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Resumo

Neste trabalho, estudamos o Fenômeno de Dissipação Anômala de enstrofia potencial para

a família de equações de Camassa-Holm Generalizadas (CHG) em um domínio periódico

bidimensional, que são obtidas como uma interpolação entre as equações de fluidos de

segundo grau e as equações de Camassa-Holm.

Neste contexto, primeiramente, provamos a existência e a unicidade da solução das

equações CHG. A existência é verificada por meio do método de Galerkin. Para a unicidade,

estabelecemos uma desigualdade diferencial e aplicamos uma desigualdade de tipo Grönwall.

Logo, demonstramos que, para valores de β no intervalo 1/2 < β ≤ 1, ocorre ausência de

dissipação anômala de enstrofia potencial. Por outro lado, para o caso β = 0, o sistema

admite dissipação anômala de enstrofia potencial, mais especificamente dissipação infinita.

A análise do fenômeno de dissipação anômala de enstrofia potencial foi realizada investi-

gando o limite invíscido das médias temporais de longo prazo das soluções das equações

CHG e logo identificando as médias temporais de longo prazo com as soluções estatísticas

estacionárias no espaço fase de vorticidade potencial.

Palavras-chave: Dinâmica de Fluidos, Soluções Estatísticas Estacionárias, Equações de

Camassa-Holm Generalizadas, Limite de Banach, Soluções Estatísticas Renormalizadas

para a Equação de Euler-α.





Abstract

In this work, we study the phenomenon of anomalous dissipation of potential enstrophy for

the family of Generalized Camassa-Holm equations (GCH) in a two-dimensional periodic

domain, which are obtained as an interpolation between second-grade fluid equations and

the Camassa-Holm equations.

In this context, we first prove the existence and uniqueness of solutions for the GCH

equations. Existence is established using the Galerkin method, while for uniqueness, we

develop a differential inequality and apply a Grönwall-type inequality. We then demonstrate

that for values of β in the range 1/2 < β ≤ 1, there is no anomalous dissipation of potential

enstrophy. On the other hand, in the case β = 0, the system exhibits anomalous dissipation

of potential enstrophy, specifically infinite dissipation.

The analysis of the phenomenon of anomalous dissipation of potential enstrophy was

carried out by investigating the inviscid limit of the long-term time averages of the solutions

to the GCH equations and subsequently identifying these long-term time averages with

stationary statistical solutions in the phase space of potential vorticity.

Keywords: Fluid Dynamics, Stationary Statistical Solutions, Generalized Camassa-Holm

Equations, Banach Limit, Renormalized Statistical Solutions for the Euler-α Equation.
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1 Introdução

A dinâmica dos fluidos é uma área central da matemática aplicada, com diversas

aplicações em disciplinas como física, engenharia entre outras. Um dos problemas funda-

mentais na análise dos sistemas dinâmicos que governam o comportamento dos fluidos é

entender como as soluções das equações diferenciais que os descrevem evoluem ao longo

do tempo. Em particular, as equações de Navier-Stokes (NS), ver [18, 29], juntamente

com suas variantes e generalizações, como as equações de fluidos de segundo grau, ver

[8, 20, 23], e as equações de Camassa-Holm (CH), ver [6, 7, 17], que têm sido objeto de

estudo. Essas equações são capazes de modelar fenômenos complexos, como turbulência e

dissipação de energia, que são características importantes no estudo dos fluidos.

As equações de movimento de fluidos de segundo grau são um modelo matemático

que descreve o comportamento de fluidos não-newtonianos, onde a viscosidade depende da

taxa de deformação. Essas equações são uma generalização das equações de Navier-Stokes,

incorporando termos adicionais que capturam a complexidade do fluxo em fluidos que não

seguem a lei de Newton da viscosidade. Descritas pelas equações:




∂tv + u · ∇v +
∑2

j=1 v
j∇uj − ν∆u = −∇p+ f

∇ · u = 0

(I − α2∆)u = v

u(x, 0) = u0

para os campos de velocidade u, v : T2 × [0,∞) → T
2, onde v é a velocidade filtrada e u a

velocidade não filtrada, f é uma força dada independente do tempo e o parâmetro ν > 0

fixo referente à viscosidade. Por outro lado, as equações de Camassa-Holm, introduzidas

por Camassa e Holm em 1993, foram originalmente derivadas para modelar a propagação

de ondas rasas em fluidos incompressíveis. Estas equações exibem a formação de ondas

solitárias e a possibilidade de soluções que desenvolvem descontinuidades finitas em tempo

finito, conhecidas como “breaking waves”, ver [4]. Várias generalizações dessas equações

foram propostas para modelar fluidos com diferentes propriedades físicas, ver [17], como

nosso caso, que consideramos as equações Camassa-Holm com amortecimento e forçamento:




∂tv + u · ∇v +
∑2

j=1 v
j∇uj − ν∆v + γv = −∇p+ f

∇ · u = 0

(I − α2∆)u = v

u(x, 0) = u0

para os campos de velocidade u, v : T2 × [0,∞) → T
2, f é uma força dada independente

do tempo, γ > 0, parâmetro referente ao amortecimento e ν > 0. Ambos parâmetros fixos.

Neste estudo consideramos as equações de fluidos em um domínio periódico, que são
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obtidas como uma interpolação entre as equações de Camassa-Holm (sistema regularizado

das equações de NS) e as equações de fluidos de segundo grau, com o parâmetro de

interpolação β no intervalo 0 ≤ β ≤ 1, descritas por:




∂tv + u · ∇v +
∑2

j=1 v
j∇uj − ν∆(I − α2∆)βu+ γv = −∇p+ f

∇ · u = 0

(I − α2∆)u = v

u(x, 0) = u0

para os campos de vetores u, v : T2 × [0,∞) → T
2, f é uma força dada independente

do tempo, os parâmetros γ > 0, ν > 0 e 0 ≤ β ≤ 1 fixos. O operador de interpolação,

denotado por (I − α2∆)β, é definido no toro em termos da série de Fourier como:

(I − α2∆)βϕ(x) =
∑

k∈Zn

(1 + 4π2α2|k|2)
β

2 ϕ̂(k)e2πik·x,

onde | · | é a norma euclidiana e ϕ̂(k) são os coeficientes de Fourier de ϕ. No caso que

o parâmetro de interpolação β = 0, obtemos as equações segundo grau para fluidos, e

no caso β = 1, obtemos as equações de Camassa-Holm, ambas equações forçadas e com

amortecimento.

Este trabalho concentra-se na análise do fenômeno de dissipação anômala de enstrofia

potencial, que é definida como a integral do quadrado da vorticidade potencial q(x, t), para

as equações da vorticidade potencial das equações de Camassa-Holm Generalizadas (CHG),

adotando o método apresentado em [11, 12]. A dissipação anômala refere-se a uma situação

em que ocorre dissipação de energia mesmo na ausência de viscosidade, especialmente

durante o processo de turbulência. A abordagem considerada para investigar a questão da

dissipação anômala consiste em utilizar as médias temporais de longo prazo, com o objetivo

de atingir um regime estacionário das equações viscosas, enquanto a viscosidade é levada

a zero. Ou seja, se denotamos por S(ν)(t, q0) a solução da equação de vorticidade potencial

para as equações de CHG no tempo t ≥ 0 a partir do dado inicial q0 e consideramos as

médias temporais de longo prazo para a dissipação de vorticidade potencial, dada por:

⟨|∇(I − α2∆)
β−1

2 S(ν)(t, q0)|
2⟩ = lim

T →∞

1

T

∫ T

0

∫

T2
|∇(I − α2∆)

β−1
2 S(ν)(t, q0)|

2 dx dt. (1.1)

Dizemos que a solução viscosa apresenta dissipação anômala de enstrofia potencial quando

o valor:

lim
ν→0

ν⟨|∇(I − α2∆)
β−1

2 S(ν)(t, q0)|
2⟩ > 0.

Segundo a teoria de Kolmogorov para a turbulência em fluidos, espera-se que, em regimes

com altos números de Reynolds, a dissipação de energia permaneça finita à medida que

a viscosidade tende a zero. Este comportamento é considerado “anômalo” porque, na

ausência de viscosidade, a dissipação de energia não deveria ocorrer. Esse fenômeno foi

conjecturado inicialmente por Onsager em 1949, ver os artigos [19, 22, 26], e tem sido um
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tema central em investigações teóricas e numéricas desde então.

As médias temporais de longo prazo para a dissipação de vorticidade potencial

(1.1), são identificadas com uma medida de probabilidade de Borel sobre o espaço fase da

vorticidade potencial, denominada solução estatística estacionária, ver [11, 12, 15, 16].

Por outro lado, contrastamos a analise feita no capítulo 3 com o resultado do

capítulo 4, onde construímos uma solução das equações de vorticidade potencial para as

equações de fluidos de segundo grau, que admite dissipação. A construção desta solução é

a partir de uma autofunção do operador (I − α2∆) e uma solução de um P.V.I adequado.

A estrutura desta tese é organizada da seguinte forma: no capítulo 2, apresentamos

a fundamentação teórica necessária para o estudo das equações de CHG, abordando

a existência e unicidade da solução. A existência da equação CHG é abordada por

meio do método de Galerkin, enquanto que a unicidade foi tratada desenvolvendo uma

desigualdade diferencial para a diferença de soluções, que satisfazem a equação, e aplicando

uma desigualdade de tipo Grönwall.

O Capítulo 3, foca no estudo do fenômeno de dissipação anômala para as equações de

vorticidade potencial das equações de CHG. O capítulo dividi-se em 5 seções, na primeira

seção estudamos a compacidade relativa da semi-órbita positiva, um fato importante, já que

sobre este conjunto serão suportadas as soluções estatísticas estacionárias. Conseguimos

a compacidade relativa, estimando a norma de Sobolev fracionária || · ||Hβ com β > 0

e aplicando o Teorema de Rellich-Kondrachov. Na segunda seção estudamos o limite

invíscido das equações estacionárias de Camassa-Holm Generalizadas e mostramos que

este limite é uma solução estatística renormalizada para a equação invíscida. Na terceira

seção introduzimos as soluções estatísticas estacionárias no espaço fase de vorticidade

potencial para as equações CHG. Para isso, precisaremos de uma classe de funcionais teste,

que também serão introduzidos essa seção. Logo, estabelecemos os “Teorema Compacidade

relativa e balanço” para as soluções estatísticas estacionárias no espaço fase de vorticidade

potencial, que bordam a existência de uma subsequência convergente de uma sequência de

soluções estatísticas estacionárias dadas e uma equação de balanço de enstrofia potencial

no sentido das soluções estatísticas estacionárias que definiremos nessa seção. Na quinta

seção definimos as médias temporais de longo prazo como um limite de Banach e como

este limite de Banach é identificado com as soluções estatísticas estacionárias.

O Capítulo 4, apresentamos uma solução para as equações da vorticidade potencial para

as equações de fluidos de segundo grau, que admite dissipação anômala.

Finalmente, o Capítulo 5 apresenta as conclusões do trabalho.
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2 Existência e Unicidade das equações de

Camassa-Holm Generalizadas

Neste capítulo iremos demonstrar a existência e unicidade da solução para as equa-

ções de Camassa-Holm Generalizada (CHG) utilizando o método de Galerkin. Assumiremos

condições de fronteira periódicas. Isto é, consideramos um domínio periódico definido por

T
2 := [0, 1]2 e a solução periódica em cada direção espacial. O toro 2−dimensional, pode-se

identificar com o espaço R
2/Z2. Assim, para cada u ∈ L2(T2), u é expandida em uma série

de Fourier:

u(x) =
∑

k∈Z2

û(k)e2πik·x com û(k) =
∫

T2
u(x)e−2πik·x dx.

O capítulo será dividido em 3 seções: Definição da equação de Camassa-Holm Generalizada,

demonstração da existência da solução e demonstração da unicidade da solução.

2.1 Equações de Camassa-Holm Generalizadas

As equações de Camassa-Holm Generalizadas neste estudo são definidas como a

interpolação entre as equações de Camassa-Holm e a equações de fluidos de segundo grau.

Ambos sistemas usados na modelagem de fluidos.

Introduzimos as equações de Camassa-Holm Generalizadas:




∂tv + u · ∇v +
∑2

j=1 v
j∇uj − ν∆(I − α2∆)βu+ γv = −∇p+ f

∇ · u = 0

(I − α2∆)u = v

u(x, 0) = u0

(2.1)

para os campos de vetores u, v : T2 × [0,∞) → T
2, f é uma força dada independente do

tempo, os parâmetros γ > 0, ν > 0 e 0 ≤ β ≤ 1 fixos.

Se consideramos o forçamento e o dado inicial com média zero, obtemos que a

média da solução da equação (2.1) permanece invariante. De fato, utilizando integração

por partes e que o campo u(x, t) tem divergência nula, temos que o termo não linear na

equação (2.1) se anula. Desse modo, obtemos que:

d

dt

∫

T2

(
u(x, t) − α2∆u(x, t)

)
dx+ γ

∫

T2
u(x, t) dx =

∫

T2
f(x) dx.

por outro lado, pela periodicidade espacial da solução, temos que
∫

T2
∆u(x, t) dx =

∫

T2
∇ · (∇u(x, t)) dx =

∫

∂T2
(∇u(x, t)) · n⃗ ds = 0.
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Por conseguinte,

d

dt

∫

T2
u(x, t) dx+ γ

∫

T2
u(x, t) dx =

∫

T2
f(x) dx.

equivalentemente obtemos

d

dt


eγt

∫

T2
u(x, t) dx


 = eγt

∫

T2
f(x) dx. (2.2)

Observe que, como assumimos que,
∫

T2
f(x) dx = 0,

então a equação (2.2) é igual a zero. Integrando de 0 a t, temos que

∫

T2
u(x, t) dx =



∫

T2
u0(x) dx


e−γt

onde u(x, 0) = u0(x) é o dado inicial. Isto é, a média da solução é invariante desde que

a média do dado inicial seja zero. Neste trabalho consideraremos forçamentos e dados

iniciais com médias espaciais zero, ou seja, assumiremos
∫

T2
u0(x) dx =

∫

T2
f(x) dx = 0.

Apresentamos os espaços de funções e operadores que serão utilizados ao longo

deste capítulo.

Em seguida, definimos o subespaço linear,

Ė =



φ ∈ (L1(T2))2 :

∫

T2
φ(x) dx = 0



,

Consideramos por E , o subconjunto de Ė definido por:

E :=



φ ∈ Ė : φ é um polinômio trigonométrico com valor vetorial e ∇ · φ = 0



.

Seja o espaço H o fecho de E em L2(T2) e seja o espaço V o fecho em H1(T2).

Observe que H e V herdam os produtos internos e as normas de L2 e de H1

respectivamente. Introduzimos a seguinte notação de produto interno e norma para H:

(u, v)H =
∫

T2
u · v dx e ||u||H = (u, u)

1
2
H , (2.3)

para u, v ∈ H. De igual maneira, introduzimos a notação de produto interno e norma para

V :

(w, z)V = (∇w,∇z)H =
∫

T2
∇w · ∇z dx e ||w||V = (w,w)

1
2
V , (2.4)

para w, z ∈ V .



2.1. Equações de Camassa-Holm Generalizadas 27

Vamos precisar usar um operador linear especial chamado de operador de Stokes,

definido por

S := −P∆,

onde P : L2(T2) → H é o projetor ortogonal de Leray-Helmholtz. O domínio D(S) do

operador de Stokes é dado por H2(T2) ∩ V . Note que, devido às propriedades do operador

de Leray-Helmholtz em domínios periódicos, temos que:

−P∆(u) = −∆P(u).

Por conseguinte, o operador de Stokes é redefinido como

S(u) := −∆u,

para toda u ∈ D(S). Desse modo, o operador de Stokes preserva propriedades relevantes

do −∆, a saber: é um operador auto-adjunto, positivo e tem inversa compacta. Assim que,

existe uma família de campos de vetores, (wk)k∈N, que são autofunções do operador S e,

pelo Teorema de regularidade elíptica, essa família de autofunções resultam ser suaves.

Além disso, (wk)k∈N é uma base ortonormal em H. Associada a essa família de autofunções,

há uma sequência de autovalores (λk)k∈N que são positivos e não decrescente, satisfazendo

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ . . .

Logo, qualquer elemento u ∈ H pode-se representar como:

u(x) =
∞∑

k=1

û(k)wk(x) com û(k) = (u,wk)H , (2.5)

Além disso, (wk)k∈N forma uma base ortogonal em V . Isto é, se consideramos wk e wj duas

autofunções do operador de Stokes e calculamos o produto interno em V , temos que

(wk, wj)V = (∇wk,∇wj)H = (−∆wk, wj)H = λk(wk, wj)H = λkδk,j,

onde δk,j é a função delta Kronecker. Dessa maneira, vemos que a família de autofunções

do operador de Stokes é uma base ortogonal em V .

Dado que u(·, t) para cada t tem média zero, então a desigualdade de Poincaré nos

garante que as normas || · ||H1 e || · ||V são equivalentes. Isto é, existem constantes positivas

C1 e C2 tal que:

C1||u||V ≤ ||u||H1 ≤ C2||u||V ,

para toda u ∈ V . Por outro lado, é fácil ver que a norma de || · ||H1 é equivalente à norma

|| · ||H1
α

definida por

||u||2H1
α

:= ||u||2H + α2||∇u||2H , (2.6)

para todo u ∈ V . Além disso, a norma || · ||H1
α

é induzida pelo produto interno

(u, v)H1
α

= (u, v)H + α2(∇u,∇v)H , (2.7)
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para u, v ∈ V .

Faremos uso de outro operador, conhecido como o operador de Bessel−α de ordem

s. Este operador denotado Js
α, é definido no toro por meio dos coeficientes de Fourier. Para

s ∈ R, o operador

Js
α := (I − α2∆)

s
2 ,

aplicado a u ∈ E é dado por:

Js
αu(x) =

∑

k∈Z2

(1 + 4π2α2|k|2)
s
2 û(k)e2πik·x, (2.8)

onde |k| é a norma euclidiana do vetor k ∈ Z
2 e û(k) são os coeficientes de Fourier de u:

û(k) =
∫

T2
u(x)e−2πik·x dx.

A seguir, abordamos algumas propriedades do operador de Bessel−α de ordem s que serão

importantes para o desenvolvimento de nosso trabalho:

O operador de Bessel−α de ordem s ∈ R é um operador auto-adjunto, positivo.

Para s < 0, o operador é compacto e limitado em L2(T2) de norma menor e igual 1. Para

s ≥ 0, o operador Js
α é invertível e a sua inversa J−s

α é novamente um operador de Bessel,

definido pela fórmula:

J−s
α u(x) =

∑

k∈Z2

(1 + 4π2α2|k|2)− s
2 û(k)e2πik·x.

Além disso, o operador de Bessel−α induz uma serie de espaços, os quais serão utilizados

ao longo de nosso trabalho. De fato, para s ≥ 0, o espaço de Sobolev Hs
α(T2) consiste de

todos os polinômios trigonométricos u para a qual a norma ||u||Hs
α

é finita onde

||u||Hs
α

:= ||Js
αu||H . (2.9)

Por outro lado, o operador Js
α possui uma propriedade valiosa: ele é linear em s. Isto é,

para todo β, γ ≥ 0, temos que Jβ+γ
α = Jβ

αJ
γ
α . De fato, para qualquer β, γ ≥ 0 e u ∈ E ,

temos que

Jβ+γ
α u(x) = (I − α2∆)

β+γ

2 u(x)

= (I − α2∆)
β

2

[
(I − α2∆)

γ

2 u(x)
]

= Jβ
α((I − α2∆)

γ

2 u(x))

= Jβ
α(Jγ

αu(x)).

A partir dessa propriedade e que o operador de Bessel−α é auto-adjunto, podemos redefinir

via operador de Bessel−α, o produto interno em V dado por (2.7). De fato, aplicando

integração por partes, vemos que

(u, u)H1
α

= (u, u)H + α2(∇u,∇u)H

= (u, v)H − α2(∆u, v)H

= (J2
αu, u)H .
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Dado que Jβ+γ
α = Jβ

αJ
γ
α para todo β, γ ≥ 0 e o fato que o operador de Bessel−α é auto

adjunto. Segue-se que:

(u, u)H1
α

= (J2
αu, u)H = (J1

αu, J
1
αu)H . (2.10)

De igual forma como acontece com as normas || · ||H1 e || · ||H1
α
, temos também

que para as normas || · ||Hs e || · ||Hs
α

são equivalentes para s > 0 onde a norma || · ||Hs é

induzida pelo operador de Bessel−α com α = 1, ver Proposição 22 do Apêndice A.

No estudo dos operadores, um fato importante é encontrar espaços onde tais opera-

dores sejam limitados. Pelo que um aspecto importante neste trabalho, é obter estimativas

do operador de Bessel−α de ordem s entre os espaços Hs, as quais, conforme discutido

no parágrafo anterior, são transferidas para os espaços Hs
α e vice-versa. Desse modo,

destacamos a propriedade: Sejam s, σ ∈ R. O operador Jσ
α é um isomorfismo entre os

espaços Hs(Tn) e Hs−σ(Tn), ver o livro de Stein ([28] pag 135). Além disso, fazendo uma

modificação ao Teorema de Rellich-Kondrachov, ver o livro de Temam [29], temos que, o

espaço Hs(T2) está compactamente mergulhado em L2(T2) para todo s > 0.

Neste ponto, incorporaremos um operador de interpolação, desenvolvido especifica-

mente para nosso estudo. Seja Iβ : D(Iβ) ⊂ H → H, definido por

Iβ := ∇Jβ
α = ∇(I − α2∆)

β

2 (2.11)

para 0 ≤ β ≤ 1, onde D(Iβ) é dado por

D(Iβ) := Dom
(
∇Jβ

α

)
= {u ∈ V : ∇Jβ

αu ∈ L2(T2)}.

Note que se u ∈ H1+β(T2) ∩ V , então u ∈ D(Iβ). De fato, como as normas V e H1 são

equivalentes, temos como consequência que as normas V e H1
α também são equivalentes.

Desse modo, se u ∈ H1+β(T2) ∩ V vemos que

||∇Jβ
αu||H = ||Jβ

αu||V ≤ C1||J
β
αu||H1

α

= C1||J
1
αJ

β
αu||L2 = C1||J

1+β
α u||L2

= C1||u||H1+β
α

.

Por outro lado, se u ∈ D(Iβ), temos que u ∈ V e ∇Jβ
αu ∈ H. Assim,

||u||H1+β
α

= ||J1+β
α u||H = ||J1

αJ
β
αu||H

= ||Jβ
αu||H1

α
≤ C2||J

β
αu||V

≤ C2||∇J
β
αu||L2 .

Portanto, o domínio D(Iβ) do operador de interpolação é dado por H1+β(T2) ∩ V .

Por outro lado, sabemos que H1+β(T2) está compactamente mergulhado em H1(T2)

para todo β > 0, e dado que as normas || · ||Hs e || · ||Hs
α

são equivalentes para t > 0.
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Segue-se que, o espaço H1+β
α (T2) está compactamente mergulhado em H1

α(T2) para β > 0.

Desse modo, concluímos que D(Iβ) está compactamente mergulhado em V .

Na continuação, introduzimos um subespaço vetorial de V que será importante para

nosso trabalho, já que, sobre este, estudaremos o fenômeno de dissipação anômala para

as equações de Camassa-Holm generalizadas. Tal subespaço envolve o operador Curl em

2D, um operador bem conhecido na literatura matemática, mas que para efeitos de maior

claridade lembramos aqui. O operador Curl aplicado ao campo de vetores u = (u1, u2) ∈ V ,

definido de T
2 para V , é dado por:

Curl(u) ≡ ∂x2u1 − ∂x1u2 ≡ ∇⊥ · u (2.12)

onde ∇⊥ := (−∂x2 , ∂x1). Uma relação interessante a ressaltar, é que a norma L2 do Curl(u)

e ∇u coincidem. De fato, Calculamos a norma L2 do operador Curl aplicado ao campo

u ∈ V como sendo

||Curl(u)||2L2 =
∑

k∈Z2

|k⊥|2|û(k)|2 =
∑

k∈Z2

|k|2|û(k)|2 = ||∇u||2L2 , (2.13)

onde k⊥ é o vetor perpendicular a k em Z
2. Agora, com todo o anterior, definimos nosso

subespaço de V por:

W :=
{
u ∈ V : CurlJ2

αu ∈ L2(T2)
}
.

Agora, estabelecemos uma definição de solução para nosso sistema (2.1), para

este fim, simplificaremos nosso sistema projetando sobre espaços de divergência nula,

definidos anteriormente. A maneira de conseguir este objetivo é aplicando o projetor de

Leray-Helmohltz denotado por P.

O projetor de Leray é um operador que projeta um campo vetorial no espaço dos campos

vetoriais de divergência nula. No contexto do toro T
2 = R

2/Z2, é definido da seguinte

forma: para o campo U , temos que

P(U)(x) :=
∑

k∈Z
2

k ̸=0


Û(k) −

Û(k) · k

|k|2
k


eik·x. (2.14)

O qual é um operador linear, auto-adjunto e contínuo em Hs(T2), para todo s ≥ 0.

Observamos que o novo termo não linear é denotado por:

B(u, v) = P


(u · ∇)v +

2∑

j=1

vj∇uj


 . (2.15)

Vamos ver que a imagem do operador B em V × V é V ′, onde V ′ representa o espaço dual

de V . Definimos, o operador bilinear B de V × V para V ′ como sendo

⟨B(u, v), w⟩V ′×V =
∫

T2


(u · ∇)v · w +

2∑

j=1

vj∇uj · w


 dx, (2.16)
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para todo w ∈ V . Este operador pode ser estendido continuamente de V ×V para V ′. Para

ver que B(u, v) está bem definido e é limitado, basta aplicar a desigualdade de Hölder e a

desigualdade de Ladyzhenskaya ver ([18] pag 17), a qual é definida para o caso 2D por:

||u||L4 ≤ C||u||
1
2

L2 ||u||
1
2

H1 (2.17)

para toda u ∈ H1. De fato, dados u, v, w ∈ V e aplicando a desigualdade de Hölder com

expoentes (4, 4, 2). Temos que

|⟨B(u, v), w⟩V ′×V | ≤ ||u||L4 ||∇v||L2||w||L4 + ||v||L4||∇u||L2 ||w||L4

Logo, aplicando a desigualdade de Ladyzhenskaya dada em (2.17). Obtemos que

|⟨B(u, v), w⟩V ′×V | ≤ C1||u||
1
2

L2 ||u||
1
2

H1 ||∇v||L2||w||
1
2

L2||w||
1
2

H1

+ C2||v||
1
2

L2 ||v||
1
2

H1 ||∇u||L2||w||
1
2

L2||w||
1
2

H1 .

Por último, aplicando a desigualdade de Poincaré e o fato que a norma H1 e a norma V

são equivalentes. Concluímos que:

|⟨B(u, v), w⟩V ′×V | ≤ C3||u||V ||v||V ||w||V .

Por outro lado, consideramos u, v ∈ V e w ∈ D(Iβ) ⊂ V , e aplicamos a desigualdade de

Hölder, obtemos uma estimativa da forma,

|⟨B(u, v), w⟩V ′×D(Iβ)| ≤
(

||u||L2 ||∇v||L2 + ||v||L2||∇u||L2

)
||w||L∞ .

Dado que H1+β(T2) está continuamente mergulhado em L∞(T2) para todo β > 0, segue-se

que

|⟨B(u, v), w⟩V ′×D(Iβ)| ≤ Cα,β||u||V ||v||V ||w||D(Iβ).

Outro termo importante a ser considerado, é o termo viscoso. Pois ele interpola

entre as equações de Camassa-Holm e as equações de fluidos de segundo grau. No contexto

do toro, há um fato simples, mas importante e é que o projetor de Leray-Helmohltz comuta

tanto com o operador Laplaciano quanto com o operado (I−α2∆)β, este último é devido a

que a divergência comuta com ele. Nosso operador, −∆(I−α2∆)βu, de D(Iβ) para D(Iβ)′

é definido por:

⟨−∆(I − α2∆)βu,w⟩D(Iβ)′×D(Iβ) =
∫

T2
Iβ(u) · Iβ(w) dx, (2.18)

para todo w ∈ D(Iβ). Este operador pode ser estendido continuamente de D(Iβ) para

D(Iβ)′. Para ver que o operador, −∆(I−α2∆)βu, está bem definido e é limitado. Aplicamos

a desigualdade de Cauchy-Schwarz a (2.18). Isto é,

|⟨−∆(I − α2∆)βu,w⟩D(Iβ)′×D(Iβ)| =

∣∣∣∣∣∣

∫

T2
Iβ(u) · Iβ(w) dx

∣∣∣∣∣∣
≤ ||Iβ(u)||L2 ||Iβ(w)||L2 .
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para w ∈ D(Iβ). Desse forma, obtemos o sistema de equações equivalente a (2.1):




∂tv +B(u, v) − ν∆(I − α2∆)βu+ γv = Pf

(I − α2∆)u = v

u(x, 0) = u0

(2.19)

Assumiremos que Pf = f , caso contrário, adicionaremos a parte do gradiente de f à

pressão modificada e renomearemos Pf por f .

2.2 Existência de solução

Nesta seção, introduzimos a definição de solução fraca para as equações de Camassa-

Holm generalizadas e demostraremos a existência de soluções para essas equações através

do método de Galerkin.

A seguir introduzimos a definição de solução fraca para o sistema (2.19).

Definição 1. Seja f ∈ H e T > 0. Dizemos que

u ∈ C
(
[0, T );V

)
∩ L2(0, T ;D(Iβ)) tal que

du

dt
∈ L2(0, T ;D(Iβ)′)

é uma solução fraca para o sistema (2.19) no intervalo [0, T ) se satisfaz:

[
(u(t), w)H1

α
− (u(t0), w)H1

α

]
+
∫ t

t0

∫

T2
B(u, v)(s) · w dx ds

+ ν
∫ t

t0

∫

T2
∇(I − α2∆)

β

2 u(s) · ∇(I − α2∆)
β

2w dx ds (2.20)

+ γ
∫ t

t0

(u(s), w)H1
α
ds =

∫ t

t0

∫

T2
f · u(s) dx ds,

para todo w ∈ D(Iβ), para todo t > t0 e para quase todo t0, t ∈ [0, T ). Além disso,

u(0) = u0 ∈ V .

Em seguida, enunciamos o Teorema de existência para as equações de Camassa-

Holm generalizadas definidas no sistema (2.19).

Teorema 2. Sejam f ∈ V , u0 ∈ W , ν, γ, α > 0 parâmetros fixos e 0 < β ≤ 1. Então para

todo T > 0, existe uma solução para o sistema (2.19) sobre [0, T ) no sentido da Definição

1 e satisfaz a equação de balanço de energia

1

2

d

dt
||u||2H1

α
+ ν||∇(I − α2∆)

β

2 u||2L2 + γ||u||2H1
α

= (f, u)L2 (2.21)

no sentido fraco para t ∈ (0, T ). Mais ainda, u ∈ L∞(0, T ;W ).

Demonstração. O caso β = 1 corresponde às equações de Camassa-Holm e foi tratado

em [21]. A seguir, analisamos o caso quando 0 < β < 1. Devido à extensão da prova do

Teorema 2, dividiremos a demonstração em quatro passos:
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• Problema aproximado;

• Estimativas de energia;

• Extraindo subsequências convergentes;

• Passando ao limites.

Passo 1: Problema Aproximado

Neste primeiro passo, provamos a existência global de soluções para um sistema

de equações diferenciais ordinárias (EDO’s) induzido por (2.19), utilizando o método de

Galerkin.

Sejam as autofunções do operador de Stokes, (wk)k, que pelo teorema de regulari-

dade elíptica são funções suaves. Além disso, elas formam uma base ortonormal em H e

ortogonal em V . Consideramos o subespaço de dimensão finita gerado pelas primeiras m

autofunções do operador de Stokes denotado

Hm = span{w1, . . . , vm}

e o operador de projeção ortogonal, Pm, do espaço H sobre o subespaço Hm definido por:

Pm : H −→ Hm

v 7−→ Pm(v) = vm :=
m∑

k=1

(v, wk)L2wk.

Lembramos que Pm é auto-adjunto e limitado nas normas dos espaços H e V definidas em

(2.3) e (2.4) respectivamente. Além disso, observamos que

lim
m→∞

Pmv = v.

