

Simulação e Análise do Ciclo-Combinado de uma Termelétrica a Gás Natural

Cristiana Lopes Lara

Projeto Final de Curso

Orientadores

Prof. Ofélia de Queiroz Fernandes Araújo, Ph.D.Prof. José Luiz de Medeiros, D. Sc.Paula Bessa de Mattos, B. Sc.

Março de 2014

SIMULAÇÃO E ANÁLISE DO CICLO-COMBINADO DE UMA TERMELÉTRICA A GÁS NATURAL

Cristiana Lopes Lara

Projeto de Final de Curso submetido ao Corpo Docente da Escola de Química, como parte dos requisitos necessários à obtenção do grau de Engenharia Química.

Aprovado por:

Alcemir Costa de Souza, B.Sc.

Maurício Moszkowicz, M.Sc.

Carlos Augusto Guimarães Perlingeiro, D.Sc.

Orientado por:

Ofélia de Queiroz Fernandes Araújo, Ph.D.

José Luiz de Medeiros, D. Sc.

Paula Bessa de Mattos, B. Sc.

Rio de Janeiro, RJ – Brasil Março de 2014

Lara, Cristiana L.

Simulação e Análise do Ciclo-Combinado de uma Termelétrica a Gás Natural/ Cristiana Lopes Lara. Rio de Janeiro: UFRJ/EQ, 2014.

xiii, 76 p.; il.

(Projeto Final de Curso) – Universidade Federal do Rio de Janeiro, Escola de Química, 2014. Orientadores: Ofélia de Queiroz Fernandes Araújo, José Luiz de Medeiros e Paula Bessa de Mattos.

 NGCC. 2. Termelétrica. 3. Gás Natural. 4. Simulação. 5. Monografia (Graduação – UFRJ/EQ). 5. Ofélia de Queiroz Fernandes Araújo, Ph.D. e José Luiz de Medeiros, D. Sc. e Paula Bessa de Mattos, B. Sc. I. Simulação e Análise do Ciclo-Combinado de uma Termelétrica a gás

"We must believe that we are gifted for something, and that this thing, at whatever cost, must be attained."

Marie-Curie

AGRADECIMENTOS

Gostaria de agradecer à minha família, por todo o suporte e incentivo aos meus estudos. Em especial aos meus pais e irmã, que viram de perto a mistura de emoções provocada por esses cinco anos de faculdade e me apoiaram em todos os momentos.

Meus agradecimentos sinceros aos meus colegas de turma que se tornaram grandes amigos. Sem eles a faculdade seria muito mais difícil e sem graça.

Quero agradecer também aos meus orientadores, Ofélia Araújo, José Luiz de Medeiros e Paula Bessa, cuja instrução foi fundamental para a conclusão do meu trabalho. Um agradecimento especial à Paula que além de minha orientadora foi minha supervisora de estágio e colaborou muito para a minha formação técnica e profissional. Resumo do Projeto Final de Curso apresentado à Escola de Química como parte dos requisitos necessários para obtenção do grau de Engenheiro Químico.

SIMULAÇÃO E ANÁLISE DO CICLO-COMBINADO DE UMA TERMELÉTRICA A GÁS NATURAL

Cristiana Lopes Lara Março, 2014

Orientadores: Ofélia de Queiroz Fernandes Araújo, Ph.D. José Luiz de Medeiros, D. Sc. Paula Bessa de Mattos, B. Sc.

A energia elétrica é uma das principais bases para o progresso. Sendo assim, nas últimas décadas têm-se buscado formas de garantir a segurança energética através da diversificação da matriz de fontes. O Brasil tem investido bastante em termelétricas a gás natural devido à disponibilidade do combustível e aos menores impactos ambientais gerados por essa fonte. Portanto, é fundamental o desenvolvimento de modelagem e simulações coerentes que possibilitem tanto o projeto de usinas termelétricas com esse tipo de geração, quanto a avaliação e otimização de unidades já existentes.

Neste trabalho é representada uma planta NGCC (Natural Gas Combined-Cycle) de múltiplos eixos e configuração 2:2:1 usando os simuladores ThermoFlow GT PRO e o Aspen HYSYS. As simulações são baseadas em uma usina instalada na região Nordeste do Brasil que possui essa configuração e utiliza turbinas a gás de modelo GE 7FA.04. Este estudo, além de calcular as potências geradas por cada turbina, potência líquida e eficiência da planta, também apresenta uma análise comparativa da confiabilidade do modelo de cada programa.

Com isso, foi possível constatar que ambos os simuladores conseguem representar bem uma planta NGCC com múltiplos eixos e configuração 2:2:1. Os valores de potência bruta encontrados (GT PRO: 516,5 MW; HYSYS: 516,6 MW) estão condizentes com o que é previsto pela literatura e pelos modelos de turbinas escolhidos. Além disso, as eficiências totais da planta (55,9% e 57,2%, respectivamente) estão dentro do intervalo previsto na bibliografia. Abstract of the Final Project presented to Escola de Química/UFRJ as partial fulfillment of the requirements for a degree in Chemical Engineering.

SIMULATION AND ANALYSIS OF A NATURAL GAS COMBINED-CYCLE POWER PLANT

Cristiana Lopes Lara March 2014

Advisors: Ofélia de Queiroz Fernandes Araújo, Ph.D. José Luiz de Medeiros, D. Sc. Paula Bessa de Mattos, B. Sc.

Electricity is one of the main drivers for nation's thriving. Therefore, in the last decades it has become critical to assure electricity offer through a more diverse matrix of sources. Brazil has been investing in natural gas power plants due to the availability of the fuel and the fewer environmental impacts caused by this energy source. Thus, it is essential to develop consistent models and simulations that allow both the design of this type of power plant and the evaluation and optimization of existing plants.

In this project a NGCC (Natural Gas Combined-Cycle) power plant with multiple shafts and 2:2:1 arrangement was modeled within ThermoFlow GT PRO and Aspen HYSYS simulators. The models are based on a real NGCC power plant installed in the Northeast of Brazil that uses GE 7FA.04 gas turbines with the above configuration. This study, besides calculating the power generated by each turbine, net power and plant efficiency, also presents a comparative analysis of the reliability of each simulator model.

Therewith, it was concluded that both simulators could be used to represent a NGCC power plant with multiple shafts and 2:2:1 arrangement. The values of gross power found by both programs (GT PRO: 516.5 MW; HYSYS: 516.6 MW) are consistent with technical data of the plant machines and with literature information. Additionally, the total plant efficiencies (55.9% e 57.2%, respectively) are within the range identified by previous works.

ÍNDICE

CAPÍTULO I – INTRODUÇÃO1
I.1 Motivação1
I.2 Objetivos do Trabalho2
I.3 Estrutura do Trabalho
CAPÍTULO II – REVISÃO BIBLIOGRÁFICA4
II.1 Panorama do Setor de Energia Elétrica no Brasil4
II.2 Gás Natural para produção de Energia Elétrica8
II.3 Atuação da ENEVA no Setor de Energia Elétrica do Brasil
II.4 Conversão de Calor em Potência com Ciclos Simples18
II.4.1 Ciclo de Carnot18
II.4.2 Ciclo de Brayton20
II.4.3 Ciclo de Rankine27
II.5 Conversão de Calor em Potência com Ciclos Combinados33
II.5.1 NGCC – Natural Gas Combined-Cycle
II.6 Simuladores de Processos de Conversão de Calor em Potência
II.6.1 ThermoFlow GT PRO
II.6.2 Aspen HYSYS
CAPÍTULO III – RESULTADOS E DISCUSSÕES 40
III.1 Especificações do processo40
III.2 Simulação no ThermoFlow GT PRO41
III.3 Simulação no Aspen HYSYS47
CAPÍTULO IV – CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS 55
IV.1 Principais Conclusões do Trabalho55
IV.2 Sugestões para Trabalhos Futuros57
REFERÊNCIAS BIBLIOGRÁFICAS
ANEXO 1 – RESULTADOS DO THERMOFLOW GT PRO
ANEXO 2 – RESULTADOS DO ASPEN HYSYS

ÍNDICE DE FIGURAS

Figura II.1.1 – Matriz Elétrica Brasileira, 2012	4
Figura II.1.2 – Evolução da Importação e Exportação de Energia Elétrica	5
Figura II.1.3 – Evolução da geração de eletricidade por tecnologia	6
Figura II.1.4 – Fontes para geração de energia termelétrica	7
Figura II.2.1 – Produção primária de energia	9
Figura II.2.2 – Evolução das reservas provadas de gás natural do Brasil	9
Figura II.2.3 – Bacias sedimentares com potencial para exploração de gás	
convencional e não convencional	11
Figura II.2.4 –Localização das termelétricas a gás natural	13
Figura II.3.1 – Usina Termelétrica Parnaíba I	16
Figura II.4.1.1 –Esquema de um motor térmico	18
Figura II.4.1.2 –Diagrama temperatura-entropia do Ciclo de Carnot	19
Figura II.4.2.1 –Partes da Turbina a gás	20
Figura II.4.2.2 – Ciclo de Brayton fechado com fluxo de ar	21
Figura II.4.2.3 – Diagrama temperatura-entropia do Ciclo de Brayton	22
Figura II.4.2.4 – Diagrama pressão-volume do Ciclo de Brayton	22
Figura II.4.2.5 – Diagrama $\eta_{th} imes r$ do Ciclo de Brayton	26
Figura II.4.2.6 – Diagrama <i>w×r</i> do Ciclo de Brayton	26
Figura II.4.3.1 – Componentes básicos do Ciclo de Rankine	27
Figura II.4.3.2 – Diagrama T-s do Ciclo de Rankine	28
Figura II.4.3.3 – Componentes do Ciclo de Rankine com reaquecimento	29
Figura II.4.3.4 – Diagrama T-s do Ciclo de Rankine com reaquecimento	30
Figura II.4.3.5 – Componentes do Ciclo de Rankine Regenerativo	31
Figura II.4.3.6 – Diagrama T-s do Ciclo de Rankine Regenerativo	32
Figura II.5.1.1 – Componentes do Ciclo de Brayton-Rankine	34
Figura II.5.1.2 – Ciclo combinado configurado em SSPT	36
Figura II.5.1.3 – Ciclo combinado configurado em MSPT	36
Figura III.1.1 – Esquema de NGCC 2:2:1	40
Figura III.2.1 – Esquema da parte da turbina a vapor no GT PRO	42
Figura III.2.2 – Turbina a gás GE 7FA	43
Figura III.2.3 – Tela do GT PRO para parâmetros da HRSG e turbina a vapor.	44
Figura III.2.4 – Fluxograma com os resultados da simulação no GT PRO	45

Figura III.3.1 – Fluxograma dos Ciclos Abertos em paralelo no Aspen HYSYS	47
Figura III.3.2 – Fluxograma do Ciclo Combinado no Aspen HYSYS parte 1	50
Figura III.3.3 – Fluxograma do Ciclo Combinado no Aspen HYSYS parte 2	51
Figura III.3.4 – Fluxograma do Ciclo Combinado no Aspen HYSYS parte 3	51
Figura III.3.5 – Fluxograma do Ciclo Combinado no Aspen HYSYS	52

ÍNDICE DE TABELAS

Tabela III.1.1 – Variáveis assumidas em ambas as simulações	41
Tabela III.2.1 – Dados sobre os locais de instalação da NGCC	42
Tabela III.2.2 – Especificações da turbina GE 7FA.04	43
Tabela III.2.3 – Resultados do GT PRO	46
Tabela III.3.1 – Composição do Gás Exausto no HYSYS	49
Tabela III.4.1 – Principais resultados do HYSYS e GT PRO	53
Tabela III.4.2 – Comparativo entre a eficiência da planta nos dois modelo	s54

ÍNDICE DE EQUAÇÕES

Equação II.4.1.1
Equação II.4.1.2
Equação II.4.2.1
Equação II.4.2.2
Equação II.4.2.3
Equação II.4.2.4
Equação II.4.2.5
Equação II.4.2.6
Equação II.4.2.7
Equação II.4.2.8
Equação II.4.2.9
Equação II.4.2.10
Equação II.4.2.11
Equação II.4.2.12
Equação II.4.2.13
Equação II.4.2.14
Equação II.4.2.15
Equação II.4.2.16
Equação II.4.2.17
Equação II.4.3.1
Equação II.4.3.2
Equação II.4.3.3
Equação II.4.3.4
Equação II.4.3.5
Equação II.4.3.6
Equação II.5.1.1
Equação II.5.1.2
Equação II.5.1.3
Equação III.3.1
Equação III.3.2
Equação III.3.3
Equação III.3.4

Equação III.3.5	48
Equação III.3.6	48
Equação III.3.7	48
Equação III.3.8	48
Equação III.4.1	54
Equação III.4.2	54
Equação III.4.3	54

NOMENCLATURA

ANP: Agência Nacional de Petróleo

CCS: Carbon Capture & Storage

FPSO: Unidade flutuante de produção, armazenamento e transferência (Floating

Production Storage and Offloading

GN: Gás Natural

GT: Turbina a gás (Gas turbine)

HP: Alta pressão (High pressure)

HRSG: Caldeira de recuperação (Heat recovery steam generator)

IP: Pressão intermediária (Intermediate Pressure)

LP: Baixa pressão (Low pressure)

MIT: Massachussetts Insitute of Technology

MSPT: Termelétrica de múltiplos eixos (Multi-shaft power train)

NGCC: Ciclo combinado a gás natural (Natural Gas Combined-Cycle)

PPT: Programa Prioritário de Termeletricidade

SSPT: Termelétrica de eixo único (Single shaft power train)

ST: Turbina a vapor (*Steam turbine*)

CAPÍTULO I – INTRODUÇÃO

A energia elétrica tem sido a base do desenvolvimento humano desde que a primeira termelétrica entrou em operação em 1878, em Ettal, Alemanha. Desde então, foram desenvolvidas outras formas de geração, como usinas hidrelétricas, usinas eólicas e usinas termonucleares, mas as termelétricas ainda são o tipo de geração elétrica mais utilizado em todo o mundo devido a vários fatores que trazem vantagens comparativas, a saber:

- maior facilidade de implantação;
- confiabilidade operacional;
- modularidade, o que permite expansão gradativa acompanhando o crescimento da população e da demanda;
- possibilidade de localização próximo a centros consumidores, diminuindo ou cortando a necessidade de investimento em linhas de transmissão;
- capacidade de operação intermitente para complementar o quadro flutuante de demanda da rede somente nas ocasiões necessárias (despachabilidade).

I.1 Motivação

A crise energética dos anos 2000 revelou que a matriz energética brasileira focada apenas em hidrelétricas não era suficiente para garantir o suprimento de energia elétrica do país. Suscetível às variações climáticas como falta de chuva, esse tipo de geração precisaria contar com um tipo de geração reserva para suportar o alto crescimento no consumo e os períodos com reservatórios a nível baixo de água.

Devido à sua facilidade de despacho e à baixa dependência em fatores atmosféricos, o governo optou, então, por investir em termelétricas como forma de complementar a geração hidrelétrica. Dentre os possíveis tipos de fonte, o gás natural tem se mostrado o mais indicado tanto em quesitos ambientais, quanto em eficiência e rentabilidade,

especialmente em se tratando de sistemas gás-vapor de NGCC (*Natural Gas Combined Cycle*).

Com o advento dessa tecnologia e o maior interesse por investir nesse tipo de geração, faz-se necessário o desenvolvimento de modelagem e simulações coerentes que possibilitem tanto o projeto de usinas termelétricas NGCC, quanto a avaliação e otimização de unidades já existentes.

Sendo assim, além de simular a NGCC em um software específico para simulação de termelétricas, é interessante tornar viável sua simulação em softwares mais genéricos e de mais fácil acesso como HYSYS.

I.2 Objetivos do Trabalho

Este trabalho objetiva, em termos gerais, desenvolver e explorar uma metodologia de análise e projeto de plantas termelétricas NGCC baseada em simuladores de processos químicos e de produção de energia. Em termos específicos, os objetivos são:

- (i) Representar uma planta NGCC (*Natural Gas Combined Cycle*) através do simulador HYSYS® efetuando a resolução de todos os balanços de massa e energia, cálculos de potências produzidas e consumidas, além do cálculo do rendimento da planta
- (ii) Representar uma planta NGCC (*Natural Gas Combined Cycle*) através do simulador ThermoFlow GT PRO efetuando a resolução de todos os balanços de massa e energia e cálculos de potências produzidas e consumidas, além do cálculo do rendimento da planta
- (iii) Analisar os resultados objetivos e compará-los entre si.

I.3 Estrutura do Trabalho

O trabalho a ser apresentado está dividido em quatro capítulos. No Capítulo I é introduzido o assunto de termelétricas e são apresentados as motivações e os objetivos deste projeto.

O Capítulo II engloba referências bibliográficas no assunto tanto do aspecto econômico quanto do técnico. Primeiro é feito um panorama do setor de energia elétrica no Brasil e apresentado como o gás natural tem se tornado peça chave do setor no país e no mundo. Depois disso, é introduzida uma parte teórica sobre os ciclos termodinâmicos simples e combinados. É apresentada, ainda, uma breve introdução sobre os dois simuladores utilizados nesse projeto: Aspen HYSYS e ThermoFlow GT PRO.

No Capítulo III são expostos os resultados e discussões, separados em: especificações de ambos os simuladores, simulação do ThermoFlow GT PRO, simulação do Aspen HYSYS, e comparação dos modelos e resultados de ambos os simuladores.

Por fim, o Capítulo IV revela as principais conclusões do trabalho e indica sugestões de projetos futuros a partir dos resultados do trabalho em questão.

CAPÍTULO II – REVISÃO BIBLIOGRÁFICA

II.1 Panorama do Setor de Energia Elétrica no Brasil

Ao longo do século XX, o Brasil sofreu um grande desenvolvimento econômico, o que afetou diretamente a demanda por energia elétrica. Fatores que contribuíram para essa tendência foram o processo de industrialização e um grande crescimento demográfico, atrelado ao aumento da taxa de urbanização. Tornou-se, portanto, fundamental o planejamento da expansão de geração que permitisse conciliar o aumento da oferta de energia elétrica interna e a redução nos custos e impactos gerados pelos processos de produção e uso da energia (EPE, 2008).

A matriz elétrica brasileira é baseada na energia hidráulica, conforme representado na Figura II.1.1. Pode-se observar que a maior parte da eletricidade produzida no país é proveniente de fontes renováveis.

geração hidráulica em 2012: 455,6 TWh geração total em 2012: 592,8 TWh

Figura II.1.1 – Matriz Elétrica Brasileira, 2012 (EPE, 2013)

A opção pela expansão do parque gerador priorizando a construção de usinas hidrelétricas foi feita pelo governo militar. Grandes projetos de usinas hidrelétricas como

as de Itaipu e Tucuruí marcaram o período do milagre econômico brasileiro (EPE, 2008). Essa decisão mostrou-se acertada com o aumento das preocupações com os impactos ambientais, indicando que os vastos recursos hídricos e potencial hidrelétrico seriam uma vantagem comparativa do Brasil.

Na década de 90, o País passou a enfrentar dificuldades financeiras para a expansão do setor elétrico, devido à alta do preço do petróleo no mercado internacional, à política de tarifas artificialmente baixas para conter a inflação e à alta nos juros internacionais. Em contrapartida, o rápido crescimento da demanda de eletricidade, principalmente para o setor industrial, pressionava a capacidade de oferta de eletricidade existente. É nesse época que o Brasil começa a importar energia elétrica do Paraguai, conforme representado na Figura II.1.2 (EPE, 2008). Essa importação começa em 1982, quando é concluída a construção da hidrelétrica de Itaipu, o que facilitava a compra de energia da parte paraguaia da usina pelo governo brasileiro.

Figura II.1.2 – Evolução da Importação e Exportação de Energia Elétrica (EPE, 2008).

