"ANÁLISE DE ESTABILIDADE EM DINÂMICA INDUSTRIAL"

EUGENIUS KASZKUREWICZ

TESE SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS

DE PÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO

DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTEM

ÇÃO DO GRAU DE MESTRE EM CIÊNCIA (M.Sc.)

Aprovada por:

hebre to la fel

RIO DE JANEIRO
ESTADO DA GUANABARA - BRASIL
DEZEMBRO DE 1972

tudo é iterativo...

Agradecimentos a:

H.MARCHETTA

е

C.MIRA

SINOPSE

O escopo principal deste trabalho está em dar uma contribuição para o estudo e análise da estabilidade de sistemas descritos por modelos da "Dinâmica Industrial". Para tanto, os modelos são colocados sob uma formulação matemática adequada à aplicação de resultados conhecidos sobre estabilida de; basicamente, o segundo método de Liapunov.

Com base em tais resultados, juntamente com outras técnicas e a utilização do computador digital, procura-se fornecer as ferramentas necessárias para a análise de tais sistemas.

Os dois primeiros capítulos estão reservados à formulação do problema e à apresentação das definições e resultados mais importantes sobre estabilidade. Os capítulos subsequentes tratam do problema da busca e determinação dos pontos de equilíbrio, da análise de sensibilidade desses pontos em relação à variação dos parâmetros do sistema e da maneira como foi abordado o problema da determinação de um domínio de estabilidade assintótica para o caso exemplo.

ABSTRACT

The main objective of this work is to give a contribution to the study and analysis of the stability of systems described by models for "Industrial Dynamics". To this end, the models are placed under a mathematical formulation suitable for the application of known results about stability; specifically, the second method of Liapunov.

Based on such results, with the use of other techniques and the digital computer, an attempt is made to furnish the necessary tools to analize such systems.

of the problem, definitions and the most important results on stability. The following chapters consider search and determination of equilibrium points, analysis of sensitivity of these points with respect to changes of the system parameters, and the approach taken for the solution of the problem of determination of the domain of asymptotic stability. A specific example is treated in detail.

INDICE

AGRADECIMENTOS	i
SINOPSE	ii
ABSTRACTi	lii
INDICE	iv
INTRODUÇÃO	1
CAPÍTULO I - FORMULAÇÃO DO PROBLEMA	4
I.l - Introdução	4
I.2 - O Método da "Dinâmica Industrial"	5
CAPÍTULO II - ESTABILIDADE - Definições e Resultados Gerais	21
II.l - Introdução	21
II.2 - Estabilidade - Definições	22
II.3 - As Funções de Liapunov	25
CAPÍTULO III - PONTOS DE EQUILÍBRIO	33
III.1 - Introdução	33
III.2 - Solução de um Sistema de Equações Não Li- neares	34
III.3 - Planejamento de Experimentos	39
CAPÍTULO IV - SENSIBILIDADES EM RELAÇÃO AOS PARÂMETROS	41
IV.1 - Introdução	41
IV.2 - Influência dos Parâmetros na Posição do Po <u>n</u> to de Equilíbrio	42
IV.3 - Influência dos Parâmetros nos Auto Valores do Jacobiano	44
CAPÍTULO V - DOMÍNIO DE ESTABILIDADE	49
V.1 - Introdução	49
V.2 - Função de Liapunov	50
V.3 - Determinação do Domínio de Estabilidade	54

CAPÍTULO VI - PROBLEMA EXEMPLO	56
VI.1 - Introdução	56
VI.2 - Sistema Produção-Distribuição (Simplificado)	57
VI.3 - Resultados Numéricos	68
CONCLUSÕES	95
APÊNDICE	97
REFERÊNCIAS	125

INTRODUÇÃO

A "Dinâmica Industrial" é antes de tudo um método de modelização e simulação de sistemas em computadores digitais, não somente de processos industriais como poderia sugerir o nome, mas de quaisquer processos dinâmicos e particular mente aplicavel a sistemas de "management", sistemas sociais e ecológicos.

Sua adequação à simulação de tais sistemas , geralmente não-lineares, está na relativa facilidade com que, a partir do conhecimento do sistema, construimos os modelos a serem simulados. Nos trabálhos de Forrester [8] idealizados deste método, bem como de outros [10] que utilizaram a "Dinâmica Industrial" para construção e simulação de modelos, nota-se que, quando se trata de analisar as características das respostas do sistema em função da sua estrutura e de uma maneira mais quantitativa, tal análise torna-se bastante trabalhosa, nem sempre facil, e na maioria das vezes, depende de muitas experimentações e tentativas a serem feitas por sucessivas simulações.