O limite pode ser tomado em H e em V . O procedimento de Galerkin aplicado à equação

(2.19) induz um problema aproximado de ordem m:




d

dt
vm + PmB(um, vm) − ν∆(I − α2∆)βum + γvm = fm

(I − α2∆)um = vm

um(·, 0) = Pmu0.

(2.22)

Procuramos um em C1([0, T ];Hm), de modo que

um(x, t) =
m∑

k=1

ηk(t)wk(x) (2.23)

com ηk(t) ∈ C1([0, T ]) que satisfaz, para toda φm ∈ Hm, a equação diferencial

 d

dt
vm(t), φm




L2

+
∫

T2
PmB(um(t), vm(t)) · φm dx+ γ(um(t), φm)H1

α
+

+ ν
∫

T2
∇(I − α2∆)

β

2 um(t) · ∇(I − α2∆)
β

2φm dx = (fm, φm)L2 (2.24)
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assim como a condição inicial

(um(0), φm)L2 = (u0, φm)L2 . (2.25)

Dado que a família de autofunções, (wk)k, são ortonormais em H, então as k-ésimas

componentes de um e f estão definidas por:

ηk(t) = (um, wk)L2 (2.26)

ζk = (fm, wk)L2 , (2.27)

para k = 1, 2, . . . ,m. Assim, o sistema (2.24) e (2.25) é equivalente ao sistema EDO’s para

ηk(t) da forma 



dηk

dt
= F (ηk)

ηk(0) = (u0, wk)L2

(2.28)

onde

F (ηk) =
1

1 + α2λk


ζk −

m∑

l,i=1

[
(1 + α2λi)ηiηlBl,i,k +

2∑

j=1

(1 + α2λl)η
j
l η

j
iB

j
l,i,k

]

− νλk(1 + α2λk)βηk − γ(1 + α2λk)ηk




com

Bl,i,k = (wl · ∇)wi · wk e Bj
l,i,k = wj

l (wk · ∇)wj
i ,

para cada k = 1, 2, . . . ,m e 0 ≤ t ≤ T . Como F é uma aplicação não-linear quadrática,

ela é localmente Lipschitz continua com relação a η, o qual é o vetor cujas componentes

estão definidas em (2.26). Portanto, pelo Teorema de Picard, existe um intervalo [0, Tm]

com 0 < Tm ≤ T e um vetor η(t) de classe C1 tal que η(t) é solução única do sistema de

EDO’s (2.28) nesse intervalo. Consequentemente, a função um ∈ C1([0, Tm);Hm), definida

em (2.23), resolve o problema (2.24).

Passo 2: Estimativa de Energia

No segundo passo, nosso objetivo é garantir que o vetor η(t) = (ηk(t))m
k=1 existe por

tempo infinito, para cada m fixo. Isso significa que, baseado no Teorema de continuidade

de soluções de EDO’s, ver o Teorema 4.1 do livro ([9] cap 1), basta mostrar que o vetor

η(t) é limitada em relação ao tempo, para m fixo.

Observe que, pela desigualdade de Bessel, temos a relação:

|η(t)|2 =
m∑

k=1

|ηk(t)|2 =
∑

k=1

|ηk(t)|2||wk||2L2 = ||um(t)||2L2 ≤ ||um(t)||2H1
α
. (2.29)

Portanto, o próximo passo será mostrar que a norma || · ||H1
α

de um é limitada no tempo,

para todo m fixo. Para isso, usamos o fato que um é solução no sentido (2.24). Nesse caso,
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se tomamos uma função teste como sendo um, obtemos a equação de balanço de energia:

1

2

d

dt
||um||2H1

α
+ ν||∇(I − α2∆)

β

2 um||2L2 + γ||um||2H1
α

= (fm, um)L2 . (2.30)

De fato, dado que a norma || · ||2H1
α

para um está definida por:

||um||2H1
α

=
m∑

k=1

(1 + α2λk)|ηk(t)|2.

Temos que:

∫

T2

d

dt
vm(x)um(x) dx =

m∑

k,j=1

∫

T2
(I − α2∆)η′

k(t)wk(x)ηj(t)wj(x) dx

=
m∑

k,j=1

η′
k(t)ηj(t)

∫

T2
(I − α2∆)wk(x)wj(x) dx

=
m∑

k,j=1

η′
k(t)ηj(t)(1 + α2λk)δk,j

=
m∑

k=1

η′
k(t)ηk(t)(1 + α2λk)

=
1

2

m∑

k=1

(1 + α2λk)
d

dt
|ηk(t)|2

=
1

2

d

dt
||um||2H1

α
. (2.31)

Além disso, observamos ao aplicar a integração por partes, que o termo não linear é

eliminado. Isto é,

∫

T2
PmB(um, vm) · um dx =

∫

T2
B(um, vm) · um dx

=
∫

T2
(um · ∇)vm · um dx+

2∑

j=1

∫

T2
vj

m∇uj
m · um dx

=
2∑

j=1

∫

T2
(um · ∇)vj

mu
j
m dx+

2∑

j=1

∫

T2
vj

m(um · ∇)uj
m dx

=
2∑

j=1



∫

T2
(um · ∇)vj

mu
j
m dx−

∫

T2
(um · ∇)vj

mu
j
m dx




= 0. (2.32)

Para tratar o termo de viscosidade e amortecimento, também integraremos por partes. A

seguir, apresentamos os cálculos detalhados:
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Para o termo de viscosidade, temos:

−
∫

T2
∆(I − α2∆)βum · um dx = −

2∑

j=1

∫

T2
∆(I − α2∆)βuj

mu
j
m dx

=
2∑

j=1

∫

T2
∇(I − α2∆)βuj

m∇uj
mdx

=
2∑

j=1

∫

T2
∇(I − α2∆)

β

2 uj
m · ∇(I − α2∆)

β

2 uj
mdx

= ||∇(I − α2∆)
β

2 um||2L2 . (2.33)

Para o termo de amortecimento, vemos que:
∫

T2
vm · um dx =

∫

T2
(I − α2∆)um · um dx

=
∫

T2
um · um dx+ α2

∫

T2
∇um · ∇um dx

= ||um||2L2 + α2||∇um||2L2

= ||um||2H1
α
. (2.34)

Juntando as observações (2.31), (2.32), (2.33) e (2.34) temos (2.30). Por outra parte, como

o termo de viscosidade é positivo, isto é ||∇(I − α2∆)
β

2 um||2L2 ≥ 0, podemos simplificar a

equação (2.30) para:
1

2

d

dt
||um||2H1

α
+ γ||um||2H1

α
≤ (fm, um)L2 .

Aplicando a desigualdade de Hölder e a desigualdade de Poincaré, no lado direito da

desigualdade anterior, segue que

1

2

d

dt
||um||2H1

α
+ γ||um||2H1

α
≤ C||fm||L2||um||H1

α

onde C é uma constante positiva. Logo, da desigualdade de Young com ϵ = γ
1
2 , obtemos:

d

dt
||um||2H1

α
+ γ||um||2H1

α
≤
C||f ||2L2

γ
.

Em seguida utilizando o Lema de Grönwall, conforme é apresentado no Lemma II.4.9 em

[[1], pag 88], concluímos que:

||um||2H1
α

≤ ||um(0)||2H1
α
e−γt +

C||f ||2L2

γ2
.

Dado que a projeção Pm é limitada nas normas dos espaços H e V , temos que

||um(0)||2H1
α

= ||um(0)||2L2 + α2||∇um(0)||2L2 ≤ ||u0||
2
H1

α
.

Dessa forma, verificamos que

||um(t)||2H1
α

≤ ||u0||
2
H1

α
+
C||f ||2

γ2
=: M1 (2.35)
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para todo t ∈ [0, Tm] e independente de m. Logo, pela relação (2.29), a qual compara a

norma do vetor η(t) com a norma || · ||2H1
α
, concluímos que o vetor η(t) é uniformemente

limitado em L∞([0, Tm]) em relação ao tempo e independente de m. Portanto, estendemos

o tempo de existência do vetor η(t) até Tm = T . Desse modo, a função um(x, t) é uma

solução global para a equação (2.24), tal que um ∈ L∞(0, T ;Hm) para todo m.

Em seguida vemos, que a solução encontrada no Passo 1, a função um(x, t), também é

limitada em relação a m. Isto é, a partir da estimativa (2.35), vemos que a sequência de

soluções (um)m∈N é limitada com respeito a m, na norma de L∞(0, T ;V ). Assim,

||um||2L∞(0,T ;V ) ≤ sup
t∈[0,T ]

||um||2H1
α

α2
<
M1

α2
(2.36)

para todo m ∈ N. Por outro lado, integrando de 0 até T a equação (2.30), a qual é nossa

equação de balanço de energia para um, obtemos que:

1

2

∫ T

0

d

dt
||um(s)||2H1

α
ds+ ν

∫ T

0
||∇(I − α2∆)

β

2 um(s)||2L2 ds

+ γ
∫ T

0
||um(s)||2H1

α
ds =

∫ T

0
(fm, um(s))L2 ds.

Logo, aplicando a desigualdade de Hölder do lado direito da equação anterior, segue-se

que:

1

2
||um(T )||2H1

α
+ ν

∫ T

0
||∇(I − α2∆)

β

2 um(s)||2L2 ds+ γ
∫ T

0
||um(s)||2H1

α
ds

≤
1

2
||u0||

2
H1

α
+ ||fm||L2

∫ T

0
||um(s)||L2 ds.

Dado que o termo de amortecimento é positivo e a partir da desigualdade (2.35), que é

uma limitação uniforme de um em relação ao tempo e m, notamos que

ν
∫ T

0
||∇(I − α2∆)

β

2 um(s)||2L2 ds ≤
1

2
||u0||

2
H1

α
+ ||f ||L2M1(T ) =: M2(T ). (2.37)

Portanto, concluímos que a sequência de soluções (um)m formam um conjunto limitado na

norma L2(0, T ;D(Iβ)).

Agora, introduzimos um sistema de equações, o qual é a versão aproximada das

equações de Vorticidade Potencial formuladas no Apêndice C. Através de este novo sistema

aproximado, ganharemos uma nova estimativa para o campo de velocidade um, um fato

importante, para o próximo passo de nosso estudo da existência do sistema (2.19).

Aplicando o operador Curl(·), na equação (2.22) e considerando:

qm(x, t) = Curl(vm(x, t)) e gm(x) = Curl(fm)(x),

obtemos o sistema aproximado:




d

dt
qm + Pm(um · ∇)qm − ν∆(I − α2∆)β−1qm + γqm = gm

Curl((I − α2∆)um) = qm

Curl((I − α2∆)um(x, 0)) = qm(x, 0).

(2.38)
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Chamamos o sistema (2.38) de sistema de vorticidade potencial de ordem m. Se calculamos

o produto interno L2 de qm com a equação (2.38) e aplicando a desigualdade de Young,

obtemos a desigualdade diferencial

1

2

d

dt
||qm||2L2 + ν||∇(I − α2∆)

β−1
2 qm||2L2 +

γ

2
||qm||2L2 ≤

||gm||2L2

2γ
.

Como o termo de viscosidade é positivo, simplificamos a desigualdade para

d

dt
||qm||2L2 + γ||qm||2L2 ≤

||gm||2L2

γ
. (2.39)

Aplicando o Lema de Grönwall na desigualdade diferencial (2.39), obtemos que

||qm(t)||2L2 ≤ ||qm(0)||2L2e−γt +
||gm||2L2

γ2
(1 − e−γt) ≤ ||qm(0)||2L2 +

||g||2L2

γ2
. (2.40)

Por outro lado, como u0 ∈ W sabemos que Curl(I−α2∆)u0 ∈ L2(T2). Pela relação (2.13)

temos que,

||qm(0)||2L2 = ||Curl(I − α2∆)um(0)||2L2 = ||∇(I − α2∆)um(0)||L2 .

Pela definição da norma || · ||V , segue-se que

||∇(I − α2∆)um(0)||L2 = ||(I − α2∆)um(0)||V = ||Pm(I − α2∆)um(0)||V .

Dado que, o operador de projeção Pm é limitado sobre V , concluímos que

||qm(0)||2L2 ≤ ||(I − α2∆)u0||V = ||Curl(I − α2∆)u0||
2
L2 . (2.41)

Logo, qm ∈ L∞(0, T, L2(T2)), e por conseguinte um ∈ L∞(0, T,W ). Da mesma forma como

foi estabelecido para o sistema (2.24), temos que qm(x, t) é uma solução para o sistema

(2.38) que é uniformemente limitada com relação a m, na norma de L∞(0, T ;L2). Dado

que nosso domínio é periódico, podemos observar que:

||um(t)||2H3 = C
∑

k∈Z2

(1 + |k|6)|ûm(k, t)|2

= C
∑

k∈Z2

|ûm(k, t)|2 + C
∑

k∈Z2

|k|6|ûm(k, t)|2.

Aplicando a desigualdade de Poincaré, segue-se que

||um(t)||2H3 ≤ C
∑

k∈Z2

|k|2|ûm(k, t)|2 + C
∑

k∈Z2

|k|6|ûm(k, t)|2

= C
∑

k∈Z2

|k|2|ûm(k, t)|2 + C(α)
∑

k∈Z2

|k|242π4α4|k|4|ûm(k, t)|2

≤ C(α)
∑

k∈Z2

|k|2(1 + 4π2α2|k|2)2|ûm(k, t)|2

= C(α)||∇(I − α2∆)um(t)||2L2 .
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Novamente, pela relação (2.13) temos que

||um(t)||2H3 ≤ C(α)||Curl(I − α2∆)um(t)||2L2 . (2.42)

Portanto, das estimativas (2.37) e (2.42). Concluímos que a sequencia soluções (um)m∈N

está uniformemente limitada em relação a m na norma dos espaços L2(0, T ;D(Iβ)) e

L∞(0, T ;H3 ∩ V ). Isto é,

||um||L2(0,T ;D(Iβ)) ≤ M2 e ||um||L∞(0,T ;H3∩V ) ≤ M3. (2.43)

Vamos estudar a convergência da sequência de soluções (um)m∈N conforme m tende

ao infinito da forma fraca de (2.22). No entanto, para passarmos ao limite no termo não

linear da forma fraca de (2.22), é necessário obtermos um resultado de convergência forte

em um espaço adequado. Para esse propósito, primeiro estabelecemos uma estimativa

uniforme para a derivada temporal em relação a m.

A partir do sistema de Galerkin de ordem m definido em (2.22), temos que:

d

dt
vm = fm − PmB(um, vm) + ν∆(I − α2∆)βum − γvm.

Dado φ ∈ D(Iβ), onde o conjunto D(Iβ) é definido como Hβ+1 ∩ V . Observamos que:

||Pmφ||D(Iβ) = ||Pmφ||Hβ+1∩V = ||Jβ+1
α Pmφ||H .

Como o operador de Bessel−α comuta com Pm, segue-se que:

||Jβ+1
α Pmφ||H = ||PmJ

β+1
α φ||H .

Lembrando que o operador Pm é limitado sobre H. Temos que,

||Pmφ||D(Iβ) ≤ ||φ||D(Iβ). (2.44)

Portanto, podemos tomar o produto interno L2 do sistema de Galerkin com φm: conforme

definido em (2.24), utilizando φm.


 d

dt
vm(t), φm




L2

= (fm, φm)L2 −
∫

T2
PmB(um(t), vm(t)) · φm dx−

− ν
∫

T2
∇(I − α2∆)

β

2 um(t) · ∇(I − α2∆)
β

2φm dx− γ(um(t), φm)H1
α
.

No primeiro termo do lado direito da igualdade anterior, aplicamos a desigualdade de

Hölder e o fato que D(Iβ) está continuamente mergulhado em L2(T2). Isto é,

|(fm, φm)L2 | ≤ ||fm||L2||φm||L2 ≤ K1||fm||L2||φm||D(Iβ). (2.45)
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Em relação ao segundo termo, observamos que:
∣∣∣∣∣∣

∫

T2
PmB(um, vm) · φm dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

T2
B(um, vm) · φm dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

T2
(um · ∇)vm · φm dx+

2∑

j=1

∫

T2
vj

m∇uj
m · φm dx

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∫

T2
vm · (u · ∇)φm dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣

2∑

j=1

∫

T2
vj

m(φm · ∇)uj
m dx

∣∣∣∣∣∣

≤ ||um||L4 ||vm||L4||φm||H1 + ||um||H1 ||vm||L4 ||φm||L4 .

Na última desigualdade, temos dois termos diferentes que envolvem normas L4. Para

ter controle delas com elementos de D(Iβ), aplicamos a desigualdade de Ladyzhenskaya,

definida em (2.17). Desse modo, o primeiro termo, na desigualdade anterior, é estimado

por:

||um||L4||vm||L4 ||φm||H1 ≤ C||um||
1
2

L2||um||
1
2

H1||vm||
1
2

L2||vm||
1
2

H1 ||φm||H1

e o segundo termo por:

||um||H1 ||vm||L4||φm||L4 ≤ C||u||H1 ||vm||
1
2

L2 ||vm||
1
2

H1||φm||
1
2

L2 ||φm||
1
2

H1 .

Logo, como D(Iβ) está continuamente mergulhado em H1(T2), segue-se que
∣∣∣∣∣∣

∫

T2
PmB(um, vm) · φm dx

∣∣∣∣∣∣
≤ K2||um||H1||vm||H1||φm||D(Iβ). (2.46)

Agora analisamos o termo viscoso, neste caso aplicamos a desigualdade de Hölder,

como segue:
∣∣∣∣∣∣

∫

T2
∇(I − α2∆)

β

2 um · ∇(I − α2∆)
β

2φm dx

∣∣∣∣∣∣

≤
∫

T2

∣∣∣∣∇(I − α2∆)
β

2 um · ∇(I − α2∆)
β

2φm

∣∣∣∣ dx

≤ ||∇(I − α2∆)
β

2 um||L2||∇(I − α2∆)
β

2φm||L2

= ||um||D(Iβ)||φm||D(Iβ).

Por último, vemos que o termo de amortecimento é estimado utilizando (2.10), que

redefine o produto interno H1
α em termo do operador de Bessel−α de ordem 1, e aplicando

a desigualdade de Hölder. Isto é,

|(vm, φm)H1
α
| =

∣∣∣
(
J1

αum, J
1
αφm

)
L2

∣∣∣ ≤ ||J1
αum||L2 ||J1

αφm||L2 = ||um||H1
α
||φm||H1

α
.

Logo, aplicando o fato que D(Iβ) está continuamente mergulhado em H1
α(T2). Segue-se

que,

|(vm, φm)H1
α
| ≤ K3||um||D(Iβ)||φm||D(Iβ). (2.47)
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Portanto, das estimativas (2.45), (2.46) e (2.47) temos que:
∣∣∣∣∣∣


 d

dt
vm(t), φm




L2

∣∣∣∣∣∣
≤ K

[
||fm||L2 + ||um||H1||vm||H1 + ||um||D(Iβ)

]
||φm||D(Iβ).

Dado que Pm é um o operador auto-adjunto e dvm

dt
∈ Hm, segue-se que

∣∣∣∣∣∣


 d

dt
vm(t), φ




L2

∣∣∣∣∣∣
≤ K

[
||fm||L2 + ||um||H1||vm||H1 + ||um||D(Iβ)

]
||φm||D(Iβ).

Logo, pelas estimativas (2.43), referente à norma L∞(0, T ;H3 ∩ V ) da função um, e (2.44),

referente à função φm na norma de D(Iβ). Obtemos que dvm

dt
é limitada em relação a m na

norma do espaço dual de D(Iβ). Isto é,

∣∣∣∣
∣∣∣∣
dvm

dt

∣∣∣∣
∣∣∣∣
D(Iβ)′

≤ K.

Por outro lado, pela inclusão dos espaços Hs
α com s > 0, vemos que H2

α ⊂ H1+β
α com

0 < β < 1. Desse modo, temos que (H2 ∩ V ) ⊂ D(Iβ). Assim, com essa informação

presente, segue-se que:
∣∣∣∣
∣∣∣∣
dvm

dt

∣∣∣∣
∣∣∣∣
D(Iβ)′

≥
∣∣∣∣
∣∣∣∣
dvm

dt

∣∣∣∣
∣∣∣∣
(H2

α∩V )′

=
∣∣∣∣
∣∣∣∣(I − α2∆)

dum

dt

∣∣∣∣
∣∣∣∣
(H2

α∩V )′

.

Lembrando que o operador (I − α2∆) é um isomorfismo entre H2
α e H e que H ′ = H.

Segue-se que ∣∣∣∣
∣∣∣∣
dvm

dt

∣∣∣∣
∣∣∣∣
D(Iβ)′

≥
∣∣∣∣
∣∣∣∣
dum

dt

∣∣∣∣
∣∣∣∣
H
.

Observamos que para β = 1, o caso que corresponde ao sistema de equações de Camassa-

Holm, que também pode ser abordado com nosso analises. Dessa maneira, obtemos que
∣∣∣∣
∣∣∣∣
dum

dt

∣∣∣∣
∣∣∣∣
D(Iβ)′

≤
∣∣∣∣
∣∣∣∣
dvm

dt

∣∣∣∣
∣∣∣∣
D(Iβ)′

≤ K.

Portanto, concluímos que a sequência de derivadas (dum

dt
)m∈N está uniformemente limitada

em relação a m na norma de L2(0, T ;D(Iβ)′).

Em resumo, vemos em seguida as melhores estimativas obtidas até o aqui:

||um||L∞(0,T ;W ) ≤ M e
∣∣∣∣
∣∣∣∣
dum

dt

∣∣∣∣
∣∣∣∣
L2(0,T ;D′(Iβ))

≤ K

para todo m ∈ N.

Passo 3: Extraindo subsequências convergentes

Na seção anterior, estabelecíamos que a sequência de soluções (um)m∈N é limitada

na norma de L∞(0, T ;W ) ⊂ L2(0, T ;D(Iβ)), já que W ⊂ D(Iβ). Além disso, sua derivada
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temporal (dum

dt
)m∈N é limitada na norma de L2(0, T ;D(Iβ)′). Com o objetivo em mente de

extrair subsequências convergentes em espaços adequados, primeiro, consideremos a tripla

D(Iβ) ⊂ V ⊂ D(Iβ)′ de espaços de Hilbert, lembrando que D(Iβ) é o espaço Hβ+1 ∩ V e

D(Iβ)′ como sendo o dual de D(Iβ). Dado que V está continuamente mergulhado em D(Iβ)′

e D(Iβ) compactamente mergulhado em V , porque Hβ+1 está compactamente mergulhado

em H1 para β > 0, então conforme ao Teorema II.5.16 (Teorema de Aubin-Lions-Simon)

em [[1], pag 102] o conjunto definido por

E2,2 :=
{
u ∈ L2(0, T ;D(Iβ)) :

du

dt
∈ L2(0, T ;D(Iβ)′)

}
, (2.48)

está compactamente mergulhado em L2(0, T ;V ). Em consequência, existe uma sub-

sequência (umk
)k e u ∈ L2(0, T ;V ) tal que (umk

)k converge fortemente para u na norma

L2(0, T ;V ). Isto é,

||umk
− u||L2(0,T ;V ) −→ 0 quando k −→ ∞. (2.49)

Por outro lado, dado que um ∈ L∞(0, T ;W ) e dum

dt
∈ L2(0, T ;W ′). Considerando a tripla

de espaços de Hilbert, W ⊂ D(S) ⊂ W ′, onde D(S) é o domínio do operador de Stokes e

a nova tripla satisfaz as mesmas condições da primeira tripla. Novamente, conforme ao

Teorema II.5.16. Obtemos que o conjunto:

E∞,2 :=
{
u ∈ L∞(0, T ;W ) :

du

dt
∈ L2(0, T ;W ′)

}
, (2.50)

está compactamente mergulhado em C(0, T ;D(S)). Em consequência, existe uma sub-

sequência (umk
)k e u ∈ C(0, T ;D(S)) tal que (umk

)k converge para u em C(0, T ;D(S)).

Além disso, dado que um está uniformemente limitada nas normas de L∞(0, T ;W )

e L2(0, T ;D(Iβ)), onde L2(0, T ;D(Iβ)) é um espaço de Hilbert, então, conforme ao

Teorema II.2.7 em [[1], pag 53] temos uma subsequência (umj
)j ⊂ (umk

)mk
e u em

L∞(0, T ;W ) ∩ L2(0, T ;D(Iβ)) tal que (umj
)j converge fraca∗ e converge fraca para u em

L∞(0, T ;W ) e L2(0, T ;D(Iβ)) respectivamente.

Em resumo, temos a seguiste lista de convergências:

• umk
−→ u fracamente em L2(0, T ;D(Iβ));

• umk
−→ u fortemente em L2(0, T ;V );

• umk
−→ u em C(0, T ;D(S)).

Parte 4: Passando ao limite

Finalmente, concluímos o Teorema de existência de soluções para as equações de

Camassa-Holm generalizadas, mostrando que o limite da subsequência (umj
)j, obtido

na parte anterior, satisfaz a equação (2.19) no sentido da Definição 1. Isto vai ser feito,
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definindo uma serie de operadores, um por cada termo do sistema (2.19). Logo, usando as

noções de convergências obtidas também na parte 3, concluiremos que de fato nosso limite

u satisfaz a igualdade (2.20) de solução regular. Para simplificar a notação de subíndices

na subsequência, denotemos por (um)m a subsequência (umj
)j.

Seja w ∈ D(Iβ) fixo, então do sistema (2.24) temos que:
[
(um(t), w)H1

α
− (um(t0), w)H1

α

]
+
∫ t

t0

∫

T2
PmB(um, vm)(s) · w dx ds

+ ν
∫ t

t0

∫

T2
∇(I − α2∆)

β

2 um(s) · ∇(I − α2∆)
β

2w dx ds (2.51)

+ γ
∫ t

t0

(um(s), w)H1
α
ds =

∫ t

t0

∫

T2
Pmf · u(s) dx ds,

para todo t > t0 e para quase todo t0, t ∈ [0, T ]. Examinamos a convergência de cada

termo na igualdade anterior.

Dado que um converge fortemente para u em L2(0, T ;V ), então um(s) converge

fortemente para u(s) em V , para quase todo ponto s em [0, T ]. Dado que as normas || · ||V

e || · ||H1
α

são equivalentes, então um(s) converge fracamente para u(s) em H1
α, para quase

todo ponto s em [0, T ]. Portanto, concluímos que os primeiros termos da equação (2.51)

convergem. Isto é,

(um(t), w)H1
α

−→ (u(t), w)H1
α

e (um(t0), w)H1
α

−→ (u(t0), w)H1
α

(2.52)

quando m tende para infintos.

No termo não linear, devemos verificar que:
∣∣∣∣∣∣

∫ t

t0

∫

T2
PmB(um, vm)(s) · w dx ds−

∫ t

t0

∫

T2
B(u, v)(s) · w dx ds

∣∣∣∣∣∣
−→ 0

quando m tende para infinito. Dado que Pm é auto-adjunto, temos que:
∫

T2
PmB(um, vm)(s) · w dx =

∫

T2
B(um, vm)(s) · Pmw dx

=
∫

T2
B(um, vm)(s) · wm dx.

Agora, dado que D(Iβ) ⊂ V . Denotemos por

⟨B(um, vm)(t), wm⟩V ′×D(Iβ) =
∫

T2
B(um, vm)(s) · wm dx,

para simplificar os cálculos. De fato, consideremos a seguinte diferença:

⟨B(um, vm), wm⟩V ′×D(Iβ) − ⟨B(u, v), w⟩V ′×D(Iβ) =

= ⟨B(um, vm), wm − w⟩V ′×D(Iβ) + ⟨B(um, vm), w⟩V ′×D(Iβ) − ⟨B(u, v), w⟩V ′×D(Iβ)

= ⟨B(um, vm), wm − w⟩V ′×D(Iβ) +
[
⟨B(um, vm), w⟩V ′×D(Iβ) − ⟨B(u, vm), w⟩V ′×D(Iβ)

]
+

+
[
⟨B(u, vm), w⟩V ′×D(Iβ) − ⟨B(u, v), w⟩V ′×D(Iβ)

]

= ⟨B(um, vm), wm − w⟩V ′×D(Iβ) + ⟨B(um − u, vm), w⟩V ′×D(Iβ)+

+ ⟨B(u, vm − v), w⟩V ′×D(Iβ).
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Do anterior, vemos que

∫ t

t0



∫

T2
B(um, vm)(s) · wm dx−

∫

T2
B(u, v)(s) · w dx


 ds = B(1)

m +B(2)
m +B(3)

m .

Portanto, para verificar que a diferença dos termos não lineares descritas anteriormente

converge para zero, basta verificar que cada uno dos termos, B(i)
m , converge para zero para

i = 1, 2, 3.

O termo B(1)
m da igualdade anterior está definido como:

B(1)
m =

∫ t

t0

⟨B(um, vm)(s), wm − w⟩V ′×D(Iβ) ds.

Note que,
∣∣∣∣B

(1)
m

∣∣∣∣ ≤
∫ t

t0

∣∣∣∣⟨B(um, vm)(s), wm − w⟩V ′×D(Iβ)

∣∣∣∣ ds

≤
∫ t

t0

∫

T2

∣∣∣(um · ∇)vm(s) · (wm − w)
∣∣∣ dx ds +

+
2∑

j=1

∫ t

t0

∫

T2

∣∣∣vj
m(s)∇uj

m(s) · (wm − w)
∣∣∣ dx ds.

Aplicando a desigualdade de Hölder obtemos que
∣∣∣∣B

(1)
m

∣∣∣∣ ≤ ||wm − w||H

∫ t

t0

[
||um(s)||L∞ ||vm(s)||V + ||vm(s)||H ||∇um(s)||L∞

]
ds.

Na desigualdade anterior observamos dois termos em norma L∞. Já que, a sequência

um ∈ L∞(0, T ;W ) e lembrando que H3(T2) mergulhado continuamente em L∞(T2), pela

desigualdade de Morrey, temos então que:

||um(s)||L∞ ≤ K3||um(s)||H3 e ||∇um(s)||L∞ ≤ K4||um(s)||H3 . (2.53)

Além disso, pela relação (2.12). Temos que,

||∇vm(s)||L2 = ||∇(I − α2∆)um(s)||L2 = ||Curl(I − α2∆)um(s)||L2 . (2.54)

Logo, o termo B(1)
m está limitado da forma:
∣∣∣∣B

(1)
m

∣∣∣∣ ≤ C||um||L∞(0,T ;H3)||um||L∞(0,T ;W )||wm − w||H .

Dado que wm converge para w na norma H. Concluímos que o termo B(1)
m converge para

zero, Isto é,

B(1)
m −→ 0 quando m −→ 0. (2.55)

O segundo termo, B(2)
m , definido por:

B(2)
m =

∫ t

t0

⟨B(um − u, vm)(s), w⟩V ′×D(Iβ) ds.
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Note que,
∣∣∣∣B

(2)
m

∣∣∣∣ ≤
∫ t

t0

∣∣∣∣⟨B(um − u, vm)(s), w⟩V ′×D(Iβ)

∣∣∣∣ ds

≤
∫ t

t0

∫

T2

∣∣∣
[
(um − u) · ∇

]
vm(s) · w

∣∣∣ dx ds+

+
2∑

j=1

∫ t

t0

∫

T2

∣∣∣vj
m(s)∇(uj

m − uj)(s) · w
∣∣∣ dx ds

Dado que w ∈ D(Iβ). Então, w ∈ Hβ+1(T2). Por conseguinte, w ∈ L∞(T2). Este fato, é

devido a que o espaço Hβ+1 está continuamente mergulhado em L∞ para β > 0, para mais

informação ver o livro de Stein [28]. Logo, aplicando a desigualdade de Hölder. Segue-se

que
∣∣∣∣B

(2)
m

∣∣∣∣ ≤
∫ t

t0

||(um − u)(s)||L2||vm(s)||V ||w||L∞ ds+

+
∫ t

t0

||vm(s)||L2||(um − u)(s)||V ||w||L∞ ds.

Logo, aplicamos a desigualdade de Poincaré. Obtemos
∣∣∣∣B

(2)
m

∣∣∣∣ ≤ M ||(um − u)(s)||V ||vm(s)||V ||w||L∞ .

Dado que a sequência um é limitada em L∞(0, T,W ) e a estimativa (2.54). Concluímos

que, ∣∣∣∣B
(2)
m

∣∣∣∣ ≤ M ||um − u||L2(0,T ;V )||um||L∞(0,T ;W )||w||L∞ .