Para tentar suprir esse aumento de demanda, o país resolveu investir em usinas nucleares e em 1985 a Usina Termonuclear Angra I entrou em operação. A opção por sua construção era justificada pela proximidade dos grandes centros consumidores evitando investimentos em transmissão e o aumento da importação de petróleo para o uso de seus derivados em termelétricas (EPE, 2008). O setor elétrico brasileiro passou por sucessivas reformas a partir da década de 90, seguindo tendência mundial. Essa reestruturação criou agências reguladoras, políticas de desregulamentação com ênfase no livre acesso às redes de transporte, e promoveu a abertura à novas empresas estimulando a desverticalização e a privatização, principalmente das distribuidoras (EPE, 2008). Entretanto, a atratividade desses novos investimentos não atendeu às expectativas, culminando no racionamento de energia elétrica no início de 2001.

Para enfrentar a crise, foram elaborados três planos de ação: o Programa Prioritário de Termeletricidade (PPT), o Programa de Energia Emergencial e o Plano de Revitalização do Modelo do Setor Elétrico. A meta do PPT era garantir que a potência total gerada passasse a ser 80% hidrelétrica e 20% termelétrica até 2009, o que era uma medida decisiva para a diversificação da matriz de geração brasileira. Para isso, previa-se incentivos de longo prazo (20 anos) para as térmicas emergenciais e garantia-se um despacho das mesmas na base (EPE, 2008). O PPT previa a entrada de 49 termelétricas, na maioria a gás natural, porém grande parte delas não saiu do papel (EPE, 2008). Ainda assim, pode-se observar os reflexos desse aumento na geração termelétrica na Figura II.1.3.

Figura II.1.3 – Evolução da geração de eletricidade por tecnologia (EPE, 2008).

A hidroeletricidade continua sendo a opção natural do Brasil mesmo com barreiras ambientais cada vez mais restritivas ao aproveitamento dos potenciais hidráulicos. Porém, a expansão com foco central na energia hidrelétrica a fio d`água e com fontes intermitentes e sazonais acarreta em insegurança energética devido a:

- Impossibilidade de construção de hidrelétricas com reservatórios de regularização;
- Perda de regularização dos atuais reservatórios, tornando o sistema elétrico refém das condições climáticas;
- Escassez de novos projetos hidrelétricos após 2020 (ABRAGET, 2013);
- Dificuldades para aprovação e certificação ambiental de novos projetos hidrelétricos na planície amazônica cujo relevo plano resulta em grandes áreas de alagamento e de ampla destruição florestal.

Sendo assim, o Brasil dependerá cada vez mais das termelétricas para complementar a oferta de energia firme do sistema interligado nacional.

Na geração térmica, são utilizados como combustíveis principalmente os derivados de petróleo e biomassa, conforme representado na Figura II.1.4. A diversificação equilibrada dessas fontes garante confiabilidade e segurança do sistema elétrico brasileiro em qualquer época do ano.

Figura II.1.4 – Fontes para geração de energia termelétrica (ABRAGET, 2013).

A geração de eletricidade a partir de termelétricas contribui para mitigar os riscos hidrológicos pela diversificação, além de ter como vantagem a possibilidade de se localizar perto dos centros consumidores, diminuído a necessidade de investimento em linhas de transmissão (EPE, 2008). A despachabilidade das termelétricas é um atributo fundamental em um sistema hidrotérmico, diferenciando-as das demais fontes (ABRAGET, 2013). A possibilidade de acionar uma usina termelétrica a qualquer momento é o que garantirá a segurança energética buscada pelo país.

II.2 Gás Natural para produção de Energia Elétrica

Define-se como reserva de gás natural o volume contido em campos já descobertos, e esta pode ser classificada como provadas, prováveis e possíveis (ANP, 2011). Esse gás pode ser classificado em duas categorias: associado e não associado. O primeiro refere-se àquele que no reservatório encontra-se dissolvido no petróleo ou sob a forma de uma capa de gás. Neste caso costuma-se privilegiar a produção inicial do óleo e o gás é apenas utilizado para manter a pressão do reservatório. O gás não associado é aquele livre do óleo e da água no reservatório (EPE, 2008).

Até 1970, as reservas de gás natural estavam concentradas em poucas regiões: a antiga União Soviética e a América do Norte concentravam 48,6% das reservas de gás do mundo. Ásia e América Latina apenas marginavam o mundo do gás nesse período (EPE, 2008). No período entre 1973 e 2012 houve uma expansão do gás natural na matriz energética mundial, saltando de 1,226 bilhões de metros cúbicos (m³) para 3,435 bilhões de m³, com o Oriente Médio se tornando um agentes importante nesse mercado (IEA, 2013). A participação do gás natural na produção mundial de energia é observada na Figura II.2.1, que mostra a evolução na produção primária de energia.

Figura II.2.1 – Produção primária de energia (EPE, 2008).

Na América do Sul, Venezuela, Bolívia e Argentina concentram a maior parte das reservas da região. No Brasil, as reservas provadas de gás natural cresceram a uma taxa média de 7,3% a.a. no período entre 1964 e 2010 (ANP, 2011). O crescimento mais significativo foi entre 1995 e 1997, e a partir de 2002, como é mostrado na Figura II.2.2. As principais descobertas ocorreram na Bacia de Campos e Bacia do Solimões.

Figura II.2.2 – Evolução das reservas provadas de gás natural do Brasil (ANP, 2011).

Em 2009, cerca de 80,3% do total da produção foi proveniente de gás associado, o que a manteve subordinada às condições de extração do petróleo e limitou a expansão no consumo de gás natural. Esse cenário vem sendo superado com o crescimento da

produção de gás não associado – em 2010 75,4% do total de produção foi proveniente de gás associado e 24,5% de não associado (ANP, 2011).

Em 2010, as reservas provadas foram de aproximadamente 417 bilhões de m³, um expressivo crescimento da ordem de 16,4% em relação a 2009. De todo o gás que compõem as reservas do país, 16,5% estão localizados em terra – principalmente no campo de Urucu (AM) e em campos produtores na Bahia –, enquanto os 83,5% restantes estão localizados no mar (ANP, 2011).

Enquanto o Brasil cresce lentamente a sua produção, o mercado norte-americano vem sendo a região de maior avanço na exploração, desenvolvimento e produção de gás, principalmente devido ao gás natural de folhelho (*shale gas*). Empresas, principalmente de médio porte, desenvolveram técnicas simples que possibilitaram a extração de gás não-convencional de veios de folhelho, o que quadriplicou as reservas mundiais do combustível para o equivalente a 200 anos de consumo e baixou o preço nos Estados Unidos a menos da metade da média mundial e a um quarto do preço brasileiro (PADUAN, 2013).

Define-se com gás não-convencional o gás natural produzido a partir de rochas tradicionalmente consideradas incapazes de expelir volumes comerciais de hidrocarboneto. As acumulações convencionais produzem gás a partir de rochas porosas e permeáveis, tais como arenitos e carbonatos. Por sua vez, acumulações não-convencionais produzem volumes de gás a partir de arenitos fechados e não permeáveis (*tight gas*), de rochas finas como folhelhos (*shale*), de carvão mineral (*coalbed methane*), ou de arenitos e carbonatos fechados e extremamente fraturados (*fracturated reservoir*) (ZALAN, 2012).

O *shale gas* (gás de folhelho) foi o grande responsável pelo aumento da oferta de gás nos Estados Unidos na última década. Entretanto, o *tight gas* e o *coalbed methane* também vêm sendo explorados na região desde 1970 (LAGE *et al.*, 2013).

No Brasil, as reservas não convencionais já mapeadas são significativas e, segundo o EIA (2011), é o décimo maior detentor de reservas de gás de folhelho tecnicamente recuperáveis. Localizadas em terra, seus novos recursos podem impulsionar o mercado de gás natural do país, interiorizando o uso do gás natural em território nacional. As bacias sedimentares com potencial para exploração de gás convencional e não convencional são representados na Figura II.2.3.

Figura II.2.3 – Bacias sedimentares com potencial para exploração de gás convencional e não convencional (ABRAGET, 2013).

Em Novembro de 2013, a Agência Nacional de Petróleo (ANP) fez pela primeira vez uma rodada de leilões em áreas com grande probabilidade de haver gás, mas dos 240 blocos ofertados, apenas 72 foram arrematados, fazendo com que as arrecadações ficassem abaixo das expectativas (QUAINO, 2013). Problemas como a estrutura de produção, importação, transporte e comercialização de gás ainda concentrado e falta de dutos – a malha de gasodutos brasileira soma cerca de 9.500 km enquanto nos EUA são 490.000 km (PADUAN, 2013) – ainda limitam a expansão do mercado do gás no Brasil.

A exploração do gás natural, além de importante para indústrias energo-intensivas ou dependentes de gás como matéria-prima, é fundamental para a oferta interna de energia elétrica, conforme abordado no item I.3.2. Apesar de corresponder a uma pequena parcela da geração, é um dos maiores responsáveis por garantir a estabilidade do sistema em picos de demanda ou em períodos em que o regime hidrológico não é favorável. Assume, assim, a função de reserva do sistema (LAGE *et al.*, 2013).

Além disso, o avanço do gás natural pode ser visto como positivo do ponto de vista da eficiência energética e também sob a ótica ambiental. Apesar de ser uma fonte não renovável, oferece menos riscos à natureza do que combustíveis mais tradicionais como petróleo e carvão mineral, uma vez que sua queima é isenta de enxofre e cinzas (MMA, 2008).

O segmento termelétrico é o segundo maior consumidor de gás natural, ainda que apresente grande variação devido ao fato de sua produção ser complementar à hídrica e, portanto, sazonal. O parque térmico a gás natural conta com capacidade de geração 9.326 MW (MME, 2012), o que, segundo estimativas, gera uma demanda potencial de gás natural de 55 milhões de m³/dia, muito acima da demanda do segmento industrial (LAGE *et al.*, 2013). É importante ressaltar, todavia, que o despacho médio anual das térmicas a gás tem permanecido abaixo de 35%. Isso ocorre em virtude do papel que as usinas termelétricas desempenham para a manutenção da segurança do sistema elétrico brasileiro, fazendo com que toda a infraestrutura de produção, escoamento, processamento e transporte seja dimensionada para atender aos picos de geração térmica (LAGE *et al.*, 2013).

As tecnologias de geração termelétrica a gás natural podem ser divididas em três grupos: usinas de ciclo simples, que utilizam a combustão interna para a geração de energia elétrica; usinas de ciclo combinado, que consistem na acoplagem de sistemas térmicos a vapor e gás, e usinas de cogeração, caracterizadas como produção combinada de energia eletromecânica e calor (EPE, 2008).

Na região sudeste está localizada a maior parte da capacidade instalada e o maior potencial de expansão, considerando as usinas em construção e as outorgadas. A Figura II.2.4 mostra a localização das termelétricas a gás natural no Brasil.

Forte: Aneel, 2005.

Figura II.2.4 – Localização das termelétricas a gás natural (EPE, 2008).

A expansão da produção de gás natural em terra pode contribuir significativamente para a expansão do parque termelétrico a gás no Brasil. Isso porque, na maioria dos casos, os custos de produção e de escoamento da produção em terra são bem inferiores aos custos

em mar. Além disso, considerando a distância entre algumas regiões produtoras e malha de transporte e as dificuldades enfrentadas para a expansão de novos gasodutos, o consumo termelétrico passa a ser a alternativa mais indicada para a monetização do gás natural (COLOMER, 2013). Como a malha de transporte do setor elétrico é mais desenvolvida que a de gasodutos e estes são mais caros para serem implantados do que as linhas de transmissão, a construção de termelétricas ao lado dos poços de produção de gás torna-se a opção mais rápida e econômica (ABRAGET, 2013).

Apesar de sua importância para a segurança energética nacional, o Brasil ainda enfrenta alguns desafios para a expansão desse tipo de geração. Os moldes atuais dos leilões de energia prejudicam a inserção de térmicas movidas a gás na matriz energética do país, pois (i) não são segregados por fonte de geração ou localização geográfica; (ii) a modicidade tarifária tem foco na geração, não considerando os custos de transmissão e distribuição; e (iii) são exigidos contratos de fornecimento de gás natural de longo prazo para participar dos leilões (PASSADORE, 2012). Tais barreiras podem ser um empecilho para que o gás natural se torne ainda mais expressivo na geração elétrica do país.

Vale ressaltar, também, que a opção pela monetização do gás natural através da produção de energia elétrica não deve ser uma opção única. Há uma demanda reprimida de gás natural pela indústria devido a condições desfavoráveis como altos preços, falta de infraestrutura e dificuldade de firmar contratos de longo prazo. Este cenário fez com que nos últimos anos o consumo industrial de gás natural crescesse a uma taxa média de 2% ao ano apesar de um potencial de crescimento de 104% ao ano caso o preço do gás nacional fosse mais competitivo - US\$ 7/MMbtu (ABRACE, 2014). Para melhorar este cenário, o Governo teria que promover a competição e incentivar a entrada de novos vendedores, investir em infraestrutura – principalmente com a ampliação da rede de gasodutos – e dar continuidade aos leilões em áreas com grande probabilidade de haver gás.

II.3 Atuação da ENEVA no Setor de Energia Elétrica do Brasil

A ENEVA é uma companhia brasileira com atuação nas áreas de geração e comercialização de energia elétrica, além de negócios na exploração e produção de gás natural. A companhia tem um amplo portfólio de empreendimentos de geração térmica, com 1780 MW de ativos operacionais e 1100 MW em construção, o que a posiciona como uma das maiores geradoras privadas de energia elétrica do Brasil (ENEVA, 2014).

Sua geração é predominantemente baseada em fontes térmicas (carvão mineral, gás natural e óleo diesel), mas conta também com fontes complementares, como energia solar e eólica. A ENEVA possui 6 usinas em operação – Amapari, Itaqui, Pecém I e II, Parnaíba I, III e IV, e Tauá – e uma em construção – Parnaíba II (ENEVA, 2014).

Tauá foi a primeira usina solar em escala comercial no país conectada ao Sistema Interligado Nacional (SIN). Em operação desde agosto de 2011, a usina cearense tem capacidade instalada de 1 MW, mas o projeto possui licença para ampliar sua capacidade gradualmente para até 50 MW (ENEVA, 2014).

Em operação desde junho de 2008, a Amapari é uma termelétrica a óleo diesel localizada no município Serra do Navio (AP) e tem capacidade de geração elétrica de 23 MW, sendo 51% prioridade da ENEVA e 49%, da Eletronorte. A usina tem autorização da Aneel para atual como Produtor Independente de Energia (PIE) e possui contrato de fornecimento direto de energia elétrica para a Anglo Ferrous Amapá Mineração, até 2015 (ENEVA, 2014).

A usina termelétrica Pecém I, localizada no munícipio de São Gonçalo do Amarante (CE), produz energia à base de carvão mineral pulverizado. A usina possui dois módulos de 360 MW, totalizando 720 MW, dos quais 50% pertencem à ENEVA e 50% à EDP. Nesse mesmo município foi instalada a termelétrica Pecém II, que utiliza a mesma fonte energética que Pecém I e é um empreendimento que pertence 100% à ENEVA. Sua capacidade instalada é de 365 MW (ENEVA, 2014).

A usina termelétrica de Itaqui foi o primeiro empreendimento da ENEVA no Maranhão. Localizada em São Luís e movida à carvão mineral, a usina está em operação desde de fevereiro de 2013 e tem capacidade instalada de 360 MW. A UTE Itaqui utiliza o que existe de mais moderno em tecnologia para a redução de resíduos. A ENEVA investe 30% a mais do que a legislação brasileira exige para garantir a eliminação de cerca de 95% das emissões geradas pela combustão do carvão (ENEVA, 2014).

Ainda no Maranhão, a ENEVA opera o Complexo Parnaíba, um dos maiores complexos de geração de energia térmica a gás natural do Brasil. Integram o complexo as usinas em operação Parnaíba I (676 MW), Parnaíba III (169 MW) e Parnaíba IV (56 MW), e Paraíba II que está na fase final de construção. A capacidade licenciada do empreendimento é de até 3.722 MW (ENEVA, 2014).

Figura II.3.1 – Usina Termelétrica Parnaíba I (arquivo pessoal)

O gás natural que abastece as usinas é produzido pelos poços produtores da Bacia do Parnaíba da PGN – Parnaíba Gás Natural (antiga OGX), o que garante vantagem logística à ENEVA já que as usinas estão localizadas próximas aos poços. Atualmente, o consumo de gás natural pelas usinas em operação é de cerca de 5,7 milhões de metros cúbicos por dia (ENEVA, 2014).

II.4 Conversão de Calor em Potência com Ciclos Simples

II.4.1 Ciclo de Carnot

A partir da Segunda Lei da Termodinâmica, o enunciado de Kelvin-Planck afirma que "é impossível construir um dispositivo que opere num ciclo termodinâmico e cujo único efeito seja absorver energia na forma de calor de um reservatório térmico e transformá-lo na mesma quantidade de trabalho". Isso implica que é impossível construir um motor ideal que tenha 100% de eficiência térmica. A Figura II.4.1.1 é um esquema de um motor operando conforme o enunciado de Kelvin-Planck (SIMÕES-MOREIRA, 2012).

Figura II.4.1.1 – Esquema de um motor térmico (SIMÕES-MOREIRA, 2012).

Segundo Carnot (1824), motores térmicos atingem a eficiência máxima se passam por quatro processos reversíveis como representados na Figura II.4.1.2, que representa um diagrama de temperatura-entropia.

Figura II.4.1.2 – Diagrama temperatura-entropia do Ciclo de Carnot (SIMÕES-MOREIRA, 2012).

A eficiência térmica de qualquer ciclo de potência (η_{th}) é a razão entre o trabalho líquido (W) e o calor recebido (Q_H), conforme representado da Equação II.4.1.1.

$$\eta_{th} = \frac{W}{Q_H} = \frac{Q_H - Q_L}{Q_H} = 1 - \frac{Q_L}{Q_H}$$
(II.4.1.1)

Do diagrama temperatura-entropia é possível observar que tanto a adição quanto a retirada de calor estão associadas à variação de entropia, isto é, $Q_H = T_H \Delta S$ e $Q_L = T_L \Delta S$. Substituindo na Equação II.4.1.1, obtêm-se a Equação II.4.1.2, que é a fórmula final da eficiência de Carnot, η_C (SIMÕES-MOREIRA, 2012).

$$\eta_{C} = 1 - \frac{T_{L}}{T_{H}} \tag{II.4.1.2}$$

Esse resultado mostra que a máxima conversão de calor em trabalho de um motor operando em modo continuo entre duas fontes de calor é limitado pela razão entre a temperatura das duas fontes de calor. Quanto menor essa razão, maior a eficiência de Carnot. Observa-se, ainda, que não é possível atingir 100% de eficiência já que para isso seria necessário que a fonte de menor temperatura estivesse a 0 K e/ou que a fonte de maior temperatura estivesse a uma temperatura matematicamente infinita, o que não é fisicamente possível (SIMÕES-MOREIRA, 2012).

II.4.2 Ciclo de Brayton

Turbinas a gás são equipamentos complexos mas podem ser divididos em três partes fundamentais que realizam os principais processos termodinâmicos envolvidos na produção de potência a partir da energia química de combustíveis. Essas partes são: compressor, câmara de combustão e a turbina propriamente dita, conforme representado na Figura II.4.2.1.

Figura II.4.2.1 – Partes da Turbina a gás (SIMÕES-MOREIRA, 2012).

Primeiro, o ar atmosférico passa por um processo de compressão via compressor axial multi-estágio, no qual tanto a pressão quanto a temperatura são aumentados. Em seguida, o ar comprimido é direcionado para a câmara de combustão, na qual o combustível é injetado e queima ao entrar em contato com o ar, aumentando a temperatura a uma pressão constante. Por fim, o produto da combustão à alta pressão e temperatura é expandido na seção da turbina gerando potência para acionar tanto o compressor quanto o gerador elétrico. Esse ciclo de geração de potência é conhecido como Ciclo de Brayton Aberto.

Para avaliar tal ciclo de um ponto de vista termodinâmico, algumas hipóteses têm que ser assumidas. Primeiro, o fluido de trabalho é assumido como ar puro, sem nenhum transformação devido à combustão. Ao fazer isso, a combustão ar-combustível é substituída por um processo de adição de calor à pressão constante. Além disso, os processos de exaustão e entrada são substituídos por processos de transferência de calor para a atmosfera, o que faz com que o ar esteja continuamente em um loop fechado, conforme indicado na Figura II.4.2.3 (SIMÕES-MOREIRA, 2012). No ciclo fechado, o ar à temperatura e pressão ambiente é comprimido, recebe calor Q_H , passa por um processo de expansão na turbina e libera calor Q_L à pressão constante.

