

Júlio Salek Aude

NCE and IM/UFRJ

PO Box 2324

Rio de Janeiro -RJ -20001-970

Brazil

e-mai1: salek@nce.ufrj.br

ABSTRACT

The MUL11PLUS/MULPLIX project aims at the development of a modular distributed
shared-memory parallel architecture able to support up to 1024 processing elements
based on SP ARC microprocessors and at the implementation of MULP LIX, a Unix-like
operating system which provides a suitable parallel programming environment for the
MULTIPLUS architecture. The project includes research effort in five areas: parallel
architectures, operating systems, CMOS lC design, parallel programming environments
and parallel algorithms. This technical report firstly presents an overview of the
MUL11PLUS architecture and describes in detail the cu"ent implementation of its four
basic hardware modules: the Processing Element, the 1/0 Processor, the Multistage
lnteconnection Network and the Network lnterface. Secondly, the MULPLIX operating
system definition is reviewed and the parallel programming primitives available within
MULPUX are presented Following, developments in the area of CMOS lC designs for
use within the MUL11PLUS architecture are described The implementations of PVM
and Pthreads parallel programming libraries within the MULPLIX system are also
discussed. Finally the main results achieved with the parallelization of Simulated
Annealing and Genetic algorithms are commented

~

Ao meu saudoso pai, que me ensinou o fundamento
básico da pesquisa científica: a perseverança.

~

1. INTRODUCTION

The MULTIPLUS project [Aude90, Aude91, Aude94, Aude95, Aude96] has been
under deve1opment at NCE/UFRJ for some years now and has provided a nice and
cha1lenging framework for research work in severa1 areas related to the world of High-
Perforrnance Computing: Para1lel Architectures, Operating Systems, IC Design,
Para1lel Programming Environments and Para1lel A1gorithms.

The main objectives of the MULTIPLUS project include the development of a
distributed shared-memory para1lel architecture and the MULPLIX operating system.
General aspects of the MUL TIPLUS architecture have been discussed in previous
papers [Bron90, Mes190, Oliv90, Mes192, Oliv92a, Bron93] as well as the main
features of the MULPLIX operating system [Azev90, Azev93a]. This technica1 report
aims at giving an up-to-date overview of the current state of development of the
MUL TIPLUS project as a whole.

Section 2 reviews the main features of the MUL TIPLUS distributed shared memory
para1lel architecture. Section 3 presents the current implementation of the Processing
Elements within the MULTIPLUS architecture. In Section 4, the implementation of
the Multistage Interconnection Network and of its Interface to each MULTIPLUS
cluster of processors is presented. Section 5 comments on the implementation of the
I/O Processor and its control system. Section 6 discusses the design of VLSI circuits
to be used within the MUL TIPLUS architecture, including the development of the
NCESP ARC microprocessor. Section 7 describes the MULPLIX operating system and
the para1lel programming primitives which have been implemented within MULPLIX.
The use of these primitives is il1ustrated through a very simple para1lel application.
Section 8 briefly describes the implementation of two para1lel programming libraries
within MULPLIX: M-PVM and Pthreads. In Section 9, some of the main results
achieved with the para1lelization of Simulated Annea1ing and Genetic Algo�thms
applied to the placement problem are summarized. Fina1ly, in Section 10 the
perspectives for the project development in the near future are presented.

2. THE MUL TIPLUS ARCHITECTURE

MULTIPLUS is a distributed shared-memory high-perforrnance computer designed to
have a modular architecture which is able to support up to 1024 processing elements
and 32 Gbytes of globa1 memory address space. Figure 1 shows the MULTIPLUS
basic architecture. Within MULTIPLUS, up to eight processing elements can be
interconnected through a 64-bit double-bus system making up a cluster. Each bus
follows a similar protocol to the one defined for the SP ARC MBus, but is
implemented as an asynchronous bus.

The MULTIPLUS architecture supports up to 128 clusters interconnected through an
inverted n-cube multistage network. Through the addition of processing elements and
clusters, the architecture can cover a broad spectrum of computing power, ranging
from workstations to powerful para1lel computers. With the adopted structure, the
cost and delay introduced by the interconnection network is sma1l or even non-

existent in the implementation of para1lel computers with up to 64 processing
elements. On the other hand, very large para1lel computers can be built without the
use of an extremely expensive or slow interconnection network.

The MULTIPLUS architecture can be classified as a Non-Uniform Memory Access
(NUMA) architecture since a processing element access to memory can be performed
in four different ways. The fastest memory access is a direct read operation on the
loca1 caches, which is performed within a processor cycle. The second fastest memory
access is any read/write operation within the local bank of memory since, in principIe,
it does not require the use of the cluster bus system for its completion. The third
fastest memory access is a write or a read access with cache failure to a memory
position belonging to an extema1 memory bank within the same cluster. In this case,
the bus system must be used and the bus arbitration time is added to the access time.
Lastly, there are the accesses generated by a processing element requesting
information which is not in its loca1 caches but is stored within a memory bank sitting
on another cluster. In this case, the bus system of the source cluster , the multistage
interconnection network and the bus system of the destination cluster need to be used
for the access operation to be performed. Therefore, the arbitration times of both bus
systems and the multistage interconnection newtork delay are added to the access
time.

BLOCK TRANSF. BUS
NETWK

INST/DA INTERF
MULTISTAGE

INTERCONNECTION

BLOCK TRANSF. BUS
NETWK NETWORK

INST/DATA BUS
INTERF

Figure 1: The MULTIPLUS Architecture

As shown in Figure 1, MULTIPLUS uses a distibuted 1/0 system architecture. It is
possible to assign a11 processing elements within a cluster to a single 1/0 processor

which is responsible for dealing with alll/O requests to or from mass storage devices
started by these processing elements.

Design decisions have been taken to simplify the problem of maintaining consistency
among the private caches of the processing elements within the MULTIPLUS
architecture [MesI91]. The first one is to have in every cluster one bus dedicated to
instruction and data access operations and the other one dedicated to block transfer
operations which occur in 1/0 or in memory page migration or copy operations. Only
the instruction/data bus needs to be "snooped" by the cache controller and, as a result,
the cache consistency problem can be solved within a cluster with the methods usually
adopted in bus-based systems. In addition, a software approach based on the works
presented by Petersen and Li [Pete94] and by Kontothanassis and Scott [Kont95] has
been adopted to keep cache consistency between clusters. Following the memory
model based on the lazy release consistency approach [Kele92], any access to shared
regions of memory must be preceded by a "lock" operation. This ensures that a single
processor is accessing a particular critical region at any moment. Cache consistency is
achieved with the help of the memory management hardware.

