


A Static Load Balancing Software for Parallel

..Applications

Cláudia Rita de Franco, Leonardo Silva Vida1, Adriano Joaquim de Oliveira Cruz

{ crfranco, leonardo, adriano} @nce.ufrj.br
"

Núcleo de Computação Eletrônica,
Universidade Federa1 do Rio de Janeiro

Cx Posta12324, Rio de Janeiro, RJ, CEP 20001-970

Abstract

This work describes the implementation and benchmarks applied to a load balancing software
designed to improve perfonnance of parallel applications running on networks of heterogeneous and
non-dedicated workstations.

A user leveI mechanism to gather workload infonnation about each node and the policy to
treat this infonnation in order to generate a precise snapshot of the workload of each node of the
parallel machine are described throughout this work.

An analysis of the main issues concerning workload evaluation is provided, along with a brief
explanation on the support o.ffered by current operating systems and ways to overcome their

problems.

Finally, results and interpretations of comparative tests made between BEC/PVM
applications and PVM applications are presented.

1 Introduction

Running parallel applications on computer networks is a cheaper a1temative to expensive
parallel computers. These networks are shared by a great number of users. But along the day, only
some computers are used or remain idle for large periods of time. The ability to identify idle
computers and spawn the processes of a para1lel application on them can give a considerable
performance improvement to any para1lel application. Furthermore, most users do not generate heavy
loads to their computers, so their computers can a1so host processes of the parallel applications.

A mix of fast and slow computers forms many networks. By giving preference to the faster
computers, the performance of the para1lel applications is further improved.



PVM (parallel Virtual Machine) [GEI94] is a tool that a1lows a heterogeneous collection of
workstations and supercomputers to function as a single parallel computer, which is ca1led a Virtual
Machine. Each node of the virtual machine is called a host and the processes forrning the parallel
application are ca1led tasks. PVM was chosen as our test bed for its high level of portability, simple
message passing prograrnming and ability to be insta1led by any user.

2 Load Balancing

The main goal of load balancing a para1lel application is to distribute work among the nodes
of a para1lel machine in order to obtain better performance. It is accomplished by giving a greater
portion of work to the faster and less loaded nodes.

A balanced parallel application may have other benefits. All tasks will have comparable
execution times since each one will receive a portion of work appropriated to its host capabilities. As
a consequence, the execution time of a parallel application will not be delayed by the slower task.

We can divide load balancing in two categories. The sirnpler one is called static load
balancing. This type of load balancing takes place before new tasks are spawned. It consists on
choosing the best hosts to spawn the tasks that will work in the same host throughout their execution.
Jackson and Humphres present a extension to PVM that provides static load ba1ancing [JAC 97,
HUM 95]. This extension requires that users run their own benchmarks in order to evaluate hardware
performance and the results must be given to the system and it is irnplemented as a modification to
the PVM source code.

Static load balancing cannot deal with changes in the workload of a host, since the best way to
deal with them is to move the task to a less loaded host. This mechanism is called task migration and
the load balancing that uses it is called dynamic load balancing. The mechanism of task migration is
able to move a task to a faster host, if it becomes available, even when the workload is stable.

Task migration is a complex mechanism, which involves a great dea1 of operating system's
work. MPVM [CAS 95] and CONDOR [LIT 97] are software tools that provide process migration
and dynamic load balancing.

3 BEC

BEC [FRA 98] is a normal PVM application that accepts requests from other PVM
applications in order to spawn their tasks. BEC neither changes PVM implementation, nor requires
any special privileges within PVM. It has its own set of functions that replaces some PVM functions.
BEC provides transparent load ba1ancing to user applications. BEC's current version is limited to
static load ba1ancing, but future versions may implement this mechanism.



The PVM's functions substituted arepvm-spawn andpvm-parent. The fornler is responsible
for the spawning of new tasks and the Iater infornls a task the identity of its parent task. The function
pvm-spawn is replaced by bec-spawn and the function pvm-parent is replaced by bec-parent. The
function bec-spawn is the point where PVM' s non-balanced tasks spawning mechanism is
substituted by BEC's Ioad balanced task spawning mechanism.

BEC is written in C and has been ported to the foIlowing operating systems: Linu.x, SunOS,
Solaris e AIX.

3.1 Architecture

BEC has three types of daemons: the master daemon, the probe daemon and the creator
daemon. Figure 1 shows BEC architecture with PVM acting as a cornrnunication layer between
BEC's daemons. pvmd3 is the pvm daemon, becd is the master daemon, becpd is the probe daemon
and beccd is the creator daemon.