Tendo em conta, que um converge fortemente para u na norma L2(0, T ;V ). Segue-se que

B(2)
m −→ 0 quando m −→ 0. (2.56)

Finalmente, analisamos o terceiro termo B(3)
m definido como:

B(3)
m =

∫ t

t0

⟨B(u, vm − v)(s), w⟩V ′×D(Iβ) ds.

Notemos que, aplicando integração por partes em B(3)
m . Podemos rescrever o termo da

seguite maneira:

B(3)
m =

∫ t

t0

⟨B(u, vm − v)(s), w⟩V ′×D(Iβ) ds

=
∫ t

t0

∫

T2
(u · ∇)(vm − v)(s) · w dx ds+

+
2∑

j=1

∫ t

t0

∫

T2
(vj

m − vj)(s)(w · ∇)uj(s) dx ds

= −
∫ t

t0

∫

T2
(vm − v)(s) · (u · ∇)w dx ds+

+
2∑

j=1

∫ t

t0

∫

T2
(vj

m − vj)(s)(w · ∇)uj(s) dx ds.
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Aplicando a desigualdade de Hölder, segue-se que:

|B(3)
m | ≤

∫ t

t0

||(vm − v)(s)||L2 ||u(s)||L∞ ||∇w||L2 ds

+
∫ t

t0

||(vm − v)(s)||L2 ||w||L2||∇u(s)||L∞ ds

Logo, aplicando a desigualdade de Poincaré e a desigualdade (2.53). Obtemos que

|B(3)
m | ≤ K7||(vm − v)||L∞(0,T ;L2)||u||L∞(0,T,W )||∇w||L2 .

Dado que sequencia (um)m converge para u em C(0, T ;D(S)). Então, temos que:

||vm − v||L∞(0,T ;L2) −→ 0 quando m −→ 0,

onde vm = (I − α2∆)um. Desse modo, verificamos que

B(3)
m −→ 0 quando m −→ 0. (2.57)

Portanto, de (2.55), (2.56) e (2.57) concluímos que a sequência de termos não lineares

converge para o termo não linear limite, quando m tende para infinito. Isto é,
∫ t

t0

∫

T2
PmB(um, vm)(s) · w dx ds −→

∫ t

t0

∫

T2
B(u, v)(s) · w dx ds. (2.58)

Para examinar a convergência do termo viscoso, usamos o fato que um converge

fracamente para u em L2(0, T ;D(Iβ)). Isto é, vamos a construir um funcional, o qual tem a

forma fraca do termo viscos, linear e limitado sobre L2(0, T ;D(Iβ). De fato, consideremos

o funcional linear definido por:

F2 : L2(0, T ;D(Iβ)) −→ R

φ 7−→ F2(φ) =
∫ t

t0

∫

T2
Iβ(φ(s)) · Iβ(w) dx ds,

onde Iβ é o operador de interpolação definido em (2.11). Podemos observar que F2 está

bem definido, pois para cada φ ∈ L2(0, T ;D(Iβ)), notamos que:

|F2(φ)| =
∣∣∣∣
∫ t

t0

∫

T2
Iβ(φ(s)) · Iβ(w) dx ds

∣∣∣∣ ≤
∫ t

t0

∫

T2

∣∣∣Iβ(φ(s)) · Iβ(w)
∣∣∣ dx ds

≤
∫ t

t0

||φ(s)||D(Iβ)||w||D(Iβ) ds

≤ ||w||D(Iβ)(t− t0)
1/2||φ||2L2(0,T ;D(Iβ))

≤ T 1/2||w||D(Iβ)||φ||2L2(0,T ;D(Iβ)).

Isto é, F2(φ) ∈ R. Além disso, vemos que F2 é um funcional limitado sobre L2(0, T ;D(Iβ)).

Desse modo, como um converge fracamente para u em L2(0, T ;D(T )). Obtemos que

|F2(um) − F2(u)| −→ 0 quando m −→ ∞.
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Concluindo que o termo viscoso converge para o termo viscoso limite. Isto é,

ν
∫ t

t0

∫

T2
Iβ(um(s)) · Iβ(w) dx ds −→ ν

∫ t

t0

∫

T2
Iβ(u(s)) · Iβ(w) dx ds, (2.59)

quando m tende ao infinito.

Para examinar a convergência do termo de amortecimento, usamos o fato que um

converge fortemente para u em L2(0, T ;V ). Isso é,
∣∣∣∣∣∣

∫ t

t0

(um, w)H1
α
ds−

∫ t

t0

(u,w)H1
α
ds

∣∣∣∣∣∣
−→ 0

quando m tende para infinito. Observa-se que, ao aplicar a desigualdade de Hölder,

obtém-se que
∣∣∣∣∣∣

∫ t

t0

(um, w)H1
α
ds−

∫ t

t0

(u,w)H1
α
ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫ t

t0

(um − u,w)H1
α
ds

∣∣∣∣∣∣

≤
∫ t

t0

||w||H1
α
||(um − u)(s)||H1

α
ds

Aplicando a desigualdade de Cauchy-Schwarz e o fato que as normas || · ||H1
α

e || · ||V são

equivalentes. Segue-se que
∣∣∣∣∣∣

∫ t

t0

(um, w)H1
α
ds−

∫ t

t0

(u,w)H1
α
ds

∣∣∣∣∣∣
≤ K||w||V ||um − u||L2(0,T ;V )

Dado que a sequencia (um)m converge fortemente para u em L2(0, T ;V ), concluímos que

o termo de amortecimento converge ao termo de amortecimento limite quando m tende ao

infinito. Isto é,

γ
∫ t

t0

(um, w)H1
α
ds −→ γ

∫ t

t0

(u,w)H1
α
ds, (2.60)

Finalmente, analisamos a convergência do termo de forçamento. Dado que o

operador de projeção ortogonal Pm é auto-adjunto, temos que
∫ t

t0

∫

T2
Pmf(x)w(x) dx ds =

∫ t

t0

∫

T2
f(x)Pmw(x) dx ds

Desse modo, calculando a diferença dos termos de forçamento. Vemos que,
∣∣∣∣∣∣

∫ t

t0

∫

T2
f(x)wm(x) dx ds−

∫ t

t0

∫

T2
f(x)w(x) dx ds

∣∣∣∣∣∣
=
∣∣∣(t0 − t)(f, wm − w)L2

∣∣∣.

Já que, w e f não dependem do tempo. Logo, aplicando a desigualdade de Cauchy-Schwarz

do lado direito da igualdade anterior, temos que

|(t0 − t)(f, wm − w)L2| ≤ T ||f ||H ||wm − w||H .

Dado que o operador de projeção Pm, convergência forte na norma de H, concluímos:
∫ t

t0

(fm, w)L2 ds −→
∫ t

t0

(f, w)L2 ds, (2.61)
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quando m tende para infinito.

Dos resultados (2.52), (2.58), (2.59), (2.60) e (2.61) afirmamos que o limite da

sequência (um)m conforme m tende ao infinito satisfaz:

[
(u(t), w)H1

α
− (u(t0), w)H1

α

]
+
∫ t

t0

∫

T2
B(u, v)(s) · w dx ds

+ ν
∫ t

t0

∫

T2
∇(I − α2∆)

β

2 u(s) · ∇(I − α2∆)
β

2w dx ds

+ γ
∫ t

t0

(u(s), w)H1
α
ds =

∫ t

t0

∫

T2
f · u(s) dx ds,

para todo w ∈ D(Iβ), para todo t > t0 e para quase todo t0, t ∈ [0, T ).

Para concluir a existência da solução no sentido da Definição 1, devemos verificar

que u é uma função continua de [0, T ] para V . Isto é, u ∈ C([0, T ];V ). De fato, dado que
dum

dt
é uniformemente limitada em L2(0, T ;D(Iβ)′), existe uma subsequência denotada, um,

tal que
dum

dt
∗
⇀ u̇ em L2(0, T ;D(Iβ)′). (2.62)

Denotamos o limite por u̇, porque não é imediato que de fato u̇ =
du

dt
(derivada fraca

temporal). No entanto, pela convergência (2.62) temos que

∫ T

0

dum(s)

ds
φ(s) ds −→

∫ T

0
u̇(s)φ(s) ds,

para toda φ em L2(0, T ;D(Iβ)). Seja φ um elemento de C∞
c (0, T ;D(Iβ)), o qual é um

subconjunto de L2(0, T ;D(Iβ)). Aplicarmos integração por partes, junto ao fato de que

um converge fracamente para u em L2(0, T ;D(Iβ)), obtemos que

∫ T

0

dum(s)

ds
φ(s) ds = −

∫ T

0
um(s)

dφ(s)

ds
ds −→ −

∫ T

0
u(s)

dφ(s)

ds
ds

conforme m tende ao infinito. Logo, pela unicidade do limite, podemos observar que:

∫ T

0
u̇(s)φ(s) ds = −

∫ T

0
u(s)

dφ(s)

ds
ds,

para toda φ ∈ C∞
c (0, T,D(Iβ)). Portanto, u̇ =

du

dt
.

Desse modo, concluímos que u ∈ E2,2 (conjunto definido em (2.48)). Além disso, pelas

triplas D(Iβ) ⊂ V,H ⊂ (D(Iβ))′, a qual a primeira inclusão é compacta e a segunda

continua, temos conforme ao Teorema II.5.13 (Lema de Lions-Magenes) em ([1] pag 101),

deduzimos que u é uma função fracamente continua de [0, T ] para H e V . Isso significa

que, u(t) coincide com uma função contínua em quase todos os pontos de [0, T ]. Além

disso, satisfaz a seguinte igualdade no sentido das distribuições escalares em [0, T ]

1

2

d

dt
||u(t)||2H = (∂tu(t), u(t))H e

1

2

d

dt
||u(t)||2V = (∂tu(t), u(t))V .
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Portanto, das identificações anteriores e a definição de norma H1
α, dada em (2.6), segue-se

que u(x, t) satisfaz a igualdade

1

2

d

dt
||u(t)||2H1

α
=

1

2

d

dt

[
||u(t)||2H + α2||u(t)||2V

]

no sentido das distribuições em [0, T ]. Assim, dado que u(x, t) satisfaz a equação (2.19) em

sentido fraco e tomando uma função teste adequada, temos a seguinte equação de balanço

1

2

d

dt
||u||2H1

α
+ ν||∇(I − α2∆)

β

2 u||2L2 + γ||u||2H1
α

= (f, u)L2 . (2.63)

Portanto, o limite satisfaz a equação de balanço de energia para o sistema (2.19).

2.3 Unicidade da solução

Nesta última seção, demonstramos a unicidade da solução obtida no Teorema 2

para as equações de Camassa-Holm generalizadas descritas no sistema (2.19). Para alcançar

esse objetivo, consideramos duas soluções do sistema (2.19) com o mesmo dado inicial.

Em seguida, estabelecemos um novo sistema de equações para a diferença dessas soluções,

agora com dado inicial zero. Utilizando argumentos do método de energia e desenvolvemos

uma desigualdade diferencial para essa diferença em uma norma adequada. Por último,

analisamos o comportamento da solução dessa desigualdade diferencial.

A seguir, enunciamos nosso Teorema de unicidade.

Teorema 3. A solução para as equações de Camassa-Holm generalizadas descritas no

sistema (2.19) e cuja solução é dada pelo Teorema 2 é única.

Demonstração. Sejam u(1) e u(2) soluções do sistema (2.19) no intervalo [0, T ], com o

mesmo dado inicial u0. Além disso, definimos dois novos campos por:

θ := u(1) − u(2) e w := v(1) − v(2). (2.64)

Fazendo a diferença entre os dois sistemas determinados por u(1) e u(2). Obtemos um novo

sistema, para a diferença das soluções anteriores.




∂tw + [B(u(1), v(1)) −B(u(2), v(2))] − ν∆(I − α2∆)βθ + γw = 0

(I − α2∆)θ = w

w(0, x) = 0

(2.65)

Neste novo sistema, observamos que o termo não linear é de fato a diferença dos termos

não lineares induzidos pelas soluções u(1) e u(2) dadas inicialmente. Lembrando que o termo

não linear denotado por B(u, v) está definido em (2.15), com uma pequena modificação

para não carregar os índices das potencias,

B(u(i), v(i)) = P


(u(i) · ∇)v(i) +

2∑

j=1

v
(i)
j ∇u

(i)
j



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com i = 1, 2. Então, nosso objetivo é reescrever esse termo não linear envolvido no

sistema (2.65). a partir daqui, para simplificar a notação de subíndices no termo não linear,

usaremos a somação de Einstein. Assim que:

B(u(1), v(1)) −B(u(2), v(2)) = P

(
(u(1) · ∇)v(1) + v

(1)
j ∇u

(1)
j −

[
(u(2) · ∇)v(2)

+ v
(2)
j ∇u

(2)
j

])
.

Isolando os campos u(1) e v(1) das equações (2.64), temos que:

u(1) = θ + u(2) e v(1) = w + v(2).

Logo, substituindo na igualdade anterior e simplificando termos opostos. Segue-es que:

([θ + u(2)] · ∇)(w + v(2)) + (wj + v
(2)
j )∇(θj + u

(2)
j ) −

[
(u(2) · ∇)v(2) + v

(2)
j ∇u

(2)
j

]

= (θ · ∇)w + (θ · ∇)v(2) + (u(2) · ∇)w +
�
�
�
�
�
��

(u(2) · ∇)v(2) + wj∇θj+

+ wj∇u
(2)
j + v

(2)
j ∇θj +

�
�
�
�
�

v
(2)
j ∇u

(2)
j −

�
�
�
�
�
��

(u(2) · ∇)v(2) −
�
�
�
�
�

v
(2)
j ∇u

(2)
j

= (θ · ∇)w + (θ · ∇)v(2) + (u(2) · ∇)w + wj∇θj + wj∇u
(2)
j + v

(2)
j ∇θj.

O termo não linear é simplificada e renomeado por:

B := P

(
(θ · ∇)w + (θ · ∇)v(2) + (u(2) · ∇)w + wj∇θj + wj∇u

(2)
j + v

(2)
j ∇θj

)
. (2.66)

Desse modo, o sistema (2.65) pode-se rescrever como:




∂tw +B − ν∆(I − α2∆)βθ + γw = 0

(I − α2∆)θ = w

w(0, x) = 0

(2.67)

O próximo passo em derivar uma desigualdade diferencial para a norma H1
α de θ. Esta será

a etapa mais complexa e delicada do processo. Considerando que o sistema de equações

(2.67) admite uma solução no sentido fraco, tomamos uma função teste como sendo θ.

Desse modo, obtemos a equação de balanço energia para a diferença de soluções. Isto é,

d

dt
||θ||2H1

α
+ (B, θ)L2 + ν||∇(I − α2∆)

β

2 θ||2L2 + γ||θ||2H1
α

= 0. (2.68)

Dado que o termo associado ao parâmetro de viscosidade e ao parâmetro de amortecimento

são positivos. Então, simplificamos a equação (2.68) para a desigualdade diferencial:

d

dt
||θ||2H1

α
≤ |(B, θ)L2|. (2.69)

Dado que P é auto-adjunto e Pθ = θ. Note que,

(B, θ)L2 =
∫

T2
B · θ dx

=
∫

T2
(θ · ∇)w · θ dx+

∫

T2
(θ · ∇)v(2) · θ dx+

+
∫

T2
(u(2) · ∇)w · θ dx +

∫

T2
wj∇θj · θ dx+

+
∫

T2
wj∇u

(2)
j · θ dx +

∫

T2
v

(2)
j ∇θj · θ dx.
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Observamos que, ao aplicar integração por partes na primeira integral do lado direito,

obtemos que:
∫

T2
(θ · ∇)w · θ dx =

∫

T2
(θ · ∇)wjθj dx = −

∫

T2
wj(θ · ∇)θj dx

Assim, ∫

T2
(θ · ∇)w · θ dx+

∫

T2
wj(θ · ∇)θj dx = 0.

Por outra parte, ao aplicar integração por partes na segunda integral do lado direito,

obtemos que:
∫

T2
(θ · ∇)v(2) · θ dx =

∫

T2
(θ · ∇)v

(2)
j θj dx = −

∫

T2
v

(2)
j (θ · ∇)θj dx.

Assim, ∫

T2
(θ · ∇)v(2) · θ dx+

∫

T2
v

(2)
j (θ · ∇)θj dx = 0.

Portanto, o produto interno L2 de θ como o termo não linear do sistema (2.67) é simplificado

da forma:

(B, θ)L2 =
∫

T2
(u(2) · ∇)w · θ dx+

∫

T2
wj∇u

(2)
j · θ dx. (2.70)

A seguir, estimaremos cada integral na igualdade (2.70) utilizando a norma H1
α de θ. Para

isso, simplificaremos os termos restantes.

Na primeira integral do lado direito de (2.70), observamos que:
∫

T2
(u(2) · ∇)w · θ dx =

∫

T2
(u(2) · ∇)(I − α2∆)θ · θ dx

=
∫

T2
(u(2) · ∇)θ · θ dx− α2

∫

T2
(u(2) · ∇)∆θ · θ dx.

Aplicando integração por partes, segue-se que a primeira integral da igualdade anterior é

zero. A integral restante desta igualdada, pode ser rescrita como:

−α2
∫

T2
(u(2) · ∇)∆θ · θ dx = α2

∫

T2
∆θ · (u(2) · ∇)θ dx

Rescrevendo o termo do lado direito, usando somação de Einstein, e aplicando integração

por partes. Temos que

α2
∫

T2
(∆θ) · (u(2) · ∇)θ dx = α2

∫

T2
∂i(∂iθj)u

(2)
k ∂kθj dx

= −α2
∫

T2
∂iθj∂iu

(2)
k ∂kθj dx− α2

∫

T2
∂iθju

(2)
k ∂k∂iθj dx

= −α2
∫

T2
∇θ · (∇u(2) · ∇)θ dx− α2

∫

T2
∇θ · (u(2) · ∇)∇θ dx.

Observe que, aplicando novamente integração por partes na última integral da igualdade

anterior. Vemos que: ∫

T2
∇θ · (u(2) · ∇)∇θ dx = 0.
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Desse modo, a primeira integral do lado direito de (2.70) pode-se rescrever como:
∫

T2
(u(2) · ∇)w · θ dx = −α2

∫

T2
∇θ · (∇u(2) · ∇)θ dx. (2.71)

Na segunda integral do lado direito de (2.70), observamos que:
∫

T2
wj∇u

(2)
j · θ dx =

∫

T2
(I − α2∆)θj∇u

(2)
j · θ dx

=
∫

T2
θj∇u

(2)
j · θ dx− α2

∫

T2
∆θj∇u

(2)
j · θ dx.

Note que, rescrevendo a última integral do lado direito, usando somação de Einstein, e

aplicando integração por partes. Temos que
∫

T2
∆θj∇u

(2)
j · θ dx =

∫

T2
∂i(∂iθj)∂ku

(2)
j θk dx

= −
∫

T2
∂iθj∂i∂ku

(2)
j θk dx−

∫

T2
∂iθj∂ku

(2)
j ∂jθk dx

= −
∫

T2
∇θ · (∇θ · ∇)u(2)(x) dx−

∫

T2
∇θ · (θ · ∇)∇u(2)(x) dx.

Neste caso, o fato de aplicar integração por partes, na última integral, aumenta em mais

duas integrais. A diferença significativa deste processo é que conseguimos simplificar o

grau da derivada de θ. Desse modo, a segunda integral do lado direito de (2.70) é rescrita

como:
∫

T2
wj∇u

(2)
j · θ dx =

∫

T2
θj∇u

(2)
j · θ dx+ α2

∫

T2
∇θ · (∇θ · ∇)u(2)(x) dx

+ α2
∫

T2
∇θ · (θ · ∇)∇u(2)(x) dx. (2.72)

Por conseguente, das identidades (2.71) e (2.72) temos que:

|(B, θ)L2| ≤ α2
∫

T2

∣∣∣∇θ · (∇u(2) · ∇)θ
∣∣∣ dx+

∫

T2

∣∣∣θ · (θ · ∇)u(2)
∣∣∣ dx+

+ α2
∫

T2

∣∣∣∇θ · (∇θ · ∇)u(2)
∣∣∣ dx+ α2

∫

T2

∣∣∣∇θ · (θ · ∇)∇u(2)
∣∣∣ dx. (2.73)

Com o objetivo de estimar o produto interno L2 de θ com o termo não linear (2.66) em

relação à norma H1
α de θ, observamos a partir da desigualdade anterior que, ao combinar as

duas primeiras integrais e aplicar a desigualdade de Hölder com os expoentes conjugados

(2, 2,∞), obtemos:
∫

T2

∣∣∣θ · (θ · ∇)u(2)(x)
∣∣∣ dx+α2

∫

T2

∣∣∣∇θ · (∇u(2) : ∇)θ(x)
∣∣∣ dx

≤ ||∇u(2)||L∞ ||θ||2H + α2||∇u(2)||L∞||∇θ||2H .

Colocando em evidencia a norma ||∇u(2)||L∞ e aplicando a definição da norma H1
α definida

em (2.6). Segue-se que
∫

T2

∣∣∣θ · (θ · ∇)u(2)(x)
∣∣∣ dx+α2

∫

T2

∣∣∣∇θ · (∇u(2) : ∇)θ(x)
∣∣∣ dx ≤

≤ ||∇u(2)||L∞

(
||θ||2H + α2||∇θ||2H

)

= ||∇u(2)||L∞ ||θ||2H1
α
. (2.74)



2.3. Unicidade da solução 53

As integrais restantes da desigualdade (2.73), serão analisadas separadamente, ambas pela

desigualdade de Hölder, mas com expoentes conjugados diferentes. Primeiramente, observe

que aplicando a desigualdade de Hölder, novamente com os expoentes conjugados (2, 2,∞),

temos que:

α2
∫

T2

∣∣∣∇θ · (∇θ · ∇)u(2)(x)
∣∣∣ dx ≤ α2||∇u(2)||L∞ ||∇θ||2H .

Logo, acrescentando do lado direito da desigualdade anterior, o termo

α2||∇u(2)||L∞ ||u||2H ≥ 0.

Obtemos que,

α2
∫

T2

∣∣∣∇θ · (∇θ · ∇)u(2)(x)
∣∣∣ dx ≤ α2||∇u(2)||L∞||∇θ||2H1

α
. (2.75)

Na última integral da desigualdade (2.73), utilizando a desigualdade de Hölder com

expoentes conjugados (p, p′), com p sendo suficientemente grande. Isto é,

α2
∫

T2

∣∣∣∇θ · (θ · ∇)∇u(2)(x)
∣∣∣ dx = α2

∫

T2

∣∣∣∇θ · (θ ·D2u(2))(x)
∣∣∣ dx

≤ α2||θ · ∇θ||Lp′ ||D2u(2)||Lp .

A desigualdade anterior introduz dois novos termos em normas Lp′

e Lp, sobre os quais inici-

almente não possuímos informações. Analisaremos cada uma dessas normas separadamente.

Começaremos examinando a norma Lp′

. De fato,

||θ · ∇θ||Lp′ =



∫

T2
|θ · ∇θ(x)|p

′

dx




1
p′

=



∫

T2
|θ · ∇θ(x)|p

′−1|θ · ∇θ(x)| dx




1
p′

Vamos assumir, por ora, que as normas L∞ de θ e ∇θ são limitadas, para manter o foco na

demonstração em curso. Especificamente, demostraremos que essas normas são limitadas

pela norma L2 da vorticidade potencial do dado inicial e a norma L2 da divergência do

termo de forçamento. Assim,

||θ · ∇θ||Lp′ ≤



[
||θ||L∞||∇θ||L∞

]p′−1 ∫

T2
|θ||∇θ(x)| dx




1
p′

.

Aplicando a desigualdade de Young nos termos da integral, obtemos que:

||θ · ∇θ||Lp′ ≤
1

2
1
p′

[
||θ||L∞ ||∇θ||L∞

] p′
−1

p′



∫

T2

[
|θ(x)|2 + |∇θ(x)|2

]
dx




1
p′

.

Logo, pela definição de norma H1, segue que:

||θ · ∇θ||Lp′ ≤
1

2
1
p′

[
||θ||L∞ ||∇θ||L∞

] p′
−1

p′

||θ||
2
p′

H1 .
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Dado que as normas H1 e H1
α são equivalentes. Temos que, existe uma constante positiva

denotada por K tal que:

||θ · ∇θ||Lp′ ≤ K
[
||θ||L∞||∇θ||L∞

] p′
−1

p′

||θ||
2
p′

H1
α
. (2.76)

Da desigualdade anterior, observamos uma limitação pela norma H1
α de θ que era nosso

objetivo inicial. Além disso, surgem as normas L∞ de θ e ∇θ. A seguir, veremos que essas

normas L∞ permanecem limitadas. Primeiramente, examinemos a norma L∞ de θ. De

fato, dado que u(1), u(2) ∈ L∞(0, T ;W ) e W ⊂ H3 ∩V e aplicando desigualdade de Morrey,

usada nas desigualdades (2.53), temos que:

||θ||L∞ = ||u(1) − u(2)||L∞ ≤ C||u(1) − u(2)||H3 ≤ C
[
||u(1)||H3 + ||u(2)||H3

]
.

Pela desigualdade (2.43), demonstradas na seção anterior, obtemos que a norma L∞ de θ

é limitada. Isto é,

||θ||L∞ ≤ C(γ, ||q0||L2 , ||g||L2). (2.77)

De maneira similar, examinamos a norma L∞ de ∇θ e obtemos que

||∇θ||L∞ ≤ C1(γ, ||q0||L2 , ||g||L2). (2.78)

Por conseguinte, combinando (2.76), (2.77) e (2.78), segue que

||θ · ∇θ||Lp′ ≤ M ||θ||
2
p′

H1
α
. (2.79)

Por último, examinamos a norma Lp. Em outras palavras, mostraremos que a norma

||D2u(2)||Lp é limitada por um múltiplo constante da norma H1
α de θ. A ferramenta

utilizada para essa análise é a desigualdade de Gagliardo-Nirenberg-Sobolev. Lembramos a

desigualdade: Se 1 < q < n, temos que existe q∗ chamado de expoente de Sobolev tal que:

W 1,q(Tn) ↪→ Lq∗

(Tn) onde q∗ =
nq

n− q
e Cq =

q

n− q
.

Observe que, tomando o expoente Sobolev q∗ = p e n = 2, temos que:

W 1,q(T2) ↪→ Lp(T2) onde p =
2q

2 − q
e Cq =

q

2 − q
.

Consequentemente,

1 < q =
2p

2 + p
< 2 e Cq =

p

2
.

Desse modo, obtemos que

||D2u(2)||Lp ≤
(
p

2

)
||D2u(2)||

W
1,

2p
2+p

.

Além disso, dado que a área do toro (2D) é finita, podemos aplicar a desigualdade de

Hölder com expoentes conjugados
(

p+2
p
, p+2

2

)
, para obter a inclusão

L2(T2) ⊂ L
2p

2+p (T2).
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Por conseguinte, o espaço de Sobolev H1(T2) = W 1,2(T2) está continuamente mergulhado

em W 1, 2p

p+2 (T2). Desse modo, segue que:

||D2u(2)||Lp ≤ Np||u(2)||H3 .

Das desigualdades (2.40), (2.41) e (2.42) demonstradas na seção anterior, temos que a

norma Lp de D2u(2) é limitada. Isto é,

||D2u(2)||Lp ≤ pN(γ, ||q0||L2 , ||g||L2). (2.80)

Revisando tudo o que foi discutido anteriormente tendo presente nosso objetivo de estimar

o termo |(B, θ)L2|. Por (2.73), sabemos que o termo é limitado por quatro integrais. Das

quais, as duas primeiras foram estimadas em (2.74) e a terceira integral foi estimada em

(2.75). Logo, combinando estas duas estimativas e renomeando a constante, temos que:

α2
∫

T2

∣∣∣∇θ · (∇u(2) · ∇)θ
∣∣∣ dx+

∫

T2

∣∣∣θ · (θ · ∇)u(2)
∣∣∣ dx+

+ α2
∫

T2

∣∣∣∇θ · (∇θ · ∇)u(2)
∣∣∣ dx ≤ C1||θ||

2
H1

α
.

Por outro lado, a quarta integral da desigualdade (2.73) foi estimada em (2.79) e (2.80).

Combinando estas duas estimativas e renomeando as constante envolvida temos que:

α2
∫

T2

∣∣∣∇θ · (θ · ∇)∇u(2)
∣∣∣ dx ≤ pC2||θ||

2
p′

H1
α
.

Portanto, a desigualdade diferencial (2.69) é reescrita da seguinte forma:

d

dt
||θ(t)||2H1

α
≤ C1||θ(t)||

2
H1

α
+ C2p||θ(t)||

2
p′

H1
α
. (2.81)

O próximo e último passo em nossa análise da unicidade da solução do sistema (2.19), será

estudar o comportamento da solução da desigualdade diferencial (2.81). Então, a partir de

(2.81) observamos que:

d

dt

[
e−C1t||θ(t)||2H1

α

]
≤ C2pe

−C1t||θ(t)||
2
p′

H1
α
.

Dado que (p, p′) são expoentes conjugado, vemos que

d

dt

[
e−C1t||θ(t)||2H1

α

]
≤ C2pe

−
C1t

p

[
e−C1t||θ(t)||2H1

α

] 1
p′

.

Como C1t
p

≥ 0, segue-se que

d

dt

[
e−C1t||θ(t)||2H1

α

]
≤ C2p

[
e−C1t||θ(t)||2H1

α

] 1
p′

.

Consideremos a função não negativa:

Z(t) = e−C1t||θ(t)||2H1
α
.
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Temos então, o problema: 



dZ(t)

dt
≤ C2pZ

1
p′ (t)

Z(0) = 0
(2.82)

Observe que se Z(t) = 0 para todo t ∈ [0, T ], então a norma H1
α do campo θ é zero.

Consequentemente, o campo θ é nulo. Desse modo, mostramos que as soluções u(1) e u(2)

são iguais e concluindo o Teorema 3. De fato, considerando a mudança de variável do tipo

Bernoulli:

Z = Y p com
dZ

dt
= pY p−1dY

dt
.

Vemos que, o problema (2.82) é equivalente a:




dY (t)

dt
≤ C2

Y (0) = 0

Integrando de 0 a t e utilizando a condição inicial, Y (0) = 0. Temos que a solução para

(2.82) é da forma

0 ≤ Z(t) ≤ (C2t)
p

para todo 0 ≤ t ≤ 1
2C2

. Logo, fazendo p tender para infinito, obtemos que

Z ≡ 0 em


0,

1

2C2


.

Se denotamos por t0 = 1
2C2

e considerarmos a nova condição inicial Z(t0) = 0, estabelecemos

o problema: 



dZ(t)

dt
≤ C2pZ

1
p′ (t)

Z(t0) = 0.

De maneira análoga, como foi solucionado o problema (2.82), obtemos que:

0 ≤ Z(t) ≤ (C2(t− t0))
p

para todo t0 ≤ t ≤ 2t0. Novamente, fazendo p tender ao infinito, obtemos que

Z ≡ 0 em [t0, 2t0].

Portanto, Z ≡ 0 em
[
0, 2t0

]
. De forma indutiva, segue-se que Z ≡ 0 em

[
0, nt0

]
para todo

n ∈ N. Demonstrando que Z ≡ 0 em [0, T ]. Assim, concluímos que o Problema (2.19)

possui uma única solução em C([0, T ];V ) ∩ L2(0, T ;D(Iβ))
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3 Fenômeno de Dissipação Anômala para a

Vorticidade Potencial

Neste capítulo estudaremos o limite invíscido de médias temporais de longo prazo

das soluções das equações de Camassa-Holm Generalizadas (CHG) descritas em (2.1) sobre

o domínio periódico T
2. O Teorema principal de nosso trabalho dita que a taxa média de

dissipação de enstrofia potencial se anula no limite da viscosidade quando tende a zero,

um resultado similar é obtido para as equações de Navier-Stokes (NS) com amortecimento

em [11] e para as equações quase-geostrófica superficial (SQG) em [12]. Este resultado

é possível, já que as soluções estatísticas estacionárias conservam o balanço de enstrofia

potencial.