Figura II.4.2.2 - Ciclo de Brayton fechado com fluxo de ar (SIMÕES-MOREIRA, 2012).

Tendo como base o ciclo da Figura II.4.2.2 e assumindo gás com comportamento ideal e propriedades termodinâmicas constantes, os balanços de energia de cada componente estão indicados nas equações II.4.2.1 a II.4.2.5 (SIMÕES-MOREIRA, 2012). Tais equações estão em base molar e unidades do sistema internacional (SI). Tanto a energia cinética quanto a potencial foram desconsideradas.

Calor adicionado:
$$q_H = h_3 - h_2 = C_p (T_3 - T_2)$$
 (II.4.2.1)

Calor eliminado:
$$q_L = h_4 - h_1 = C_p (T_4 - T_1)$$
 (II.4.2.2)

Trabalho do compressor: $w_{comp} = h_2 - h_1 = C_p (T_2 - T_1)$ (II.4.2.3)

Trabalho da turbina:
$$w_{turb} = h_3 - h_4 = C_p (T_3 - T_4)$$
 (II.4.2.4)

Trabalho Líquido do Ciclo:
$$w = w_{turb} - w_{comp}$$
 (II.4.2.5)

Para a análise termodinâmica deste ciclo, os diagramas de temperatura-entropia e pressão-volume específico foram representados nas Figuras II.4.2.3 e II.4.2.4. O trabalho líquido do ciclo é dado pela área do interior do ciclo nas figuras.

Figura II.4.2.3 – Diagrama temperatura-entropia do Ciclo de Brayton (SIMÕES-MOREIRA, 2012).

Figura II.4.2.4 – Diagrama pressão-volume do Ciclo de Brayton (SIMÕES-MOREIRA, 2012).
Primeiro, o ar é comprimido idealmente (isentrópico) no compressor, aumentando tanto a temperatura quanto a pressão (processo 1-2) em troca de trabalho do compressor, w_{comp} . O calor q_H , então, é adicionado à pressão constante (processo 2-3), levando o sistema à sua temperatura mais alta, T_3 . Depois disso, o ar à alta pressão e temperatura é expandido (processo 3-4), gerando trabalho, w_{turb} , necessário para alimentar o compressor e trabalho de eixo líquido, w. Por fim, o calor q_L é eliminado para o ambiente (processo 4-1) à pressão constante, fechando o ciclo (SIMÕES-MOREIRA, 2012).

Análogo à Equação II.4.1.1, a eficiência térmica do ciclo de Brayton é dada pela Equação II.4.2.6.

$$\eta_{th} = 1 - \frac{q_L}{q_H} \tag{II.4.2.6}$$

Usando o balanço de energia das Equações II.4.2.1 e II.4.2.2, obtém-se a Equação II.4.2.7.

$$\eta_{th} = 1 - \frac{C_P(T_4 - T_1)}{C_P(T_3 - T_2)} = 1 - \frac{T_1(T_4 / T_1 - 1)}{T_2(T_3 / T_2 - 1)}$$
(II.4.2.7)

A variação de entropia de um gás ideal é dado pela Equação II.4.2.8. A partir dela obtémse a Equação II.4.2.9 e, pela diagrama da Figura II.4.2.3 chega-se à Equação II.4.2.10, onde r é a razão entre as pressões máxima e mínima do ciclo (SIMÕES-MOREIRA, 2012).

$$P_{1}^{\frac{1-\gamma}{\gamma}}T_{1} = P_{2}^{\frac{1-\gamma}{\gamma}}T_{2}$$
(II.4.2.8)

$$\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}} e \frac{p_3}{p_4} = \left(\frac{T_3}{T_4}\right)^{\frac{\gamma}{\gamma-1}}$$
(II.4.2.9)

$$r = \frac{p_2}{p_1} = \frac{p_3}{p_4} \tag{II.4.2.10}$$

A partir das Equações II.4.2.9 e II.4.2.10, prova-se que $\frac{T_3}{T_2} = \frac{T_4}{T_1}$. Com isso, a eficiência térmica do ciclo em termos de pressão e temperatura é dada pela Equação II.4.2.11 (SIMÕES-MOREIRA, 2012).

$$\eta_{ih} = 1 - \frac{T_1}{T_2} = 1 - \frac{1}{\left(\frac{p_2}{p_1}\right)^{\frac{\gamma-1}{\gamma}}} = \frac{1}{r^{\frac{\gamma-1}{\gamma}}}$$
(II.4.2.11)

Em geral não é suficiente apenas uma análise da eficiência térmica para encontrar as melhores condições para o Ciclo de Brayton. Torna-se, então, necessária a análise do trabalho líquido gerado no sistema (Equação II.4.2.5). Esse trabalho w em função de r é dado pela Equação II.4.2.12 (SIMÕES-MOREIRA, 2012).

$$w = C_p T_1 \left[\left(\frac{T_3}{T_1} \right) \times \left(1 - \frac{1}{\frac{r-1}{\gamma}} \right) - \left(r^{\frac{r-1}{\gamma}} - 1 \right) \right]$$
(II.4.2.12)

A partir disso, pode-se determinar o r tal w seja máximo, conforme indicado na Equação II.4.2.13.

$$r_{\max work} = \left(\frac{P_2}{P_1}\right) = \left(\frac{T_3}{T_1}\right)^{\frac{\gamma}{2(\gamma-1)}}$$
(II.4.2.13)

Entretanto, o Ciclo de Brayton real é baseado em turbinas reais, que desviam do comportamento ideal (isentrópico). Uma parte significativa do trabalho produzido pela turbina é gasto para alimentar o compressor. Sendo assim, é importante analisar quanto de perda é gerado na *performance* do sistema devido a ineficiências da máquina (SIMÕES-MOREIRA, 2012). A eficiência do compressor, η_c , e da turbina, η_t , são

definidas pelas Equações II.4.2.14 e II.4.2.15, onde w_{comp-s} , w_{comp-a} , w_{turb-s} e w_{turb-a} são trabalho ideal e real do compressor, e trabalho ideal e real da turbina, respectivamente.

$$\eta_c = \frac{w_{comp-s}}{w_{comp-a}} = \frac{h_{2s} - h_1}{h_2 - h_1} = \frac{T_{2s} - T_1}{T_2 - T_1}$$
(II.4.2.14)

$$\eta_t = \frac{w_{turb-s}}{w_{turb-a}} = \frac{h_3 - h_4}{h_3 - h_{4s}} = \frac{T_3 - T_4}{T_3 - T_{4s}}$$
(II.4.2.15)

Segundo Simões-Moreira (2012), o trabalho líquido produzido por uma turbina considerando as perdas e a razão r para o máximo trabalho líquido são dados pelas Equações II.4.2.16 e II.4.2.17, respectivamente.

$$w_{a} = w_{turb-a} - w_{comp-a} = C_{p}T_{1}\left[\eta_{t}\frac{T_{3}}{T_{1}}\left(1 - \frac{1}{r^{\frac{\gamma-1}{\gamma}}}\right) - \frac{1}{\eta_{c}}\left(r^{\frac{\gamma-1}{\gamma}} - 1\right)\right]$$
(II.4.2.16)

$$r_{\max work-a} = \left(\frac{P_2}{P_1}\right) = \left(\eta_t \eta_c \frac{T_3}{T_1}\right)^{\frac{\gamma}{2(\gamma-1)}}$$
(II.4.2.17)

As diferenças entre a eficiência térmica real e ideal, e o trabalho líquido real e ideal podem ser observados nas Figuras II.4.2.5 e II.4.2.6, que trazem gráficos para o exemplo de $T_1 = 300$ K, $T_3 = 1200$ K, $\eta_t = 85\%$ e $\eta_c = 80\%$ (SIMÕES-MOREIRA, 2012).

Figura II.4.2.5 – Diagrama $\eta_{th} \times r$ do Ciclo de Brayton (SIMÕES-MOREIRA, 2012).

Figura II.4.2.6 – Diagrama *w*×*r* do Ciclo de Brayton (SIMÕES-MOREIRA, 2012).

II.4.3 Ciclo de Rankine

O Ciclo de Carnot (II.4.2), poderia servir de padrão de comparação para plantas de potência a vapor reais. Entretanto, há dificuldades que impossibilitam parte do processo. Turbinas alimentadas por vapor saturado produzem uma corrente de saída com alta quantidade de líquido, fato que causa problemas de erosão significativos. Além disso, é muito difícil o projeto de uma bomba que que seja alimentada por uma mistura de líquido e vapor e descarregue um líquido saturado. Por essas razões, um modelo alternativo de ciclo é tomado como padrão para termelétricas a vapor, o Ciclo de Rankine (SMITH *et al.*, 2005).

Este ciclo se diferencia do Ciclo de Carnot em dois aspectos importante. Primeiro, a etapa de aquecimento é conduzida além da vaporização, de modo a produzir um vapor superaquecido. Além disso, a etapa de resfriamento leva à uma condensação completa, produzindo liquido saturado para ser bombeado para a caldeira (SMITH *et al.*, 2005). Os quatro processos reversíveis que compõe o Ciclo de Rankine estão representados na Figura II.4.3.

Figura II.4.3.1 – Componentes básicos do Ciclo de Rankine (SIMÕES-MOREIRA, 2012).

Neste ciclo, o líquido saturado 1 passa por um processo de compressão isentrópico para se tornar líquido comprimido no estágio 2. Em seguida, o líquido comprimido é levado à caldeira, onde o calor Q_H é adicionado para obter vapor saturado no estágio 4. Esse vapor saturado passa por um superaquecedor para garantir que só haja vapor na entrada da turbina, evitando a erosão do equipamento. Esse vapor superaquecido 5 segue para uma máquina de expansão, como uma turbina a vapor, onde passa por um processo isentrópico e produz trabalho. O fluido no estágio 6 passa por um condensador para fechar o ciclo e retornar ao estágio inicial 1 (SIMÕES-MOREIRA, 2012). Esses processos estão representados na Figura II.4.3.2 do diagrama temperatura-entropia do Ciclo de Rankine.

Figura II.4.3.2 – Diagrama T-s do Ciclo de Rankine (SIMÕES-MOREIRA, 2012).

O balanço de energia nos equipamentos que compõe o Ciclo de Rankine estão expressos nas Equações II.4.3.1 a II.4.3.5.

Calor adicionado (caldeira + superaquecedor): $q_H = h_4 + h_5 - h_2$	(II.4.3.1)
Calor eliminado (condensador): $q_L = h_6 - h_1$	(II.4.3.2)
Trabalho de compressão (bomba): $w_p = h_2 - h_1$	(II.4.3.3)

Trabalho de expansão (turbina):
$$w_t = h_5 - h_6$$
 (II.4.3.4)
Trabalho Líquido do Ciclo: $w = w_t - w_p = q_H - q_L$ (II.4.3.5)

Este Ciclo de Rankine pode resolver o problema da entrada de líquido na turbina, mas traz um novo problema que é superaquecer a corrente de entrada da turbina a uma temperatura alta o suficiente. A solução para isso é expandir o vapor a uma pressão intermediária em um segundo estágio da turbina a vapor. Dessa forma, o vapor é expandido em vários estágios fazendo com que o processo de expansão progrida em torno da curva de saturação e, com isso, a qualidade do vapor seja alta o suficiente no final de cada estágio (SIMÕES-MOREIRA, 2012). O esquema e o diagrama T-s para o caso de reaquecimento do vapor em uma turbina a vapor de dois estágios estão representados na Figura II.4.3.3 e II.4.3.4, respectivamente, mas estágios adicionais são possíveis.

Figura II.4.3.3 – Componentes do Ciclo de Rankine com reaquecimento (SIMÕES-MOREIRA, 2012).

Figura II.4.3.4 – Diagrama T-s do Ciclo de Rankine com reaquecimento (SIMÕES-MOREIRA, 2012).

Esta solução, porém, não resolve o problema da baixa eficiência térmica do Ciclo de Rankine, mais baixa que a do Ciclo de Carnot. A eficiência térmica de um ciclo de potência aumenta quando a pressão e, em consequência, a temperatura de vaporização na caldeira é aumentada. Na prática, plantas de potência raramente operam a pressões acima de 10.000 KPa e 600°C. Além disso, a diminuição da pressão e, consequentemente, da temperatura do condensador também contribuem para o aumento da eficiência térmica da planta. Entretanto, a temperatura de condensação deve ser maior do que a temperatura do meio refrigerante. Em geral, as plantas de potência operam com pressões do condensador no limite inferior permitido pela prática (SMITH *et al.*, 2005).

Sendo assim, parte do problema de baixa eficiência térmica é devido ao fato do calor ser adicionado a um líquido de baixa temperatura que entra na caldeira vindo da bomba. Para mitigar isso, foi concebido o Ciclo de Rankine Regenerativo. Nele o vapor não expande isentropicamente na turbina, ao invés disso ele troca calor com o líquido comprimido que está em contracorrente com a turbina conforme expande. Com isso, o líquido é preaquecido e entra na caldeira como líquido saturado (SIMÕES-MOREIRA, 2012).

O Ciclo de Rankine Regenerativo Ideal reproduz com exatidão o Ciclo de Carnot pois a quantidade de calor usada para pré-aquecer o líquido comprimido é igual ao calor perdido durante a expansão. Entretanto, o ciclo regenerativo não é prático pois não é viável construir uma turbina a vapor que seja tanto uma máquina de expansão quanto um trocador de calor. Além disso, o vapor na saída da turbina a vapor seria de qualidade baixa, o que poderia agravar o problema de erosão da palheta da turbina. A solução para isso é retirar vapor dos estágios da turbina e misturar com água condensada (SIMÕES-MOREIRA, 2012). Um ciclo mais complexo com três alimentações de água é representado nas Figuras II.4.3.5 e II.4.3.6. Na prática, 6 ou 7 reaquecimentos é o usado em plantas de larga escala.

Figura II.4.3.5 – Componentes do Ciclo de Rankine Regenerativo (SIMÕES-MOREIRA, 2012).

Figura II.4.3.6 – Diagrama T-s do Ciclo de Rankine Regenerativo (SIMÕES-MOREIRA, 2012).

Para mensurar as perdas do ciclo é necessário avaliar as perdas da turbina a vapor. Uma turbina real não é isentrópica e ocorrem perdas por atrito com as palhetas da turbina, perdas aerodinâmicas e perdas devido ao processo de expansão desviar do comportamento ideal. Portanto, o trabalho real da turbina a vapor w_{t-a} é dado pela Equação II.4.2.6, onde w_{t-s} é o trabalho ideal da turbina, h_i é a entalpia específica do vapor na entrada da turbine e h_{o-s} é a entalpia específica na saída da turbina em um processo isentrópico (SIMÕES-MOREIRA, 2012).

$$\eta_t = \frac{w_{t-a}}{w_{t-s}} = \frac{w_{t-a}}{h_i - h_{o-s}} \therefore w_{t-a} = \eta_t (h_i - h_{o-s})$$
(II.4.3.6)

II.5 Conversão de Calor em Potência com Ciclos Combinados

II.5.1 NGCC – Natural Gas Combined-Cycle

Como analisado no item II.4.2, o gás exausto proveniente da turbina a gás sai com uma temperatura bastante elevada. Sendo assim, considerando aspectos econômicos e ambientais, é justificável a recuperação dessa grande quantidade de energia térmica. Uma das formas mais difundidas para reaproveitamento desse calor liberado é a utilização de uma caldeira de recuperação (HRSG) para produzir vapor a temperatura e pressão altas o suficiente para produzir potência com uma turbina a vapor em Ciclo Rankine.

Com isso, foi desenvolvida a tecnologia NGCC, ou seja, Ciclo Combinado a gás Natural, que utiliza tanto o calor gerado pela combustão do gás natural na turbina a gás quanto a alta temperatura do gás exausto para produzir potência e, posteriormente, energia elétrica. O NGCC é basicamente uma combinação dos Ciclos de Brayton (item II.4.2) e de Rankine (item II.4.3), conforme representado na Figura II.5.1.1 (SIMÕES-MOREIRA, 2012).

Figura II.5.1.1 – Componentes do Ciclo de Brayton-Rankine (SIMÕES-MOREIRA, 2012).

O esquema mostra que o vapor que alimenta o Ciclo de Rankine é produzido na caldeira, que é movida pela gás proveniente do Ciclo de Brayton. Como consequência, a eficiência geral do ciclo é melhorada. A eficiência do Ciclo Combinado η_c é dada pela Equação II.5.1.1, na qual W_B é a potência líquida produzida pela turbina a gás (Ciclo de Brayton), W_R é a potência líquida produzida pela turbina a vapor (Ciclo de Rankine) e Q_H é a potência térmica devido à combustão do combustível, no caso gás natural. A potência gasta na bomba do Ciclo de Rankine foi negligenciada (SIMÕES-MOREIRA, 2012).

$$\eta_{C} = \frac{W_{net}}{Q_{H}} = \frac{W_{B} + W_{R}}{Q_{H}}$$
(II.5.1.1)

Assumindo que $W_R = \eta_R \times Q_C$, onde η_R é a eficiência térmica do Ciclo de Rankine e Q_C é o calor carregado na caldeira, transferido dos gases exaustos para o vapor produzido, obtém-se a Equação II.5.1.2.

$$\eta_C = \frac{W_B + \eta_R \times Q_C}{Q_H} \tag{II.5.1.2}$$

Considerando condições ideais nas quais os gases exaustos saindo da HRSG estão a temperaturas baixas, então $Q_C = Q_H - W_B$. Sendo assim, a eficiência térmica do ciclo combinado é representada pela Equação II.5.1.3. Fica evidente, dessa forma, que a eficiência térmica do Ciclo Combinado é maior do que a dos Ciclos de Brayton e Rankine separadamente.

$$\eta_C = \frac{W_B + \eta_R \times (Q_H - W_B)}{Q_H} = \eta_B + \eta_R - \eta_B \times \eta_R \tag{II.5.1.3}$$

As primeiras termelétricas utilizando ciclo combinado foram instaladas em 1971 nos Estados Unidos, pela GE, e na Europa, pela ABB. Desde os anos 1990, as instalações de NGCCs tornaram-se comuns para a geração de eletricidade em centrais de grande porte. A eficiência térmica desse tipo de central elétrica é bem maior se comparado com os ciclos simples: termelétricas a vapor podem atingir 45% de eficiência, ciclo aberto a gás tem eficiência entre 36 e 39%, e a eficiência do NGCC pode ser de até 60% (DA SILVA, 2009).

Uma planta NGCC pode ser implantadas com diferentes configurações. A configuração representada na Figura II.5.1.2 é de eixo único, denominada SSPT (*Single shaft power train*), que consiste em uma turbina a gás e uma a vapor acoplados a um mesmo gerador em um único eixo. Essa configuração foi inicialmente concebida para aplicações com turbinas a gás com mais de 250 MW. Posteriormente esse conceito foi estendido para unidades menores, a partir de 60 MW. Atualmente, é o tipo de configuração mais usada para plantas que buscam preço e tempo de projeto reduzidos (GEORGESCU, 2005).

Figura II.5.1.2 - Ciclo combinado configurado em SSPT (GEORGESCU, 2005).

Há também a possibilidade de configurar uma NGCC em múltiplos eixos, denominada MSPT (*Multi-shaft power train*), conforme representado na Figura II.5.1.3. Ela consiste em até três turbinas a gás e suas respectivas caldeiras de recuperação e geradores compartilhando uma mesma turbina a vapor (GEORGESCU, 2005). Os principais benefícios dessa configuração são a maior flexibilidade operacional, uma vez que permite a geração de eletricidade na instalação de turbina a gás enquanto se realiza a instalação da HRSG e do resto do ciclo a vapor.

Figura II.5.1.3 - Ciclo combinado configurado em MSPT (GEORGESCU, 2005).