Host 1

S vrnd3 [

, , ,
, , ' ,

, , \ ,
, , ,

, , ,
, becd \ :

, ,
\ ,

, ,
,
I
,
I
I
I
I
I
I
I
I
I
I6vrnd3 J

, ,, ,, ,, ,, ,, ,I ,I ,, ,, ,, ,, ,

Host 2 to N

Fig. 1 BEC's architecture



3.2 Master Daemon

The master daemon is the centre af BEC's architecture. There is only one instance of it serving
requests from tasks a1l over the virtua1 machine.

The master daemon spawns and controls the work done by the other BEC daemons, reacts to
changes in the virtual machine and answers the requests from client applications.

At the start up, the master daemon connects to PVM, gets the virtua1 machine configuration,
tries to spawn one probe daemon and one creator daemon in each host and-requests PVM for
notification on any change on the virtual machine. After start up, the master daemon starts listening to
requests from client tasks and communications from the other BEC's daemons.

3.3 Creator Daemons

The creator daemons are responsible for spawning new tasks in response to a call to
bec-spawn. The tasks are spawned by a call to pvm-spawn specifying the local host as the target
host. The creator daemons exist to speed up the spawning of new tasks on networks of any size.

If a creator daemon does not receive any message from the master daemon within a specified
period of time, it sends a specia1 message to the master daemon in order to discover if BEC is still
running. If there is no answer, it stops.

3.4 Probe Daemons

The probe daemons gather information about hardware capabilities and workload information
of each host in the virtual machine.

Should an attempt to send a message containing these statistics fails the probe daemon self-

destructs.

4 Performance Evaluation

In order to perform load balancing, BEC must have data about the performance of alI hosts
and must be able to make comparisons among them.

The current version of BEC combines a1l performance data from a host into a single number
ca11ed performance index.



The range of possible parameters used to eva1uate the perfonnance is very broad. However,
the two most important for BEC are the workload, which shows how much a host is being used, and
the hardware speed, which prevents BEC from choosing empty but slow hosts.

AlI UNIX versions have some way to probe for the workload, but the policy to access this
infonnation usua11y involves some special privileges. The hardware speed is trickier to obtain from
the operating systems. Therefore, BEC uses time benchmarks to obtain both va1ues.

BEC also considers some other parameters: the number of users, the number of terminaIs
and the number of active tasks spawned by BEC on a host. These are complementary parameters
used to modify the perfonnance index of alI the hosts.

The set of parameters used might be changed in future versions of BEC. The benchmark, the
meaning, and the methods to obtain each parameter are explained below.

4.1 Benchmark

This benchmark measures the execution time of a set of tests. The tests are a summation of an
integer series, a floating point summation and the copy of data blocks in memory. The summation
involves alI basic arithmetic instructions.

These tests represent the most common processing tasks carried out by parallel applications.
The span of the tests is limited by the hosts' resources consumed during the tests and the need to
exceed the usual Unix timeslice. Long duration tests would imply greater resource consumption,
affecting other tasks and degrading the host's perfonnance. Fast tests would not exceed the process ,

timeslice and the process would not be preempted, producing a fa1se workload measure.

The benchmark is carried out by the probe daemons on their respective hosts and sent to the
master daemon. The benchmark is repeated periodically to give an updated snapshot of the host's

perfonnance.

The probing interva1 can be changed by the function bec-probeinterval allowing the user to
define the best probing interval for his needs.

Workload Index (WI) -it is the measure of how loaded with active processes a host is. It is
proportional to the time elapsed during the execution of the benchmark. The time elapsed contains the
time the process was effectively running and the time the process was stopped while the other active
processes executed. It is a dynamic parameter collected periodically by the probe daemons.

Hardware Index (HI) -this parameter measures how fast the combination of hardware and
operating system is, it is proportional to the processor holding time necessary to accomplish a task.



The faster combinations should need less time to run, hence they have the lower values. It is obtained
by the sum of the user time and the system time the process uses to complete the benchmark. The
hardware index is a constant parameter taken once at the probe daemons start up.

Number of Users (NUser) -it is the number of users logged in a host. Each logged user
consumes part of the resources of a host, so it is a good policy to avoid hosts being used by many
users. It a1so prevents the para1lel application from disturbing other users. This parameter is collected
periodica1ly by the probe daemons reading the system's user login records.

Number of Terminais (NTty) -it is the tota1 number of terminals opened by the users of a
host, this number includes termina1s used in X sessions. More open terminals increase the possibility
of workload peaks. This parameter is collected by the probe daemons by periodically reading the

system's user login records.