3. THE MULTIPLUS PROCESSING ELEMENT

The MULTIPLUS Processing Element is based on the use of SPARC processors. The
first implementation of the processing element used the Cypress SP ARC chipset and
could support a 64-Kbyte cache and up to 32 Mbytes of memory belonging to the
globa1 address space. The most recent implementation of the Processing Element can
have up to 2 SuperSP ARC II modules running at 85 Mhz and supporting a 1 Mbyte
Cache. This new Processing Element can support up to 256 Mbytes of memory .In
addition to the SPARC processors and memory, the MULTIPLUS Processing Element
includes: ROM, serial interface, interrupt registers and timers.

Figure 2 shows a block diagram of the current Processing Element architecture which
is built around any SP ARC MBus module. Only a single SP ARC module is
represented in Figure 2. The number of address lines followed by the number of data
lines is annotated next to every bus. The cache controller works in write-through
mode with invalidation of shared cache copies, which is a very simple approach and
has proved to be as efficient as the write-back mode in simulation experiments carried
out considering typical values for the data cache hit rate and the rate of write

operations [MesI92].

The control logic of the Processing Element is implemented with the use of four
EPLDs. The first one performs the slave fuction in the Block Transfer Bus, arbitrates
the use of the common bus for memory acces within the processing element and
performs the DRAM control. The address decodification in the Block Transfer Bus is
performed by another EPLD. In the control of the instruction/data section, two EPLDs
are used. The first one performs address decoding and access control to the processing
element registers and 1/0 devices. The second one performs the master and slave
functions in the Instruction/Data Bus and the arbitration between requests issued by
the Instruction/Data Bus and by the Processing Element Data Cache Controller.

Within the memory , a T AG bit is associated with each memory data block in order to
indicate if a copy of this block may exist in another cache. The bit is set whenever the
block is read by a different processing element sitting within the same cluster. It is
reset whenever that block is rewritten by the loca1 processing element. The importance
of this bit is to reduce the need for broadcasting unecessary data access to the
Instruction/Data Bus in order to maintain cache consistency. If the T AG bit is not set,
the data access can be performed within the Processing Element and without the use
of the Instruction/Data Bus.

SuperSPARC n
IU+FPU

Cache Controller 1 Mbyte
MMU Cache

I/O

DEVICES
CONIROL EPlD

T
EPLD A MEMORY

G

BLOCK TRANSFER BUS -36/64

INSTRUCfION/DATA BUS -36/64

Figure 2: The Processing Element Architecture

4. THE MUL TIST AGE INTERcoNNEcnoN NETWORK

The MUL TlPLUS multistage interconnection network is an inverted n-cube network
consisting of 2x2 cross-bar switching elements [Bron91]. Its topology is shown in

Figure 3. Separate networks are used to interconnect the instruction/data and the block
transfer busses in different clusters. The adopted network topology provides the
MULTIPLUS architecture with two very desirable features: modularity and
partitionability. Modularity enables the MULTIPLUS architecture to grow in
numbers of clusters through a simple addition of extra switching elements to the
network. No re-wiring of the interconnections between the elements a1ready present in
the network is required in such operations. The partitioning feature of the network
provides the MUL TIPLUS architecture with the possibility of supporting severa1
independent or loosely-coupled groups of clusters. In fact, the network ensures that it
is possible to choose groups of clusters such that the communication within a group
does not interfere with the communication within any other group of clusters.

O O
........

2

4

6 3

7

Figure 3: The Multistage Interconnection Network

The MULTIPLUS Multistage Interconnection Network can support up to 128 clusters.
Each communication path between switching elements in the newtork is
unidirectiona1 and nine bits wide. The transmitted messages can have variable length
up to a maximum of 128 bytes. Wormhole routing is used in the network and a single
bit of the destination address field of the messages is examined by each stage of

switching elements to direct the message to the next stage.

Six message types are supported by the Multistage Inteconnection Network: Write,
Read, Write Reply, Read Reply, DMA and DMA Reply. Every message can have only
a single source and a single destination, therefore broadcast or multicast type
messages are not currently handled by the network.

A message can be seen as a sequence of packets consisting of eight data bits and one
parity bit. In genera1, a message has three basic sections: the header, the preamble and
the data. The header is four byte long and contains information on the destination

address, message size, message type and identification of the module that has
generated the message within the source cluster. The preamble contains an image of
the 64-bit address lines of the source cluster. It is only needed in Read, Write, DMA
and DMA Reply messages.

Read and Write messages occur when a module within a cluster wants to access a
memory position belonging to another cluster. The Write Reply message is used to
tell the 1/0 Processor which has generated a block write operation that the last
requested write operation has been completed. The Read Reply message retums the
requested data to the processing element which had issued the corresponding Read
message. A DMA message sets the Multistage Inteconnection Network to perform a
block transfer of length up to 64 Kbytes from a region of memory within a given
cluster to the local memory of the processing element which issued the DMA request.
The DMA Reply message uses the Instruction Bus to transfer the requested data in
blocks of 128 bytes between clusters. On completion of the DMA Reply operation, the
Network Interface interrupts the processing element which issued the DMA request.

The architecture of the switching element of the Interconnection Network implements
a 2x2 cross-bar switch with FlFO buffers assigned to each switch input. Its detailed
design has been presented by Bronstein [Bron96] .Each switching element with the
FlFO buffers has been implemented with a single EPLD.

The Network Interface interconnects the- cluster bus systems to the Multistage
Interconnection Network and a1so performs the functions of bus arbiter and bus reset
generation. As shown in Figure 4, the Network Interface consists of two identical
sections: one that dea1s with the Instruction/Data Bus and another which dea1s with
the Blcok Transfer Bus. In addition, it has a DMA Controller which is programmed
through the Instruction/Data Bus and performs data block transfers through the Block
Transfer Bus. Within each section, the Network Interface consists of 8 modules: the
bus interface module with a master and a slave section, the FlFO memory for
messages to be transmitted, the message transmission module, a dua1-port memory for
received messages, the message reception module, registers, the bus arbiter and the
logic for bus reset generation.