Comparando blocos de mesma capacidade em ambas as configurações, SSPT e MSPT, vários outros fatores devem ser levados em consideração. SSPT requer turbinas a gás com maior capacidade de potência, mas em contrapartida utiliza menos componentes.

Logo, pode-se esperar menores perdas de frequência. Por outro lado, a configuração MSPT tem mais redundância e é possível entrar em operação em parte separadas (GEORGESCU, 2005). Nesse caso, para a operação da turbina a gás em ciclo simples é necessário o dispositivo para by-pass dos gases em sua seção de exaustão. Este dispositivo oferece vantagens adicionais como, por exemplo, o aquecimento mais controlado da HRSG durante a partida e a geração mais eficiente de vapor a cargas parciais. Entretanto, como tem um custo de investimento mais alto, nem sempre se justifica (DA SILVA, 2009).

Além da possibilidade de configurar o ciclo combinado com um ou múltiplos eixos, pode-se também classificá-los quanto ao número de turbinas a vapor, a gás e HRSG. Dessa forma, uma NGCC 1:1:1 representa um ciclo com uma turbina a gás, uma HRSG e uma turbina a vapor, respectivamente. Conforme Boyce (2012), NGCC 2:2:1 de eixo múltiplo é o tipo de configuração mais comum para plantas com geração de mais de 300 MW.

II.6 Simuladores de Processos de Conversão de Calor em Potência

II.6.1 ThermoFlow GT PRO

ThermoFlow foi fundada em 1987 para desenvolver softwares de engenharia térmica para termelétricas e indústrias de cogeração. Seu primeiro produto, GT PRO, tornou-se o programa mais popular programa de simulação para termelétricas baseadas em turbina a gás (THERMOFLOW, 2014).

O GT PRO é um simulador modular que permite projetar ciclos simples e combinados, assim como otimizar plantas já existentes. O usuário tem apenas que inserir os critérios de projeto e hipóteses a serem assumidas para que o programa compute os balanços de massa e energia, o desempenho do sistema e o dimensionamento dos componentes. Este simulador possui também o módulo PEACE que realiza estimativas de custo dos equipamentos dimensionados (THERMOFLOW, 2014).

II.6.2 Aspen HYSYS

Aspen Technology, Inc. é uma empresa que fornece softwares para indústrias de processos. Foi fundada em 1981 quando um grupo de pesquisa de engenharia química do MIT (*Massachussetts Insitute of Technology*) recebeu doação do Departamento de Energia dos EUA para estudar inovações técnicas para a indústria de processos em resposta à crise do óleo dos anos 1970. Seu primeiro simulador lançado ao mercado foi o Aspen Plus® (ASPENTECH, 2014).

Em 1996 a AspenTech começou uma série de aquisições para expandir seu portfólio de produtos de otimização. Dentre essas aquisições, a empresa adquiriu o HYSYS®, software de simulação criado pela Hyprotech para a indústria de processos e refinarias. Este, passou a se chamar Aspen HYSYS® e é um dos líderes do mercado de simuladores e otimizadores de processo.

Esse software é um simulador modular estático e dinâmico que realiza cálculos de trocas térmicas e balanço material para uma ampla variedade de processos químicos. Sendo assim, seus principais benefícios são otimizar a engenharia, os processos de produção e a cadeia de suprimentos e viabilizar a redução de custos e uma maior eficiência energética, resultando em eficiência operacional.

CAPÍTULO III – RESULTADOS E DISCUSSÕES

III.1 Especificações do processo

A proposta do trabalho é representar uma NGCC de múltiplos eixos com configuração 2:2:1 e turbina a vapor com três estágios de pressão usando os simuladores Aspen HYSYS e ThermoFlow GT PRO. O esquema do projeto está representado na Figura III.1.1. Os dados de projeto consideram que a planta a ser simulada está situada no Nordeste do Brasil e se baseiam em fonte não revelada.

Figura III.1.1 – Esquema de NGCC 2:2:1 (TECHTRANSFER, 2014).

Em ambos os programas foi assumida a mesma temperatura de entrada e composição de gás natural (GN), indicados na Tabela III.1.1, conforme fonte não revelada.

Parâmetro	Valor	Unidade
Temperatura de entrada do GN	40,00	°C
Composição do GN		
Metano	90,00	% molar
Etano	4,80	% molar
Propano	1,00	% molar
n-Butano	0,30	% molar
n-Pentano	0,12	% molar
n-Hexano	0,02	% molar
Benzeno	0,04	% molar
Tolueno	0,03	% molar
Nitrogênio	3,50	% molar
CO_2	0,20	% molar

Tabela III.1.1 – Variáveis assumidas em ambas as simulações

Como os simuladores diferem muito entre si, as demais hipóteses assumidas em cada modelo serão apresentadas nas seções a seguir, de forma a deixar claro o que foi adotado em cada simulação. Desta forma, poderá ser feita uma análise comparativa dos resultados levando em consideração as peculiaridades e limitações de cada programa.

III.2 Simulação no ThermoFlow GT PRO

Para a simulação usando GT PRO, inicialmente optou-se por uma HRSG com três pressões evaporativas, na qual a corrente de pressão mais baixa (LP) é conectada à turbina a vapor e a de pressão intermediária (IP) é reaquecida antes de voltar à turbina. O esquema indicando essas hipóteses iniciais está representado na Figura III.2.1.

Figura III.2.1 – Esquema da parte da turbina a vapor no GT PRO

O programa solicitou, então, dados sobre o local no qual a planta seria instalada. Estes dados, conforme fontes não reveladas, estão representados na Tabela III.2.1.

Parâmetro	Valor	Unidade
Temperatura ambiente	26	°C
Altitude	115,5	m
Pressão ambiente	0,9995	bar
Umidade relativa do ar	75	%
Temperatura de bulbo úmido	22,59	°C
Frequência da linha	60	Hz

Tabela III.2.1 – Dados sobre os locais de instalação da NGCC

Ao invés de especificar a vazão de entrada do ar e do gás natural na turbina, o GT PRO solicita ao usuário que escolha o modelo de turbina a gás a ser utilizado. Para esta simulação, foi escolhido a turbina GE 7FA.04 da fabricante General Eletric, representada na Figura III.2.2. Trata-se de uma turbina comumente usada em ciclos combinados e adequada para países com frequência de linha de 60 Hz e altas temperaturas ambientes, como é o caso do Brasil. Possui um eficiente sistema de compressão com 14 estágios sem *intercooler*, utilizando tecnologia de aviação para garantir uma alta eficiência.

Figura III.2.2 – Turbina a gás GE 7FA (GENERAL ELECTRIC, 2014)

As especificações do próprio GT PRO para esse tipo de turbina estão indicados na Tabela III.2.2.

	Valor	Unidade
Eixos	1	-
Velocidade da turbina	3600	rpm
Vazão de ar	443	kg/s
Potência gerada	186000	kW
LHV (Poder Calorífero Inferior)	9411	kJ/kWh
Eficiência LHV	38,3	%

Tabela III.2.2 – Especificações da turbina GE 7FA.04

Após a escolha do modelo de turbina, o programa pede especificações sobre a HRSG e a turbina a vapor. Foi definido, então que o vapor de alta pressão (HP) estaria a 125 bar na entrada da turbina e sairia a 26,62 bar. Este vapor de pressão intermediária (IP), após ser reaquecido na caldeira, voltaria ao estágio de pressão intermediária da turbina com 23 bar. Já o vapor de baixa pressão (LP) foi definido como entrando na turbina com 6,102 bar. Estes valores são baseados em dados de fonte não revelada e estão representados na Figura III.2.3 junto com o esquema do ciclo a vapor.

Figura III.2.3 – Tela do GT PRO para parâmetros da HRSG e turbina a vapor.

Os demais dados adotados na simulação do GT PRO foram dados *defaults* do programa. Como se trata de um simulador específico para termelétricas, esses dados pré determinados pelo modelo contribuem para uma simulação fisicamente possível e de acordo com os projetos, plantas e equipamentos já existentes.

Considerando essas hipóteses e valores assumidos, o diagrama gerado com os principais resultados está representado na Figura III.2.4.

Figura III.2.4 – Fluxograma com os resultados da simulação no GT PRO.

Os principais resultados da simulação usando o GT PRO estão destacados na Tabela III.2.3. Os demais resultados estão no Anexo 1.

	Valor	Unidade
Potência gerada por cada turbina a gás	166,44	MW
Potência gerada pelo ciclo a vapor	183,57	MW
Potência bruta total gerada pela planta	516,42	MW
Perda de potência pelos auxiliares	12,97	MW
Potência líquida total gerada pela planta	503,45	MW
Vazão de entrada de ar por turbina a gás	1476	t/h
Vazão de entrada de GN por turbina a gás	34,74	t/h
Poder calorífero inferior (LHV) do GN	46664,73	kJ/kg
Gás de exaustão da turbina a gás		
Composição		
Nitrogênio	73,333	% molar
Oxigênio	12,112	% molar
$\rm CO_2$	3,882	% molar
H_2O	9,792	% molar
Argônio	0,882	% molar
Temperatura	619	°C
Eficiência bruta do ciclo a gás - LHV	36,98	%
Eficiência bruta do ciclo a vapor - LHV	37,85	%
Eficiência da planta NGCC - LHV	55,93	%

Tabela III.2.3 – Resultados do GT PRO

O resultado de vazão de entrada de gás natural leva em consideração a vazão de ar recomendada pelo fabricante da turbina a gás e o excesso de ar adequado para combustão eficiente. Estes dados de entrada da turbina a gás foram usados como ponto de partida para a simulação no Aspen HYSYS.

Observa-se que a potência gerada por cada turbina a gás está condizente com o especificado pela General Electric, apenas um pouco abaixo da de projeto devido às condições ambientais que afetam bastante o desempenho deste equipamento. Além disso, as eficiências encontradas para cada ciclo e para os ciclos combinados estão de acordo com o previsto pela literatura. Conforme indicado no item II.5.1, o ciclo aberto tem eficiência entre 36 e 39% e o NGCC pode ser de até 60%. Os valores encontrados para tais eficiências foram 36,98% e 55,93%, respectivamente e estão dentro deste intervalo.

III.3 Simulação no Aspen HYSYS

Para a simulação usando o Aspen HYSYS foram usados como base os resultados do ThermoFlow GT PRO. Primeiramente foram modelados os dois ciclos abertos compostos pela turbina a gás. Para tal, como o HYSYS não possui um módulo de turbina a gás com compressor, câmara de combustão e expansor embutidos, estes equipamentos foram adicionados em separado. O fluxograma obtido pela montagem dos ciclos abertos em paralelo está representado na Figura III.3.1.

Turbina a ga	IS	
temperatura de combustao	1251	С
potencia liquida GT	1.667e+005	kW
temperatura do gas exausto	630.6	С

Figura III.3.1 – Fluxograma dos Ciclo Abertos em paralelo no Aspen HYSYS.

Residue-2

As vazões de entrada de gás natural e de ar e suas temperaturas e pressões consideradas foram as calculadas pelo GT PRO para uma turbina GE 7FA.04. São elas 34,74 t/h e 1476 t/h, respectivamente. Como o compressor deste tipo de turbina é composto por 14 estágios sem *intercooler*, e estes compressores são isentrópicos, eles foram substituídos por um único compressor de um estágio, comprimindo o ar até a pressão de entrada da câmara de combustão de 14 bar (fonte não revelada).

Para representar a câmara de combustão, foi adicionado um reator de combustão e especificadas as reações para a queima de todos os hidrocarbonetos presentes na composição do gás natural (Tabela III.1.1). As reações consideradas estão representadas nas Equações III.3.1 a III.3.8.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \tag{III.3.1}$$

$$C_2H_6 + 3,5O_2 \rightarrow 2CO_2 + 3H_2O$$
 (III.3.2)

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O \tag{III.3.3}$$

$$C_4 H_{10} + 6,5O_2 \rightarrow 4CO_2 + 5H_2O$$
 (III.3.4)

$$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O \tag{III.3.5}$$

$$C_6H_{14} + 9,5O_2 \rightarrow 6CO_2 + 7H_2O$$
 (III.3.6)

$$C_6H_5 + 7,5O_2 \rightarrow 6CO_2 + 3H_2O$$
 (III.3.7)

$$C_7H_8 + 9O_2 \rightarrow 7CO_2 + 4H_2O \tag{III.3.8}$$

Para completar a modelagem da turbina a gás, foi incluído um expansor levando a pressão do gás de queima até a pressão ambiente (1 bar).

Para atingir a mesma potência gerada pela turbina a gás do GT PRO e a mesma temperatura do gás exausto, foi considerada a potência líquida gerada (potência gerada pelo expansor - potência gasta pelo compressor) e feito um ajuste fino das eficiências dos dois equipamentos sabendo que a eficiência de um compressor é em torno de 90% e a de um expansor é até 90%. Com as eficiências de 89% para o compressor e 87,7% para o

expansor obteve-se uma potência líquida de 166,7 MW e temperatura de gás exausto de 630,6 °C. A composição do gás exausto está representada na Tabela III.3.1.

	Valor	Unidade		
Gás de exaustão da turbina a gás				
Composição				
Nitrogênio	75,20	% molar		
Oxigênio	12,55	% molar		
CO_2	3,93	% molar		
H ₂ O	7,43	% molar		
Argônio	0,89	% molar		
Temperatura	630,6	°C		

Tabela III.3.1 – Composição do Gás Exausto no HYSYS

Com os dois ciclos abertos modelados, partiu-se para a modelagem do ciclo a vapor de forma a obter o NGCC com configuração 2:2:1. No ciclo a vapor, bombeia-se água a alta pressão (125 bar) às duas HRSGs para se transformar em vapor. Estas duas correntes de vapor de alta pressão (HP), são misturadas em um misturador e entram na câmara de alta pressão da turbina a vapor. O vapor que sai desta parte da turbina está a 26,43 bar e é considerado de pressão intermediária (IP). Esta corrente é então separada por um *splitter* e retorna à HRSG para reaquecimento. As correntes de vapor IP reaquecido são de novo misturadas e entram na câmara de pressão intermediária da turbina e saem a 6,51 bar. Este vapor de baixa pressão (LP), passa pelo mesmo circuito de reaquecimento que a IP e na câmara de baixa pressão da turbina é levada ao vácuo (0,076 bar). Essa corrente de saída da turbina a vapor é levada ao condensador para que volte toda à fase líquida e retorne às bombas e seja novamente pressurizada.

Para representar a HRSG, foi escolhido o trocador de calor LGN Exchanger, pois é o único módulo de troca de calor que permite a entrada e saída de múltiplas correntes. Já a turbina a vapor foi modelada como três expansores, cada um representando um dos estágios da turbina (HP, IP e LP). Atentou-se também ao fato de que ao escolher as temperaturas das correntes de entrada do trocador, estas tinham que ser altas o suficiente para garantir que estivessem acima da temperatura de saturação nas pressões determinadas e que continuariam sendo vapor mesmo após a expansão na turbina, pois a presença de líquido na turbina causa erosão como já explicado anteriormente.

O ciclo representado no HYSYS não considera perdas de processo ou vazamentos, por isso não foram adicionadas correntes de *blow-down* e *make-up* no ciclo. O fluxograma representando o ciclo combinado modelado no HYSYS e as potências geradas por cada turbina a gás e pela turbina a vapor está indicado por partes nas Figuras III.3.2 a III.3.4 e completo na Figura III.3.5.

Figura III.3.3 – Fluxograma do Ciclo Combinado no Aspen HYSYS parte 1.

Figura III.3.4 – Fluxograma do Ciclo Combinado no Aspen HYSYS parte 2.

Figura III.3.5 – Fluxograma do Ciclo Combinado no Aspen HYSYS parte 3.

Figura III.3.2 – Fluxograma do Ciclo Combinado no Aspen HYSYS.

Esse resultado de potência gerada pela turbina a vapor de 183,2 MW considera uma eficiência de 85% da turbina a vapor, o que está dentro do intervalo de 80% e 90% normalmente encontrado para esse tipo de turbina. O resultado detalhado de todas as correntes da simulação no Aspen HYSYS estão no Anexo 2.

III.4 Comparativo dos Resultados Simulados

Nas seções anteriores é possível ver que os resultados de potência gerada nas turbinas a gás e na turbina a vapor em ambos os simuladores ficaram bem próximas. O sumário dos principais resultados está na Tabela III.4.1.

1			
	GT PRO	HYSYS	Unidade
Potência gerada por cada turbina a gás	166,44	166,7	MW
Potência gerada pelo ciclo a vapor	183,57	183,2	MW
Potência bruta total gerada pela planta	516,45	516,6	MW
Vazão de entrada de ar por turbina a gás	1476	1476	t/h
Vazão de entrada de GN por turbina a gás	34,74	34,74	t/h
Poder calorífero inferior (LHV) do GN	46664,73	46620	kJ/kg
Gás de exaustão da turbina a gás			
Composição			
Nitrogênio	73,333	75,20	% molar
Oxigênio	12,112	12,55	% molar
CO_2	3,882	3,93	% molar
H_2O	9,792	7,43	% molar
Argônio	0,882	0,89	% molar
Temperatura	619	630,6	°C

Tabela III.4.1 – Principais resultados do HYSYS e GT PRO

Observa-se que com as mesmas vazões de entrada do gás natural e do ar foram obtidas potências bem parecidas. A diferença entre a potência bruta total gerada pela planta dos dois simuladores é de apenas 0,03%.

Para melhor analisar esses resultados será calculada a potência líquida (W^{net}), quantidade de calor entrando no sistema (q_{in}) e eficiência total da planta (η) para ambos os simuladores segundo às Equações III.4.1 a III.4.3, respectivamente.

$$W^{net} = \sum W_{turb} - \left(\sum W_{comp} + \sum W_{pump}\right)$$
(III.4.1)

$$q^{in} = 2 \times \left(\dot{m}_{GN} * LHV_{GN} \right) \tag{III.4.2}$$

$$\eta = \frac{W^{net}}{q^{in}} \times 100 \tag{III.4.3}$$

O W^{net} do GT PRO foi um resultado dado pelo programa. A Tabela III.4.2 faz um comparativo desses resultados para ambos os modelos.

real real real real real real real real				
	GT PRO	HYSYS	Unidade	
Potência líquida da planta (W ^{net})	503,45	514,23	MW	
Quantidade de calor na entrada do sistema (q ⁱⁿ)	900,63	899,77	MW	
Eficiência total da planta (η)	55,90	57,15	%	

Tabela III.4.2 – Comparativo entre a eficiência da planta nos dois modelos

Pode-se observar que a potência líquida da planta simulada pelo GT PRO é 2% menor que a do HYSYS. Isso ocorre porque o modelo do HYSYS é um pouco mais simples que o real e sua perda com auxiliares é apenas com as bombas de alimentação das HRSGs. Já o modelo do GT PRO considera também a perda das bombas de condensado, dos ventiladores do condensador e da torre de resfriamento, dos transformadores e iluminação da usina. Mas apesar dessa diferença, ambas as eficiências estão na mesma ordem de grandeza e dentro do intervalo de eficiência para uma planta NGCC previsto pela literatura.

Para dar ainda mais credibilidade aos resultados das simulações, estes foram comparados com dados reais de uma termelétrica similar instalada no Nordeste do Brasil de fonte não revelada. Os dados reais de operação validaram os resultados dos simuladores, mostrando que os modelos são confiáveis.

CAPÍTULO IV – CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

IV.1 Principais Conclusões do Trabalho

A representação completa da planta termelétrica NGCC foi implementada de forma bem sucedida nos ambientes de simulação ThermoFlow GT PRO e Aspen HYSYS. A implementação ThermoFlow tem o objetivo de certificar a implementação HYSYS já que o primeiro é *software* profissional para modelagem de processos de geração de termoeletricidade, enquanto HYSYS é um simulador profissional de processos químicos, não necessariamente especializado em geração termelétrica. Podemos dizer neste trabalho que a implementação HYSYS foi corroborada pela contrapartida ThermoFlow.