O capítulo será dividido em 5 seções: Compacidade da semi-órbita positiva, Limite

invíscido das equações estacionárias de Camassa-Holm Generalizadas, Soluções estatísticas

estacionárias no espaço fase de vorticidade potencial, Compacidade relativa e balanço de

enstrofia potencial, e por último médias temporais de longo prazo.

3.1 Compacidade da Semi-Órbita Positiva

Nesta seção, abordamos um fato relevante do nosso estudo. O qual é a compacidade

da semi-órbita positiva, induzida pela função escalar que é solução do sistema de equações

para a vorticidade potencial do sistema (2.1) introduzida no capítulo anterior. Este

fato é importante, porque é sobre a semi-orbita positiva que suporta a solução estatística

estacionaria. Para levar a cabo este objetivo, será necessário estabelecer algumas estimativas

para o campo de velocidade e a vorticidade potencial em diferentes normas.

Consideramos o sistema de equações de Camassa-Holm Generalizadas




∂tv + u · ∇v +
∑2

j=1 v
j∇uj − ν∆(I − α2∆)βu+ γv = −∇p+ f

∇ · u = 0

v = (I − α2∆)u

u(x, 0) = u0

para os campos de vetores u, v : T2 × [0,∞) → T
2, f é uma força dada independente do

tempo com média zero e f ∈ (H1(T2))2. O dado inicial u0 é de divergência nula, média

zero e pertence a H3(T2). Os parâmetros γ > 0, ν > 0 e 1
2
< β ≤ 1 fixos. Pelos Teoremas

2 e Teorema 3 do capítulo anterior, sabemos que existe uma única solução regular para o

sistema de equações (2.1) que satisfaz o equação de balanço de energia:

1

2

d

dt
||u||2H1

α
+ ν||∇(I − α2∆)

β

2 u||2L2 + γ||u||2H1
α

= (f, u)L2 . (3.1)
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A partir da equação de balanço de energia, temos de fato que a norma || · ||2H1
α

do campo

de velocidade u, para as equações de Camassa-Holm Generalizadas é limitada em tudo

tempo. Além disso, a limitação é independente da viscosidade. Isto é,

||u(t)||2H1
α

≤ ||u0||
2
H1

α
+
C||f ||2

γ2

onde C é uma constante positiva. Por outro lado, Se aplicamos o operador Curl para as

equações de Camassa-Holm Generalizadas sob condições periódicas, obtemos o sistema de

equações equivalente:




d

dt
q + (u · ∇)q − ν∆(I − α2∆)β−1q + γq = g

∇ · u = 0

Curl(I − α2∆)u = q

q(x, 0) = q0

(3.2)

Lembrando que o sistema (3.2) foi introduzido no capítulo 2, e foi chamado de sistema

de vorticidade potencial. A função escalar q(x, t) é chamada de vorticidade potencial, a

qual é uma aplicação continua de [0, T ] para L2(T2). A função escalar g é o forçamento do

potencial, definido por g = Curl(f). O problema da existência e unicidade das equações

(3.2) é equivalente ao problema da existência e unicidade das equações (2.1), que foi

estabelecido nos Teoremas 2 e 3 do capítulo anterior, que garante q ∈ L∞(0, T ;H2 ∩ V ) é

uma solução fraca para o sistema de equações (3.2).

Por outro lado, ao aplicamos o operador Curl, definido em (2.12) como Curl = ∇⊥·, que

comuta com o operador de Bessel−α de ordem 2, obtemos:

q = ∇⊥ · (I − α2∆)u = (I − α2∆)∇⊥ · u = (I − α2∆)ω. (3.3)

De igual forma, como foi abordado o sistema de vorticidade potencial de ordem m no

capítulo anterior, obtemos uma equação de balanço de enstrofia potencial, dada por:

1

2

d

dt
||q||2L2 + ν||q||2

Hβ
α

+ γ||q||2L2 = (g, q)L2 . (3.4)

Aplicando a desigualdades de Cauchy-Schwarz e a desigualdade de Young com ϵ = γ
1
2 , no

lado direito da igualdade (3.4), segue que:

|(g, q)L2 | ≤
1

2γ
||g||2L2 +

γ

2
||q||2L2 . (3.5)

Acoplando a desigualdade (3.5) em (3.4), obtemos a desigualdade diferencial

d

dt
||q||2L2 + 2ν||q||2

Hβ
α

+ γ||q||2L2 ≤
1

γ
||g||2L2 . (3.6)

Logo, usando o Lema de Grönwall na desigualdade diferencial (3.6), segue que a enstrofia

potencial é uniformemente limitado na norma L2. Isto é,

||q(·, t)||2L2 ≤

[
||q0||

2
L2 −

1

γ2
||g||2L2

]
e−γt +

1

γ2
||g||2L2 . (3.7)
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A seguir, enunciamos nosso Lema sobre a compacidade relativa da semi-órbita

positiva, considerando os parâmetros fixos ν > 0 e γ > 0.

Lema 4. Consideremos os parâmetros 0 < α < 1 e 1/2 < β ≤ 1. Sejam q0 ∈ L2(T2) e

g ∈ L2(T2) funções escalares. Seja q(·, t) a solução do sistema de vorticidade potencial

(3.2). Então, para qualquer t0 ≥ 0 fixo a semi-órbita positiva

O+(q0, t0) = {q(·, t+ t0) ∈ L2(T2) : t ≥ 0}

é relativamente compacta em L2(T2).

Demonstração. A função escalar q(·, t), definido no conjunto O+(q0, t0), é a solução do

sistema de vorticidade potencial descrito em (3.2). A existência e unicidade dessa solução

são garantidas pelos Teoremas 2 e 3 do capítulo anterior. Além disso, conforme (3.7) e pelo

que a função escalar g é independente do tempo, temos que a norma L2 da vorticidade

potencial é uniformemente limitada com relação ao tempo. O Teorema 2 também garante

que o campo de velocidade u(x, t), das equações de Camassa-Holm Generalizadas descritas

em (2.1) é limitado na norma de L∞(0, T,H3) para qualquer T > 0. Além disso, de (3.6),

sabemos que as equações para a vorticidade potencial descritas em (3.2) satisfazem a

desigualdade diferencial

d

dt
||q||2L2 + 2ν||q||2

Hβ
α

+ γ||q||2L2 ≤
1

γ
||g||2L2 .

Desse forma, integrando de t a t+ 1 obtemos a seguinte desigualdade:

||q(t+ 1)||2L2 + 2ν
∫ t+1

t
||q(s)||2

Hβ
α
ds + γ

∫ t+1

t
||q(s)||2L2 ds ≤

1

γ
||g||2L2 + ||q(t)||2L2 .

Dado que a norma L2 da vorticidade potencial é não negativa e a integral no parâmetro

de amortecimento é não negativo, podemos simplificar a desigualdade anterior e rescrever

a norma do termo de viscosidade como:

ν
∫ t+1

t
||q(s)||2

Hβ
α
ds ≤ ||q0||

2
L2 +

1

γ
||g||2L2 .

Consequentemente, da desigualdade (3.7) concluímos que:

∫ t+1

t
||q(s)||2

Hβ
α
ds ≤ M, (3.8)

Aqui, a constante M é independente do tempo.

O próximo passo, é obter uma estimativa para a função escalar q(x, t) na norma Hβ
α

com 1
2
< β ≤ 1. O objetivo dessa estimativa é aplicar o Teorema de Rellich-Kondrachov,

que garante, Hβ
α está compactamente mergulhado em L2.
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Como a equação (3.2) tem solução fraca, tomamos uma função teste da forma J2β
α q(x, t) e

obtemos que:

1

2

d

dt
||q(t)||2

Hβ
α

+ ν||q(t)||2
H2β

α
+ γ||q(t)||2

Hβ
α

≤
∣∣∣
(
g, J2β

α q(t)
)

L2

∣∣∣+

+
∣∣∣
(
(u · ∇)q(t), J2β

α q(t)
)

L2

∣∣∣. (3.9)

De fato, dado que o operador de Bessel−α de ordem β é auto adjunto, temos que:
(
∂tq(t), J

2β
α q(t)

)
L2

=
(
Jβ

α∂tq(t), J
β
αq(t)

)
L2

=
(
∂tJ

β
αq(t), J

β
αq(t)

)
L2

=
1

2

d

dt
||Jβ

αq(t)||
2
L2

Logo, por (2.9). Temos que

(
∂tq(t), J

2β
α q(t)

)
L2

=
1

2

d

dt
||q(t)||2

Hβ
α
. (3.10)

Para o termo de viscosidade, temos que:
(

− ∆(I − α2∆)β−1q(t), J2β
α q(t)

)
L2

=
(

− ∆J2(β−1)
α q(t), J2β

α q(t)
)

L2

=
(

− ∆J2(2β−1)
α q(t), q(t)

)
L2

Aplicando integração por partes, segue que
(

− ∆J2(2β−1)
α q(t), q(t)

)
L2

=
(
∇J (2β−1)

α q(t),∇J (2β−1)
α q(t)

)
L2

= ||∇J (2β−1)
α q||2L2

= ||q||2
H2β

α
. (3.11)

Para o termo de amortecimento, vemos que:
(
q, J2β

α q(t)
)

L2
=
(
Jβ

αq, J
β
αq(t)

)
L2

Portanto, (
q, J2β

α q(t)
)

L2
= ||q(t)||2

Hβ
α

(3.12)

Combinando as identidades (3.10), (3.11) e (3.12), obtemos o lado esquerdo da desigualdade

(3.9). Dado que nosso objetivo é obter uma estimativa para a norma Hβ
α , devemos estimar

os termos restantes da desigualdade (3.9). A seguir, estimaremos o primeiro termo do

lado direito da desigualdade (3.9). Note que, aplicando a desigualdade de Cauchy-Schwarz.

Segue que:

|
(
g, J2β

α q(t)
)

L2
| ≤ ||g||L2 ||J2β

α q(t)||L2 = ||g||L2 ||q(t)||H2β
α
.

Nesta última estimativa, aplicamos a desigualdade de Young com ϵ = ν
1
2 . Desse modo,

obtemos a desigualdade:

|
(
g, J2β

α q(t)
)

L2
| ≤

||g||2L2

2ν
+
ν

2
||q(t)||2

H2β
α
. (3.13)
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Em relação ao segundo termo do lado direito da desigualdade (3.9), o qual corresponde ao

termo não linear, requer-se uma atenção adicional. Primeiro aplicamos a desigualdade de

Hölder com expoentes (∞, 2, 2). Isto é,

∣∣∣
(
(u · ∇)q(t), J2β

α q(t)
)

L2

∣∣∣ ≤ ||u(t)||L∞||∇q(t)||L2||J2β
α q(t)||L2 . (3.14)

Aplicando a desigualdade de Gagliardo-Nirenberg de interpolação de espaços de Sobolev

(ver [3]) e o fato que 1
2
< β, obtemos que:

||∇q(t)||L2 ≤ C||q(t)||1−λ
L2 ||q(t)||λH2β . (3.15)

Por outra parte, dado que o parâmetro 0 < α < 1 e pela Proposição 22 do Apêndice A

segue que: para s > 0 as normas || · ||Hs e || · ||Hs
α

são equivalentes. Isto é,

αβ||u||Hβ ≤ ||u||Hβ
α

≤ ||u||Hβ , (3.16)

para toda u ∈ H2(T2). Assim, das desigualdade (3.15) e (3.14), junto com a equivalência

de normas (3.16), obtemos que:

∣∣∣
(
(u · ∇)q(t), Jβ

αq(t)
)

L2

∣∣∣ ≤ C||u(t)||L∞ ||q(t)||1−λ
L2 ||q(t)||1+λ

H2β .

Por último, aplicamos a desigualdade de Young com expoentes:

(
2

1 − λ
,

2

1 + λ

)
e ϵ =

[
να2β

1 + λ

] 1+λ
2

.

Concluímos que o segundo termo do lado direito da desigualdade (3.9), da seguinte maneira:

∣∣∣
(
(u · ∇)q(t), Jβ

αq(t)
)

L2

∣∣∣ ≤ C||q(t)||2L2 +
να2β

2
||q(t)||2H2β , (3.17)

onde a constante C := C(λ, ν, α, β, ||u||L∞). Observe que, pela equivalência de normas

(3.16), a desigualdade (3.17) pode ser rescrita como:

∣∣∣
(
(u · ∇)q(t), Jβ

αq(t)
)

L2

∣∣∣ ≤ C||q(t)||2L2 +
ν

2
||q(t)||2

H2β
α
. (3.18)

Logo, combinado as estimativas (3.13) e (3.18), reescrevemos o lado direito de (3.9) da

seguinte maneira:

1

2

d

dt
||q(t)||2

Hβ
α

+ γ||q||2
Hβ

α
+ ν||q(t)||2

H2β
α

≤
||g||2L2

2ν
+ C||q(t)||2L2 + ν||q||2

H2β
α
.

Observe que, na desigualdade anterior, o termo de viscosidade pode ser facilmente cancelado.

Além disso, como o termo associado ao parâmetro de amortecimento é positivo, ele também

pode ser simplificado na desigualdade. Dessa forma, obtemos a seguinte desigualdade

diferencial:
1

2

d

dt
||q(t)||2

Hβ
α

≤
||g||2L2

2ν
+ C||q(t)||2L2 .
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Pela inclusão continua dos espaços Hβ
α(T2), temos que Hβ

α(T2) ⊂ L2(T2). Por conseguinte,

d

dt
||q(t)||2

Hβ
α

≤
||g||2L2

ν
+ C||q(t)||2

Hβ
α
. (3.19)

Portanto, da desigualdade (3.8) e o Lema de Grönwall uniforme (ver [30]) aplicados na a

desigualdade diferencial (3.19), concluímos que, para qualquer t0 > 0, se t > t0, a norma

||q(t)||2
Hβ

α
é uniformemente limitada em relação ao tempo. Dado que β > 0, aplicamos o

Teorema de Rellich-Kondrachov para concluir que o conjunto O+(q0, t0) é compacto em

L2(T2).

A partir do Lema anterior, observamos que a normaHβ
α , com β > 1/2, da vorticidade

potencial é limitada com constante indepedente do tempo. Assim, obtemos informação

sobre a norma L∞ da vorticidade potencial, que é uma informação importante em nosso

trabalho. Desse modo, existe uma constante R > 0 tal que para todo t > 0

||q(t)||L∞(T2) ≤ R. (3.20)

Portanto, concluímos que norma L∞ da vorticidade potencial é limitada.

3.2 Limite Invíscido das Equações Estacionárias de Camassa-Holm

Generalizadas

Neste seção abordamos o limite invíscido das soluções estacionárias para as equações

de vorticidade potencial paras as equações de Camassa-Holm Generalizadas, servindo

como motivação para o que será desenvolvido posteriormente com as soluções estatísticas

estacionárias. Mostramos que o limite invíscido é uma solução renormalizada conforme é

apresentado em [14].

Dando continuidade à análise, assumimos agora que os parâmetros satisfazem 1
2
< β ≤ 1,

γ > 0 e o forçamento f ∈ (H1(T2))2 com média zero de tal maneira que g := Curl(f).

Além disso, consideramos que u(ν) ∈ D(Iβ), para ν fixo, é uma solução fraca para o sistema

de equações estacionários de Camassa-Holm Generalizadas dadas por:




u · ∇v +
∑

j vj∇uj − ν∆(I − α2∆)βu+ γv = −∇p+ f

(I − α2∆)u = v

∇ · u = 0,

(3.21)

que satisfaz a equação do balanço de energia para o sistema (3.21) dada por:

γ
[
||u(ν)||2L2 + α2||∇u(ν)||2L2

]
+ ν||∇(I − α2∆)β/2u(ν)||2L2 = (f, u(ν))L2 . (3.22)

Aplicamos a desigualdade de Cauchy-Schwarz e a desigualdade de Young com ϵ = γ
1
2 no

lado direito da equação (3.22) e obtemos:

γ||u(ν)||2L2 + γα2||∇u(ν)||2L2 + ν||∇(I − α2∆)β/2u(ν)||2L2 ≤
1

2γ
||f ||2L2 +

γ

2
||u(ν)||2L2 .
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Como o termo viscoso é não negativo na desigualdade anterior, podemos simplificar a

desigualdade. Assim, obtemos:

γ

2
||u(ν)||2L2 + γα2||∇u(ν)||2L2 ≤

1

4γ
||f ||2L2 . (3.23)

Portanto, a sequência
(
∇u(ν)

)
ν

é limitadas em norma L2(T2). Logo, pelo Teorema de

Rellich-Kondrachov, existe uma subsequência de (u(ν))ν , também denotada por (u(ν))ν , e

u(0) ∈ (L2(T2))2 tal que (u(ν))ν convergente fortemente para u(0) quando ν tende a zero.

Por outro lado, seja q(ν) ∈ Hβ
α(T2), para ν fixo, uma solução fraca para o sistema

de equações estacionária de vorticidade potencial para as equações de Camassa-Holm

Generalizadas dadas por:




u · ∇q + γq − ν∆(I − α2∆)β−1q = g

Curl(I − α2∆)u = q

∇ · u = 0,

(3.24)

que satisfaz a equação do balanço de enstrofia potencial para o sistema (3.24) dado por:

γ||q(ν)||2L2 + ν||q(ν)||2
Hβ

α
= (g, q(ν))L2 . (3.25)

Aplicamos a desigualdade de Cauchy-Schwarz e a desigualdade de Young com ϵ = γ
1
2 no

lado direito de equação (3.25), obtemos que:

γ||q(ν)||2L2 + ν||q(ν)||2
Hβ

α
≤

1

2γ
||g||2L2 +

γ

2
||q(ν)||2L2 .

Como o termo viscoso é não negativo na desigualdade anterior, podemos simplificar a

desigualdade. Assim, obtemos:

γ

2
||q(ν)||2L2 ≤

1

2γ
||g||2L2 . (3.26)

Portanto, a sequência
(
q(ν)

)
ν

é limitada na norma L2(T2). De acordo com o Teorema II.2.7

em [[1], pag 53], existe uma subsequência, também denotada por (q(ν))ν , e q(0) ∈ L2(T2)

tal que (q(ν))ν converge fracamente para q(0) quando ν tende para zero.

O seguinte resultado, mostra que o limite invíscido do par de sequencias de soluções

estacionárias u(ν) e q(ν) dadas anteriormente, é uma uma solução estacionaria da vorticidade

potencial para as equações de Euler−α com amortecimento e forçamento.

Teorema 5. Sejam g ∈ L2(T2),
(
u(ν)

)
ν

e
(
q(ν)

)
ν

sequencias de soluções estacionárias para

os sistemas de equações (3.21) e (3.24) respectivamente, tais que u(ν) converge fortemente

para u(0) em (L2(T2))2 e q(ν) converge fracamente para q(0) em L2 quando ν tende para

zero. Então, o par (u(0), q(0)) é uma solução estacionaria para as equações de Euler−α




u(0) · ∇q(0) + γq(0) = g

Curl(I − α2∆)u(0) = q(0)

∇ · u(0) = 0,

(3.27)
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no sentido das distribuições. Isto é, para qualquer função teste ϕ ∈ C∞
c (T2), temos que:

∫

T2
(u(0) · ∇)ϕq(0) dx+

∫

T2
γq(0)ϕ dx =

∫

T2
gϕ dx.

Demonstração. Dado que u(0) e q(0), são os limites do par de sequencias (u(ν))ν e (q(ν))ν

abordaremos a prova desta proposição, examinando a convergência em distribuição de cada

um dos termos do sistema de equações (3.27). De fato, Seja ϕ é uma função de teste. Para

o termo não linear, primeiro vejamos que a sequencia
(
(u(ν) · ∇)ϕ

)
ν

convergem fortemente

na norma L2 para (u(0) · ∇)ϕ quando ν tende para zero. Observe que:

||(u(ν) · ∇)ϕ− (u(0) · ∇)ϕ||2L2 = ||([u(ν) − u(0)] · ∇)ϕ||2L2

=
∫

T2
|([u(ν) − u(0)] · ∇)ϕ|2 dx.

Aplicando a desigualdade de Cauchy-Schwarz para vetores, temo que:

||(u(ν) · ∇)ϕ− (u(0) · ∇)ϕ||2L2 ≤
∫

T2
|u(ν) − u(0)|2|∇ϕ|2 dx

≤ ||∇ϕ||2L∞

∫

T2
|u(ν) − u(0)|2 dx

≤ ||∇ϕ||2L∞||u(ν) − u(0)||2L2 .

Dado que
(
u(ν)

)
ν

converge forte para u(0) na norma L2 e ϕ é uma função teste. Segue-se a

convergência de (u(ν) ·∇)ϕ para (u(0) ·∇)ϕ na norma L2. Agora, tomando U (ν) := (u(ν) ·∇)ϕ

com U (0) ∈ L2(T2). Vemos que:

|(U (ν), q(ν))L2 − (U (0), q(0))L2| =

∣∣∣∣∣∣

∫

T2
U (ν)q(ν) − U (0)q(ν) + U (0)q(ν) − U (0)q(0) dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

T2
U (ν)q(ν) − U (0)q(ν) dx+

∫

T2
U (0)q(ν) − U (0)q(0) dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

T2
U (ν)q(ν) − U (0)q(ν) dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∫

T2
U (0)q(ν) − U (0)q(0) dx

∣∣∣∣∣∣
.

Aplicando a desigualdade de Cauchy-Schwarz na primeira integral, temos que:

|(U (ν), q(ν))L2 − (U (0), q(0))L2| ≤ ||q(ν)||L2||U (ν) − U (0)||L2 +
∣∣∣∣
(
U (0), q(ν) − q(0)

)

L2

∣∣∣∣.

Dado que a sequencia (U (ν))ν converge forte para U (0) na norma L2 quando ν tende para

zero e pela desigualdade (3.26), obtemos que:

||q(ν)||L2||U (ν) − U (0)||L2 −→ 0 quando ν −→ 0.

Além disso, como a sequencia (q(ν))ν converge fracamente para q(0). Temos que:
∣∣∣∣
(
U (0), q(ν) − q(0)

)

L2

∣∣∣∣ −→ 0 quando ν −→ 0.
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Portanto, das duas convergências anteriores, concluímos que:

lim
ν→0

∫

T2
(u(ν) · ∇)ϕq(ν) dx =

∫

T2
(u(0) · ∇)ϕq(0) dx.

Para o termo de amortecimento, o trabalho é mais simples, já que a sequencia (q(ν))ν

converge fracamente na norma L2. Em particular, temos que:

lim
ν→0

∫

T2
γq(ν)ϕ dx =

∫

T2
γq(0)ϕ dx,

para qualquer função teste ϕ. Portanto, o par (u(0), q(0)) é uma solução fraca estacionaria

para o sistema de equações (3.27).

Solução Estacionaria Renormalizada das Equações Euler−α

As soluções renormalizadas são uma extensão das soluções fracas e surgem no estudo

de equações diferenciais parciais (EDP’s) em contextos onde as noções solução fraca não são

adequadas ou suficientes para descrever o comportamento do sistema. Esse tipo de solução é

particularmente relevante em problemas onde as soluções podem apresentar singularidades,

irregularidades ou comportamentos não suaves, como em modelos de transporte, fluidos

incompressíveis ou sistemas com dissipação anômala. A ideia é aplicar uma transformação

que suaviza a equação, permitindo manipulações mais controladas. Um aspecto crucial

dessa abordagem é que ela garante que, mesmo na presença de irregularidades, a solução

renormalizada respeita propriedades físicas e conservativas do sistema, como por exemplo,

a conservação do balanço de enstrofia potencial.

Em seguida, introduzimos a definição de solução estacionária renormalizada para

as equações de Euler−α, utilizando as ideias apresentadas no artigo de Diperna-Lions em

[14].

Definição 6. Seja g ∈ L2(T2) e u o campo de velocidade tal que u ∈ (W 1,2
loc (T2))2

e tem divergência nula. A função q ∈ L2(T2) é chamada de solução estacionaria

renormalizada das equações de Euler−α (3.27) se, a função escalar q, é solução da

equação

(u · ∇)β(q) + γqβ′(q) = gβ′(q) (3.28)

no sentido das distribuições, para todo β ∈ C1(R) com β e β′ limitadas em R e nula

próxima de zero.

A seguir, enunciamos o Teorema que garante que as soluções fracas estacionárias são,

de fato, soluções estacionárias renormalizadas. O objetivo de introduzir este tipo de solução

é que elas preservam o balanço de enstrofia potencial, um argumento usado para demonstrar

a ausência de dissipação anômala nas equações de Camassa-Holm Generalizadas.
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Teorema 7. Sejam g ∈ L2(T2), u(0) ∈ (H1(T2))2 com divergência nula e q(0) ∈ L2(T2).

Seja q(0) uma solução estacionaria para o sistema de equações (3.27). Então, q(0) é uma

solução estacionaria renormalizada para esse sistema. Além disso, o balanço de enstrofia

potencial é dado por:

γ||q(0)||2L2 =
∫

T2
gq(0) dx. (3.29)

Demonstração. Das hipóteses do nosso Teorema, segue como uma aplicação do Teorema II.

3 de [14], que a função escalar q(0) é uma solução estacionaria renormalizada para o sistema

de equações (3.27). Para ter uma ideia completa do Teorema, damos na continuação uma

demonstração desta primeira parte do Teorema.

Primeiro, observamos que, em particular u ∈ (W 1,2
loc (T2))2. Por outro lado, conside-

ramos um molificador estândar φϵ, isto é, uma função φ suave, não negativa, de suporte

compacto com integral igual a 1. Assim, conforme o Lema II.1 de [14], temos que:
[(

(u(0) · ∇)q(0)
)

∗ φϵ − (u(0) · ∇)(q(0) ∗ φϵ)
]

−→
ϵ

0 em L1
loc(T

2). (3.30)

Denotamos as funções modificadas por:

qϵ = q(0) ∗ φϵ, uϵ = u(0) ∗ φϵ e gϵ = g ∗ φϵ.

Realizando a convolução das equação estacionaria de Euler−α descritas em (3.27), obtemos:

[(u(0) · ∇)q(0] ∗ φϵ + γqϵ = gϵ.

Adicionamos o termo (u(0) · ∇)qϵ na igualdade anterior. Dessa forma, obtemos:

(u · ∇)qϵ + γqϵ − gϵ = −Rϵ, (3.31)

onde

Rϵ :=
[(

(u(0) · ∇)q(0)
)

∗ φϵ − (u(0) · ∇)qϵ

]
. (3.32)

Pela Teorema 5, sabemos que a equação (3.31) é válida no sentido das distribuições e pela

convergência em (3.30) temos que Rϵ converge para zero quando ϵ tende para zero. Seja

β ∈ C1(R) tal que β e β′ são limitadas em R. Multiplicando a equação (3.31) por β′(qϵ),

obtemos que:

(u(0) · ∇)β(qϵ) + γβ′(qϵ)qϵ − β′(qϵ)gϵ = β′(qϵ)Rϵ, (3.33)

também é válida no sentido das distribuições. Portanto, ao tomar o limite quando ϵ tende

para zero, observamos que, pelo limite (3.30) e pelo fato de β′ ser limitada, o termo do

lado direito da igualdade (3.33) converge para zero. Assim, q(0) satisfaz a equação

(u(0) · ∇)β(q(0)) + γq(0)β′(q(0)) = gβ′(q(0)), (3.34)

no sentido distribucional. Portanto, a função escalar q(0), também é uma solução estacio-

naria renormalizada das equações de Euler−α.
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A segunda parte de nosso Teorema, consiste em provar o balanço de enstrofia

potencial dado em (3.29). Para simplificar a notação, denotaremos por:

u = u(0), b = β(q(0)) e bϵ = β(q(0)) ∗ φϵ,

onde β é uma função de classe C1 com suporte compacto e b ∈ L1(T2)∩L∞(T2). Calculamos

a convolução da equação (3.34) com o molificador φϵ e observamos:

∇ · (u⊗ b)ϵ + γPϵ = Gϵ, (3.35)

onde

Pϵ = (q(0)β′(q(0))) ∗ φϵ e Gϵ = (gβ′(q(0))) ∗ φϵ.

Tomando o produto interno L2 da equação (3.35) com a função bϵ, obtemos:

(
∇ · (u⊗ b)ϵ, bϵ

)
L2

+
(
γPϵ, bϵ

)
L2

= (Gϵ, bϵ)L2 . (3.36)

A seguir, mostraremos que o termo de convecção na identidade anterior converge para

zero quando ϵ tende para zero. De fato, se aplicamos integração por partes nesse termo,

podemos rescrever ele da seguente forma:

(
∇ · (u⊗ b)ϵ, bϵ

)
L2

= −
(
(u⊗ b)ϵ,∇bϵ

)
L2
.

Conforme ao artigo ([10]), temos a seguente identidade:

(u⊗ b)ϵ = uϵ ⊗ bϵ + rϵ(u, b) − (u− uϵ) ⊗ (b− bϵ) (3.37)

onde

rϵ(u, b) =
∫

T2
φ(z)(δϵzu(x) ⊗ δϵzb(x)) dz e δϵzu(x) = u(x− ϵz) − u(x). (3.38)

Além disso, ∫

T2
(uϵ ⊗ bϵ) · ∇bϵ dx = 0. (3.39)

Note que,

(u− uϵ)(x) = u(x) −
∫

T2
φ(z)u(x− ϵz) dz

=
∫

T2
φ(z)u(x) dz −

∫

T2
φ(z)u(x− ϵz) dz

= −
∫

T2
φ(z)[u(x− ϵz) − u(x)] dz

= −
∫

T2
φ(z)δϵzu(x) dz.

Portanto,

(u− uϵ)(x) = −
∫

T2
φ(z)δϵzu(x) dz. (3.40)
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Calculamos o produto interno L2 da equação (3.37) com ∇bϵ e tendo em mente a identidade

(3.39). Obtemos que:
∫

T2
(u⊗ b)ϵ · ∇bϵ dx =

∫

T2
rϵ(u, b) · ∇bϵ dx−

∫

T2
(u− uϵ) ⊗ (b− bϵ) · ∇bϵ dx. (3.41)

Examinando a primeira integral do lado direito de (3.41), vemos que:
∣∣∣∣∣∣

∫

T2
rϵ(u, b) · ∇bϵ dx

∣∣∣∣∣∣
≤
∫

T2

∣∣∣rϵ(u, b)
∣∣∣
∣∣∣∇bϵ

∣∣∣ dx ≤
C

ϵ

∫

T2
φ(z)||δϵzu||L2||δϵzb||L2 dz,

onde a última desigualdade é devido a b ∈ L1(T2) ∩ L∞(T2) e a desigualdade de Cauchy-

Schwarz. Logo, pela desigualdade da Proposição 24 no Apêndice B, obtemos que:
∣∣∣∣∣∣

∫

T2
rϵ(u, b) · ∇bϵ dx

∣∣∣∣∣∣
≤ C

∫

T2
φ(z)||δϵzb||L2 dz.

O qual converge para zero quando ϵ tende para zero. Por outro parte, na segunda integral

do lado direito da equação (3.41), aplicamos a desigualdade Hölder. Desse modo, obtemos

a seguente estimativa:
∣∣∣∣∣∣

∫

T2
(u− uϵ) ⊗ (b− bϵ) · ∇bϵ dx

∣∣∣∣∣∣
≤
C

ϵ
||u− uϵ||L2 ||b− bϵ||L2 .

Note que, pela identidade (3.40) e a desigualdade de Minkowski para integrais. Vemos que:

||u− uϵ||L2 ≤
∫

T2
|φ(z)||δϵzu||L2 dz.

Logo, aplicando novamente a desigualdade da proposição 24 no Apêndice B. Obtemos que:

||u− uϵ||L2 ≤ ϵ||∇u||L2

∫

T2
|z||φ(z)| dz.

Portanto, a segunda integral do lado direito de (3.41) é estimada por:
∣∣∣∣∣∣

∫

T2
(u− uϵ) ⊗ (b− bϵ) · ∇bϵ dx

∣∣∣∣∣∣
≤ C1||b− bϵ||L2 .

Dado que bϵ convergem para b em norma L2 quando ϵ tende para zero, concluímos que

lim
ϵ→0

∫

T2
(u⊗ b)ϵ · ∇bϵ dx = 0.