The implementation of the Network Interface has been carried out with 11 EPLDs,
five for each section and one for the DMA Contro11er. The five EPLDS in each
section perform the fo11owing functions: bus master; bus slave; message transmission

control; message reception control; storage of the status of the messages sent by the
interface and generation of the address of the memory for received messages.

64 bits 8 bits

1 I
BUS FIFO for Message

Messages to Transmission
Interface beTransm. Control

Instruct.
Message and Data

Reception
Control

1 Network

64 bits Dual.Port 8 bits
Mess. Rec.
Memory

DMA

Control
64 bits

+
FIFO for M essage

BUS Messages to Transmission
Interface be Transm.. Control

18 bits

Block
Message

Reception Transfer
Control

I Netwo.rk

64 bits Dual.Port .
Mess. Rec. 8 blt!

Memory

Block Transfer Bus

Instruction/Data Bus

Figure 4: The Network Interface

The Master section of the Network Interface is activated when some remote Read,
Write or DMA message arrives at the Interface or when a Write Reply message is
received. The Slave section is activated either when a remote access is generated
within the cluster or when a Read Reply message is received. In the first case, the
infomation on the requested access is stored in the memory for messages to be
transmitted for later processing. The Read Reply message occurs because at some
point a cluster module requested a remote read operation to the Network Interface. As
an immediate answer to this read request, the Slave section sends an instruction for
the cluster module to relinquish the use of the cluster bus and retry the read operation

later on. Hopeful1y, in the meantime, the Newtork Interface has enough time to
process the read request and get a Read Reply message as a result. Therefore, when
the cluster module retries the read operation, the Slave section is able to send back the
requested data to the cluster module. This approach avoids blocking the cluster bus
while the Network Interface gets the answer for a remote read operation.

The Message Transmission Control module is responsible for taking messages byte
by byte out of the memory for messages to be transmitted, packing them and
transmitting them through the Interconnection Network. The Message Reception
Control module receives the messages coming from the Interconnection Network,
stores them in the memory for received messages and instructs the bus interface
module to generate the appropriate cluster bus access.

In addition to the EPLDs, a FIFO memory has been used to implement the memories
for the messages to be transmitted. This FIFO memory consists of two sections: a 64-
bit wide data section and an 18-bit wide control section. The dua1-port memories for

message reception consist of 64-bit words and are divided into three different
regions. The first one works as a FIFO for the received messages. The second one
works as a RAM which stores the replies to messages sent by modules within the
loca1 cluster and the third one stores an address and access code table for the interrupt
registers of a1l the modules within the loca1 cluster. From one port, this memory is
accessed for the reception of messages coming from the Network in 8-bit packets.
From the other port, this memory is connected to the corresponding 64-bit cluster bus
and can be read by the master or slave section of the Interface and written by the slave
section or by the DMA

5. THE 1/0 PROCESSOR

The architecture of the MULTIPLUS I/O Processor [Oliv92] is shown in Figure 5. It

consists of two bus systems: the CPU Bus and the DMA Bus. Attached to each bus
there is a 68020 CPU. The one associated with the CPU Bus is responsible for
managing the I/O requests sent by the processing elements to the 16 Kbyte dua1-port
Command Memory , for performing the Disk Cache control, for sending commands to
be executed by the devices on the DMA Bus through the 4 Kbyte Communication
Memory and for control1ing a seria1 interface. It uses a 4 Mbyte RAM for its work
area and a 64 Kbyte ROM to store the initia1ization procedure.

The CPU on the DMA Bus controls the execution of the internal tasks issued by the
CPU Bus through the Communication Memory .Attached to the DMA Bus there are: a
SCSI interface for the connection of disks, tapes and floppies; a Para1lel Interface for
the connection of printers; a 32 Mbyte write-through Disk Cache; a DMA Control1er
which is responsible for the data transfer from the SCSI and Para1lel Interface to the
Disk Cache; and an 8 Kbyte BIFIFO which is used as a temporary storage to transmit
data between the Disk Cache and the processing elements through the Block Transfer
Bus.

Two EPIDs are used to perfonn some control functions within the I/O Processor. The
first one perfonns the master/slave functions on the InstructionIData Bus. The second
one perf Jnns the master/slave functions on the Block Transfer Bus and controls the
burst dat;l transfers between the Disk Cache and the BIFIFO on the DMA Bus.
The operltion of the I/O Processor is started when a Processing Element writes an I/O
comman(l into its assigned region within the Command Memory. This generates an
interrupt to the CPU Bus 68020 which, then, interprets the command and, if
necessaf) , splits it into sub-tasks that will be perfonned by the I/O Processor hardware
attached 10 the DMA Bus. For instance, if the command is a disk block read operation,
the CPU Bus 68020 firstly checks if the block is stored within the Disk Cache. lf it is,
a comma[1d to transfer the block from the cache to the processing element memory is
issued t(1 the DMA Bus through the Communication Memory. Otherwise, the

comman(l is split into two tasks: the reading of data from the disk to the cache under
the supervision of the DMA Controller and the data transfer from the cache to the

Processing Element memory through the BIFIFO under the control of the EPLD.
Again, b()th tasks are issued to the DMA Bus through the Communication Memory.
Once all steps of a Processing Element command have been executed by the DMA
Bus, the CPU Bus does a write operation to the interrupt register of the Processing
Element Ihrough the InstructionIData Bus.

CP

COMMUNIC.
MEMORY

INSTRUCTIONmATA BUS
PARALLEL SCSI

INTERFACEINTERFACE

DMA

C
68

BIFIFO

BLOCKTRANSFERBUS

Figure 5: The I/O Processor Architecture
6. IC DESIGNS FOR THE MULTIPLUS ARCmTECTURE

CMOS designs of VLSI circuits to be used in the implementation of the MULTIPLUS
architecture have been undertaken as a driving force to improve our expertise in IC
design and to enhance the public domain CAD systems we have available at
NCE/UFRJ .As a result, within this branch of the MUL TIPLUS project, research work
both in the areas of IC design and CAD tools [Lope92, Sant94, Serd96] are currently
under development. Up to now the development of VLSI circuits has been carried out
with the use of two public domain CAD systems: MAGIC, developed at the
University of Berkeley and ALLIANCE, developed at the Laboratory MASI,
Université Pierre et Marie Curie. The resulting chips have been fabricated usign the
facilities available within the Brazilian PMU and the mERcHIP Program.