A importância de ter-se a planta NGCC corretamente implementada em Aspen HYSYS tem a ver com a grande vantagem comparativa de HYSYS sobre ThermoFlow no que diz respeito à capacidade de integrar-se a NGCC com outros processos químicos e/ou bioquímicos tão ou mais complicados que a própria NGCC. Desta forma a implementação NGCC-HYSYS teria os seguintes benefícios indiretos:

- É interessante ter-se a NGCC pronta para ser integrada a outros processos químicos, como processos de sequestro químico de CO₂ exausto para fabricação de *commodities* oxigenadas como metanol, carbonatos (DMC, EC), glicóis (MEG) e policarbonatos, por exemplo;
- É interessante ter-se a NGCC pronta para ser integrada a processos bioquímicos, como processos de captura de CO₂ exausto por culturas de microalgas voltados para produção de biomassa, carotenóides, etc;
- É interessante ter-se a NGCC pronta para ser integrada a tecnologias CCS (*Carbon Capture & Storage*) como processos de captura de CO₂ de Pós-Combustão como colunas de absorção por etanolaminas;
- É interessante ter-se a NGCC pronta para ser integrada a tecnologias CCS (*Carbon Capture & Storage*) como processos de captura de CO₂ de **Oxi**-

Combustão (*Oxyfuel*), situação esta em que a planta NGCC é acionada com oxigênio puro (i.e. sem N_2) fornecido por uma planta ASU (*Air Separation Unit*), sendo também injetado CO₂ de reciclo na alimentação do turbo-compressor para abater a temperatura de chama e aumentar o volume de gás na fase de turbo-expansão;

 É interessante ter-se a NGCC pronta para ser integrada a processamento de gás natural e/ou óleo em navios-plataforma (FPSOs) para exploração e produção em cenários offshore; já que tais FPSOs realmente têm sua infraestrutura de eletricidade fornecida por *turbo-shafts* como aqueles estudados neste trabalho.

Com o resultado das simulações usando o ThermoFlow GT PRO e o Aspen HYSYS foi possível constatar que ambos conseguem representar bem a planta NGCC com múltiplos eixos e configuração 2:2:1. Os valores de potência gerada encontrados estão condizentes com o que é previsto pela literatura e pelos modelos de turbinas escolhidos. Analogamente, o rendimento total da planta está dentro da faixa prevista na bibliografia.

Além disso, os resultados dos dois programas são coerentes entre si. A principal divergência entre ambos consiste em que ThermoFlow GT PRO considera todas as perdas de uma planta de geração real, enquanto Aspen HYSYS considera apenas as perdas dos equipamentos essenciais ao processo. Com isso, a potência bruta encontrada por HYSYS é um pouco otimista, embora bem próxima do real: A potência líquida via HYSYS situa-se cerca de 2% acima do valor esperado em uma planta real.

IV.2 Sugestões para Trabalhos Futuros

A partir dos resultados alcançados com esse projeto, são sugeridos os seguintes escopos para trabalhos futuros na área:

- Realizar análise econômica e de lucratividade para o processo NGCC aqui usado;
- (ii) Realizar a avaliação termodinâmica rigorosa como, por exemplo, via análise exergética, para o processo NGCC aqui usado;
- (iii) Comparar configurações alternativas de NGCC cm respeito à eficiência e às duas análises acima.

REFERÊNCIAS BIBLIOGRÁFICAS

ABRACE. **3º Simpósio Latino-Americano de Gás Não Convencional.** Rio de Janeiro: ABRACE, 2014. 45 slides, color.

ABRAGET. **Desafios para Monetizar a Exploração de Gás Não Convencional.** Rio de Janeiro: ABRAGET, 2014. 16 slides, color. 3º Simpósio Latino-Americano de Gás Não Convencional.

ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Boletim Mensal
do Gás Natural. Brasília: ANP, 2011. 45 p. Disponível em:
http://www.anp.gov.br/?pg=59925&m=&t1;=&t2;=&t3;=&t4;=&ar;=&ps;=&cachebust=1393184097366>. Acesso em: 19 jan. 2014.

BOYCE, M. P. (Ed.). Combined Cycle Power Plant Configurations. In: RAO, Ashok (Ed.). Combined cycle systems for near-zero emission power generation. Disponível em:

http://www.woodheadpublishing.com/en/book.aspx?bookID=2297#sthash.OBPZ3p Qi.dpuf. Irvine, CA: Woodhead Publishing Limited, 2012. Cap. 1. p. 17-19.

COLOMER, Marcelo. Perspectivas de suprimento de gás natural para o setor elétrico. Blog Infopetro. 02 set. 2013. Disponível em: http://infopetro.wordpress.com/2013/09/02/perspectivas-de-suprimento-de-gas-natural-para-o-setor-eletrico/. Acesso em: 20 jan. 2014.

DA SILVA, Juliana Rodrigues Pereira. **Desenvolvimento de Modelo Matemático para a Configuração de Geração em Ciclo-Combinado Gás-Vapor do Tipo Single-Shaft.** 2009. 319 f. Dissertação (Mestrado) - Curso de Engenharia Elétrica, Universidade Federal de Itajubá, Itajubá, 2009. Disponível em: <http://juno.unifei.edu.br/bim/0034650.pdf>. Acesso em: 08 fev. 2014.

EIA – U.S. ENERGY INFORMATION ADMINISTRATION. World Shale
Gas. Resources: An Initial Assessment of 14 Regions outside the United States.
Washington DC: US Department of Energy, 2011. Disponível
em: <http://www.eia.gov/analysis/studies/worldshalegas/pdf/fullreport.pdf>. Acesso em: 24 jan. 2014.

ENEVA. **Presença da ENEVA no setor energético.** Disponível em: http://www.eneva.com.br/pt/nossos-negocios/geracao-de-energia/Paginas/default.aspx. Acesso em: 03 fev. 2014.

EPE - EMPRESA DE PESQUISA ENERGÉTICA (Brasil). Ministério de Minas e Energia. **Plano Nacional de Energia 2030.** Brasília: EPE, 2008. Disponível em: http://www.epe.gov.br/PNE/Forms/Empreendimento.aspx. Acesso em: 18 jan. 2014.

EPE - EMPRESA DE PESQUISA ENERGÉTICA (Brasil). **Balanço Energético Nacional.** Brasília: EPE, 2013. 55 p. Disponível em: https://ben.epe.gov.br/downloads/Síntese do Relatório Final_2013_Web.pdf>. Acesso em: 18 jan. 2014.

GEORGESCU, Dan. Shaft Configurations in Combined Cycle Power Plants. IQ -Infrassure Quarterly, n. 2, abr. 2005. Disponível em: <http://www.infrassure.com/images/uploads/infrassure_quarterly/newsletter_2005_01.pd f>. Acesso em: 08 fev. 2014.

GENERAL ELECTRIC. **7FA Heavy Duty Gas Turbine**. Disponível em: http://www.ge-energy.com/products_and_services/products/gas_turbines_heavy_duty/ 7fa heavy duty gas turbine.jsp>. Acesso em: 08 fev. 2014.

IEA - INTERNATIONAL ENERGY AGENCY. Key World Energy Statistics. 2013.
81 p. Disponível em:
http://www.iea.org/publications/freepublications/publication/KeyWorld2013.pdf>.

Acesso em: 22 jan. 2014.

LAGE, Elisa Salomão et al. **Gás não convencional: experiência americana e perspectivas para o mercado brasileiro**. BNDES Setorial 37, Brasília, v. 37, p.33-88, mar. 2013. Disponível em: <http://www.bndes.gov.br/SiteBNDES/export/sites/default/bndes_pt/Galerias/Arquivos/c onhecimento/bnset/set3702.pdf>. Acesso em: 18 jan. 2014.

MMA - MINISTÉRIO DO MEIO AMBIENTE. **Gás Natural.** Disponível em: http://www.mma.gov.br/clima/energia/fontes-convencionais-de-energia/gas-natural. Acesso em: 28 jan. 2014.

MME - MINISTÉRIO DE MINAS E ENERGIA - Boletim Mensal de Acompanhamento da Indústria de Gás Natural, n. 63, jun. 2012, MME.

PADUAN, Roberta. Energia Limpa, Barata e Inútil. Revista Exame, São Paulo, p.128-136, 2 out. 2013.

PASSADORE, Juliana. Térmicas movidas a gás natural e perspectivas para o próximo leilão. Jornal da Energia. 31 ago. 2012. Disponível em: http://www.jornaldaenergia.com.br/blog/?p=94. Acesso em: 21 jan. 2014.

QUAINO, Lilian. Leilão da ANP para exploração de gás em terra arrecada R\$ 165 milhões. G1. Rio de Janeiro, 28 nov. 2013. Disponível em: <http://g1.globo.com/economia/noticia/2013/11/leilao-da-anp-para-exploracao-de-gasem-terra-arrecada-r-165-milhoes.html>. Acesso em: 20 jan. 2014.

SIMOES-MOREIRA, J.R. Fundamentals of Thermodynamics Applied to Thermal Power Plants. In: Gilberto F. Martha de Souza (ed.). (Org.). Thermal Power Plant Performance Analysis. 1 ed. Londres: Springer-Verlag London Limited, 2012, p. 7-39.

TECHTRANSFER. **Combined Cycle Overview**. Disponível em: http://www.techtransfer.com/resources/wiki/entry/744/. Acesso em: 08 fev. 2014.

ZALAN, P. V. O Potencial Petrolífero Brasileiro Além do Pré-Sal. Portal Geofísica
Brasil, set. 2012. Disponível em: http://www.geofisicabrasil.com/artigos/41-opiniao/4274-o-potencial-petrolifero-brasileiro-alem-dopre-sal.html. Acesso em: 15 fev. 2014.

ANEXO 1 – RESULTADOS DO THERMOFLOW GT PRO

GT PRO 23.0 usuario	Reason and		0.000 SA	terne and an	12 13 Mar-		
2170 02-17-2014 14:1	13:28 file=C:\Docu	ments and	Settings\cri	istiana.lopes	Desktop\Botton	ning.gtp	
Program revision date	a: December 30, 20	13	0				
Plant Configuration: C	aT, HRSG, and con	idensing re	aheat ST				
2 GE 7F 3-series Eng	ines (Curve Fit OE!	M Data Mo	odel #434), (One Steam Tr	urbine, GT PRO	Type 9, Subt	ype 9
Stearn Property Form	ulation: IFC-67						
§							
		:	SYSTEM SU	MMARY			
	Power C	Dutput kW		LHV Heat P	late kJ/kWh	Elect.	Eff. LHV%
	@ gen. term.	1	vet	@ gen. term	n. net	@ gen. te	erm. net
Gas Turbine(s)	332874	- 3		9735	13 3	36,98	
Steam Turbine(s)	183545			1112000			
Plant Total	516420	503	3447	6275	6437	57,37	55,9
14-1-14-00 - 4-1-1-		P	LANT EFFIC	CIENCIES	10040		
PURPA efficie	ncy C	HP (Total)	efficiency	Pow	ver gen. eff. on	Canad	fian Class 43
%		%		charg	eable energy, 9	% Heat R	late, kJ/kWh
55,93		55,9	93		55,93	10 - 14 - 10 - 10 - 10 - 10 - 10 - 10 -	6947
n Second - Annald Charles and Charles				10000000000			
GT fuel HHV/LHV rati	io -			1,107			
DB fuel HHV/LHV rati	io -			1,107	6		
Total plant fuel HHV	heat input / LHV he	at input -		1,107			
Fuel HHV chemical e	nergy input (77F/25	(C) -		996508	kW		
Fuel LHV chemical er	nergy input (77F/25	C) -		900173	kW		
Total energy input (ch	nemical LHV + ext.	addn.) -		900173	kW		
Energy chargeable to	power (93.0% LH	V alt, boile	r) -	900173	kW		
	Parter leafers			10			
G	AS TURBINE PERF	ORMANCE	- GE 7F 3-8	eries (Curve	Fit OFM Data N	Andel #434	
	Gross power	Gr	oss LHV	Gross LH	V Heat Bate	Exh flow	Exh. temp.
	output, kW	effic	iency, %	k	TWWh	kg/s	C
per unit	166437	3 3	36.98	1	735	420	619
Total	332874	-		- C.		839	
TO SAIL					1		-6
Number of gas turbing	e unit(s) -			2	1		
Gas turbine load [%].	e stradel -			100	95	-	-
Fuel chemical HHV (7	77E/25C) per gas tu	whine -		498254	kW		
Fuel chemical LHV (7	7E(25C) per das tu	rhine -		450087	kW		
I DEL STRETTESSE ST. T.	(11 month) have Bare the	There -		A REAL PROPERTY.	-0.11		
<u>.</u>		STEAM	A CYCLE PE	BEORMANCE	1		
HRSG eff.	Gross power	output	Interna	aross	Overall	Net proces	s heat output
94	kW		elect	off %	elect eff. %		W
87.04	183545		37	85	32.95	-	0
	199949			.00	02,00		
Number of steam turk	- (altique cala			1	1.		
Fuel chemical HHV (TTE/DEC) to duct bu				0 600		
Fuel chemical LHV //	7E/25C) to duct bu	mare -			0 1/1		
DB fuel chemical LHV	/ HPSG inlot con	mers =			557000 MW		
UB luer chemical crite	/ + mouthet serv	s. near =	les - oat he		0 0/		
Net process near out	out as % or total out	tput (net e	Iec. + net ne)at) =	0 76		

System Summary Report

ESTIMATED PLANT AUXILIARIES (kW)								
GT fuel compressor(s)*	0	kW						
GT supercharging fan(s)*	0	kW						
GT electric chiller(s)*	0	kW						
GT chiller/heater water pump(s)	0	kW						
HRSG feedpump(s)*	2729,8	kW						
Condensate pump(s)*	576,8	kW						
HRSG forced circulation pump(s)	0	kW						
LTE recirculation pump(s)	0	kW						
Cooling water pump(s)	2751,2	kW						
Air cooled condenser fans	0	kW						
Cooling tower fans	1343,1	kW						
HVAC	80	kW						
Lights	150	kW						
Aux. from PEACE running motor/load list	1367	kW						
Miscellaneous gas turbine auxiliaries	744	kW						
Miscellaneous steam cycle auxiliaries	390,4	kW						
Miscellaneous plant auxiliaries	258,2	kW						
Constant plant auxiliary load	0	kW						
Gasification plant, ASU*	0	kW						
Gasification plant, fuel preparation	0	kW						
Gasification plant, AGR*	0	kW						
Gasification plant, other/misc	0	kW						
Desalination plant auxiliaries	0	kW						
Program estimated overall plant auxiliaries	10391	kW						
Actual (user input) overall plant auxiliaries	10391	kW						
Transformer losses	2582,1	kW						
Transformer losses		1 1 4 7						

System Summary Report

PLANT HEAT BALANCE									
Energy In	1055213	KW							
Ambient air sensible	21777	kW							
Ambient air latent	32470	kW							
Fuel enthalpy @ supply	1000719	kW							
External gas addition to combustor	0	kW							
Steam and water	0	kW							
Makeup and process return	247,9	kW							
Energy Out	1054134	kW							
Net power output	503447	kW							
Stack gas sensible	91926	kW							
Stack gas latent	131135	kW							
GT mechanical loss	2202,8	kW							
GT gear box loss	0	kW							
GT generator loss	4739	kW							
GT miscellaneous losses	2702,3	kW							
GT ancillary heat rejected	0	kW							
GT process air bleed	0	kW							
Fuel compressor mech/elec loss	0	kW							
Supercharging fan mech/elec loss	0	kW							
Condenser	298210	kW							
Process steam	0	kW							
Process water	0	kW							
Blowdown/leakages	2783,5	kW							
Heat radiated from steam cycle	4489	kW							
ST/generator mech/elec/gear loss	2833,1	kW							
Non-heat balance related auxiliaries	7084	kW .							
Transformer loss	2582,1	kW							
Energy In - Energy Out	1079,3	kW							
GT heat balance error (arising from GT definitions)	1064,1	kW							
Steam cycle heat balance error	15.17	kW 0.0021 %							

