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Resumo

Neste trabalho, estudamos o Fenomeno de Dissipagdo Anomala de enstrofia potencial para
a familia de equagoes de Camassa-Holm Generalizadas (CHG) em um dominio periédico
bidimensional, que sao obtidas como uma interpolacao entre as equacoes de fluidos de

segundo grau e as equagoes de Camassa-Holm.

Neste contexto, primeiramente, provamos a existéncia e a unicidade da solucao das
equacoes CHG. A existéncia é verificada por meio do método de Galerkin. Para a unicidade,
estabelecemos uma desigualdade diferencial e aplicamos uma desigualdade de tipo Gronwall.
Logo, demonstramos que, para valores de 5 no intervalo 1/2 < 5 < 1, ocorre auséncia de
dissipacao andémala de enstrofia potencial. Por outro lado, para o caso § = 0, o sistema

admite dissipacao anomala de enstrofia potencial, mais especificamente dissipacdo infinita.

A anélise do fendmeno de dissipacdo andémala de enstrofia potencial foi realizada investi-
gando o limite inviscido das médias temporais de longo prazo das solugoes das equacgoes
CHG e logo identificando as médias temporais de longo prazo com as solugoes estatisticas

estacionarias no espaco fase de vorticidade potencial.

Palavras-chave: Dindmica de Fluidos, Solu¢oes Estatisticas Estacionarias, Equagoes de
Camassa-Holm Generalizadas, Limite de Banach, Solugoes Estatisticas Renormalizadas

para a Equacao de Euler-a.






Abstract

In this work, we study the phenomenon of anomalous dissipation of potential enstrophy for
the family of Generalized Camassa-Holm equations (GCH) in a two-dimensional periodic
domain, which are obtained as an interpolation between second-grade fluid equations and

the Camassa-Holm equations.

In this context, we first prove the existence and uniqueness of solutions for the GCH
equations. Existence is established using the Galerkin method, while for uniqueness, we
develop a differential inequality and apply a Gronwall-type inequality. We then demonstrate
that for values of 5 in the range 1/2 < 5 < 1, there is no anomalous dissipation of potential
enstrophy. On the other hand, in the case § = 0, the system exhibits anomalous dissipation

of potential enstrophy, specifically infinite dissipation.

The analysis of the phenomenon of anomalous dissipation of potential enstrophy was
carried out by investigating the inviscid limit of the long-term time averages of the solutions
to the GCH equations and subsequently identifying these long-term time averages with

stationary statistical solutions in the phase space of potential vorticity.

Keywords: Fluid Dynamics, Stationary Statistical Solutions, Generalized Camassa-Holm

Equations, Banach Limit, Renormalized Statistical Solutions for the Euler-ae Equation.
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1 Introducao

A dinadmica dos fluidos é uma area central da matemaética aplicada, com diversas
aplicagoes em disciplinas como fisica, engenharia entre outras. Um dos problemas funda-
mentais na analise dos sistemas dinamicos que governam o comportamento dos fluidos é
entender como as solug¢oes das equacoes diferenciais que os descrevem evoluem ao longo
do tempo. Em particular, as equagoes de Navier-Stokes (NS), ver [18, 29], juntamente
com suas variantes e generalizagdes, como as equacoes de fluidos de segundo grau, ver
8, 20, 23], e as equagoes de Camassa-Holm (CH), ver [6, 7, 17], que tém sido objeto de
estudo. Essas equagoes sao capazes de modelar fendomenos complexos, como turbuléncia e

dissipacao de energia, que sdo caracteristicas importantes no estudo dos fluidos.

As equacgoes de movimento de fluidos de segundo grau sao um modelo matematico
que descreve o comportamento de fluidos ndo-newtonianos, onde a viscosidade depende da
taxa de deformacao. Essas equacoes sdo uma generalizacao das equagoes de Navier-Stokes,
incorporando termos adicionais que capturam a complexidade do fluxo em fluidos que nao

seguem a lei de Newton da viscosidade. Descritas pelas equagoes:

ov+u-Vou+ Z?Zl vVl —vAu = —-Vp+ f
Veu = 0
(I—-a?Au = v
u(z,0) = wy

para os campos de velocidade u,v : T? x [0, 00) — T2, onde v é a velocidade filtrada e u a
velocidade nao filtrada, f é uma forca dada independente do tempo e o parametro v > 0
fixo referente a viscosidade. Por outro lado, as equacoes de Camassa-Holm, introduzidas
por Camassa e Holm em 1993, foram originalmente derivadas para modelar a propagacao
de ondas rasas em fluidos incompressiveis. Estas equagoes exibem a formacao de ondas
solitarias e a possibilidade de solu¢des que desenvolvem descontinuidades finitas em tempo
finito, conhecidas como “breaking waves”, ver [4]. Varias generalizagdes dessas equagoes
foram propostas para modelar fluidos com diferentes propriedades fisicas, ver [17], como

nosso caso, que consideramos as equagoes Camassa-Holm com amortecimento e forcamento:

3tv+u-Vv+Z]2:1 VWV —vAv+yv = —Vp+f
Veu = 0
I—a?Au = v
u(z,0) = wup

para os campos de velocidade u,v : T? x [0,00) — T?, f é uma forca dada independente

do tempo, v > 0, pardmetro referente ao amortecimento e v > 0. Ambos parametros fixos.

Neste estudo consideramos as equagoes de fluidos em um dominio periédico, que sao
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obtidas como uma interpolagao entre as equagoes de Camassa-Holm (sistema regularizado
das equagoes de NS) e as equagoes de fluidos de segundo grau, com o pardmetro de

interpolagao [ no intervalo 0 < g < 1, descritas por:

v +u-Vo+ 7 vV —vA(l—?A)fu+yv = —Vp+ f
Veu = 0
I—a?Au = v
u(z,0) = wup

para os campos de vetores u,v : T? x [0,00) — T?, f ¢ uma forca dada independente
do tempo, os parametros v > 0, v > 0 e 0 < § < 1 fixos. O operador de interpolagao,

denotado por (I — a2A)?, é definido no toro em termos da série de Fourier como:

(- a®A)(x) = 3 (1+4n%’|kP)3o(k)e* ",
kezZr
onde | - | é a norma cuclidiana e ¢(k) sdo os coeficientes de Fourier de ¢. No caso que

o parametro de interpolacao g = 0, obtemos as equagoes segundo grau para fluidos, e
no caso 3 = 1, obtemos as equagodes de Camassa-Holm, ambas equagoes forcadas e com

amortecimento.

Este trabalho concentra-se na anélise do fendmeno de dissipagao anémala de enstrofia
potencial, que é definida como a integral do quadrado da vorticidade potencial ¢(x,t), para
as equagoes da vorticidade potencial das equagoes de Camassa-Holm Generalizadas (CHG),
adotando o método apresentado em [11, 12]. A dissipacao anémala refere-se a uma situacao
em que ocorre dissipacao de energia mesmo na auséncia de viscosidade, especialmente
durante o processo de turbuléncia. A abordagem considerada para investigar a questao da
dissipagao anomala consiste em utilizar as médias temporais de longo prazo, com o objetivo
de atingir um regime estacionario das equagoes viscosas, enquanto a viscosidade é levada
a zero. Ou seja, se denotamos por S®) (t,q0) a solugao da equagao de vorticidade potencial
para as equacgoes de CHG no tempo t > 0 a partir do dado inicial gy e consideramos as
médias temporais de longo prazo para a dissipacao de vorticidade potencial, dada por:

_2AV o) — il _ 1 o(v) 2
(V(I - a2A) T St qo)|2) hmT/ /T ([ — a?A) T S (t, qo)|?dudt.  (1.1)

T—o0

Dizemos que a solucao viscosa apresenta dissipacao andémala de enstrofia potencial quando
o valor:

lim (| V(I - a2A) % S (¢, go)[?) > 0,

Segundo a teoria de Kolmogorov para a turbuléncia em fluidos, espera-se que, em regimes
com altos nimeros de Reynolds, a dissipacao de energia permaneca finita a medida que
a viscosidade tende a zero. Este comportamento é considerado “anoémalo” porque, na
auséncia de viscosidade, a dissipagao de energia nao deveria ocorrer. Esse fenémeno foi

conjecturado inicialmente por Onsager em 1949, ver os artigos [19, 22, 26], e tem sido um
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tema central em investigagoes tedricas e numéricas desde entao.

As médias temporais de longo prazo para a dissipagao de vorticidade potencial
(1.1), sao identificadas com uma medida de probabilidade de Borel sobre o espago fase da

vorticidade potencial, denominada solugdo estatistica estacionéria, ver [11, 12, 15, 16].

Por outro lado, contrastamos a analise feita no capitulo 3 com o resultado do
capitulo 4, onde construimos uma solucao das equacoes de vorticidade potencial para as
equagoes de fluidos de segundo grau, que admite dissipacao. A construcao desta solucao é

a partir de uma autofuncio do operador (I — @?A) e uma solugao de um P.V.I adequado.

A estrutura desta tese é organizada da seguinte forma: no capitulo 2, apresentamos
a fundamentacao tedrica necessaria para o estudo das equagoes de CHG, abordando
a existéncia e unicidade da solucao. A existéncia da equacao CHG é abordada por
meio do método de Galerkin, enquanto que a unicidade foi tratada desenvolvendo uma
desigualdade diferencial para a diferenca de solugoes, que satisfazem a equacao, e aplicando

uma desigualdade de tipo Gronwall.

O Capitulo 3, foca no estudo do fenémeno de dissipagao anémala para as equagoes de
vorticidade potencial das equacoes de CHG. O capitulo dividi-se em 5 se¢Oes, na primeira
secao estudamos a compacidade relativa da semi-orbita positiva, um fato importante, ja que
sobre este conjunto serao suportadas as solugoes estatisticas estacionarias. Conseguimos
a compacidade relativa, estimando a norma de Sobolev fracionaria || - ||gs com S > 0
e aplicando o Teorema de Rellich-Kondrachov. Na segunda se¢ao estudamos o limite
inviscido das equacoes estacionarias de Camassa-Holm Generalizadas e mostramos que
este limite ¢ uma solucao estatistica renormalizada para a equagao inviscida. Na terceira
secao introduzimos as solugoes estatisticas estacionarias no espaco fase de vorticidade
potencial para as equac¢oes CHG. Para isso, precisaremos de uma classe de funcionais teste,
que também serao introduzidos essa secao. Logo, estabelecemos os “Teorema Compacidade
relativa e balango” para as solugoes estatisticas estacionarias no espagco fase de vorticidade
potencial, que bordam a existéncia de uma subsequéncia convergente de uma sequéncia de
solucoes estatisticas estacionarias dadas e uma equagao de balanco de enstrofia potencial
no sentido das solugoes estatisticas estacionarias que definiremos nessa secao. Na quinta
secao definimos as médias temporais de longo prazo como um limite de Banach e como

este limite de Banach ¢é identificado com as solugoes estatisticas estacionarias.

O Capitulo 4, apresentamos uma solucao para as equagoes da vorticidade potencial para

as equagoes de fluidos de segundo grau, que admite dissipacao anomala.

Finalmente, o Capitulo 5 apresenta as conclusoes do trabalho.
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2 Existéncia e Unicidade das equacoes de

Camassa-Holm Generalizadas

Neste capitulo iremos demonstrar a existéncia e unicidade da solugao para as equa-
¢oes de Camassa-Holm Generalizada (CHG) utilizando o método de Galerkin. Assumiremos
condicoes de fronteira peridédicas. Isto é, consideramos um dominio periddico definido por
T? := [0, 1]? e a solugao periédica em cada dire¢ao espacial. O toro 2—dimensional, pode-se
identificar com o espaco R?/Z2. Assim, para cada u € L*(T?), u é expandida em uma série

de Fourier:
u(z) = a(k)e*™**  com (k) :/ u(z)e= 2% gy
TQ

kez?
O capitulo sera dividido em 3 sec¢oes: Defini¢ao da equacao de Camassa-Holm Generalizada,

demonstragao da existéncia da solucao e demonstragao da unicidade da solugao.

2.1 Equacoes de Camassa-Holm Generalizadas

As equagdes de Camassa-Holm Generalizadas neste estudo sao definidas como a
interpolagao entre as equacoes de Camassa-Holm e a equagoes de fluidos de segundo grau.

Ambos sistemas usados na modelagem de fluidos.

Introduzimos as equagoes de Camassa-Holm Generalizadas:

v +u-Vo+ 7 vV —vA(l—?A)fu+~yv = —Vp+f
Veu = 0 (2.1)
I—a?Au = v
u(z,0) = wuo

para os campos de vetores u,v : T? x [0,00) — T?, f ¢ uma for¢a dada independente do

tempo, os parametros v > 0, v > 0e 0 < <1 fixos.

Se consideramos o forcamento e o dado inicial com média zero, obtemos que a
média da soluc¢do da equacao (2.1) permanece invariante. De fato, utilizando integragao
por partes e que o campo u(z,t) tem divergéncia nula, temos que o termo nao linear na

equagao (2.1) se anula. Desse modo, obtemos que:

CZ/TQ (u(x,t) — aQAu(x,tD dx + 7/@ u(z,t)de = /T2 f(z)da.

por outro lado, pela periodicidade espacial da solugao, temos que

/11‘2 Au(z,t)dr = /1r2 V- (Vu(z,t))de = /aw(vu(x’ t))-7ids = 0.
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Por conseguinte,

i/TQu(m,t)da:Jrv/WU(I,t)dI:/Wf(ﬂl?)dx'

equivalentemente obtemos

c;lt [e” /1r2 u(z,t) dx] = /T2 f(z) dz. (2.2)

Observe que, como assumimos que,

|, f@ydz =o,

entdo a equagao (2.2) é igual a zero. Integrando de 0 a ¢, temos que

/T2 u(z,t)dx = [/11‘2 uo () dx] e

onde u(z,0) = up(x) é o dado inicial. Isto é, a média da solugao ¢ invariante desde que
a média do dado inicial seja zero. Neste trabalho consideraremos forcamentos e dados

iniciais com médias espaciais zero, ou seja, assumiremos

/T? up(x) der = / f(z)dx = 0.

'JTQ
Apresentamos os espacos de fungoes e operadores que serao utilizados ao longo

deste capitulo.

Em seguida, definimos o subespaco linear,

B = {gp e (LY(T?))? : /

TQ

o(x)de = O},
Consideramos por &, o subconjunto de E definido por:
£ = {gp € E : ¢ é um polindmio trigonométrico com valor vetorial e V - ¢ = O}.

Seja o espago H o fecho de & em L?*(T?) e seja o espaco V' o fecho em H'(T?).

Observe que H e V herdam os produtos internos e as normas de L? e de H!

respectivamente. Introduzimos a seguinte notacao de produto interno e norma para H:

1
(u,v)H:/Tzu-vdx e |ullg = (u,u)f, (2.3)

para u,v € H. De igual maneira, introduzimos a notacao de produto interno e norma para
V.
1
(w,2)y = (Vw, V2) g = / Vw Vzdr e |Jwlly = (w,w)Z, (2.4)
T

para w,z € V.
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Vamos precisar usar um operador linear especial chamado de operador de Stokes,
definido por
S = —PA,
onde P : L*(T?) — H é o projetor ortogonal de Leray-Helmholtz. O dominio D(S) do
operador de Stokes é dado por H?(T?) N V. Note que, devido as propriedades do operador

de Leray-Helmholtz em dominios periddicos, temos que:
—PA(u) = —AP(u).
Por conseguinte, o operador de Stokes é redefinido como
S(u) = —Au,

para toda u € D(S). Desse modo, o operador de Stokes preserva propriedades relevantes
do —A, a saber: é um operador auto-adjunto, positivo e tem inversa compacta. Assim que,
existe uma familia de campos de vetores, (wg)ren, que sdo autofungdes do operador S e,
pelo Teorema de regularidade eliptica, essa familia de autofungoes resultam ser suaves.
Além disso, (wg)ken é uma base ortonormal em H. Associada a essa familia de autofungoes,

hé uma sequéncia de autovalores (A, )reny que sdo positivos e nao decrescente, satisfazendo
D<A < < <A<,

Logo, qualquer elemento u € H pode-se representar como:
u(z) = Z u(k)wg(x) com u(k)= (u,wr)my, (2.5)
k=1

Além disso, (wy)ken forma uma base ortogonal em V. Isto é, se consideramos wy, e w; duas

autofungoes do operador de Stokes e calculamos o produto interno em V', temos que
(wi, wy)y = (Vwy, Vwj) g = (—Awg, wj) g = Me(wr, wj)m = Aedrj,

onde 0y ; ¢ a funcdo delta Kronecker. Dessa maneira, vemos que a familia de autofuncoes

do operador de Stokes é uma base ortogonal em V.

Dado que u(-,t) para cada t tem média zero, entdo a desigualdade de Poincaré nos
garante que as normas || - ||z e || -||v sdo equivalentes. Isto é, existem constantes positivas
C1 e (s tal que:

Cillully < ullm < Colfullv,

para toda u € V. Por outro lado, é facil ver que a norma de || - ||g1 é equivalente a norma
|| - ||z definida por

[lullZy = [lulli + o®[|VullF, (2.6)
para todo v € V. Além disso, a norma || - || ¢ induzida pelo produto interno

(w, ) = (u,v) g + o*(Vu, Vo) g, (2.7)
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para u,v € V.

Faremos uso de outro operador, conhecido como o operador de Bessel—a de ordem
s. Este operador denotado J3, ¢ definido no toro por meio dos coeficientes de Fourier. Para
s € R, o operador

J2 = (I - a?A)3,
aplicado a v € £ é dado por:
Jou(z) = Y (14 4na®k[*)2a(k)e e, (2.8)
kez?

onde |k| é a norma euclidiana do vetor k € Z?* e u(k) sdo os coeficientes de Fourier de u:

u(k) = /T2 u(z)e "k dy,

A seguir, abordamos algumas propriedades do operador de Bessel—« de ordem s que serao

importantes para o desenvolvimento de nosso trabalho:

O operador de Bessel—a de ordem s € R é um operador auto-adjunto, positivo.
Para s < 0, o operador é compacto e limitado em L?(T?) de norma menor e igual 1. Para
s > 0, o operador J? é invertivel e a sua inversa J_° é novamente um operador de Bessel,
definido pela férmula:
Jou(x) = 30 (1 +4r%a? k) 2ak)er e,

kez?

Além disso, o operador de Bessel—« induz uma serie de espacos, os quais serao utilizados
ao longo de nosso trabalho. De fato, para s > 0, o espago de Sobolev H?(T?) consiste de

todos os polindmios trigonométricos u para a qual a norma ||u||gs ¢é finita onde
lullmg = [l Jqull - (2.9)

Por outro lado, o operador J possui uma propriedade valiosa: ele € linear em s. Isto é,
para todo 3,7 > 0, temos que J?™ = J2J). De fato, para qualquer 3,7y > 0eu € &,

temos que

T u(z) = (I — o?A) 5 u(x)

= (I— 0?A)% [(I - 02A)Fu(x)]
= J((I = a®A)2u(x))
= J2(JJu(2)).

A partir dessa propriedade e que o operador de Bessel —a é auto-adjunto, podemos redefinir
via operador de Bessel—«, o produto interno em V' dado por (2.7). De fato, aplicando

integracao por partes, vemos que

(u,u) g + o*(Vu, Vu) gy

(u, 1) 1
= (u,v)g — &*(Au,v) g

(J2u,u) .
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Dado que J?*7 = J8J7 para todo 3,7 > 0 e o fato que o operador de Bessel—a é auto

adjunto. Segue-se que:

(w,w) = (Jiu,u)g = (Jou, Jou) . (2.10)
De igual forma como acontece com as normas || - [z e || - ||, temos também
que para as normas || - ||gs e || - ||ms sdo equivalentes para s > 0 onde a norma || - ||gs é

induzida pelo operador de Bessel—a: com a = 1, ver Proposicao 22 do Apéndice A.

No estudo dos operadores, um fato importante é encontrar espagos onde tais opera-
dores sejam limitados. Pelo que um aspecto importante neste trabalho, é obter estimativas
do operador de Bessel—a de ordem s entre os espagos H®, as quais, conforme discutido
no paragrafo anterior, sao transferidas para os espacos H; e vice-versa. Desse modo,
destacamos a propriedade: Sejam s,0 € R. O operador J? é um isomorfismo entre os
espagos H*(T") e H*~7(T"), ver o livro de Stein ([28] pag 135). Além disso, fazendo uma
modificagdo ao Teorema de Rellich-Kondrachov, ver o livro de Temam [29], temos que, o

espago H*(T?) estd compactamente mergulhado em L?*(T?) para todo s > 0.

Neste ponto, incorporaremos um operador de interpolagao, desenvolvido especifica-

mente para nosso estudo. Seja Iz : D(I3) C H — H, definido por

[Slisy

Iy :=VJ’ =V(I-a’A)

«

(2.11)
para 0 < 8 <1, onde D(I3) ¢ dado por
D(Iy) := Dom(V.JS) = {u € V : VJIu e L*(T%)}.

Note que se u € H'™?(T?) NV, entdao u € D(Ig). De fato, como as normas V e H' sdo
equivalentes, temos como consequéncia que as normas V e H} também sao equivalentes.

Desse modo, se u € H?(T?) NV vemos que

IV T2l = 1T5ully < Cill T ullmy
= Gl Jullee = Cull o ull e

= Cilluly1+s.
Por outro lado, se u € D(I3), temos que u € V e VJPu € H. Assim,
lull grvs = 1113 P ullr = (| T3 T3ul |
= |[JJullmy < Co||JFully
< Gol|VJ5ul| 2.

Portanto, o dominio D(I3) do operador de interpolacio ¢ dado por H'*#(T2)N V.

Por outro lado, sabemos que H'*#(T?) est4 compactamente mergulhado em H'(T?)

para todo 8 > 0, e dado que as normas || - ||gs € || - ||as sd@o equivalentes para ¢ > 0.
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Segue-se que, o espago H:#(T?) est4 compactamente mergulhado em H}(T?) para 3 > 0.

Desse modo, concluimos que D(/3) estd compactamente mergulhado em V.

Na continuacao, introduzimos um subespaco vetorial de V' que sera importante para
nosso trabalho, j4 que, sobre este, estudaremos o fendmeno de dissipacdo anémala para
as equagoes de Camassa-Holm generalizadas. Tal subespago envolve o operador Curl em
2D, um operador bem conhecido na literatura matematica, mas que para efeitos de maior
claridade lembramos aqui. O operador Curl aplicado ao campo de vetores u = (uq,uz) € V,
definido de T? para V, ¢ dado por:

Curl(u) = Opyu1 — Opus = V*+ -1 (2.12)

onde V* := (=0,,, 0,,). Uma relagao interessante a ressaltar, é que a norma L* do Curl(u)
e Vu coincidem. De fato, Calculamos a norma L? do operador Curl aplicado ao campo

u € V como sendo

[Curl(u)|[2: = > [k Plak)? = Y [kPlak)]® = [[Vullz., (2.13)
kez? kez?
onde k* é o vetor perpendicular a k em Z2. Agora, com todo o anterior, definimos nosso
subespaco de V' por:
Wi={ueV : Curl2uc [T}

Agora, estabelecemos uma definigdo de solugao para nosso sistema (2.1), para
este fim, simplificaremos nosso sistema projetando sobre espacos de divergéncia nula,
definidos anteriormente. A maneira de conseguir este objetivo é aplicando o projetor de

Leray-Helmohltz denotado por P.

O projetor de Leray é um operador que projeta um campo vetorial no espaco dos campos
vetoriais de divergéncia nula. No contexto do toro T? = R?/Z? ¢é definido da seguinte

forma: para o campo U, temos que

PU)(z) = Y (ﬁ(k;) - U<|Z)|2kk> etk (2.14)

O qual é um operador linear, auto-adjunto e continuo em H*(T?), para todo s > 0.

Observamos que o novo termo nao linear é denotado por:

B(u,v) =P ((u -V)v + ivjVuj) . (2.15)

Vamos ver que a imagem do operador B em V x V é V', onde V' representa o espaco dual

de V. Definimos, o operador bilinear B de V' x V para V' como sendo

j=1

(B(u,v), w)yrxy —/ (u Vv - w+2v]Vu] )dw, (2.16)
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para todo w € V. Este operador pode ser estendido continuamente de V' x V' para V. Para
ver que B(u,v) estd bem definido e é limitado, basta aplicar a desigualdade de Holder e a

desigualdade de Ladyzhenskaya ver ([18] pag 17), a qual é definida para o caso 2D por:
1 1
lullzs < Cllul[Z:ull 7 (2.17)

para toda v € H'. De fato, dados u,v,w € V e aplicando a desigualdade de Hélder com

expoentes (4,4, 2). Temos que
[(B(u, v), wyyrxv| < [uf|a] [ Vo[ 2] |[wl][ s + [[v][ 4] [Vul| 2| |w] | 24
Logo, aplicando a desigualdade de Ladyzhenskaya dada em (2.17). Obtemos que

1 1 1 1
[(B(u, v), wyvrv| < Cillul| L2 |[ul| [Vl 2wl E2 [ [w] | £

1 1 1 1
+ Col[ol| Lol vl Fo [Vl [ 2 || w]] £2 ] | £

Por tltimo, aplicando a desigualdade de Poincaré e o fato que a norma H' e a norma V

sao equivalentes. Concluimos que:

[(B(u, v), wyvixv| < Csllullv[[ollv[[w]lv.

Por outro lado, consideramos u,v € V e w € D(Ig) C V, e aplicamos a desigualdade de

Holder, obtemos uma estimativa da forma,
(B, o)s vl < (lellel Vol g2 + el Valze ) ol

Dado que H'P(T?) estd continuamente mergulhado em L>(T?) para todo 3 > 0, segue-se
que

[(B(u, v), w)vrspug | < Capllullvl[ollvifwllp,)-

Outro termo importante a ser considerado, é o termo viscoso. Pois ele interpola
entre as equagoes de Camassa-Holm e as equagoes de fluidos de segundo grau. No contexto
do toro, ha um fato simples, mas importante e é que o projetor de Leray-Helmohltz comuta
tanto com o operador Laplaciano quanto com o operado (I —a2A)?, este tltimo ¢é devido a
que a divergéncia comuta com ele. Nosso operador, —A(I — a?A)Pu, de D(I5) para D(Iz)’
¢é definido por:

(—A(I = a*A)’u, W) D(15) % D(I5) = /1r2 Is(u) - Is(w) dx, (2.18)
para todo w € D(Iz). Este operador pode ser estendido continuamente de D(I3) para
D(Ig). Para ver que o operador, —A(I—a?A)Pu, estd bem definido e é limitado. Aplicamos
a desigualdade de Cauchy-Schwarz a (2.18). Isto é,

(=AM = ®A)%u,w) by xp| = l/T Ig(u) - Ig(w) dz| < [[Tg(u)||2[[Ip(w)]| L2




32 Capitulo 2. FEzisténcia e Unicidade das equagoes de Camassa-Holm Generalizadas

para w € D(I3). Desse forma, obtemos o sistema de equagoes equivalente a (2.1):
o + B(u,v) — vA(l — a?A)Pu+~yv = Pf
(I—-a?Au = v (2.19)
u(z,0) = wy
Assumiremos que Pf = f, caso contrario, adicionaremos a parte do gradiente de f a

pressao modificada e renomearemos Pf por f.