The mainstream of this research effort is the design of NCESP ARC, a 32-bit RISC
microprocessor, using CMOS 1.0u technology. Previous works have reported on
simulation ana1ysis of altemative implementations of the NCESP ARC architecture

~

DATA IN

8 WrlteAddress

8 8
THREE-PORT REGISTER FILERead Address 1 Read Address 2

A L U BARREL
SHIFTER

32

Figure 6: The NCESP ARC Data Path

The ALU can perfonn the following 10 operations on its inputs A, B and Cin (Carry
Input): A + B; A + B + Cin; A -B; A -B -Cin; A and B; A and (not B); A or B; A or
(not B); A xor B; A xor (not B). The ALU must a1so provide infonnation on the
occurrence of overflow, a result equa1 to. zero, a negative result and a carry output.
Registers A and B are nonna1ly loaded with data contents from the Register File.
However, Register B can a1so be loaded with an extema1 data input used for
immediate operands. Register A can be altematively loaded with data coming from
the Multiplexor S. This option implements a by-pass which is used by the Control
Unit whenever one instruction uses a Register File operand which is modified by the
result of the immediately previous instruction. If this by-pass were not provided, at
least one NOP instruction would have to be inserted between the two instructions
since the result of an operation is written to the Register File one cycle after the
reading of the operands by the next instruction. The selection of the data to be stored
in Registers A and B is commanded by the Control Unit through the Multiplexors A
and B, respectively.

The 32-bit Barrel Shifter shifts the operand stored in Register A. The shift count is
supplied by the 5 least significant bits of Register B. Three operations can be
perfonned: logic left shift, logic right shift and arithmetic right shift. One control bit is

used to say if the shift operation is logic or arithmetic and another control bit
commands if the shift operation will be to the left or to the right.

In addition to the design of the NCESPARC microprocessor, a CMOS
implementation of the MULTIPLUS Bus Arbiters has been performed using CMOS
1.0u technology .This chip has recently been received back from fabrication and has
performed according to the specifications. A detailed description of the design of this
chip was presented by Barbosa et al. [Barb96]. Experiments of designing VLSI chips
to implement some finite state machines within the MULTIPLUS Network Interface
have also been reported by Pinto [Pint96].

7. THE MULPLIX OPERATING SYSTEM

MULPLIX [Azev93] is a UNIX-like operating system designed to support medium-
grain parallelism and to provide an efficient environment for running parallel
applications within MULTIPLUS. In its initial version, MULPLIX will result from
extensions to Plurix, an earlier Unix-like operating system developed to support
multiprocessing within the Pegasus architecture [FalI89].

Plurix main goal was to provide an efficient environment for running general-purpose
processes on an architecture consisting of a few processors and a global memory
which can be accessed with the same time penalty by all processors. Therefore, Plurix
supports only large-grain parallelism or concurrency and assumes that the underlying
machine is implemented by a Uniform Memory Access architecture.

For the MULTIPLUS environment it is essential for the operating system to be very
efficient in supporting applications which consist of a large number of processes that
may run in parallel, demanding synchronization and, consequently, a lot of c.ontext
switching operations. One of the basic conditions to reach this goal is to heavily
reduce the overhead in such operations.

To solve this problem, one major extension to Plurix included in the MULPLIX
definition is the concept of thread.. Within MULPLIX, a thread is basically defined by
an entry point within the process code. A parallel application consists of a process and
its set of threads. Therefore, when switching between threads of a same process, only
the current processor context needs to be saved. Information on memory management
and resource allocation is unique for the process as a whole and, therefore, remains
unchanged in such context-switching operations.

In relation to synchronization, MULPLIX makes available to the user synchronization
primitives for the manipulation of mutual exclusion and partial order semaphores. In
addition, MULPLIX implements the busy-waiting primitives in a different way, since
it is essential to avoid hot spots through the interconnection network. The algorithm
which has been adopted for the solution to this problem is an adaptation of the one
proposed by Anderson [Ande90] and is based on the following ideas [Azev90]: the
use of a circular buffer to implement the queue of processors waiting for the binary
semaphore and the detection of the availability of a binary semaphore by testing a

cacheable local variable.

Within Plurix the memory space a1located to a process consists of a data segment, a
code segment and a stack segment for the user and supervisor modes. Memory sharing
between processes is very limited. It only a1lows the implementation of Unix pipes
between two processors in memory .Within MULPLIX, it is essentia1 for the memory
management system to worry about data loca1ity, to support the concept of a process
consisting of severa1 threads and to a1low memory sharing between threads of the
same process. The following facilities are supported by the MULPLIX memory
management system: replication of the MULPLIX kemel code in every processing
element; replication of the process code in every cluster where a given process is
running; definition of an additiona1 non-shared loca1 data segment for each thread;
definition of an additiona1 loca1 data segment in supervisor mode which is shared by
a1l threads running on the same processing element; and definition of stack segments
in the user and supervisor modes for each thread. In addition, the MULPLIX memory
management system is a1so concemed with the problem of maintaining cache
consistency between MULTIPLUS clusters.

Process scheduling is another area in which MULPLIX must use a different approach
to the one adopted in Plurix. Within Plurix, there is a single queue of processes which
are ready for execution and the scheduling policy does not take into consideration data
loca1ity. In addition, time-sharing between processes is a1ways used. Within
MULPLIX, a specified number of processors will not run in time-sharing mode. Such
processors will be scheduled to run threads of para1lel scientific applications. The
non-time sharing policy ensures that these threads may run as fast as possible and
without interrupts as long as they can or wish. On the other hand, the execution of
interactive processes is ensured by the fact that there wil1 a1ways be a fraction of
processors running with time-sharing.

Data locality is taken into consideration by the MULPLIX scheduling system through
the use of separate queues of threads which are ready to be run in each cluster. Every
queue can be accessed by any processor. However, a free processor wil1 only look for
a thread to run in another cluster queue if it finds its own cluster queue empty.