Problemas tais como "instabilidades" e "oscilações indesejáveis" nas respostas do sistema, na maioria das
vezes são difíceis de terem suas causas apontadas. Carente de
uma orientação sistemática, o problema se torna mais grave quan

to maiores a dimensão e complexidade do sistema.

A motivação deste trabalho está justamente em, a partir de resultados teóricos, métodos numéricos, cálculo de sensibilidades e a utilização do computador digital, fornecer os elementos necessários para uma análise das características de estabilidade de uma classe de sistemas não lineares discretos no tempo aplicável à maior parte dos sistemas de "Dinâmica Industrial". O trabalho não se propõe a resolver os problemas teóricos ainda existentes no estudo da estabilidade de sistemas não lineares discretos no tempo, limitando-se a apontá-los quando for o caso.

Considerando-se a análise como sendo o primei ro passo para um posterior trabalho de síntese, poderemos, a par tir do conhecimento das características do sistema, tentar melho rá-lo, pois teremos condições de saber quais parâmetros e de que maneira eles alteram a posição do ponto de equilíbrio do sistema, ou seja, da solução de regime; saberemos como e quais os parâmetros mais importantes na estabilidade deste ponto de equilíbrio. A determinação de um domínio de estabilidade assintótica de um ponto de equilíbrio, embora forneça apenas condições suficientes de estabilidade em relação às condições iniciais, nos for nece informação importante sobre os limitesque as variáveis não devem exceder, quando do início da operação do sistema, para que seja assegurada a convergência para a situação de regime.

Convém lembrar o fato de que todas as conclusões acerca de quaisquer características do sistema simulado não devem ser precipitadamente atribuídas ao sistema real, pois o modelo consta de uma simplificação de sistema real, e com este não deve ser confundido.

CAPÍTULO I - FORMULAÇÃO DO PROBLEMA

I.1 - INTRODUÇÃO

Os modelos da "Dinâmica Industrial" podem ser considerados como sendo da classe dos sistemas não lineares discretos no tempo. Na realidade, a maioria dos processos reais que são simulados são contínuos; porém, para a sua simulação em computadores digitais pelo método da Dinâmica Industrial, é necessário que esses sistemas sejam discretizados, na maioria das vezes sem serem discretos. Essa discretização poderá, se não forem tomados certos cuidados, introduzir alterações importantes nas características do modelo, de modo a invalidar completa mente os resultados da simulação.

Uma das maneiras atualmente utilizadas na simulação de sistemas da "Dinâmica Industrial" consta da utilização da linguagem "DYNAMO", especificamente adequada ao problema e que consta de um conjunto de rotinas que simulam os subsistemas mais comuns da "Dinâmica Industrial", efetuam automaticamente regressões para as variáveis auxiliares, facilitando sobremaneira a simulação [28]. A utilização dessa linguagem, e mesmo quando é utilizada a linguagem FORTRAN para a simulação, torna difícil, a partir das equações do sistema que é programado, a obtenção de dados e informações para uma análise do

sistema em termos quantitativos.

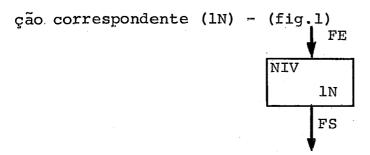
Para uma análise e especificamente de estabilidade, e é a que nos propomos, é necessário colocar o sistema, a partir das equações de Dinâmica Industrial, sob uma for mulação matemática adequada; para tanto, certas adaptações e hipóteses são necessárias. É o que trata a seção sequinte.

I.2 - O MÉTODO DA "DINÂMICA INDUSTRIAL"

A Dinâmica Industrial constitui-se em um método de modelização e simulação de sistemas dinâmicos em computadores digitais. A estrutura básica dos sistemas de Dinâmica Industrial é representada por níveis e fluxos [8]; tais níveis e fluxos formam seis tipos de malhas interconectadas e que constituem a atividade industrial. Cinco delas são representadas por: material, pedidos, capital, equipamentos e pessoal. A sexta constitui a malha de informações - é a que interliga as outras cinco.

Um modelo de Dinâmica Industrial é representado por um conjunto de equações, cada uma delas definindo uma variável. Essas variáveis podem ser: de fluxo, de ní vel, variáveis auxiliares e variáveis exógenas.

É conveniente, e a Dinâmica Industrial se utiliza disso, dar uma representação pictórica ao sistema de e quações através de um diagrama que represente as interrelações das equações, o que é muitas vezes mais útil para explicar a estrutura do sistema do que o conjunto de equações que o define.


