 = 0,
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and then t2 is returned. But:

0 = d¦t2 < d¦t4 = 1,

then t4 is a support point and not t2, which proves the hill climbing method is incorrect.

In practice, having d¦s = d¦a for all a ∈ adj(x) is extremely unlikely, so the algorithm

works fine in almost all cases.

To avoid these extreme cases, we check if the first s falls in this problematic property.

If it does not fall, we can run hill climbing normally on s. If it does fall, we run a graph

search on (X, adj) to find a vertex x ∈ X where d¦s ̸= d¦x. If such x is found, if

d¦s < d¦x, then we run hill climbing normally on x, otherwise s or any other point with

the same value is returned. If such x is not found, then s is returned because all vertices

are support points.

The reason why we only do this for the first s is that, if the hill climbing is called

recursively, then it means the previous vertex has a smaller value guaranteed, so the

problematic property will never happen. To ensure the base case shares the same property,

we do this check before running hill climbing. Here is a pseudo-code:

Algorithm 5: Hill Climbing Base Case
Data: The adjacency list (X, adj) of a convex polytope, a direction d ∈ R

k, and

a vertex s ∈ X

Result: sX(d)

for x ∈ X do
visited(x) = false

end

visited(s) = true

M ← {s}

while M ̸= ∅ do
x = M.pop()

for a ∈ adj(x) do

if visited(a) = false then

if d¦x < d¦a then
return hillClimbing((X, adj), d, a)

end

if d¦x > d¦a then
return x

end

visited(a) = true

M.push(a)
end

end

end

return s



45

5.4 INCREMENTAL SEPARATING AXIS GJK

Separating axis is a very useful concept in collision detection problems since there

is a powerful theorem called separating axis theorem, or SAT for short, that states the

following: two convex regions A,B ∈ R
n are not colliding iff there is an axis separating

them. There is a modification for GJK called the GJK separating axis algorithm from

(BERGEN, 1999) that, instead of computing the distance vector, computes a separating

axis. An advantage of this is a decrease in the number of iterations and the same sepa-

rating axis can be used in scenarios with frame coherency, sparing computation. Before

presenting this modification, it is important to understand the concept of a separating

axis.

Definition 5.1 (Separating Axis). Let projv X = {v¦x | x ∈ X} be the set of all

projections of X in the vector v. Given two regions A,B ¢ R
n, a vector d ∈ R

n separates

A,B iff
(

proj
d

A

)

∩

(

proj
d

B

)

= ∅.

In other words, d represents the axis {¼d | ¼ ∈ R} where, when projecting all points of A

and B in this axis, the projections do not collide.

Theorem 5.1. Let A,B ¢ R
n be two convex regions.

A ∩ B = ∅ iff there exists a vector d ∈ R
n separating A,B.

Proof. We have two statements to prove:

1. A ∩ B = ∅ =⇒ ∃d ∈ R
n (d separates A,B),

2. A ∩ B = ∅ ⇐= ∃d ∈ R
n (d separates A,B).

To prove (1.), let v = v(A ¸ B), let s = sA¸B(−v), and assume A and B are not

colliding. As consequence, v ̸= 0, which is equivalent to:

0 < v¦v.

Using theorem 3.1, we have that v¦(v − s) = 0 or, equivalently:

v¦v = v¦s.

Since s is a support point in the direction −v, by definition of support points, for all

points x ∈ A¸ B:

(−v)¦x f (−v)¦s,

equivalently:

v¦s f v¦x.
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Figure 9 – Visualization of a separating axis

The axis generated by the vector d separates the regions A and B.

Stacking the inequalities, for all x ∈ A¸ B, we have:

0 < v¦v = v¦s f v¦x

0 < v¦x,

which, for all a ∈ A, b ∈ B, is equivalent to:

0 < v¦(a− b)

v¦b < v¦a,

proving that v separates A and B.

To prove (2.), suppose, by contradiction, that there exists a d ∈ R
n that separates A

and B and there exists a point x ∈ A ∩ B. Hence, d¦x ∈ projd A because x ∈ A and

d¦x ∈ projd B because x ∈ B. Therefore:
(

proj
d

A

)

∩

(

proj
d

B

)

̸= ∅,

which, by definition of separating axis, contradicts the fact that d separates A and B.
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From the proof above, we can see that, if v(A ¸ B) ̸= 0, then it separates A and B,

so the GJK algorithm already returns a separating axis. Besides that, we can modify

the second halt condition to just check if 0 < v¦s instead of v¦(v − s) = 0, sparing

unnecessary iterations. The idea of this modification is that, if true, then there is a point

a ∈ A and b ∈ B where 0 < v¦(a− b), which is equivalent to v¦b < v¦a, proving that v

represents a separating axis. Here is a pseudo-code based on (BERGEN, 1999):