Por conseguinte, o termo de convecção na equação (3.36) converge para zero quando ϵ

tende para zero. A convergência dos termos restantes é mais simples de analisar, já que Pϵ

converge para q(0)β′(q(0)) em norma L2 e Gϵ converge para gβ′(q(0)) em norma L2 quando

ϵ tende para zero. Portanto, concluímos que:

γ
∫

T2
q(0)β′(q(0))β(q(0)) dx =

∫

T2
gβ′(q(0))β(q(0)) dx. (3.42)

Dado que β é uma função arbitrária de classe C1 com suporte compacto, consideramos

uma sequência βn(x), que converge pontualmente para x e cuja sequência de derivadas

βn(x), convergem para 1. Aplicando o Teorema da Convergência Dominada e a identidade

(3.42), obtemos a identidade (3.29).
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Agora, apresentamos o Teorema que demonstra que o termo viscoso na equação de

balanço de enstrofia potencial das equações estacionárias de CHG se anula no limite em

que a viscosidade tende a zero.

Teorema 8. Sejam (u(ν))ν e (q(ν))ν sequências de soluções estacionárias para os sistemas

de equações (3.21) e (3.24) respectivamente. Então, o termo de viscoso da equação (3.25),

equação de balanço de enstrofia potencial do sistema (3.24), se anula quando a viscosidade

tende para zero. Isto é,

lim
ν→0

ν||q(ν)||2
Hβ

α
= 0. (3.43)

Demonstração. A partir da equação de balanço de enstrofia potencial (3.25), obtemos a

seguinte relação:

ν||q(ν)||2
Hβ

α
= (g, q(ν))L2 − γ||q(ν)||2L2 , (3.44)

onde g ∈ L2(T2). Em seguida, aplicamos o limite superior na equação (3.44), o que resulta

em:

lim sup
ν→0

ν||q(ν)||2
Hβ

α
= lim sup

ν→0

(
g, q(ν)

)
L2

− γ lim sup
ν→0

||q(ν)||2L2 .

Neste ponto, utilizando o lema de Fatou e levando em consideração que a sequência (q(ν))ν

converge fracamente para q(0) em L2(T2), podemos concluir que:

lim sup
ν→0

(
g, q(ν)

)
L2

≤
(
g, q(0)

)
L2

e ||q(0)||2L2 ≤ lim inf
ν

||q(ν)||2L2 .

Consequentemente, obtemos a seguinte desigualdade:

lim sup
ν→0

ν||q(ν)||2
Hβ

α
≤
(
g, q(0)

)
L2

− γ||q(0)||2L2 .

Finalmente, com base na identidade (3.29), concluímos o limite desejado:

lim
ν→0

ν||q(ν)||2
Hβ

α
= 0.

Essa conclusão mostra que, quando a viscosidade tende a zero, a dissipação de enstrofia

potencial também se anula.

Em resumo, os Teoremas 5 e 8 estabelecem uma conexão entre as soluções es-

tacionárias para os sistemas de vorticidade potencial das equações de Camassa-Holm

Generalizadas e as equações de Euler-α. Essa conexão mantém propriedades fundamentais,

como a preservação da equação de balanço de enstrofia potencial.
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3.3 Soluções Estatísticas Estacionárias no espaço fase de Vortici-

dade Potencial

Nesta seção, introduzimos a noção de solução estatística estacionária para as

equações de Camassa-Holm Generalizadas, fundamentada nas ideias dos trabalhos [11, 18].

Tal solução estatística estacionária é definida como uma medida de probabilidade de Borel

sobre o espaço L2. Dado que L2 é um espaço de Hilbert separável, é possível destacar um

resultado importante: a σ-álgebra de Borel associada à topologia forte é equivalente à

σ-álgebra de Borel associada à topologia fraca. De fato, como a topologia forte é mais

refinada que a fraca, todo aberto na topologia fraca também é aberto na topologia forte.

Assim, segue que todo conjunto de Borel referente à coleção da topologia fraca é igualmente

um conjunto de Borel na topologia forte. Por outro lado, pela separabilidade de L2,

qualquer aberto forte pode ser expresso como uma união contável de bolas abertas fortes.

Como cada uma dessas bolas abertas fortes é, por sua vez, uma união contável de bolas

fechadas fortes convexas, ver ([2], Corolário 3.8), essas bolas fechadas são também fechadas

na topologia fraca. Portanto, concluímos que todo conjunto de Borel para a topologia forte

é igualmente um conjunto de Borel na topologia fraca.

Outro ponto relevante é que, conforme o Teorema 1.2 de [25], toda medida de probabilidade

de Borel em um espaço métrico completo e separável é uma medida regular. Dessa forma,

qualquer medida de probabilidade de Borel finita sobre L2 será uma medida regular, o

que significa que, para qualquer conjunto de Borel E em L2, temos:

µ(E) = sup
{
µ(K) : K ⊂ E, K compacto em L2

}
,

µ(E) = inf
{
µ(O) : E ⊂ O, O aberto em L2

}
.

Uma consequência importante dessa regularidade é que as funções em L2 podem ser

aproximadas por funções contínuas. Além disso, outra definição frequentemente usada

nesta seção é a de suporte de uma medida. Dizemos que uma medida µ sobre L2 é

carregada por um conjunto mensurável F se este tiver medida total, isto é, µ(L2\F ) = 0.

Assim, definimos o suporte de uma medida µ como o menor conjunto fechado que a carrega.

Adicionalmente, utilizamos a definição de média de uma função em relação a uma

medida µ de probabilidade suportada sobre L2. Seja f : L2 → R uma função Borel

mensurável; então, entendemos a média de f com respeito à medida µ como

∫

L2
f(q) dµ(q).

Finalmente, antes de introduzirmos a noção de solução estatística estacionária, é necessário

definir a classe de funcionais teste, denotada por T , que será utilizada neste contexto.

Para isso, consideremos inicialmente ϵ > 0 e φ ∈ C∞
c (R, [0,∞)), onde φ é simétrica e com

integral igual a 1. Dado q ∈ L2(T2), definimos φϵ(q) ∈ C∞(T2,R) como a convolução da
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função q com φ, na forma:

φϵ(q) = ϵ−2φ
(

·

ϵ

)
∗ q.

Ademais, para o caso particular em que ϵ = 0, definimos φϵ = I. Em seguida, dada uma

função β ∈ C2
c (R,R), definimos a aplicação σϵ : L2(T2) → L2(T2) da seguinte forma:

σϵ(q) = φϵ(β(φϵ(q)). (3.45)

Assim, podemos definir formalmente a classe de funcionais teste, T , conforme segue:

Definição 9. A classe T é o conjunto de funcionais Ψ : L2(T2) → R para os quais existe

N ∈ N, w1, . . . , wN ∈ C∞
c (T2,R) e ψ ∈ C∞(Rn,R), tal que:

Ψ(q) := Ψϵ(q) = ψ
(
(σϵ(q), w1)L2 , . . . , (σϵ(q), wN)L2

)
,

ou

Ψ(q) := ΨI(q) = ψ
(
(φϵ(q), w1)L2 , . . . , (φϵ(q), wN)L2

)

onde σϵ(q) é definido em (3.45).

Observação. Definimos dois tipos de funcionais teste, cada um associado a diferentes

classes de soluções estacionárias: as soluções estacionárias renormalizadas das equações de

Euler-α e as soluções estacionárias das equações de Camassa-Holm Generalizadas.

A classe de funcionais T é chamada de funcionais teste cilíndricos. Notemos que

esses funcionais são localmente limitados e sequencialmente fracamente contínuos sobre

L2(T2), o que significa que, dada una sequencia (qm)m ⊂ L2(T2) que converge fracamente

para q ∈ L2(T2), temos que

lim
n→∞

Ψ(qn) = Ψ(q). (3.46)

Para demonstrar que esses funcionais são localmente limitados, consideremos Ψ ∈ T

e um conjunto limitado B ⊂ L2(T2). Concentramos nossa análise nos funcionais teste

da forma Ψϵ, pois o caso ΨI é significativamente mais simples. Dado que q ∈ B, temos

que β(φϵ(q)) ∈ C2
c (T2,R), o que implica que a aplicação σϵ(q) ∈ C∞

c (T2,R), e, pela

desigualdade de Cauchy-Schwarz, segue que:

|(σϵ(q), wi)L2| ≤ ||σϵ(q)||L2||wi||L2 ,

para cada i = 1, . . . , N e q ∈ B. Assim, como ψ ∈ C∞(RN ,R) concluímos que os funcionais

Ψϵ(q) são limitado para todo q ∈ B.

Agora, para ver a continuidade sequencialmente fraca de Ψϵ ∈ T em L2(T2), consideremos

a sequencia (qm)m ⊂ L2(T2) que converge fracamente para q ∈ L2(T2). Queremos verificar

o limite (3.46). Para isso, é suficiente mostrar que a sequencia ((σϵ(qm), wi)L2)m converge

para (σϵ(q), wi)L2 para cada i = 1, . . . , N . De fato, para cada x ∈ T
2 segue que:

|φϵ(qm)(x) − φϵ(q)(x)| =
∣∣∣∣
∫

T2
φϵ(x− y)[qm(y) − q(y)] dy

∣∣∣∣.
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Como φϵ é uma função teste, a convergência fraca da sequência (qm)m implica a convergência

pontual de (φϵ(qm)) para (φϵ(q)) em T
2. Em seguida, dado que β ∈ C2

c (R,R), temos:

β(φϵ(qn))(x) −→ β(φϵ(q))(x) quando n −→ ∞.

Além disso, β(φϵ(qm)) é limitada para todo n ∈ N. Logo, como φϵ é simétrica, segue-se

que, para cada i = 1, . . . , N :

lim
m→∞

∫

T2
φϵ(β(φϵ(qm)))(x)wi(x) dx = lim

m→∞

∫

T2
β(φϵ(qm))(x)φϵ(wi)(x) dx.

Aplicando o Teorema da Convergência Dominada à sequência (β(φϵ(qm))φϵ(wi))m, obtemos:

lim
m→∞

∫

T2
β(φϵ(qm))(x)φϵ(wi)(x) dx =

∫

T2
β(φϵ(q))(x)φϵ(wi)(x) dx.

Assim, a sequencia ((σϵ(qm), wi)L2)m converge para (σϵ(q), wi)L2 para cada i = 1, . . . , N .

Como ψ ∈ C∞(RN ,R), temos convergência em cada entrada da função ψ. Portanto, temos

o limite

Ψϵ(qn) −→ Ψϵ(q) quando n −→ ∞.

Desse modo, concluímos que os funcionais teste cilíndricos são sequencialmente fracamente

contínuos.

Note-se que, como a convergência forte de sequencias implica a convergência fraca,

conclui-se que os funcionais teste Ψ também são sequencialmente contínuos em L2(T2).

No entanto, é importante observar que a continuidade forte não implica, em geral, a

continuidade fraca. Um exemplo ilustrativo dessa distinção é a função norma definida em

um espaço de dimensão infinita, a qual mostra que a implicação inversa não se verifica

nesse contexto.

A definição de solução estatística estacionária envolve diversos objetos matemáticos,

incluindo a classe de funcionais cilíndricos e as derivadas associadas a esses elementos.

A seguir, apresentamos uma análise sobre o cálculo das derivadas dos funcionais

teste. De fato, dado que L2(T2) é um espaço de Banach de dimensão infinita, quando

falamos em derivada do funcional Ψ, estamos falando de a derivada no sentido Fréchet.

Isto é, dizemos que Ψ é Fréchet diferenciável em q ∈ L2(T2), se existe um funcional linear

e contínuo em L2(T2), denotado DqΨ(q) : L2(T2) → R, tal que, para qualquer ϕ ∈ L2(T2)

lim
ϕ→0

|Ψ(q + ϕ) − Ψ(q) −DqΨ(q)(ϕ)|

||ϕ||L2

= 0.

Pelo Teorema da representação de Riesz, existe um elemento Ψ′(q) ∈ L2(T2) tal que:

DqΨ(q)(ϕ) = (Ψ′(q), ϕ)L2 , (3.47)

para toda ϕ ∈ L2(T2). Agora calculamos a função Ψ′
ϵ(q). Como φϵ : L2(T2) → L2(T2) é

uma aplicação linear, segue-se, φϵ é continuamente diferenciáveis e uniformemente limitadas
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sobre conjuntos limitados de L2(T2). Além disso, temos que sua derivada de Fréchet é da

forma:

Dqφϵ(q)(ϕ) = φϵ(ϕ),

para todo ϕ ∈ L2(T2). Prosseguimos agora com o cálculo da derivada de Fréchet da

aplicação σϵ : L2(T2) → L2(T2). Neste caso, como σϵ não é uma aplicação linear, utilizamos

o resultado sobre a existência da derivada de Fréchet, que afirma que se as derivada de

Gâteaux de uma função existem e são continuas em um espaço vetorial normado, então

a derivada de Fréchet da função existe. Desse modo, inicialmente calculamos a derivada

de Gâteaux da aplicação σϵ e, em seguida, verificamos a continuidade dessa derivada em

L2. Especificamente, a derivada de Gâteaux da função σϵ em q ∈ L2(T2) na direção de

ϕ ∈ L2(T2), se existir, é definida como o limite:

G(q)(ϕ) := lim
t→0

σϵ(q + tϕ) − σϵ(q)

t
=

d

dt
σϵ(q + tϕ)

∣∣∣∣
t=0
. (3.48)

Assim, ao aplicar a regra da cadeia e considerando que φϵ é linear, concluímos que, para

cada ϕ ∈ L2(T2):

G(q)(ϕ) = φϵ(β
′(φϵ(q))φϵ(ϕ)).

Agora, vejamos que para cada ϕ ∈ L2(T2) a aplicação G(·)(ϕ) é continua em q ∈ L2(T2).

Para isso, consideremos a sequencia (qm)m ⊂ L2(T2) que converge para q ∈ L2(T2).

Queremos verificar que

lim
n→∞

||G(qm)(ϕ) −G(q)(ϕ)||L2 = 0. (3.49)

De fato, observemos que para cada m ∈ N:

||G(qm)(ϕ) −G(q)(ϕ)||L2 = ||φϵ([β
′(φϵ(qm)) − β′(φϵ(qm))]φϵ(ϕ))||L2 .

Logo, aplicamos a desigualdade de Young para convolução, obtemos que:

||G(qm)(ϕ) −G(q)(ϕ)||L2 ≤ ||φϵ||L1||[β′(φϵ(qm)) − β′(φϵ(q))]φϵ(ϕ)||L2 .

Como β ∈ C2
c (R,R) temos que a β′′ é limitada em R. Dessa forma, aplicando a desigualdade

do valor médio para β′ temos que:

||G(qm)(ϕ) −G(q)(ϕ)||L2 ≤ C||φϵ||L1 ||φϵ(ϕ)||L∞ ||φϵ(qm) − φϵ(q)||L2 .

Tomando o limite de m → ∞, obtemos o limite (3.49), e concluímos que, para cada

função ϕ ∈ L2(T2), a derivada de Gâteaux G(q)(ϕ), é contínua em q ∈ L2(T2). Portanto,

a aplicação σϵ é continuamente diferenciável e sua derivada de Fréchet é da forma:

Dqσϵ(q)(ϕ) = φϵ(β
′(φϵ(q))φϵ(ϕ))

para cada ϕ ∈ L2(T2). Além disso, a partir da estimativa

||σϵ(q)||L2 ≤ ||φϵ||L1||φϵ(ϕ)||L∞||β′(φϵ(q))||L2 ,
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podemos concluir que a aplicação σϵ é uniformemente limitada sobre conjuntos limitados

de L2(T2). Lembrando que os funcionais teste cilíndricos Ψ possuem a forma Ψϵ e ΨI ,

podemos calcular suas derivadas de Fréchet aplicando a regra da cadeia. Desse modo, a

derivada do funcional teste Ψϵ ∈ T é da forma:

DqΨϵ(q)(ϕ) =
N∑

k=1

∂kψ(y(q))
(
φϵ(β

′(φϵ(q))φϵ(ϕ)), wk

)

L2
,

onde ∂kψ denota a derivada parcial de ψ com respeito à k−ésima variável e

y(q) =
(

(σϵ(q), w1)L2 , . . . , (σϵ(q), wN)L2

)
. (3.50)

Para o funcional teste ΨI ∈ T a derivada é dada por:

DqΨI(q)(ϕ) =
N∑

k=1

∂kψ(y(q))
(
φϵ(ϕ), wk

)

L2
,

onde ∂kψ denota a derivada parcial de ψ com respeito à k−ésima variável e

y(q) =
(

(φϵ(q), w1)L2 , . . . , (φϵ(q), wN)L2

)
. (3.51)

Portanto, a partir da identificação (3.47), segue-se que Ψ′
ϵ(q) e Ψ′

I(q) estão definidos como:

Ψ′
ϵ(q) =

N∑

k=1

∂kψ(y(q))φϵ(β
′(φϵ(q))φϵ(wk)) e Ψ′

I(q) =
N∑

k=1

∂kψ(y(q))φϵ(wk). (3.52)

Note que, as funções Ψ′
ϵ(q) e Ψ′

I(q) estão definidas a partir de soma finita de funções

suaves no toro e de suporte compacto. Portanto, as funções Ψ′
ϵ(q) e Ψ′

I(q) são suaves no

toro e de suporte compacto. Em particular, calculamos as derivadas parciais de Ψ′
ϵ(q) de

ordem menor e igual a 2, isto é,

∂(m)
x Ψ′

ϵ(q) =
N∑

k=1

∂kψ(y(q))∂(m)
x φϵ(β

′(φϵ(q))φϵ(wk)), (3.53)

para qualquer multi-índice m com |m| ≤ 2. De forma similar, temos as derivadas parciais

da função Ψ′
I(q):

∂(m)
x Ψ′

I(q) =
N∑

k=1

∂kψ(y(q))∂(m)
x φϵ(wk). (3.54)

Por último, tendo em mente que nossa solução estatística estacionaria é uma

medida de probabilidade, reescrevemos o sistema de vorticidade potencial das equações

estacionárias de Camassa-Holm Generalizadas como uma aplicação de L2(T2) para R. Esse

processo é possível, a partir do produto interno (3.47) para funções mais gerais ϕ.

Se denotemos o sistema de vorticidade potencial das equações estacionárias de

Camassa-Holm Generalizadas por:

D(ν)(q) := u · ∇q− ν∆(I−α2∆)β−1q+ γq− g e u = −(I−α2∆)−1∇⊥(−∆)−1q, (3.55)
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então a aplicação que representa este sistema é da forma:

q ∈ L2(T2) 7−→ ⟨D(ν)(q),Ψ′(q)⟩L2 ,

que está definida como uma soma de funcionais sobre L2(T2) da forma:
〈
D(ν)(q),Ψ′(q)

〉
L2

:= F1(q) + νF2(q) + F3(q), (3.56)

onde

(a) F1(q) = (q, (u · ∇)Ψ′(q))L2 ;

(b) F2(q) = (q,−∆(I − α2∆)β−1Ψ′(q))L2 ;

(c) F3(q) = (γq − g,Ψ′(q))L2 .

Essas aplicações estão bem definidas, já que a função Ψ′(q) é suave com suporte compacto

para toda q ∈ L2(T2). Com base em todas as considerações anteriores, enunciamos a

definição de solução estatística estacionária no espaço fase de vorticidade potencial.

Definição 10. Uma solução estatística estacionária para as equações de Camassa-Holm

Generalizadas no espaço fase de vorticidade potencial é uma medida de probabilidade de

Borel µ(ν) em L2(T2) tal que:
∫

L2(T2)
||q||2

Hβ
α
dµ(ν)(q) < ∞, (3.57)

∫

L2(T2)

〈
D(ν)(q),Ψ′(q)

〉
L2
dµ(ν)(q) = 0, (3.58)

para qualquer funcional teste Ψ ∈ T e satisfaz a desigualdade fraca para a enstrofia

potencial dada por:
∫

E1≤||q||
L2 ≤E2

{
ν||q||2

Hβ
α

+ γ||q||2L2 − (g, q)L2

}
dµ(ν(q) ≤ 0, (3.59)

para 0 < E1 < E2 ≤ ∞.

Observe que, as condições da Definição 10 tem sentido matemático. Já que, os

integrando nas condições (3.57) e (3.59) podem ser vistos como funções Borel mensuráveis

definidas para toda q ∈ L2(T2). Isto é, para o integrando da condição (3.57), temos que a

função:
|| · ||2

Hβ
α

: L2(T2) −→ R ∪ {+∞}

q 7−→ ||q||2
Hβ

α
,

(3.60)

é o limite de uma sequência de funções contínuas, em particular mensuráveis, dada por,

||q||2
Hβ

α
= lim

ϵ→0
||φϵ(q)||

2
Hβ

α
,

para toda q ∈ L2(T2). Além disso, a partir da condição (3.59), a qual é uma forma fraca de

desigualdade para a enstrofia potencial, formulamos seguinte proposição sobre o suporte

da solução estatística estacionaria.
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Proposição 11. O suporte de qualquer solução estatística estacionária para as equações

de Camassa-Holm Generalizadas no espaço fase de vorticidade potencial está incluído em

um conjunto limitado de L2(T2).

Demonstração. Iniciamos a prova, lembrando a definição de suporte de uma medida.

Dizemos que o suporte de uma medida é o menor fechado de medida total. Então, basta

construir um conjunto limitado e de medida total, para concluir nossa Proposição.

Seja µ(ν) uma solução estatística estacionaria para as equações de Camassa-Holm

Generalizadas no espaço fase de vorticidade potencial. Sejam 0 < E1 < E2 e o conjunto F

definido por:

F =
{
q ∈ L2(T2) : E2

1 ≤ ||q||2L2(T2) ≤ E2
2

}
.

Dado que, pela inclusão de espaços de Sobolev fracionários, temos Hβ
α(T2) ⊂ L2(T2),

segue-se que a função ||q||2
Hβ

α
é positiva sobre F . Utilizando a condição (3.59) da Definição

10, obtemos que ∫

F
γ||q||2L2 dµ(ν)(q) ≤

∫

F
(g, q)L2 dµ(ν)(q).

Em seguida, aplicando a desigualdade de Cauchy-Schwarz ao produto L2, segue que
∫

F
γ||q||2L2 dµ(ν)(q) ≤ ||g||L2

∫

F
||q||L2 dµ(ν)(q).

Em particular, como a medida µ(ν) é finita. Obtemos

∫

F
γ||q||2L2 dµ(ν)(q) ≤ ||g||L2

[
µ(ν)(F )

] 1
2



∫

F
||q||2L2 dµ(ν)(q)




1
2

.

Portanto, ∫

F
||q||2L2 dµ(ν)(q) ≤ γ−2||g||2L2µ(ν)(F ).

Esta última estimativa, pode-se rescrever como:
∫

F

[
||q||2L2 − γ−2||g||2L2(T2)

]
dµ(ν)(q) ≤ 0, (3.61)

onde E1 e E2 foram escolhidos de forma arbitraria. Desse modo, se tomarmos em particular,

E1 = γ−1||g||L2 e E2 = +∞. Obtemos que:

0 ≤
[
||q||2L2 − γ−2||g||2L2

]
,

para toda E1 ≤ ||q||2L2 . Assim, pela desigualdade (3.61), vemos que µ(ν) ≡ 0. Portanto,

considerando o conjunto F definido por:

F :=

{
q ∈ L2(T2) : ||q||L2 ≤

2||g||L2

γ

}
, (3.62)

o qual é limitado e de medida total, µ(ν)(F ) = 1. Segue-se que, o suporte da medida µ(ν)

está contido em F .
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Por outro lado, dado que nossa solução estatística estacionária varia em relação

ao parâmetro de viscosidade ν, induzimos uma sequência de medidas de probabilidade

de Borel. Já que nosso objetivo, eventualmente, é estudar a convergência fraca dessa

sequência de medidas quando a viscosidade tende a zero. Entendemos a convergência fraca

de medidas como:

lim
ν→0

∫

L2
P (q) dµ(ν)(q) =

∫

L2
P (q) dµ(0)(q),

para toda P (·) contínua, de valor real e limitada definida em L2. É importante distinguir

entre funções fortemente contínuas e funções fracamente contínuas. Um fato discutido

quando introduzimos a classe de funcionais teste T . Desse modo, nosso próximo lema

fornece informação sobre a continuidade fraca e a limitação local da aplicação (3.56)

definida no espaço fase de vorticidade potencial.

Lema 12. Seja Ψ ∈ T . Então, a aplicação

q ∈ L2(T2) 7−→ ⟨D(ν)(q),Ψ′(q)⟩L2 , (3.63)

é localmente limitado e fracamente contínuo em conjuntos limitados de L2(T2).

Demonstração. A partir de (3.56) observamos que, para cada q ∈ L2(T2), a aplicação

(3.63) pode-se decompor em uma soma de aplicações Fi : L2(T2) → R com i = 1, 2, 3,

conforme descrito nos itens (a), (b) e (c) de (3.56), da seguinte forma:
〈
D(ν)(q),Ψ′(q)

〉
L2

:= F1(q) + νF2(q) + F3(q). (3.64)

Portanto, é suficiente verificar que as aplicações Fi com i = 1, 2, 3 são limitadas e fracamente

contínuas em conjuntos limitados de L2(T2). Além disso, como as funções Fi envolvem a

função Ψ′, precisamos inicialmente demonstrar que Ψ′ também é limitada em tais conjuntos.

Assim, começaremos verificando que essa função é de fato limitada em conjuntos limitados

de L2(T2).

De acordo com a Definição 9, precisamos considerar dois casos: as funções Ψ′
ϵ e Ψ′

I .

A seguir, apresentamos a limitação para o caso da Ψ′
ϵ. Seja ϵ > 0 e B um subconjunto

limitado de L2(T2). Assim, para todo q ∈ B, temos a seguinte relação:

||∂(m)
x Ψ′

ϵ(q)||
2
L2 =

N∑

k=1

∫

T2
|∂kψ(y(q))∂(m)

x φϵ(β
′(φϵ(q))φϵ(wk))|2 dx. (3.65)

Conforme descrito na Definição 9, sabemos que σϵ(q) é limitada em conjuntos limitados

de L2(T2). Além disso, como ψ é uma função suave, existe uma constante M > 0 tal que:

|∂kψ(y(q))| ≤ Mk,

para todo q ∈ B, onde y(q) é definido como em (3.50). Desse forma, podemos concluir que:

||∂(m)
x Ψ′

ϵ(q)||
2
L2 ≤

N∑

k=1

Mk

∫

T2
|∂(m)

x φϵ(β
′(φϵ(q))φϵ(wk))|2 dx.
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Adicionalmente, dado que β é uma função de classe C2 com suporte compacto, temos que

β′(φϵ(q)) ∈ L∞(T2) de forma uniforme para todo q ∈ B. Com isso, podemos afirmar que:

∣∣∣
∣∣∣∂(m)

x φϵ

(
β′(φϵ(q))φϵ(wk)

)∣∣∣
∣∣∣
2

L2
≤

M2

ϵ2|m|
||wk||2L2 .

Como as funções wk com k = 1, . . . , N são suaves de suporte compacto, concluímos que:

||∂(m)
x Ψ′

ϵ(q)||L2 ≤
K

ϵ|m|
, (3.66)

onde K é uma constante positiva independente de q ∈ B. Dado que as funções wk são

suaves de suporte compacto, podemos estender essa desigualdade (3.66) utilizando os

mesmos argumentos, concluímos que a função ∂(m)
x Ψ′

ϵ é limitada na norma Lp(T2) para

p > 1. No caso da função Ψ′
I , observamos diretamente da identidade (3.54) que ∂(m)

x Ψ′
I(q) é

limitada para toda q ∈ B, pois os termos ∂(m)
x φϵ(wk) são limitados para todo k = 1, . . . , N .

Em seguida, mostraremos que a função F1 é limitada em B, considerando o caso

quando a função é Ψ′
ϵ. De fato, Lembrando que o operador de Bessel−α de ordem −2

definido por: J−2
α = (I − α2∆)−1, é limitado em L2(T2) e que o operador J−2

α comuta com

o operador Curl. Temos que,

||Curl(u)||L2 = ||(I − α2∆)−1q||L2 ≤ ||q||L2 .

Assim, Curl(u) ∈ L2(T2) e consequentemente u ∈ H1(T2). Por outro lado, como ∇Ψ′
ϵ(q)

é limitada na norma L4(T2), aplicamos a desigualdade de Ladyzhenskaya 2D, e obtemos:

||(u · ∇)Ψ′
ϵ(q)||L2 ≤ ||u||

1/2
L4 ||∇Ψ′

ϵ(q)||
1/2
L4 .

Dado que, pela imersão de Sobolev, H1(T2) ⊂ L4(T2), temos que (u · ∇)Ψ′
ϵ(q) ∈ L2(T2).

Logo, para qualquer q ∈ B, aplicamos a desigualdade de Hölder para a função F1, obtemos:

|F1(q)| = |(q, (u · ∇)Ψ′
ϵ(q))L2| ≤ ||q||L2||(u · ∇)Ψ′

ϵ(q)||L2 . (3.67)

Por conseguinte, F1 é limitado sobre o conjunto limitado B ⊂ L2(T2).

Considerando o caso em que a função é Ψ′
I , é claro que F1 é limitado sobre o

conjunto limitado B ⊂ L2(T2). Isso se deve ao fato de que as funções ∇φϵ(wk) são

limitadas para todo k = 1, . . . , N . Portanto, F1 é localmente limitado sobre L2(T2).

A seguir, examinamos a continuidade fraca da função F1 sobre B. Ao introduzirmos

a forma de Ψ′
ϵ, conforme apresentada em (3.52), na definição de F1, obtemos a seguinte

expressão para F1:

F1(q) =
N∑

k=1

∂kψ(y(q))
(
q, (u · ∇)φϵ(β

′(φϵ(q))φϵ(wk))
)

L2
.

Em seguida, aplicamos integração por partes e usando o fato que o molificador é simétrico,

podemos rescrevermos F1 da seguinte forma:

F1(q) = −
N∑

k=1

∂kψ(y(q))
(
φϵ(β

′(φϵ(q))φϵ((u · ∇)q)), wk

)
L2
.
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Neste ponto, para concluir a continuidade fraca de F1, aplicamos o Teorema da convergência

dominada de Lebesgue a cada uma das funções que compõem F1, mantendo a função

correspondente wk fixa, com k = 1, . . . , N . A partir disso, o que resta é demonstrar que

as sequências que compõem F1 convergem pontualmente e são uniformemente limitadas.

Primeiro, consideramos o caso em que a função é Ψ′
ϵ. Seja a sequência (qi)i ⊂ L2(T2)

tal que converge fracamente para q ∈ B. Dado que o operador (I − α2∆)−1 é compacto,

segue-se que a sequência correspondente de campos de velocidade (ui)i converge fortemente

para o campo u ∈ L2(T2), a qual corresponde à função limite q ∈ L2(T2). Observemos

que, para cada x ∈ T
2:

φϵ((u
i · ∇)qi)(x) = −

∫

T2
(ui · ∇)φϵ(x− y)qi(y) dy,

para todo i ∈ N. De forma análoga como foi tratada a parte não linear no Teorema 5,

temos que

φϵ((u
i · ∇)qi)(x) −→ φϵ((u · ∇)q)(x) quando i −→ ∞.

Dessa forma, a sequencia φϵ((u
i · ∇)qi)(x) converge para φϵ((u · ∇)q)(x) para todo x ∈ T

2,

e pela desigualdade de Hölder, obtemos:

|φϵ((u · ∇)q)(x)| ≤ ||u||L4||∇φϵ||L4||q||L2 .

Assim, φϵ((u · ∇)q) é uniformemente limitada para todo q ∈ B. Por outro lado, como a

função β é de classe C2 e a função ψ é suave, temos então, que a sequencia β′(φϵ(q
i))

converge pontualmente para β′(φϵ(q)) e a sequencia ∂kψ(y(qi)) converge pontualmente

para ∂kψ(y(q)). Portanto, o termo

∂kψ(y(qi))φϵ[β
′(φϵ(q))φϵ((u

i · ∇)qi)],

converge pontualmente e é uniformemente limitado para cada k = 1, . . . , N . Com essa

informação em mente, aplicamos o Teorema da convergência dominada de Lebesgue para

concluir que:

lim
i→∞

F1(q
i) = F1(q). (3.68)

Para o caso em que a função é Ψ′
I , aplicaremos novamente o Teorema da convergência

dominada de Lebesgue a cada função que compõe F1. Considerando que a função F1,

avaliada na sequencia fracamente convergente (qi)i, está definida da seguinte forma:

F1(q
i) =

N∑

k=1

∂kψ(y(qi))
(
qi, (ui · ∇)φϵ(wk)

)
L2
.