Segundo essa idéia, nessa seção é apresentado o conjunto de símbolos utilizados na construção dos diagramas de modelos da Dinâmica Industrial, e em seguida, as equações correspondentes. Um modelo completo representando um sistema de produção-distribuição faz parte do capítulo VI.

I.2.1 - Os Simbolos

O sistema de símbolos mostra a existência das regras de interrelação no sistema, distingue níveis de fluxos, separa os seis tipos de fluxos e mostra os fatores que entram em uma função de decisão. Porém, o diagrama não define as relações funcionais entre as variáveis, o que é feito pelas equações correspondentes indicadas pelo número existente em cada um dos símbolos.

NÍVEIS

Um nível é representado por um retângulo com o nome da variável que representa tal nível e o número da equa

Os níveis representam as partes do sistema on de há o acúmulo de material, pedidos, capital, etc. As linhas de fluxo, segundo o sentido da seta, mostram o tipo de fluxo de entrada e de saída do nível. Os tipos de fluxos são os representados abaixo.

FLUXOS

Os fluxos ocorrem na entrada e saída dos níveis e representam a movimentação de capital, material, etc.

Cada um dos 6 tipos de fluxo tem seu símbolo correspondente - fig.2.

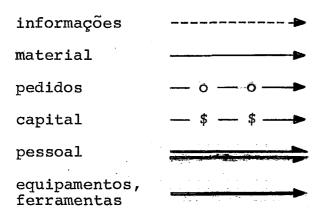
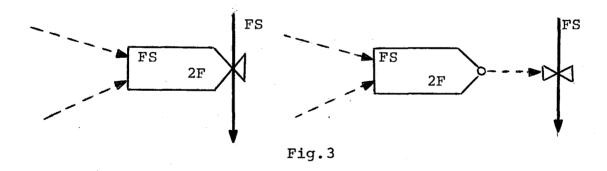
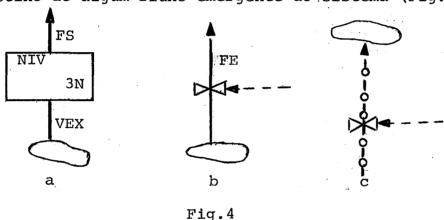



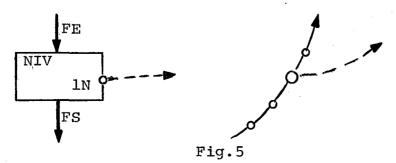
Fig.2

A distinção entre os tipos de linhas utilizadas tem apenas a finalidade de facilitar a compreensão dos modelos.

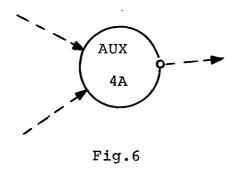
FUNÇÕES DE DECISÃO


São as funções de decisão que determinam a intensidade dos fluxos: agem como válvulas reguladoras que controlam escoamentos. As formas abaixo são equivalentes.

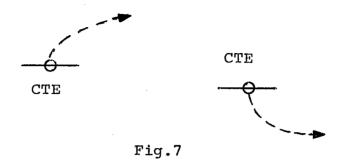
O símbolo representa o fluxo que está sendo controlado e as entradas de informações (somente informações entram nas funções de decisão). Também é dado o número da equação que define o fluxo (2F).


FONTES E ESCOADOUROS

Um fluxo tem muitas vezes uma fonte ou um escoadouro que se considera estarem fora dos limites do modelo. A fonte pode definir uma variável de fluxo, a qual é considerada uma variável exógena (Fig.4a) ou pode existir meramente para suprir um fluxo controlado por informações internas do sistema (Fig.4b). O escoadouro por sua vez, não tem características dinâmicas significativas, é apenas uma representação do destino de algum fluxo emergente do sistema (Fig.4c).


TOMADA DE INFORMAÇÕES

Os fluxos de informações interconectam as variáveis do sistema; esses fluxos de informações não afetam as variáveis das quais são retirados. A Fig.5 mostra a representação de tomada de informações em nível e fluxo.


VARIĀVEIS AUXILIARES

A variável auxiliar é o resultado do processamento de informações tomadas em níveis, fluxos e outras variáveis auxiliares. Situam-se dentro das malhas definidas pelos fluxos de informações, entre as tomadas de informações e as funções que controlam os fluxos. As variáveis auxiliares são representadas nos diagramas (Fig.6) por círculos contendo o nome da variável e o número da equação que a define. As entradas são as informações de fluxos, níveis ou outras variá veis auxiliares.

PARÂMETROS

São os valores numéricos que descrevem as características do sistema e são considerados constantes durante a simulação. São representados por uma linha acima ou abaixo do nome da constante, com uma tomada de informação (Fig.7)

"DELAYS"

São os "delays" que introduzem os atrasos no sistema, definindo os atrasos no tempo entre os fluxos que entram e saem de um determinado nível. São os "delays" que basicamente definem a dinâmica do sistema.