2.2 Existéncia de solucao

Nesta secao, introduzimos a defini¢do de solugao fraca para as equagoes de Camassa-
Holm generalizadas e demostraremos a existéncia de solugdes para essas equagoes através

do método de Galerkin.

A seguir introduzimos a defini¢do de solugdo fraca para o sistema (2.19).

Definicao 1. Seja f € H e T > 0. Dizemos que
d
we O([0,T);V) NL*0,T; D(I5))  tal que di: € L2(0,T; D(I))

¢ uma solugdo fraca para o sistema (2.19) no intervalo [0,T') se satisfaz:

(w(t)w)iy — (o) wim] + [ [ Bu,)(s) - wdzds

+ y/tt [, V- a*A)su(s) - V(I - a?2)

B
2

wdzx ds (2.20)

t
5 [ () wygyds = [ [ f-uls)deds,
to « tg J T2

para todo w € D(Ig), para todo t > ty e para quase todo tyo,t € [0,T). Além disso,
U(O) =Ug € V.

Em seguida, enunciamos o Teorema de existéncia para as equagoes de Camassa-

Holm generalizadas definidas no sistema (2.19).

Teorema 2. Sejam f €V, ug € W, v,vy,a > 0 parametros fizos e 0 < § < 1. Entao para
todo T > 0, existe uma solugio para o sistema (2.19) sobre [0,T) no sentido da Definigio
1 e satisfaz a equagdo de balanco de energia
1d
2dt
no sentido fraco para t € (0,T). Mais ainda, u € L*>*(0,T;W).

B
[lullzy + vIIV (I = oA)2ullZ +yllullfy = (f,u)re (2.21)

Demonstracio. O caso f = 1 corresponde as equagodes de Camassa-Holm e foi tratado
m [21]. A seguir, analisamos o caso quando 0 < # < 1. Devido a extensao da prova do

Teorema 2, dividiremos a demonstracao em quatro passos:
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e Problema aproximado;
« Estimativas de energia;
o Extraindo subsequéncias convergentes;

e Passando ao limites.

Passo 1: Problema Aproximado

Neste primeiro passo, provamos a existéncia global de solugoes para um sistema
de equagoes diferenciais ordinarias (EDO’s) induzido por (2.19), utilizando o método de

Galerkin.

Sejam as autofungoes do operador de Stokes, (wy)y, que pelo teorema de regulari-
dade eliptica sao fungoes suaves. Além disso, elas formam uma base ortonormal em H e
ortogonal em V. Consideramos o subespaco de dimensao finita gerado pelas primeiras m

autofungoes do operador de Stokes denotado
H,, = span{wy,...,vn}

e o operador de projecao ortogonal, P,,, do espaco H sobre o subespago H,, definido por:

P,:H — H,

m

v o Pp(v) =vg =) (v, wy) 2wy
k=1

Lembramos que P, é auto-adjunto e limitado nas normas dos espacos H e V' definidas em

(2.3) e (2.4) respectivamente. Além disso, observamos que

lim P,v=w.
m—00 m

O limite pode ser tomado em H e em V. O procedimento de Galerkin aplicado a equacao

(2.19) induz um problema aproximado de ordem m:

jtvm + P B(tm, vm) — VAL = 2A) P, + Y0 = fm
I— Ay, = vy (2.22)
Um(', 0) = PmUO-

Procuramos u,, em C*([0,T]; H,,), de modo que
U (2, 1) = () w(x) (2.23)
k=1

com 1;,(t) € C1([0,T]) que satisfaz, para toda ¢,, € H,,, a equagao diferencial

(ivm(t), gpm> B + /1r2 P B(tm (1), vm(t)) - ©m dz 4 (um(t), om) a1+

+ V/W V(I — a2A)3up(t) - V(I — a2A)5 g dz = (fin, o) 12 (2.24)
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assim como a condi¢ao inicial

(um(0), om)r2 = (o, Pm)rL2- (2.25)

Dado que a familia de autofuncoes, (wg), sdo ortonormais em H, entdo as k-ésimas

componentes de u,, e f estao definidas por:

Mk (t) = (U, wi) L2 (2.26)
G = (fons wi) L2, (2.27)
para k= 1,2,...,m. Assim, o sistema (2.24) e (2.25) é equivalente ao sistema EDO’s para
nk(t) da forma
dnp,
Jik_ g
dt () (2.28)
me(0) = (uo,wy)r2
onde
1 U 2 2 2 JonJ RJ
Flm) = v—5v |G — D [(1 + N nm Bk + > (1L + & X)nin] Blik}
14+« >\k Li=1 = ”
— (1 + 0 \) g — (1 + aQAkW“]
com
Biir = (w -Vw;-wg e Bl]“,C = w{(wk . V)wg,
para cada k=1,2,...,me 0 <t <T. Como F é uma aplicacdo ndo-linear quadratica,

ela é localmente Lipschitz continua com relagao a 7, o qual é o vetor cujas componentes
estao definidas em (2.26). Portanto, pelo Teorema de Picard, existe um intervalo [0, T,,]
com 0 < T,, <T e um vetor 7(t) de classe C! tal que 7(t) é solugao tnica do sistema de
EDO’s (2.28) nesse intervalo. Consequentemente, a fungao u,, € C'([0,T},); H,,), definida
em (2.23), resolve o problema (2.24).

Passo 2: Estimativa de Energia

No segundo passo, nosso objetivo é garantir que o vetor n(t) = (n(t))7, existe por
tempo infinito, para cada m fixo. Isso significa que, baseado no Teorema de continuidade
de solugdes de EDO’s, ver o Teorema 4.1 do livro (][9] cap 1), basta mostrar que o vetor

n(t) é limitada em relagdo ao tempo, para m fixo.

Observe que, pela desigualdade de Bessel, temos a relagao:

m
(1 = > e = 22 k@) Pllwil 22 = un®)|72 < [lun(t)][7; - (2.29)
k=1 k=1
Portanto, o préximo passo serd mostrar que a norma || - || de u,, é limitada no tempo,

para todo m fixo. Para isso, usamos o fato que w,, é solugao no sentido (2.24). Nesse caso,
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se tomamos uma funcao teste como sendo u,,, obtemos a equacao de balanco de energia:

1d g
5 g7 [t + VIV (L= @®A) 2|22+ Al = (Fons ) 2. (2.30)
De fato, dado que a norma || - ||%: para u,, estd definida por:
[l = D (1 + a® ) e (1)
k=1

Temos que:

/]1‘2 ivm(m’)um(m) dx = / (I — o A)ng(t)wi(x)n; (H)w; () da

i
%m; / (I — a2A)wy(w)w;(z) da
?
AL

= 1+Oé )\k)ék]
= 1+Oé )\k)
k=
1 m
52 (1+a\) *\Wk( )2
1d
= Sl (231)

Além disso, observamos ao aplicar a integracao por partes, que o termo nao linear é

eliminado. Isto é,

/ P B, V) « Uy dx = / B(tm, V) - Uy, dx
T2 T2

2
— ) . J Jo.
= | (Um - V)Up - Uy, dx + Z /T2 vl NVl uy, de

T2
2 .
:Z/( iju]dx—l—Z/ v (U - V)l da
=17
2 . . . .
=) {/ (U, - V)V 0! do — / (U, - V)V u?, dx]
| e T2
— 0. (2.32)

Para tratar o termo de viscosidade e amortecimento, também integraremos por partes. A

seguir, apresentamos os calculos detalhados:
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Para o termo de viscosidade, temos:

—/ AT = &* APy, - Uy, dr = — Z/ AT — oAl ul da
T2

=17T
=S / V(I - o?A)Vud Vid da
=17
2 . .
= Z/ V(I —a?A)2ul, - V(I - o?A) 2l do
=17
= |IV(1 = D)t |25 (2.33)

Para o termo de amortecimento, vemos que:

/vm-umd:v:/ (I — Aty - Uy, d
T2 T2
:/ um-umda:+a2/ Vi, - Vu, dx
T2 T2

= ||um||%2 + 042||Vum||%2

= [l (2.34)

Juntando as observagoes (2.31), (2.32), (2.33) e (2.34) temos (2.30). Por outra parte, como
o termo de viscosidade é positivo, isto é ||V (I — onA)gumH%g > 0, podemos simplificar a

equagao (2.30) para:
1d

§£Hum||%{gl + [ F1 < (fns ) 2.

Aplicando a desigualdade de Holder e a desigualdade de Poincaré, no lado direito da

desigualdade anterior, segue que

1d

5 g7 1wl + Ywmllz < Cllfnlle [l |y

onde C é uma constante positiva. Logo, da desigualdade de Young com € = 75, obtemos:

CIIR:

d
[y, + Y[y, <
dt Hg, Hg, v

Em seguida utilizando o Lema de Gronwall, conforme ¢é apresentado no Lemma 11.4.9 em

[[1], pag 88], concluimos que:

C 2
i < @)y + 1T,

Dado que a projecao P, ¢ limitada nas normas dos espacos H e V', temos que

[l (017, = [t (O)IIZ2 + o[Vt (0)|[72 < [[uol I3 -

Dessa forma, verificamos que

ClLAP
[l ()72, < oy + vz M (2.35)
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para todo t € [0,7,,] e independente de m. Logo, pela relagao (2.29), a qual compara a
norma do vetor 7(t) com a norma || - ||%Ié , concluimos que o vetor 7n(t) é uniformemente
limitado em L>°([0,7},]) em relagdo ao tempo e independente de m. Portanto, estendemos
o tempo de existéncia do vetor n(t) até T,, = T. Desse modo, a fungao u,(z,t) é uma
solucao global para a equagao (2.24), tal que u,, € L*(0,7; H,,) para todo m.

Em seguida vemos, que a solugdo encontrada no Passo 1, a fungdo u,,(z,t), também é
limitada em relacao a m. Isto é, a partir da estimativa (2.35), vemos que a sequéncia de
solugoes (U )men € limitada com respeito a m, na norma de L>°(0,7; V). Assim,

lumllzy My
2

(2.36)

||t |%°°(0,T;V) < sup

2
g1 @ «a

para todo m € N. Por outro lado, integrando de 0 até T' a equagao (2.30), a qual é nossa

equacao de balango de energia para wu,,, obtemos que:
1 /T d 9 T 9
5 | () By ds +v [ [9(1-a)
2Jo dt « 0

T T
5 [ i) ds = [ o)) s

Logo, aplicando a desigualdade de Holder do lado direito da equacao anterior, segue-se

gum(s)Hiz ds

que:

B
2

1 T T
Mm@y +v [ IVE= 028 Fun(@) [z ds 7 [ llum ()] ds

1 T
< S ol + HmeLz/O [|tm(s)]|> ds.

Dado que o termo de amortecimento é positivo e a partir da desigualdade (2.35), que é

uma limitacao uniforme de u,, em relagao ao tempo e m, notamos que

B
2

T 1
V/O V(I = a®A) 2 u(s)|[z2 ds < Slluollzy + (1122 Ma(T) =: Ms(T). (2.37)

Portanto, concluimos que a sequéncia de solugoes (uy,),, formam um conjunto limitado na
norma L*(0,T; D(I)).

Agora, introduzimos um sistema de equacdes, o qual é a versao aproximada das
equagdes de Vorticidade Potencial formuladas no Apéndice C. Através de este novo sistema

aproximado, ganharemos uma nova estimativa para o campo de velocidade u,,, um fato

importante, para o proximo passo de nosso estudo da existéncia do sistema (2.19).

Aplicando o operador Curl(-), na equagao (2.22) e considerando:
qm(x,t) = Curl(v,(z,1)) e gn(x) = Curl(f,)(z),
obtemos o sistema aproximado:
L Pt V) — VAT = 028V 40 + 500 = g

dt
Curl(T— a?A)uy,) = ¢ (2.38)
Curl((T — a?A)u,(z,0)) qm(,0).
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Chamamos o sistema (2.38) de sistema de vorticidade potencial de ordem m. Se calculamos
o produto interno L? de ¢,, com a equagao (2.38) e aplicando a desigualdade de Young,

obtemos a desigualdade diferencial

1d
2dt

_ 2
anls + [V = a2A) 5 g0 22 + gl 20 < 19mllze
Nl aml[72 + VIV ( 12+ 5 llamll =

Como o termo de viscosidade é positivo, simplificamos a desigualdade para

d ||gm||7
allqmllé +lgmll7 < =2 (2.39)
Aplicando o Lema de Gronwall na desigualdade diferencial (2.39), obtemos que
e, lgml[Ze - |lgl[72
g (D[22 < [am(0)[[72¢7"" + TL(l — ") < lgm(0)[[72 + 2 2 (2.40)

Por outro lado, como uy € W sabemos que Curl(l — a?A)ug € L*(T?). Pela relagio (2.13)

temos que,
lam(0)IZ> = [ICurl(T — a*A)un (0)][72 = [[V(I — a* A (0)]] 2.
Pela definigdo da norma || - ||y, segue-se que
IV = o A)un (0)] 22 = (T = @Ay (0)[Jv = || (T = o*A)ua (0)] v
Dado que, o operador de projecao P, ¢ limitado sobre V', concluimos que
1am (O)IZ> < [I(T— a®*A)uo|ly = [|Curl(T — a*A)u||Z-. (2.41)

Logo, g, € L>(0,T, L*(T?)), e por conseguinte u,, € L>(0, T, W). Da mesma forma como
foi estabelecido para o sistema (2.24), temos que ¢,,(x,t) é uma solugdo para o sistema
(2.38) que é uniformemente limitada com relagdo a m, na norma de L*°(0,T; L?). Dado

que nosso dominio é periédico, podemos observar que:

lum i = C 3 (1+ [E]*) |t (K, 1)

keZ?
=C Y am(k O+ C Y [ (k, )]
keZ2 keZ2

Aplicando a desigualdade de Poincaré, segue-se que

N (O)|[7s < C 32 kP (b, )[* + C D |k (K, 8

keZ? keZ?
=C Y |kPlam(k, ) + Cla) D [kP42m k] [ (k, 1)
kez? kez?
< C(@) 3 kP + 4720 k]2t (K, 1)
keZ?

= C(a)|IV(I - a*A)um (1)]]72-
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Novamente, pela relagdo (2.13) temos que
| (8)|[5 < C(a)||Curl(I — a®A)u,, ()] |7 (2.42)

Portanto, das estimativas (2.37) e (2.42). Concluimos que a sequencia solugoes (U, )men
estd uniformemente limitada em relagdo a m na norma dos espagos L*(0,T; D(I3)) e
L>(0,T; H3NV). Isto é,

||um||L2(O,T;D([ﬁ)) <M, e ||Um||Loo(o,T;H3mV) < Ms. (2-43)

Vamos estudar a convergéncia da sequéncia de solugoes (t, )men conforme m tende
ao infinito da forma fraca de (2.22). No entanto, para passarmos ao limite no termo nao
linear da forma fraca de (2.22), é necesséario obtermos um resultado de convergéncia forte
em um espacgo adequado. Para esse propodsito, primeiro estabelecemos uma estimativa

uniforme para a derivada temporal em relacao a m.

A partir do sistema de Galerkin de ordem m definido em (2.22), temos que:

d
%Um = fin — PnB(tpy, vy) + VAL — onA)Bum — YUp,.

Dado ¢ € D(I5), onde o conjunto D(I5) é definido como H*' N V. Observamos que:
1Pallnis) = [1Bapllassinv = 127 Puplla.
Como o operador de Bessel—a comuta com P,,, segue-se que:
125 Pl = |1 Pudi ol
Lembrando que o operador P, ¢ limitado sobre H. Temos que,

1 Prpllns) < lellne,)- (2.44)

Portanto, podemos tomar o produto interno L? do sistema de Galerkin com ¢,,: conforme
definido em (2.24), utilizando ,,.

(Cclitvm(t)’ @m) B = (fm, Som)LQ — /[rQ PmB(Um(t), Um(t)) “POm dx—

B
2

- V/TQ V(I = a2A)f () - V(I = 02A) % gy dz — Y (t), )i

No primeiro termo do lado direito da igualdade anterior, aplicamos a desigualdade de

Holder e o fato que D(I3) estd continuamente mergulhado em L?(T?). Isto é,

|(Fms fm) 2] < [ fmll22lloml |2 < Kl finl |22 l[ml D) - (2.45)
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Em relagao ao segundo termo, observamos que:

- P B, ) - @ dx

= |/1r2 Bty V) + om dz

2
— /Tg(um.V)vmwpmdx—i—Z/TQU%Vu#.gpmd:c

IN

/2Um (u-V)omdr|+ vj (Om - VU dw
T

< | allvm| | callm| | + ||um||H1vaI|L4||90m||L4-

Na tltima desigualdade, temos dois termos diferentes que envolvem normas L*. Para
ter controle delas com elementos de D(1g), aplicamos a desigualdade de Ladyzhenskaya,
definida em (2.17). Desse modo, o primeiro termo, na desigualdade anterior, é estimado
por:

1 1 1 1
|| zal[om||all@ml e < Clluml| 22 | [ [ [om] | 22l [om [ | om] |

e o segundo termo por:

1 1 1 1
[ [[oml | o llml s < Cllull e [[om] [ L2 lm | Fa || om] [ 22 [lom | 51

Logo, como D(I3) estd continuamente mergulhado em H'(T?), segue-se que

[, B 0) - o] < Kol i ol 13 201, (2.46)

Agora analisamos o termo viscoso, neste caso aplicamos a desigualdade de Holder,

COomo segue:

U - V(I — a?A) 2, dz

< S

< V(I - a?A)2u,, - V(I - a2A) Om| dx

’]1‘2

B B
< IV = a®A) 2|2 ||V (T = a*A) 2 0 | 2

= ||Um||D(IB)||<Pm||D(1B)-

Por dltimo, vemos que o termo de amortecimento é estimado utilizando (2.10), que
redefine o produto interno H! em termo do operador de Bessel—a de ordem 1, e aplicando

a desigualdade de Holder. Isto é,

[(Oms om)a | = | (atim, Jaom)

atim|| 22| Toml |22 = [l ara |l 111

Logo, aplicando o fato que D(Ig) estd continuamente mergulhado em H}(T?). Segue-se
que,

|Oms o)z | < Ks[wml[ g |lemlpos)- (2.47)
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Portanto, das estimativas (2.45), (2.46) e (2.47) temos que:

d
— <
(dtvm(t),gom> . <K

Dado que P,, é um o operador auto-adjunto e d”m € H,,, segue-se que

d
° <K
‘(dtvm(t),@)m <

Logo, pelas estimativas (2.43), referente 4 norma L>°(0,T; H> N'V) da fungao u,,, e (2.44),

referente & fun¢do ¢,,, na norma de D(Ig). Obtemos que % ¢ limitada em relagdo a m na

1 fmllz2 =+ il ol + el 0 | ml07

1 Fnllz2 + Lz ol + [l s [ om o0

norma do espago dual de D(I3). Isto é,

Por outro lado, pela inclusdo dos espacos H? com s > 0, vemos que H> C H*# com

< K.

dv,, H
D(I)

0 < 8 < 1. Desse modo, temos que (H>NV) C D(Is). Assim, com essa informagao

presente, segue-se que:

Lembrando que o operador (I — a?A) é um isomorfismo entre H2 ¢ H e que H = H.

|

Observamos que para 3 = 1, o caso que corresponde ao sistema de equacoes de Camassa-

dva dva dumH

S {CEEN

D(Iz) ’ (H2NV) (H2 mV)

Segue-se que

dva dumH

D(Ig) ‘

Holm, que também pode ser abordado com nosso analises. Dessa maneira, obtemos que

Gy <152

D(Ig) ‘ D(Ig)’

dum
dt

Portanto, concluimos que a sequéncia de derivadas (242 ),,cn estd uniformemente limitada

em relagdo a m na norma de L*(0,T; D(I3)").

Em resumo, vemos em seguida as melhores estimativas obtidas até o aqui:

<K

du
ttml oy < M e H m

L2(0,T;D'(15))

para todo m € N.

Passo 3: Extraindo subsequéncias convergentes

Na segao anterior, estabeleciamos que a sequéncia de solugoes (uy,)men é limitada
na norma de L>(0,T; W) C L*(0,T; D(I3)), ja que W C D(I3). Além disso, sua derivada



42 Capitulo 2. FEzisténcia e Unicidade das equagoes de Camassa-Holm Generalizadas

temporal (%), cy é limitada na norma de L*(0,T; D(I5)). Com o objetivo em mente de
extrair subsequéncias convergentes em espagos adequados, primeiro, consideremos a tripla
D(I3) C V C D(I5)" de espagos de Hilbert, lembrando que D(I3) é o espago HPT1 NV e
D(1)" como sendo o dual de D(I3). Dado que V esta continuamente mergulhado em D(/3)’
e D(I5) compactamente mergulhado em V', porque H?*1 estd compactamente mergulhado
em H' para 8 > 0, entdo conforme ao Teorema I1.5.16 (Teorema de Aubin-Lions-Simon)
em [[1], pag 102] o conjunto definido por

Eyp = {u € L2(0,T; D(I5)) - ‘;? e L2(0,T: D(]@’)}, (2.48)

estd compactamente mergulhado em L2(0,7;V). Em consequéncia, existe uma sub-
sequéncia (U, ), ¢ u € L*(0,T;V) tal que (uy,, ) converge fortemente para u na norma
L*(0,T;V). Isto ¢,

[ty — ul|z2(0,rv) — 0 quando k — oo. (2.49)

Por outro lado, dado que u,, € L*(0,T;W) e mj—t’” € L?(0,T; W"). Considerando a tripla
de espacos de Hilbert, W C D(S) C W', onde D(S) é o dominio do operador de Stokes e
a nova tripla satisfaz as mesmas condigoes da primeira tripla. Novamente, conforme ao

Teorema I1.5.16. Obtemos que o conjunto:
o] du 2 !
Exo = {u € L>(0,T;W) : 7 € L0, T; W )}, (2.50)

estd compactamente mergulhado em C'(0,7; D(S)). Em consequéncia, existe uma sub-
sequéncia (um,, )k € u € C(0,175 D(9)) tal que (uy,, ) converge para u em C(0,T; D(S)).
Além disso, dado que wu,, estd uniformemente limitada nas normas de L*(0,7;W)
e L?(0,T;D(Ig)), onde L*(0,T;D(I)) é um espago de Hilbert, entdo, conforme ao
Teorema I1.2.7 em [[1], pag 53] temos uma subsequéncia (uy,); C (Um,)m, € u em
L>(0,T; W) N L*(0,T; D(Ig)) tal que (uyy,,); converge fraca* e converge fraca para u em
L>=(0,T;W) e L*(0,T; D(I3)) respectivamente.

Em resumo, temos a seguiste lista de convergéncias:
o Uy, — u fracamente em L*(0,T; D(I3));

o Uy, — u fortemente em L2(0,T;V);

o Uy, — uem C(0,7;D(S)).

Parte 4: Passando ao limite

Finalmente, concluimos o Teorema de existéncia de solu¢oes para as equagoes de
Camassa-Holm generalizadas, mostrando que o limite da subsequéncia (tm,,);, obtido

na parte anterior, satisfaz a equacao (2.19) no sentido da Definigao 1. Isto vai ser feito,
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definindo uma serie de operadores, um por cada termo do sistema (2.19). Logo, usando as
nocgoes de convergéncias obtidas também na parte 3, concluiremos que de fato nosso limite
u satisfaz a igualdade (2.20) de solucao regular. Para simplificar a notacao de subindices
na subsequéncia, denotemos por (U )m a subsequéncia (ty,; );.

Seja w € D(Ig) fixo, entdo do sistema (2.24) temos que:

(n®): 0ty = ()| + [ [ PrBla v)(s) - w i ds

B

+V/to/ﬂ‘2 (I — a?A) 5 up(s) - V(I — aA)
+’yt0( m(5), Hlds_/to/ P,.f - u(s)dzds,

para todo t > ty e para quase todo tg,t € [0,7]. Examinamos a convergéncia de cada

B
2

wdx ds (2.51)

termo na igualdade anterior.

Dado que u,, converge fortemente para u em L*(0,7;V), entdo u,,(s) converge
fortemente para u(s) em V, para quase todo ponto s em [0,7]. Dado que as normas || - ||y
e || ||m s@o equivalentes, entdo w,,(s) converge fracamente para u(s) em H}, para quase
todo ponto s em [0, T]. Portanto, concluimos que os primeiros termos da equagao (2.51)

convergem. Isto é,
(Um (t), w) gy — (u(t),w)m e (um(to), w)mr — (u(to), w)m1 (2.52)

quando m tende para infintos.

No termo nao linear, devemos verificar que:

— 0

t
/ P Bt v)(8) wdxds—// ~wdxds
to JT2

quando m tende para infinito. Dado que P,, é auto-adjunto, temos que:
/T2 P B, ) (8) - wdz = / B(tm, vm)(8) - Ppwdx
= / (U, V) (8) - Wy, dx.
Agora, dado que D(Ig) C V. Denotemos por

(B (W Vi) (1), W) vixD(15) = /]1'2 B (U, ) (8) - wp, dex,

para simplificar os célculos. De fato, consideremos a seguinte diferenca:

<B(umavm)7wm>V’><D(15) - <B(U,U),M>V'xD(IB) =

= (B(tm; Um ), Wi = W)vrp(15) + (B(tm, Um), w)vixp(ay) — (B(u, v), whvrxpy)
= (B(Wn, V), Wi — W)vrxD(15) + {<B(“m’ Um)s W)vixp(is) — (B, vm), w>V/XD(IB)}+
+ {(B(u,vm),w)wxD(Iﬁ) — (B(u, U)7w>v’><D(Ia)]

= (B(tm, V)5 Wy, — w>V’><D(Iﬁ) + (B(um — u, Um),w>v'xD(15)+
+ <B(u7 Um — U)a w)V/XD(IB)-
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Do anterior, vemos que

/t
to

Portanto, para verificar que a diferenca dos termos nao lineares descritas anteriormente

/T2 B (U, v)(8) - Wy, dx _/

TQ

B(u,v)(s) - wdz] ds = B + B® 4 B®)

converge para zero, basta verificar que cada uno dos termos, B{Y), converge para zero para
1=1,2,3.
O termo B\ da igualdade anterior estd definido como:

t
BY = [ (Blum.0n)(s). wn — w)viisy ds.

Note que,

’B,(r}) ds

t
<)

to

t
<./
_to T2

<B(Um’ Um)(s); Wy, — w)V/XD(Iﬁ)

(U, - V)vm(s) (W, — w)‘ dx ds +

s)Vul (s) - (W, — w)‘ dx ds.

Aplicando a desigualdade de Holder obtemos que

t
B <l — wlla [
t

0

() e v+ o)1Vt (5| .