1. System Summary		
Plant total power output @ generator terminal	516420	kW
Total auxiliaries & transformer losses	12973	kW
Plant net power output	503447	kW
Plant LHV heat rate @ generator terminal	6275	kJ/kWh
Plant HHV heat rate @ generator terminal	6947	kl/kWh
Plant net LHV heat rate	6437	kMkWh
Plant net HHV heat rate	7126	kl/kWh
Plant LHV electric eff. @ generator terminal	\$7,37	%
Plant HHV electric eff. @ generator terminal	51,82	%
Plant net LHV electric efficiency	55,93	16 10
Plant net HHV electric efficiency	30,52	16 16
2. Plant Efficiencies	8	
PURPA efficiency, LHV	55,93	8
PURPA efficiency, HHV	50,52	%
CHP (Total) efficiency, LHV	55,93	16
CHP (Total) efficiency, HHV	50,52	%
Power generation eff. on chargeable energy, LHV	55,93	16
Power generation eff, on chargeable energy, HHV	50,52	*
Canadian Class 43 heat rate	6947	kJ/kWh
Plant fuel LHV chemical energy input (77F/25C)	900173	kW
Plant fuel HHV chemical energy input (771/25C)	996508	kW
Total energy input (chemical LHV + ext. addn.)	900173	kW
Energy chargeable to power, LHV	900173	ŁW
Energy chargeable to power, HHV	996508	-XW
GT fuel chemical HHV/LHV nitio	1,10/	
DB fael chemical HHV/LHV rabit	1,10/	
Flant the HHV heat innut/1 HV neut innut		
	1,107	
3. Gas Turblne Performance (per unit) (Curve Fit OEM Data Model #434)	GE 7F 3-series	2 unit(s
3. Gas Turbine Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output	GE 7F 3-series 166437	2 unit(s kW
3. Gas Turbine Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency	GE 7F 3-series 166437 36,98	2 unit(s kW
Gas Turblne Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross HHV efficiency	GE 7F 3-series 166437 36,98 33,4	2 unit(s kW %
Gas Turbine Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross HHV efficiency Gross LHV heat rate	GE 7F 3-series 166437 36,98 33,4 9735	2 unit(s kW % % kJ/kWh
Gas Turblne Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross HHV efficiency Gross LHV heat rate Gross HHV heat rate	GE 7F 3-series 166437 36,98 33,4 9735 10777	2 unit(s kW % % kJ/kWh kJ/kWh
Gas Turbine Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross HHV efficiency Gross LHV heat rate Gross HHV heat rate Exhaust mass flow	GE 7F 3-series 166437 36,98 33,4 9735 10777 419,6	2 unit(s kW % % kJ/kWh kJ/kWh kJ/kWh
Gas Turbine Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross LHV efficiency Gross LHV heat rate Gross HHV heat rate Exhaust mass flow Exhaust temperature	GE 7F 3-series 166437 36,98 33,4 9735 10777 419,6 618,7	2 unit(s kW % % kJ/kWh kJ/kWh kJ/kWh kg/s C
Gas Turbine Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross LHV efficiency Gross LHV heat rate Gross HHV heat rate Exhaust mass flow Exhaust tempe rature Fuel chemical LHV input (77E/25C)	GE 7F 3-series 166437 36,98 33,4 9735 10777 419,6 618,7 450087	2 unigs kW % kJ&Wh kJ&Wh kJ&Wh kJ&Wh kJ&Wh kJ&Wh kJ&Wh
Gas Turbline Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross HHV efficiency Gross HHV heat rate Exhaust mass flow Exhaust temperature Fuel chemical LHV input (77F/25C) Fuel chemical HHV input (77F/25C)	GE 7F 3-series 166437 36,98 33,4 9735 10777 419,6 618,7 450087 498254	2 unit(kW % kJ&Wh kJ&Wh kJ&Wh kJ&Wh kJ&Wh kJ&Wh kJ&Wh kJ kW kW
Gas Turbline Performance (per unit) (Curve Flt OEM Data Model #434) Gross power output Gross LHV efficiency Gross LHV efficiency Gross LHV heat rate Gross HHV heat rate Exhaust mass flow Exhaust mass flow Exhaust mass flow Fuel chemical LHV input (77H/2SC) Fuel chemical HHV input (77H/2SC)	GE 7F 3-series 166437 36,98 33,4 9735 10777 419,6 618,7 450087 498254	2 unit(s kW % % kJ&Wb kJ&Wb kJ&Wb kJ&Wb kJ&Wb kJ&W kW
Gas Turbline Performance (per unit) (Curve Flt OEM Data Model #434) Gross power output Gross LHV efficiency Gross LHV efficiency Gross HHV that rate Gross HHV beat rate Exhaust mass flow Exhaust mass flow Exhaust temperature Fuel chemical LHV input (77H/25C) Fuel chemical HHV input (77H/25C) Steam Cycle Performance (LHV) HRSG efficiency	GE 7F 3-series 166437 36,98 33,4 9735 10777 419,6 618,7 450087 450087 498254 87,04	2 unit() kW % kJ&Wh kJ&Wh kJ&Wh kJ&Wh kJ&W kW %
3. Gas Turblne Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross LHV efficiency Gross HHV heat rate Exhaust mass flow Exhaust emperature Fuel chemical LHV input (77F/25C) Fuel chemical HHV input (77F/25C) 4. Steam Cycle Performance (LHV) HRSG efficiency Steam turbine gross power	GE 7F 3-series 166437 36,98 33,4 9735 10777 419,6 618,7 450087	2 unit() kW % kJ&Wh kJ&Wh kJ&Wh kJ&W kW kW % kW
Gas Turble: Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross LHV efficiency Gross LHV heat rate Gross HHV beat rate Exhaust mass flow Exhaust mass flow Exhaust temperature Fuel chemical LHV input (77F/25C) Fuel chemical HHV input (77F/25C) Steam Cycle Performance (LHV) HRSC efficiency Steam turbing gross power Internal gross efficiency	GE 7F 3-series 166437 36,98 33,4 9735 10777 419,6 618,7 450087 450087 450087 450087 450087 450087 37,85	2 unit() kW % % kJ&Wh kJ&Wh kJ&Wh kJ&W kW kW %
Case the term of the operation term operation term operation Gross power output Gross LHV efficiency Gross LHV efficiency Gross LHV heat rate Gross HHV heat rate Exhaust mass flow Exhaust temperature Fuel chemical LHV input (77F/25C) Fuel chemical HHV input (77F/25C) Steam Cycle Performance (LHV) HRSG efficiency Steam turbing gross power Internal gross efficiency Overall efficiency	GE 7F 3-series 166437 36,98 33,4 9735 10777 419,6 618,7 450087 498254 87,04 183545 37,85 32,95	2 unit() kW % % kJ&Wh kJ&Wh kJ&Wh kJ&Wh kJ&W kW % kW % % %
Case the term of the operation of t	GE 7F 3-series 166437 33,4 9735 10777 419,6 618,7 450087 498254 87,04 183545 37,85 32,95 0	2 unit(kW % % kJ&Wh kJ&Wh kJ&Wh kJ&Wh kW kW % % kW % % kW
2. Gas Turbine Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross LHV efficiency Gross HHV heat rate Exhaust mass flow Exhaust temperature Fuel chemical LHV input (77F/25C) Fuel chemical HHV input (77F/25C) 4. Steam Cycle Performance (LHV) HRSG efficiency Steam turbine gross power Internal gross efficiency Overall efficiency Net process heat output Fuel chemical LHV (77F/25C) to duct burners	GE 7F 3-sertes 166437 36,98 33,4 9735 10777 419,6 618,7 450087 498254 87,04 183545 37,85 32,95 0 0	2 unit(s kW % % kJ&Wh kJ&Wh kJ&Wh kJ&Wh kW % % % % % % % % % % % % % % % % % %
	GE 7F 3-sertes 166437 36,98 33,4 9735 10777 419,6 618,7 450087 450087 450087 498254 87,04 183545 37,85 32,95 0 0 0	2 unit(s kW % % kJ&Wh kJ&Wh kJ&Wh kJ&Wh kW % % % % % % kW % % % % kW kW kW
2. Gas Turbine Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross LHV efficiency Gross LHV heat rate Gross HHV heat rate Exhaust mass flow Exhaust temperature Fuel chemical LHV input (77E/25C) Fuel chemical HHV input (77E/25C) 4. Steam Cycle Performance (LHV) HRSG efficiency Steam turbine gross power Internal gross efficiency Overall efficiency Net prozess heat output Fuel chemical LHV (77E/25C) to duct burners Fuel chemical LHV (77E/25C) to duct burners Fuel chemical LHV (77E/25C) to duct burners DB fuel chemical LHV + HRSG inlet sens heat	GE 7F 3-series 166437 36,98 33,4 9735 10777 419,6 618,7 450087 450087 450087 450087 450087 450087 450087 450087 450087 0 87,04 183545 37,85 37,85 0 0 0 0 0 557090	2 unit(kW % % kJ&Wh kJ&Wh kJ&Wh kJ&Wh kW % kW % kW % kW kW kW kW kW
2. Gas Turbine Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross LHV efficiency Gross LHV heat rate Exhaust mass flow Exhaust tempe rature Fuel chemical LHV input (77F/25C) Fuel chemical HHV input (77F/25C) 4. Steam turbine gross power Internal gross efficiency Overall efficiency Net process heat output Fuel chemical LHV (77F/25C) to duct burners Fuel chemical LHV (total output	GE 7F 3-sertes 166437 36,98 33,4 9735 10777 419,6 618,7 450087 498254 87,04 183545 37,85 32,95 0 0 0 0 0 557090 0	2 unit() kW % % kJ&Wh kJ&Wh kJ&W kW kW % % kW % kW kW kW kW kW kW kW kW kW kW
	GE 7F 3-series 166437 33,4 9735 10777 419,6 618,7 450087 498254 87,04 183545 37,85 32,95 0 0 0 0 0 0 0 0 0 0	2 unit(s kW % % % kJ&Wh kJ&Wh kJ&Wh kW % % % kW % % % % % % % % % % % % % %
A Gas Turbline Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross LHV efficiency Gross HHV beat rate Exhaust mass flow Exhaust emperature Exhaust emperature Fuel chemical LHV input (77F/25C) Fuel chemical HHV input (77F/25C) Steam Cycle Performance (LHV) HRSG efficiency Steam turbine gross power Internal gross efficiency Overall efficiency Net process heat output Fuel chemical LHV (77F/25C) to duct burners Fuel chemical LHV + HRSG inlet sens heat Net process heat output/ total output S. Plant Auxiliaries GT fuel compressor(s)	GE 7F 3-sertes 166437 33,4 9735 10777 419,6 618,7 450087 498254 87,04 183545 37,85 32,95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 unit(s kW % % % kJ&Wh kJ&Wh kJ&W kW % kW % kW % % % kW % % % % % % % %
Sear Network and appendix and appendix and appendix Sear Network and appendix and	GE 7F 3-sertes 166437 36,98 33,4 9735 10777 419,6 618,7 450087 498254 87,04 183545 37,85 32,95 0 0 0 0 0 0 0 0 0 0 0 0 0	2 unit() kW % % kJ&Wh kJ&Wh kJ&W kW kW kW kW kW kW kW kW kW k
2. Gas Turbine Performance (per unit) (Curve Fit OEM Data Model #434) Gross power output Gross LHV efficiency Gross LHV efficiency Gross LHV heat rate Gross HHV heat rate Exhaust mass flow Exhaust mass flow Exhaust emperature Fuel chemical LHV input (77F/25C) Fuel chemical LHV input (77F/25C) 4. Steam Cycle Performance (LHV) HRSG efficiency Steam turbing gross power Internal gross efficiency Overall efficiency Net prozess heat output Fuel chemical LHV (77F/25C) to duct burners Fuel chemical HIV (77F/25C) to duct burners Fuel chemical LHV (77F/25C) to duct burners Fuel chemical HIV (77F/25C) to duct burners Fuel chemical LHV (77F/25C) to duct burners Fuel chemical HIV (77F/25C) to duct burners Fuel chemical LHV (77F/25C) to duct burners Fuel chemical HIV (77F/25C) Fuel chemical	GE 7F 3-sertes 166437 36,98 33,4 9735 10777 419,6 618,7 450087 498254 87,04 183545 37,85 32,95 0 0 0 0 0 0 0 0 0 0 0 0 0	2 unit() kW % % kJ&Wh kJ&Wh kW kW kW kW kW kW kW kW kW kW

System Summary Table

lant Summary		
HRSG feedpump(s)	2729,8	kW
Condensate pump(s)	576,8	kW
HRSG forced circulation pump(s)	0	kW
LTE recirculation pump(s)	0	kW
Cooling water pump(s)	2751,2	kW
Air cooled condenser fans	0	kW
Cooling tower fans	1343,1	kW
HVAC	80	kW
Lights	150	kW
Aux. from PEACE running motor/load list	1367	kW
Miscellareous gas turbine auxiliaries	744	kW
Miscellaneous steam cycle auxiliaries	390,4	kW
Miscellaneous plant auxiliaries	258,2	kW
Constant plant auxiliary load	0	kW
Gasification plant ASU	0	kW
Power to AGR	0	kW
Gasification plant, air boost compressor	0	kW
Gasification plant, fuel preparation	0	kW
Gasification plant, syngas recirculation compressor	0	kW
Gasification plant, Other/misc	0	kW
Desalination plant auxiliaries	0	kW
Program estimated overall plant auxiliaries	10391	kW
Actual (user input) overall plant auxiliaries	10391	kW
Transformer losses	2582,1	kW
Total auxiliaries & transformer losses	12973	kW

GT PRO Streams	P	T	h	h*	M	S	Exergy
	bar	C	k.Vkg	kJ/kg	kors	kJ/kg-C	k./kg
Note: This is a fixed format table. Not all	2.00		Ref @ OC	Ref @ 25C		H2O: ref @ 0C	Ref@25C
streams are applicable to current heat halance.			/Water	/Vapor		Gas ref @ 25C	Water as vapor
Plant Configuration: GT_HRSG_and condensing reheat ST	-	-	1.00000		2		
Cycle Type = 9	-	-	18		-	5	
Steam Property Computation: BC-67				2	-		
1 Ambient conditions	0.0005	76.0	66.16	1.02	400.00	0.0034	118
2 Air after inlat heater or chiller	(1.9895	26.0	66.16	1.02	400.00	0.0034	2.05
3 GT communer into a sit (nor GT)	0.0805	26.0	66.16	1.02	400.00	0.0034	2.05
A GT compresses directory (net GT)	11.20.22	+14.17	0410	2,002	405,55	00004	-4,65
5 CT unbing init (par CT)	- <u>2</u>	3 <u>5</u> 3	- <u>5</u> - 2				68
6 CT at hards after turbing diffuser (nor CT)	1.027	6197	847.60	464.00	110.61	1.211	304 30
7 Communication and the anticide anticide (per CFD)	0.210	2010.7	2/17 93	042.70	419,04	0.5049	240.04
V Compressor need to outside process (per Cit)	15.08	200,0	51945 20	444473	0.00	0,	47072.44
a car mer (per car), and comp, but net nearing	44.97	442,0	31642.39	40004,73	9,00	100	47075,00
9 Steam injection to G1 complision (all G1's)	44,82	287,8	29044/	2460.07	0.00	0.22	1056,55
10 Gr1 injection water stream	49,52	13,0	67,22	-2480,27	0.00	0,2230	2,14
11 G1 compressor eakage stream	10.34	100	17.02	2402.6-	0,00		1.75
12 Compressor water injection, Sprint engines	10,34	15,0	63,93	-2483,36	0,00	0,2241	1,73
15 Steam inj. to LP turbine (total, all GT's)	14,82	232,2	2880,53	333,04	0,00	6,631	9/18,02
14 Stack gas	0,9995	103,1	265,77	83,17	839,27	0,2452	8,13
15 HP stearn to HPT, aft de sup, bef stop vlv	125	565,0	3512,58	965,09	102,78	6,676	1526,87
16 HP stearn to HPT, after pipe, before desup	125	565,0	3512,58	965,09	102,78	6,676	1526,87
17 HP stearn to HPT, before HP pipe	127,5	566,9	3515,08	967,59	102,78	6,67	1531,00
18 HPS3 exit slearn	127,5	566,9	3515,08	967,59	102,78	6,67	1531,00
19 HPS3 inlet steam	128	526,9	3410,96	863,47	102,78	6,541	1465,29
20 HPS2 exit steam	128	526,9	3410,96	863,47	102,78	6,541	1465,29
21 HPS2 inlet steam	128	526,9	3410,96	863,47	102,78	6,541	1465,29
22 HPS1 exit steam	128	526,9	3410,96	863,47	102,78	6,541	1465,29
23 HPS1 inlet steam	128,9	466,9	3245,83	668,34	102,78	6,324	1364,99
24 HPS0 exit steam	128,9	466,9	3245,83	668,34	102,78	6,324	1364,99
25 HPS0 inlet steam	132	332,0	2662,18	114,69	102,78	5,429	1048,25
26 HPB exit steam	132	332,0	2662,18	114,69	102,78	5,429	1048,25
27 HPB blowdown	132	332,0	1539,73	-1007,75	1,54	3,574	478,84
28 HPB saturated water	132	332,0	1539,73	-1007,75	104,32	3,574	478,84
29 HPB inlet water	132	327,0	1504,18	-1043,31	104,32	3,515	460,88
30 HPE3 exit water	132	327,0	1504,18	-1043,31	104,32	3,515	460,88
31 HPE3 inlet water	133	291,8	1294,88	-1252,61	104,32	3,156	358,68
32 HPE2 exit water	133	291,8	1294,88	-1252.61	104,32	3,156	358,68
33 HPE1 inlet water	134,7	221.3	952.70	-1594,79	104.32	2,509	209,18
34 HPE0 exit water	134.7	221,3	95270	-1594.79	104.32	2,509	209.18
35 HP feedwater, after nump & valve	135.9	163.2	697.11	-1850.38	104.32	1.959	117.54
36 HP feedwater, after pump but before valve	167,4	162.8	697.11	-1850.38	104.32	1.952	119.90
37 Hotzeheat after stop valve. Type 7&9	22.54	565.0	3608.48	1061.00	116.94	7,553	1361.17
38 Hot reheat after leakages	23	565.2	3608.48	1061.00	116.94	7.544	1363.92
39 Hot reheat to ST, after desen	23	366.0	3610.26	1062.77	114.82	7,546	1365.06
40 Hot mheat after mheat pipe	23	566.0	3610.26	1062.77	114.82	7.546	1365.06
41 Hot reheat before reheat mine	23.92	567.5	3612.76	1065.77	114.82	7 531	1371.99
47 RH3 on it steam	23.02	567.5	361276	1065.77	114.82	7 531	1371.99
43 RH3 inlet cham	74.36	SIT S	3079.91	03/ 37	114.82	7 358	1289.70
44 RU2 with charm	24,20	507.5	3479.91	031 32	114.92	7 358	1299,79
45 PU7 inter stram	14.36	507.5	3479.81	031 37	114.02	7 359	1289,79
AC DUI and share	24,30	507.5	3470.01	031 32	114,62	7,308	1289,79
40 Km Children	24,30	301,5	24/4,01	552.24	114,82	1,308	1289,19
47 Kent ullet seam	23,39	338,3	3099,13	552.26	114,82	0,785	1080,05
46 State delore KH1 met desap.	20,39	338,5	3099,73	552,26	114,82	6,788	1050,66
49 After all interactions in cold refe at line	20,59	3.58,9	3101,26	303,77	99,71	6,79	1081,43
50 After mixing additions and cold reheat.	25,59	338,9	3101,26	553,77	99,71	6,79	1081,43
51 After cold RH pipe but any addn. to cold RH	25,59	338.9	1 3101,26	553,77	99.71	6,79	1081.43

Stream Table

GT PRO Streams	P	Т	h	h,	M	S	Exergy
	bar	C	kJ/kg	kJ/kg	kgis	kJ/kg-C	kJ/kg
52 Cold reheat, Types 7&9	26,62	341,0	3103,76	556,27	99,71	6,777	1087,83
53 Cold reheat, Types 10&11		-	-		-	2.	
54 Hot RH after stop valve, Types 10&11	-	-	-	1.1	1	10 02	1
55 Hot RH to ST, after leakages, Types 10&11		0.000	1		5	8	
56 IP steam induction to LPT, after pipe	24,15	331,5	3087,30	539,81	15,11	6,793	1066,70
57 IP steam extraction from LPT	C. marine		1	Contraction of the	C	E	S. Commercia
58 IP induction after valve and before pipe	25,59	334,0	3089,80	542,31	15,11	6,771	1075,58
59 IPS2 exit after steam & heat addition	25,59	334,0	3089,80	542,31	15,11	6,771	1075,58
60 IPS2 exit steam	25,59	334,0	3089,80	542.31	15.11	6,771	1075,58
61 IPS2 inlet steam	25,75	298.1	3003.26	455,77	15.11	6.622	1033.63
62 IPS1 exit steam	25,75	298,1	3003,26	455,77	15,11	6,622	1033,63
63 IPS1 inlet steam	26.11	226,3	2801.23	253.74	15.11	6.237	946.36
64 IPB exit steam	26.11	226.3	2801.23	253,74	17.85	6.237	946.36
65 IP blowdown	26.11	226.3	972.68	-1574.81	0.27	2.576	209.43
66 IPB saturated water	26.11	226.3	972.68	-1574.81	18.11	2.576	209.43
67 IPB inlet water	26.11	221.3	949.49	-1597.99	18.11	2.529	200.15
68 IPE2 exit water	26.11	221.3	949.49	-1597.99	18.11	2,529	200.15
69 IPP2 inlet water	26.89	159.9	676.32	-1871.16	18.11	1.030	102.79
70 IPE1 exit water	26.89	159.9	676.32	-1871.16	18.11	1.939	102.79
71 IP fordwater, after romm & value	26.89	159.9	676.32	-1871.16	18.11	1.939	102.79
72 IP forchwater, after norma but before value	26.89	150.0	676.32	-1871.16	18.11	1 030	102.79
731 P steam induction to I PT after nine	5 381	286.2	3035.00	487.60	14.78	7 375	840.76
741 Pinduction stram before nine	5,812	788.0	3037 50	490 10	14 78	7 345	852.35
751 PT extraction for 3n CC	5 381	155.6	7750.58	203.00	0.00	6.794	729.59
761 IS an it storm	5,812	198.0	3037.50	490.10	14.78	7345	852.35
771.PS inter stram	6 102	150.5	7756.01	208.52	14.78	6751	747.71
781 DB arit staam	6 102	150.5	7756.01	208.57	14.78	6751	747.71
701 PD blowdown	6102	150.5	673.26	1874.23	0.22	1.037	100.27
201 PD concessor austan	6.102	150.5	673.26	-1074,23	15.00	1,957	100,27
811 DD inlat water	6 102	150.5	673.15	1874.24	15.00	1.037	100.25
201 DC and mater	6,102	150,5	673.25	1974.24	15,00	1,937	100.26
821.0 for density after sume 8 suches	6,102	150.5	673.05	-10/4,24	15,00	1,937	100.26
851.0 for double, after pump at valve	6,102	109,0	472.25	-1074,24	14.00	1,937	100,26
84 L3 teedwater, after pump but refore valve	6,102	1,29,3	6/ 2,25	-18/4,24	14,99	1,957	100,26
85 Feedwater Edving LTE (10 DAA)	6,102	149,5	60000	-1917,40	124,09	1,0.00	07.10
864.11 E etit water alter bypass	6,102	149,5	600,00	-1917,46	134,09	1,830	07.10
6) LTE etit water alter recirculation	6,102	149,0	600,00	-1917,40	134,09	1,830	87,18
661.1E.CRIWART	6,102	149,5	000,05	-1917,46	134,09	1,850	6/,18
891.1E intel water after recirculation	6,285	44,0	201,44	-2340,05	154,09	0,6773	4,15
901.1E intel water refore recirculation	6,285	44,0	201,44	-2546,05	124,09	0,6775	9,15
91 Total IP+HP leedwater leaving LAA	6,102	159,5	6/3,25	-18/4,24	122,45	1,957	100,26
92 WHIR niet water	2,44/	12,0	63,23	-2484,22	0,00	0,2243	1,03
93 WHIR extraner	3,447	0,0	21221	-2215,22	0,00	0,8951	10,62
94 DAB inlet water	6,102	159,5	673,25	-1874,24	0,00	1,937	100,26
95 DAB saturated water	6,102	139,5	6/ 3,25	-18/4,24	0,00	1,957	100,26
96 DAB exit steam	6,102	159,5	2756,00	208,52	0,00	6,751	747,70
97 HPT inlet steam, after stop valve	121,9	563,8	3512,58	965,09	102,78	6,687	1523,64
98 HPT inlet sie am, after ie akages	121,9	563,8	3512,58	965,09	100,61	6,687	1523,64
99 HPTX1 blading exit	121,9	563,8	3512,58	965,09	100,61	6,687	1523,64
100 HPT process bleed (at bleed source)	82 St.	1			12 -	13 24	8 C.
101 HPTX1 group exit	121,9	363,8	3512,58	965,09	100,61	6,687	1523,64
102 HPTA1 blading exit (cold RH, Types 10&11)	1		Serie in		Sec. Sec.	the second	Se westigen
103 Steam addition from external source to HPT	44,8	340,0	3057,47	509,98	0,00	6,478	1130,65
104 HPIA1 group exit	121,9	563,8	3512,58	965,09	100,61	6,687	1523,64
105 HPIL blading exit	26,62	341,0	3103,76	556,27	100,61	6,777	1087,83
106 HPH, exit, after leak. (cold RH, Types 7&9)	26,62	341,0	3103,76	556,27	99,71	6,777	1087,83
107 LPT inlet, after valve	22,54	565,0	3608,48	1061,00	116,94	7,553	1361,17
108 LPTX1 blading exit	13,8	488,3	3448,41	900,92	116,94	7,576	1194,14