Algorithm 6: The GJK separating axis algorithm
Data: A,B ¢ R

n

Result: v ∈ R
n separating A and B

W ← “arbitrary simplex set from A¸ B”

v← “arbitrary vector in R
n”

while v ̸= 0 do
s← sA(−v)− sB(v)

if 0 < v¦s then
break

end

(W,v)← distanceSubalgorithm(W ∪ {s})

end

return v

The choice of W and v does not matter, W can also be empty as in the original GJK

separating axis. That is because, after one iteration, we get a simplex with its minimum

norm vector for the next iteration, which satisfies the same input conditions of the original

GJK, thus it is still correct.

The Incremental Separating Axis GJK, or ISA-GJK, is a tracking version of the GJK

separating axis algorithm, that is, it is exactly like the GJK separating axis algorithm

with the addition of using previous data to speed up computation. The idea is to reuse

the previous separating axis as the initial vector v regardless of the choice for the initial

simplex W , which can be empty. This algorithm also uses hill climbing for computing

support points and numerical experiments in (BERGEN, 1999) infer an almost constant

time complexity and appears to be faster than the Lin-Canny algorithm.
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5.5 OTHER MODIFICATIONS

The GJK algorithm is one of the most versatile narrow-phase collision detection algo-

rithms because it can be modified to solve other problems. For example, discrete collision

detection, or DCD for short, is a class of collision problems for static objects, but conti-

nuous collision detection, or CCD for short, is a class of collision problems for objects in

a trajectory. As in DCD, where the main problem is to decide whether two objects are

colliding, the main problem for CCD is the time of impact problem, or TOI for short,

which consists of computing the time or position when objects collide if they ever collide.

For linear translations, (BERGEN, 2004) shows a method that uses ISA-GJK for solving

TOI by doing a ray cast on the Minkowski difference.

Another example of the problem is a DCD problem called penetration depth, which

consists of computing how deep two objects are intersecting, that is, computing the mi-

nimum translation vector that separates two objects. More formally, given two convex

regions A,B ¢ R
n, a penetration vector p ∈ R

n is a vector that satisfies:

∥p∥ = inf{∥x∥ | x ∈ R
n \ (A¸ B)}.

To solve this, there is another algorithm called the Expanding Polytope Algorithm from

(BERGEN, 2001) that, together with GJK (or the ISA-GJK), computes the penetration

vector in case of collision.
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6 CONCLUSIONS AND FUTURE WORK

This work mainly focused on giving a simplified approach to the Gilbert-Johnson-

Keerthi algorithm described in (GILBERT; JOHNSON; KEERTHI, 1988) by using simple

mathematical concepts and showing step-by-step proofs of its properties. In Chapter

5, we analyzed the time and space complexity of the GJK algorithm and covered an

improvement and a modification in order to show why the GJK algorithm is one of the

fastest and most versatile algorithms for narrow-phase collision detection. These are

described in detail with the same simplicity as in the previous chapters.

As discussed in Section 5.1, there is an unproven statement in Chapter 4 from (BER-

GEN, 1999) saying that the discarded support points do not reappear, which, if correct,

would imply that the number of iterations the GJK algorithm does is O(n) on the total

number of vertices. Moreover, in (GILBERT; JOHNSON; KEERTHI, 1988) is mentioned

the existence of a polygon, which has not been shown, that would prove a quadratic-

time lower bound for the original GJK worst-case. Because the original algorithm uses

the Θ(n) separating mapping, this would imply that the number of iterations the GJK

algorithm does is Ω(n) in the worst case.

Up to the present date, a formal proof for the O(n) number of iterations could not be

completed due to how difficult it was to prove properties that seemed to be geometrically

obvious. There is a class of inputs called the death polytope that has been designed to force

this quadratic behavior mentioned in (GILBERT; JOHNSON; KEERTHI, 1988), proving

the Ω(n) number of iterations. However, as with the incomplete proof for the O(n),

formalizing the constructions of such a class and proving that it causes the Ω(n) number of

iterations demands difficult concepts of analysis in R
n, only to formalize seemingly obvious

geometrical properties. Besides that, a few experiments indicated the death polytope

possibly causes the supposed worst-case scenario of the GJK algorithm, and this class

oddly coincides with the description given in (GILBERT; JOHNSON; KEERTHI, 1988)

that says the vertices cluster closer to a certain point as the number of vertices increases.

In a future work, these two challenging proofs might be attempted with the assistance of

a mathematician with expertise in geometry or convex analysis.
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