Os"delays" podem ser representados por uma combinação de níveis e fluxos, porém a frequência com que aparecem nos sistemas fez com que lhes fosse dada uma representação simplificada (Fig.8a) que é equivalente à representação dada pela combinação de nível e fluxo (Fig. 8b)

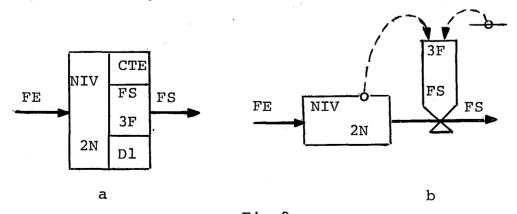


Fig.8

A Fig.8 representa um "delay" de primeira o<u>r</u> dem; "delays" de ordem mais elevada são obtidos colocando- se em cascata "delays" de primeira ordem. A notação da Fig.8a representa:

FE fluxo de entrada

NIV nivel

2N número da equação de nível

CTE constante de tempo de "delay"

FS fluxo de saída

número da equação de fluxo correspondente

Dl ordem de "delay" (primeira ordem)

I.2.2 - As Equações

A evolução do sistema not tempo é representada pela sequência dos valores das variáveis resultante da com putação periódica do conjunto de equações que define o sistema. A essa sequência de valores das variáveis se convenciona dizer, representam o sistema nos instantes T, T+DT, T+2DT, etc., e onde DT representa o intervalo de tempo entre dois instantes sucessivos.

Aos pontos sucessivos no tempo, dá-se a denominação I,J,K, etc., e ao intervalo entre os instantes J e K representa-se por JK. (Para uma exposição detalhada da sequência de cálculo, vide ref. [8]).

Basicamente são três os tipos de equações utilizados na descrição dos modelos da Dinâmica Industrial onde cada uma dessas equações define uma variável.

EQUAÇÕES DE NÍVEL

As equações de nivel são expressas pela se - quinte relação:

NIV.K = NIV.J + (DT) (FE.JK - FS.JK) 2N

onde

NIV.K - Nivel no instante K .

NIV.J - Nivel no instante J.

DT - Valor do intervalo de tempo considerado entre os instantes J e K (Constante)

FE.JK - Fluxo de entrada durante o intervalo de tempo entre os instantes J e K.

FS.JK - Fluxo de saída durante o intervalo de tempo entre os instantes J e K.

A equação 2N define a variação do nível (NIV) de instante a instante a partir dos fluxos de entrada e saída.

EQUAÇÕES DE FLUXO (Funções de Decisão)

As equações de fluxo determinam as intensida des dos fluxos, geralmente a partir de valores de níveis, para os intervalos de tempo em questão. Todos os valores das variaveis de fluxo são considerados como sendo constantes entre dois instantes sucessivos, ou seja, há a alteração dos valores dos fluxos apenas de intervalo a intervalo, pois durante os mesmos, eles são constantes. Um exemplo de um equação de fluxo é dado abaixo: ela define o fluxo de saída de um "delay" de primeira ordem (Fig.8b).

$$FS.JK = \frac{NIV.J}{CTE}$$

FS.JK - fluxo de saida no intervalo JK

NIV.K - nivel no instante K

CTE - constante de tempo do "delay"

A equação 3F define o valor do fluxo no intervalo JK a par tir do nível no instante J.

EQUAÇÕES AUXILIARES

As equações auxiliares definem as variáveis auxiliares que determinam os fluxos de informações, os quais,

por sua vez, vão entrar nas funções de decisão. As equações auxiliares são utilizadas para facilitar a formulação do mode lo, evitando o problema de tornar muito complexas as funções de decisão; é através das equações auxiliares que as não line aridades são introduzidas no modelo. A computação das variáveis auxiliares é feita sem a necessidade do conhecimento dos valores de variáveis nos instantes anteriores, como acontece nas equações de nível. Elas são computadas no instante genérico K a partir dos valores das variáveis também consideradas no instante K. A equação abaixo é um exemplo de equação auxiliar:

$$DFR.K = DHR + DUR \frac{IDR.K}{IAR.K}$$
4A

O valor de uma variável auxiliar DFR.K é calculado a partir de dois níveis IDR.K e IAR.K e duas constantes DHR e DUR (vide problema exemplo - capítulo VI)

O tipo de formulação dado pela Dinâmica Indus trial, acima exposto, é particularmente adequado e facilita so bremaneira, tanto a fase da modelização como simulação de sis temas industriais. Porém, quando se passa para a fase de análise, e especificamente de estabilidade, tal não ocorre, haven do a necessidade de, a partir das equações de Dinâmica Industrial que definem o sistema, colocá-lo sob uma formulação mais

adequada e que facilite tal análise.