GT PRO Streams	P	T	h	h*	M	S	Exergy
	bar	C	kJ/kg	kJ/kg	kg/s	kJ/kg-C	kJ/kg
109 LPT process bleed (at bleed source)	13,8	488,3	3448,41	900,92	0,00	7,576	1194,14
110 LPTX1 group exit	13,8	488,3	3448,41	900,92	116,53	7,576	1194,14
111 LPTA1 blading exit	5,381	355,4	3178,36	630,87	116,53	7,617	912,01
112 LP ste am induction to LPT after pipe	5,381	286,2	3035,09	487,60	14,78	7,375	840,76
113 LPT extraction for 3n CC	5,381	154,6	2750,58	203.09	0.00	6,794	729,59
114 LPTA1 group exit.	5,381	347.6	3162.23	614,74	131,31	7,591	903,58
115 LPTX2 blading exit	5,381	347,6	3162,23	614,74	131,31	7,591	903,58
116 LPTX2 extraction for D/A heating	1,241	105,8	2684,76	137,27	0,00	7,287	516,88
117 LPIX2 group exit	5,381	347,6	3162,23	614,74	131,31	7,591	903,58
118 LPTX3 blading exit	5,381	347,6	3162,23	614,74	131,31	7,591	903,58
119 DHC2/PWH2 bleed @ turbine	0,9997	99,6	2671,90	124,41	0,00	7,35	484,99
120 LPIX3 group exit	5,381	347,6	3162,23	614,74	131,31	7,591	903,58
121 LPTX4 blading exit	5,381	347,6	3162,23	614,74	131,31	7,591	903,58
122 DHC1/PWH1 bleed @ turbine	0,7929	93,3	2661,93	114,44	0,00	7,429	451,68
123 LPIX4 group exit.	5,381	347,6	3162,23	614,74	131,31	7,591	903,58
124 Last rotor exit static state, hef leaving loss	0,079	41,3	2421,86	-125,63	131,31	7,742	118,33
125 LPT exhaust aft leaving loss but hef pipe	0,079	41,3	2438,32	-109,17	131,31	7,794	119,18
126 LPT exhaust after pipe	0.079	41.3	2438.32	-109,17	131,31	7,794	119,18
127 HP process @ delivery	125	450,0	3202,81	655,33	0,00	6,277	1335,84
128 1st HP substream	50	402,0	3202,81	635,33	0,00	6,657	1222.54
129 2nd HP substream	50	402.0	3202.81	635,33	0.00	6.657	1222.54
130 HP process steam after valve	127,5	452.3	3205,31	657.83	0.00	6,273	1339.65
131 HP process steam near HRSG	127.5	452.3	3205.31	657.83	0.00	6.273	1339.65
132 IP process @ delivery	24,15	229.3	2822.70	275.21	0.00	6,311	945.65
133 1st IP substream	8.5	172.9	2769.71	222.22	0.00	6.638	795.10
134 2nd IP substream	8.5	172.9	2769.71	222.22	0.00	6.638	795.10
135 IP process steam after valve	25.59	232.8	2825.20	277.71	0.00	6.292	953.73
136 IP process steam near HRSG	25.59	232.8	2825.20	277.71	0.00	6.292	953.73
137 LP process stearn at delivery	5,381	286.2	3035.09	487.60	0.00	7,375	840.76
138 LP process before valve		1. Friday		-	-	10000	0 5
139 LP process	-		·		- 1	-	
140 HPT process bleed at delivery	1 52	0.5	102	-		100	-
141 1st HPT bleed substream	40	525.0	0.00	-2547,49	0.00	0	0.00
142 2nd HPT bleed substream	40	525.0	0.00	-2547,49	0.00	0	0.00
143 HPT process bleed, after valve		0.1	24	-	2	2	-
144 HPT process bleed, before valve			Terrore and the			2010 - 12-12	C
145 LPT process bleed at delivery	3.5	481.6	3445.91	898.42	0.00	8,202	1005.08
146 1st LPT bleed substream	3.5	481.6	3445.91	\$98.42	0.00	8,202	1005.08
147 2nd LPT bleed substream	3.5	481.6	3445.91	898.42	0.00	8.202	1005.08
148 LPT process bleed, after valve	13.8	488.3	3448.41	900.92	0.00	7,576	1194,14
149 LPT process bleed, before valve	13.8	488.3	3448.41	900.92	0.00	7,576	1194,14
150 DA external heating stream		1 100	1000	-		-	-
151 HP peeping steam to DA	-	12	1		100	2	1
152 IPB regging steam to D/A	26,11	226.3	2801,23	253,74	2.74	6,237	946,36
153 LPB steam for IXA heating	6,102	159,5	2756,01	208,52	0,00	6,751	747,71
154 Condensate from hot well	0.4379	41.3	172.89	-2374.60	132.67	0.5893	1.81
155 Condensate pump exit, before viv	33,39	41.6	176.94	-2370.55	132,67	0,5916	0.00
156 Condenser condensate after valve	6,285	42.1	176.94	-2370,55	132,67	0,6003	2.58
157 Condenser condensate before GSC	6,285	42.1	176.94	-2370,55	132,67	0,6003	2.58
158 Condenser condensate after GSC	6.285	48.3	202.66	-2344.83	132.67	0.6811	4.21
139 Makeup water	6,285	29,0	122,05	-2425,44	2,03	0,4225	0,71
160 Total desuperheating water	132	332.0	2662.18	114,69	0,00	5,429	1048.25
161 Prote ss stearn return condensate	6,285	35.9	151,03	-2396,46	0,00	0,5173	1,42
162 Process water return stream	6,285	28,9	121,79	-2425,70	0,00	0,4216	0,71
163 Crossover stream after leakages	13.8	488.3	3448.41	900.92	116.53	7,576	1194,14
164 Crossover stream before leakages	13.8	488.3	3448.41	900.92	116,53	7,576	1194,14
165 SSR inlet (after de sup)	1,241	373,4	3222.88	675,40	1.36	8,361	734.81

-

GT PRO Streams	P	T	h	h*	M	S	Exergy
	bar	C	kJ/kg	kJikg	kgis	kJ/kg-C	kJ/kg
166 GSC inlet	0,8274	373,1	3222,88	675,40	1,21	8,547	679,11
167 GSC condensate	0,8274	94.4	395,52	-2151,97	1,21	1,243	29,45
168 Leakage stream to condenser	1 2			2	1	25	
169 Process extraction as neg, HPT addn.	- 10 in 10		3	~	1.40		-
170 Process extraction as neg. LPT addn.	- 1 C	2	2	12	4.		
171 HPS3 exit water/steam addition				-	-		3 - 3
172 HPS2 exit water/steam addition		1 2 1		2	1.20	1	1 - C - C
173 HPS1 exit water/steam addition	3 2 3	1 1 1	1 2 3	- S - 1		1	0 20 J
174 HPS0 exit water/steam addition	- 2 2	-	+				
175 HPB exit water/steam addition	132	332.0	2662.18	114.69	0.00	5,429	1048.25
176 HPE3 exit water/steam addition	0 2 0	1 2 1	1 2 3			20	
177 HPE2 exit water/steam addition	- 10 e - 10	-		-		÷	S
178 HPE1 exit water/steam addition	- 2	- S -	2	8	1.2	1	
179 RH3 exit wate #steam addition				-	-		
180 RH2 exit wate #steam addition		1 2 1		2	1.22	1	1 2 1
181 RH1 exit wate #steam addition	3 2 3	1 2 3	2.3	- S - 1		1	0 28 J
182 IPS2 exit water/steam addition	- 2 2	-	- 1	-	-	-	
183 IPS1 exit water/ste am addition			4		-	1	2
184 HPB exit water/steam addition	26.11	226.3	2801.23	253.74	0.00	6.237	946.36
185 IPE2 exit water/steam addition			-				-
186 IPE1 exit water steam addition		100	2.1	1 (c)	1.2		
187 LPS exit water/steam addition		-			-		-
188 LPB exit water/steam addition	6102	159.5	2756.01	208.52	0.00	6.751	747.71
189 LPE exit water/steam addition			-	Second Second		-	0 20 7
190 LTE exit steam/water addition stream		· ·		-	-	-	
191 Water addition stream before LTE	6.285	15.0	63.54	-2483.95	0.00	0.2242	1.32
192 Water addition stream at deaerator	6.102	15.0	63.52	-2483.97	0.00	0.2242	1.30
193 Water bleed before LTE	6.285	48.0	201.44	-2346.05	0.00	0.6773	4.13
194 Addition after cold reheat pipe	25.59	225.2	2801.03	253.54	0.00	6.244	943.91
195 Steam cooline to cold reheat line	25.59	334.0	3089.80	542.31	0.00	6.771	1075.58
196 Types 10 & 11, cold reheat aft leakages		-	-			-	-
197 External/reheat steam supply, bef piring	3 2 7	2.3	2.3		1.1.1	2	0 2 7
198 External/reheat steam @ delivery	2 - 2	- 1	- 1	-			- 1
199 External/reheat steam supply, aft piping				22	6		
200 Feedwater from D/A, after preheater	6102	159.5	673.25	-1874.24	0.00	1,937	100.26
201 Water leaving preheater and entering D/A	6.285	48.0	201.44	-2346.05	134.70	0.6773	4.13
202 HPT leakage recovered (simplified method)	23	522.1	3512.58	965,09	0.00	7,426	1303,03
203 FWH1 inlet water	6.285	48.0	20L44	-2346.05	134,70	0,6773	4.13
204 FWH2 inlet water	6.285	48.0	201.44	-2346.05	134.69	0,6773	4.13
205 HRSG stream to fuel heating	3 2 3					-	3
206 HRSG stream from fuel heating	- 20 2	- 1	- 1	-			- 1
207 ST stream to fuel heating		2		22	1.4		- <u>-</u>
208 ST stream from fuel heating	0 2 0	1 2 1	2.0		1	25	
209 HRSG stream to GT heat rejection O1	- 10 La 1		- 14 B		1.40		-
210 HRSG stream from GT heat rejection O1		100	1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	27	
211 HRSG stream to GT heat rejection O2	-	-	-	-	-		3 - 3
212 HRSG stream from GT heat rejection O2		-	-	2		-	2
213 Duct humer fuel (per HRSG)	25.94	40.0	51842.38	4666473	0.00	8 2	47073.66
214 GT fuel at supply	25.94	40.0	51842.30	46664.73	9.65	-	47073.66
215 GT fuel at combustor	25.94	40.0	51842.30	4666473	9.65	- 1	47073.66
216 HPE1 esit water	134.7	221.3	952.70	-1594.79	104.32	2,509	209.18
217 HPE2 inlet water	134.7	221.3	952.70	-1594.79	104.32	2,509	209.18
218 DH water return			-	- Contraction		-	
219 DH water supply	12						3
220 ST bypass stream to cond-neer	127.5	566.9	3515.08	967.50	0.00	6.67	1531.00
			are require	Second Contract	and and		
	201	1			1		22

Gas Pressure Losses		
Inlet filter	10	milliber
Supercharging fan boost	N/A	
Inlet chiller	N/A	
Evap cooler	N/A	
Fogger	N/A	at the table
Total GT Inlet Losses	10	millibar
HRSG	25,49	millibar
SCR	N/A	
CO catalyst	N/A	
Duct & stack	2	millibar
Stack leaving loss	N/A	
Stack friction loss	N/A	
Stack buoyancy boost	N/A	
Total GT Exhaust Losses	27,49	millibar

7	W	orkbook	: Case (Mai	n)				
8		1.000.000		54 L				
9			Material Streams Fluid Pkg:					
11	Name		Cool gas	Vapor HP	Water HP	Reheat IP	Vapor IP	
12	Vacour Fraction		1.0000	1.0000	0.0000	1.0000	1.0000	
13	Temperature	(C)	108.2	600.0 *	41.95	358.1.1	300.0	
14	Pressure	(kPa)	80.00	1.250e+004 *	1,252e+004	2543 *	2623	
15	Molar Flow	(komole/h)	5.300e+004	1.415e+004	1.415e+004	1.415e+004	1.415e+004	
16	Mass Flow	(ka/h)	1.511e+006	2.550e+005	2.550e+005	2.550e+005 ·	2.550e+005	
17	Liquid Volume Flow	(m3/h)	1767	255.5	255.5	255.5	255.5	
18	Heat Flow	(kJ/ħ)	-1.6392+009	-3.158e+009	-4.030e+009	-3.254e+009	-3.302e+009	
19	Name		Reheat LP	Vapor LP	Cool gas-2	Vapor HP-2	Water HP-2	
20	Vapour Fraction		0.9920	1.0000	1.0000	1.0000	0.0000	
21	Temperature	(C)	162.1	260.0 -	108.2	600.0 -	41.96	
22	Pressure	(kPa)	651.0 *	631.0	80.00	1.250e+004 *	1.252e+004	
23	Molar Flow	(komple/h)	1.415e+004	1.415e+004	5.300e+004	1.415e+004	1.415e+004	
24	Mass Flow	(ka/h)	2.550e+005 *	2.550e+005	1.511e+006	2.550e+005	2.550e+005	
25	Liquid Volume Flow	(m3/h)	255.5	255.5	1767	255.5	255.5	
26	Heat Flow	(k.0h)	-3.365e+009	-3.312e+009	-1 6390+009	-3 158e+009	-4 (130e+009	
27	Name	(12.17	Reheat IP-2	Vapor IP-2	Reheat LP-2	Vapor LP-2	Vapor HP mix	
18	Vanour Fraction		1 0000	1 0000	0.9920	1,0000	1.0000	
14	Temperature	(C)	368.1 *	300.0 -	162.1	250.0 -	600.0	
0	Pressure	(kPa)	2643 *	2523	651.0 -	631.0 -	1.250e+004	
	Molar Flow	(knmnla/h)	1.415a+004	1.415e+004	1.4150-004	1.4150-004	2 8314400/	
2	Mass Flow	(kg/h)	2.550e+005 *	2 550e+005	2 550e+005 *	2 550e+005	5 100e+005	
3	Liquid Volume Flow	(m3/h)	255.5	255.5	255.5	255.5	5110	
4	Heat Flow	(k.1/h)	-3.2649+009	-3.302e+009	-3.3556+009	-3.312e+009	-6.315e+009	
E.	Nama	112-17	Vanar IP	Vanor ID mix	Vanor I P	Vanor i Pimix	Condensate	
÷	Variation Variation		1 0300	1 0000 *	0.0020	1,0000	n 0105	
7	Temperature	(C)	368.1	300.0	162.1	260.0	40.77	
1.5	Pressure	(kPa)	2543 *	2623	651.0 -	631.0	7.600	
	Molar Flow	(komole/h)	2 8312+004	28318+004	2 8310+004	2 831e+004	2 831e+004	
in l	Mass Firm	(ingritore h)	5 10/12/005	5 1070-005	5 1000-005	5 1070-005	5 1000+005	
14	Liquid Moluma Flow	(m3/h)	511.0	511.0	511.0	511.0	5110	
17	Heat Flow	(k.l/h)	-5 520au010	-5 5040-000	-6 7330-000	-6.623e+009	-6.9426+009	
12	Name	(12/1)	Cool Condensate	Cool condensate1	Cool condensate2	water?	wateri	
14	Vanour Fraction		0.000	0.000 -	0001001100100102	0.000	0.0000	
45	Temperature	(m)	40.77	40.77	10.77	40.77 *	40.77	
46	Pressure	(kPa)	7 600	7 600	7,600	7 500 *	7.600	
17	Molar Flow	/knimola/h)	2 83164004	1.4150+004	1 /1500	1.4150-004	1 /150-00/	
15	Mass Flow	(ingride h)	5 100e+005	2 550e+005	2 550e+005	2 5500+005 -	2.5500+005	
19	Liquid Voluma Flow	(m3/h)	511.0	255.5	255.5	255.5	255 5	
0	Heat Flow	(k.0h)	-3.068a1000	-4 03/64/00	-1 (13/6+019	-4 03/6+009	-4 03/64009	
	Nama	(Asri)	Rohast ID.7	Rehast ID	Rohast I D'	Rohast I D.7	Natural Gas	
	Vanour Fraction		10000	1,0000	0.9920	0.9920	1 0000	
-	Temperature	(C)	368.1	358.1	162.1	152.1	40.00	
4	Dressing	(kP=)	26/3	25/3	651.0	651.0	1400	
-	Molar Flow	(knmola/b)	1 4150+074	1 / 1504074	1.4150-004	1 /150-001	1061	
F	Mass Flow	(hgriwie/li)	2 55024075	2 5578-075	2 6570-075	2 5500-005	3.47404004	
7	Liquid Voluma Flow	(m3/h)	2.00000000	2.00000000	2.00000000	255.5	107.8	
-1	Last Flow	(6.05)	2.02.0	2 0640 (220	3 365 5 350	2,3550,000	1.4444-000	
16	nearriow	(640)	-3.26484009	-3.2048+009	-3.300e+009	-3.300e+u09	-1.4410+008	