Na desigualdade anterior observamos dois termos em norma L*°. J4 que, a sequéncia
Uy € L°(0,T; W) e lembrando que H3(T?) mergulhado continuamente em L*(T?), pela

desigualdade de Morrey, temos entao que:
[|tm ($)]|e < Ksl[um(s)l[ms € |[Vtm(s)l|zoe < Kaf|tm(s)]|as- (2.53)
Além disso, pela relagao (2.12). Temos que,
190 (3)l1z2 = 191 = a2A)t(3)]] 22 = |Curl(I — a?A)u(s)l 2. (2.54)
Logo, o termo B{!) est4 limitado da forma:

!

< C||Um||Loo(0,T;H3)||Um||Loo(o,T;W)me - w||H

Dado que w,, converge para w na norma H. Concluimos que o termo B} converge para
zero, Isto é,

B,(le) — 0 quando m — 0. (2.55)

O segundo termo, B(?), definido por:

t
BY = / (B(tm — 1, vm)(8), W)v'xD(15) dS-

to
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Note que,

‘Bfi) < ds

(B(tm — 1, 0m)(8), W)vrxD(15)

<), Jllo

V}vm(s) : w‘ dx ds+

V(ul, —ul)(s) - w‘ dx ds

Dado que w € D(I5). Entdo, w € H?*1(T?). Por conseguinte, w € L>(T?). Este fato, é
devido a que o espaco H?*! esté continuamente mergulhado em L> para 3 > 0, para mais
informagao ver o livro de Stein [28]. Logo, aplicando a desigualdade de Holder. Segue-se

que

< [ 11 = )@ laellom(5) vl st

+/t [vm ($)]| 2] (. — w) ()] v [[w]| o= ds.
0
Logo, aplicamos a desigualdade de Poincaré. Obtemos

’37(73) < M| (i — ) (8)]|v|[vm ()| [y |[w]] o

Dado que a sequéncia u,, é limitada em L>(0,7, W) e a estimativa (2.54). Concluimos
que,
e

< M|t — ul| 220,250 [t || Lo (0,7 [ |w] | oo -

Tendo em conta, que u,, converge fortemente para v na norma L?(0,7;V). Segue-se que
B® — 0 quando m — 0. (2.56)

Finalmente, analisamos o terceiro termo B ) definido como:

t
B = [ (Bl v~ 0)(s), whvreisy ds

to

Notemos que, aplicando integracao por partes em B,(f:’). Podemos rescrever o termo da

seguite maneira:
t
BY = [ (B, vm = ) w)vrsoi ds
_// w - V) (v —v)(8) - wdr ds+
to JT?
+Z// 70— v7)(8)(w - V) (s) du ds
X T2
:_// m — 0)(8) - (u- V)wdr ds+
to JT?

4_]2::1/ /TZ — ) (s)(w - V)u!(s) dx ds.
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Aplicando a desigualdade de Holder, segue-se que:

B |</ [[(0m = 0) ()] |2 |[u(s)]| o= [[ V][ 22 dis

+/ [|(0m = 0) ()] |2 |[w]] 2] [Vuls)[| oo ds

Logo, aplicando a desigualdade de Poincaré e a desigualdade (2.53). Obtemos que
B < Kl (v — )07 [l L= 0. [ V]| 2.
Dado que sequencia (), converge para u em C(0,T; D(S)). Entao, temos que:
|[Um — V|| (0,r;02) —> 0 quando m — 0,
onde v, = (I — a®A)u,,. Desse modo, verificamos que
B® 0 quando m — 0. (2.57)

Portanto, de (2.55), (2.56) e (2.57) concluimos que a sequéncia de termos nao lineares

converge para o termo nao linear limite, quando m tende para infinito. Isto é,

t
/ P B(tm, vm)(s) - wda:ds—>/ / ~wdzds. (2.58)
to JT?

Para examinar a convergéncia do termo viscoso, usamos o fato que wu,, converge
fracamente para u em L?(0,T; D(I)). Isto é, vamos a construir um funcional, o qual tem a
forma fraca do termo viscos, linear e limitado sobre L?(0,T’; D(I). De fato, consideremos

o funcional linear definido por:

Fy: L*(0,T;D(I3)) — R
o — e / I5( I3(w) dz ds,
tg J T2

onde Iz é o operador de interpolagdo definido em (2.11). Podemos observar que F; esta

bem definido, pois para cada ¢ € L?(0,T; D(I3)), notamos que:

</, L.

|[Fa ()| =

I5(p Ig(w )‘dmds

Is( Ag(w)dxd
11‘25 5 X as

< /t le(s) ol lwllog ds
0

< [wllpy) (t = t0)lllZ202:0015))

< T1/2||w||D(15)||90||%2(0,T;D(16))’

Isto é, Fy(p) € R. Além disso, vemos que F, é um funcional limitado sobre L*(0,T; D(I3)).

Desse modo, como u,, converge fracamente para v em L?(0,T; D(T)). Obtemos que

| Fy () — Fo(u)] — 0 quando m — oc.
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Concluindo que o termo viscoso converge para o termo viscoso limite. Isto é,

/ Ls(tm(s)) - I(w )dq:ds—>u/ Ls(u(s)) - Ig(w) dzds,  (2.59)
to JT? T2

quando m tende ao infinito.

Para examinar a convergéncia do termo de amortecimento, usamos o fato que u,,

converge fortemente para u em L?(0,T;V). Isso é,

— 0

t t
[ G w)ay ds = [ () ds

to to

quando m tende para infinito. Observa-se que, ao aplicar a desigualdade de Holder,

obtém-se que

t
(u —u,w) 1 ds

/t(um,w)Hé ds — /t(u W) ds| =

to to

< [ 1wl = )y ds

Aplicando a desigualdade de Cauchy-Schwarz e o fato que as normas || - [|g1 e || - |[v s@o

equivalentes. Segue-se que

t t
[ G w)ay ds = [ () ds
to

t < Klfullvlun — ullzzozv)
0

Dado que a sequencia (,,),, converge fortemente para v em L?(0,T; V), concluimos que
o termo de amortecimento converge ao termo de amortecimento limite quando m tende ao

infinito. Isto é,
t t
7 [ (s w) gy ds —> 7 [ (w0} ds, (2.60)
to to

Finalmente, analisamos a convergéncia do termo de for¢camento. Dado que o

operador de projecao ortogonal P,, é auto-adjunto, temos que

/tt/TQme(x) da:ds-/t /1r2 x)dxds

Desse modo, calculando a diferenca dos termos de forcamento. Vemos que,

// )Wy (T dxds—// x)dxds
to T2

Ja que, w e f nao dependem do tempo. Logo, aplicando a desigualdade de Cauchy-Schwarz

—‘ to — t)(f, wy — w) 2|

do lado direito da igualdade anterior, temos que

|(to = )(f, wm — w) 2| < T f[ | [wm = w][ar.

Dado que o operador de projecao P,,, convergéncia forte na norma de H, concluimos:

/tt(fm,w)p ds —s /tt(f,w)p ds, (2.61)
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quando m tende para infinito.

Dos resultados (2.52), (2.58), (2.59), (2.60) e (2.61) afirmamos que o limite da

sequéncia (), conforme m tende ao infinito satisfaz:

(u(t), w) s — <u(t0),w)H1} + /tt /T Blu, v)(s) - wdz ds
—l—u/ / (I—a’A gu($)~V(I[—042A)

t

+7 (u(s>,w>H;ds=/t f-u(s) da ds,

to tg J T2

gw dz ds

para todo w € D(Iz), para todo t > t; e para quase todo to,t € [0,7).

Para concluir a existéncia da solugao no sentido da Definicao 1, devemos verificar

que u é uma fungdo continua de [0, 7] para V. Isto é, u € C([0,T]; V). De fato, dado que

dum
dt

tal que

é uniformemente limitada em L?(0,7; D(I5)"), existe uma subsequéncia denotada, t,,,

%iu em L2(0,T;D(I5)). (2.62)

u
Denotamos o limite por 4, porque nao é imediato que de fato u = m (derivada fraca

temporal). No entanto, pela convergéncia (2.62) temos que

/OT du:;S(S)go(s) ds —» /OTu s

para toda ¢ em L*(0,7T; D(I5)). Seja ¢ um elemento de C°(0,T; D(I5)), o qual é um
subconjunto de L?(0,T; D(I3)). Aplicarmos integracio por partes, junto ao fato de que

Uy, converge fracamente para u em L?(0,T; D(I3)), obtemos que

J ' du;;(s)go(s) as=- [ ' um(s>d“” _ /

conforme m tende ao infinito. Logo, pela unicidade do limite, podemos observar que:

/OTU(s)gp(s) ds = — /OT u(s)dfiis) ds,

d
para toda ¢ € C°(0,T, D(I3)). Portanto, u = di;

Desse modo, concluimos que u € Ey5 (conjunto definido em (2.48)). Além disso, pelas
triplas D(Iz) C V,H C (D(I3)), a qual a primeira inclusdo é compacta e a segunda
continua, temos conforme ao Teorema I1.5.13 (Lema de Lions-Magenes) em ([1] pag 101),
deduzimos que u é uma fungao fracamente continua de [0, 7] para H e V. Isso significa
que, u(t) coincide com uma fungao continua em quase todos os pontos de [0,7]. Além

disso, satisfaz a seguinte igualdade no sentido das distribuicoes escalares em [0, 7]

5 @[ = @), u®)n e Sl = @u(t), u(t))v.
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Portanto, das identificagdes anteriores e a definigao de norma H!, dada em (2.6), segue-se
que u(z,t) satisfaz a igualdade
DIy = 3 [Iutt) Iy + ol fu(e)
no sentido das distribui¢ées em [0, 7). Assim, dado que u(x,t) satisfaz a equagao (2.19) em
sentido fraco e tomando uma funcao teste adequada, temos a seguinte equacao de balango
1d
2dt

Portanto, o limite satisfaz a equagao de balango de energia para o sistema (2.19). O

B
[lully + VIV = o A)2ul[L2 + Yfullfy = (f,u)re. (2.63)

2.3 Unicidade da solucao

Nesta ultima secao, demonstramos a unicidade da solugao obtida no Teorema 2
para as equagoes de Camassa-Holm generalizadas descritas no sistema (2.19). Para alcancar
esse objetivo, consideramos duas solug¢oes do sistema (2.19) com o mesmo dado inicial.
Em seguida, estabelecemos um novo sistema de equagoes para a diferenca dessas solugoes,
agora com dado inicial zero. Utilizando argumentos do método de energia e desenvolvemos
uma desigualdade diferencial para essa diferenga em uma norma adequada. Por ultimo,

analisamos o comportamento da solucao dessa desigualdade diferencial.

A seguir, enunciamos nosso Teorema de unicidade.

Teorema 3. A solugdo para as equagoes de Camassa-Holm generalizadas descritas no

sistema (2.19) e cuja solugao € dada pelo Teorema 2 € tunica.

Demonstragio. Sejam u) e u® solugdes do sistema (2.19) no intervalo [0,7], com o

mesmo dado inicial ug. Além disso, definimos dois novos campos por:
0 :=u —u® e w:=0W 0@, (2.64)

Fazendo a diferenca entre os dois sistemas determinados por u(") e u(?. Obtemos um novo

sistema, para a diferenca das solugoes anteriores.

Ow + [B(u®, vM) — B(u® v®)] — vA(l — a?A)P0 +yw = 0
(I—a?A)0) = w (2.65)
w(0,z) = 0

Neste novo sistema, observamos que o termo nao linear é de fato a diferenca dos termos
néo lineares induzidos pelas solucoes u") e u® dadas inicialmente. Lembrando que o termo
nao linear denotado por B(u,v) estd definido em (2.15), com uma pequena modificagao

para nao carregar os indices das potencias,
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com ¢ = 1,2. Entdo, nosso objetivo é reescrever esse termo nao linear envolvido no
sistema (2.65). a partir daqui, para simplificar a notagao de subindices no termo nao linear,

usaremos a somacao de Einstein. Assim que:
B(u®,v®) = Bu®,p) — P((u(l) O 4 oPvu) - [@® - 7)®
+ v](-Q)Vug-Q)} )
Isolando os campos uM e v das equacoes (2.64), temos que:
u =04+ u® e v =w 0@,
Logo, substituindo na igualdade anterior e simplificando termos opostos. Segue-es que:
([0 +u?]- V) (w +v@) + (w] + v NV (0, + u; @)y — {(u(z) V) + v](?)Vug?)}

— (- V)w+ (6- ) + (W® - Vyw + (20D 4 w; VO, +
—l—w]Vu§2 —|—v v, —l—ij W W

=(0-V)w+ 0V + u? - Vw+w;Vl; +w;Vul? +0ve;.
O termo nao linear é simplificada e renomeado por:
B = IP’((Q Vw4 (- V)o@ 4+ (u? - V)w +w; Vo, + iju§-2) + UJ(-2)V9J-). (2.66)
Desse modo, o sistema (2.65) pode-se rescrever como:

ow + B — vA(I—a?A)P0 +yw = 0
(I—a?A)) = w (2.67)

w(0,z) = 0
O préximo passo em derivar uma desigualdade diferencial para a norma H] de 6. Esta serd
a etapa mais complexa e delicada do processo. Considerando que o sistema de equagoes
(2.67) admite uma solugdo no sentido fraco, tomamos uma funcao teste como sendo 6.

Desse modo, obtemos a equacgao de balanco energia para a diferenca de solugoes. Isto é,
d 8
1617y + (B, 0)rz + VIV (I = a*2)26][72 + 7|01 [7 = 0. (2.68)

Dado que o termo associado ao parametro de viscosidade e ao parametro de amortecimento

sao positivos. Entao, simplificamos a equagao (2.68) para a desigualdade diferencial:
d
161z < (B, 6)r2]. (2.69)
Dado que P é auto-adjunto e P = . Note que,
(B,6) :/ B-0dx
T2
:/ (0~V)w-0dm+/ 0-V)0® - 0da+
T2 T2
+ [ w® V- 9de +/ w0, - 0 dz +

+/ w;Vu® de—l—/ DV, - 0 da.
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Observamos que, ao aplicar integracao por partes na primeira integral do lado direito,

obtemos que:

/Tz(e Vw0 dz = /TQ(H V)w;b; dv = _/w w;(0- V)0, dx

Assim,

/W(G-V)w~8dx+/T2wj(9-V)8jdx —0.
Por outra parte, ao aplicar integracao por partes na segunda integral do lado direito,
obtemos que:

/TQ(Q V)0 . fdr = /TQ((‘) V)P0, dr = — /T (0 - V)0, da

Assim,

/Tz(e VW@ . hda + /1I o2 (0. V)0, dz = 0.

Portanto, o produto interno L? de 6 como o termo néo linear do sistema (2.67) ¢ simplificado

da forma:

(B,6)2 = [

- (u® - V)w - 0 dz + /T2 wjvu§.2) -0 dx. (2.70)

A seguir, estimaremos cada integral na igualdade (2.70) utilizando a norma H} de 6. Para

isso, simplificaremos os termos restantes.

Na primeira integral do lado direito de (2.70), observamos que:

2) . . = 2) . —a? .
/1r2<u Viw - 0dx /TQ(u VI —a“A)g-0dx

= (u(Q)-V)G-de—&Q/

T2 T

(W®-V)AG-§da.

Aplicando integracao por partes, segue-se que a primeira integral da igualdade anterior é

zero. A integral restante desta igualdada, pode ser rescrita como:
—a? /2(u(2) -V)AG - 0 dr = o? /2 AG - (u? V)0 dx
T T

Rescrevendo o termo do lado direito, usando somacao de Einstein, e aplicando integracao

por partes. Temos que
o? /TQ(AH) - (u® V)0 dx = o /11‘2 ai(aiHj)u,(f)é?ij dx
= _a? /T 00,0120,6, dr — o /T 0,6 0,0,6, du
=—a? [ V0 (Vu® . V) dr — o /T VO - (u® - V)VO d.
Observe que, aplicando novamente integracao por partes na ultima integral da igualdade

anterior. Vemos que:
Vo - (u® - V)VOdr = 0.
T2
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Desse modo, a primeira integral do lado direito de (2.70) pode-se rescrever como:
/TQ @W® - VYw-de = —a? /T Vo - (Vu® - V)0 da. (2.71)
Na segunda integral do lado direito de (2.70), observamos que:
/11‘2 ijuf) cOdr = /11‘2(]I — ozzA)HjVu§-2) -0 dw
= [, 0:vul - 0dr—a® [ 20,vu? - 0da.

Note que, rescrevendo a tultima integral do lado direito, usando somacao de Einstein, e

aplicando integragao por partes. Temos que
/T2 AHJ-VU?) SOdr = /1r2 ai(aiej)aku§2)9k d
_ /T 0,0,000020, do /T 00,000,0, ds
= — /1r2 Vo - (VO - V)u®(z)dx — /TQ Vo - (0 V)Vu?(z)dz.

Neste caso, o fato de aplicar integracdo por partes, na tltima integral, aumenta em mais
duas integrais. A diferenca significativa deste processo é que conseguimos simplificar o
grau da derivada de 6. Desse modo, a segunda integral do lado direito de (2.70) é rescrita

como:
/1r2 ijug-Q) -O0dx = /TQ «%Vu? -0dx + o? /TQ Vo - (V- V)u? (z)dr
+a? /T VO (6-V)Vul () da. (2.72)
Por conseguente, das identidades (2.71) e (2.72) temos que:

(B, 0)2] < o” /1r2 ’VG (Vu® . V)H‘ dx + /TQ ‘9 (0 v)u(2)’ dr +

+a2/
TQ

Com o objetivo de estimar o produto interno L? de § com o termo néo linear (2.66) em

Vo (V6 V)u®|dr + o /T Vo (0-V)Vu®|dr.  (2.73)

relagio a norma H} de 6, observamos a partir da desigualdade anterior que, a0 combinar as
duas primeiras integrais e aplicar a desigualdade de Holder com os expoentes conjugados

(2,2,00), obtemos:

J-

Colocando em evidencia a norma ||Vu || = e aplicando a definicio da norma H! definida

6-(0- V)u@)(x)‘ dz+a? /1r2 ’VQ (Vu® V)G(m)‘ dx

<[Vl |01 + 02| Vu®|| | [ VO] |7

m (2.6). Segue-se que

J-

0-(0-V)u® (x)| drta? / V0 - (Vu® : V)o(a)| da <
T2
< 11Vl (11616 + ® 1701

= ||[Vul? ||| 10][3 - (2.74)
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As integrais restantes da desigualdade (2.73), serdo analisadas separadamente, ambas pela
desigualdade de Holder, mas com expoentes conjugados diferentes. Primeiramente, observe
que aplicando a desigualdade de Hélder, novamente com os expoentes conjugados (2,2, 00),

temos que:
[ |99+ (V0 V)u(a)| de < o?l[Tul? o~ |V,

Logo, acrescentando do lado direito da desigualdade anterior, o termo
|| Vu? || e | |ul [ = 0.
Obtemos que,
o’ /T V6 - (V0 V)u® ()| dz < o?||Vul®||= | VO] ;. (2.75)

Na dltima integral da desigualdade (2.73), utilizando a desigualdade de Holder com

expoentes conjugados (p, p’), com p sendo suficientemente grande. Isto é,
o® /2 ‘V@ (0 - V)VU(Q)(I)‘ dx = o? /2 ‘V@ (0 - D2u(2))(x)’ dx
T T
< a?[10 - V0| [|1D*u®]| .

A desigualdade anterior introduz dois novos termos em normas LP e LP, sobre os quais inici-
almente nao possuimos informacgoes. Analisaremos cada uma dessas normas separadamente.

. /
Comecaremos examinando a norma L” . De fato,

p/

10-V0ll = | [,10- V@) d:c]

1

pl

= | [, 16-90@) 10 Vo) dx]

Vamos assumir, por ora, que as normas L de 6 e V0 sao limitadas, para manter o foco na
demonstragao em curso. Especificamente, demostraremos que essas normas sao limitadas
pela norma L? da vorticidade potencial do dado inicial e a norma L? da divergéncia do

termo de forcamento. Assim,

p/

10~ VO] <

p'—1
6lll1Vols=] " [ 101900 do
T

Aplicando a desigualdade de Young nos termos da integral, obtemos que:

[ L 16 + 1voc] dx]

1

/
P/

1 e
10011z < — 1111190015~

Logo, pela definicdo de norma H', segue que:

/
p—1 2

1 I
10-9ollr < (1Bl [19811e] 7 ol
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Dado que as normas H' e H! sdo equivalentes. Temos que, existe uma constante positiva
« )

denotada por K tal que:

/
p—1 5

10 VOl < K (10112 1V0][=| " (16117 (2.76)

Da desigualdade anterior, observamos uma limitagao pela norma H! de 6 que era nosso
objetivo inicial. Além disso, surgem as normas L> de 6 e V6. A seguir, veremos que essas
normas L permanecem limitadas. Primeiramente, examinemos a norma L* de #. De
fato, dado que u™™, u® € L*(0,T; W) e W C H3>NV e aplicando desigualdade de Morrey,

usada nas desigualdades (2.53), temos que:
101120 = [[u™ = uP ||z < Cllul = u?|| s < O|[[u® s + [[u®||s |-

Pela desigualdade (2.43), demonstradas na segao anterior, obtemos que a norma L de 6

é limitada. Isto é,
10]]2= < C(, [lgol[z2, |[gl]z2)- (2.77)

De maneira similar, examinamos a norma L* de V# e obtemos que

IVO]l < CL(7, [lgoll22; gl 22)- (2.78)

Por conseguinte, combinando (2.76), (2.77) e (2.78), segue que
2
10 - V0| L < M16]|7, - (2.79)

Por dltimo, examinamos a norma LP. Em outras palavras, mostraremos que a norma
|D*u®||» ¢ limitada por um multiplo constante da norma H} de 6. A ferramenta
utilizada para essa andlise é a desigualdade de Gagliardo-Nirenberg-Sobolev. Lembramos a

desigualdade: Se 1 < ¢ < n, temos que existe ¢* chamado de expoente de Sobolev tal que:

Whe(T™) < LT (T") onde ¢* = o B Cy,= 7
n—gq n—gq

Observe que, tomando o expoente Sobolev ¢* = p e n = 2, temos que:

2q q
Wh(T?) — LP(T? d = C,=——.
(T%) ()Onep2_qeq2_q
Consequentemente,
2p p
l<g=-—"-<2 c, ==
=951, ¢ FaT
Desse modo, obtemos que
2, (2) p 2, (2)
1Dz < (D) ID%u)] 2o

Além disso, dado que a drea do toro (2D) é finita, podemos aplicar a desigualdade de

p+2 p+2

Holder com expoentes conjugados < oo ), para obter a inclusao

L2(T?) C L*% (T?).
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Por conseguinte, o espago de Sobolev H'(T?) = W?(T?) estd continuamente mergulhado

em Wl’%('ﬂﬂ). Desse modo, segue que:
1D%u®| e < Npl[u®||s.

Das desigualdades (2.40), (2.41) e (2.42) demonstradas na se¢do anterior, temos que a

norma L? de D?u® ¢ limitada. Isto é,

1D ||ze < pN (v, [ldollz2 9]l 2)- (2.80)

Revisando tudo o que foi discutido anteriormente tendo presente nosso objetivo de estimar
o termo |(B,0)2|. Por (2.73), sabemos que o termo é limitado por quatro integrais. Das
quais, as duas primeiras foram estimadas em (2.74) e a terceira integral foi estimada em

(2.75). Logo, combinando estas duas estimativas e renomeando a constante, temos que:

o [
TQ

V0. (Vu® -V)Q‘dx+/w 60 V)u®|de +
+a? [ V0 (V8- V)u|dz < Cilj0l[3;.
T2 “

Por outro lado, a quarta integral da desigualdade (2.73) foi estimada em (2.79) e (2.80).

Combinando estas duas estimativas e renomeando as constante envolvida temos que:
2
% /T V6 (6-V)Vu®|dr < pCul|6]|7,.
Portanto, a desigualdade diferencial (2.69) é reescrita da seguinte forma:

d >
SOOIl < Cull6@) 1z + CopllOOI 7, (2.81)

O préximo e ultimo passo em nossa andlise da unicidade da solugao do sistema (2.19), serd
estudar o comportamento da solugao da desigualdade diferencial (2.81). Entéo, a partir de

(2.81) observamos que:

dr _ _ »
10, ] < o101,

Dado que (p,p’) sdo expoentes conjugado, vemos que

1
1t 7

dl _ _Git [ p
B, < e e ool |

dt

Como % > 0, segue-se que

=

dr _ _ P
e 03] < oo 1001,

Consideremos a fungdo nao negativa:

Z(t) = =0y
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Temos entao, o problema:

dz(t) L
. = Gz’ (2.82)
Z(0) = 0

Observe que se Z(t) = 0 para todo t € [0,7T], entdo a norma H! do campo 6 é zero.
Consequentemente, o campo 6 é nulo. Desse modo, mostramos que as solugoes ut!) e u(?
sao iguais e concluindo o Teorema 3. De fato, considerando a mudanca de variavel do tipo
Bernoulli:

Z =Y? com CZ _prlciZ};
Vemos que, o problema (2.82) é equivalente a:

dY (t)
dt s
Y(0) = 0

Integrando de 0 a t e utilizando a condicao inicial, Y(0) = 0. Temos que a solu¢ao para
(2.82) ¢ da forma
0 < Z(t) < (Cot)?

para todo 0 <t < ﬁ Logo, fazendo p tender para infinito, obtemos que

1
Z=0 0, —1.
em 2,
Se denotamos por ty = ﬁ e considerarmos a nova condicao inicial Z(¢y) = 0, estabelecemos
o problema:
dZ(t) 1
—— < OopZ (t
dt < CypZ¥(t)
Z(ty) = 0.

De maneira andloga, como foi solucionado o problema (2.82), obtemos que:
0 < Z(t) < (Co(t —tg))?
para todo ty <t < 2t;. Novamente, fazendo p tender ao infinito, obtemos que
Z =0 em [to,2t).

Portanto, Z = 0 em [O, 2t0}. De forma indutiva, segue-se que Z = 0 em [O, nto} para todo
n € N. Demonstrando que Z = 0 em [0,7]. Assim, concluimos que o Problema (2.19)
possui uma tnica solugao em C([0,T]; V) N L*(0,T; D(13)) O
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3 Fenomeno de Dissipacao Anomala para a

Vorticidade Potencial

Neste capitulo estudaremos o limite inviscido de médias temporais de longo prazo
das solugoes das equagoes de Camassa-Holm Generalizadas (CHG) descritas em (2.1) sobre
o dominio periédico T?. O Teorema principal de nosso trabalho dita que a taxa média de
dissipagao de enstrofia potencial se anula no limite da viscosidade quando tende a zero,
um resultado similar é obtido para as equagoes de Navier-Stokes (NS) com amortecimento
em [11] e para as equagdes quase-geostréfica superficial (SQG) em [12]. Este resultado
¢é possivel, ja que as solugoes estatisticas estacionarias conservam o balango de enstrofia

potencial.

O capitulo serd dividido em 5 se¢oes: Compacidade da semi-orbita positiva, Limite
inviscido das equagdes estaciondrias de Camassa-Holm Generalizadas, Solugoes estatisticas
estacionarias no espaco fase de vorticidade potencial, Compacidade relativa e balanco de

enstrofia potencial, e por ultimo médias temporais de longo prazo.