Number of Tasks Spawned by BEC (NTask) -it is an important parameter that prevents
BEC from spawning large numbers of tasks through successive ca1ls to bec-spawn between
performance data gathering. It is updated by the master daemon when task is spawned by a creator
daemon or when a spawned task exits. By increasing this parameter after a task is spawned, the
performance index gets worse and the host is less likely to be chosen again. When the task exits the
host retums to its norma1 performance index. The updates in the parameter avoid the need to collect

performance data again for the host.

4.2 Performance Index

The Performance Index for a host is the combination of the results of the benchmark on that
host. The master daemon receives the results from the probe daemons and uses the following
equation to evaluate the performance index:

Performance Index = Scale x HI x WI x (1 + wu x NUser + wy x NTty + wt x NTask)

Scale is a range adjustment to the performance index. The factors wu, wy and wt are weights
to the last three parameters. BEC provides the function bec-weights to allow the user to fine-tune

these weights.

The lower the hardware index and the workload index are, the better is the performance of the
host, therefore the better hosts are those with lower performance indexes.



4.3 Task spawning

The process of task spawning begins with a call to the function bec-spawn. This function
forwards the request to the master daemon in a message containing alI parameters passed by the user,
some PVM environment variables and shell environment variables exported with PVM-EXPORT .

The master daemon selects the best hosts that match the user conditions and issue a request
for the creator daemons of the selected hosts to spawn the desired number of tasks. AlI the request
data is stored in a intemal list of task spawning requests in execution, so the master daemon can
continue to listen to other messages while it waits for the responses from the creator daemons. The
a1gorithm to choose hosts will be explained latter .

The creator daernons register the requesting task' s PVM environment in its own PVM
environment to guarantee that the spawned tasks will inherit the co1Tect environment, and then call
pvm-spawn to loca1ly spawn the tasks for its host. The resulting tasks' identifications are sent back to
the master daemon.

When the master daemon receives a response from a creator daemon, it updates the
co1Tesponding entrance on the list of task spawning requests in execution and updates the
performance index for the host. Once a11 the responses pending for the request arrive, the master
daemon sends the number of spawned tasks and their identifications to the requesting task.

BEC's heuristics to distribute tasks among the hosts uses the idea that it is better to create
more tasks on a faster host then adding a slower host to the set of hosts. Therefore, if host A has a
performance index that is ha1f the performance index of a host B, then host B should get half or less
the number of tasks assigned to host A.

Task spawning through BEC is slower than task spawning via PVM, but the gains in
performance fully compensate this disadvantage.

5 Comparative Tests

This section presents the results of tests comparing the performance of PVM parallel
applications running with or without BEC's support.

The data for the first and fourth tests were extracted from a program that generates pi. These
tests were designed to eva1uate workstation's global performance avoiding influences of network
load. The second test was a program that ca1culates a sca1ar product and the third a program that
computes the average and the standard deviation of a large set of points. These tests, besides eva1uate
the workstation's globa1 performance, measure the delays caused by large exchange of data on
common networks.



Each test was run 50 times on two different networks and produced the average execution

times shown here. The first network comprised five Sun4m workstations running Solaris and four

Sun4c workstations running SunOS. Nine Pentium PCs of equal configuration running Linux

composed the second one. Both networks remained fully operational.

During the tests, other researchers and students used an average of four workstations. The

workload probing was repeated in a 120 seconds interval.

The main goa1 of the tests on the SUN network was to prove that BEC is able to choose the

faster machines among a pool of hosts of different perfonnance. Whereas the main goa1 of the tests

on the Linux network was to show that BEC can choose the least loaded hosts to improve

perfonnance even when alI ri1achines have the same hardware characteristics.'

5.1 Numeric Computation of Pi Varying the Number of Points

The purpose of this test is to eva1uate the behaviour of a processor intensive para11el

application. The network load has minor influence in the execution times since only the borders of the

intervals assigned to the slave tasks and the partial results are exchanged between the tasks.

8 --' " ---"" ".""-" ".--"

~ 7
"'

'C
=

8 6
..

:!;-

~ 5
e
~
.§ 4
=..
~ 3

r.1
..

~ 2
..
..
...

<

o
500 1000 1500 2000 2500 3000 3500 4000

CPVM 1.2787 1.8549 2.5816 3.4945 4.4829 5.2123 6.0492 7.0773

.BEC 0.6736 0.7903 1.0353 1.2952 1.5269 1.8316 1.9551 2.1211

Number or Points (xl000)

Fig. 2 Numeric Computation of Pi on a Heterogeneous Network



4.5

4
-;;;
'Q
§ 3.5
...