Para tanto, considerando que todos os fluxos são constantes durante os intervalos JK, KL ...etc , se assumirmos que

$$FLUX.JK = FLUX.J = FLUX.J_{\frac{1}{4}}$$

ou seja, se considerarmos todos os valores das variáveis de fluxo (constantes durante os intervalos de tempo) como tendo o valor da variável no instante, tomado pela direita, poderemos tratar todos os tipos de variáveis considerando apenas seus valores nos instantes, sem levarmos em conta os valores durante os intervalos. Donde, em todas as equações aparecerão apenas variáveis consideradas em instantes.

Tomemos as equações 2N e 3F que definem em conjunto um "delay"; a partir do exposto acima e substituindo 3F em 2N, obteremos:

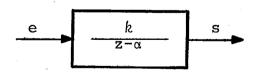
$$NIV.K = NIV.J + (DT) (FE.J - \frac{NIV.J}{CTE})$$
 (II.2.1)

ou seja, o valor da variável NIV em um determinado instante, depende apenas de valores de variáveis em instantes anteriores. Para melhor entendimento do que representa a equação II.2.1, façamos:

$$NIV.K - NIV.J = (DT) (FE.J - \frac{NIV.J}{CTE})$$

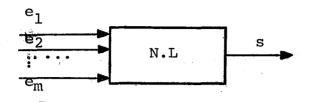
ou

$$\frac{\Delta \text{ NIV}}{\text{DT}} + \frac{\text{NIV.J}}{\text{CTE}} = \text{FE.J}$$


Tomando-se o limite da expressão anterior para $DT \rightarrow 0$, obtemos:

$$\frac{d \text{ NIV}(t)}{d t} + \frac{\text{NIV}(t)}{\text{CTE}} = \text{FE}(t)$$

que representa um sistema linear de primeira ordem, onde FE(t) é a entrada e CTE é a contante de tempo.


Analisando-se todos os elementos que constituem os sistemas da Dinâmica Industrial, podemos representá --los com dois tipos de elementos:

1) bloco linear

$$s(k+1) = \alpha s(k) + k e(k)$$

2) bloco não-linear (sem memória)

$$s(k) = f(e_1(k), e_2(k), e_m(k))$$

e, a partir desses dois tipos de elementos com as suas equa ções correspondentes, podemos definir os sistemas da Dinâmica
Industrial por um conjunto de equações que representam as variáveis de estado do sistema, sendo cada uma das variáveis
de estado representada por uma variável de nível correspondente.

1.3 - EQUAÇÕES A DIFERENÇAS FINITAS

Pelo exposto na seção anterior, podemos, a partir do conjunto de equações que definem um sistema da "Dinâmica Industrial", dar uma representação de variáveis de estado ao sistema, definida pela seguinte equação vetorial à diferenças finitas:

$$X^{+}(k+1) = H(X(k),U(k),k)$$
 (I.3.1)
 $k=0,1,2...$

onde $H:R^n \times R^m \times I \to R^n$, e a equação acima é equivalente a um conjunto de n equações escalares

$$x_1^{(k+1)} = h_1(x_1^{(k)}, x_2^{(k)}, \dots, x_m^{(k)}, u_1^{(k)}, u_2^{(k)}, \dots u_m^{(k)}, k)$$

 $i=1,2,\dots, n$

O vetor X é o estado do sistema descrito por I.3.1 e suas componentes x_i são as variáveis de estado.

O vetor U(k) é o controle, ou entrada, e suas componentes u_i(k) são as variáveis de controle, ou no nosso caso, as variáveis exógenas. O inteiro n define a ordem do sistema, e geralmente, o número de entradas é bem inferior ao número de variáveis de estado, ou seja, m<n.

Limitando as entradas à classe das entradas constantes, u = cte , j=1,... m fazemos com que elas passem a fazer parte do sistema, e a equação I.3.1 pode ser escrita:

$$X(k+1) = \tilde{H}(X(k),k)$$
 (I.3.2)

onde $\tilde{H}: R^n x I \to R^n$, e o sistema I.3.2 é dito ser livre ou não forçado. Se ainda considerarmos o sistema como sendo estacionário isto é independente do instante considerado, che garemos à representação

$$X(k+1) = F(X(k))$$
 (I.3.1)

onde $F:R^n \to R^n$, e que representa um sistema autônomo discreto no tempo. A equação I.3.1 é considerada uma equação vetorial a diferenças finitas, autônoma; mas podemos considerá-

-la como representando um processo iterativo onde k indica o número da iteração. Uma outra maneira de considerá-la, apenas por questões de notação, é chamá-la de uma equação vetorial recorrente, pois o estado seguinte é sempre calculado a partir do conhecimento do estado anterior. Nós a consideraremos, apenas para uniformização de linguagem, como sendo uma equação a diferenças finitas que representa um sistema dinâmico autônomo discorto no tempo. Limitaremos nosso estudo à classe dos sistemas onde o operador F é contínuo e diferenciável segundo Frèchet no domínio da função.