7.1 MULPLIX Para1lel Programming Primitives

The MULPLIX system provides a set of system ca1ls for the development of paral1el
programming applications within the MULTIPLUS architecture[Azev93a]. These
primitives dea1 with the fol1owing aspects: the creation of threads; memory a1location;
and synchronization. The current implementation of MULPLIX is running on an EBC
32020, a 68020 based machine to which the Plurix operating system had been
previously ported. Due to the limitations imposed by this environment, the
implementation of some of the primitives has not been performed yet ful1y in
accordance to the original specification.

The system ca1l, "thr -spawn", is provided for the creation of a group of threads. The
number of threads to be created, the name of the procedure to be executed by these
threads and a cornmon argument are the basic parameters of this system ca1l and the

ones which are supported by the MULPLIX current implementation. However, one
optional parameter will be added to this system ca11 to define preferential processing
elements for the execution of each thread to be created. This facility will a11ow an
experienced user to enforce the assignment of a particular thread to the processing
element which is known to host the set of data to be mostly used by that thread. A
second version of this system ca11, "thr -spawns", will a11ow the creation of threads
in synchronous mode. If the thread creation is synchronous, the parent thread will
suspend its execution until execution completion by a11 the children threads it has
started

Three additiona1 primitives for thread control have a1so been made availeble within
MULPLIX. The first one is "thr -id" which retums the identification number of a
thread, tid, within MULPLIX. The second one is "thr -kilr' which a11ows any thread
to kill another thread within the same process. AlI the descendants of the killed thread
are a1so killed. The only parameter of this system ca11 is the tid of the thread to be
killed. The last primitive is "thr -term" which a11ows a forced termination of the
thread.

The memory allocation primitives can perform shared and private data allocation. For
shared data, the primitive "me-salloc" offers two options: a concentrated and a
distributed memory space a11ocation. In the first case, it is expected that most of the
accesses to the memory space to be a11ocated will be performed by the thread which
has performed the system ca11 and, therefore, a11 memory space is a11ocated within the
loca1 memory of the thread preferentia1 processing element. The distributed allocation
is used when a uniformly distributed access pattem among the threads is expected.
Within the EBC 32020, there is only a single processing element and the
concentrated/distributed option is meaningless. Therefore it has not been implemented
yet. The primitive which performs private memory a11ocation is "me-palloc".

The MULPLIX operating system offers two explicit synchronization mechaDisms.
The first one is used for mutua1 exclusion relations and the second one is employed
when a partial ordering relation is to be achieved. For the manipulation of mutual
exclusion semaphores, primitives are provided for creating ("mx-create"), a11ocating

("mx-lock"), extinguishing ("mx-4elete") and releasing ("mxJree") a semaphore. In
addition, the primitive "mx-test" allows a thread to a11ocate a semaphore if it is free
without causing the thread to wait if the semaphore is still occupied. Simple and
multiple mutual exclusion synchronizations are supported. With multiple mutua1
exclusion, a maximum of a given number of threads can execute the critica1 region

simultaneously.

For partia1 ordering semaphores, which implement barrier-type synchronization,
primitives for creating ("ev-create"), asynchronous signa11ing ("ev-signal"), waiting
on the event occurrence ("ev-wait"), synchronous signa11ing ("ev-swait") and
extinguishing ("ev-delete") an event are provided. The primitives "ev-set" and
"ev -unset" have also been implemented to a11ow unconditional setting and resetting
of an event. This may be useful in test, debugging or in error recovery procedures.

The fol1owing example il1ustrates the use of some of these primitives in the
implementation of a para11el dot product , vectc = vecta .vectb, assuming that the
vectors are of size n and that p processing elements are available to run the algorithm.

#include <threads.h>
#include <stdio.h>

float vecta[n], vectb[n], vectc[n];
EVENT product;

main ()
{

int i;
float sum = 0.0;

product = ev-create (P, 1);

thr-spawn (P, dot-prod, 0);
ev-wait (product);
for(i = 0; i < P,. i++)

sum += vectc[i];
printf (" Dot Product: %/In ", sum);

ev-delete (product);
}

dot-prod (arg, p)

int arg;
int p;

{
int i;
vectc[p] = 0.0;

for(i =p*(nlP); i< (p+l)*n/P; i++)
vectc [p] += vecta[i] * vectb[i];.

ev-signal (product);
}

In this example, the system ca11 "thr-spawn", issued by the main thread, starts P
threads to run the procedure dot-prod with no common argument. The main thread
waits on the event product, which has been defined as an event to be signa11ed by p
threads (first parameter of the ev-create system ca11) and to be recognized by a single
thread (second parameter of the ev-create system ca11). Altematively, a synchronous
thread spawn could have been issued and, in this case, the waiting for the event
product would be implicit. Each of the p threads receives from the system information
on its order in the group of threads that has been created through the variable p,
ca1culates the dot product associated with the section number p of length n/P of vecta
and vectb, stores the result in the corresponding p position of vector vectc and signa1s

the event product. The main thread restarts on the occurrence of the event product and
sums up a11 the elements of vectc to find the fina1 result of the dot product.

8. PARALLEL PROGRAMMING ENVIRONMENTS

In addition to the native para11el programming environment to be provided by the
MULPLIX operating system, three other environments are currently under
implementation as libraries: the standard PVM, M-PVM and Pthreads.

The standard PVM (Para11el Virtua1 Machine) [Geis94] implementation will provide
the MULTIPLUS/MULPLIX platform with a widely used message-passing
environment which will enhance portability of severa1 para11el applications to the
system. The PVM implementation within the MULTIPLUS/MULPLIX plataform will
use "pipes" within the shared memory space to implement communication between
PVM tasks. Different threads within the same process will, in principIe, handle
communication work and the task processing itself .

M-PVM is an implementation of PVM which lacks tota1 compatibility with the
standard PVM, but can provide higher performance within the
MULTIPLUS/MULPLIX platform. Each PVM task is mapped on a MULPLIX thread
and the message passing functions are implemented using the MULPLIX shared
memory among threads of the same process. M-PVM is in fact a hybrid environment
which provides applications with efficient implementations of PVM message passing
functions and with the possibility of using shared memory. An initia1 implementaion
of M-PVM is currently in operation within the MULPLIX system which is running on
an EBC 32020 computer. Recently, M-PVM has a1so been made available on Solaris
with the implementation of a library of MULPLIX primitives on top of Solaris Light
Weight Processes.