3.1 Compacidade da Semi-Orbita Positiva

Nesta secao, abordamos um fato relevante do nosso estudo. O qual é a compacidade
da semi-orbita positiva, induzida pela fungao escalar que é solucao do sistema de equagoes
para a vorticidade potencial do sistema (2.1) introduzida no capitulo anterior. Este
fato é importante, porque é sobre a semi-orbita positiva que suporta a solugao estatistica
estacionaria. Para levar a cabo este objetivo, serd necessario estabelecer algumas estimativas

para o campo de velocidade e a vorticidade potencial em diferentes normas.

Consideramos o sistema de equagoes de Camassa-Holm Generalizadas

Ov+u-Vo+ 35 vV —vA(I—a’A)fu+yw = —Vp+f
Veu = 0
v = (I—-a?A)u
u(z,0) = wy

para os campos de vetores u, v : T? X [0,00) — T2, f é uma forga dada independente do
tempo com média zero e f € (H'(T?))%. O dado inicial ugy é de divergéncia nula, média
zero e pertence a H3(T?). Os parametros v > 0, v > 0 e % < [ <1 fixos. Pelos Teoremas
2 e Teorema 3 do capitulo anterior, sabemos que existe uma tnica solucao regular para o

sistema de equagoes (2.1) que satisfaz o equagdo de balango de energia:

1d

8
§£|IU|I§@ + VIV = a?A)zul[f: +llullfy = (f,u)ze. (3.1)
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A partir da equagao de balango de energia, temos de fato que a norma || - ||3, do campo
de velocidade u, para as equagoes de Camassa-Holm Generalizadas é limitada em tudo

tempo. Além disso, a limitacao é independente da viscosidade. Isto é,
ClIfIIP
2

onde C' é uma constante positiva. Por outro lado, Se aplicamos o operador Curl para as

() < luol 7y +

equagoes de Camassa-Holm Generalizadas sob condigoes periddicas, obtemos o sistema de

equagoes equivalente:

d
0+ (- V)g —vAI—a®A) g +9g =
Veou =0 (3.2)
Curl(l — o®*A)u = ¢
q(z,0) = qo

Lembrando que o sistema (3.2) foi introduzido no capitulo 2, e foi chamado de sistema
de vorticidade potencial. A funcdo escalar q(x,t) é chamada de vorticidade potencial, a
qual é uma aplicagao continua de [0, T] para L*(T?). A funcdo escalar g ¢ o forcamento do
potencial, definido por g = Curl(f). O problema da existéncia e unicidade das equagoes
(3.2) é equivalente ao problema da existéncia e unicidade das equagoes (2.1), que foi
estabelecido nos Teoremas 2 e 3 do capitulo anterior, que garante ¢ € L>(0,T; H>NV) é

uma solugao fraca para o sistema de equagoes (3.2).

Por outro lado, ao aplicamos o operador Curl, definido em (2.12) como Curl = V+-, que

comuta com o operador de Bessel—a de ordem 2, obtemos:
=V -(I-a?Au=1-*A)V* - u=(I-a’A)w. (3.3)

De igual forma, como foi abordado o sistema de vorticidade potencial de ordem m no

capitulo anterior, obtemos uma equacio de balanco de enstrofia potencial, dada por:

1d

5 g7 llallze + vllallG +lallze = (9, ).z (3.4)

Aplicando a desigualdades de Cauchy-Schwarz e a desigualdade de Young com € = 7%, no

lado direito da igualdade (3.4), segue que:
1 gl
2| < —llgll72 + S llall72- 3.5
(g @)e2l < - llgllze + S llallz (3.5)
Acoplando a desigualdade (3.5) em (3.4), obtemos a desigualdade diferencial
d 1o 2 2 Lo
191122 + 20llall +llallze < Zllgllze: (3.6)

Logo, usando o Lema de Gronwall na desigualdade diferencial (3.6), segue que a enstrofia

potencial é uniformemente limitado na norma L?. Isto é,

1 VRN
llaC OllZ2 < |llgollZ2 — ;Ilglliz e+ ;Hglliz- (3.7)
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A seguir, enunciamos nosso Lema sobre a compacidade relativa da semi-érbita

positiva, considerando os parametros fixos v > 0 e v > 0.

Lema 4. Consideremos os parametros 0 < a <1 e 1/2 < 8 < 1. Sejam qy € L*(T?) e
g € L*(T?) fungoes escalares. Seja q(-,t) a solugio do sistema de vorticidade potencial

(3.2). Entao, para qualquer ty > 0 fizo a semi-orbita positiva
O" (g0, to) = {q(-,t +to) € L*(T?) : t > 0}

¢ relativamente compacta em L*(T?).

Demonstragio. A funcao escalar ¢(-,t), definido no conjunto O*(qo, ), é a solu¢ao do
sistema de vorticidade potencial descrito em (3.2). A existéncia e unicidade dessa solugao
sao garantidas pelos Teoremas 2 e 3 do capitulo anterior. Além disso, conforme (3.7) e pelo
que a funcdo escalar g ¢ independente do tempo, temos que a norma L? da vorticidade
potencial é uniformemente limitada com relagao ao tempo. O Teorema 2 também garante
que o campo de velocidade u(z,t), das equagoes de Camassa-Holm Generalizadas descritas
em (2.1) é limitado na norma de L*°(0,T, H?) para qualquer T' > 0. Além disso, de (3.6),
sabemos que as equagoes para a vorticidade potencial descritas em (3.2) satisfazem a

desigualdade diferencial

d 1
T llallze +2vllals +llallze < ;Hglliz-

Desse forma, integrando de ¢ a ¢t + 1 obtemos a seguinte desigualdade:

t+1 t+1 1
latt+ D)l +20 [ (o)l ds + [ lla(s)Ee ds < ~lglfEs + llao) 2

Dado que a norma L? da vorticidade potencial é nao negativa e a integral no parametro
de amortecimento é nao negativo, podemos simplificar a desigualdade anterior e rescrever

a norma do termo de viscosidade como:
t+1 1
v [ (o) ds < ol + gl

Consequentemente, da desigualdade (3.7) concluimos que:

t+1 9
| la(s)l ds < 0, (3.8)

Aqui, a constante M é independente do tempo.

O préximo passo, é obter uma estimativa para a funcio escalar ¢(x,t) na norma H?
com % < B < 1. O objetivo dessa estimativa é aplicar o Teorema de Rellich-Kondrachov,

que garante, H? estd compactamente mergulhado em L2
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Como a equacio (3.2) tem solucio fraca, tomamos uma fungao teste da forma J?q(z,t) e

obtemos que:

1d 2 2 2 28
5 I + a0l + a2 <[ (9 72%0(0)) ] +
| (- V)a0), SPam) L (39)
De fato, dado que o operador de Bessel—a de ordem [ é auto adjunto, temos que:
(2a(t), 2%q1)) , = (Jﬁatqa) J2a®) , = (075a(t), Ja(1))
= S S0
Logo, por (2.9). Temos que
28 2
(Bua(t), J22(1) ., = 5 la(1) |3 (3.10)
Para o termo de viscosidade, temos que:
(=A@ - AV q(), 72q(1) , = (= AZCq(t), J2Pq(1))
= (= A2 g(1),q(1))
Aplicando integragao por partes, segue que
(= AR (), q(t)) , = (VI a(t), VI Vq(1))
= [[VJZ V[
= llall2- (3.11)
Para o termo de amortecimento, vemos que:
(0, 72%a®)) , = (72a, 7%a(v))
Portanto,
(0. 72°a(®)) , = lla(®)[25 (3.12)

Combinando as identidades (3.10), (3.11) e (3.12), obtemos o lado esquerdo da desigualdade
(3.9). Dado que nosso objetivo é obter uma estimativa para a norma H?, devemos estimar
os termos restantes da desigualdade (3.9). A seguir, estimaremos o primeiro termo do
lado direito da desigualdade (3.9). Note que, aplicando a desigualdade de Cauchy-Schwarz.
Segue que:

(9, 72%a(1)) 1 < llglla=l1 722 a(®)l122 = llgl]z2lla(®)]l 2.

Nesta ultima estimativa, aplicamos a desigualdade de Young com € = 3. Desse modo,

obtemos a desigualdade:

g (t)]],25- (3.13)
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Em relagao ao segundo termo do lado direito da desigualdade (3.9), o qual corresponde ao
termo nao linear, requer-se uma atenc¢ao adicional. Primeiro aplicamos a desigualdade de

Holder com expoentes (00, 2,2). Isto é,

(- V)a(), J2a(1)) | < @)l Vet 2212 ()] 2 (3.14)

Aplicando a desigualdade de Gagliardo-Nirenberg de interpolacao de espacos de Sobolev
(ver [3]) e o fato que £ < 3, obtemos que:

IVa()llz2 < Clla®172la(t)]7es- (3.15)

Por outra parte, dado que o parametro 0 < o < 1 e pela Proposicao 22 do Apéndice A

segue que: para s > 0 as normas || - ||gs e || - ||z sdo equivalentes. Isto &,

aPllulls < Mlull e < lullms, (3.16)

para toda u € H?(T?). Assim, das desigualdade (3.15) e (3.14), junto com a equivaléncia

de normas (3.16), obtemos que:

[((w-V)a(t), 72a(t)) .| < Cllu®)l]ella®)|[12Mla ()]}

Por tultimo, aplicamos a desigualdade de Young com expoentes:
1+)\

( 2 2 > _ va?2P
1—=X 14\ TS

Concluimos que o segundo termo do lado direito da desigualdade (3.9), da seguinte maneira:

(- ¥)a(®), Ja(®) | < Clla®I3 + =5~ ||q<>||%m7 (3.17)

onde a constante C' := C(\, v, a, 3, ||ul|r=). Observe que, pela equivaléncia de normas

(3.16), a desigualdade (3.17) pode ser rescrita como:

((w-V)a(t), J2a(®)) ,

B+ Slla(®)l1%20- (3.18)

Logo, combinado as estimativas (3.13) e (3.18), reescrevemos o lado direito de (3.9) da

seguinte maneira:

1d Il
5 a2 +lalls + gl < 122

+Clla(®)| 3 + vllal 3.

Observe que, na desigualdade anterior, o termo de viscosidade pode ser facilmente cancelado.
Além disso, como o termo associado ao pardmetro de amortecimento é positivo, ele também
pode ser simplificado na desigualdade. Dessa forma, obtemos a seguinte desigualdade

diferencial: ! H
g
L2+ Cllq(t)]]3-

5l <
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Pela inclusdo continua dos espagos HZ(T?), temos que H?(T?) C L*(T?). Por conseguinte,

d 2 ||9||%2 2
Sl < MU 4 Cllg(r) 12 (319

Portanto, da desigualdade (3.8) e o Lema de Gronwall uniforme (ver [30]) aplicados na a
desigualdade diferencial (3.19), concluimos que, para qualquer t, > 0, se t > tg, a norma
Hq(t)||z£ ¢ uniformemente limitada em rela¢ao ao tempo. Dado que 5 > 0, aplicamos o
Teorema de Rellich-Kondrachov para concluir que o conjunto O+(qo, tp) é compacto em
L3(T?). O

A partir do Lema anterior, observamos que a norma H?, com 3 > 1/2, da vorticidade
potencial é limitada com constante indepedente do tempo. Assim, obtemos informagao
sobre a norma L*° da vorticidade potencial, que é uma informagao importante em nosso

trabalho. Desse modo, existe uma constante R > 0 tal que para todo ¢t > 0
a(@)][zo 2y < R (3.20)

Portanto, concluimos que norma L*° da vorticidade potencial é limitada.

3.2 Limite Inviscido das Equacoes Estacionarias de Camassa-Holm

Generalizadas

Neste se¢ao abordamos o limite inviscido das solugoes estacionarias para as equagoes
de vorticidade potencial paras as equagoes de Camassa-Holm Generalizadas, servindo
como motivagao para o que sera desenvolvido posteriormente com as solucoes estatisticas
estacionarias. Mostramos que o limite inviscido é uma solu¢ao renormalizada conforme é

apresentado em [14].

Dando continuidade a andlise, assumimos agora que os parametros satisfazem % < p <1,
v > 0 e o forcamento f € (H'(T?))? com média zero de tal maneira que g := Curl(f).
Além disso, consideramos que u™) € D(I 3), para v fixo, é uma solugao fraca para o sistema

de equagoes estacionarios de Camassa-Holm Generalizadas dadas por:

u-Vo+3Y,;0;Vu; — vAl— o?Au+~yv = —Vp+ f
I—a?Au = v (3.21)
V-u = 0,

que satisfaz a equagao do balango de energia para o sistema (3.21) dada por:
Y72 + Va2 | +1][VI = @®A)Pu|2e = (fu)pe (3.22)

Aplicamos a desigualdade de Cauchy-Schwarz e a desigualdade de Young com € = ’y% no

lado direito da equagao (3.22) e obtemos:

1
Y7 + 70| Val| |2 + v V(I = a®A) Pl < %Hf\l%z + %Hu(”)!!ia-
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Como o termo viscoso é nao negativo na desigualdade anterior, podemos simplificar a

desigualdade. Assim, obtemos:
V(1) v 1
21+ 0V < L1 (323)

Portanto, a sequéncia (Vu(”)) é limitadas em norma L?*(T?). Logo, pelo Teorema de
Rellich-Kondrachov, existe uma subsequéncia de (u)),, também denotada por (u")),, e

u® € (L*(T?))? tal que (u)), convergente fortemente para u(’) quando v tende a zero.
Por outro lado, seja ¢ € H, 5(T?), para v fixo, uma solucio fraca para o sistema
de equacodes estacionaria de vorticidade potencial para as equacoes de Camassa-Holm

Generalizadas dadas por:

u-Vqg+yqg—vAl - a?A)lqg =
Curl(l — @?A)u = ¢ (3.24)
Vou = 0,

que satisfaz a equacao do balango de enstrofia potencial para o sistema (3.24) dado por:

a1 +vlla®15e = (9.4") 2. (3.25)

Aplicamos a desigualdade de Cauchy-Schwarz e a desigualdade de Young com e = ’y% no

lado direito de equacgao (3.25), obtemos que:

5 v 1 Vil
Vg™ 72 + v|q" )Hig < gllgl\%z + §Hq‘ 132

Como o termo viscoso é nao negativo na desigualdade anterior, podemos simplificar a

desigualdade. Assim, obtemos:
Vi 1
5’\(1( 72 < 5”9“%2- (3.26)

Portanto, a sequéncia (q("))y é limitada na norma L?(T?). De acordo com o Teorema I1.2.7
em [[1], pag 53], existe uma subsequéncia, também denotada por (¢),, e ¢ € L?(T?)
tal que (¢™)), converge fracamente para ¢® quando v tende para zero.

O seguinte resultado, mostra que o limite inviscido do par de sequencias de solugoes
estacionarias u® e ¢*) dadas anteriormente, é uma uma solucéo estacionaria da vorticidade

potencial para as equacoes de Euler—a com amortecimento e forgamento.

Teorema 5. Sejam g € L*(T?), (u(”)) e (q(”)) sequencias de solugoes estaciondrias para
0s sistemas de equagoes (3.21) e (3.24) respectivamente, tais que u™) converge fortemente
para u® em (L*(T?))? e ¢¥) converge fracamente para ¢ em L? quando v tende para

zero. Entdo, o par (u9,¢©) é uma solucio estacionaria para as equagoes de Euler—a
U,(O) . Vq(o) + f}/q(o) — g

Curl(l — o?A)u® = ¢ (3.27)
V-u® = 0,
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no sentido das distribuicoes. Isto €, para qualquer fungio teste ¢ € C°(T?), temos que:
/ (u® - V) pg® da:+/ ¢V da :/ 9o dz.
T2 T2 T2

Demonstragio. Dado que u(? e ¢{%, sdo os limites do par de sequencias (u™), e (¢*),
abordaremos a prova desta proposicao, examinando a convergéncia em distribuicao de cada
um dos termos do sistema de equagoes (3.27). De fato, Seja ¢ é uma fungao de teste. Para
o termo nao linear, primeiro vejamos que a sequencia ((u(”) : V)¢)V convergem fortemente

na norma L? para (u(?) - V)¢ quando v tende para zero. Observe que:

1@ - V)¢ — (- V)o|[7: = [|([u® = u@]- V)g][72
([u™ — u©] - V)o|? da.

= [,
Aplicando a desigualdade de Cauchy-Schwarz para vetores, temo que:
1 96 = @ V)glffe < [ | w2 V6P do

<ol [, = uO da
< IVel[fee[u® = u®[.

0) na norma L? e ¢ é uma funcio teste. Segue-se a

convergéncia de (u'”)- V)¢ para (u(”) - V)¢ na norma L?. Agora, tomando U™ := (u")-V)¢
com U® € L2(T?). Vemos que:

Dado que (u(”)> converge forte para u'

(U, ¢ o — (U0 qO) ] = ‘ / U — U0 4 O - 7040 g
T

=1/, U0 — 7O¢W) dg + /T U0 — U0 g

=1/, U gW) — @@ gy
T

+

/ U0 — U0 da |
T

Aplicando a desigualdade de Cauchy-Schwarz na primeira integral, temos que:

|(U(V), q(u))L2 . (U(O), q(O)>L2| < ||q(u)||L2||U(u) i U(0)||L2 + ‘(U(O), q(l/) _ q(0)>

L2

Dado que a sequencia (U®)), converge forte para U(®) na norma L? quando v tende para

zero e pela desigualdade (3.26), obtemos que:
g™ 2|[UY) = U] 2 — 0 quando v — 0.
Além disso, como a sequencia (q(”)),, converge fracamente para ¢(*). Temos que:

‘(U(O), q(V) _ q(U)) — 0 quando v — 0.

L2
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Portanto, das duas convergéncias anteriores, concluimos que:

lim [ (@) V)og® de = [ (- )6q" da.
11‘2

v—0 JT2
Para o termo de amortecimento, o trabalho é mais simples, j4 que a sequencia (¢*)),
converge fracamente na norma L?. Em particular, temos que:

lim | v¢"¢dr = /1r 74 da,

v—0 JT2

para qualquer funcdo teste ¢. Portanto, o par (u(?), ¢(®) é uma solucio fraca estacionaria

para o sistema de equagoes (3.27). ]

Soluc3o Estacionaria Renormalizada das Equacdes Euler—a

As solugbes renormalizadas sao uma extensao das solucoes fracas e surgem no estudo
de equagoes diferenciais parciais (EDP’s) em contextos onde as nogoes solugao fraca nao sao
adequadas ou suficientes para descrever o comportamento do sistema. Esse tipo de solugao é
particularmente relevante em problemas onde as solugoes podem apresentar singularidades,
irregularidades ou comportamentos nao suaves, como em modelos de transporte, fluidos
incompressiveis ou sistemas com dissipacao anomala. A ideia é aplicar uma transformacao
que suaviza a equacao, permitindo manipulacoes mais controladas. Um aspecto crucial
dessa abordagem é que ela garante que, mesmo na presenca de irregularidades, a solucao
renormalizada respeita propriedades fisicas e conservativas do sistema, como por exemplo,

a conservacao do balanco de enstrofia potencial.

Em seguida, introduzimos a definicdo de solucao estacionaria renormalizada para

as equacoes de Euler—a, utilizando as ideias apresentadas no artigo de Diperna-Lions em
[14].
Defini¢do 6. Seja g € L*(T?) e u o campo de velocidade tal que v € (W,52(T?))?
e tem divergéncia nula. A funcio ¢ € L*(T?) é chamada de solugdo estacionaria
renormalizada das equagoes de Euler—o (3.27) se, a fungao escalar q, é solugio da
equacao

(u-V)B(q) +v48'(q) = 98'(q) (3.28)

no sentido das distribuicoes, para todo 3 € C*(R) com B e 3 limitadas em R e nula

proxima de zero.

A seguir, enunciamos o Teorema que garante que as solucoes fracas estacionarias sao,
de fato, solucoes estacionarias renormalizadas. O objetivo de introduzir este tipo de solugao
é que elas preservam o balancgo de enstrofia potencial, um argumento usado para demonstrar

a auséncia de dissipacao andmala nas equacoes de Camassa-Holm Generalizadas.
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Teorema 7. Sejam g € L*(T?), u© € (H'(T?))? com divergéncia nula e ¢'° € L*(T?).
Seja ¢©) uma solugdo estacionaria para o sistema de equagoes (3.27). Entio, ¢ é uma
solucao estacionaria renormalizada para esse sistema. Além disso, o balanco de enstrofia

potencial é dado por:
gl = [ 99 da. (3.29)

Demonstracao. Das hipéteses do nosso Teorema, segue como uma aplicagao do Teorema, II.
3 de [14], que a funcdo escalar ¢(® é uma solucdo estacionaria renormalizada para o sistema
de equagoes (3.27). Para ter uma ideia completa do Teorema, damos na continuagao uma

demonstracao desta primeira parte do Teorema.

Primeiro, observamos que, em particular u € (W,5?(T?))2. Por outro lado, conside-

ramos um molificador estandar ¢, isto é, uma funcao ¢ suave, nao negativa, de suporte

compacto com integral igual a 1. Assim, conforme o Lema II.1 de [14], temos que:

[((u(0)~V)q(0)>*(pe—(u(o)-V)(q(O)Mpe) 50 em LL(T?).  (3.30)

loc
Denotamos as fungdes modificadas por:

(0)

e = ¢ * P, ue:u(o)*@e € Je =g * Pe.

Realizando a convolugao das equagcao estacionaria de Euler—a descritas em (3.27), obtemos:
[ - V)q] % pe + g = ge.

Adicionamos o termo (u(o) - V)qe na igualdade anterior. Dessa forma, obtemos:
(w-V)ge +7¢ — 9. = — R, (3.31)

onde
Re= [((00-9)d) = 00 V. (3.32)

Pela Teorema 5, sabemos que a equagao (3.31) é valida no sentido das distribuigoes e pela
convergéncia em (3.30) temos que R, converge para zero quando € tende para zero. Seja
B € C(R) tal que 3 e 3 sao limitadas em R. Multiplicando a equagdo (3.31) por '(q.),
obtemos que:

(u® - V)B(q.) +v8'(¢e)qe — B'(qe)ge = B'(qe) Re, (3.33)

também é valida no sentido das distribuigdes. Portanto, ao tomar o limite quando € tende
para zero, observamos que, pelo limite (3.30) e pelo fato de 3’ ser limitada, o termo do

lado direito da igualdade (3.33) converge para zero. Assim, ¢ satisfaz a equacdo

(V)3 + 74" 8'(¢”) = 95'(¢"), (3.34)

no sentido distribucional. Portanto, a funcéo escalar ¢(°), também é uma solucio estacio-

naria renormalizada das equagoes de Euler—a.
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A segunda parte de nosso Teorema, consiste em provar o balango de enstrofia

potencial dado em (3.29). Para simplificar a notagao, denotaremos por:

uw=u", bzﬁ(‘l(o)) e bezﬁ(q(o))*%v

onde 3 é uma funcao de classe C' com suporte compacto e b € L*(T?)NL>(T?). Calculamos

a convolucao da equagao (3.34) com o molificador ¢, e observamos:
V- (u®b)+~vyP. =G, (3.35)

onde
P.=(q"8(d") g e Ge=(98'(q")) * o
Tomando o produto interno L? da equagio (3.35) com a fungdo b, obtemos:

(V- (@@b)ebde) ,+ (vPobe) , = (Ge bz (3.36)

A seguir, mostraremos que o termo de convecgao na identidade anterior converge para
zero quando € tende para zero. De fato, se aplicamos integragao por partes nesse termo,

podemos rescrever ele da seguente forma:

(V- (wab)eb),, =—((@ab), Vi) ,.

Conforme ao artigo ([10]), temos a seguente identidade:
(u®b)e = ue ®be + 1e(u, b) — (u—ue) ® (b—10,) (3.37)
onde
re(u,b) = /1r2 0(2)(0eu() @ 8e.b(x))dz e e u(x) =u(r —ez) — u(z). (3.38)

Além disso,

/T (uc®be) - Vb, dz = 0. (3.39)
Note que,
(u = (@) = u(@) - [ p(ulx - ez)d
= [, elpu(a)dz - /T pl2)ula — ez) dz
== [, e()ulx - e2) — u()] dz
== |, #(2)dezu(z) dz.
Portanto,

(u — u)(z) = — /T p(2)beu(x) dz. (3.40)
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Calculamos o produto interno L? da equagdo (3.37) com Vb, e tendo em mente a identidade
(3.39). Obtemos que:

/(u®b)e-vz)€da;:/ r5<u,b)-vz)€dg;—/
T2 T2

[ (=) ®(b=b) Vbdr.  (3.41)

Examinando a primeira integral do lado direito de (3.41), vemos que:

<)
T2

onde a tltima desigualdade é devido a b € L'(T?) N L°°(T?) e a desigualdade de Cauchy-
Schwarz. Logo, pela desigualdade da Proposicao 24 no Apéndice B, obtemos que:

C
dr < ?/TQ o()|0ertul| 2|8eabl | 2 2,

re(u, )| | Vbe

|/ re(u,b) - Vb, dz
TQ

. < 2dz.
[ retwb)- Voda| < € [ o()10:bl2 d

O qual converge para zero quando € tende para zero. Por outro parte, na segunda integral
do lado direito da equacao (3.41), aplicamos a desigualdade Holder. Desse modo, obtemos

a seguente estimativa:

C
/TQ(u—uE) ® (b= b) - Vbeda| < —|lu—ucl|z2llb = bel |12

Note que, pela identidade (3.40) e a desigualdade de Minkowski para integrais. Vemos que:

lu = uellez < [ le()lbsul] 12 dz.

Logo, aplicando novamente a desigualdade da proposicao 24 no Apéndice B. Obtemos que:

lu = uclles < ellVallzs [ 2l (=) d

Portanto, a segunda integral do lado direito de (3.41) é estimada por:

/TQ(U ) ® (b—b) - Vb, da| < Ch[|b — be][zz.

Dado que b, convergem para b em norma L? quando € tende para zero, concluimos que

lim [ (u®0b)e - Vbedr = 0.

e—0 JT2
Por conseguinte, o termo de convec¢ao na equacao (3.36) converge para zero quando €
tende para zero. A convergéncia dos termos restantes é mais simples de analisar, ja que P.
converge para ¢¥3'(¢(®) em norma L? e G, converge para g3'(¢®)) em norma L? quando

e tende para zero. Portanto, concluimos que:

7 [ a8 @B do = [ 98'(d)B(a") da. (3.42)

Dado que 3 é uma funcao arbitraria de classe C'* com suporte compacto, consideramos
uma sequéncia (,(x), que converge pontualmente para x e cuja sequéncia de derivadas
Bn(x), convergem para 1. Aplicando o Teorema da Convergéncia Dominada e a identidade
(3.42), obtemos a identidade (3.29). O
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Agora, apresentamos o Teorema que demonstra que o termo viscoso na equagao de
balango de enstrofia potencial das equagoes estacionarias de CHG se anula no limite em

que a viscosidade tende a zero.