A classe dos sistemas a que restringimos o nos so estudo, compõe uma grande parte dos sistemas da "Dinâmica In dustrial", dos quais estudamos o comportamento do ponto de vista da estabilidade, considerando entradas em degrau no sistema (U(k)=cte). A hipótese da diferenciabilidade é válida para grande parte dos sistemas, e quando houver o caso das "funções auxiliares" serem dadas por tabelas, podemos facilmente obter essas funções a partir de regressões polinomiais.

CAPÍTULO II - ESTABILIDADE - DEFINIÇÕES E RESULTADOS GERAIS .

II.1 - INTRODUÇÃO

Embora os estudos e resultados sobre estabil<u>i</u> dade de equações diferenciais sejam numerosos e largamente divulgados, tal fato ainda não ocorre com as equações a diferenças finitas, onde a extensão dos resultados aplicaveis as primeiras ainda carece de maior estudo e divulgação, sendo a bibliografia sobre o assunto ainda bastante restrita.

Este capítulo tem por finalidade a apresentação das definições básicas e os resultados fundamentais relativos ao estudo da estabilidade de equações a diferenças finitas, ordinárias e de primeira ordem. Tais resultados são , na sua maioria, análogos àqueles correspondentes às equações diferenciais e se baseiam no segundo método ou método direto de Liapu nov. A apresentação dos resultados não pretende ser exaustiva e estará restrita ao caso dos sistemas autônomos, que é o caso que trata esse trabalho. Os resultados apresentados e a maioria das provas podem ser encontrados nas referências [22] e[25].

II.2 - ESTABILIDADE - DEFINIÇÕES

Consideramos os sistemas autônomos descritos pela equação vetorial a diferenças finitas de primeira ordem:

$$X(k+1) = F(X(k))$$
 (II.2.1)
 $k=0,1,2,...$

onde $F:R^n \to R^n$ é continua em todo o dominio.

- Definição 2.1 A solução de (II.2.1) é a sequência $\{X(k)\}$ onde $X(k) = F^k(X(0))$; $k \ge 0$ e X(0) é o estado inicial do sistema.
- Definição 2.2 Todos os pontos X^* que satisfazem à relação $X^* = F(X^*)$ são chamados pontos fixos de F ou pontos de equilibrio de (II.2.1) .

Na teoria de estabilidade de Liapunov, o estudo é relativo aos estados de equilibrio X^* de F(X), que são zero, para tanto basta que se faça uma mudança de variáveis $x = X-X^*$ donde o sistema II.2.1 fica:

$$x(k+1) = F(x(k)+X^*) - X^*$$
 (II.2.2)

ou

$$x(k+1) = f(x(k))$$
 (II.2.3)

que tem x*=0 como ponto de equilíbrio.

- Definição 2.4 O ponto de equilibrio x*=0 é assintotica mente estável se e somente se: x*=0 é estável no sentido de Liapunov e existe um x>0 tal que, sempre que tivermos ||x(0)|| < x, $\lim_{k\to\infty} x(k) = 0$.
- Definição 2.6 O ponto de equilibrio x*=0 é exponencialmente estável se e somente se existirem constan-

tes $\delta\!>\!0$, $\alpha\!>\!0$ e $0\!<\!\eta\!<\!1$ tais que: a solução $\{x\,(k)\,\}\quad \text{satisfaz}$ $|\,|\,x\,(k)\,|\,|\,\leq\,\alpha\,\,|\,|\,x\,(0)\,|\,|\,\,\eta^{\,k}\qquad k\!=\!0\,,1\,,2\,,\ldots$ quando $|\,|\,x\,(0)\,|\,|<\,\delta$.