Pthreads [Sun95] is the POSIX threads standard which has been defined by the
POSIX work group l003.4a. The implementation of Pthreads within the MULPLIX
system aims at offering to the user a more powerful and simple to use multi-threaded
para11el programming environment than the native MULPLIX environment. In
addition, such implementation opens new possibilities for a direct porting of para11el
applications to the MUL TIPLUS/MULPLIX platform.

The current Pthreads implementation within the MULPLIX system [Barr96a] is
running on the EBC 32020 computer or within Solaris SP ARCstations. It supports:
the creation of detached and joinable [Barr96a, Sun95] threads; fácilities for the
manipulation of thread attributes; the termination of threads; the definition of a private
memory for a given thread; mutual exclusion semaphores; conditional semaphores
[Barr96a, Sun95] ; and the unique execution of routines associated with unique
execution keys [Barr96a, Sun95].

9. PARALLEL ALGORITHMS

In this area of research, the study of efficient parallelization techniques for
Simulated Annea1ing and Genetic a1gorithms when applied to the placement problem
in VLSI circuits is under consideration. At first, the use of a dedicated Ethemet cluster
of homogeneous mM 25T workstations has been considered in this practica1 study.

Ho1land [Ho1l75] has proposed the Genetic a1gorithms as programs which could
reproduce the evolution process which is found in nature. The Genetic a1gorithms
manipulate a population of potentia1 solutions for an optimization or search problem.
They operate on an encoded representation of the solutions. Each solution has
associated with it a measure of its qua1ity, which is ca11ed fitness. A selection
mechanism forces the continuous evolution of the qua1ity of the generations. An
individua1 (a solution) ,with a high fitness va1ue has a greater probabiblity to
reproduce and survive. The recombination of genetic materia1 is simulated through a
crossover mechanism where pieces of two parent solutions are exchanged to make up
a new individua1. Another operation, ca11ed mutation, may cause random a1terations
in the encoded representation of an individua1.

Through a detailed experimenta1 ana1ysis [Knop96], it was obeserved that the correct
tuning of the control parameters is essentia1 for the Genetic a1gorithm to produce
nearly optima1 results for the placement problem. Once the correct tuning of the
control parameters was obtained, the a1gorithm proved to be very suitable for
para11elization. A proposa1 for the para11el implementation of the a1gorithm which
achieves a considerable reduction of the need for communication among processors
has been presented by Knopman [Knop96, Knop96a]. This implementation has
produced results with similar qua1ity to the sequentia1 version and exhibited a speed-
up around 6 in a cluster consisting of 8 workstations.

Simulated Annea1ing [Kirk 83] searches the problem solution space by performing
hi1l climbing moves. It can escape of a loca1 minimum by accepting, with some
probability , moves that generate a worse solution. This probability decreases as the
a1gorithm evolves to the fina1 solutio�. The a1gorithm usua11y converges to a nearly
optima1 solution but with a very high computationa1 cost. This has motivated research
work aiming at producing efficient Simulated Annea1ing para11el algorithms which are
reasonably sca1able and able to generate solutions as good as the sequentia1 algorithm.

Within Simulated Annea1ing, the temperature parameter, which controls the hi1l
climbing moves, can deeply affect the a1gorithm behaviour during its execution. It
has been shown that such dynamic behaviour offers new opportunities for the
exlploration of para11elism within the a1gorithm [Knop96]. The adopted para11elization
approach consists of changing the used a1gorithm according to the optimization
process phase. In fact, different para11elization techniques are used for high and low
temperature va1ues. This aspect can be regarded as a first leveI of adaptation
introduced in the a1gorithm.

The a1gorithm used for low temperatures is itself an adaptive version of the
speculative a1gorithm proposed by Sohn [Sohn95]. Within this adaptive a1gorithm, the

number of processors a1located to the solution of the placement problem and the
number of moves eva1uated per processor between synchronization points change
with the temperature. In its domain of operation this a1gorithm has produced results of
the same qua1ity as those generated by the seria1 version with an speedup near to 4
when a large circuit is to be placed and up to 10 processors in the cluster are used.

At high temperatures, an a1gorithm based on the para1lel eva1uation of independent
chains of module moves by each processor has been adopted. It is shown that results
with the same qua1ity of those produced by the seria1 version can be obtained when
shorter length chains are used in the para1lel implementation. For large circuits, a
speedup around 3 has been achieved by this a1gorithm with the use of 10 processors in
the cluster .

10. CURRENT STATUS AND PERSPECTIVES

The MULTIPLUS architecture definition and detailed logic design have been
completed. Currently, we are working in the implementation and test of an initia1
prototype with 8 Processing Elements and a single I/O Processor organized into up to
four clusters. Most of the hardware modules have been tested isolatedly. The
integration of the hardware modules within a cluster has been started considering the
use of 11/0 Processor and 2 Processing Elements.

In para1lel, we are undertaking the new design of the Processing Element based on the
use of two SuperSP ARc-n modules. As a research goa1, we intend to develop a VLSI
design for the Interconnection Network which will a1so support multicast and
broadcast message types. It is a1so under consideration the development of a Network
Interface which may support a 2nd-level cluster cache, which will help to hide the
network latency.

For the design of the NCESP ARC which should be completed in the first quarter of
1997, the evolution which is envisaged is the development of NCESPARC+,
including facilities for the efficient support to multi-threading in hardware and the
execution of severa1 instructions in p.ara1lel [Joao95, Joao96].

The implementation of the MULPLIX Operating System initia1 version as an
evolution of Plurix is currently running on EBC 32020 computers. A library which
implements MULPLIX system ca1ls has already been made available at the Solaris
environment using the concept of Light Weight Processes. The implementation of a
first version of a MULPLIX library which supports multi-threaded programming
[Barr96] has a1so been completed and tested. The implementation of M-PVM and
Pthreads is currently available on an EBC 32020 computer or on Solaris.

Current work is concentrated on the transport of MULPLIX to the MUL TIPLUS
platform; on the development of a memory management system for the MULPLIX
Operating System which implements techniques for maintaining inter-cluster cache
consistency by software; on the implementation of a standard PVM library using the
concept of "pipes" in memory; on the optimization of the M-PVM implementation

within the MULTIPLUS/MULPLIX platfonn; on the development of a first prototype
of a visua1 para1lel prograrnming tool; and on the implementation of para1lel versions
of the Simulated Annea1ing and Genetic a1gorithms for the M-PVM and the native
MULPLIX enviomments.