Teorema 8. Sejam (u™), e (¢™)), sequéncias de solucbes estaciondrias para os sistemas
de equagoes (3.21) e (3.24) respectivamente. Entao, o termo de viscoso da equagao (3.25),
equagao de balango de enstrofia potencial do sistema (3.24), se anula quando a viscosidade

tende para zero. Isto €,

lim v1¢) |2, = 0. (3.43)

Demonstragio. A partir da equagao de balango de enstrofia potencial (3.25), obtemos a

seguinte relacao:

vlld113: = (9,412 = 1a¥ 72, (3.44)
onde g € L?(T?). Em seguida, aplicamos o limite superior na equacao (3.44), o que resulta
em:

lim sup v[|g[[2,s = limsup (g,¢%) , —ylimsup|lg"||Zz.
v—0 @ v—0 v—0

Neste ponto, utilizando o lema de Fatou e levando em consideracao que a sequéncia (q(”)),,

converge fracamente para ¢® em L?(T?), podemos concluir que:

limsup (9,4") , < (9,47),, e [lg@[z: <liminf[|g®||7.

v—0

Consequentemente, obtemos a seguinte desigualdade:
hI,I,lj(l)lp VHq(V)qug < (97 Q(O))L2 - 'Yl‘q(o)”%?'
Finalmente, com base na identidade (3.29), concluimos o limite desejado:
- @2, =
lny g |3, = 0.

Essa conclusao mostra que, quando a viscosidade tende a zero, a dissipagdao de enstrofia

potencial também se anula. O

Em resumo, os Teoremas 5 e 8 estabelecem uma conexao entre as solucoes es-
taciondrias para os sistemas de vorticidade potencial das equagoes de Camassa-Holm
Generalizadas e as equagoes de Euler-a. Essa conexdo mantém propriedades fundamentais,

como a preservacgao da equacao de balanco de enstrofia potencial.
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3.3 Solucbes Estatisticas Estacionarias no espaco fase de Vortici-

dade Potencial

Nesta secao, introduzimos a noc¢ao de solucao estatistica estacionaria para as
equagoes de Camassa-Holm Generalizadas, fundamentada nas ideias dos trabalhos [11, 18].
Tal solugao estatistica estacionaria ¢ definida como uma medida de probabilidade de Borel
sobre o espaco L?. Dado que L? é um espaco de Hilbert separdvel, é possivel destacar um
resultado importante: a o-algebra de Borel associada a topologia forte é equivalente a
o-algebra de Borel associada a topologia fraca. De fato, como a topologia forte é mais
refinada que a fraca, todo aberto na topologia fraca também é aberto na topologia forte.
Assim, segue que todo conjunto de Borel referente a colecao da topologia fraca é igualmente
um conjunto de Borel na topologia forte. Por outro lado, pela separabilidade de L2,
qualquer aberto forte pode ser expresso como uma uniao contavel de bolas abertas fortes.
Como cada uma dessas bolas abertas fortes é, por sua vez, uma uniao contavel de bolas
fechadas fortes convexas, ver ([2], Corolario 3.8), essas bolas fechadas sdo também fechadas
na topologia fraca. Portanto, concluimos que todo conjunto de Borel para a topologia forte
¢é igualmente um conjunto de Borel na topologia fraca.

Outro ponto relevante é que, conforme o Teorema 1.2 de [25], toda medida de probabilidade
de Borel em um espac¢o métrico completo e separavel é uma medida regular. Dessa forma,
qualquer medida de probabilidade de Borel finita sobre L? serd uma medida regular, o

que significa que, para qualquer conjunto de Borel £ em L2, temos:

p(E) = sup {/J(K) : K C E, K compacto em LQ},
p(E) = inf {,u(O) : £ C O, O aberto em Lz}.

Uma consequéncia importante dessa regularidade é que as funcoes em L? podem ser
aproximadas por fungoes continuas. Além disso, outra definicao frequentemente usada
nesta secao é a de suporte de uma medida. Dizemos que uma medida u sobre L? é
carregada por um conjunto mensurdvel F' se este tiver medida total, isto é, u(L*\F) = 0.
Assim, definimos o suporte de uma medida 4 como o menor conjunto fechado que a carrega.
Adicionalmente, utilizamos a definicio de média de uma funcao em relacao a uma
medida jp de probabilidade suportada sobre L?. Seja f : L? — R uma funcao Borel

mensuravel; entao, entendemos a média de f com respeito a medida p como

|, #@ dua)

Finalmente, antes de introduzirmos a nocao de solugao estatistica estacionaria, é necessario
definir a classe de funcionais teste, denotada por 7T, que sera utilizada neste contexto.
Para isso, consideremos inicialmente € > 0 e ¢ € C°(RR, [0, 00)), onde ¢ ¢é simétrica e com

integral igual a 1. Dado ¢ € L?(T?), definimos ¢ (¢q) € C°°(T?,R) como a convolugio da
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funcdo ¢ com ¢, na forma:

pela) = €2 <6> *q.
Ademais, para o caso particular em que € = 0, definimos ¢, = [. Em seguida, dada uma
fungdo 3 € C*(R,R), definimos a aplicacio o, : L*(T?) — L*(T?) da seguinte forma:

oe(q) = @e(B(pe(q))- (3.45)
Assim, podemos definir formalmente a classe de funcionais teste, 7, conforme segue:

Definigao 9. A classe T é o conjunto de funcionais ¥ : L*(T?) — R para os quais existe
N eN, wy,...,wy € C®(T%R) ey € C°(R™ R), tal que:

U(g) == Ue(q) = ¢((0c(q)s wi) 2, (0c(0), w)12)),

U(q) == Ui(q) = & ((pe@)s wi)rz, -, (0e(9), W) 12)
onde o.(q) € definido em (3.45).

Observacgao. Definimos dois tipos de funcionais teste, cada um associado a diferentes
classes de solugoes estaciondrias: as solucoes estaciondarias renormalizadas das equagoes de

Fuler-a e as solugoes estaciondrias das equagoes de Camassa-Holm Generalizadas.

A classe de funcionais T é chamada de funcionais teste cilindricos. Notemos que
esses funcionais sao localmente limitados e sequencialmente fracamente continuos sobre
L2(T?), o que significa que, dada una sequencia (¢, ), C L*(T?) que converge fracamente
para q € L*(T?), temos que

lim ¥(q,) = Y(q). (3.46)

n=yo0
Para demonstrar que esses funcionais sao localmente limitados, consideremos ¥ € T
e um conjunto limitado B C L?(T?). Concentramos nossa analise nos funcionais teste
da forma V., pois o caso ¥, é significativamente mais simples. Dado que ¢ € B, temos
que B(pc(q)) € C*T? R), o que implica que a aplicacio o.(q) € C>®(T? R), e, pela
desigualdade de Cauchy-Schwarz, segue que:

|(0e(q), wi) 2| < lloe(g)]]2[[wil |2,

paracadai=1,..., N eq € B. Assim, como 1 € C®(RY,R) concluimos que os funcionais
U (q) sao limitado para todo q € B.

Agora, para ver a continuidade sequencialmente fraca de ¥, € T em L?(T?), consideremos
a sequencia (g )m C L*(T?) que converge fracamente para ¢ € L?(T?). Queremos verificar
o limite (3.46). Para isso, ¢ suficiente mostrar que a sequencia ((0c(gm), w;)r2)m converge

para (0.(q), w;) 2 para cada i = 1,..., N. De fato, para cada x € T? segue que:

[eclan)(@) = wla)@)] = | [ oo = p)lam(y) — aw)] g
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Como @, é uma fungao teste, a convergéncia fraca da sequéncia (¢, ), implica a convergéncia

pontual de (¢c(¢n)) para (¢.(q)) em T?. Em seguida, dado que § € C?(R,R), temos:

Blpe(gn))(x) — B(pe(q))(x) quando n — oco.

Além disso, 5(¢e(¢m)) € limitada para todo n € N. Logo, como ¢, é simétrica, segue-se
que, para cadai=1,...,N:

lim |, 0e(B(eelgn)))(@)wi(z) dv = Tim | B(pe(gm))(x)pc(wi)(z) do.

m—r0o0 m—ro0 TQ

Aplicando o Teorema da Convergéncia Dominada a sequéncia (5(¢e(gm))@e(w;))m, obtemos:

lim [ B(pe(gm)) (@) @e(wi) () dfcZAQﬁ(we(Q))(w)soe(wi)(x) dz.

m—0oo JT2

Assim, a sequencia ((0¢(gm), w;)r2)m converge para (o.(q),w;)r2 para cada i =1,...,N.
Como ¢ € C*(RM,R), temos convergéncia em cada entrada da funcio 1. Portanto, temos
o limite

U (q) — Ye(q) quando n — 0.

Desse modo, concluimos que os funcionais teste cilindricos sdo sequencialmente fracamente

continuos.

Note-se que, como a convergéncia forte de sequencias implica a convergéncia fraca,
conclui-se que os funcionais teste ¥ também sao sequencialmente continuos em L?(T?).
No entanto, é importante observar que a continuidade forte nao implica, em geral, a
continuidade fraca. Um exemplo ilustrativo dessa distingdo é a funcao norma definida em
um espago de dimensao infinita, a qual mostra que a implicacao inversa nao se verifica

nesse contexto.

A definicao de solucao estatistica estacionaria envolve diversos objetos matematicos,

incluindo a classe de funcionais cilindricos e as derivadas associadas a esses elementos.

A seguir, apresentamos uma analise sobre o calculo das derivadas dos funcionais
teste. De fato, dado que L*(T?) é um espago de Banach de dimensdo infinita, quando
falamos em derivada do funcional ¥, estamos falando de a derivada no sentido Fréchet.

Isto é, dizemos que W é Fréchet diferencidvel em q € L*(T?), se existe um funcional linear
e continuo em L?(T?), denotado D,¥(q) : L*(T?) — R, tal que, para qualquer ¢ € L?*(T?)

1o [P+ 6) = W) = DW()(9)
o [EIE

=0.

Pelo Teorema da representagao de Riesz, existe um elemento W'(q) € L*(T?) tal que:

Dy¥(q)(¢) = (¥'(q), §)r2, (3.47)

para toda ¢ € L?(T?). Agora calculamos a fungao ¥’ (q). Como ¢, : L*(T?) — L?*(T?) ¢

uma aplicagao linear, segue-se, ¢, é continuamente diferenciaveis e uniformemente limitadas
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sobre conjuntos limitados de L?*(T?). Além disso, temos que sua derivada de Fréchet é da

forma:
DQ¢€(Q) ((b) = 90€<¢>7

para todo ¢ € L?(T?). Prosseguimos agora com o calculo da derivada de Fréchet da
aplicacio o, : L?(T?) — L?(T?). Neste caso, como o, nido é uma aplicacio linear, utilizamos
o resultado sobre a existéncia da derivada de Fréchet, que afirma que se as derivada de
Géateaux de uma funcgao existem e sao continuas em um espago vetorial normado, entao
a derivada de Fréchet da funcao existe. Desse modo, inicialmente calculamos a derivada
de Gateaux da aplicagdo o, e, em seguida, verificamos a continuidade dessa derivada em
L?. Especificamente, a derivada de Gdteauz da fungio o, em q € L*(T?) na direcao de

¢ € L*(T?), se existir, é definida como o limite:

Glq)(¢) 1= tim P IFID =D _ )] (3.48)

t—0 t Cdt t=0

Assim, ao aplicar a regra da cadeia e considerando que @, € linear, concluimos que, para
cada ¢ € L*(T?):
G(9)(9) = (8 (9e(q))0e(9))-

Agora, vejamos que para cada ¢ € L?(T?) a aplicagao G(-)(¢) é continua em q € L*(T?).
Para isso, consideremos a sequencia (¢y,), C L*(T?) que converge para q € L*(T?).

Queremos verificar que

lim {|G(gm) () — G(q)(9)][12 = 0. (3.49)

n—oo

De fato, observemos que para cada m € N:

G (gm)(¢) = G(@)(D)Iz2 = ll@e([B'(ve(gm)) = B'(0e(qm))]0e(d))]] 2

Logo, aplicamos a desigualdade de Young para convolucgao, obtemos que:

1G(gm)(9) = G(D) (D)2 < [leel |18 (2e(gm)) = B'(2e(@))]e()] |2

Como 3 € C?(R, R) temos que a 3” ¢ limitada em R. Dessa forma, aplicando a desigualdade

do valor médio para (3’ temos que:

1G(gm)(9) = G(D) (D)2 < Clleellr[[e(D)]| ool |0e(@m) — @e(@)] | 2-

Tomando o limite de m — oo, obtemos o limite (3.49), e concluimos que, para cada
fungao ¢ € L*(T?), a derivada de Gateaux G(q)(¢), ¢ continua em ¢ € L?*(T?). Portanto,

a aplicacao o, é continuamente diferenciavel e sua derivada de Fréchet é da forma:

Dyoe(q)(8) = we(B'(0e(q))pe())

para cada ¢ € L?(T?). Além disso, a partir da estimativa

lloe(@)llz2 < [l@ellLrl|e(@) L= 18" (e(a))]] 22,
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podemos concluir que a aplicagdao o, é uniformemente limitada sobre conjuntos limitados
de L?*(T?). Lembrando que os funcionais teste cilindricos ¥ possuem a forma ¥, e ¥y,
podemos calcular suas derivadas de Fréchet aplicando a regra da cadeia. Desse modo, a

derivada do funcional teste ¥, € T é da forma:

N
D,¥.(0)(0) = 3 b((@) (w8 (pla))e (o) we)
k=1
onde 0yt denota a derivada parcial de 1) com respeito a k—ésima variavel e

y(q) = ((ae(q), w12, -, (0(q), wN)Lz>. (3.50)

Para o funcional teste U; € T a derivada ¢é dada por:

D,V (q Zakiﬂ ( (¢>7wk)L27
onde 01) denota a derivada parcial de 1) com respeito a k—ésima variavel e

7(@) = (e w)ios- - (oula)ww)ie ). (351)

Portanto, a partir da identificacao (3.47), segue-se que V. (q) e W (q) estao definidos como:

= > Wb (Y(Q)p(B (@) pe(wr)) e (g Zé’w De(wr).  (3.52)
k=1

Note que, as fungoes V. (q) e W (q) estao definidas a partir de soma finita de fungoes
suaves no toro e de suporte compacto. Portanto, as fungoes V. (q) e ¥/ (g) s@o suaves no
toro e de suporte compacto. Em particular, calculamos as derivadas parciais de V. (q) de

ordem menor e igual a 2, isto ¢,

= 0 (y(0)0" (8 (p(@) pelw), (3.53)

para qualquer multi-indice m com |m| < 2. De forma similar, temos as derivadas parciais
da fungao ¥/ (q):

o Z Ot(G()) O™ (wy). (3.54)

Por tultimo, tendo em mente que nossa solucao estatistica estacionaria é uma
medida de probabilidade, reescrevemos o sistema de vorticidade potencial das equagoes
estaciondrias de Camassa-Holm Generalizadas como uma aplicagao de L?(T?) para R. Esse

processo € possivel, a partir do produto interno (3.47) para fungbes mais gerais ¢.

Se denotemos o sistema de vorticidade potencial das equagoes estacionarias de

Camassa-Holm Generalizadas por:

DY(q) :=u-Vq—vAI—a’A)q+yg—g e u=—(1-a’A)"'V(-A)"q, (3.55)
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entao a aplicagdo que representa este sistema é da forma:
g € L*(T?) = (D"(q), ¥'(q)) 12,
que esta definida como uma soma de funcionais sobre L*(T?) da forma:

(DY (q),¥(9)),, == Fi(q) + vFa(a) + Fi(a). (5.56)

onde

(a) Fi(g) = (g, (u- V) (q))2;

(b) Faq) = (q, —A(l— 2A)P~1W(q)) 12
(c) F3(q) = (vqg—9,¥'(q))re-

Essas aplicacoes estao bem definidas, ja que a fungdo ¥'(q) é suave com suporte compacto
para toda ¢ € L*(T?). Com base em todas as consideragdes anteriores, enunciamos a

definicao de solugao estatistica estacionaria no espago fase de vorticidade potencial.

Definicao 10. Uma solugdo estatistica estaciondria para as equacoes de Camassa-Holm
Generalizadas no espago fase de vorticidade potencial é uma medida de probabilidade de
Borel u) em L*(T?) tal que:

S Nl 0) < oo (3.57)

D™(q),¥'(q)) ,du™(q) =0, (3.58)
L2(T2) L

para qualquer funcional teste W € T e satisfaz a desigualdade fraca para a enstrofia

potencial dada por:

/E <llall 2 <E: {vllallis +lalli: = (9, 0)s2} di(a) <0, (3.59)
1> 2>42

para 0 < By < Ey < 0.

Observe que, as condi¢oes da Definicao 10 tem sentido matematico. Ja que, os
integrando nas condicoes (3.57) e (3.59) podem ser vistos como fungoes Borel mensuraveis
definidas para toda q € L?*(T?). Isto é, para o integrando da condigdo (3.57), temos que a
funcao:

| - Hilg : L3(T?) — RU{+oc}
¢ — lall.

¢é o limite de uma sequéncia de fungoes continuas, em particular mensuraveis, dada por,

(3.60)

a2, = lim (@)l s
para toda ¢ € L*(T?). Além disso, a partir da condicio (3.59), a qual é uma forma fraca de

desigualdade para a enstrofia potencial, formulamos seguinte proposicao sobre o suporte

da solugao estatistica estacionaria.
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Proposicao 11. O suporte de qualquer solugdo estatistica estaciondria para as equagoes
de Camassa-Holm Generalizadas no espaco fase de vorticidade potencial estd incluido em

um conjunto limitado de L*(T?).

Demonstracdo. Iniciamos a prova, lembrando a definicdo de suporte de uma medida.
Dizemos que o suporte de uma medida é o menor fechado de medida total. Entao, basta

construir um conjunto limitado e de medida total, para concluir nossa Proposicao.

Seja 1) uma solucdo estatistica estacionaria para as equacoes de Camassa-Holm
Generalizadas no espaco fase de vorticidade potencial. Sejam 0 < F; < Es e o conjunto F
definido por:

F={qe ™) : B < llglitaem, < E3}.
Dado que, pela inclusdo de espacos de Sobolev fracionarios, temos H?(T?) C L?(T?),
segue-se que a funcao ||q| ’?{fj é positiva sobre F. Utilizando a condicao (3.59) da Definigao

10, obtemos que
/Fvllqlliz du® (q) S/F(g,q)m i (q).

Em seguida, aplicando a desigualdade de Cauchy-Schwarz ao produto L?, segue que

[ Allliz i (@) < llglles [ llallse dn®(q):

Em particular, como a medida p*) é finita. Obtemos

1
1 2
/F'VHQH%MM‘”)(Q)SHgHLz[u(”)(F)}Z’ /F\Iq\liz du(”)(q)] :

Portanto,
[ lall3 i) q) < 3721gl o) (F).
Esta ultima estimativa, pode-se rescrever como:

J, lalizs = 2119l agen)] di (@) <0, (3.61)

onde F; e E5 foram escolhidos de forma arbitraria. Desse modo, se tomarmos em particular,

E1 =77 |g|lz2 e By = +00. Obtemos que:
0.< [llgllzs = 2lgl =)

para toda E; < ||g||2,. Assim, pela desigualdade (3.61), vemos que u*) = 0. Portanto,

considerando o conjunto F' definido por:

2
F:{mﬂﬂwwumms‘ﬂm}, (3.62)

o qual é limitado e de medida total, u)(F) = 1. Segue-se que, o suporte da medida p®*)

esta contido em F'. O
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Por outro lado, dado que nossa solu¢ao estatistica estacionaria varia em relacao
ao parametro de viscosidade v, induzimos uma sequéncia de medidas de probabilidade
de Borel. Ja4 que nosso objetivo, eventualmente, é estudar a convergéncia fraca dessa
sequéncia de medidas quando a viscosidade tende a zero. Entendemos a convergéncia fraca

de medidas como:

lim [ P(q) d,u(”)(q) = /L2 P(q) dﬂ(0)<Q)7

v—0 /12
para toda P(-) continua, de valor real e limitada definida em L?. E importante distinguir
entre funcoes fortemente continuas e fungoes fracamente continuas. Um fato discutido
quando introduzimos a classe de funcionais teste 7. Desse modo, nosso préximo lema
fornece informagao sobre a continuidade fraca e a limitagao local da aplicacao (3.56)

definida no espaco fase de vorticidade potencial.
Lema 12. Seja U € T. Entao, a aplicagao

g € L*(T?) = (D"(q), ¥'(q)) 12, (3.63)
¢ localmente limitado e fracamente continuo em conjuntos limitados de L?(T?).
Demonstragido. A partir de (3.56) observamos que, para cada q € L*(T?), a aplicagao

(3.63) pode-se decompor em uma soma de aplicagoes F; : L*(T?) — R com i = 1,2, 3,

conforme descrito nos itens (a), (b) e (c¢) de (3.56), da seguinte forma:

(D (9),W(q)) , = Filq) + vFa(g) + Fi(q). (3.64)

Portanto, ¢ suficiente verificar que as aplicagoes F; com i = 1,2, 3 sao limitadas e fracamente
continuas em conjuntos limitados de L?(T?). Além disso, como as fungdes F; envolvem a
funcao W', precisamos inicialmente demonstrar que ¥’ também é limitada em tais conjuntos.
Assim, comecaremos verificando que essa funcao é de fato limitada em conjuntos limitados
de L*(T?).

De acordo com a Defini¢ao 9, precisamos considerar dois casos: as fungoes V. e W/.
A seguir, apresentamos a limitagao para o caso da V.. Seja € > 0 e B um subconjunto

limitado de L?(T?). Assim, para todo ¢ € B, temos a seguinte relagao:

105" (g7 = kX_: /TQ 10k (y(2) 0 e (B (9e(a) e (wi)) | d. (3.65)

Conforme descrito na Definigao 9, sabemos que o.(q) é limitada em conjuntos limitados

de L*(T?). Além disso, como 1 é uma fungao suave, existe uma constante M > 0 tal que:

para todo g € B, onde y(q) é definido como em (3.50). Desse forma, podemos concluir que:

N
105U e(a)ll72 < D My /TQ 00 e (B'(0e(9))pe(wr))| da.
k=1



78 Capitulo 3. Fenomeno de Dissipacio Anomala para a Vorticidade Potencial

Adicionalmente, dado que 8 é uma funcao de classe C? com suporte compacto, temos que

B (0c(q)) € L>(T?) de forma uniforme para todo ¢ € B. Com isso, podemos afirmar que:

(m) / 2 M? 2
050 (B'(pel@)pewn) |, < e [lwnl 22
Como as fungoes wy, com k= 1,..., N sao suaves de suporte compacto, concluimos que:
K
105 W(a)l2= < (3.66)

elml’
onde K ¢é uma constante positiva independente de ¢ € B. Dado que as fung¢oes wy sao
suaves de suporte compacto, podemos estender essa desigualdade (3.66) utilizando os
mesmos argumentos, concluimos que a funcio O™ W/ é limitada na norma LP(T?) para
p > 1. No caso da fungio U/, observamos diretamente da identidade (3.54) que (™ W) (q) é

limitada para toda ¢ € B, pois os termos 0™ ¢, (w;) sdo limitados para todo k = 1,..., N.

Em seguida, mostraremos que a funcao F} é limitada em B, considerando o caso
quando a fungao é V.. De fato, Lembrando que o operador de Bessel—« de ordem —2
definido por: J,? = (I — o?A)~!, ¢ limitado em L*(T?) e que o operador J,? comuta com

o operador Curl. Temos que,
[|Curl(u)|[z2 = [[(T— a®A)q||z2 < [lg]]z2.

Assim, Curl(u) € L*(T?) e consequentemente v € H'(T?). Por outro lado, como V¥’ (q)

é limitada na norma L*(T?), aplicamos a desigualdade de Ladyzhenskaya 2D, e obtemos:
16w D2 < Il [NV

Dado que, pela imersao de Sobolev, H'(T?) C L*(T?), temos que (u - V)W.(q) € L*(T?).

Logo, para qualquer ¢ € B, aplicamos a desigualdade de Holder para a funcao F}, obtemos:

1Fi(@)] = |(g; (u- V)We(q))r2] < llgll 2| (u - V)¥L(q)|] 2 (3.67)

Por conseguinte, Fy é limitado sobre o conjunto limitado B C L*(T?).
Considerando o caso em que a funcao é W', é claro que F; é limitado sobre o
conjunto limitado B C L*(T?). Isso se deve ao fato de que as fungoes Vi (wy) sdo

limitadas para todo k = 1,..., N. Portanto, F; é localmente limitado sobre L?(T?).

A seguir, examinamos a continuidade fraca da funcao Fj sobre B. Ao introduzirmos
a forma de W, conforme apresentada em (3.52), na definigdo de F, obtemos a seguinte

expressao para [:

L2’

Filg) = 3 0t (1(0)) (4 (- V)pe(B'(9e(a))pe(wr))

Em seguida, aplicamos integracao por partes e usando o fato que o molificador é simétrico,

podemos rescrevermos F) da seguinte forma:

Fi(g) = = L 0w(y(@) (ee(B' (0@ pel (- V@), wi) .
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Neste ponto, para concluir a continuidade fraca de F}, aplicamos o Teorema da convergéncia
dominada de Lebesgue a cada uma das fungoes que compoem Fi, mantendo a funcao
correspondente wy, fixa, com k =1,..., N. A partir disso, o que resta é demonstrar que
as sequéncias que compoem F; convergem pontualmente e sdo uniformemente limitadas.
Primeiro, consideramos o caso em que a fungdo é W’. Seja a sequéncia (¢'); C L*(T?)
tal que converge fracamente para ¢ € B. Dado que o operador (I — o?A)~! é compacto,
segue-se que a sequéncia correspondente de campos de velocidade (u?); converge fortemente
para o campo u € L*(T?), a qual corresponde & fungao limite ¢ € L?*(T?). Observemos

que, para cada z € T?:

pl(u'- V)Y @) = = [ (' V)gula = y)d'(y) dy,

para todo ¢ € N. De forma analoga como foi tratada a parte nao linear no Teorema 5,
temos que
pe((u' - V)g') (@) — ¢e((u-V)g)(z) quando i — 0.

Dessa forma, a sequencia ¢ ((u’ - V)q')(z) converge para ¢ ((u - V)q)(z) para todo = € T?,
e pela desigualdade de Holder, obtemos:

[oe((u - V)q) (@) < [[ulla|[Vipel s Il -

Assim, ¢ ((u - V)q) é uniformemente limitada para todo ¢ € B. Por outro lado, como a
funcao (3 é de classe C? e a funcdo ¢ é suave, temos entdao, que a sequencia 3'(.(q"))
converge pontualmente para 3'(p.(q)) e a sequencia dxth(y(q')) converge pontualmente

para Oy (y(q)). Portanto, o termo

O (y(a"))pel B (pe(a))pe((u' - V)q')],

converge pontualmente e é uniformemente limitado para cada k = 1,..., N. Com essa
informacao em mente, aplicamos o Teorema da convergéncia dominada de Lebesgue para

concluir que:
lim F1(¢") = Fi(q). (3.68)

1—>00
Para o caso em que a fungao é W', aplicaremos novamente o Teorema da convergéncia
dominada de Lebesgue a cada funcao que compoe F;. Considerando que a funcao Fi,

avaliada na sequencia fracamente convergente (g');, estd definida da seguinte forma:

Fi(e) = X 0 (@la) (¢ (0 - V)oelun)

Como ¢(wg) é uma fungao teste para cada k = 1,..., N, de forma andloga como foi
demonstrada a convergéncia da parte nao linear no Teorema 5, segue a convergéncia do

termo:

(qi> (u' - V)SOE(wk))LQ — (q, (u- V)c,ae(wk))L2 quando i — o0. (3.69)
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Além disso, como a funcao 1 é uma funcao suave e a sequencia (q'); converge fracamente

para q € L*(T?), obtemos que

Y (@(q")) — w(¥(q)) quando i — oo, (3.70)

Assim, das convergéncias (3.69) e (3.70), temos que F} é fracamente continua sobre B.