Como φϵ(wk) é uma função teste para cada k = 1, . . . , N , de forma análoga como foi

demonstrada a convergência da parte não linear no Teorema 5, segue a convergência do

termo:
(
qi, (ui · ∇)φϵ(wk)

)
L2

−→
(
q, (u · ∇)φϵ(wk)

)
L2

quando i −→ ∞. (3.69)
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Além disso, como a função ψ é uma função suave e a sequencia (qi)i converge fracamente

para q ∈ L2(T2), obtemos que

∂kψ(y(qi)) −→ ∂kψ(y(q)) quando i −→ ∞. (3.70)

Assim, das convergências (3.69) e (3.70), temos que F1 é fracamente continua sobre B.

Em seguida, mostraremos que a função F2 é limitada e fracamente continua

sobre o conjunto limitado B. Note que, a função F2 está bem definida pelo fato que

∆(I − α2∆)β−1Ψ′ ∈ L2(T2), isso é possível, porque Ψ′ é uma função suave no toro. Por

conseguinte, obtemos a limitação da função F2, ao aplicar a desigualdade de Hölder. Isto é,

|F2| = |(q,∆(I − α2∆)β−1Ψ′)L2| ≤ ||q||L2||∆(I − α2∆)β−1Ψ′||L2 (3.71)

para todo q ∈ B. Portanto, F2 é localmente limitado em L2(T2).

A seguir, examinamos a continuidade fraca de F2 sobre o conjunto limitado B,

considerando o caso em que a função é Ψ′
ϵ. Seja (qi)i ⊂ L2(T2) uma sequencia que converge

fracamente para q ∈ B. Observe que, ao incorporarmos a forma de Ψ′
ϵ e avaliando qi na

função F2, obtemos que

F2(q
i) =

N∑

k=1

∂kψ(y(qi))
(
qi, (−∆)(I − α2∆)β−1φϵ(β

′(φϵ(q
i))φϵ(wk))

)
L2
.

Dado que o operador −∆(I − α2∆)β−1 é auto-adjunto e usando o fato que o molificador é

simétrico, rescrevermos F2 da forma:

F2(q
i) =

N∑

k=1

∂kψ(y(qi))
(
(φϵ(β

′(φϵ(q
i))(−∆)(I − α2∆)β−1φϵ(q

i)), wk

)
L2

para todo i ∈ N. Neste ponto, para concluir a continuidade fraca de F2, aplicamos

o Teorema da convergência dominada de Lebesgue, novamente. Desse modo, devemos

verificar a convergência pontual e a limitação uniforme das funções que componem a F2.

Dado que, no caso anterior, ao analisarmos a continuidade fraca de F1, verificamos que

as sequencias (∂kψ(y(qi)))i e (β′(φϵ(q
i)))i convergem pontualmente e são uniformemente

limitadas. Basta verificar, que a sequencia (−∆(I−α2∆)β−1φϵ(q
i))i converge pontualmente

e é uniformemente limitada. De fato, para qualquer x ∈ T
2 e utilizando a linearidade do

operador ∆(I − α2∆)β, obtemos que:

|∆(I − α2∆)β−1(φϵ(q
i) − φϵ(q))(x)| =

=
∣∣∣∣
1

ϵ2

∫

T2
∆x(I − α2∆x)β−1φ

(
y − x

ϵ

)
(qi − q)(y) dy

∣∣∣∣

Dado que φ é uma função suave com suporte compacto e a sequencia (qi)i converge

fracamente para q, temos que a sequencia ∆(I − α2∆)β−1φϵ(q
i)(x) convergência para

∆(I − α2∆)β−1φϵ(q)(x) para todo x ∈ T
2.
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Por outro lado, a limitação uniforme da sequencia (∆(I−α2∆)β−1φϵ(q
i))i, segue de aplicar

a desigualdade de Hölder. Isto é, para todo x ∈ T
2, temos:

|∆(I − α2∆)β−1φϵ(q
i)(x)| = ϵ−2

∣∣∣∣
(

∆(I − α2∆)β−1φ
(

· − x

ϵ

)
, qi
)

L2

∣∣∣∣ ≤ M ||qi||L2 ,

como B é um conjunto limitado de L2(T2) e a sequencia (qi)i converge fracamente para

q ∈ B, segue que a sequencia (∆(I − α2∆)β−1φϵ(q
i))i é uniformemente limitado. Portanto,

para cada k = 1, . . . , N , o termo

∂kψ(y(qi))φϵ[β
′(φϵ(q

i))∆(I − α2∆)β−1φϵ(q
i)],

converge pontualmente em T
2 e é uniformemente limitado. Desse modo, aplicando o

Teorema da convergência dominada de Lebesgue, concluímos que a função F2 é fracamente

continua sobre o conjunto B. Para o caso em que a função é Ψ′
I , simplesmente usamos a

convergência fraca da sequencia (qi)i. De fato, considerando que a função F2, avaliada na

sequencia fracamente converge qi, está definida da forma:

F2(q
i) =

N∑

k=1

∂kψ(y(qi))
(
qi,∆(I − α2∆)β−1φϵ(wk)

)
L2
.

Usando o fato que a sequencia (∂kψ(y(qi)))i é uniformemente limitado e as funções φϵ(wk)

são suaves no toro, obtemos, para cada k = 1, . . . , N , que:

|F2(q
i) − F2(q)| ≤ M

N∑

k=1

∣∣∣∣
(
qi − q,∆(I − α2∆)β−1wk

)
L2

∣∣∣∣.

Assim, pela convergência fraca da sequencia (qi)i, concluímos a continuidade fraca da

aplicação F2 sobre o conjunto B.

Em seguida, mostraremos que a função F3 é limitada e fracamente continua sobre

o conjunto limitado B. De fato, lembrando que F3 é da forma:

F3(q) = (γq − g,Ψ′)L2 .

Vemos que, a limitação da função F3 é uma consequência direta da desigualdade de

Hölder. A continuidade fraca de F3 também é facilmente verificada. De fato, seja (qi)i uma

sequencia que converge fracamente para q ∈ B. No caso em que a função é Ψ′
ϵ, vemos que

F3(q
i) =

N∑

k=1

∂kψ(y(qi))
(
φϵ(β

′(φϵ(q
i)φϵ(γq

i − g)), wk

)
L2
.

Dado que as sequencias φϵ(q
i) e φϵ(γq

i − g) convergem pontualmente no toro e são unifor-

memente limitadas, segue que a sequencia φϵ(β
′(φϵ(q

i)φϵ(γq
i − g)) converge pontualmente

toro e também é uniformemente limitada. Portanto, aplicando o Teorema da convergência

dominada de Lebesgue, para cada função wk fixa, concluímos a continuidade fraca de F3

sobre o conjunto B. Para o caso em que a função é Ψ′
I , vemos que

F3(q
i) =

N∑

k=1

∂kψ(y(qi))
(
γqi − g, φϵ(wk)

)
L2
.
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O qual, pela convergência fraca da sequencia (qi)i é fácil ver que F3 é fracamente continua

sobre o conjunto B. De todo o anterior, concluímos que a aplicação:

q ∈ L2(T2) 7→ ⟨D(ν)(q),Ψ′(q)⟩L2

é limitada e fracamente continua sobre conjuntos limitados de L2(T2).

A seguir, enunciamos a definição de solução estatística estacionária renormalizada

no espaço fase de vorticidade potencial para as equações de Euler-α, tendo em mente,

que para esta definição utilizamos os funcionais teste associados à soluções estacionárias

renormalizadas, denotadas por Ψϵ, para as equações de Euler-α dadas na definição 9.

Definição 13. Uma solução estatística estacionária renormalizada para as equações de

Euler−α no espaço fase de vorticidade potencial é uma medida de probabilidade de Borel

µ em L2(T2) tal que: ∫

L2(T2)
⟨D(q),Ψ′

ϵ(q)⟩L2 dµ(q) = 0 (3.72)

para todo funcional teste Ψϵ ∈ T e onde D(q) é a parte invíscida de (3.55), definida por

D(q) := u · ∇q + γq − g e u = −(I − α2∆)−1∇⊥(−∆)−1q. (3.73)

Além disso, o integrando de (3.72) é a soma das aplicações dadas na decomposição (3.64).

Isto é,

⟨D(q),Ψ′
ϵ(q)⟩L2 = (q, (u · ∇)Ψ′

ϵ(q))L2 + (γq − g,Ψ′
ϵ(q))L2 . (3.74)

Dizemos que uma solução estatística estacionária renormalizada µ satisfaz o balanço

de enstrofia potencial se
∫

L2(T2)

{
γ||q||2L2(T2) − (g, q)L2(T2)

}
dµ(q) = 0. (3.75)

Com esta definição, finalizamos a seção referente ao desenvolvimento das soluções estatís-

ticas estacionárias e seu respectivo limite invíscido.

Observação. Na definição anterior, utilizamos os funcionais teste Ψϵ : L2(T2) → R para

os quais existe N ∈ N, w1, . . . , wN ∈ C∞
c (T2,R), β ∈ C2

c (R,R) e ψ ∈ C∞(Rn,R), tal que:

Ψϵ(q) = ψ
(
(φϵ(β(φϵ(q))), w1)L2 , . . . , (φϵ(β(φϵ(q))), wN)L2

)
,

onde φϵ(·) é um molificador estândar simétrico.

3.4 Compacidade Relativa e Balanço de Enstrofia Potencial

Nesta seção, enunciamos dois Teoremas relevantes para nosso estudo do fenômeno

de dissipação anômala de enstrofia potencial paras as equações de Camassa-Holm Genera-

lizadas. O primeiro Teorema, aborda a existência de uma subsequência convergente de

uma sequência de soluções estatísticas estacionárias dada. Para este objetivo, utilizamos o

Teorema de Prokhorov, ver [18, 27], que recordaremos para maior clareza.
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Teorema 14 (Teorema de Prokhorov). Seja (ρn)n uma sequencia de medidas de probabili-

dades de Borel sobre S uma espaço métrico completo e separável. Então, a sequencia (ρn)n

possui uma subsequência fracamente convergente se e somente se, para cada ϵ > 0, existe

um conjunto compacto Kϵ em S tal que ρn(Kϵ) ≥ 1 − ϵ para todo n ∈ N.

O Teorema de Prokhorov é uma ferramenta usada na teoria da medida e probabilidade

que fornece uma condição suficiente para a compacidade de conjuntos de medidas de

probabilidade. O segundo Teorema estabelece que o limite obtido no primeiro Teorema,

satisfaz a propriedade de balanço de enstrofia potencial para as equações de Euler−α.

Antes de avançarmos, é útil lembrar que, Se X é um espaço métrico completo e

separável, então toda medida de probabilidade de Borel µ em X possui a propriedade de

que, para cada ϵ > 0, existe um conjunto compacto Kϵ em X tal que µ(Kϵ) ≥ 1 − ϵ, ver

([25], Teorema 3.2).

A seguir, enunciamos o Teorema sobre a compacidade relativa da família de soluções

estatísticas estacionárias para as equações de Camassa-Holm Generalizadas.

Teorema 15. Seja (µ(ν))ν uma sequencia de soluções estatísticas estacionárias das equações

de Camassa-Holm Generalizadas no espaço fase de vorticidade potencial. Então, existe

uma subsequência, denotada também por (µ(ν))ν e uma solução estatística estacionaria

renormalizada µ, para as equações de Euler-α no espaço fase da vorticidade potencial. Tal

que

lim
ν→0

∫

L2(T2)
Λ(q) dµ(ν)(q) =

∫

L2(T2)
Λ(q) dµ(q), (3.76)

para toda função de valor real fracamente continua e localmente limitada Λ.

Demonstração. De acordo com a Proposição 11, o suporte da medida de probabilidade de

Borel µ(ν) está contido na bola fechada e limitada (3.62), definida por:

F =

{
q ∈ L2(T2) : ||q||L2 ≤

2||g||L2

γ

}
.

Dado que o conjunto F é limitado e fracamente fechado em L2(T2), concluímos que F

é fracamente compacto em L2(T2), ver ([2], Corolário 3.22). Logo, ao dotarmos F com

a topologia fraca de L2(T2), obtemos que a topologia fraca em F é metrizável, ver ([2],

Teorema 3.29). Assim, F é um espaço métrico, fracamente compacto, separável e completo.

Como a sequencia de medidas de probabilidade de Borel (µ(ν))ν está contida no espaço

métrico F , podemos aplicar o Teorema de Prokhorov, que nos garante a existência de

uma subsequência convergente denotada por (µ(ν))ν , e de uma medida de probabilidade

de Borel µ(0) tal que:

lim
ν→0

∫

F
Λ(q) dµ(ν)(q) =

∫

F
Λ(q) dµ(0)(q),
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para toda função continua e limitada de valor real Λ, definida sobre F . Podemos estender

a medida de probabilidade de Borel µ(0) para L2(T2) dada por:

µ(E) := µ(0)(E ∩ F ) para todo E ⊂ L2(T2).

Observe que µ(L2(T2)\F ) = 0, dado que F é fracamente fechado. Portanto, a extensão µ

é uma medida de probabilidade de Borel sobre L2(T2).

Em seguida, vamos a demonstrar que a medida µ é uma solução estatística estacio-

naria renormalizadas para as equações de Euler−α. Ou seja, mostramos que a medida de

probabilidade de Borel µ, satisfaz a condição (3.72). De fato, seja Ψ ∈ T . Como o suporte

da sequencia (µ(ν))ν está contida na bola limitada F , e de acordo com o Lema 12, segue-se

que a aplicação:

q ∈ L2(T2) 7−→ ⟨D(ν)(q),Ψ′(q)⟩L2 , (3.77)

é limitada e fracamente continua sobre F . Portanto, pela decomposição (3.64) da aplicação

(3.77), obtemos que, para cada i = 1, 2, 3 as funções Fi são limitadas e fracamente contínuas

sobre F . Além disso, temos as seguintes convergências:

lim
ν→0

∫

L2(T2)
Fi(q) dµ

(ν)(q) =
∫

L2(T2)
Fi(q) dµ(q). (3.78)

Em particular, como que a sequencia
∫

L2(T2)
F2(q) dµ

(ν)(q)

é limitada, segue-se que:

lim
ν→0

ν
∫

L2(T2)
F2(q) dµ

(ν)(q) = 0. (3.79)

Por outro lado, como µ(ν) é uma solução estatística estacionaria para as equações de

Camassa-Holm Generalizadas, sabemos, por definição, que:
∫

L2(T2)

〈
D(ν)(q),Ψ′(q)

〉

L2
dµ(ν)(q) = 0.

Utilizando a decomposição (3.64) e isolando o termo viscoso, obtemos que:
∫

L2(T2)
F1(q) + F3(q) dµ

(ν)(q) = −ν
∫

L2(T2)
F2(q) dµ

(ν).

Ao Fazer tender ν para zero, vemos que:
∫

L2(T2)

〈
D(q),Ψ′(q)

〉

L2
dµ(q) = lim

ν→0

∫

L2(T2)
F1(q) + F3(q) dµ(q) = 0,

o que satisfaz a condição (3.72) da Definição 13. Portanto, µ é uma solução estatística

estacionária renormalizada das equações de Euler-α no espaço fase de vorticidade potencial.
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Para o próximo teorema, consideremos a bola fechada definido por:

F∞(r) := {q ∈ F : ||q||L∞ ≤ r}

para r > 0.

A seguir, enunciamos o teorema que estabelece que a solução estatística estacionaria

renormalizada para as equações de Camassa-Holm Generalizadas, encontrada no Teorema

15, satisfaz o balanço de enstrofia potencial.

Teorema 16. Seja (µ(ν))ν uma sequencia de soluções estatísticas estacionárias das equações

de Camassa-Holm Generalizadas no espaço fase de vorticidade potencial. Suponhamos que

existe r > 0 tal que o suporte da sequencia (µ(ν))ν está contido no conjunto F∞(r). Então,

o limite µ de qualquer subsequência fracamente convergente é uma solução estatística

estacionaria renormalizada para as equações de Euler−α. Além disso, essa solução está

suportada no conjunto F∞(r) e satisfaz o balanço de enstrofia potencial descrito em (3.75).

Demonstração. Primeiramente, demonstraremos que a medida de probabilidade de Borel

µ está suportada em um conjunto do tipo F∞(r) para algum r > 0. Com base no Teorema

15, sabemos que o limite µ de qualquer subsequência fracamente convergente da sequencia

(µ(ν))ν é uma medida de probabilidade de Borel em L2(T2) que satisfaz a condição (3.72)

da Definição 10. Além disso, assumimos que existe um r0 > 0 tal que

supp µ(ν) ⊂ F∞(r0), (3.80)

para todo ν > 0. Como F∞(r0) é fracamente fechado em L2(T2), segue-se que seu conjunto

complementar U = L2(T2)\F∞(r) é fracamente aberto. Assim, pelas propriedades da

convergência fraca de medidas, temos:

µ(U) ≤ lim inf
ν→0

µ(ν)(U).

Como µ(ν) está suportada em F∞(r0), concluímos que µ(U) = 0. Portanto, a medida µ

está suportada em F∞(r0).

Na segunda parte, demonstramos que a medida limite µ satisfaz o balanço de enstrofia

potencial descrito em (3.72). Para isso, construímos uma sequência adequada de funcionais

teste cilíndricos Ψm,ϵ, para definir uma sequencia de aplicações da forma:

q ∈ L2(T2) 7−→ ⟨D(ν)(q),Ψ′
m,ϵ(q)⟩L2 . (3.81)

Logo, aplicando o Teorema da convergência dominada à sequencia (3.81), com relação à

medida µ, veremos que a medida µ satisfaz o balanço de enstrofia potencial (3.72).

Para simplificar a notação, assumiremos que qϵ(x, t) = φϵ(q(x, t)). De fato, sejam
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ϵ > 0 fixo e a sequencia (wk)k ⊂ C∞
c (T2), o qual é uma base ortonormal em L2(T2). Em

base à Definição 9 temos que, para cada m ∈ N fixo, definimos o funcional Ψm,ϵ em T por:

Ψm,ϵ(q) =
1

2

m∑

k=1

|(σϵ(q), wk)L2|2 (3.82)

com ψm(z) := 1
2

∑m
k=1 |zk|2 para todo z ∈ R

N . Por (3.52), que define a forma das funções

Ψ′
m,ϵ para cada m = 1, . . . ,m, temos que:

Ψ′
m,ϵ(q) =

m∑

k=1

(σϵ(q), wk)L2φϵ(β
′(qϵ)φϵ(wk)).

Por outro lado, dado que ∇ · u = 0, segue que (u · ∇)q = ∇ · (u ⊗ q). Assim, ao aplicar

o molificador φϵ(·), temos que φϵ((u · ∇)q) = ∇ · (φϵ(u⊗ q)). Para simplificar a notação,

assumiremos que ∇· (φϵ(u⊗q)) = ∇· (u⊗q)ϵ. Além disso, como q(x, t) := Curl(I−α2∆)u

com q ∈ F∞(r0), então u ∈ H3(T2) e consequentemente u⊗ q ∈ L∞(T2). Em particular,

∇ · (u⊗ q)ϵ ∈ L2(T2). Desse modo, o termo φϵ(D(q)) ∈ L2(T2). Agora, pela simetria do

molificador φϵ(·), a sequencia de aplicações (3.81), induzida pelas funções Ψ′
m,ϵ, é dada

por:

⟨D(q),Ψ′
m,ϵ(q)⟩L2 =

m∑

k=1

(σϵ(q), wk)L2

(
φϵ(β

′(qϵ)φϵ(D(q))), wk

)
L2
, (3.83)

para cada m ∈ N. A seguir, mostraremos que a sequencia (3.83) é uniformemente limitada

com relação a m e q ∈ F∞(r0). Para isso, utilizamos a decomposição (3.74) da aplicação

(3.81) e a identidade de Parseval. De fato, seja q ∈ F∞(r0). Observemos que:

∣∣∣∣⟨D(q),Ψ′
m,ϵ(q)⟩L2

∣∣∣∣ =
∣∣∣∣

m∑

k=1

(σϵ(q), wk)L2

(
φϵ(β

′(qϵ)φϵ(D(q))), wk

)
L2

∣∣∣∣

≤
∞∑

k=1

∣∣∣(σϵ(q), wk)L2

∣∣∣
∣∣∣
(
φϵ(β

′(qϵ)φϵ(D(q))), wk

)
L2

∣∣∣.

Dado que (wk)k é uma base ortonormal em L2(T2) e pela identidade de Parseval, temos

que ∣∣∣∣⟨D(q),Ψ′
m,ϵ(q)⟩L2

∣∣∣∣ ≤
∣∣∣∣
(
σϵ(q), φϵ(β

′(qϵ)φϵ(D(q)))
)

L2

∣∣∣∣.

Claramente, este última estimativa não depende de m. Logo, utilizando a decomposição

(3.74) da aplicação (3.81), concluímos que:

|⟨D(q),Ψ′
m,ϵ(q)⟩L2| ≤

∣∣∣∣
(
σϵ(q), φϵ(β

′(qϵ)φϵ((u · ∇q)))
)

L2

∣∣∣∣

+
∣∣∣∣
(
σϵ(q), φϵ(β

′(qϵ)φϵ((γq − g)))
)

L2

∣∣∣∣. (3.84)

O próximo passo será estimar os dois termos do lado direito da desigualdade

(3.84). Para isso, estabelecemos uma informações útil neste processo. Dado que β é uma
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função de classe C2 de valor real com suporte compacto, existe uma constante positiva M ,

independente de x, tal que, para todo x ∈ R:

|β(x)| + |β′(x)| + |β′′(x)| ≤ M.

A seguir, examinamos o primeiro termo da desigualdade (3.84). Observemos que:

(
σϵ(q), φϵ(β

′(qϵ)φϵ((u · ∇q)))
)

L2
=
(
σϵ(q), φϵ(β

′(qϵ)∇ · (u⊗ q)ϵ)
)

L2
.

Lembrando a definição de σϵ(·) dada em (3.45), vemos que para todo q ∈ F∞(r0)

σϵ(q) := φϵ(β(qϵ))

é uniformemente limitada. Assim, aplicando a desigualdade de Cauchy-Schwarz, segue-se

que ∣∣∣∣
(
σϵ(q), φϵ(β

′(qϵ)φϵ((u · ∇q)))
)

L2

∣∣∣∣ ≤ M ||∇ · (u⊗ q)ϵ||L2 . (3.85)

O segundo termo do lado direito da desigualdade (3.84), é mais simples de estimar,

já que (γq − g) ∈ L2(T2). Para este fim, basta aplicar a desigualdade de Cauchy-Schwarz

e o fato que σϵ(·) é uniformemente limitada em F∞(r0). Isto é,
∣∣∣∣
(
σϵ(q), φϵ(β

′(qϵ)φϵ((γq − g)))
)

L2

∣∣∣∣ ≤ M ||(γq − g)||L2 . (3.86)

Dado que q ∈ F∞(r0), as estimativas (3.85) e (3.86) são independentes de q. Portanto, a

sequencia (⟨D(q),Ψ′
m,ϵ(q)⟩L2)m é uniformemente limitada para todo q ∈ F∞(r0).

Para ver a convergência pontual, simplesmente devemos ter em consideração que:

A sequencia (wk)k é uma base ortonormal em L2(T2) e a identidade de Parseval. Assim,

para qualquer q ∈ F∞(r0) obtemos que:

lim
m→∞

⟨D(q),Ψ′
m,ϵ(q)⟩L2 = lim

m→∞

m∑

k=1

(σϵ(q), wk)L2

(
φϵ(β

′(qϵ)φϵ(D(q))), wk

)
L2

=
∞∑

k=1

(
φϵ(β

′(qϵ)φϵ(D(q))), (σϵ(q), wk)L2wk

)
L2

=
(
σϵ(q), φϵ(β

′(qϵ)φϵ(D(q)))
)

L2
.

Desse modo, temos a convergência pontual da sequencia (⟨D(q),Ψ′
m,ϵ(q)⟩L2)m para todo

q ∈ F∞(r0). Logo, aplicamos o Teorema da convergência dominada, e obtemos que:

lim
m→∞

∫

L2
⟨D(q),Ψ′

m,ϵ(q)⟩L2 dµ(q) =
∫

L2

(
σϵ(q), φϵ(β

′(qϵ)φϵ(D(q)))
)

L2
dµ(q), (3.87)

para todo ϵ > 0. Como µ é uma solução estatística estacionaria renormalizada, segue da

condição (3.72) da Definição 13 e a identidade (3.87) que:
∫

L2

(
σϵ(q), φϵ(β

′(qϵ)φϵ(D(q)))
)

L2
dµ(q) = 0, (3.88)
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para todo ϵ > 0. Dado que D(q) é o termo invíscido das equações estacionárias de

Camassa-Holm Generalizadas, a integral em (3.88), pode ser reescrita como

Hβ,ϵ +Kβ,ϵ = 0, (3.89)

onde cada termo é da forma:

Hβ,ϵ :=
∫

L2

(
σϵ(q), φϵ(β

′(qϵ)φϵ((γq − g)))
)

L2
dµ(q).

e

Kβ,ϵ :=
∫

L2

(
σϵ(q), φϵ(β

′(qϵ)∇ · (u⊗ q)ϵ)
)

L2
dµ(q).

Com o objetivo é estabelecer o balanço de enstrofia potencial dado em (3.75),

demonstraremos que, para uma sequência adequada de funções β, o termo Kβ,ϵ converge

para zero, enquanto o termo Hβ,ϵ converge para o balanço de enstrofia potencial quando ϵ

tende a zero.

Sejam ϵ > 0 fixo e uma sequencia de funções de suporte compacto (βn)n que

convergem uniformemente para:

βn(x) −→ x, β′
n(x) −→ 1, β′′

n(x) −→ 0 quando n −→ ∞ (3.90)

sobre o conjunto

E2 =

[
−

2||g||L2

γ
,
2||g||L2

γ

]
.

Podemos construir um exemplo particular desta sequencia de funções βn da seguinte

maneira: primeiro, consideramos a sequencia de funções

hn(x) = x−
x

n

para todo x ∈ R e n ∈ N, que satisfaz as convergências uniformes de (3.90) em E2. Em

seguida, tomamos a função Ψ(x) do tipo “Bump function” com suporte em um conjunto

compacto K ⊃ E2. Finalmente, definimos a sequencia de funções

βn(x) := Ψ(x)hn(x) ∈ C2
c (R,R).

Em particular, a sequencia (βn)n satisfaz as convergências uniformes de (3.90) sobre E2.

Por outra parte, consideramos as sequencias de composições que convergem uniformemente:

βn(qϵ(x)) −→ qϵ(x), β′
n(qϵ(x)) −→ 1, β′′

n(qϵ(x)) −→ 0 quando n −→ ∞ (3.91)

De fato, a sequencia βn(qϵ), β
′
n(qϵ) e β′′

n(qϵ) estão bem definida devido à desigualdade (3.20),

que relaciona a norma L∞ e a norma L2 da vorticidade potencial. Além disso, existe uma

constante positiva M1, tal que

|βn(qϵ)| + |β′
n(qϵ)| + |β′′

n(qϵ)| ≤ M1. (3.92)
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Com todo o anterior, vejamos que

lim
ϵ→0

(
lim sup

n→∞
Kβn,ϵ

)
= 0. (3.93)

De fato, aplicando integração por partes no integrando de Kβn,ϵ, obtemos que:
(
σϵ(q), φϵ(β

′
n(qϵ)∇ · (u⊗ q)ϵ)

)
L2

= −
∫

T2
∇xσϵ(q) · φϵ(β

′
n(qϵ)(u⊗ q)ϵ) dx

−
∫

T2
σϵ(q)φϵ(β

′′
n(qϵ)∇xqϵ · (u⊗ q)ϵ) dx,

onde

∇xσϵ(q)(x) = φϵ(β
′
n(qϵ)∇qϵ)(x)

para todo x ∈ T
2. Logo, utilizando a identidade (3.37) e (3.38), podemos rescrever o termo:

(u⊗ q)ϵ = ρϵ(u, q) + (uϵ ⊗ qϵ) (3.94)

com

ρϵ(u, q) := rϵ(u, q) − (u− uϵ) ⊗ (q − qϵ). (3.95)

Dessa forma, a primeira integral do integrando de Kβn,ϵ rescreve-se como:
(
σϵ(q), φϵ(β

′
n(qϵ)∇ · (u⊗ q)ϵ)

)
L2

= −
∫

T2
∇xσϵ(q) · φϵ(β

′
n(qϵ)ρϵ(u, q)) dx

−
∫

T2
∇xσϵ(q) · φϵ(β

′
n(qϵ)(uϵ ⊗ qϵ)) dx

−
∫

T2
σϵ(q)φϵ(β

′′
n(qϵ)∇xqϵ · (u⊗ q)ϵ) dx

=:
∫

T2
I1

βn,ϵ(q) + I2
βn,ϵ(q) + I3

βn,ϵ(q) dx. (3.96)

Observe que as funções I i
βn,ϵ(q) com i = 1, 2, 3 são funções continuas para cada q ∈ L2(T2).

Para ϵ > 0, podemos ver que as funções I i
βn,ϵ com i = 1, 2, 3 são uniformemente limitadas

para todo q ∈ F∞(r0). Além disso, tomando o limite da sequencia de funções β′′
n como em

(3.91), obtemos que

lim
n→∞

σϵ(q)φϵ(β
′′
n(qϵ)∇xqϵ · (u⊗ q)ϵ)(x) = 0

para todo x ∈ T
2. Logo, pelo Teorema da convergência dominada, segue-se que:

lim
n→∞

∫

T2
σϵ(q)φϵ(β

′′
n(qϵ)∇xqϵ · (u⊗ q)ϵ) dx = 0. (3.97)

Por outro lado, tomando novamente o limite da sequencia de funções β′
n, como em (3.91),

obtemos que

lim
n→∞

∇xσϵ(q) · φϵ(β
′
n(qϵ)(uϵ ⊗ qϵ))(x) = φϵ(∇qϵ) · φϵ(uϵ ⊗ qϵ))(x).

Novamente, aplicamos o Teorema da convergência dominada, e obtemos que:

lim
n→∞

∫

T2
∇xσϵ(q) · φϵ(β

′
n(qϵ)(uϵ ⊗ qϵ)) dx =

∫

T2
φϵ(∇qϵ) · φϵ(uϵ ⊗ qϵ)) dx.
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Dado que utilizamos o mesmo molificador para as funções ∇qϵ e uϵ ⊗ qϵ, ao aplicar

integração por partes, vemos que:
∫

T2
φϵ(∇qϵ) · φϵ(uϵ ⊗ qϵ)) dx = −

∫

T2
φϵ(uϵ ⊗ qϵ)) · φϵ(∇qϵ) dx.

Consequentemente, o em limite é igual a zero. Isto é,

lim
n→∞

∫

T2
∇xσϵ(q) · φϵ(β

′
n(qϵ)(uϵ ⊗ qϵ)) dx = 0. (3.98)

Para examinar a primeira integral de (3.96), é necessário ter um pouco mais de

cuidado, dado que nossas estimativas para as funções I i
βn,ϵ com i = 1, 2, 3 dependem

de ϵ > 0. Em particular, para as funções I2
βn,ϵ e I3

βn,ϵ o problema foi resolvido já que a

convergência pontual ou era zero ou a integral desse limite era zero. No entanto, para a

função I1
βn,ϵ, desenvolvemos a estimativa, apresentando a dependência de ϵ, e logo indicamos

que termo ajuda a eliminar a dependência de ϵ. Lembremos que, devemos fazer ϵ tender a

zero. Por isso, é importante de eliminar a dependência do ϵ na estimativa.

Notemos que,
∣∣∣∣
∫

T2
∇xσϵ(q) · φϵ(β

′
n(qϵ)ρϵ(u, q)) dx

∣∣∣∣ ≤
∫

T2

∣∣∣∇xσϵ(qϵ)
∣∣∣
∣∣∣φϵ(β

′
n(qϵ)ρϵ(u, q))

∣∣∣ dx

=
∫

T2

∣∣∣φϵ(β
′
n(qϵ)∇xqϵ)

∣∣∣
∣∣∣φϵ(β

′
n(qϵ)ρϵ(u, q))

∣∣∣ dx

Dado que β′ é limitada, conforme (3.92), seja C uma constante positiva tal que
∣∣∣∣
∫

T2
∇xσϵ(q) · φϵ(β

′(qϵ)ρϵ(u, q)) dx
∣∣∣∣ ≤ Cϵ−1

∫

T2

∣∣∣φϵ(ρϵ(u, q))(x)
∣∣∣ dx

≤ C1ϵ
−1||ρϵ(u, q)||L1

para todo q ∈ F∞(r0). Logo, pelo Proposição 25 do Apêndice B, temos que

||ρϵ(u, q)||L1 ≤ M1ϵ
2||∇u||L2||q||L2 .