ANEXO 2 – RESULTADOS DO ASPEN HYSYS

678	Workb	ook	Case (Mai	n) <mark>(continue</mark>	ed)				
9 10			Mat	erial Streams (cor	Fluid Pkg:				
11	Name		Alr	Comp air	Burning gas	umino cas Residue			
12	Vapour Fraction		1.0000	1.0000	1.0000	0.0000	1.0000		
13	Temperature	(C)	26.00 *	390.2	1251	1251	630.6		
14	Pressure	(kPa)	98.95 *	1400 *	1400	1400	100.0 *		
15	Molar Flow (kgr	mole/h)	5.096e+004	5.096e+004	5.300e+004	0.0000	5.300e+004		
16	Mass Flow	(kg/h)	1.476e+006 *	1.476e+006	1.511e+006	0.0000	1.511e+006		
17	Liquid Volume Flow	(m3/h)	1697	1697	1767	0.0000	1767		
18	Heat Flow	(kJ/ħ)	-6.349e+006	5.542e+008	4.101e+008	0.0000	-7.506e+008		
15	Name	0.00	Natural Gas-2	Air-2	Comp air-2	Burning gas-2	Residue-2		
20	Vapour Fraction		1.0000	1.0000	1.0000	1.0000	0.0000		
21	Temperature	(C)	40.00 *	26.00 -	390.2	1251	1251		
22	Pressure	(kPa)	1400 *	98.95 -	1400 -	1400	1400		
23	Molar Flow (kgr	mole/h)	1951	5.096e+004	5.095e+004	5.300e+004	0.0000		
24	Mass Flow	(kg/h)	3.474e+004 *	1.476e+006 *	1.476e+006	1.511e+006	0.0000		
25	Liquid Volume Flow	(m3/h)	107.8	1697	1697	1767	0.0000		
26	Heat Flow	(kJ/h)	-1.441e+008	-6.349e+006	5.542e+008	4.101e+008	0.0000		
27	Name		Burning gas LP-2	10000000000000000	-				
28	Vapour Fraction		1.0000						
25	Temperature	(C)	630.6		1				
30	Pressure	(kPa)	100.0 *						
31	Molar Flow (kgr	mole/h)	5.300e+004						
32	Mass Flow	(kg/h)	1.511e+006	· · · · · · · · · · · · · · · · · · ·			6		
33	Liquid Volume Flow	(m3/h)	1767						
34	Heat Flow	(kJ/h)	-7.505e+008				R		
35 36			10	Compositions		Fluid Pkg	F All		
37	Name		Cool gas	Vapor HP	Water HP	Reheat IP	Vapor IP		
38	Comp Mole Frac (Ethane)		0.0000	0.0000 *	0.0000	0.0000 *	0.0000 *		
35	Comp Mole Frac (Propane)		0.0000	0.0000 -	0.0000	0.0000 -	0.0000 -		
40	Comp Mole Frac (n-Butane)		0.0000	0.0000 -	0.0000	0.0000 +	0.0000 *		
41	Comp Mole Frac (CO2)		0.0392	0.0000 *	0.0000	0.0000 *	0.0000 *		
42	Comp Mole Frac (Nitrogen)		0.7520	0.0000 *	0.0000	0.0000 *	0.0000 *		
43	Comp Mole Frac (Methane)		0.0000	0.0000 -	0.000.0	0.0000 *	0.0000 *		
44	Comp Mole Frac (Oxygen)		D.1255	0.0000 -	0.0000	0.0000 -	0.0000 +		
45	Comp Mole Frac (Argon)		0.0089	0.0000 -	00000	0.0000 -	0.0000 +		
46	Comp Mole Frac (H2O)		0.0743	1.0000 *	1.0000	1.0000 *	1.0000 *		
47	Comp Mole Frac (Benzene)		0.0000	0.0000 *	0.0000	0.0000 *	0.0000 *		
48	Comp Mole Frac (n-Pentane)		0.0000	0.0000 *	0.0000	0.0000 *	0.0000 *		
45	Comp Mole Frac (Toluene)		0.0000	0.0000 -	0.0000	0.0000 -	0.0000 +		
50	Comp Mole Frac (n-Hexane)		0.0000	0.0000 *	0.0000	0.0000 *	0.0000 *		
51	Comp Mole Frac (n-Heptane)		0.0000	0.0000 *	0.0000	0.0000 *	0.0000 *		

-						
6 7 8	Workboo	ok: Case (Maii	n) (continue	d)		
9		Fluid Pkg	Fluid Pkg: All			
11	Name	Reheat LP	Vapor LP	Cool gas-2	Vapor HP-2	Water HP-2
12	Comp Mole Frac (Ethane)	0.0000 +	0.0000 -	0.0000	0.0000	0.0000
13	Comp Mole Frac (Propane)	0.0000 *	0.0000 -	0.0000	0.0000	0.0000
14	Comp Mole Frac (n-Butane)	0.0000 *	0.0000 *	0.0000	0.0000	0.0000
15	Comp Mole Frac (CO2)	0.0000 *	0.0000 *	0.0392	0.0000	0.0000
16	Comp Mole Frac (Nitrogen)	0.0000 *	0.0000 *	0.7520	0.0000	0.0000
17	Comp Mole Frac (Methane)	0.0000 *	0.0000 -	0.0000	0.0000	0.0000
18	Comp Mole Frac (Oxygen)	0.0000 *	0.0000 -	0.1255	0.0000	0.0000
15	Comp Mole Frac (Argon)	0.0000 *	0.0000 *	0.0089	0.0000	0.0000
20	Comp Mole Frac (H2O)	1.0000 *	1.0000 *	0.0743	1.0000	1.0000
21	Comp Mole Frac (Benzene)	0.0000 *	0.0000 *	0.0000	0.0000	0.0000
22	Comp Mole Frac (n-Pentane)	0.0000 *	0.0000 -	0.0000	0.0000	0.0000
23	Comp Mole Frac (Toluene)	0.0000 *	0.0000 *	0.0000	0.0000	0.0000
24	Comp Mole Frac (n-Hexane)	0.0000 *	0.0000 *	0.0000	0.0000	0.0000
25	Comp Mole Frac (n-Heptane)	0.0000 *	0.0000 *	0.0000	0.0000	0.0000
26	Name	Reheat IP-2	Vapor IP-2	Reheat LP-2	Vapor LP-2	Vapor HP mix
27	Comp Mole Frac (Ethane)	0.0000 *	0.0000 -	0.0000 -	0.0000 -	0.0000
28	Comp Mole Frac (Propane)	0.0000 *	0.0000 *	0.0000 *	0.0000 *	0.0000
25	Comp Mole Frac (n-Butane)	0.0000 *	0.0000 *	0.0000 *	0.0000 *	0.0000
30	Comp Mole Frac (CO2)	0.0000 *	0.0000 *	0.0000 *	0.0000 *	0.0000
31	Comp Mole Frac (Nitrogen)	0.0000 *	0.0000 -	0.0000 *	0.0000 -	0.0000
32	Comp Mole Frac (Methane)	0.0000 *	0.0000 -	0.0000 *	0.0000 -	0.0000
33	Comp Mole Frac (Oxygen)	0.0000 *	0.0000 *	0.0000 *	+ 00000	0.0000
34	Comp Mole Frac (Argon)	0.0000 *	0.0000 *	0.0000 *	0.0000 *	0.0000
35	Comp Mole Frac (H2O)	1.0000 -	1.0000 -	1.0000 *	1.0000 -	1.0000
36	Comp Mole Frac (Benzene)	0.0000 *	0.0000 -	• 0000.0	0.0000 -	0.0000
37	Comp Mole Frac (n-Pentane)	- 00000	0.0000 *	0.0000 *	0.0000 *	0.0000
38	Comp Mole Frac (Toluene)	0.0000 *	0.0000 *	0.0000 *	0.0000 *	0.0000
39	Comp Mole Frac (n-Hexane)	0.0000 *	- 00000	0.0000 *	0.0000 *	0.0000
40	Comp Mole Frac (n-Heptane)	0.0000 *	0.0000 -	0.0000 *	- 0000.0	0.0000
41	Name	Vapor IP	Vapor IP mix	Vapor LP	Vapor LP mix	Condensate
42	Comp Mole Frac (Ethane)	0.0000	0.0000	0.0000	0.0000	0.0000
42	Comp Mole Frac (Propane)	0.0000	0.0000	0.0000	0.0000	0.0000
44	Comp Mole Frac (n-Butane)	0.0000	0.0000	0.0000	0.0000	0.000
45	Comp Mole Prac (CO2)	0.0000	0.0000	0.0000	0.000	0.0000
46	Comp Mole Frac (Nitrogen)	0.0000	0.0000	0.0000	0.0000	0.000
4/	Comp Mole Frac (Mechane)	0.0000	0.0000	0.0000	0.0000	0.0000
40	Comp Mole Frac (Oxygen)	0.0000	0.0000	0.0000	0.0000	0.0000
45	Comp Mole Frac (Argon)	0.0000	1,0000	1.0000	1.0000	1.0000
50	Comp Mole Frac (Fizzo)	0000	1.0000	0.000	0.0000	0.000
51	Comp Mole Frac (perzene)	0.0000	0.000	0.000	0.0000	0.000
67	Comp Mole Frac (Telvane)	0.0000	0.0000	0.000	0.0000	0.000
5.0	Comp Mole Frac (100816)	0.000	0.000	0.000	0.0000	0.000
24	Comp Mole Frac (n-Hentane)	0.0000	0.0000	0.0000	0.0000	0.000
	social more cras (including)	0.0000	0.0000	0.000	0.0000	0.000

6 7 8	Workbook: Case (Main) (continued)								
9		Fluid Pkg: All							
11	Name	Cool Condensate	Cool condensate1	Cool condensate2	water2	water1			
12	Comp Mole Frac (Ethane)	0.0000	0.0000	0.0000	0.0000 *	0.0000 *			
13	Comp Mole Frac (Propane)	0.0000	0.0000	0.0000	0.0000 -	0.0000 +			
14	Comp Mole Frac (n-Sutane)	0.0000	0.0000	0.0000	0.0000 -	0.0000 +			
15	Comp Mole Frac (CO2)	0.0000	0.0000	0.0000	0.0000 *	0.0000 *			
16	Comp Mole Frac (Nitrogen)	0.0000	0.0000	0.0000	0.0000 *	0.0000 *			
17	Comp Mole Frac (Methane)	0.0000	0.0000	0.0000	0.0000 *	0.0000 *			
18	Comp Mole Frac (Oxygen)	0.0000	0.0000	0.0000	0.0000 -	* D000.0			
15	Comp Mole Frac (Argon)	0.0000	0.0000	0.0000	0.0000 -	0.0000 +			
20	Comp Mole Frac (H2O)	1.0000	1.0000	1.0000	1.0000 *	1.0000 *			
21	Comp Mole Frac (Benzene)	0.0000	0.0000	0.0000	0.0000 *	0.0000 *			
22	Comp Mole Frac (n-Pentane)	0.0000	0.0000	0.0000	0.0000 *	0.0000 *			
23	Comp Mole Frac (Toluene)	0.0000	0.0000	0.0000	0.0000 +	+ 0000.0			
24	Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.0000	0.0000 *	0.0000 *			
25	Comp Mole Frac (n-Heptane)	0.0000	0.0000	0.0000	0.0000 *	0.0000 *			
26	Name	Reheat IP-2	Reheat IP	Reheat LP	Reheat LP-2"	Natural Gas			
27	Comp Mole Frac (Ethane)	0.0000	0.0000	0.0000	0.0000	0.0480 *			
28	Comp Mole Frac (Propane)	0.0000	0.0000	0.0000	0.0000	0.0100 +			
29	Comp Mole Frac (n-Bulane)	0.0000	0.0000	0.0000	0.0000	0.0030 *			
30	Comp Mole Frac (CO2)	0.0000	0.0000	0.0000	0.0000	0.0020 *			
31	Comp Mole Frac (Nitrogen)	0.0000	0.0000	0.0000	0.0000	0.0350 *			
32	Comp Mole Frac (Methane)	0.0000	0.0000	0.0000	0.0000	+ 000e.0			
33	Comp Mole Frac (Oxygen)	0.0000	0.0000	0.0000	0.0000	0.0000 ÷			
34	Comp Mole Frac (Argon)	0.0000	0.0000	0.0000	0.0000	0.0000 *			
35	Comp Mole Frac (H2O)	1.0000	1.0000	1.0000	1.0000	0.0000 +			
36	Comp Mole Frac (Senzene)	0.0000	0.0000	0.0000	0.0000	0.0004 *			
37	Comp Mole Frac (n-Pentane)	0.0000	0.0000	0.0000	0.0000	0.0012 *			
38	Comp Mole Frac (Toluene)	0.0000	0.0000	0.0000	0.0000	0.0003 *			
39	Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.0000	0.0000	0.0000 *			
40	Comp Mole Frac (n-Heptane)	0.0000	0.0000	0.0000	0.0000	0.0000 *			
41	Name	Air	Comp air	Burning gas	Residue	Burning gas LP			
42	Comp Mole Frac (Ethane)	0.0000 +	0.0000	0.0000	0.0000	0.0000			
43	Comp Mole Frac (Propane)	0.0000 *	0.0000	0.0000	0.0000	0.0000			
44	Comp Mole Frac (n-Butane)	0.0000 *	0.0000	0.0000	0.0000	0.0000			
45	Comp Mole Frac (CO2)	0.0004 *	0.0004	0.0392	0.0392	0.0392			
46	Comp Mole Frac (Nitrogen)	0.7808 *	0.7808	0.7520	0.7520	0.7520			
47	Comp Mole Frac (Methane)	0.0000 *	0.0000	0.0000	0.0000	0.0000			
48	Comp Mole Frac (Oxygen)	0.2095 *	0.2095	0.1255	0.1255	0.1255			
45	Comp Mole Frac (Argon)	0.0093 *	0.0093	0.0089	0.0089	0.0089			
50	Comp Mole Frac (H2O)	0.0000 +	0.0000	0.0743	0.0743	0.0743			
51	Comp Mole Frac (Benzene)	0.0000 +	0.0000	0.0000	0.0000	0.0000			
52	Comp Mole Frac (n-Pentane)	0.0000 *	0.0000	0.0000	0.0000	0.0000			
53	Comp Mole Frac (Toluene)	0.0000 *	0.0000	0.0000	0.0000	0.0000			
54	Comp Mole Frac (n-Hexane)	0.0000 *	0.0000	0.0000	0.0000	0.0000			
55	Comp Mole Frac (n-Heptane)	0.0000 -	0.0000	0.0000	0.0000	0.0000			
66						69030011			

6 7 8	Wor	kbook	: Case (M	ain) (continue	d)					
3				Compositions (continued)			Fuld Pkg		91	All	
11	Name		Natural Gas-2		Alr-2	Comp sir-2	Burning	ges-2	Residue-2		
12	Comp Mole Frec (Ethene)		0.049	0.1	0.0000 *	0.0000		0.0000		0.0000	
13	Comp Mole Frac (Propane)		0.010	10 *	0.0000 *	0.0000		0.0000		0.0000	
14	Comp Mole Frac (n-Butane)	ý	0.003	0 - 0	0.0000 -	0.0000		0.0000		0.0000	
15	Comp Mole Frec (CO2)		0.003	0.1	0.0004 *	0.0004	-	0.0292		0.0392	
15	Comp Male Frac (Nitrogen)		0.035	0.1	0.7808 *	0.7808		0.7520		0.7520	
17	Comp Male Frec (Methane)		0.900	0 *	0.0000 *	0.0000		0.0000		0.0000	
14	Comp Mole Frec (Oxyget)		0.000	0.*	0.2095 *	0.2095		0.1255	2	0.1255	
15	Comp Male Frec (Argon)		0.000	0.*	0.0093 *	0.0093		0.0089		0.0085	
20	Comp Male Frac (H2O)		0,000	0.1	* 0000 0	0.0000		0,0743		0.0743	
21	Comp Mole Frac (Benzene)		0.000	4 *	0.0000 °	0.0000		0.0000		0.0000	
22	Comp Mole Frac (n-Pentane	6	0,001	2 *	0.0000 -	0.0000		0.0000		0.0000	
23	Comp Male Frec (Toluene)		0.000	13 *	0.0000 *	0.0000		0.0000	·	0.0000	
24	Comp Mole Frac (n-Hexane)	È	0.000	0.0	0.0000 *	0.0000		0.0000		0.0000	
25	Comp Mole Frac (n-Heptane	:)	0.000	10.4	0.0000 *	0.0000		0.0000		0.0000	
26	Name		Surning ges LP-2								
27	Comp Mole Frac (Ethane)		0.000	0							
28	Comp Mole Frac (Propane)	2	0.000	10							
25	Comp Male Frac (n-Butane)		0.000	0							
30	Comp Male Frec (CO2)	· · · · · · · · · · · · · · · · · · ·	0.035	2							
31	Comp Male Frac (Nitrogen)		0.752	0							
22	Comp Mole Frec (Methane)		0.000	0					-		
35	Comp Male Frec (Oxygen)		0.125	5							
34	Comp Male Frec (Argon)		0.008	9							
25	Comp Mole Frac (H2O)		0,074	2							
×	Comp Male Frec (Benzene)		0.000	0							
37	Comp Mole Frac (n-Pentane	6	0.000	0			-			1	
24	Comp Mole Frec (Toluene)		C 000	0							
35	Comp Mole Frac (n-Hexane)		0.000	0							
40	Comp Mole Frac (h-Heptate	9	0.000	0							
41	200				Energy Streams			Fluid Pkg		a: All	
43	Name		W		P2	P3	E1		E2		
44	Heat Flow	(8:49)		- 1	1.283e+008	3.122e+008		1.1276-009	4.27	48+006	
45	Name		E3		q1	power	q1-2		power-2		
4E	Hest Flow	(8429)	4.274e+00	6	5 605e+008	1.161e+009		5.6054+008	1.16	1e+009	
47	Name		P1								
48	Heat Flow	(K2/R)	2.130e+00	8							
45					Unit Ops						
51	Operation Name	Opt	eration Type		Feeds	Products	S 1	langred	Calc L	evel	
53				Nati	Ital Gas	Residue		-			
\$2	CRV-100	Conversio	on Reactor	Can	ip air	Burning gas		No		\$00.0 -	
54					iral Gas-2	Ges-2 Residue-2					
55	CRV-100-2	Conversio	on Reactor	Comp elr-2		Burning ges-2		NR		500.0 *	
56	-denie	1233333	8	Vapor IP mix		Vapor LP*		028		111082-1	
57	8T_IF	Expender				P2		No		- 0.002	
50		1233445		Vapor LP mix		Condensate	1 324		2007	1000	
55	ST_LP	Expender				P3		No		\$00.0 *	
60	ineres .	12200000		Burning gas		Burning gas LP			2005	231230	
61	GTI	Expander				power		No		500.0 -	
62	GT1-2	Expender		But	Burning gas-2 Burning gas LP-2		1	No	1.000	500.0 *	

E 7 8	Wo	rkbook: Case (Main) (continu	ed)					
9	Unit Ops (continued)								
11	Operation Name	Operation Type	Feeds	Products	Ignored	Celc Level			
13	GT1-2	Expender		power-2	No	\$00.0 *			
13			Vapor HP mix	Vapor IP*	1995				
14	SI_HP	Expenser		P1	NO	500.0			
15	12.100	********	Air	Camp sir	1000	500.0 °			
16	K*100	Compressor	q1		No				
17	P. (C 1000	Air-2	Comp air-2					
4	Religina.	Compressor	qt-1			500.0			
5			Burning gas LP	Coolges					
22		1.1.1	Water HP	Vapor HP	1.000				
1	LNG-100	LNO	Reheat IP	Vapor iP	No	500.0			
22			Reheat LP	Vapor LP					
22			Burning ges LP-2	Cool ges-2		500.0 *			
4		1.00	Water HP-2	Vepor HP+2					
25	LNG-100-2	LNG	Reheat IP-2	Vapor IP-2	NO				
-5			Retreat LP-2	Vapor LP-2					
27		100-00	Vapor HP	Vapor HP mix	1000	500.0 *			
28	MIX-100	Moter	Vepor HP-2		No				
3		100.00	Vapor #	Vapor IP mix	1	500.0 °			
30	MIX-101	Miller	Vapor IP-2		No				
31		1000	Vapor LP	Vapor LP mix		500.0 *			
12	MIA-192	MIREF	Vapor LP-2		N9.				
13			Vapor IP*	Reheat IP*		500.0			
34	TEE-100	Tee		Reheat IP-2	NO				
24		100	Vapor LP	Reheatur	143				
36	100-121	100		Reheat LP-2'	NO.	300.5			
17	layout of the lat	2007 C	Cool Condensate	Cool condensate1	362	(2222)			
18	TEE-102	Tee		Cool condensate2	No	\$00.0			
25			Condensate	Cool Condensate	1990	500.0 *			
6¢	E-10e	Copier		E1	No				
ŧ1	RCY-1	Recycle	Cool condensate1	water1	No	3500 *			
9	RCY-2	Recycle	Cool condensate2	water2	No	3500 *			
43	RCY-3	Recycle	Reheat (P-2'	Reheat IP-2	No	3500 -			
44	RCY-4	Recycle	Reheat IP	Reheat	No	3500 *			
45	RCY-S	Recycle	Reheat LP*	ReheatLP	No	3500 *			
45	RCY-E	Recycle	Reheat LP-2'	Reheat LP-2	No	3600 *			
17	P.400	D	water1	Water HP					
48		Contraction of the second s	E2		- 3 9 0	200.0			
43	0.101	P.m.	water2	Water HP-2					
50	P-101	· · · · ·	8		NO	500.5			
51	Turbina a gas	Spreedsheet	2.08%		No	\$00.0 *			
52	Turbine s vapor	Spreadsheet			No	500.0 *			