Em seguida, mostraremos que a funcao F, ¢é limitada e fracamente continua
sobre o conjunto limitado B. Note que, a funcao F, estd bem definida pelo fato que
AT — a?A)P~10" € L2(T?), isso é possivel, porque ¥’ é uma fun¢do suave no toro. Por

conseguinte, obtemos a limitagdo da fungao F5, ao aplicar a desigualdade de Holder. Isto é,
B = (g, AT = a?A)7710) 12| < []gl[ 2| AL — @A)~ 2 (3.71)

para todo q € B. Portanto, Fy é localmente limitado em L?(T?).

A seguir, examinamos a continuidade fraca de F, sobre o conjunto limitado B,
considerando o caso em que a fungao é V.. Seja (q’)Z - L2(T2) uma sequencia que converge
fracamente para g € B. Observe que, ao incorporarmos a forma de ¥’ e avaliando ¢* na
funcao Fy, obtemos que

L2

N
Fy(g") = > 0k (y(g) (@', (—A) T = a®A) o (B (e(d)) pe(wr)) -
k=1
Dado que o operador —A(I — a2A)#~1 ¢ auto-adjunto e usando o fato que o molificador é
simétrico, rescrevermos F5 da forma:

L2

Fy(¢") = ;; 0 (y(@)) (2B (@) (=A) T = ”A) (¢, wi)

para todo 7 € N. Neste ponto, para concluir a continuidade fraca de F5,, aplicamos
o Teorema da convergéncia dominada de Lebesgue, novamente. Desse modo, devemos
verificar a convergéncia pontual e a limitacao uniforme das fungoes que componem a Fj.
Dado que, no caso anterior, ao analisarmos a continuidade fraca de F}, verificamos que
as sequencias (Y (y(q")))i e (8 (¢c(q"))); convergem pontualmente e sdo uniformemente
limitadas. Basta verificar, que a sequencia (—A(I—a2A)? 1. (¢')); converge pontualmente
e é uniformemente limitada. De fato, para qualquer z € T? e utilizando a linearidade do

operador A(I — a2A)?, obtemos que:

AT - 0?8 (plq) = p0)) ()] =
5 L= aay o () - o) dy

€2 Jr2 €

Dado que ¢ é uma funcio suave com suporte compacto e a sequencia (¢'); converge
fracamente para ¢, temos que a sequencia A(T — a?A)?~Lp(¢")(x) convergéncia para
A(I — a?A)P~ Lo (q)(x) para todo z € T2
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Por outro lado, a limitagdo uniforme da sequencia (A(I—a?A)* Lo (¢'));, segue de aplicar

a desigualdade de Holder. Isto é, para todo x € T2, temos:

<A(]I - a2A)'3190(. —

€

A= a®A) o) (2)] = €2

L i i
)7Q) ’SMH(]HL?;
L2

como B é um conjunto limitado de L?(T?) e a sequencia (¢'); converge fracamente para
q € B, segue que a sequencia (A(T — a?A)P~1p(¢")); é uniformemente limitado. Portanto,

para cada k=1,..., N, o termo

O (y(q")pe[B (pe(d) AT — *A)  oc(q')],

converge pontualmente em T? e é uniformemente limitado. Desse modo, aplicando o
Teorema da convergéncia dominada de Lebesgue, concluimos que a funcao F, é fracamente
continua sobre o conjunto B. Para o caso em que a fungao é U, simplesmente usamos a
convergéncia fraca da sequencia (¢');. De fato, considerando que a fungao F», avaliada na

sequencia fracamente converge ¢', estd definida da forma:
N
Fy(q') = Y. ae@(a) (¢ A= a?A)" g (wy)) .
k=1

Usando o fato que a sequencia (9x%(7(q"))); é uniformemente limitado e as funcoes ¢, (wy)
sdo suaves no toro, obtemos, para cada k= 1,..., N, que:

(qi —q, A(I — QQA)ﬁ’lwk)

2|

1F2(¢") — F(q)] < M};

Assim, pela convergéncia fraca da sequencia (¢‘);, concluimos a continuidade fraca da

aplicagao Fy sobre o conjunto B.

Em seguida, mostraremos que a funcao Fj é limitada e fracamente continua sobre

o conjunto limitado B. De fato, lembrando que F3 é da forma:

F3(q) = (vqg — 9, V') 2.

Vemos que, a limitagdo da funcao F3 é uma consequéncia direta da desigualdade de
Holder. A continuidade fraca de F3 também é facilmente verificada. De fato, seja (¢*); uma

sequencia que converge fracamente para ¢ € B. No caso em que a fungdo é V., vemos que

Bld) =3 O (y(a) (0B (weld)prd’ = 9),wn) .

Dado que as sequencias ¢.(¢*) e p.(vq" — g) convergem pontualmente no toro e sdo unifor-
memente limitadas, segue que a sequencia . (3 (¢c(q")pc(vq" — g)) converge pontualmente
toro e também ¢é uniformemente limitada. Portanto, aplicando o Teorema da convergéncia
dominada de Lebesgue, para cada funcao wy fixa, concluimos a continuidade fraca de Fj

sobre o conjunto B. Para o caso em que a fungao é U, vemos que

F(q") = kz_: 3k¢@(qi))<7qi -9 ‘pe(w’“))m'
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O qual, pela convergéncia fraca da sequencia (¢*); é facil ver que Fy é fracamente continua

sobre o conjunto B. De todo o anterior, concluimos que a aplicac¢ao:
q € LA(T%) = (D")(q), V()12

¢ limitada e fracamente continua sobre conjuntos limitados de L?*(T?). ]

A seguir, enunciamos a definicdo de solugao estatistica estacionaria renormalizada
no espaco fase de vorticidade potencial para as equacoes de Euler-a, tendo em mente,
que para esta defini¢ao utilizamos os funcionais teste associados a solugoes estacionarias

renormalizadas, denotadas por V., para as equagoes de Euler-a dadas na defini¢ao 9.

Definicao 13. Uma solucao estatistica estaciondria renormalizada para as equacoes de
Euler—a no espago fase de vorticidade potencial € uma medida de probabilidade de Borel
w em L2(T?) tal que:

Sz (@, @) () = 0 (3.72)

para todo funcional teste V. € T e onde D(q) € a parte inviscida de (3.55), definida por
D(g):=u-Vqg+vqg—g e u=—(1-a’A)'VH(-=A)"q. (3.73)

Além disso, o integrando de (3.72) é a soma das aplicagées dadas na decomposicio (3.64).

Isto é,
(D(q), Ue(q))r2 = (g, (u- V)Vq)) 2 + (vq — 9, ¥(q)) 2 (3.74)

Dizemos que uma solucao estatistica estacionaria renormalizada u satisfaz o balango

de enstrofia potencial se

/LZ(TQ) {114l22(r2) = (9, @)r2r2) | du(q) = 0. (3.75)

Com esta defini¢ao, finalizamos a se¢ao referente ao desenvolvimento das solucoes estatis-

ticas estacionarias e seu respectivo limite inviscido.

Observagao. Na definicio anterior, utilizamos os funcionais teste U, : L*(T?) — R para
0s quais existe N € N, wy,...,wy € C*(T% R), 8 € C*}(R,R) e € C®(R",R), tal que:

Ue(q) = ¥ ((pe(Bec(@)s wi)r2, - (pe(B(oe(0))), wn)r2),

onde @ (-) € um molificador estandar simétrico.

3.4 Compacidade Relativa e Balanco de Enstrofia Potencial

Nesta se¢ao, enunciamos dois Teoremas relevantes para nosso estudo do fenémeno
de dissipacao anomala de enstrofia potencial paras as equacoes de Camassa-Holm Genera-
lizadas. O primeiro Teorema, aborda a existéncia de uma subsequéncia convergente de
uma sequéncia de solugoes estatisticas estacionarias dada. Para este objetivo, utilizamos o

Teorema de Prokhorov, ver [18, 27], que recordaremos para maior clareza.
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Teorema 14 (Teorema de Prokhorov). Seja (p,), uma sequencia de medidas de probabili-
dades de Borel sobre S uma espago métrico completo e separdvel. Entdo, a sequencia (pn)n
possui uma subsequéncia fracamente convergente se e somente se, para cada € > 0, eziste

um conjunto compacto K. em S tal que p,(K.) > 1 — € para todo n € N.

O Teorema de Prokhorov é uma ferramenta usada na teoria da medida e probabilidade
que fornece uma condigao suficiente para a compacidade de conjuntos de medidas de
probabilidade. O segundo Teorema estabelece que o limite obtido no primeiro Teorema,

satisfaz a propriedade de balango de enstrofia potencial para as equagoes de Euler—a.

Antes de avancarmos, é util lembrar que, Se X é um espaco métrico completo e
separavel, entao toda medida de probabilidade de Borel 1 em X possui a propriedade de
que, para cada € > 0, existe um conjunto compacto K, em X tal que pu(K,) > 1 — €, ver
([25], Teorema 3.2).

A seguir, enunciamos o Teorema sobre a compacidade relativa da familia de solugoes

estatisticas estacionarias para as equagoes de Camassa-Holm Generalizadas.

Teorema 15. Seja (,u(”))y uma sequencia de solucoes estatisticas estacionarias das equagoes
de Camassa-Holm Generalizadas no espago fase de vorticidade potencial. Entdo, existe
uma subsequéncia, denotada também por (1)), e uma solugdo estatistica estacionaria
renormalizada p, para as equacoes de Fuler-a no espaco fase da vorticidade potencial. Tal

que

lim [ A@)du(q) = [, Ala)du(o) (3.76)

v—0 J 12(T2) L2(T?)

para toda fungdo de valor real fracamente continua e localmente limitada A.

Demonstracao. De acordo com a Proposicao 11, o suporte da medida de probabilidade de

Borel 1) esta contido na bola fechada e limitada (3.62), definida por:
2 2
F:{q€L2(T2) : HqHLQSW’}

Dado que o conjunto F' é limitado e fracamente fechado em L?(T?), concluimos que F
¢ fracamente compacto em L?(T?), ver ([2], Coroldrio 3.22). Logo, ao dotarmos F com
a topologia fraca de L?(T?), obtemos que a topologia fraca em F é metrizavel, ver ([2],
Teorema 3.29). Assim, F' é um espago métrico, fracamente compacto, separavel e completo.
Como a sequencia de medidas de probabilidade de Borel (1)), estd contida no espaco
métrico F', podemos aplicar o Teorema de Prokhorov, que nos garante a existéncia de
uma subsequéncia convergente denotada por (1)), e de uma medida de probabilidade
de Borel 1 tal que:
lim [ Alg)du(@) = [ A@)dn®(q),

v—0JF
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para toda funcao continua e limitada de valor real A, definida sobre F'. Podemos estender
a medida de probabilidade de Borel p® para L?(T?) dada por:

w(E) = pO(ENF) paratodo E C L*(T?).

Observe que p(L*(T?)\F) = 0, dado que F' é fracamente fechado. Portanto, a extensao p
é uma medida de probabilidade de Borel sobre L*(T?).

Em seguida, vamos a demonstrar que a medida p é uma solucao estatistica estacio-
naria renormalizadas para as equagodes de Euler—a. Ou seja, mostramos que a medida de
probabilidade de Borel p, satisfaz a condigao (3.72). De fato, seja ¥ € T. Como o suporte
da sequencia (1)), esta contida na bola limitada F, e de acordo com o Lema 12, segue-se
que a aplicagao:

1 € LA(T?) — (DY) (q), ¥(q)) 12, (3.77)

é limitada e fracamente continua sobre F. Portanto, pela decomposigao (3.64) da aplicacdo
(3.77), obtemos que, para cada i = 1,2, 3 as fungoes F; sdo limitadas e fracamente continuas

sobre F'. Além disso, temos as seguintes convergéncias:

liy [ Fila)du(a) = [, Fia)du(o) (3.78)

v—0 JL2(T?) L2(T?)

Em particular, como que a sequencia

[ 1o Pol@) d (@)
L2(T?2)

¢ limitada, segue-se que:
lim 1// Fy(q) du™(q) = 0. (3.79)
L2(T2)

v—0

Por outro lado, como p*) é uma solucdo estatistica estacionaria para as equacoes de

Camassa-Holm Generalizadas, sabemos, por defini¢ao, que:

/LQ(TQ) <D(V)(Q)a \I’/(Q)>L2 du(”)(q) =0.

Utilizando a decomposigao (3.64) e isolando o termo viscoso, obtemos que:

Fi(q) + Fy(q) du® :—/ Fy(q) dp® .
/mr?) 1(q) + Fs(q) dp™ (q) = —v . 2(q) dp

Ao Fazer tender v para zero, vemos que:

/LQ ) <D(Q), ‘P’(Q)>L2 dp(q) = lim Fi(q) + F3(q) dp(q) =0,

v—0 J12(T2)

o que satisfaz a condigdo (3.72) da Defini¢ao 13. Portanto, u é uma solugao estatistica

estacionaria renormalizada das equacoes de Euler-a no espaco fase de vorticidade potencial.
]
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Para o préximo teorema, consideremos a bola fechada definido por:
F=(r):={qe F : |lqlle <7}

para r > 0.

A seguir, enunciamos o teorema que estabelece que a solucao estatistica estacionaria
renormalizada para as equacgoes de Camassa-Holm Generalizadas, encontrada no Teorema

15, satisfaz o balanco de enstrofia potencial.

Teorema 16. Seja (1)), uma sequencia de solugdes estatisticas estaciondrias das equagoes
de Camassa-Holm Generalizadas no espaco fase de vorticidade potencial. Suponhamos que
existe r > 0 tal que o suporte da sequencia (")), estd contido no conjunto F>(r). Entdo,
o limite p de qualquer subsequéncia fracamente convergente é uma solucao estatistica
estacionaria renormalizada para as equacgoes de Euler—a. Além disso, essa solugdo estd

suportada no conjunto F*°(r) e satisfaz o balango de enstrofia potencial descrito em (3.75).

Demonstracao. Primeiramente, demonstraremos que a medida de probabilidade de Borel
i estd suportada em um conjunto do tipo F°°(r) para algum r > 0. Com base no Teorema
15, sabemos que o limite p de qualquer subsequéncia fracamente convergente da sequencia
(™)), é uma medida de probabilidade de Borel em L?(T?) que satisfaz a condicdo (3.72)

da Defini¢ao 10. Além disso, assumimos que existe um o > 0 tal que
supp p) € F=(ry), (3.80)

para todo v > 0. Como F*(rq) é fracamente fechado em L?*(T?), segue-se que seu conjunto
complementar U = L*(T?)\F>(r) é fracamente aberto. Assim, pelas propriedades da
convergéncia fraca de medidas, temos:
< limi (v) ‘
p(U) < lim inf p(U)

Como p¥) estd suportada em F*(ry), concluimos que u(U) = 0. Portanto, a medida p

esta suportada em F'*(r).

Na segunda parte, demonstramos que a medida limite p satisfaz o balanco de enstrofia
potencial descrito em (3.72). Para isso, construimos uma sequéncia adequada de funcionais

teste cilindricos ¥,, ., para definir uma sequencia de aplicacoes da forma:

q € LA(T%) v— (D™(q), ¥}, (q))12. (3.81)

) T m,e

Logo, aplicando o Teorema da convergéncia dominada & sequencia (3.81), com relacao a

medida p, veremos que a medida p satisfaz o balango de enstrofia potencial (3.72).

Para simplificar a notagao, assumiremos que g.(x,t) = ¢.(q(z,t)). De fato, sejam
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e > 0 fixo e a sequencia (wy), C C°(T?), o qual é uma base ortonormal em L?(T?). Em

base a Definicao 9 temos que, para cada m € N fixo, definimos o funcional ¥,, . em 7 por:

1 m
Uine(9) = 5 2 1(0c(9) wi) 2| (3.82)
k=1
com ,(2) == 3 37y |2|? para todo z € RY. Por (3.52), que define a forma das fungoes
W, para cada m = 1,...,m, temos que:

W, (0) = 3 (0ela) )iz o)

Por outro lado, dado que V - u = 0, segue que (u-V)qg =V - (u ® q). Assim, ao aplicar
o molificador ¢(+), temos que ¢ ((u-V)q) =V - (p(u ® q)). Para simplificar a notagao,
assumiremos que V- (p.(u®q)) = V- (u®q).. Além disso, como ¢(z,t) := Curl(I—a?A)u
com q € F>(rg), entdao u € H3(T?) e consequentemente u ® q € L°°(T?). Em particular,
V- (u®q). € L*(T?). Desse modo, o termo ¢.(D(q)) € L*(T?). Agora, pela simetria do
molificador ¢.(+), a sequencia de aplicacdes (3.81), induzida pelas fungées W7, é dada

por:

(D(a), ¥y, (@) 22 = i(ge(Q)>wk)L2 (B (@ )ee(D(@))), i) (3.83)

para cada m € N. A seguir, mostraremos que a sequencia (3.83) é uniformemente limitada
com rela¢ao a m e ¢ € F*°(ry). Para isso, utilizamos a decomposigao (3.74) da aplicagao

(3.81) e a identidade de Parseval. De fato, seja ¢ € F*°(ry). Observemos que:

NE

(D(q), 97, (@) 2

(0c(@), wi)1z (we(B (a)e (D)) i)

>
Il

1

hE

<

(pe(B (@)ec(D(a) we)

|(0c(q), wi)2

k

Il
—

Dado que (wg)x é uma base ortonormal em L?(T?) e pela identidade de Parseval, temos

que

(D), ¥, @)iz] < | (0:(0). 2B ()2 (D@)

Claramente, este ultima estimativa nao depende de m. Logo, utilizando a decomposicao

L2

(3.74) da aplicagao (3.81), concluimos que:

(D), ¥, (@)ez] < | (0c0), 0l (apcl - V),

+ ‘(oe(q), Pe(8'(qe)pe((vg — g))))m

. (3.84)

O proximo passo sera estimar os dois termos do lado direito da desigualdade

(3.84). Para isso, estabelecemos uma informagoes ttil neste processo. Dado que 5 é uma
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funcao de classe C? de valor real com suporte compacto, existe uma constante positiva M,

independente de x, tal que, para todo x € R:

1B(2)| + |8/ (x)] + 8" ()] < M.

A seguir, examinamos o primeiro termo da desigualdade (3.84). Observemos que:

(0c(@), pe(B'(g)9e(u- V), = (0:(0), 0B (a)V - (@ q)e)) -

Lembrando a defini¢do de o () dada em (3.45), vemos que para todo ¢ € F*(rg)

0e(q) 7= @e(B(ge))

¢é uniformemente limitada. Assim, aplicando a desigualdade de Cauchy-Schwarz, segue-se
que

\(ae<q>, (B (g )pc(u- V) ,| < M|V - (u@ q)]|2. (3.85)

O segundo termo do lado direito da desigualdade (3.84), é mais simples de estimar,

ja que (yq — g) € L*(T?). Para este fim, basta aplicar a desigualdade de Cauchy-Schwarz

e o fato que o.(+) é uniformemente limitada em F**°(rg). Isto é,

‘(ae(q), Pe(B'(ge)pe((va — g))))Lz

< M||(vg — g)|| - (3.86)

Dado que ¢ € F'*(ry), as estimativas (3.85) e (3.86) sao independentes de ¢. Portanto, a
sequencia ((D(q), ¥}, (q))r2)m € uniformemente limitada para todo g € F**°(rq).

Para ver a convergéncia pontual, simplesmente devemos ter em consideracao que:
A sequencia (wy); ¢ uma base ortonormal em L?(T?) e a identidade de Parseval. Assim,

para qualquer ¢ € F*°(ry) obtemos que:

m

lim (D(q),¥;, ()12 = lim > (0c(q), wy) L2 (906(6,<q6)906(D<Q)))7wk>L2

m—00 ) m—00
k=1

- ki (0c(8'(g0) (D)), (e(q), wk)szk)L2
— (0la) 2Ba2 D))

Desse modo, temos a convergéncia pontual da sequencia ((D(q), ¥}, (q))z2)m para todo

q € F>(rg). Logo, aplicamos o Teorema da convergéncia dominada, e obtemos que:

lim | (D(q), ¥}, (q))1> du(q) = /L (09), (B (a)p(D(@))) , dnla),  (3.87)

m—oo Jr2

para todo € > 0. Como p é uma solugao estatistica estacionaria renormalizada, segue da
condigao (3.72) da Defini¢ao 13 e a identidade (3.87) que:

1, (0@ 0.8 (@)¢ (D)), dnlg) = 0, (3.85)
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para todo € > 0. Dado que D(q) é o termo inviscido das equagbes estaciondrias de

Camassa-Holm Generalizadas, a integral em (3.88), pode ser reescrita como
Hg+ Kge =0, (3.89)

onde cada termo é da forma:

Hsei= [ (o). w8 @)l (v = 9))) ., dula).

Kie = [, (0e0). 2B @)V - (0©9).)) ., dua).

Com o objetivo é estabelecer o balango de enstrofia potencial dado em (3.75),
demonstraremos que, para uma sequéncia adequada de fungoes 3, o termo Kg, converge
para zero, enquanto o termo Hpg,. converge para o balanco de enstrofia potencial quando €

tende a zero.

Sejam € > 0 fixo e uma sequencia de fungoes de suporte compacto (8,), que

convergem uniformemente para:
Bp(x) — z, Bl(x) — 1, pBl(x) — 0 quando n — oo (3.90)

sobre o conjunto
B, = | 2llglle 2llgllz
8 8

Podemos construir um exemplo particular desta sequencia de funcoes 3, da seguinte

maneira: primeiro, consideramos a sequencia de fungoes

hp(z) =2 — —

n

para todo x € R e n € N, que satisfaz as convergéncias uniformes de (3.90) em F>. Em
seguida, tomamos a fun¢ao W(z) do tipo “Bump function” com suporte em um conjunto

compacto K D F,. Finalmente, definimos a sequencia de fungoes
Bu(x) := U(x)h,(7) € C?(R,R).

Em particular, a sequencia (3,), satisfaz as convergéncias uniformes de (3.90) sobre Ej.

Por outra parte, consideramos as sequencias de composigdes que convergem uniformemente:

De fato, a sequencia £,(qe), 8,(qe) e 52 (qe) estdo bem definida devido a desigualdade (3.20),
que relaciona a norma L* e a norma L? da vorticidade potencial. Além disso, existe uma

constante positiva My, tal que

B (qe)l +167(ge)| + 157 (ge)| < M. (3.92)
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Com todo o anterior, vejamos que

lim (lim sup K,Bn,e> =0. (3.93)

e—0 n—00

De fato, aplicando integracao por partes no integrando de Kj, ., obtemos que:

(0@ 28,00V - (0 )),, = = [, Vaoda) - eBila)(w @ q)) da
— [, o @2 B(a) Vot - (u @ ) da

onde
V.0e(q)(x) = 0c(B,(q0) Vae) (x)

para todo z € T?. Logo, utilizando a identidade (3.37) e (3.38), podemos rescrever o termo:

(u® q)e = pe(u, q) + (ue ® qc) (3.94)
pe(t, q) == 1e(u, q) — (U —ue) @ (¢ — qe). (3.95)

Dessa forma, a primeira integral do integrando de Kjp, . rescreve-se como:

(0:la). 2B (0)V - (0@ 0))) , = = [, Vaoula) - ¢lBlapclu,0)) do
~ [, Voo 0B (a) (e @ 0.) do
- [, o @80 Vit - () do

- /T? I, (0) + 15, (a) + I, (q) du. (3.96)

Observe que as fungdes Ij (¢) com i = 1,2,3 sdo funcoes continuas para cada g € L*(T?).
Para e > 0, podemos ver que as funcoes [}gme com i = 1,2, 3 sao uniformemente limitadas
para todo ¢ € F'*(ry). Além disso, tomando o limite da sequencia de fungoes 3/ como em
(3.91), obtemos que

lim o (q)ec(By(qe)Vage - (4@ q)e)(z) =0

n—oo

para todo z € T?. Logo, pelo Teorema da convergéncia dominada, segue-se que:

lim | 0(q)¢(Br(q)Vge - (u® q).)dx = 0. (3.97)

n—oo J12

Por outro lado, tomando novamente o limite da sequencia de fungoes /3, como em (3.91),

obtemos que

lim V,.0e(q) - 0c(87,(qe) (e @ qe))(7) = (V) - pc(ue ® qe)) ().

n—0o0

Novamente, aplicamos o Teorema da convergéncia dominada, e obtemos que:

lim /]1‘2 Ver(Q) : 906(5;1((16)@66 ® QE)) dr = /11‘2 906<Vq6) ) <p€(u€ ® qe)) dz.

n—oo
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Dado que utilizamos o mesmo molificador para as fungoes Vg, e u ® ¢., ao aplicar

integracao por partes, vemos que:

L #dVa) - ecuc®a))dr =~ [ o @) - o Va) da.

Consequentemente, o em limite ¢ igual a zero. Isto é,

lim /11‘2 V20(q) - 0Bl (qe)(ue ® go)) dx = 0. (3.98)

n—o0

Para examinar a primeira integral de (3.96), é necesséario ter um pouco mais de
cuidado, dado que nossas estimativas para as fungoes ]éme com ¢ = 1,2,3 dependem
de € > 0. Em particular, para as fungoes Igme el gme o problema foi resolvido ja que a
convergéncia pontual ou era zero ou a integral desse limite era zero. No entanto, para a
funcao I én,e, desenvolvemos a estimativa, apresentando a dependéncia de €, e logo indicamos
que termo ajuda a eliminar a dependéncia de e. Lembremos que, devemos fazer € tender a

zero. Por isso, é importante de eliminar a dependéncia do € na estimativa.