Portanto, a primeira integral em (3.96) é estimada da seguinte forma:
∣∣∣∣
∫

T2
∇xσϵ(q) · φϵ(β

′
n(qϵ)ρϵ(u, q)) dx

∣∣∣∣ ≤ Mϵ||∇u||L2||q||L2 ,

onde a constante M é positiva e independente da sequencia de funções βn. Logo, aplicando

o Lema de Fatou para a sequencia de funções βn, temos que

lim sup
n→∞

∫

L2

∫

T2
∇xσϵ(q) · φϵ(β

′
n(qϵ)ρϵ(u, q)) dx dµ(q) ≤ ϵM ||∇u||L2||q||L2 .

Finalmente, fazemos ϵ tender a zero na desigualdade anterior, e obtemos:

lim
ϵ→0

(
lim sup

n→∞

∫

L2

∫

T2
∇xσϵ(q) · φϵ(β

′
n(qϵ)ρϵ(u, q)) dx dµ(q)

)
= 0. (3.99)

Juntando, (3.97), (3.98) e (3.99), concluímos que o limite (3.93) é zero. Logo, pela identidade

(3.89), que relaciona os termos Hβn,ϵ e Kβn,ϵ, obtemos que

lim
ϵ→0

(
lim sup

n→∞
Hβn,ϵ

)
= 0.
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Por outro lado, como Hβn,ϵ está definido da forma:

Hβn,ϵ :=
∫

L2

(
σϵ(q), φϵ(β

′
n(qϵ)φϵ((γq − g)))

)
L2
dµ(q).

Em base à estimativa (3.86) e na convergência pontual do integrando de Hβn,ϵ, aplicamos

o Teorema da Convergência Dominada para concluir que

lim
ϵ→0

(
lim sup

n→∞
Hβn,ϵ

)
=
∫

L2

{
γ||q||2L2 − (g, q)L2

}
dµ(q).

Mostrando que a medida limite µ, satisfaz o balanço de enstrofia potencial descrito em

(3.75).

A seguir, finalizamos este capítulo com uma seção destinada ao estudo das médias

temporais de logo prazo, e como estas são relacionadas com as soluções estatísticas

estacionárias.

3.5 Médias Temporais de Longo Prazo

Nesta seção, estudaremos as soluções estatísticas estacionárias obtidas das médias

temporais de longo prazo das soluções das equações de Camassa-Holm Generalizadas. Isso,

será possível através da noção de limite generalizado, o qual chamaremos de limite de

Banach. Esta relação entre solução estatística estacionaria e médias de longo prazo, nos

permitira demonstrar que a dissipação de enstrofia potencial média no tempo desaparece

quando a viscosidade tende para zero.

Antes de introduzir a definição de limite de Banach, consideramos o espaço

BC([0,∞)) como sendo o espaço de Banach de todas as funções contínuas e limitadas de

valor real definidas em [0,∞) e dotado com a norma supremo.

Definição 17. O limite de Banach, é um funcional linear e limitado

LIMT →∞ : BC([0,∞]) −→ R

tal que, para toda g ∈ BC([0,∞])

(i) LIMT →∞(g) ≥ 0 com g ≥ 0;

(ii) LIMT →∞(g) = limT →∞g(T ), sempre que o limite usual existir.

O funcional LIMT →∞, é construído como uma aplicação do Teorema de Hahn-

Banach. Portanto, o limite de Banach não é único, pois depende da extensão escolhida, ver

o livro de Foias ([18], pag 225). Esse fato, não é uma restrição já que podemos construir

o limite de Banach da melhor maneira. Por exemplo, dada uma função g0 ∈ BC([0,∞))
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fixa, e uma sequencia Ti → ∞, para a qual g0(Ti) converge para ℓ. Então, existe um limite

de Banach LIMt→∞, tal que

LIMT →∞(g0) = ℓ.

Isso significa que, pode-se escolher um limite de Banach de tal maneira que obedeça

LIMT →∞(g) = lim sup
T →∞

g(T ). (3.100)

para qualquer g ∈ BC([0,∞)). Este fato será de grande importância para provar nosso

teorema principal sobre a dissipação anômala. Além disso, o limite de Banach satisfaz o

seguinte desigualdade:

lim inf
T →∞

g(T ) ≤ LIMT →∞(g) ≤ lim sup
T →∞

g(T ),

para toda g ∈ BC([0,∞]), para mais detalhes ver o livro de Foias ([18], pag 226).

O próximo Teorema fornece um resultado crucial para nosso trabalho, pois relaciona

as médias temporais de longo prazo com as soluções estatísticas estacionárias.

Teorema 18. Sejam ν > 0 fixo e q(ν) uma solução das equações de vorticidade potencial

das equações Camassa-Holm Generalizadas com dado inicial q0 ∈ L2(T2) e forçamento

g ∈ L2(T2). Seja LIMT →∞ um limite de Banach. Então a aplicação

Φ 7−→ LIMT →∞
1

T

∫ T

0
Φ(q(ν)(·, s)) ds (3.101)

para toda Φ ∈ C(L2(T2);R) define uma solução estatística estacionaria µ(ν) para as

equações de Camassa-Holm Generalizadas no espaço fase de vorticidade potencial. Isto é,

LIMT →∞
1

T

∫ T

0
Φ(q(ν)(·, s)) ds =

∫

L2(R2)
Φ(q) dµ(ν)(q). (3.102)

A solução µ(ν) está suportada sobre o conjunto

F∞ = {q ∈ F : ||q||L∞ ≤ R} , (3.103)

onde R é uma constante positiva dada na desigualdade (3.20). Além disso, satisfaz a

desigualdade ∫

L2(T2)

{
ν||q||2

Hβ
α

+ γ||q||2L2 − (g, q)L2

}
dµ(ν)(q) ≤ 0. (3.104)

Demonstração. Primeiro, demonstraremos a identidade (3.102), que relaciona o funcional

das médias temporais, construído a partir da solução das equações de Camassa-Holm

Generalizadas no espaço fase de vorticidade potencial, a uma medida de Borel. Para

este objetivo, utilizaremos o Teorema de Representação de Kakutani-Riesz em espaços

compactos, ver ([18] p. 221), e o conjunto compacto utilizado neste caso é semi-órbita

positiva gerada pela solução das equações de Camassa-Holm Generalizadas no espaço fase



3.5. Médias Temporais de Longo Prazo 93

de vorticidade potencial a partir de um determinado tempo.

De acordo com o Lema 4, a semi-órbita positiva

O+(q0, t0) = {q(ν)(·, s+ t0) ∈ L2(T2) : s ≥ 0} (3.105)

é relativamente compacta em L2(T2). Podemos considerar a semi-órbita a partir do tempo

t0 > 0, tal que q(ν)(·, s + t0) ∈ F para todo s > 0, com F definido como em (3.62).

Além disso, pela estimativa (3.20), que estima a norma L∞ com a constante positiva

R independente do tempo, concluímos que a semi-órbita positiva está contida em F∞.

Assim, para qualquer Φ ∈ C(L2(T2);R), temos que Φ ∈ C(O+(q0, t0)), o que indica que

Φ(q(ν)(·, s + t0)) é uma função continua e limitada em [0,∞). Consequentemente, sua

média temporal em [0, τ ] também é contínua e limitada, dada por:

T 7−→
1

T

∫ T

0
Φ(q(ν)(·, s+ t0)) ds. (3.106)

Aplicando o limite de Banach LIMT →∞ à função (3.106), definimos a aplicação:

Φ ∈ C(O+(q0, t0)) 7−→ LIMT →∞
1

T

∫ T

0
Φ(q(ν)(·, s+ t0)) ds ∈ R. (3.107)

Essa aplicação é um funcional linear positivo definido em C(O+(q0, t0)). Usando o Teorema

de representação de Kakutani-Riesz em espaços compactos, podemos garantir que existe

uma medida de Borel µ(ν) suportada no conjunto O+(q0, t0), que representa esse funcional

linear, obtendo assim a representação (3.102).

Dado que o conjunto O+(q0, t0) é compacto, a medida µ(ν) é finita e pode ser

estendida para todo o espaço L2(T2) da seguinte maneira:

µ(ν)(X) := µ(ν)
(
X ∩ O+(q0, t0)

)

para qualquer conjunto Boreliano X ∈ L2(T2). Para concluir observe que, como foi falado

ao inicio do paragrafo, a partir da estimativa (3.7), escolhemos t0 > 0 de tal maneira

que a norma L2 de q(ν)(·, s + t0) seja limitada por 2γ−1||g||L2 . Desse forma, o conjunto

O+(q0, t0) está contido no conjunto F , conforme definido em (3.62), para todo s > 0. Além

disso, pela estimativa (3.20), concluímos que o conjunto O+(q0, t0) está contida em F∞.

Consequentemente, o suporte da medida µ(ν) está contido no conjunto F∞.

A seguir, demonstraremos que a medida de Borel µ(ν), obtida pelo Teorema de

representação de Kakutani-Riesz, é uma solução estatística estacionaria das equações

estacionárias de Camassa-Holm Generalizadas no espaço fase da vorticidade potencial.

Para este objetivo, consideramos o limite de Banach como sendo um limite superior. De

fato, conforme argumentado na primeira parte do Teorema 18, temos que o fecho da

semi-órbita positiva (3.105), esta contido no conjunto F∞. Assim, para qualquer funcional

teste Ψ ∈ T e q ∈ O+(q0, t0), que satisfaçam as condições:

∂tq
(ν) ∈ H−2β(T2) e DqΨ(q(ν)) = Ψ′(q(ν)) ∈ H2(T2),



94 Capítulo 3. Fenômeno de Dissipação Anômala para a Vorticidade Potencial

temos, pela regra da cadeia generalizada, que:

d

dt
Ψ(q(ν)(t)) = ⟨Ψ′(q(ν)), ∂tq

(ν)⟩H2β×H−2β .

Dado que q(ν) é solução para as equações da vorticidade potencial das equações de

Camassa-Holm Generalizadas, segue-se que:

⟨Ψ′(q(ν)), ∂tq
(ν)⟩H2β×H−2β = ⟨Ψ′(q(ν)(t)), D(ν)(q(ν)(t))⟩L2 ,

onde D(ν) representa a parte estacionaria das equações de Camassa-Holm Generalizadas

no espaço fase da vorticidade potencial, definido em (3.55). Agora, aplicando o limite de

Banach à média temporal da função d
dt

Ψ(q(ν)(·, s+ t0)), obtemos:

LIMT →∞
1

T

∫ T

0

d

ds
Ψ(q(ν)(·, s+t0)) ds = LIMT →∞

1

T

∫ T

0
⟨D(ν)(q(ν)(s+t0)),Ψ

′(q(ν)(s))⟩L2 ds.

A partir do Lema 12, que garante que o integrando do lado direito da igualdade anterior

é fracamente continua e localmente limitado, e a identificação de d
dt

Ψ(q(ν)(·, t+ s)) dada

anteriormente, podemos concluir que o limite:

LIMT →∞
1

T

∫ T

0

d

ds
Ψ(q(ν)(·, s+ t0)) ds = lim sup

T →∞

1

T

∫ T

0

d

ds
Ψ(ν)(q(·, s+ t0)) ds = 0. (3.108)

Portanto, da identificação (3.102) e do limite acima (3.108), obtemos:

∫

L2
⟨D(ν)(q),Ψ′(q)⟩ dµ(ν)(q) = LIMT →∞

1

T

∫ T

0

d

ds
Ψ(q(ν)(·, s+ t0)) ds = 0.

O que verifica a condição (3.58) da Definição 10 de solução estatística estacionaria para as

equações de Camassa-Holm Generalizadas no espaço fase da vorticidade potencial.

Para verificarmos as condições (3.57) e (3.59) de Definição 10, devemos começar

tomando as médias de longo prazo na equação de balanço de enstrofia potencial (3.4).

Observamos que, como a função ||q||2
Hβ

α
não é uma função continua em L2(T2), sua a media

temporal não pertence ao espaço BC([0,∞)). Assim, o primeiro passo é regularizar a

equação (3.4) e calcular a médias temporais de longo prazo para a equação da enstrofia

potencial regularizada.

Para facilitar os cálculos, introduzimos a seguinte notação:

qϵ(x, t) = φϵ(q(x, t)), uϵ(x, t) = φϵ(u(x, t)) e gϵ(x) = φϵ(g(x)).

Em seguida, suavizamos a equação (3.2), conforme realizado no Teorema 7, e calculamos o

produto interno L2 com a função qϵ. Dessa forma, obtemos uma equação de balanço de

enstrofia potencial para qϵ:

1

2

d

dt
||qϵ||

2
L2 + ν||qϵ||

2
Hβ

α
+ γ||qϵ||

2
L2 − (g, q)L2 = −(φϵ((u · ∇))q, qϵ)L2 . (3.109)
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Considerando que o campo u tem divergência nula e que ((uϵ · ∇)qϵ, qϵ)L2 = 0, segue que:

(
(φϵ(u · ∇)q), qϵ

)
L2

=
(
(φϵ(u · ∇)q) − (uϵ · ∇)qϵ, qϵ

)
L2
,

o que pode ser reescrito como:

(∇ · ((u⊗ q)ϵ − uϵ ⊗ qϵ), qϵ)L2 .

Utilizando a identidade (3.94), temos que (u⊗ q)ϵ −uϵ ⊗ qϵ = ρϵ(u, q). Portanto, a equação

(3.109) pode ser reescrita como:

1

2

d

dt
||qϵ||

2
L2 + ν||qϵ||

2
Hβ

α
+ γ||qϵ||

2
L2 − (g, q)L2 = (ρϵ(u, q),∇qϵ)L2 , (3.110)

onde ρϵ(u, q) é definido conforme a equação (3.95):

ρϵ(u, q) := rϵ(u, q) − (u− uϵ) ⊗ (q − qϵ).

Agora, integramos a equação (3.110) no tempo, de 0 a T , e obtemos:

1

T

∫ T

0

[
ν||qϵ(s+ t0)||

2
Hβ

α
+ γ||qϵ(s+ t0)||

2
L2 − (gϵ, qϵ(s+ t0))L2

]
ds

=
1

2T
||qϵ(s+ t0)||

2
L2

∣∣∣∣∣

0

T

+
1

T

∫ T

0
(ρϵ(u, q)(s+ t0),∇qϵ(s+ t0))L2 ds. (3.111)

Ao aplicarmos o limite de Banach à equação (3.111), obtemos:

LIMT →∞
1

T

∫ T

0

[
ν||qϵ(s+ t0)||

2
Hβ

α
+ γ||qϵ(s+ t0)||

2
L2 − (gϵ, qϵ(s+ t0))L2

]
ds

= LIMT →∞
1

T

∫ T

0

(
ρϵ(u, q)(s+ t0),∇qϵ(s+ t0)

)
L2
ds.

Sabendo que o limite de Banach LIMT →∞ foi escolhido de forma a coincidir com o limite

superior, concluímos que:

LIMT →∞
1

2T
||qϵ(s)||

2
L2 = lim sup

T →∞

1

2T
||qϵ(s)||

2
L2 ≤ 0.

Assim, pela identificação (3.102), demonstrada na primeira parte do nosso Teorema,

obtemos que:

LIMT →∞
1

T

∫ T

0

[
ν||qϵ(s+t0)||

2
Hβ

α
+ γ||qϵ(s+ t0)||

2
L2 − (gϵ, qϵ(s+ t0))L2

]
ds

=
∫

L2

[
ν||qϵ||

2
Hβ

α
+ γ||qϵ||

2
L2 − (gϵ, qϵ(s))L2

]
dµ(ν)(q).

Dessa forma, obtemos a seguinte igualdade:
∫

L2

[
ν||qϵ||

2
Hβ

α
+ γ||qϵ||

2
L2 − (gϵ, qϵ(s))L2

]
dµ(ν)(q)

= LIMT →∞
1

T

∫ T

0

(
ρϵ(u, q)(s+ t0),∇qϵ(s+ t0)

)
L2
ds. (3.112)
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Agora, vamos demonstrar as condições (3.57) e (3.59) da Definição 10 com base na

equação (3.112). Iniciaremos pela condição (3.57). Para isso, é necessário mostrar que a

média temporal de longo prazo da função (ρϵ(u, q)(s),∇qϵ(s))L2 , conforme a identidade

(3.112), é uniformemente limitada em relação ao tempo e a ϵ. Esse controle permitirá

fazer ϵ → 0 no lado esquerdo da equação, garantindo a convergência para uma função

mensurável, o que será viabilizado pelo teorema da convergência dominada. Com isso,

finalmente obteremos a condição (3.57) da Definição 10.

De fato, fixemos ϵ > 0. Para qualquer q ∈ F∞, sabemos que q ∈ L2(T2). Dessa forma,

Curl(u)(x, s) = (I−α2∆)−1q(x, s) tem norma L2 limitada, pois o operador (I−α2∆)−1 é

limitado em L2. Assim, pela relação (2.13), que relaciona a norma L2 de ∇u com a norma

L2 de Curl(u), temos:

||∇u(s)||L2 ≤ ||q(s)||L2 .

Aplicando a Proposição 26 do Apêndice B, obtemos a seguinte estimativa para ρϵ(u, q)(s):

||ρϵ(u, q)(s)||L2 ≤ M2ϵ||q(s)||L∞ ||q(s)||L2 .

Além disso, é fácil ver que:

||∇qϵ(s)||L2 ≤
M

ϵ
||q(s)||L2 .

Dado que as normas L2 e L∞ da função q(·, t) podem ser limitadas independentemente do

tempo, ver as desigualdades (3.7) e (3.20), temos que as estimativas anteriores também

não dependem do tempo. Assim, ao aplicarmos a desigualdade de Cauchy-Schwarz para a

função
(
ρϵ(u, q)(s),∇qϵ(s)

)
L2

, obtemos uma limitação independente de ϵ > 0 e do tempo:

∣∣∣
(
ρϵ(u, q)(s),∇qϵ(s)

)
L2

∣∣∣ ≤ ||ρϵ(u, q)(s)||L2||∇qϵ(s)||L2 ≤ B, (3.113)

onde B é uma constante positiva independente de ϵ > 0 e do tempo. Por outro lado, como

o limite de Banach foi escolhido como um limite superior, temos:

LIMT →∞
1

T

∫ T

0

(
ρϵ(u, q)(s+ t0),∇qϵ(s+ t0)

)
L2
ds

= lim sup
T →∞

1

T

∫ T

0

(
ρϵ(u, q)(s+ t0),∇qϵ(s+ t0)

)
L2
ds.

A partir da desigualdade (3.113), concluímos que:

lim sup
T →∞

1

T

∫ T

0

(
ρϵ(u, q)(s+ t0),∇qϵ(s+ t0)

)
L2
ds ≤ B.

Essa relação, junto com a equação (3.112), nos leva à desigualdade:

∫

L2

[
ν||qϵ||

2
Hβ

α
+ γ||qϵ||

2
L2 − (gϵ, qϵ)L2

]
dµ(ν) ≤ B. (3.114)



3.5. Médias Temporais de Longo Prazo 97

Aplicando as desigualdade Cauchy-Schwarz e a desigualdade Young à função (gϵ, qϵ)L2 ,

obtemos:
∫

L2
ν||qϵ||

2
Hβ

α
dµ(ν) +

γ

2

∫

L2
||qϵ||

2
L2 dµ(ν) ≤ B +

||gϵ||
2
L2

γ
µ(ν)(L2(T2)).

Dado que a medida µ(ν) é finita, podemos normalizá-la para garantir que sua medida total

seja igual a 1. Por outro lado, como o molificador φϵ não incremente a norma L2 da função

g e a função ||qϵ||
2
L2 é continua e não negativa em L2, segue que:

∫

L2
||qϵ||

2
Hβ

α
dµ(ν) ≤ B(ν) +

||g||2L2

νγ
,

onde o lado direito desta desigualdade é finito e independente de ϵ > 0. Como a fun-

ção ||q||2
Hβ

α
é Borel mensurável não negativa, aplicamos o Lema de Fatou a essa última

desigualdade e concluímos a condição (3.57) da Definição 10. Ou seja:
∫

L2
||q||2

Hβ
α
dµ(ν) < ∞.

Dando continuidade à demonstração da condição (3.59) da Definição 10, o próximo

passo envolve a verificação da desigualdade (3.104). Para lograr este objetivo, utilizaremos

a identidade (3.112) e mostraremos que o limite de Banach da média temporal de longo

prazo para a função (ρϵ(u, q)(s),∇qϵ(s))L2 tende a zero.

Inicialmente, seja ϵ > 0 fixo. Observamos que, para qualquer q ∈ F∞, temos q ∈ L∞ ∩Hβ.

Como resultado, ∇qϵ ∈ L∞(T2), e a seguinte limitação é válida:

||∇qϵ||L∞ ≤
M

ϵ
. (3.115)

Além disso, de acordo com a Proposição 25 do Apêndice B, temos que:

||ρϵ(u, q)||L1 ≤ M1ϵ
3
2 ||∇u||L2 ||q||Hβ . (3.116)

É importante destacar que essas estimativas são independentes do tempo, já que q ∈ F∞.

Assim, ao aplicarmos a desigualdade de Hölder à função (ρϵ(u, q),∇qϵ)L2 , obtemos a

seguinte estimativa:

|(ρϵ(u, q),∇qϵ)L2| ≤ ||∇qϵ||L∞ ||ρϵ(u, q)||L1 .

Utilizando as desigualdades (3.115) e (3.116), deduzimos que:

|(ρϵ(u, q),∇qϵ)L2 | ≤ Cϵ
1
2 ,

onde C é uma constante positiva independente do tempo. Aplicando o limite de Banach

(que foi escolhido como o limite superior) e utilizando o Lema de Fatou, concluímos que:

lim sup
T →∞

1

T

∫ T

t0

∣∣∣∣
(
ρϵ(u, q)(s),∇qϵ(s)

)
L2

∣∣∣∣ ds ≤ Cϵ
1
2 , (3.117)
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para todo ϵ > 0. Fazendo ϵ → 0, obtemos:

lim
ϵ→0


 lim sup

T →∞

1

T

∫ T

t0

(
ρϵ(u, q)(s),∇qϵ(s)

)
L2
ds


 ≤ 0.

Portanto, com base na relação (3.112), obtemos a desigualdade (3.104):
∫

L2

[
ν||qϵ||

2
Hβ

α
+ γ||qϵ||

2
L2 − (gϵ, qϵ)L2

]
dµ(ν)(q) ≤ 0,

para todo ϵ. Como as funções ||q||2
Hβ

α
, ||q||2L2 e (g, q)L2 são Borel mensurável, definimos a

seguinte sequência de funções mensuráveis em L2:

Fϵ(q) = ν||qϵ||
2
Hβ

α
+ γ||qϵ||

2
L2 − (gϵ, qϵ)L2 ,

Essa sequência converge pontualmente e é uniformemente limitada em relação a ϵ. Portanto,

aplicando o teorema da convergência dominada, concluímos a desigualdade (3.104):
∫

L2

[
ν||q||2

Hβ
α

+ γ||q||2L2 − (g, q)L2

]
dµ(ν)(q) ≤ 0.

Finalmente, para verificar a condição (3.59) da Definição 10, adotamos uma abor-

dagem similar à que usamos para a desigualdade (3.104), mas agora localizada no conjunto

E :=
{
q ∈ L2 : E2

1 ≤ ||q||2L2 < E2
2

}
,

onde E1, E2 ∈ R são tais que 0 < E1 < E2. Consideramos uma função suave χ′(y), não

negativa e de suporte compacto definida em [0,∞). Em seguida, definimos a função

χ(y) :=
∫ y

0
χ′(τ) dτ,

que é limitada em [0,∞). A composição de χ(·) com a função contínua ||qϵ(t)||
2
L2 nos

permite calcular sua derivada em relação ao tempo, que é dada por:

d

dt
χ(||qϵ(t)||

2
L2) = χ′(||qϵ(t)||

2
L2)

d

dt
||qϵ(t)||

2
L2 .

Utilizando a equação (3.110), que representa o balanço de enstrofia potencial regularizado,

temos:
1

2

d

dt
||qϵ||

2
L2 +

[
ν||qϵ||

2
Hβ

α
+ γ||qϵ||

2
L2 − (gϵ, qϵ)L2

]
=
(
ρϵ(u, q),∇qϵ

)
L2
.

Multiplicamos essa equação por 2χ′(||qϵ||
2
L2) e obtemos:

χ′(||qϵ||
2
L2)

d

dt
||qϵ||

2
L2 + 2χ′(||qϵ||

2
L2)
[
ν||qϵ||

2
Hβ

α
+ γ||qϵ||

2
L2 − (gϵ, qϵ)L2

]

= 2χ′(||qϵ||
2
L2)
(
ρϵ(u, q),∇qϵ

)
L2
.

Agora, ao tomar a média temporal, obtemos:

2

T

∫ T

0
χ′(||qϵ||

2
L2)
[
ν||qϵ||

2
Hβ

α
+ γ||qϵ||

2
L2 − (gϵ, qϵ)L2

]
ds =

1

T
χ(||qϵ(t)||

2
L2)

∣∣∣∣∣

0

T

+
2

T

∫ T

0
χ′(||qϵ||

2
L2)
(
ρϵ(u(s), q(s)),∇qϵ(s)

)
L2
ds.
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Aplicando o limite de Banach, que foi escolhido para coincidir com o limite superior, o lado

esquerdo da equação anterior é identificado com a medida µ(ν), enquanto o lado direito é

limitado por um múltiplo de ϵ
1
2 , conforme observado em (3.117) e pela limitação da função

χ′(·). Assim, temos:

∫

L2
χ′(||qϵ||

2
L2)
[
ν||qϵ||

2
Hβ

α
+ γ||qϵ||

2
L2 − (gϵ, qϵ)L2

]
dµ(ν)(q) ≤ Cϵ

1
2 .

Novamente, dado que a função χ′(·) é limitada, podemos proceder de maneira análoga ao

caso da condição (3.57). Usamos o Teorema da convergência dominada para garantir que

o lado esquerdo da desigualdade converge, sem dificuldades, quando fazemos ϵ → 0. Dessa

forma, obtemos:
∫

L2
χ′(||q||2L2)

[
ν||q||2

Hβ
α

+ γ||q||2L2 − (g, q)L2

]
dµ(ν)(q) ≤ 0. (3.118)

Agora, escolhemos uma sequencia (χ′
n)n tal que converge pontualmente, ou seja,

χ′
n(y) −→ 1E quando n −→ ∞ (3.119)

para todo y ∈ R, com valores 0 ≤ χ′(y) ≤ 2. Desse modo, definimos a sequência de funções

mensuráveis:

Gn(q) := χ′
n(||q||2L2)

[
ν||q||2

Hβ
α

+ γ||q||2L2 − (g, q)L2

]
.

Observe que a sequencia Gn(q) é uniformemente limitada e, pela convergência (3.119), é

pontualmente convergente, com limite dado por:

1E

[
ν||q||2

Hβ
α

+ γ||q||2L2 − (g, q)L2

]

para todo q ∈ L2. Logo, aplicamos o Teorema da convergência dominada junto com a

desigualdade (3.118), e obtemos que:

∫

E

[
ν||q||2

Hβ
α

+ γ||q||2L2 − (g, q)L2

]
dµ(ν)(q) ≤ 0

para qualquer 0 < E1 < E2 ≤ ∞, que é nossa condição (3.59) da Definição 10.

Encerramos este capítulo com o nosso principal resultado sobre a dissipação anômala

nas equações de Camassa-Holm Generalizadas, no espaço fase da vorticidade potencial,

considerando os parâmetros γ > 0 e 1/2 < β ≤ 1 fixos.

Teorema 19. Sejam g ∈ L2(T2) e q0 ∈ L2(T2). Para cada ν > 0, seja q(ν)(x, t) a solução

das equações da vorticidade potencial para as equações de Camassa-Holm Generalizadas.

Então,

lim
ν→0

ν

[
lim sup

T →∞

1

T

∫ T

0
||q(ν)(s+ t0)||

2
Hβ

α
ds

]
= 0. (3.120)
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Demonstração. Vamos argumentar por contradição. Suponhamos que o limite (3.120) seja

diferente de zero. Então, existe um δ > 0 e uma sequencia de viscosidades νk → 0, tal que,

para cada νk, existe uma sequencia de tempos Tj → ∞ onde

νk

Tj

∫ Tj

0
||q(νk)(s+ t0)||

2
Hβ

α
ds ≥ δ, (3.121)

para todo tj. Como q(νk) é uma solução das equações da vorticidade potencial, a função

q(νk)(x, s+ t0) satisfaz a equação de balanço de enstrofia potencial (3.4). Ou seja,

1

2

d

dt
||q(νk)(s+ t0)||

2
L2 + νk||q(νk)(s+ t0)||

2
Hβ

α
+ γ||q(νk)(s+ t0)||

2
L2 = (g, q(νk)(s+ t0))L2 ,

para cada νk > 0. Se calcularmos a média temporal dessa equação no intervalo [0, Tj] e

compararmos com a desigualdade (3.121), obtemos

δ ≤
νk

Tj

∫ Tj

0
||q(νk)(s+ t0)||

2
Hβ

α
ds =

1

2Tj

||q(νk)(s+ t0)||
2
L2

∣∣∣∣∣∣

0

Tj

+
1

Tj

∫ Tj

0

[
(g, q(νk)(s+ t0))L2 − γ||q(νk)(s+ t0)||

2
L2

]
ds.

Assim, calculando o limite superior, segue-se que

lim sup
T →∞

1

T

∫ T

0

[
(g, q(νk)(s+ t0))L2 − γ||q(νk)(s+ t0)||

2
L2

]
ds ≥ δ. (3.122)

Observe que a função
[
(g, q)L2 −γ||q||2L2

]
é contínua em (O+(q0)), e, com base na observação

feita na definição de limite de Banach (3.100), escolhemos um limite de Banach que satisfaça

LIMT →∞


 1

T

∫ T

0

[
(g,q(νk)(s+ t0))L2 − γ||q(νk)(s+ t0)||

2
L2

]
ds




= lim sup
T →∞

1

T

∫ T

0

[
(g, q(νk)(s+ t0))L2 − γ||q(νk)(s+ t0)||

2
L2

]
ds.

Ao aplicarmos o Teorema 18 com esse limite de Banach, concluímos que existe uma solução

estatística estacionária para as equações de Camassa-Holm Generalizadas no espaço fase

de vorticidade potencial, denotada por µ(νk), a qual é suportada no conjunto F∞ definido

em (3.103) e satisfaz a desigualdade
∫

L2

[
(g, q)L2 − γ||q||2L2

]
dµ(νk)(q) ≥ δ > 0 (3.123)

para todo νk > 0. Isso gera uma sequência de soluções estatísticas estacionárias que

variam com a viscosidade, denotadas por (µ(νk))νk
, a qual satisfaz a desigualdade (3.123).

Aplicando o Teorema 15, temos que existe uma subsequência de (µ(νk))νk
, denota da mesma

forma, que converge fracamente para µ, uma solução estatística estacionária renormalizada

para as equações de Euler-α. Agora, aplicando o Teorema 16, vemos que essa solução
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estatística estacionária renormalizada está suportada no conjunto F∞ e satisfaz o balanço

de enstrofia potencial, isto é,
∫

L2

[
γ||q||2L2 − (g, q)L2

]
dµ(q) = 0. (3.124)

Nosso próximo objetivo será obter uma contradição entre o balanço de enstrofia

potencial de µ, dado em (3.124), e o limite de Banach escolhido em (3.122). Como

g ∈ L2(T2), a função (g, q)L2 é fracamente contínua e localmente limitada para todo

q ∈ L2. Dessa forma, pela convergência fraca da subsequência (µ(νk))νk
e pela identidade

(3.76), obtemos

lim
νk→0

∫

L2
(g, q)L2 dµ(νk)(q) =

∫

L2
(g, q)L2 dµ(q). (3.125)

Além disso, dado que a função ||q||2L2 é mensurável e não negativa para todo q ∈ L2,

aplicamos o Teorema de Fatou à subsequência de medidas e concluímos que
∫

L2
||q||2L2 dµ(q) ≤ lim inf

νk→∞

∫

L2
||q||2L2 dµ(νk)(q). (3.126)

Utilizando essa informação em conjunto com (3.125) e (3.126), vemos que:
∫

L2

[
γ||q||2L2 − (g, q)L2

]
dµ(q) ≤ lim inf

νk→∞

∫

L2

[
γ||q||2L2 − (g, q)L2

]
dµ(νk)(q)

= − lim inf
νk→∞

∫

L2

[
(g, q)L2 − γ||q||2L2

]
dµ(νk)(q).