..

"'

';;;' 3
..

e

~ 2.5
=
o

~ 2
...
..
~

~ 1.5
..
C/)
ca
..
..
..

<

0.5

0
500 1000 1500 2000 2500 3000 3500 4000

DpVM 0.8157 1.2577 1.8629 2.3002 2.7628 3.3031 3.7452 4.1974

.BEC 0.6926 0.9153 1.3377 1.4049 1.6339 1.9151 2.1139 2.3927

Number or Points (xl000)

Fig. 3 Numeric Computation of Pi on a Homogeneous Network

As Figure 2 shows, BEC' s performance gains on the heterogeneous network increased from

47% to 70% as the number of points increased. Similarly, Figure 3 shows that BEC's performance

gains on the homogeneous network increased from 15% to 44% as the number of points increased.

The performance gains increased with the number of points, because the time taken with data

exchanging between tasks is constant, so the total execution time becomes more dependent on the

performance of the host as the number of points increase. BEC chose the faster hosts, thus giving

more performance gains.

5.2 Scalar Product Varying the Size of the Vectors

This is a data intensive test, involving sending large vectors to the slave tasks and receiving a

floating point number as the partia1 result. The processing done by the slave tasks comprised two

products and a sum per point. So this test measures the behaviour of BEC with an application

requiring large data exchange and low processing.

Most of the execution time is taken by the time to transfer data, so this application is highly

network dependent.

BEC's performance gains on the heterogeneous network ranged between 20% to 33%, as

shown in Figure 4.



Figure 5 refers to the same tests run on a homogeneous network. BEC's performance gains

ranged between 6% and 12%, except for 10,000 points where BEC increased execution time by 28%.

This is explained by the execution time being too small to overcome the extra time to spawn tasks

required by BEC.

]4

~ ]2
~

'O
c
Q

~ ]0
~
~
..
5.-8E-o
c
Q

~ 6
~
~

...

~ 4
ca
..
..
;..

< 2

0
10 50 90 130 170 210 250

DpVM 0.9786 2.6349 4.7827 6.5454 8.9758 10.5587 12.9292.
.BEC 0.6523 2.]059 3.4333 4.8166 6.2091 7.6052 9.0721

Number ofPoints (xl000)

Fig. 4 Scalar Product of Two Vectors on a Heterogeneous Network

14 --

~ 12
~

'O
=
Q

~ 10
~
~
..
5.-8

E-o
c
Q

~ 6
"'
..
~

...

~ 4
ca
..
..
;..

< 2

0
10 50 90 130 ]70 210 250

DpVM 0.6685 3.0188 4.9966 7.0723 8.5953 11.1253 12.739]
.BEC 0.8573 2.7886 4.4925 6.2036 8.0553 9.8735 1].7032

Number of Points (xl000)

Fig. 5 Scalar Product of two Vectors on a Homogeneous Network



5.3 A verage and Standard Deviation of a Set Varying the Number of Points

This is another data intensive test. It consists on sending parts of a set of points to the slave
tasks and receiving back the partia1 sum to compute the average. The average is sent to the slave tasks

to compute the partia1 standard deviation.

12

'V; 10
'C
c

8
..
"'~ 8
"'
..
8

E=

.§ 6
=
..
..
O<~ 4
..
CI)
~
..
..

< 2

o
10 50 90 130 170 210 250 ,

CPVM 0.9775 2.5561 4.1991 6.0831 7.6927 9.4281 11.295
mBEC 0.6657 1.964 3.3241 4.5061 6.0279 6.8275 8.6094

Number ofPoints (x1000)

Fig. 6 A verage and Standard Deviation of a Set of Points on a Heterogenous Network

14

~ 12
"'

'C
c
=

.; 10
"'
..

8.-8
E-c
c
=

-g 6
..
..
O<

~
..
CI)
~
..
..
;..

<

10 50 90 130 170 210 250

CPVM 0.6865 2.9379 4.8823 6.6882 8.3373 10.9022 13.0316
.BEC 0.8717 2.6791 4.4075 6.1648 7.9158 9.7959 11.3324

Number ofPoints (x1000)

Fig. 7 A verage and Standard Deviation of a Set of Points on a Homogeneous Network



As Figure 6 shows, the performance gains attained by BEC, on the heterogeneous network,

were between 22% and 32%.