Notemos que,

‘ /T Vi0e(q) - (B (qe) pe(u, q)) d

< [ |V.odao e Bulaoutu. )| do
- /]I‘2 SDE(B;L(QE)VJUQE) %(%(%)Pe(%q))‘ dx

Dado que ' é limitada, conforme (3.92), seja C' uma constante positiva tal que

[ Veoda) - o8 lapdua) de| < C [

< Cre Mlpe(u, q)l| e

el pelu, @))(x)| d

para todo ¢ € F*°(rg). Logo, pelo Proposi¢ao 25 do Apéndice B, temos que

[1pe(u; )l[zr < Mi€®|| V|2l ql] -

Portanto, a primeira integral em (3.96) é estimada da seguinte forma:

’/]1‘2 v10'5<q> ' ()06(61/1((]6)/)6<U7Q)) dx < MEHVUHLQHQ|’L27

onde a constante M ¢é positiva e independente da sequencia de fungoes (,,. Logo, aplicando
o Lema de Fatou para a sequencia de fungoes (3, temos que

timsup [ [ Vaouq) - eBilapdu. ) de dyu(q) < M|Vl 12 lgl] o
Finalmente, fazemos € tender a zero na desigualdade anterior, e obtemos:

tiny (lmsup [ [ V,0(0) - 03, (a)pu(u,0) dodu(a)) = 0. (399)

e—0 n—00

Juntando, (3.97), (3.98) e (3.99), concluimos que o limite (3.93) é zero. Logo, pela identidade

(3.89), que relaciona os termos Hg, . ¢ K, ., obtemos que

lim (hm sup Hng) = 0.

e—0 n—00
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Por outro lado, como Hg, . estd definido da forma:

Hpg, o= /L (0e(@), (Bl (g )pe((va = 9)))) ,, disla)-

Em base a estimativa (3.86) e na convergéncia pontual do integrando de Hg, ., aplicamos
o Teorema da Convergéncia Dominada para concluir que

lim (limsup H5n76> = /L? {7||q||%2 - (Q,Q)m} dp(q).

e—0 n—00

Mostrando que a medida limite u, satisfaz o balango de enstrofia potencial descrito em
(3.75). m

A seguir, finalizamos este capitulo com uma secao destinada ao estudo das médias
temporais de logo prazo, e como estas sao relacionadas com as solugoes estatisticas

estacionarias.

3.5 Meédias Temporais de Longo Prazo

Nesta se¢ao, estudaremos as solucoes estatisticas estacionarias obtidas das médias
temporais de longo prazo das solucoes das equagoes de Camassa-Holm Generalizadas. Isso,
serd possivel através da noc¢ao de limite generalizado, o qual chamaremos de limite de
Banach. Esta relacao entre solucao estatistica estacionaria e médias de longo prazo, nos
permitira demonstrar que a dissipacao de enstrofia potencial média no tempo desaparece

quando a viscosidade tende para zero.

Antes de introduzir a definicdo de limite de Banach, consideramos o espaco
BC([0,00)) como sendo o espago de Banach de todas as fungoes continuas e limitadas de

valor real definidas em [0, 00) e dotado com a norma supremo.
Definicao 17. O limite de Banach, é um funcional linear e limitado
LIMr o : BC([0,00]) — R

tal que, para toda g € BC([0, 00])

(i) LIMr_(g) >0 com g > 0;

(i1) LIMr_oo(g) = limp_o0g(T), sempre que o limite usual existir.

O funcional LIMr_, ., é construido como uma aplicagdo do Teorema de Hahn-
Banach. Portanto, o limite de Banach nao é tnico, pois depende da extensao escolhida, ver
o livro de Foias ([18], pag 225). Esse fato, ndo é uma restri¢ao ji que podemos construir

o limite de Banach da melhor maneira. Por exemplo, dada uma funcao go € BC([0, 00))



92 Capitulo 3. Fenomeno de Dissipacio Anomala para a Vorticidade Potencial

fixa, e uma sequencia T; — oo, para a qual go(7;) converge para £. Entao, existe um limite
de Banach LIM,_,.,, tal que
LIM;—y(g0) = L.

Isso significa que, pode-se escolher um limite de Banach de tal maneira que obedeca

LIMr_o(g) = limsup g(7T). (3.100)

T—00

para qualquer g € BC([0,00)). Este fato sera de grande importéncia para provar nosso
teorema principal sobre a dissipacao anémala. Além disso, o limite de Banach satisfaz o

seguinte desigualdade:

lim inf g(T) < LIMr—.50(g) < limsup g(T),
—00

T—o0

para toda g € BC([0,o¢]), para mais detalhes ver o livro de Foias ([18], pag 226).

O préximo Teorema fornece um resultado crucial para nosso trabalho, pois relaciona

as médias temporais de longo prazo com as solugoes estatisticas estacionarias.

Teorema 18. Sejam v > 0 fizo e ¢%) uma solucio das equacées de vorticidade potencial
das equagoes Camassa-Holm Generalizadas com dado inicial qo € L*(T?) e for¢camento

g € L3(T?). Seja LIMy_,o, um limite de Banach. Entdo a aplicagio
1 /T
O LIMT_M?/ B(q™(-, 5)) ds (3.101)
0

para toda ® € C(L*(T?);R) define uma solugio estatistica estacionaria pu*) para as

equagoes de Camassa-Holm Generalizadas no espaco fase de vorticidade potencial. Isto é,
LIMr [ @(q® d ®(q) du™
o= (-, = “(q). 3.102
rop [ 25 ds= [ () du(g) (3.102)
A solugio ) estd suportada sobre o conjunto
F*={q€F :|lq||lt~ < R}, (3.103)

onde R é uma constante positiva dada na desigualdade (3.20). Além disso, satisfaz a

desigualdade
/LQ(TQ) {vllall2z +lallZ= = (9,0)12 } du(q) <0. (3.104)

Demonstragio. Primeiro, demonstraremos a identidade (3.102), que relaciona o funcional
das médias temporais, construido a partir da solucao das equacoes de Camassa-Holm
Generalizadas no espago fase de vorticidade potencial, a uma medida de Borel. Para
este objetivo, utilizaremos o Teorema de Representacao de Kakutani-Riesz em espagos
compactos, ver ([18] p. 221), e o conjunto compacto utilizado neste caso é semi-érbita

positiva gerada pela solucao das equagdes de Camassa-Holm Generalizadas no espago fase
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de vorticidade potencial a partir de um determinado tempo.

De acordo com o Lema 4, a semi-Orbita positiva
O (g0, to) = {¢“(-, s + 1) € L*(T?) : s > 0} (3.105)

é relativamente compacta em L?(T?). Podemos considerar a semi-érbita a partir do tempo
to > 0, tal que ¢")(-,s 4+ ty) € F para todo s > 0, com F definido como em (3.62).
Além disso, pela estimativa (3.20), que estima a norma L* com a constante positiva
R independente do tempo, concluimos que a semi-Orbita positiva esta contida em F*°.
Assim, para qualquer ® € C(L*(T?);R), temos que ® € C(O*(qo, 1)), 0 que indica que
P(q¥) (-, 5 +ty)) é uma funcdo continua e limitada em [0, 00). Consequentemente, sua

média temporal em [0, 7] também ¢é continua e limitada, dada por:

1 T
T—s T/ B(q™) (-, s+ o)) ds. (3.106)
0
Aplicando o limite de Banach LIMr_, a fungao (3.106), definimos a aplicagao:
- 1 [T
® € C(OF(qo,t0)) — LIMT%OT/ (g (-, s +ty))ds € R. (3.107)
0

Essa aplicagdo é um funcional linear positivo definido em C(O+(qo, to)). Usando o Teorema
de representacao de Kakutani-Riesz em espacos compactos, podemos garantir que existe
uma medida de Borel p*) suportada no conjunto O+ (qo, ty), que representa esse funcional

linear, obtendo assim a representacao (3.102).

Dado que o conjunto O+(qo,t) é compacto, a medida p*) é finita e pode ser

estendida para todo o espaco L*(T?) da seguinte maneira:
K (X) i= ) (X 0 O (an. o))

para qualquer conjunto Boreliano X € L?(T?). Para concluir observe que, como foi falado
ao inicio do paragrafo, a partir da estimativa (3.7), escolhemos t; > 0 de tal maneira
que a norma L? de ¢™)(-,s + t,) seja limitada por 2y~!||g||z2. Desse forma, o conjunto
O+(qo, to) esta contido no conjunto F', conforme definido em (3.62), para todo s > 0. Além
disso, pela estimativa (3.20), concluimos que o conjunto m esta contida em F'*°.

Consequentemente, o suporte da medida ;") esta contido no conjunto F>°.

A seguir, demonstraremos que a medida de Borel u*), obtida pelo Teorema de
representacao de Kakutani-Riesz, é uma solucao estatistica estacionaria das equagoes
estacionarias de Camassa-Holm Generalizadas no espago fase da vorticidade potencial.
Para este objetivo, consideramos o limite de Banach como sendo um limite superior. De
fato, conforme argumentado na primeira parte do Teorema 18, temos que o fecho da
semi-érbita positiva (3.105), esta contido no conjunto F*°. Assim, para qualquer funcional

teste U € T e ¢ € Ot (qo, to), que satisfacam as condigoes:

0™ € H™(T?) e DyW(q") = W'(¢"™) € HX(T?),
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temos, pela regra da cadeia generalizada, que:

d

SU(A0) = (V(a), 09" ooy

Dado que ¢ é solucdo para as equacoes da vorticidade potencial das equacoes de

Camassa-Holm Generalizadas, segue-se que:

(U'(¢"), 04" 2525 = (¥'(¢" (1)), D (¢ (1)) 12,

onde D™ representa a parte estacionaria das equacoes de Camassa-Holm Generalizadas
no espago fase da vorticidade potencial, definido em (3.55). Agora, aplicando o limite de
Banach a média temporal da funcao %\I/(q(”)(~, s +tp)), obtemos:

1 T d 1

T
(g (-, s+t0)) ds = LIMy e - /0 (D®) (¢ (s440)), ¥ (¢™) (5))) 12 ds.

LIMp_oo—
T=eorp o ds

A partir do Lema 12, que garante que o integrando do lado direito da igualdade anterior
é fracamente continua e localmente limitado, e a identificacdo de £W(¢™)(-,t + s)) dada

anteriormente, podemos concluir que o limite:

1 (T d . L d
L[MT_MT/O %\I/(q(”)(-,sjtto))ds :hrTnﬁsupT i %\D( Nq(-,s+10))ds = 0. (3.108)

Portanto, da identificagao (3.102) e do limite acima (3.108), obtemos:

1 (T d

(v) ! (v) _ - s (v)(. —
[, (D@, (@) dn (@) = LTMz s [ 50005+ 1)) ds = 0.

O que verifica a condigao (3.58) da Defini¢ao 10 de solugao estatistica estacionaria para as

equacoes de Camassa-Holm Generalizadas no espaco fase da vorticidade potencial.

Para verificarmos as condigoes (3.57) e (3.59) de Definigao 10, devemos comegar
tomando as médias de longo prazo na equagao de balanco de enstrofia potencial (3.4).
Observamos que, como a funcao ||q| |§{£ nao ¢ uma funcao continua em L?(T?), sua a media
temporal nao pertence ao espago BC([0,00)). Assim, o primeiro passo é regularizar a
equacao (3.4) e calcular a médias temporais de longo prazo para a equagao da enstrofia

potencial regularizada.

Para facilitar os calculos, introduzimos a seguinte notacao:

QE(x7t> - ¢6(Q<x7t))7 ue(xvt) = <p€(u(l‘,t)> € QE(x) = goe(g(x)).

Em seguida, suavizamos a equagao (3.2), conforme realizado no Teorema 7, e calculamos o
produto interno L? com a funcdo ¢.. Dessa forma, obtemos uma equacao de balanco de

enstrofia potencial para q.:

1d

5 g7 19ellz= + vllael s + gl |z = (9, @)n2 = —(el(w- V)4 go) 2. (3.109)
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Considerando que o campo u tem divergéncia nula e que ((uc - V)qe, ¢.) 2 = 0, segue que:

((pelw-V)9),4c) L, = ((pelw-V)a) = (ue - V)aerde ) 0

o que pode ser reescrito como:

(v ’ ((u ® Q)e — U QE)v qe)LQ-

Utilizando a identidade (3.94), temos que (u® q), — ue ® ge = pe(u, q). Portanto, a equagao

(3.109) pode ser reescrita como:

1d

5 7 1ellz2 + Vllael s + laellze = (9, 9) 2 = (pe(w, ), Vo) iz, (3.110)

onde p.(u,q) é definido conforme a equagao (3.95):
pe<u> Q) = T’e(U, Q) - (U - ue) ® (q - QE)'
Agora, integramos a equagao (3.110) no tempo, de 0 a 7', e obtemos:
L 2 2
= [ [Pllacts + )l + Allacts + t0) 12 = (gesauls + 0))z2 | ds

T—i—;/OT(PE(U,C])(S+to),VqE(8+t0))L2 ds. (3.111)

1
= o llae(s +to) |72
2T

Ao aplicarmos o limite de Banach a equagao (3.111), obtemos:

1 T
LMoo [ [Vllac(s + 1)l +Hllac(s + to)l[3 = (g0 0.(s + t0)12 | ds

1 T
- L]MT_MT/O (e 9)(s + to), Vac(s + 1)) ., ds.

Sabendo que o limite de Banach LIMr_, ., foi escolhido de forma a coincidir com o limite

superior, concluimos que:
1 9 . 1 9
LIy llac(s)| e = limsup o lg (s) [ < 0.

Assim, pela identificagdo (3.102), demonstrada na primeira parte do nosso Teorema,

obtemos que:

1 /T
LIMT—)OO?/O |:V||qe(3+t0>||i[£ + Y1ge(s + to)|[32 — (ge, qe(s + tO))[ﬁ} ds
= /L2 {VHQEH?L[(Q +’7||QE||%2 - (ge,qe(s))B] dlu(u)(q).

Dessa forma, obtemos a seguinte igualdade:

Jo

vllgel3s +lgelz2 — (ge,qe(s))p} i (q)

1 /T
= LIMT_,OOT /0 (pe(u7 q)(s+ 1), Vge(s + to))L2 ds. (3.112)
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Agora, vamos demonstrar as condigbes (3.57) e (3.59) da Defini¢ao 10 com base na
equagao (3.112). Iniciaremos pela condigao (3.57). Para isso, é necessario mostrar que a
média temporal de longo prazo da func¢ao (p.(u, q)(s), Vgc(s))rz, conforme a identidade
(3.112), é uniformemente limitada em rela¢do ao tempo e a e. Esse controle permitira
fazer ¢ — 0 no lado esquerdo da equagao, garantindo a convergéncia para uma fungao
mensuravel, o que sera viabilizado pelo teorema da convergéncia dominada. Com isso,

finalmente obteremos a condigao (3.57) da Defini¢ao 10.

De fato, fixemos ¢ > 0. Para qualquer ¢ € F'™, sabemos que ¢ € L*(T?). Dessa forma,
Curl(u)(z, s) = (I — a?A)~tq(x, s) tem norma L? limitada, pois o operador (I —a?A)~t é
limitado em L?. Assim, pela relagio (2.13), que relaciona a norma L? de Vu com a norma
L? de Curl(u), temos:

[IVuls)lz2 < lla(s)]|ze.
Aplicando a Proposicao 26 do Apéndice B, obtemos a seguinte estimativa para p.(u, q)(s):

[1pe(u, @) (s)]|2 < Maellg(s)||L=a(s)]] 2

Além disso, é facil ver que:

M
1IVae(s)llzz < —lla(s)l]z=.

Dado que as normas L? e L> da funcdo ¢(-,t) podem ser limitadas independentemente do
tempo, ver as desigualdades (3.7) e (3.20), temos que as estimativas anteriores também
nao dependem do tempo. Assim, ao aplicarmos a desigualdade de Cauchy-Schwarz para a

funcao (pe(u, q)(s), qu(s))LQ, obtemos uma limitacao independente de € > 0 e do tempo:

‘(pe(MQ)(S),qu(S))LQ < lpe(w, @) ()l 211V ae(s)][ 2 < B, (3.113)

onde B é uma constante positiva independente de € > 0 e do tempo. Por outro lado, como

o limite de Banach foi escolhido como um limite superior, temos:

1 /7
LIy [ (o q)(s +t0), Vau(s + ), ds
timsup = [ (peln,q)(s +to), Vaels +1t0) , d
= limsup — (U, q)(s » V(S S
THOOPT 0 P q 0 q 0)) ;2
A partir da desigualdade (3.113), concluimos que:
, e
hmsupf ; (pe(u,q)(s+t0),qu(S+to)>L2 ds < B.

T—o0

Essa relagao, junto com a equagao (3.112), nos leva a desigualdade:

[ [Pl + 2l = (g a)ie] an® < B (3.114)
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Aplicando as desigualdade Cauchy-Schwarz e a desigualdade Young a funcao (g, ¢c)rz2,

OblemOS:
€ H 2 ellr — ’}/ .

Dado que a medida ) é finita, podemos normaliza-la para garantir que sua medida total
seja igual a 1. Por outro lado, como o molificador ¢, nao incremente a norma L? da funcio

g e a fungdo ||¢||3. é continua e ndo negativa em L?, segue que:
[l i < )+ 191
L2 Hy - vy ’
onde o lado direito desta desigualdade é finito e independente de ¢ > 0. Como a fun-

¢ao ||q||i13 ¢ Borel mensuravel nio negativa, aplicamos o Lema de Fatou a essa ultima
«@

desigualdade e concluimos a condigao (3.57) da Definigdo 10. Ou seja:

[ lallz d) < oo.

Dando continuidade & demonstragao da condicao (3.59) da Definigao 10, o préximo
passo envolve a verificagdo da desigualdade (3.104). Para lograr este objetivo, utilizaremos
a identidade (3.112) e mostraremos que o limite de Banach da média temporal de longo
prazo para a fungao (pe(u, q)(s), Vq.(s))r2 tende a zero.

Inicialmente, seja € > 0 fixo. Observamos que, para qualquer ¢ € F>°, temos ¢ € L= N H?.

Como resultado, Vg, € L>(T?), e a seguinte limitacio é valida:
V|| < ]\f (3.115)
Além disso, de acordo com a Proposicao 25 do Apéndice B, temos que:
o, @)l < Mie?|[Vull sz g] o (3.116)

E importante destacar que essas estimativas sao independentes do tempo, jad que q € F*°.
Assim, ao aplicarmos a desigualdade de Holder & funcao (pe(u,q), Vge)r2, obtemos a

seguinte estimativa:

[(pe(, @), Vae) 2| < |[Vae] Lol pe(u, @)|] L1

Utilizando as desigualdades (3.115) e (3.116), deduzimos que:

(pe(u, q), Vo) 12| < Cez,

onde C' é uma constante positiva independente do tempo. Aplicando o limite de Banach

(que foi escolhido como o limite superior) e utilizando o Lema de Fatou, concluimos que:

1 (T
lim sup —
T—o00 to

(pe(u, q)(s), qu(s))m‘ ds < Cez, (3.117)



98 Capitulo 3. Fenomeno de Dissipacio Anomala para a Vorticidade Potencial

para todo € > 0. Fazendo ¢ — 0, obtemos:

=0 T—oo to

1 [T
lim {hm sup T (pe(% q)(s), VQe(S))L2 ds

Portanto, com base na rela¢ao (3.112), obtemos a desigualdade (3.104):

L [lacdig +llad iz = (90022 dn®(@) < .

para todo e. Como as fungoes ||q||Hg, l|g122 e (g,q) 2 sdo Borel mensurével, definimos a

seguinte sequéncia de funcoes mensurdveis em L?:

Fu(q) = vllaell3e + M aellZ2 — (9, ge)r2

Essa sequéncia converge pontualmente e é uniformemente limitada em relagao a e. Portanto,

aplicando o teorema da convergéncia dominada, concluimos a desigualdade (3.104):

[, [Pllaliz; + Al = (9. 0022] dua) < 0.

Finalmente, para verificar a condicao (3.59) da Defini¢ao 10, adotamos uma abor-

dagem similar & que usamos para a desigualdade (3.104), mas agora localizada no conjunto
E:={qeL?: E} <|lql}> < B3},

onde E1, Fy € R sdo tais que 0 < E; < FEj. Consideramos uma fungao suave x’(y), nao

negativa e de suporte compacto definida em [0, 00). Em seguida, definimos a fungao

X = [ X(r)r,

que ¢ limitada em [0,00). A composigdo de x(-) com a func¢ao continua ||g.(¢)||3. nos

permite calcular sua derivada em relacao ao tempo, que é dada por:

d d
Exlac®)l2) = X' (lac (Bl 32) a0z
Utilizando a equagao (3.110), que representa o balango de enstrofia potencial regularizado,

temos:

1d
2dt
Multiplicamos essa equagao por 2x'(]|ge||32) e obtemos:

it + el + gl = (e 00i] = (p(w.0). V),

d
K lacll) 2l + 2 UladE2) |l + a2 = (ges 0]
= 2 (ladlli) (ol ), V),

Agora, ao tomar a média temporal, obtemos:
0

1
= [ X ad B [Vl + Al = (gea0ie] ds = (o))
T T .

2 [ a3 (pe(u(s),0(5)), Va(s)) , ds
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Aplicando o limite de Banach, que foi escolhido para coincidir com o limite superior, o lado
esquerdo da equacdo anterior é identificado com a medida x*), enquanto o lado direito é
limitado por um mltiplo de €2, conforme observado em (3.117) e pela limitagao da funcao

X'(+). Assim, temos:

N

[ X Ulad o) [Placd g +Alad e = g0z | dn(q) < Cé.

Novamente, dado que a funcao x/() é limitada, podemos proceder de maneira andloga ao
caso da condigao (3.57). Usamos o Teorema da convergéncia dominada para garantir que
o lado esquerdo da desigualdade converge, sem dificuldades, quando fazemos ¢ — 0. Dessa

forma, obtemos:

/LQ X'(lallZ2) {VIIQII?Ig +9lall7z = (9, 9) 2| du® () <0, (3.118)
Agora, escolhemos uma sequencia (x/), tal que converge pontualmente, ou seja,
Xo(y) — 1g quando n — oo (3.119)

para todo y € R, com valores 0 < x'(y) < 2. Desse modo, definimos a sequéncia de fungoes

mensuraveis:

Gala) =X llalli)vllalls +llal = = (9. 0z

Observe que a sequencia G, (q) é uniformemente limitada e, pela convergéncia (3.119), é

pontualmente convergente, com limite dado por:

i |vllalid +llal B2~ (9. )1z

para todo ¢ € L% Logo, aplicamos o Teorema da convergéncia dominada junto com a

desigualdade (3.118), e obtemos que:

/E {VHQHEg +9lqll72 — (97Q)L2} ' (q) <0

para qualquer 0 < E; < Ey < 00, que é nossa condigao (3.59) da Definigao 10. O

Encerramos este capitulo com o nosso principal resultado sobre a dissipagao andémala
nas equagoes de Camassa-Holm Generalizadas, no espaco fase da vorticidade potencial,

considerando os parametros v > 0 e 1/2 < § <1 fixos.

Teorema 19. Sejam g € L*(T?) e qo € L*(T?). Para cada v > 0, seja ¢%)(z,t) a solugio
das equagoes da vorticidade potencial para as equacoes de Camassa-Holm Generalizadas.
Entao,

1 1
. . (v) 2
lim » [hm sup — | [1¢" (s + to)|[ys ds| = 0. (3.120)
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Demonstra¢io. Vamos argumentar por contradi¢do. Suponhamos que o limite (3.120) seja
diferente de zero. Entao, existe um § > 0 e uma sequencia de viscosidades v, — 0, tal que,

para cada vy, existe uma sequencia de tempos 7; — oo onde

14% T

7 | a" (s +to)llfz ds > 6, (3.121)
J

para todo t;. Como ¢“%) é uma solucdo das equacoes da vorticidade potencial, a funcéo

q¥¥) (z, s + to) satisfaz a equacio de balanco de enstrofia potencial (3.4). Ou seja,
1
5@“‘1(”)(8 +to)[[72 + vallg™ (s + t0)||12q£ + g™ (s + to)|[72 = (9,4" (s + t0)) 12,
para cada v, > 0. Se calcularmos a média temporal dessa equacao no intervalo [0, Tj] e
compararmos com a desigualdade (3.121), obtemos

0

14% T; 1
5 < (k) t2 . ds = () t)l1?
<2 [T s By ds = sl )

Tj

1 /T4
+ f/o [(97 q(l/k)(s + to))Lg — ’Y||q(yk)(8 + t0)||%2:| ds.
J

Assim, calculando o limite superior, segue-se que

1 /T
lim sup — ; [(g, d (s 4 t9)) 2 — v||g" (s + to)‘|%2:| ds > 0. (3.122)

T—o00

Observe que a fungao {(g, q)r2—"ll¢ |2L2} é continua em (O*(qp)), e, com base na observacao

feita na defini¢ao de limite de Banach (3.100), escolhemos um limite de Banach que satisfaga

1 T
LIMr | 7 /0

(9:4" (s +t0))r2 — lla™ (s + to)l@} ds)

. 1 T 1% 1%
= lim sup 7 )y {(g,q( ’“)(8 +t0))r2 — 7“@( k)(s + t0)||%2} ds.

T—o00

Ao aplicarmos o Teorema 18 com esse limite de Banach, concluimos que existe uma solucao
estatistica estacionaria para as equagoes de Camassa-Holm Generalizadas no espaco fase
de vorticidade potencial, denotada por u(*¥), a qual é suportada no conjunto F* definido

em (3.103) e satisfaz a desigualdade

/LQ (9:@)22 = Alal 2] du(q) = 6 > 0 (3.123)

para todo v, > 0. Isso gera uma sequéncia de solucoes estatisticas estaciondrias que
variam com a viscosidade, denotadas por (1)), , a qual satisfaz a desigualdade (3.123).
Aplicando o Teorema 15, temos que existe uma subsequéncia de (p(”k))yk, denota da mesma
forma, que converge fracamente para p, uma solucao estatistica estacionaria renormalizada

para as equacgoes de Euler-a. Agora, aplicando o Teorema 16, vemos que essa solugao
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estatistica estaciondaria renormalizada estd suportada no conjunto F'*° e satisfaz o balango

de enstrofia potencial, isto é,

/LQ lal3: = (9. 9)z2] dpulg) = 0. (3.124)

Nosso préximo objetivo sera obter uma contradigao entre o balanco de enstrofia
potencial de p, dado em (3.124), e o limite de Banach escolhido em (3.122). Como
g € L*(T?), a fungdo (g,q)z2 é fracamente continua e localmente limitada para todo
q € L?. Dessa forma, pela convergéncia fraca da subsequéncia (u("’f))yk e pela identidade
(3.76), obtemos

Jim | (9,9)12 du"(q) = /L 9, @)z dp(q). (3.125)
Além disso, dado que a fungdo ||¢||2, é mensurdvel e ndo negativa para todo q € L?,

aplicamos o Teorema de Fatou a subsequéncia de medidas e concluimos que

[ Naliz= duta) < timint [ llal32 du (o) (3.126)
L2 Vg—o0  Jr12

Utilizando essa informacao em conjunto com (3.125) e (3.126), vemos que:
1, [llale = (9.0)e2] dpla) < timind [ [5llalle = (9,0)s2] du(a)
L2 vp—oo  Jr2

= —liminf | [(9,0)s2 = Ylall7:] du® ().

Vi — 00 L2

Observamos que, como a subsequéncia (p("¥)),, satisfaz a desigualdade (3.123), podemos
inferir que:

[, Pl = (9.0)52] diuta) < 5 <.