Definição 2.7 -

Seja F um operador tal que $F:R^n \to R^m$, diz-se que F é diferenciável segundo Frèchet, em X_O , se e somente se existir um operador linear $L_{X_O}:R^n \to R^m$, tal que:

$$\lim_{h\to 0} \frac{||F(X_0^+h) - F(X_0^-) - L_{X_0}^-h||}{||h||} = 0$$

se F é diferenciável segundo Frèchet em X_O o operador L_{X_O} é representado por F'(X_O), onde

$$F'(X_0) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \ddots & \ddots \\ \vdots & & & \vdots \\ \frac{\partial F_m}{\partial x_1} & \frac{\partial F_m}{\partial x_2} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}_{X=X_0}$$

é o Jacobiano calculado no ponto $X=X_O$. Usare - mos também a notação $F'(X_O) = J(X_O)$ para representar o Jacobiano no ponto X_O .

II.3 - AS FUNÇÕES DE LIAPUNOV

O método direto, ou o segundo método de Liapunov, é todo ele baseado no estudo das "funções de Liapunov" que permitem fornecer informação qualitativa sobre a estabilidade do sistema sem a necessidade de propriamente resolver as equações. O uso das funções de Liapunov no estudo das equações diferenciais data de 1892; porém sua aplicação às equações a diferenças finitas foi inicialmente feita por Hahn em 1958. As funções de Liapunov tem no seu sinal uma caracteristica importante; portanto, são a seguir dadas definições in dispensáveis ao seu tratamento.

- Definição 3.1 A função escalar V(x) é definida positiva (ne gativa) em $N_h(0)$ se para ||x|| < h temos $V(x) > 0 \left[V(x) < 0\right] \sqrt[k]{x \neq 0} \quad e \quad V(0) = 0 .$
- Definição 3.2 A função escalar V(x) é semi definida positiva va (negativa) em $N_h(0)$ se para ||x|| < h temos $V(x) \ge 0$ $[V(x) \le 0]$ $\forall x$ e V(0)=0.

Comumente encontram-se funções definidas positivas e ne gativas quando se utilizam matrizes e formas quadráticas; para a análise do sinal de tais funções, utilizam-se as condições de Sylvester.

Teorema 3.1 - Teorema de Sylvester

Para que a forma quadrática V=x^TAx seja positiva definida é necessário e suficiente que a matriz A seja definida positiva, ou seja: se e somente se todos os determinantes menores principais forem positivos:

$$D_1 = |a_{11}| > 0$$

$$D_{2} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0$$

$$D_{n} = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} > 0$$

Para que a forma quadrática $V=x^TAx$ seja de finida negativa é necessário e suficiente que a matriz A seja definida negativa , ou seja, se e somente se, os determinantes menores principais de ordem par forem positivos, e os de ordem impar forem negativos.

$$D_1 < 0$$
 , $D_2 > 0$... $(-1)^n D_n > 0$.

Definição 3.3 - Um mapeamento $V:R^n \to R$ é uma função de Liapunov para $f:R^n \to R^n$ no ponto de equilibrio $x^*=0 \text{ de } x(k+1) = f(x(k)) \text{ , se existe uma } v\underline{i}$ $zinhança aberta D de x^*=0 tal que V é con$ tinua em D e,

$$V(x) > 0$$
, $\sqrt{x} \in D$ $x \neq 0$ e $V(0) = 0$

$$\Delta V(x) = V(f(x)) - V(x) \leq 0$$
 para todos x e $f(x) \in D$...

Teorema 3.2

Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ um mapeamento continuo numa vizinhança aberta S de $x \neq 0$ ponto de equilibrio de x(k+1) = f(x(k)); então:

Se existir $V:R^n \to R$ e for uma função de Li apunov para f em x*=0, então x*=0 é um ponto de equilibrio estável no sentido de Liapunov.

Se $\Delta V(X) < 0$ para $x, f(x) \in D$ e $x \neq 0$, entire tão $x \neq 0$ é assintoticamente estável.

Se S=D=Rⁿ e se $V(x) \rightarrow \infty$ com $||x|| \rightarrow \infty$, o ponto x*=0 é globalmente assintoticamente estável.

Convém salientar que o resultado acima não garante a existência de uma função V. Para que possamos garante tir a estabilidade do ponto é preciso achar uma função V e geralmente na prática, cada caso requer uma análise particular.

Tomemos o caso onde f(x) é linear; f(x)=Ax donde

$$x(k+1) = Ax(k+1)$$
 (II.2.4)
 $x(k) = A^{k}x(0)$

arbitramos como função de Liapunov a forma quadrática $V(x) = x^{T}Px$ onde P é uma matriz simétrica definida positiva, don de

$$\Delta V(x) = x^{T}A^{T}PAx - x^{T}Px$$
$$\Delta V(x) = x^{T}(A^{T}PA - P)x$$

para que $\Delta V(x)$ seja definida negativa, devemos ter que a matriz (P-A^TPA) seja definida positiva.