Figure 7 shows that for 10,000 points BEC increased the execution time by 28% on the

homogeneous network. For higher number of points, performance gains were between 5% and 13%.

5.4 Numeric Computation of Pi Varying the Number of Tasks

This test shows how BEC' s performance gains are affected by increasing the number of tasks,

which forces BEC to choose slower hosts.

Figure 8 shows the test made on the heterogeneous network. BEC obtained performance gains

until the number of tasks increased to five, above this va1ue BEC was forced to use the hosts with

slower hardware. The pure PVM' s applications could get performance gains a little further because of

BEC's task spawning time. BEC attained the best result with five tasks distributed over the five

Solaris workstations.

2.5 --;;;

] 2
o
"'
..

:!:-

"'
..

5 1.5
i=

=

.~

=
"'
..
~

~
..
=n
~
..

~ 0.5
<

0
2 3 4 5 6 7 8 9

CPVM 2.2382 1.7306 1.4742 1.3291 1.2852 1.2602 1.4894 1.8079
mBEC 1.3739 1.0496 0.853 0.8204 0.8942 1.1339 1.3361 1.8569

Number of Tasks (xl000)

Fig. 8 Nurneric Cornputation of Pi on a Heterogeneous Network

Figure 9 shows the test made on the homogeneous network. Pure PVM applications gained

performance as the number of tasks increased because the amount of work per task decreased. BEC

also gained performance while there were free hosts. As the loaded hosts were added, the

performance was reduced because the task spawning time on these hosts is longer .



2.5

~
'g 2

o
"'
~

~

"'
~

5 1.5
E=

c:

.~

=
"'
~
~

~
~
QI)
=
..

~ 0.5
<

0
2 3 4 5 6 7 8 9

DpVM 2.0389 1.6647 1.3401 1.2071 1.0156 0.9411 0.9037 0.8228
.BEC 1.3377 1.0424 0.9638 0.9145 1.1828 1.1874 1.0321 1.0086

Number of Tasks (xl000)

Fig. 9 Numeric Computation of Pi on a Homogeneous Network

6 Conclusions

The results obtained show the value of load ba1ancing to squeeze even more perforrnance

from computational resources. These perforrnance gains can be used to solve even more complex

problems.

BEC is completely functiona1 and has been successfully used in undergraduate classes

learning parallel programming and research activities.

The main advantage of BEC is the reduction of the execution time for parallel applications.

Another result is the ability of BEC to avoid busy workstations, decreasing the impact of parallel

applications to other users.

Work results also showed that the standard deviation of the execution times was reduced by

80% by comparison to pure PVM applications. This a1lows better prediction of the completion times

when para1lel applications are executed repeatedly.

The implementation of BEC a1lows easy porting of PVM applications, which can be done by

replacing a small number of function calls, with no changes on programming methods. BEC does not

require special privileges to be installed and used, allowing any user access to the gains of

perforrnance provided by load balancing.



7 References

[CAS 95] CASAS, Jeremy; CLARK, Dan; KONURU, Ravi; O1TO, Steve; PROUTY, Robert;
W ALPOLE, Jonathan. MPVM: A Migration Transparent Version of PVM, Technical
Report CSE-95-002, Dept. of Computer Science and Engineering, Oregon Graduate
Institute of Science & Technology, February 1995.

[FRA 98] FRANCO, Cláudia Rita de; VIDAL, Leonardo Silva. BEC -Balanceador Estático de
Carga para o PVM, B. Sc. Project, Federa1 University of Rio de Janeiro, 1998.

[GEI94] GEIST, AI; BEGUELIN, Adam; DONGARRA, Jack; JIANG, Weicheng; MANCHECK,
Robert; SUNDERAM, Vaidy. PVM: Parallel Virtual Machine A Users' Guide and Tutorial
for Networked Parallel Computing, MIT Press.

[:mJM 95] HUMPHRES, Chris W. A Load Balancing E.xtension for the PVM Software System, M.
Sc. Thesis, University of Alabama, 1995.

[JAC 97] JACKSON, David J; HUMPHRES, Chris W. A Simple Yet Effective Load Balancing
E.xtension to the PVM Software System. Para1lel Computing, vol. 22, Issue 12, February
1997, pp 1647-1660, North Holland

[LIT 97] LITZKOW, Michael; TANNENBAUM, Todd; BASNEY, Jim; LNNY, Miron. Checkpoint
and Migration of UNIX Processes in the Condor Distributed Processing System, Technical
Report #1346, University of Wisconsin-Madison Computer Sciences, Apri11997.