Essa conclusao entra em contradigao com o fato de que a medida i deve satisfazer o
balango de enstrofia potencial dado pela equagao (3.124). Portanto, podemos afirmar que

o limite apresentado na expressao (3.120) é de fato zero. O

A partir do Teorema 19, podemos concluir que, para o caso em que o parametro
de interpolagao se encontra no intervalo % < B < 1, nao ocorre dissipagao andémala de
enstrofia potencial para a média temporal de longo prazo das solugoes das equagoes de

Camassa-Holm Generalizadas.
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4 Exemplo de dissipacao anomala de enstrofia
potencial para o sistema de vorticidade po-
tencial das equacoes de fluidos de segundo

grau

Neste capitulo, desenvolvemos uma solucao para as equacgoes de vorticidade po-
tencial em fluidos de segundo grau, destacando o fenémeno de dissipagao andémala de
enstrofia potencial, mais precisamente a dissipacgao infinita. Essa solucao contrasta com os
resultados obtidos no Capitulo 3, que investiga o regime do parametro de interpolacao
(. Nesse contexto, a formulacao de vorticidade potencial para a familia de equagoes de

Camassa-Holm Generalizadas ndo apresenta dissipacao andmala.

Lembrando um pouco, o termo “dissipacao andémala” refere-se ao fato de que, no
limite de viscosidade nula, ainda temos dissipagao remanescente, mesmo que a equagao
limite conserve energia. Uma abordagem para investigar a questao da dissipacao andémala
consiste em utilizar as medias temporais de longo prazo, com o objetivo de atingir um
regime estacionario das equagoes viscosas, enquanto a viscosidade ¢é levada a zero. Se
denotamos por S™(t,w) a solugdo de uma equacio viscosa no tempo ¢ > 0 a partir do
dado inicial wy e consideramos as médias temporais de longo prazo para a dissipacao de

enstrofia, dada por:

(IVSW (£, w)|?) = lim —/ /n Nt wp))|? d dt.

T—oo T

Dizemos que a solugao viscosa apresenta dissipacao andémala de enstrofia quando o valor
€ = lim, o v(|V.SW(t,wp)|?) for positivo.

Os autores dos trabalhos [11] e [12], investigaram a dissipa¢io anémala de enstrofia
para as equagoes de Navier-Stokes com amortecimento e forcamento, assim como a dissi-
pacao anomala de energia para as equagoes SQG critica com amortecimento e forgcamento,
utilizando solugoes estatisticas estacionarias. Eles concluiram a auséncia desse fenomeno.
Analogamente, no Capitulo 3 deste trabalho, demonstramos um resultado similar para as

equagoes de Camassa-Holm Generalizadas no toro (T?), descritas pelas equagoes:

O+ u-Vou+ 2?21 vV — vA(l - ?APu+yv = —Vp+ f
u = 0
Vou (4.1)
I—-a?Au = v

u(z,0) = wuo
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onde «a, v e 7y sao parametros nao negativos e % < f < 1. Constatou-se que também nao
apresenta dissipacao andémala de enstrofia potencial nesse sistema. Vale ressaltar que o
sistema de equagoes (4.1) forma uma familia parametrizada por 0 < § < 1. No extremo
£ =1, obtemos o sistema de equagoes de Camassa-Holm, amplamente utilizado em estudos
de turbuléncia [5, 7, 6]. No outro extremo, 5 = 0 representa as equagoes de fluidos de
segundo grau [13, 24].

A seguir, desenvolvemos uma solugao para as equacoes de segundo grado de fluidos
que apresenta dissipagao de enstrofia potencial. Consideramos, primeiramente, as equagoes

de fluidos incompressiveis de segundo grau no toro (T?):

ov+u-Vo+3,_1v;Vu; —vAu = —Vp+f
Veu = 0 (4.2)
(I—a?A)u = v
u(z,0) = wup

onde « e v sdo parametros nao negativos. Ao aplicarmos o operador Curl, definido em

(2.12), as equagdes (4.2), obtemos o sistema equivalente de equagdes dado por:

oq+u-Vg—vAw = g
Veu = 0 (4.3)

curl(u) = w

q

Curl((T - a?A)u) =

onde g = Curl(f). Agora, vamos construir uma solugao para o sistema (4.3) que tem
dissipagdo andmala de enstrofia potencial. Seja v (z) € C°°(T?) uma autofuncao do
operador (I — a?A), cuja média da autofungdo em T? é zero e com um autovalor A > 1.

Isto é,
(I—a?A)p(z) = Mp(x). (4.4)
Definimos um forgamento g(x) = ci)(x) e uma fungao n(t) que sera a solu¢ao do problema

de valor inicial (P.V.I).

n(0) =

Neste caso, como o (P.V.I) é uma EDO linear de primeira ordem, tem solucao n(t) da

forma: o2 o2

acc _, 01, acc
t — 1 _ a2 _ 46
() ( V(A—n)e LD (4.6)
Agora, definimos a fungao ¢(z,t) como:

q(z,t) == n(t)y(x). (4.7)

Em seguida, consideramos a fungao ¢, que sera denominada como fun¢ao corrente, definida

por:
o2

7)\(1 — /\)q(x, t). (4.8)

Qp(xat) =



105

Dando continuidade a nossa analise, apresentamos o seguinte Teorema que garante

que a funcao escalar ¢(x,t) definida em (4.7) é uma solugao para o sistema de equagoes

(4.3).

Teorema 20. A funcgio q(z,t) definida em (4.7), é uma solugao para as equagoes

g+ (u-V)g—rvAw = g
Vou =0 (4.9)
Curl((I — o*A)u) q
q(-,0) = (z)

com o campo de velocidade u(x,t) = V+tp(x,t) e w(z,t) = Curl(u(z,t)).

Demonstrag¢io. Para demonstrar que o campo de velocidade u(x,t) satisfaz as equagoes

do sistema (4.9), inicialmente verificamos que:
Vu(z,t) =V -Vte(r,t) =0,

o que mostra que o campo de velocidade é incompressivel. Além disso, devemos mostrar

que u(x,t) satisfaz a equagao
Curl(T — o®A)u(z,t) = q(z, ). (4.10)
De fato, dado que o operador Curl e o operador (I — a?A) comutam, segue que
Curl(T — o®A)u(xz,t) = (I — a*A)Curl(u(z, t)). (4.11)

Por outro lado, como o campo de velocidade estd definido por u(z,t) = V+tp(x,t), ao

aplicar a operador Curl, a essa igualdade, temos:
Curl(u(z,t)) = Curl(V'p(z,t)). (4.12)

Logo, aplicando a identidade (2.12), que define o operador Curl em duas dimensoes, ao
lado direito da igualdade (4.12), obtemos:

Curl(u(z,t)) = V- (V+te(r,t) = Ap(z,t). (4.13)
Substituindo a igualdade (4.13) em (4.11), temos que:
Curl((I — &?A)u(z,t)) = (I — a*A)Ap(z, t).
A ultima parte da demonstracao da identidade (4.10), consiste em mostrar que:
I —a?A)Ayp(z,t) = q(x,t).

Como ¢(x,t), que foi denotada como fungao corrente, é dada por (4.8), segue que:

(I - a®A)Ap(z, 1) = (I — a2A) ((A(lai)\)) Aqg(z, t)) . (4.14)
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Dado que a fungdo ¢(x) é uma autofungao do operador (I — a?A) com autovalor A > 1,
temos que a fungao ¢(x,t) = n(t)y(x) é também uma autofungao com o mesmo autovalor
. Isto é,

(I —a?A)g(x,t) = \q(z,1).
Desse modo, isolando o termo Ag(x,t) da identidade anterior, obtemos:

C=N 0. (4.15)

Substituindo a igualdade (4.15) no lado direito de (4.14), segue que:

Aq(z,t) =

«

(- 0?A)Ap(z,1) = (1 a?A) (‘I(ﬁ’ “) ~ gla,1),

o que conclui a demonstracao da equagao (4.10).

Agora, verificamos que a fungao ¢(x,t) satisfaz a equagao:

{ Oq(x,t) + (u-V)q(z,t) — vAw(z,t) = g(z,t)
Q('ao) = ¢(x)

Observemos que o termo nao linear da equagao (4.16) se anula devido a configuragao do

(4.16)

campo de velocidade u(x,t) e nossa fungao corrente ¢(z,t). De fato, dado que o campo de
velocidade u(z,t) := V+p(x,t) e de nossa funcio corrente ¢(z,t), definida em (4.8), segue

que:

u(z,t) = (/\(104_)0) VEq(z,t). (4.17)

Substituindo a nova configura¢ao do campo de velocidade u(z,t), dada em (4.17), no

termo nao linear do sistema (4.16), obtemos:

(u-V)q (( )VL( t)- V) (q(,1))
()\ ) Q(x7t) ’ VQ(JI,t)

=0,

mostrando que o termo ndo linear se anula. Além disso, o termo viscoso do sistema (4.16),
definido por vAw(z,t), pode ser reescrito como um multiplo escalar da fungao ¢(z,t).
Para isso, comegamos reescrevendo w(x,t), que se refere ao Curl(u(x,t)). Pela identidade

(4.13), que expressa a fun¢ao w(z,t) em termos de nossa funcao corrente, temos:

w(z,t) = Ap(x,t).

Logo, aplicamos a identidade (4.8), que define nossa funcao corrente, obtemos:

012

w(z,t) = mAq(x, t).
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Como a fungao ¢(x,t) é uma autofungao do operador (I — a?A), obtemos a identidade

(4.15), o que nos permite rescrever a fungao w(z,t) como:

q(z,t)

w(z,t) = 3

(4.18)

Finalmente, substituindo a forma equivalente a fungao w(z,t), dada pela equagao (4.18),
no termo viscoso do sistema (4.16). Aplicando novamente (4.13), concluimos que:

(1=

A t)=v—-—=
vAw(z,t) VS

q(z,t). (4.19)

Desse modo, verificamos que ¢(x,t) satisfaz o sistema (4.16). Agora basta verificar que a

funcao ¢(z,t) também satisfaz o sistema

{ atQ(xvt) + V%Q(Z,t) = g(I,t) (420)
Como fungao 7(t) satisfaz o sistema (4.5), temos que a funcao
._ _ Aag(x) ) _,0-n,  Aa’g(z)
ale,t) = n(t)i(a) = (wm - M) i IS

satisfaz o sistema (4.20). Portanto, a tripla (¢(z,t),u(z,t),w(z,t)) é uma solugdo do
sistema (4.9). O

Em seguida, definimos matematicamente o fendmeno de dissipacdo anémala de
enstrofia potencial para o sistema (4.9). Este fen6meno consiste em calcular as médias
temporais de longo prazo do termo viscoso do sistema (4.9) e, logo fazemos tender para
zero o parametro de viscosidade. Inicialmente, calculamos o produto L? da fungdo ¢(z,t)

com o sistema (4.9). Isso resulta na equagao:

1d

§£|ICJII% —v(Aw, @)z = (g9, 9) 2 (4.22)

Lembrando que, como o campo de velocidade u(z, t) possui divergéncia nula, o termo nao

linear se anula. Logo, integramos de 0 até T" a equagao (4.22)

DI+ 20 [ (Al a0) do = )| +2 [ (g.a0) b (423)

Denotamos por €, o fenomeno de dissipacao anémala de enstrofia potencial do sistema
(4.9), definido por:

€:= lim llim v /{)T(—Aw(s),q(s))Lz ds| > 0. (4.24)

v—0t |T—o0

Desse modo, estamos interessados em estudar quando o limite (4.24) é positivo.

A seguir, apresentamos o resultado principal deste Capitulo o qual mostra que nosso

sistema (4.9) admite solugao que apresenta dissipacao anémala de enstrofia potencial.
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Teorema 21. Sejam as fungoes q(z,t) definida em (4.7) e p(x,t), denotada como fungio
corrente, definida em (4.8). Entdo o sistema (4.9) admite uma solugiao que tem dissipag¢io

anomala de enstrofia potencial. Isto €,

v T
lim [lim —/ (—Aw(s),q(s))r2ds| > 0. (4.25)
v—0t [T—oo 0

Demonstragio. Para demonstrar que o limite dado por (4.25) é positivo, reescrevemos o
integrando de (4.25) utilizando identidades previamente estabelecidas na demonstracao
do Teorema 20. Essa reformulagdo nos permite uma analise mais precisa da dissipagao,

levando em consideragao a estrutura da vorticidade potencial.

Das hipéteses do Teorema 21, segue como uma aplicacao do Teorema 20, que a
funcao escalar ¢(z,t) é uma solugao para o sistema (4.9), com o campo de velocidade
u(w,t) == Vip(x,t) e w(x,t) = Curl(u(x,t)). Além disso, pela identidade (4.19), o termo
viscoso do sistema (4.9) pode ser reescrito como um multiplo escalar da vorticidade

potencial. Ou seja,

(1-2)

)\062 Q(:U7t>

Desse modo, o integrando de (4.25) pode ser reescrito como:

vAw(z,t) =v

(A—1)
Py

(=rAw(t), q(t))r2 = v la(t)[[Z- (4.26)

As médias temporais de longo prazo para (4.26) estdao definidas por:

v

lim T /OT(—Aw(t),q(t))Lz ds=v

T—o0

(A-1) . 17 ;
a2 Tlgr;of/o la(®)][72 dt.

Note que, da defini¢ao de ¢(z,t), dada em (4.21), temos que

Aot Py 2 (-1
t 22: t t g = — 22 H o —2v a2t
o0 = (o) a2 = 3ty sl + o= 53505
Aa? Ao? (-1,
o 2Ly 2 Baval
* (V(A—Ug”” V(A—1)9)Lf '

Desse modo, a media temporal de longo prazo para a fungao ||q(t)|| é simplesmente:

Aa?l|g]|7-

B (4.27)

1T 9
lim = | lla(®)]z2 dt =
A partir das identidades (4.26) e (4.27), segue que o limite (4.25) é dado por:

T /\2 22
mnlMHV/(—AM@ﬂ@»m%]:hm ool _
0

v—=0t |T—oo T v—0+t ()\ — 1)V

Assim, concluimos que o sistema (4.9) exibe o fenémeno de dissipagdo anémala de enstrofia

potencial. ]
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Para finalizar este Capitulo, cabe mencionar que na literatura matemaética a
“dissipacao andémala” é associada a dissipacao de energia no limite inviscido, neste trabalho
fazemos um abuso de notacao ao chamar de “dissipagdo anémala” ao fendmeno de dissipar
enstrofia potencial no limite inviscido. Desse modo, destacamos nosso Teorema 21 que
evidencia a presenca de dissipacdo remanescente na formulacao de vorticidade potencial
nas equagoes de fluidos de segundo grau ou no caso particular da formulagao de vorticidade
potencial da familia de equagoes de Camassa-Holm Generalizadas com os parametros
B =0e~y =0, que contrasta com o resultado obtido no Capitulo 3, no qual encontramos
um regime do parametro de interpolagao  onde a vorticidade potencial é conservado.
Finalmente observamos a relevancia desse comportamento anémalo na dinamica na familia

de equagoes.
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5 Conclusoes

Neste trabalho, estudamos o sistema de equagoes de Camassa-Holm Generalizadas
(CHG), uma familia de sistemas que interpola entre as equagoes de Camassa-Holm e as
equagoes de fluidos de segundo grau, utilizando um parametro de interpolacao 0 < g < 1.
Um dos principais desafios superados ao longo do estudo foi garantir a existéncia e unici-
dade das solugoes para a familia de equagoes de CHG. Destacando, a forma em que foi
encarada a unicidade, pois, as estimativas para o termo nao linear das equagoes de CHG,
nao permitiam a aplicacao direta de uma desigualdade do tipo Gronwall, como é possivel

no caso das equacoes de Camassa-Holm.

O objetivo principal deste trabalho é estudar o fenémeno de dissipacao andémala
de enstrofia potencial nas equagoes de Camassa-Holm Generalizadas (CHG), destacando
nosso resultado principal no Teorema 19 do Capitulo 3, que mostra o regime do pardmetro
de interpolacao % < f <1 onde nao ocorre dissipacao andmala de enstrofia potencial. Em
contraste, o Teorema 21 do Capitulo 4, apresentamos uma solugao para as equagoes de
fluidos de segundo grau que exibe dissipacao anomala de enstrofia potencial. Esses resulta-
dos evidenciam a dinamica interessante dentro da familia de equacoes CHG, revelando um

comportamento contrastante entre os diferentes regimes do parametro de interpolacao.

Dada a limitacao que temos em nosso resultado principal sobre o parametro de
interpolacao, apresentamos um trabalho futuro como sendo: o estudo do fenémeno de
dissipacao anémala com o parametro g = % nas equagoes de CHG, denotando 3 neste

€aso, como nosso expoente critico.
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APENDICE A - Normas Equivalentes

Neste apéndice, apresentamos a equivaléncia das normas induzidas pelos operadores
JP = (1- A)g e JP = (I1— OzQA)g para todo 5 > 0. Para u € £, denotamos as normas

induzidas pelos operadores J” e J? como
lallis = 1|77l e lullys = ||J5ull 2.
A seguir, demonstraremos que as normas J? e J? sdo equivalentes.
Proposigdo 22. A norma || - ||, e a norma || - ||ys sdo equivalentes:
oPlullms < Mullye < Mullms,
para todo o, 3 > 0.
Demonstragio. Se 0 < o < 1, entao (1 + o?|¢[*) < 1+ |£]%. Assim,
2 B8 B8
[T = A)2ullre < [|(I—A)7ul].
Por outro lado, temos que 1 < 1/a?. Logo,
1 a? 1
(1+161) < (Og + a2|£|2> = 51+ a%leP).
Por tanto, concluimos que
o”||(I = A)%ullzz < [|(T— a?A) 7z
Se 1 < o, entdo 1+ [£]* < (1 4 o?[€]?). Assim,
B 2 8
I = A)>uf|z < [[(T—=a”A)zul]2

Por outro lado, temos que 1/a? < 1. Logo,

2
(1 o) = (g + SleP) < (14 1)

Por tanto, conclimos que

(1= a?A)2 (|2 < o] |(T = A)Zul| 2.






APENDICE B - Desigualdades Importantes

Em seguida mostramos alguns desigualdades do capitulo 3 que sao importantes

para atingir nosso objetivo.
Proposigao 23. Sejam ¢ >0, ¢ € H*(T?) ¢ 3 < 8 < 1. Entdo,
1
10ezallz2 < Clel2l)2lallue ¥z € T (B.1)

Demonstracdo. Aplicando o Teorema de Plancherel, temos que:

10ezqllze = | > |5/ez\61|2] = [Z |q(k — ez) —@(k)IQI

| kez? kez?

=

= > (e - 1)|2!§(k)!2]

| kez?

Lembrando que a desigualdade:

|ef'iez-k _ 1‘ — 94in (61’2 Z) < C(dz”k‘)l/Q’

para todo € > 0. Dessa modo, obtemos

1
2

S

< C(el2])

[ 2 !kl\c?(k)F] :

keZ?

> elzl|kla(k)

kez?

1
< Clelz)zllall -

Hé‘eZQHLQ < C

Pela inclusdo do espagos de Sobolev, temos que HA(T?)  Hz(T?) para 3 > 1/2. Dessa
[l

forma, concluimos a desigualdade (B.1) da Proposi¢ao 23.

Proposigao 24. Sejam € > 0 e u € H(T?). Entdo,
(B.2)

[|0c.ul|r2 < €|z|||Vullz Vz € T2

Demonstracio. Aplicando o Teorema de Plancherel, temos que:

loczullz2 = | > \@!2] = {Z Uk — ez) —ﬁ(k)|2]
kez?

| kez?

N|=

= | > e - 1)|2|@(k)|2]

| kez?

Lembrando que a desigualdade:

le"=F _ 1| = 2sin (

“2) < dellk,
2
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para todo € > 0. Dessa modo, obtemos

: :
10czallze < | D2 (el=l[RD?[a(®)* | < elzl| > Ik‘|2|ﬁ(k)l2] :
kez? kez?
< elz|||Vul|L-.
Dessa forma, concluimos a desigualdade (B.2) da Proposi¢ao 24. ]

Proposicao 25. Se u € HY(T?) e q € H?(T?), entdo

Ipe(, @)llix < Mae? ||Vl |2 lg] s (B.3)
Demonstracao. Lembrando que p, é definido como:
pe(u, q) == re(u, q) = (u—ue) ® (¢ — qo).
com
ru.) = [ @(2)(0eu@) @ duq(@) dz o duu(e) = ule - ) - u(a).

Aplicando a desigualdade de Minkowski, segue-se que:

locwslls = [ o, q)(a)| da
< [ Irdw)@)lde+ [ 1w —u) @ (g - a)(@)|do

< /TQ p(20)[0ezy ul 22 |0ez, all 22 dz1 + [[(u = u) [ 22[1(g = ge)l |2

Pela férmula (3.40), podemos rescrevemos a diferencga (u — u.) e (¢ — ¢). Isto é,

[lpe(w, @)l < /TQ p(20)|[0ezy ul| 22 [0cz, g 22 d2

+ [, [, eitloau@l 110l z2 dz dz.

Logo, pelas Proposicoes 23 e 24. Temos que

3 3 3 3
o, @)lles < €1[9ull gl [ Laletda+ [ [ 1zl ol)lmlbels) da dz

Dado que o dominio é limitado e ¢ possui suporte compacto, obtemos a estimativa

(B.3). O
Proposigao 26. Sejam u € H'(T?) e ¢ € L>°(T?). Entao,

[1pe(u, @]z < Maellql o[Vl | 2 (B-4)
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Demonstracao. Lembrando que p. é definido como:

pe(t, q) == re(u, q) — (U — ue) @ (¢ — qe)-

onde
ru,q) = [ o(2)0au(a) ® dug(a)) dz

com
deti(x) =u(z —ez) —u(z) e de.q(x) =q(x —ez) —q(x).
Aplicando a desigualdade de Minkowski, segue-se que:

[lpe(w, @)z < [lre(u, @)llez + [I(u = ue)(g = go)l[ 2.

Logo, estimando a norma L? de r.(u,q). Obtemos que

e, )l = | [ IreCu )|2dm}

5 11/2
= [/Tz /11‘2 ©(2)0u(x)0e,q(z) dz dx]
Dado que q € L>®(T?), vemos que ||d.q||z~ < 2||q||p. Por conseguinte,
e, @)lle < Mllglli= [ e()]|besull12 d. (B.5)
Por outro lado, pela identidade (3.40), rescrevemos a diferenga (u — u,) e estimar a norma
L?. Isto é,
5 1/2
llu — uel||p2 = l/ / o(2)0u(r)dz dx]
T2 |JT2
< [, o) 18ceull 12 dz
T2
Assim,
, 112
= wla = el = | [ I(u = u)@)Pl(a = a)(@) P da
, 112
< 2lgllo | [ 16w = u) (@) da
= 2llgllz~lu — uel| 2
Portanto,

1(w = ue)(q = g0l < Mllql[ L~ /TQ p(2)[10czul] 2 dz. (B.6)

Juntando (B.5) e (B.6). Obtemos a seguinte estimativa em norma L? para p.(u, q):

locw, @)l < Mllgllz= [ e()loulles dz.

Logo, pelas Proposicoes 24. Temos que

[1pe(u, @)II7> < Maellg| | || Vul| 2.

Dessa forma, obtemos a estimativa (B.4). O
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APENDICE C - Equacdes da Vorticidade

Potencial para as Equacoes de Camassa-Holm

Generalizadas

Em seguida, mostraremos a formulagao das equagoes da vorticidade potencial
para as equagoes de Camassa-Holm generalizadas. Este sistema ¢é importante para nosso

trabalho ja que, sobre ele estudaremos o fendmeno de dissipagao andémala.

Consideramos o sistema de equagoes de Camassa-Holm generalizado como foi

previamente estabelecido em (2.1):

dv+u-Vo+Y,_1vVu; —vAl— o?Aut~yv = —Vp+ f
V-u = 0 (C.1)
v = ([—a?A)u.

Lembrando que em dimenséo 2, o operador de vorticidade Curl, é definido em (2.12) como

sendo:

Curl(:) = (—=04,, Oy, ).

Aplicando o operador Curl as equagdes (C.1), e considerando a vorticidade potencial

definido por ¢ = Curl(v), temos que

Curl(@tv +u-Vo+ Y v;Vu; — vA(I— ®?AYu+yw = —Vp+ f)

Veu = 0
Curl((I—-a?A)u) = q.

Suponhamos que g = Curl(f). E claro que Curl(Vp) = 0 e que o termo de amortecimento

esta definido por:

Curl(yv(z,t)) = vq(x,t). (C.2)

Dado que os operadores 0; ¢ Curl comutam, temos que
Curl(0v) = 0,(Curl(v)) = 0. (C.3)

A seguir, examinamos o termo nao linear:

=1 j=1

2
Curl (u Vo4 > vjVuj) = Curl(u . Vv) + > Curl <vjVuj>.
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Analisando cada termo por separado, vemos que o primeiro termo pode-se rescrever:
—8332 (ulﬁmvl + UanQUl) = —8$2u16x1v1 — U18m2am11}1 — 8$2U28x2?)1 — 8321}111,2
= —0pyu10g, V1 — U104, (O ¥1) — Opy U203, 01 — U0y (O V1)
= (u-V)(=0p,v1) — Opyu104, 01 — OpyUa0yy vy
Por outro lado, continuamos analisando a segunda componente do vetor Curl:
(9,,31 (U . V)UQ = (911 (UlagﬁUQ + Uzaxgvg)
= 8zlu18$1v2 + ulf)xl (83511)2) + 8$1UQ8$2UQ + u28z2 (@zlvg)
= (u-V)(0p,v2) + Op U102, V2 + Oy, U0z, V3.

A segunda parte do termo nao linear pode-se rescrever:

2
ZVL . <’UjV’LLj> =
j=1

(-

= Ora (030,143) + O (0025

1t

.
Il

1
A

— 312vj8x1uj — vj(?m (leuj) -+ a’rlvja:rguj -+ ’Ujaxl (a:mu]‘)

<
Il
-

— ale)jamluj‘ + agclUjazguj]

<
I
-

Il

= —8I2v18x1u1 + &Clvlamul - 8m2v20$1u2 + (“)mlvm(?muQ
- amzvlaxQUQ + axlvlaa:gul - 8w2U28m1u2 - 6x1v28z1u17

onde a ultima igualdade é pelo fato que o campo u tem divergéncia nula. Por todo o

anterior, temos que
Curl (u Vo+ ) UjVuj> = (u-V)Curl(v) = (u-V)q (CA4)
j=1

Para o termo viscoso, observe que:
I - ®A)Pu(z,t) = I —®A)P(1 - 2A) NI - ®A)u(z, t)

Desse modo, o termo viscoso das equagoes de Camassa-Holm generalizadas pode-se rescrever
como:

(I — o?A)Pu(z,t) = 1 — ®A) " u(z, t).
Logo, aplicamos o fato que o operador Curl comuta com o operador de Bessel—a, e

obtemos que:
Curl((]l — o?Aulz, t)> — (1= a?A)Pg(x, 1), (C.5)

Juntando (C.2), (C.3), (C.4) e (C.5) obtemos o sistema de equagoes:

Oq+u-Vg—vA[I—a’A)fq+yg =
Curl((T - a?A)u) = ¢ (C.6)
V-u = 0.

O sistema (C.6) é chamado de Equagoes da Vorticidade Potencial.
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