Up to now the development of the MULTIPLUS/MULPLIX research project has
produced severa1 papers in nationa1 and intemationa1 Conferences, some technica1
reports, 9 M.Sc. thesis and 1 Ph.D. thesis. Currently two M.Sc. thesis and two Ph.D.
thesis are under development within the project scope.

The first MULTIPLUS prototype is expected to be running under the MULPLIX

Operating System version by the second semester of 1997. The goa1 is to make this
proptotype available for use by other research groups, in particular those at the Federal
University of Rio de Janeiro, which are currently involved with work in several areas
that may benefit from the MULTIPLUS computing power and para1lel environment. It
is through such experience of use that we hope to have new insights into the problem
of para1lel processing and, therefore, be able to improve the perfonnance of the
MUL TIPLUS/MULPLIX system.

ACKNOWLEDGEMENTS

The author would like to thank FINEP, CNPq, RHAE and CAPESICOFECUB for the
support given to the development of this research work. The author would a1so like to
thank the research team directly involved with the development of the
MUL TIPLUS/MULPLIX project: Alexandre M. Meslin, Alexandre M. Gomes,
Aluísio de A. Cruz, Cláudio Miguel P. Santos, Delane Soares, Gerson Bronstein,
Gladstone Moisés, Jonas Knopman, Luiz Femando M. Cordeiro, Márcio O. Barros,
Márcio T. Young, Mário A. S. Barbosa, Mário João Jr., Paulo A. S. Simões, Sidney
de C. Oliveira

REFERENCES

[Ande90] "The perfonnance of spin lock altematives for shared memory

multiprocessors", Anderson, T.E., IEEE Transactions on Para1lel and Distributed
Systems, vol. 1, no.1, pp. 6-16, January 1990

[Aude90] "MULTIPLUS: Um Multiprocessador de Alto Desempenho", J.S. Aude et
a1ii, Proceedings ofthe X SBC Congress, Vitória, ES, pp. 93-105, July 1990

[Aude91] "Multiplus: A Modular High-Perfonnance Multiprocessor", J.S. Aude et
a1ii, Proc. of the EUROMICRO 91, Vienna, Austria, pp. 45-52, September 1991

[Aude94] "Multiplus/Mulplix: An Integrated Environment for the Development of
Para1lel Applications", J.S. Aude, Proc. of the IEEE/USP Intemational Workshop on
High Perfonnance Computing -WHPC'94, pp. 245-255, São Paulo, March 1994

[Aude95] "Implementation of the Multiplus/Mulplix Para11el Processing
Environment", J.S.Aude et a1., Proceedings of the VII SBAC-PAD -Canela, RS, July
1995;
[Aude95a] "Design of the NCESPARC Control Unit using the Alliance System",
J.S.Aude, Proceedings ofthe X SBMicro Congress -Canela, RS, August 1995;

[Aude96] "The Multiplus/Mulplix Para11el Processing Environment", J.S.Aude et a1. -
Proceedings of the Intemationa1 Syrnposium on Para11el Architectures, Algorithms
and Networks (I-SPAN 96) -Beijing, China, June 1996

[Aude96a] "A Comparative Ana1ysis of Two Approaches to the Design of the
NCESPARC Data Path", J. S. Aude, M. A. S. Barbosa, M. T. Young, A. M. Gomes,
Proceedings of the XI SBMICRO Congress, Águas de Lindóia, SP, August 1996, pp.
99-105

[Azev90] "MULPLIX: Um Sistema Operaciona1 tipo UNIX para o Multiprocessador
MULTIPLUS", Azevedo, G.P., Azevedo R.P., Figueira, N.R., Aude, J.S.,
Proceedings of the III Brazilian Symposium on Computer Architecture -Para11el
Processing, Rio de Janeiro, RJ, pp. 122-137, November 1990

[Azev93] "MULPLIX: Um Sistema Operaciona1 tipo Unix para Prograrnação
Para1ela", R.P. Azevedo, M.Sc. Thesis, COPPE/UFRJ, March 1993

[Azev93a] "Primitivas para Prograrnação Para1ela no MULTIPLUS", Azevedo, R.P.,
Azevedo, G.P., Silveira, J.T.C, Aude, J.S., Proceedings ofthe V Brazilian Syrnposium
on Computer Architecture, Florianópolis, pp. 761-775, September 1993

[Barb90] "Implementação de Microprocessador RISC com Arquitetura SP ARC", M.
A. S. Barbosa, N. R. Figueira, G. P. Silva, J. S. Aude, Proc. of the V SBCCI,.Ouro
Preto, MG, October 1990, pp. 121-131

[Barb92] "Unidade Lógica e Aritmética Rápida de 32 bits", M. A. S. Barbosa, A. R.
Sales, Proc. ofthe VIl SBCCI, Rio de Janeiro, RJ, September 1992, pp. 234-244

[Barb94] "Implementação e Verificação do Chip PMU CMOS8", M. A. S. Barbosa,
A. R. Sales, Proc. ofthe IX SBMICRO, Rio de Janeiro, RJ, August 1994, pp. 369-376

[Barb96] "Implementação em ASIC de um Árbitro de Barrarnento", M.A.S. Barbosa,
M. T .Young, A.M. Gomes, Proceedings of the IX SBCCI -Recife, Pemambuco,
March 1996

[Barr96] "Implementação de Bibliotecas Multi- Thread no Sistema Operaciona1
Mulplix", Barros, Márcio Oliveira; Aude, Júlio Salek, -Proceedings of the VIII
SBAC-P AD -Recife, PE -August 1996

[Barr96a] "Implementação do Padrão Pthreads para o Sistema Operacional Mulplix",
M. o. Barros, Technical Report NCE-01/96, September 1996

[Bron90] " Análise de Desempenho de Redes de Interconexão para Máquinas

Paralelas", Bronstein, G., Cruz, A.J.O, Duarte, O.C.M.B., Proc. of the m Brazilian
Symposium on Computer Architecture -Para1lel Processing, Rio de Janeiro, pp. 345-
360, Nov. 1990

[Bron91] "Projeto de uma Rede de Interconexão para uma Máquina Para1ela de Alto
Desempenho", G. Bronstein, M. Sc. Thesis, COPPE/UFRJ, 1991