Observamos que, como a subsequência (µ(νk))νk
satisfaz a desigualdade (3.123), podemos

inferir que: ∫

L2

[
γ||q||2L2 − (g, q)L2

]
dµ(q) ≤ −δ < 0.

Essa conclusão entra em contradição com o fato de que a medida µ deve satisfazer o

balanço de enstrofia potencial dado pela equação (3.124). Portanto, podemos afirmar que

o limite apresentado na expressão (3.120) é de fato zero.

A partir do Teorema 19, podemos concluir que, para o caso em que o parâmetro

de interpolação se encontra no intervalo 1
2
< β ≤ 1, não ocorre dissipação anômala de

enstrofia potencial para a média temporal de longo prazo das soluções das equações de

Camassa-Holm Generalizadas.
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4 Exemplo de dissipação anômala de enstrofia

potencial para o sistema de vorticidade po-

tencial das equações de fluidos de segundo

grau

Neste capítulo, desenvolvemos uma solução para as equações de vorticidade po-

tencial em fluidos de segundo grau, destacando o fenômeno de dissipação anômala de

enstrofia potencial, mais precisamente a dissipação infinita. Essa solução contrasta com os

resultados obtidos no Capítulo 3, que investiga o regime do parâmetro de interpolação

β. Nesse contexto, a formulação de vorticidade potencial para a família de equações de

Camassa-Holm Generalizadas não apresenta dissipação anômala.

Lembrando um pouco, o termo “dissipação anômala” refere-se ao fato de que, no

limite de viscosidade nula, ainda temos dissipação remanescente, mesmo que a equação

limite conserve energia. Uma abordagem para investigar a questão da dissipação anômala

consiste em utilizar as medias temporais de longo prazo, com o objetivo de atingir um

regime estacionário das equações viscosas, enquanto a viscosidade é levada a zero. Se

denotamos por S(ν)(t, ω0) a solução de uma equação viscosa no tempo t ≥ 0 a partir do

dado inicial ω0 e consideramos as médias temporais de longo prazo para a dissipação de

enstrofia, dada por:

⟨|∇S(ν)(t, ω0)|
2⟩ = lim

T →∞

1

T

∫ T

0

∫

Rn
|∇(S(ν)(t, ω0))|

2 dx dt.

Dizemos que a solução viscosa apresenta dissipação anômala de enstrofia quando o valor

ϵ := limν→0 ν⟨|∇S(ν)(t, ω0)|
2⟩ for positivo.

Os autores dos trabalhos [11] e [12], investigaram a dissipação anômala de enstrofia

para as equações de Navier-Stokes com amortecimento e forçamento, assim como a dissi-

pação anômala de energia para as equações SQG critica com amortecimento e forçamento,

utilizando soluções estatísticas estacionárias. Eles concluíram a ausência desse fenômeno.

Analogamente, no Capítulo 3 deste trabalho, demonstramos um resultado similar para as

equações de Camassa-Holm Generalizadas no toro (T2), descritas pelas equações:





∂tv + u · ∇v +
∑2

j=1 v
j∇uj − ν∆(I − α2∆)βu+ γv = −∇p+ f

∇ · u = 0

(I − α2∆)u = v

u(x, 0) = u0

(4.1)
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onde α, ν e γ são parâmetros não negativos e 1
2
< β ≤ 1. Constatou-se que também não

apresenta dissipação anômala de enstrofia potencial nesse sistema. Vale ressaltar que o

sistema de equações (4.1) forma uma família parametrizada por 0 ≤ β ≤ 1. No extremo

β = 1, obtemos o sistema de equações de Camassa-Holm, amplamente utilizado em estudos

de turbulência [5, 7, 6]. No outro extremo, β = 0 representa as equações de fluidos de

segundo grau [13, 24].

A seguir, desenvolvemos uma solução para as equações de segundo grado de fluidos

que apresenta dissipação de enstrofia potencial. Consideramos, primeiramente, as equações

de fluidos incompressíveis de segundo grau no toro (T2):




∂tv + u · ∇v +
∑

j=1 vj∇uj − ν∆u = −∇p+ f

∇ · u = 0

(I − α2∆)u = v

u(x, 0) = u0

(4.2)

onde α e ν são parâmetros não negativos. Ao aplicarmos o operador Curl, definido em

(2.12), às equações (4.2), obtemos o sistema equivalente de equações dado por:




∂tq + u · ∇q − ν∆ω = g

∇ · u = 0

curl(u) = ω

Curl((I − α2∆)u) = q

(4.3)

onde g = Curl(f). Agora, vamos construir uma solução para o sistema (4.3) que tem

dissipação anômala de enstrofia potencial. Seja ψ(x) ∈ C∞(T2) uma autofunção do

operador (I − α2∆), cuja média da autofunção em T
2 é zero e com um autovalor λ > 1.

Isto é,

(I − α2∆)ψ(x) = λψ(x). (4.4)

Definimos um forçamento g(x) = cψ(x) e uma função η(t) que sera a solução do problema

de valor inicial (P.V.I). 



d
dt
η(t) + ν(λ−1)

λα2 η(t) = c

η(0) = 1
(4.5)

Neste caso, como o (P.V.I) é uma EDO linear de primeira ordem, tem solução η(t) da

forma:

η(t) =

(
1 −

λα2c

ν(λ− 1)

)
e−ν

(λ−1)

λα2 t +
λα2c

ν(λ− 1)
. (4.6)

Agora, definimos a função q(x, t) como:

q(x, t) := η(t)ψ(x). (4.7)

Em seguida, consideramos a função φ, que será denominada como função corrente, definida

por:

φ(x, t) =
α2

λ(1 − λ)
q(x, t). (4.8)
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Dando continuidade à nossa análise, apresentamos o seguinte Teorema que garante

que a função escalar q(x, t) definida em (4.7) é uma solução para o sistema de equações

(4.3).

Teorema 20. A função q(x, t) definida em (4.7), é uma solução para as equações




∂tq + (u · ∇)q − ν∆ω = g

∇ · u = 0

Curl((I − α2∆)u) = q

q(·, 0) = ψ(x)

(4.9)

com o campo de velocidade u(x, t) = ∇⊥φ(x, t) e ω(x, t) = Curl(u(x, t)).

Demonstração. Para demonstrar que o campo de velocidade u(x, t) satisfaz as equações

do sistema (4.9), inicialmente verificamos que:

∇ · u(x, t) = ∇ · ∇⊥φ(x, t) = 0,

o que mostra que o campo de velocidade é incompressível. Além disso, devemos mostrar

que u(x, t) satisfaz a equação

Curl(I − α2∆)u(x, t) = q(x, t). (4.10)

De fato, dado que o operador Curl e o operador (I − α2∆) comutam, segue que

Curl(I − α2∆)u(x, t) = (I − α2∆)Curl(u(x, t)). (4.11)

Por outro lado, como o campo de velocidade está definido por u(x, t) = ∇⊥φ(x, t), ao

aplicar a operador Curl, a essa igualdade, temos:

Curl(u(x, t)) = Curl(∇⊥φ(x, t)). (4.12)

Logo, aplicando a identidade (2.12), que define o operador Curl em duas dimensões, ao

lado direito da igualdade (4.12), obtemos:

Curl(u(x, t)) = ∇⊥ · (∇⊥φ(x, t)) = ∆φ(x, t). (4.13)

Substituindo a igualdade (4.13) em (4.11), temos que:

Curl((I − α2∆)u(x, t)) = (I − α2∆)∆φ(x, t).

A última parte da demonstração da identidade (4.10), consiste em mostrar que:

(I − α2∆)∆φ(x, t) = q(x, t).

Como φ(x, t), que foi denotada como função corrente, é dada por (4.8), segue que:

(I − α2∆)∆φ(x, t) = (I − α2∆)

((
α2

λ(1 − λ)

)
∆q(x, t)

)
. (4.14)
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Dado que a função ψ(x) é uma autofunção do operador (I − α2∆) com autovalor λ > 1,

temos que a função q(x, t) = η(t)ψ(x) é também uma autofunção com o mesmo autovalor

λ. Isto é,

(I − α2∆)q(x, t) = λq(x, t).

Desse modo, isolando o termo ∆q(x, t) da identidade anterior, obtemos:

∆q(x, t) =
(1 − λ)

α2
q(x, t). (4.15)

Substituindo a igualdade (4.15) no lado direito de (4.14), segue que:

(I − α2∆)∆φ(x, t) = (I − α2∆)

(
q(x, t)

λ

)
= q(x, t),

o que conclui a demonstração da equação (4.10).

Agora, verificamos que a função q(x, t) satisfaz a equação:



∂tq(x, t) + (u · ∇)q(x, t) − ν∆ω(x, t) = g(x, t)

q(·, 0) = ψ(x).
(4.16)

Observemos que o termo não linear da equação (4.16) se anula devido à configuração do

campo de velocidade u(x, t) e nossa função corrente φ(x, t). De fato, dado que o campo de

velocidade u(x, t) := ∇⊥φ(x, t) e de nossa função corrente φ(x, t), definida em (4.8), segue

que:

u(x, t) =


 α2

λ(1 − λ)


∇⊥q(x, t). (4.17)

Substituindo a nova configuração do campo de velocidade u(x, t), dada em (4.17), no

termo não linear do sistema (4.16), obtemos:

(u · ∇)q(x, t) =




 α2

λ(1 − λ)


∇⊥q(x, t) · ∇


 (q(x, t))

=


 α2

λ(1 − λ)


∇⊥q(x, t) · ∇q(x, t)

= 0,

mostrando que o termo não linear se anula. Além disso, o termo viscoso do sistema (4.16),

definido por ν∆ω(x, t), pode ser reescrito como um múltiplo escalar da função q(x, t).

Para isso, começamos reescrevendo ω(x, t), que se refere ao Curl(u(x, t)). Pela identidade

(4.13), que expressa a função ω(x, t) em termos de nossa função corrente, temos:

ω(x, t) = ∆φ(x, t).

Logo, aplicamos a identidade (4.8), que define nossa função corrente, obtemos:

ω(x, t) =
α2

λ(1 − λ)
∆q(x, t).
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Como a função q(x, t) é uma autofunção do operador (I − α2∆), obtemos a identidade

(4.15), o que nos permite rescrever a função ω(x, t) como:

ω(x, t) =
q(x, t)

λ
. (4.18)

Finalmente, substituindo a forma equivalente a função ω(x, t), dada pela equação (4.18),

no termo viscoso do sistema (4.16). Aplicando novamente (4.13), concluímos que:

ν∆ω(x, t) = ν
(1 − λ)

λα2
q(x, t). (4.19)

Desse modo, verificamos que q(x, t) satisfaz o sistema (4.16). Agora basta verificar que a

função q(x, t) também satisfaz o sistema



∂tq(x, t) + ν (λ−1)

λα2 q(x, t) = g(x, t)

q(·, 0) = ψ(x).
(4.20)

Como função η(t) satisfaz o sistema (4.5), temos que a função

q(x, t) := η(t)ψ(x) =

(
ψ(x) −

λα2g(x)

ν(λ− 1)

)
e−ν

(λ−1)

λα2 t +
λα2g(x)

ν(λ− 1)
(4.21)

satisfaz o sistema (4.20). Portanto, a tripla (q(x, t), u(x, t), ω(x, t)) é uma solução do

sistema (4.9).

Em seguida, definimos matematicamente o fenômeno de dissipação anômala de

enstrofia potencial para o sistema (4.9). Este fenômeno consiste em calcular as médias

temporais de longo prazo do termo viscoso do sistema (4.9) e, logo fazemos tender para

zero o parâmetro de viscosidade. Inicialmente, calculamos o produto L2 da função q(x, t)

com o sistema (4.9). Isso resulta na equação:

1

2

d

dt
||q||2L2 − ν(∆ω, q)L2 = (g, q)L2 . (4.22)

Lembrando que, como o campo de velocidade u(x, t) possui divergência nula, o termo não

linear se anula. Logo, integramos de 0 até T a equação (4.22)

||q(T )||2L2 + 2ν
∫ T

0
(−∆ω(t), q(t))L2 dt = ||q(0)||2L2 + 2

∫ T

0
(g, q(t))L2 dt. (4.23)

Denotamos por ϵ, o fenômeno de dissipação anômala de enstrofia potencial do sistema

(4.9), definido por:

ϵ := lim
ν→0+

[
lim

T →∞

ν

T

∫ T

0
(−∆ω(s), q(s))L2 ds

]
> 0. (4.24)

Desse modo, estamos interessados em estudar quando o limite (4.24) é positivo.

A seguir, apresentamos o resultado principal deste Capítulo o qual mostra que nosso

sistema (4.9) admite solução que apresenta dissipação anômala de enstrofia potencial.
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Teorema 21. Sejam as funções q(x, t) definida em (4.7) e φ(x, t), denotada como função

corrente, definida em (4.8). Então o sistema (4.9) admite uma solução que tem dissipação

anômala de enstrofia potencial. Isto é,

lim
ν→0+

[
lim

T →∞

ν

T

∫ T

0
(−∆ω(s), q(s))L2 ds

]
> 0. (4.25)

Demonstração. Para demonstrar que o limite dado por (4.25) é positivo, reescrevemos o

integrando de (4.25) utilizando identidades previamente estabelecidas na demonstração

do Teorema 20. Essa reformulação nos permite uma análise mais precisa da dissipação,

levando em consideração a estrutura da vorticidade potencial.

Das hipóteses do Teorema 21, segue como uma aplicação do Teorema 20, que a

função escalar q(x, t) é uma solução para o sistema (4.9), com o campo de velocidade

u(x, t) := ∇⊥φ(x, t) e ω(x, t) = Curl(u(x, t)). Além disso, pela identidade (4.19), o termo

viscoso do sistema (4.9) pode ser reescrito como um múltiplo escalar da vorticidade

potencial. Ou seja,

ν∆ω(x, t) = ν
(1 − λ)

λα2
q(x, t).

Desse modo, o integrando de (4.25) pode ser reescrito como:

(−ν∆ω(t), q(t))L2 = ν
(λ− 1)

λα2
||q(t)||2L2 . (4.26)

As médias temporais de longo prazo para (4.26) estão definidas por:

lim
T →∞

ν

T

∫ T

0
(−∆ω(t), q(t))L2 ds = ν

(λ− 1)

λα2
lim

T →∞

1

T

∫ T

0
||q(t)||2L2 dt.

Note que, da definição de q(x, t), dada em (4.21), temos que

||q(t)||2L2 = (q(t), q(t))L2 =
λ2α4

ν2(λ− 1)2
||g||2L2 +

∣∣∣∣
∣∣∣∣ψ −

λα4

ν(λ− 1)
g
∣∣∣∣
∣∣∣∣
2

L2
e−2ν

(λ−1)

λα2 t

+ 2


 λα2

ν(λ− 1)
g, ψ −

λα2

ν(λ− 1)
g




L2

e−ν
(λ−1)

λα2 t.

Desse modo, a media temporal de longo prazo para a função ||q(t)|| é simplesmente:

lim
T →∞

1

T

∫ T

0
||q(t)||2L2 dt =

λα2||g||2L2

(λ− 1)ν2
. (4.27)

A partir das identidades (4.26) e (4.27), segue que o limite (4.25) é dado por:

lim
ν→0+

[
lim

T →∞

ν

T

∫ T

0
(−∆ω(s), q(s))L2 ds

]
= lim

ν→0+

λα2||g||2L2

(λ− 1)ν
= +∞.

Assim, concluímos que o sistema (4.9) exibe o fenômeno de dissipação anômala de enstrofia

potencial.
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Para finalizar este Capítulo, cabe mencionar que na literatura matemática a

“dissipação anômala” é associada a dissipação de energia no limite invíscido, neste trabalho

fazemos um abuso de notação ao chamar de “dissipação anômala” ao fenômeno de dissipar

enstrofia potencial no limite invíscido. Desse modo, destacamos nosso Teorema 21 que

evidencia a presença de dissipação remanescente na formulação de vorticidade potencial

nas equações de fluidos de segundo grau ou no caso particular da formulação de vorticidade

potencial da família de equações de Camassa-Holm Generalizadas com os parâmetros

β = 0 e γ = 0, que contrasta com o resultado obtido no Capítulo 3, no qual encontramos

um regime do parâmetro de interpolação β onde a vorticidade potencial é conservado.

Finalmente observamos a relevância desse comportamento anômalo na dinâmica na família

de equações.
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5 Conclusões

Neste trabalho, estudamos o sistema de equações de Camassa-Holm Generalizadas

(CHG), uma família de sistemas que interpola entre as equações de Camassa-Holm e as

equações de fluidos de segundo grau, utilizando um parâmetro de interpolação 0 ≤ β ≤ 1.

Um dos principais desafios superados ao longo do estudo foi garantir a existência e unici-

dade das soluções para a família de equações de CHG. Destacando, a forma em que foi

encarada a unicidade, pois, as estimativas para o termo não linear das equações de CHG,

não permitiam a aplicação direta de uma desigualdade do tipo Grönwall, como é possível

no caso das equações de Camassa-Holm.

O objetivo principal deste trabalho é estudar o fenômeno de dissipação anômala

de enstrofia potencial nas equações de Camassa-Holm Generalizadas (CHG), destacando

nosso resultado principal no Teorema 19 do Capítulo 3, que mostra o regime do parâmetro

de interpolação 1
2
< β ≤ 1 onde não ocorre dissipação anômala de enstrofia potencial. Em

contraste, o Teorema 21 do Capítulo 4, apresentamos uma solução para as equações de

fluidos de segundo grau que exibe dissipação anômala de enstrofia potencial. Esses resulta-

dos evidenciam a dinâmica interessante dentro da família de equações CHG, revelando um

comportamento contrastante entre os diferentes regimes do parâmetro de interpolação.

Dada a limitação que temos em nosso resultado principal sobre o parâmetro de

interpolação, apresentamos um trabalho futuro como sendo: o estudo do fenômeno de

dissipação anômala com o parâmetro β = 1
2

nas equações de CHG, denotando β neste

caso, como nosso expoente critico.
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APÊNDICE A – Normas Equivalentes

Neste apêndice, apresentamos a equivalência das normas induzidas pelos operadores

Jβ = (I − ∆)
β

2 e Jβ
α = (I − α2∆)

β

2 para todo β > 0. Para u ∈ E , denotamos as normas

induzidas pelos operadores Jβ e Jβ
α como

||u||Hβ := ||Jβu||L2 e ||u||Hβ
α

:= ||Jβ
αu||L2 .

A seguir, demonstraremos que as normas Jβ e Jβ
α são equivalentes.

Proposição 22. A norma || · ||Hβ
α

e a norma || · ||Hβ são equivalentes:

αβ||u||Hβ ≤ ||u||Hβ
α

≤ ||u||Hβ ,

para todo α, β > 0.

Demonstração. Se 0 < α < 1, então (1 + α2|ξ|2) ≤ 1 + |ξ|2. Assim,

||(I − α2∆)
β

2 u||L2 ≤ ||(I − ∆)
β

2 u||L2 .

Por outro lado, temos que 1 < 1/α2. Logo,

(
1 + |ξ|2

)
≤

(
1

α2
+
α2

α2
|ξ|2

)
=

1

α2

(
1 + α2|ξ|2

)
.

Por tanto, concluímos que

αβ||(I − ∆)
β

2 u||L2 ≤ ||(I − α2∆)
β

2 u||L2 .

Se 1 < α, então 1 + |ξ|2 ≤ (1 + α2|ξ|2). Assim,

||(I − ∆)
β

2 u||L2 ≤ ||(I − α2∆)
β

2 u||L2

Por outro lado, temos que 1/α2 < 1. Logo,

1

α2

(
1 + α2|ξ|2

)
=

(
1

α2
+
α2

α2
|ξ|2

)
≤
(
1 + |ξ|2

)

Por tanto, conclímos que

||(I − α2∆)
β

2 ||L2 ≤ αβ||(I − ∆)
β

2 u||L2 .
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APÊNDICE B – Desigualdades Importantes

Em seguida mostramos alguns desigualdades do capítulo 3 que são importantes

para atingir nosso objetivo.

Proposição 23. Sejam ϵ > 0, q ∈ Hβ(T2) e 1
2
< β < 1. Então,

||δϵzq||L2 ≤ C(ϵ|z|)
1
2 ||q||Hβ ∀z ∈ T

2 (B.1)

Demonstração. Aplicando o Teorema de Plancherel, temos que:

||δϵzq||L2 =


 ∑

k∈Z2

|δ̂ϵzq|
2




1
2

=


 ∑

k∈Z2

|q̂(k − ϵz) − q̂(k)|2




1
2

=


 ∑

k∈Z2

|(e−iϵz·k − 1)|2|q̂(k)|2




1
2

.

Lembrando que a desigualdade:

|e−iϵz·k − 1| = 2 sin
(
ϵx · z

2

)
≤ C(ϵ|z||k|)1/2,

para todo ϵ > 0. Dessa modo, obtemos

||δϵzq||L2 ≤ C


 ∑

k∈Z2

ϵ|z||k||q̂(k)|2




1
2

≤ C(ϵ|z|)
1
2


 ∑

k∈Z2

|k||q̂(k)|2




1
2

.

≤ C(ϵ|z|)
1
2 ||q||

H
1
2
.

Pela inclusão do espaços de Sobolev, temos que Hβ(T2) ⊂ H
1
2 (T2) para β > 1/2. Dessa

forma, concluímos a desigualdade (B.1) da Proposição 23.

Proposição 24. Sejam ϵ > 0 e u ∈ H1(T2). Então,

||δϵzu||L2 ≤ ϵ|z|||∇u||L2 ∀z ∈ T
2 (B.2)

Demonstração. Aplicando o Teorema de Plancherel, temos que:

||δϵzu||L2 =


 ∑

k∈Z2

|δ̂ϵzu|2




1
2

=


 ∑

k∈Z2

|û(k − ϵz) − û(k)|2




1
2

=


 ∑

k∈Z2

|(e−iϵz·k − 1)|2|û(k)|2




1
2

.

Lembrando que a desigualdade:

|e−iϵz·k − 1| = 2 sin
(
ϵx · z

2

)
≤ ϵ|z||k|,
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para todo ϵ > 0. Dessa modo, obtemos

||δϵzq||L2 ≤


 ∑

k∈Z2

(ϵ|z||k|)2|û(k)|2




1
2

≤ ϵ|z|


 ∑

k∈Z2

|k|2|û(k)|2




1
2

.

≤ ϵ|z|||∇u||L2 .

Dessa forma, concluímos a desigualdade (B.2) da Proposição 24.

Proposição 25. Se u ∈ H1(T2) e q ∈ Hβ(T2), então

||ρϵ(u, q)||L1 ≤ M1ϵ
3
2 ||∇u||L2||q||Hβ . (B.3)

Demonstração. Lembrando que ρϵ é definido como:

ρϵ(u, q) := rϵ(u, q) − (u− uϵ) ⊗ (q − qϵ).

com

rϵ(u, q) =
∫

T2
φ(z)(δϵzu(x) ⊗ δϵzq(x)) dz e δϵzu(x) = u(x− ϵz) − u(x).

Aplicando a desigualdade de Minkowski, segue-se que:

||ρϵ(u, q)||L1 =
∫

T2
|ρϵ(u, q)(x)| dx

≤
∫

T2
|rϵ(u, q)(x)| dx+

∫

T2
|(u− uϵ) ⊗ (q − qϵ)(x)| dx

≤
∫

T2
φ(z1)||δϵz1u||L2||δϵz1q||L2 dz1 + ||(u− uϵ)||L2 ||(q − qϵ)||L2 .

Pela fórmula (3.40), podemos rescrevemos a diferença (u− uϵ) e (q − qϵ). Isto é,

||ρϵ(u, q)||L1 ≤
∫

T2
φ(z1)||δϵz1u||L2||δϵz1q||L2 dz1

+
∫

T2

∫

T2
φ(z1)j(z2)||δϵz2u(x)||L2||δϵz3q||L2 dz2 dz3.

Logo, pelas Proposições 23 e 24. Temos que

||ρϵ(u, q)||L1 ≤ ϵ
3
2 ||∇u||L2||q||Hβ



∫

T2
|z1|

3
2φ(z1) dz1 +

∫

T2

∫

T2
|z2|

3
2φ(z2)|z3|

3
2φ(z3) dz2 dz3




Dado que o domínio é limitado e φ possui suporte compacto, obtemos a estimativa

(B.3).

Proposição 26. Sejam u ∈ H1(T2) e q ∈ L∞(T2). Então,

||ρϵ(u, q)||L2 ≤ M2ϵ||q||L∞||∇u||L2 (B.4)



123

Demonstração. Lembrando que ρϵ é definido como:

ρϵ(u, q) := rϵ(u, q) − (u− uϵ) ⊗ (q − qϵ).

onde

rϵ(u, q) =
∫

T2
φ(z)(δϵzu(x) ⊗ δϵzq(x)) dz

com

δϵzu(x) = u(x− ϵz) − u(x) e δϵzq(x) = q(x− ϵz) − q(x).

Aplicando a desigualdade de Minkowski, segue-se que:

||ρϵ(u, q)||L2 ≤ ||rϵ(u, q)||L2 + ||(u− uϵ)(q − qϵ)||L2 .

Logo, estimando a norma L2 de rϵ(u, q). Obtemos que

||rϵ(u, q)||L2 =
[∫

T2
|rϵ(u, q)(x)|2 dx

]1/2

=

[∫

T2

∣∣∣∣
∫

T2
φ(z)δϵzu(x)δϵzq(x) dz

∣∣∣∣
2

dx

]1/2

Dado que q ∈ L∞(T2), vemos que ||δϵzq||L∞ ≤ 2||q||L∞ . Por conseguinte,

||rϵ(u, q)||L2 ≤ M ||q||L∞

∫

T2
φ(z)||δϵzu||L2 dz. (B.5)

Por outro lado, pela identidade (3.40), rescrevemos a diferença (u− uϵ) e estimar a norma

L2. Isto é,

||u− uϵ||L2 =

[∫

T2

∣∣∣∣
∫

T 2
φ(z)δϵzu(x) dz

∣∣∣∣
2

dx

]1/2

≤
∫

T2
φ(z)||δϵzu||L2 dz

Assim,

||(u− uϵ)(q − qϵ)||L2 =
[∫

T2
|(u− uϵ)(x)|2|(q − qϵ)(x)|2 dx

]1/2

≤ 2||q||L∞

[∫

T2
|(u− uϵ)(x)|2 dx

]1/2

= 2||q||L∞ ||u− uϵ||L2

Portanto,

||(u− uϵ)(q − qϵ)||L2 ≤ M ||q||L∞

∫

T2
φ(z)||δϵzu||L2 dz. (B.6)

Juntando (B.5) e (B.6). Obtemos a seguinte estimativa em norma L2 para ρϵ(u, q):

||ρϵ(u, q)||
2
L2 ≤ M ||q||L∞

∫

T2
φ(z)||δϵzu||L2 dz.

Logo, pelas Proposições 24. Temos que

||ρϵ(u, q)||
2
L2 ≤ M2ϵ||q||L∞ ||∇u||L2 .

Dessa forma, obtemos a estimativa (B.4).
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APÊNDICE C – Equações da Vorticidade

Potencial para as Equações de Camassa-Holm

Generalizadas

Em seguida, mostraremos a formulação das equações da vorticidade potencial

para as equações de Camassa-Holm generalizadas. Este sistema é importante para nosso

trabalho já que, sobre ele estudaremos o fenômeno de dissipação anômala.

Consideramos o sistema de equações de Camassa-Holm generalizado como foi

previamente estabelecido em (2.1):





∂tv + u · ∇v +
∑

j=1 vj∇uj − ν∆(I − α2∆)βu+ γv = −∇p+ f

∇ · u = 0

v = (I − α2∆)u.

(C.1)

Lembrando que em dimensão 2, o operador de vorticidade Curl, é definido em (2.12) como

sendo:

Curl(·) = (−∂x2 , ∂x1).

Aplicando o operador Curl às equações (C.1), e considerando a vorticidade potencial

definido por q = Curl(v), temos que





Curl
(
∂tv + u · ∇v +

∑
j=1 vj∇uj − ν∆(I − α2∆)βu+ γv = −∇p+ f

)

∇ · u = 0

Curl((I − α2∆)u) = q.

Suponhamos que g = Curl(f). É claro que Curl(∇p) = 0 e que o termo de amortecimento

esta definido por:

Curl(γv(x, t)) = γq(x, t). (C.2)

Dado que os operadores ∂t e Curl comutam, temos que

Curl(∂tv) = ∂t(Curl(v)) = ∂tq. (C.3)

A seguir, examinamos o termo não linear:

Curl


u · ∇v +

∑

j=1

vj∇uj


 = Curl

(
u · ∇v

)
+

2∑

j=1

Curl
(
vj∇uj

)
.
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Analisando cada termo por separado, vemos que o primeiro termo pode-se rescrever:

−∂x2(u1∂x1v1 + u2∂x2v1) = −∂x2u1∂x1v1 − u1∂x2∂x1v1 − ∂x2u2∂x2v1 − ∂2
x2
v1u2

= −∂x2u1∂x1v1 − u1∂x1(∂x2v1) − ∂x2u2∂x2v1 − u2∂x2(∂x2v1)

= (u · ∇)(−∂x2v1) − ∂x2u1∂x1v1 − ∂x2u2∂x2v1

Por outro lado, continuamos analisando a segunda componente do vetor Curl:

∂x1(u · ∇)v2 = ∂x1(u1∂x1v2 + u2∂x2v2)

= ∂x1u1∂x1v2 + u1∂x1(∂x1v2) + ∂x1u2∂x2v2 + u2∂x2(∂x1v2)

= (u · ∇)(∂x1v2) + ∂x1u1∂x1v2 + ∂x1u2∂x2v2.

A segunda parte do termo não linear pode-se rescrever:
2∑

j=1

∇⊥ ·
(
vj∇uj

)
=

2∑

j=1

[
− ∂x2(vj∂x1uj) + ∂x1(vj∂x2uj)

]

=
2∑

j=1

[
− ∂x2vj∂x1uj − vj∂x2(∂x1uj) + ∂x1vj∂x2uj + vj∂x1(∂x2uj)

]

=
2∑

j=1

[
− ∂x2vj∂x1uj + ∂x1vj∂x2uj

]

= −∂x2v1∂x1u1 + ∂x1v1∂x2u1 − ∂x2v2∂x1u2 + ∂x1vx2∂x2u2

= ∂x2v1∂x2u2 + ∂x1v1∂x2u1 − ∂x2v2∂x1u2 − ∂x1v2∂x1u1,

onde a última igualdade é pelo fato que o campo u tem divergência nula. Por todo o

anterior, temos que

Curl


u · ∇v +

∑

j=1

vj∇uj


 = (u · ∇)Curl(v) = (u · ∇)q (C.4)

Para o termo viscoso, observe que:

(I − α2∆)βu(x, t) = (I − α2∆)β(I − α2∆)−1(I − α2∆)u(x, t)

Desse modo, o termo viscoso das equações de Camassa-Holm generalizadas pode-se rescrever

como:

(I − α2∆)βu(x, t) = (I − α2∆)β−1v(x, t).

Logo, aplicamos o fato que o operador Curl comuta com o operador de Bessel−α, e

obtemos que:

Curl
(

(I − α2∆)βu(x, t)
)

= (I − α2∆)β−1q(x, t). (C.5)

Juntando (C.2), (C.3), (C.4) e (C.5) obtemos o sistema de equações:




∂tq + u · ∇q − ν∆(I − α2∆)β−1q + γq = g

Curl((I − α2∆)u) = q

∇ · u = 0.

(C.6)

O sistema (C.6) é chamado de Equações da Vorticidade Potencial.
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