[Bron93] "O Subsistema de Interconexão do Multiprocessador MULTIPLUS",
Bronstein, G., Proceedings of the V Brazilian Symposium on Computer Architecture,
Florian6polis, pp. 166-173, September 1993

[Bron96] "Project and Implementation of a High-PerformanceSwitching Element
Using EPLDs", Bronstein, Gerson, Proceedings of the XI SBMICRO Congress-
Águas de Lind6ia, SP -August de 1996- pp. 93-98

[Fa1l89] "Plurix: A multiprocessing Unix-like operating system", Fa1ler, N.,
Sa1enbauch, P., Proceedings ofthe 2nd Workshop on Workstation Operating Systems,
IEEE Computer Society Press, Washington, DC, USA, pp. 29-36, September 1989

[Geis94] "PVM3 Users's Guide and Reference Manua1", Geis, A., Oak Ridge
Nationa1 Laboratory, 1994

[HoI175] "Adaptation in Natura1 and Artificia1 Systems", Holland, J.H., University of
Michigan Press, Ann Arbor, 1975

[Joao95] "Compactação Loca1 de C6digo para uma Arquitetura SPARC VLIW",
M.João Jr., J.S.Aude -Proceedings of the VII SBAC -PAD, Canela, RS -July 1995

[Joao96] "Compactação de C6digo para Arquiteturas SPARC VLIW", M. João Jr., M.
Sc. Thesis, COPPE/UFRJ, January 1996

[Kele92] "Lazy Release Consistency for Software Distributed Shared Memory", P .
Keleher, A. L. Cox, W. Zwaenepoel, Proceedings of the 19th Intemationa1
Symposium on Computer Architecture, pp. 13-21, Gold Coast, Australia, May 1992

[Kirk83] "Optimization by Simulated Annea1ing", Kirkpatrick S., Gelatt C.D., Vecchi
M.P., SCIENCE, Volume 220, Number 4598, May 1983.

[Knop96] " Algoritmos Genéticos e Simulated Annea1ing: Aplicacão ao Problema de

Placement e Técnicas de Para1elização", J. Knopman -D.Sc. Thesis -COPPE/UFRJ -

Rio de Janeiro -May 1996

[Knop96a] "Para1elização de Algoritmos Genéticos Aplicados ao Problema de
Placement em Clusters de Estações de Traba1ho", Knopman, Jonas; Aude, Júlio Sa1ek,
-Proceedings of the VIII SBAC-P AD -Recife, PE, August 1996

[Kont95] "High Performance Software Coherence for Current and Future
Architectures", L.I. Kontothanassis, M.L. Scott, Joumal of Parallel and Distributed
Computing, Vol. 29, No.2, September 1995, pp. 179-195

[Lope92] "Síntese de Lógica Combinacional Multinível", E.P. Lopes Fo., M.Sc.
Thesis, COPPE/UFRJ , September 1992

[MesI90] "Sistemas de Memórias Multicache para uma Máquina Paralela MIMD:
Projeto MULTIPLUS", A.M. Meslin, A.C. Pacheco, Proceedings of the III Brazilian
Symposium on Computer Architecture -Parallel Processing, Rio de Janeiro, pp. 179-
193, November 1990

[MesI91] "Estudo de Arquiteturas de Memória Cache para o Multiprocessador
Multiplus", A.M. Meslin, M.Sc. Thesis, COPPE/UFRJ -August 1991

[MesI92] Meslin, A.M., Pacheco, A.C., Aude, J.S., "A Comparative Analysis of
Cache Memory Architectures for the MULTIPLUS Multiprocessor", Proceedings of
the EUROMICRO 92, Paris, France, pp. 555-562, September 1992

[0Iiv90] Oliveira, S.C., Aude, J.S., "O Subsistema de Memória de Massa do
Multiprocessador MULTIPLUS", Proceedings of the III Brazilian Symposium on
Computer Architecture -Parallel Processing, Rio de Janeiro, RJ, pp. 298-313,
November 1990

[0Iiv92] "Uma Avaliação do Impacto das Operações de EIS no Desempenho do
Multiprocessador MULTIPLUS", S.C. Oliveira, J .S. Aude, Proceedings of the IV
Brazilian Symposium on Computer Architecture -São Paulo, SP, pp. 379-394 ,
October 1992

[0Iiv92a] "Uma Proposta de Arquitetura de EIS para o Multiprocessador Multiplus",
S.C. Oliveira, M,Sc. Thesis, COPPE/UFRJ -February 1992

[Pete94] "An Evaluation of MultiprQcessor Cache Coherence Based on Virtual
Memory Support", K. Petersen, K. Li, Proceedings of the 8th Intemational Parallel
Processing Symposium, Cancún, Mexico, Apri11994, 158-164

[Pint96] "Projeto de Máquinas de Estado Finito usando o Sistema Alliance",
S.B.Pinto, G.Bronstein, J.S.Aude -Proceedings of the II mERCHIP Workshop, São
Paulo -SP, February 1996

[Sant94] "Silence: Uma Ferramenta para Síntese de Lógica Multinível", C. M. P.
Santos, E. P. Lopes Fo., J. S. Aude, Proceedings of the IX SBMicro Congress, Rio de
Janeiro/RJ, August 1994, pp. 477-487

[Serd96] "FPPR: Alocador e Roteador de Macroblocos para o Sistema Alliance", H.
Serdeira, J. S. Aude, Anais do IX SBCCI, Recife, PE, March 1996

[Silv91] "Estudo e Ava1iação de Arquiteturas RISC para uso em Sistemas
Multiprocessadores", G. P. Silva, M.Sc. Thesis, COPPE/UFRJ, June 1991

[Silv92] "Eva1uation of a SP ARC Architecture with Harvard Bus and Branch Target
Cache", G. P. Silva., J.S. Aude, Microprocessing and Microprogramming, V. 34-p.
157-160, Jan. 1993

[Sohn95] "Para11el N-ary Speculative Computation of Simulated Annea1ing",
Sohn,A., IEEE Transactions on Parallel and Distributed Systems, Vol. 6, No.10,
October 1995.

[Sun95] "Solaris Multithreaded Programming Guide", Sun Microsystems, SunSoft,
1995

[Youn96] "Unidade Lógica e Aritmética de Alto Desempenho", M. T. Young,
M.A.S.Barbosa- Proceedings of the n mERCHIP Workshop, São Paulo -SP,
February 1996