Teorema 3.4

Se existe uma matriz simétrica definida positiva P tal que P-A^TPA é definida positiva, então $|\lambda_{\bf i}|<1 \quad {\bf i=1, \dots n} \quad , \; {\rm onde} \quad n \quad {\bf \acute{e}} \; {\rm a} \; {\rm ordem} \; {\rm da} \; {\rm matriz} \; \; {\rm e} \; \; \lambda_{\bf i} \; {\rm são} \; {\rm os} \; {\rm auto} \; {\rm valores} \; {\rm de} \; \; {\rm A} \; , \; {\rm e} \; {\rm inversamente}$

Se $|\lambda_i|$ < le então existe uma matriz simétrica

definida positiva P tal que P-A^TPA é definida positiva. Donde conclui-se que $\Delta V(x) < 0 \quad \forall \quad x \in \mathbb{R}^n$ ou seja, o único ponto de equilíbrio de II.2.4 é globalmente assintoticamente estável.

Considerando-se o sistema

$$x(k+1) = f(x(k))$$

onde f é continua, se decompusermos f(x) em uma parte linear e outra não linear, tal que: f(x) = Ax + g(x), então poderemos escrever:

$$x(k+1) = Ax(k) + g(x(k))$$
 (II.2.5)

Teorema 3.5

Considerando o ponto de equilíbrio x*=0 do sistema (II.2.5) onde g é contínua se:

a)
$$\lim_{|x| \to 0} \frac{|g(x)|}{|x|} = 0$$

e

b)
$$|\lambda_i| < 1$$
 i=1 ... n

então, o ponto de equilibrio x*=0 é assintoticamente estável. Se, por outro lado, para algum λ_i tivermos $|\lambda_i|>1$, x*=0 não é estável no sentido de Liapunov.

Sejam os sistemas da forma de II,2.1 tal que F(X) é continua e diferenciável segundo Frèchet em X^* , se tomarmos $g(x)=f(x)-F'(X^*)x$ a condição <u>a</u> do teorema 3.5 é verificada, pois se F(X) é diferenciável segundo Frèchet em X^* , então:

$$\lim_{||x|| \to 0} \frac{||F(X^{*+}x) - F(X^{*}) - F'(X^{*})x||}{||x||} = 0$$

como $F(X^*)=X^*$, temos:

$$\lim_{||x|| \to 0} \frac{||F(X^{*+}x) - X^{*} - F'(X^{*})x||}{||x||} = 0$$

e pelas relações II.2.2 e II.2.3 temos:

$$\lim_{\|x\| \to 0} \frac{||f(x)-F'(X^*)x||}{\|x\|} = \lim_{\|x\| \to 0} \frac{||g(x)||}{\|x\|} = 0$$

donde poderemos enunciar:

Teorema 3.6

Se F(X) é continua e diferenciavel segundo

Frêchet em X*, e tomarmos o sistema II.2.1 deslocado para a origem

$$x(k+1) = f(x(k))$$
 com $f(x(k)) = F'(X^*)x(k)+g(x(k))$

se todos os auto valores de $F'(X^*)$ satisfizerem $|\lambda_1|<1$ $i=1,\ldots,n$ então, o ponto de equilíbrio $x^*=0$ é assintoticamente estável. Se para algum $i/|\lambda_1|>1$, o sistema não é estável no sentido de Liapunov.

Basicamente, para a análise da estabilidade dos pontos de equilíbrio dos nossos sistemas, nos utilizare - mos do resultado anterior, pois grande parte dos sistemas no nosso caso satisfaz as condições do teorema acima. Cumpre no tar que o teorema não diz nada sobre o caso onde algum dos λ_i tenha módulo igual a 1, $|\lambda_i|=1$, esse é o chamado "caso crítico de Liapunov", e para analisarmos o caso não podemos aplicar o teorema anterior; tal análise não tem solução simples e a estabilidade do ponto depende basicamente dos termos não lineares.

II.4 - DOMÍNIO DE ESTABILIDADE

Ainda relativamente aos sistemas descritos por x(k+1) = f(x(k)), um conceito importante é o relativo ao domínio de estabilidade do ponto de equilibrio x*=0, definido como sendo o conjunto D onde

$$D = \{x(0) / \lim_{k \to \infty} f^{k} (x(0)) = 0 \}$$

ou seja, é o conjunto dos pontos x(0), tais que, uma vez to mados como condição inicial para x(k+1) = f(x(k)) a convergência do sistema para x*=0 é assegurada. A determinação de D embora seja de grande importância no estudo da estabilidade, não é um problema trivial, e, no máximo, consequembse aproximações para D que não necessariamente é convexo [22] [30].

Para sistemas discretos no tempo, os métodos para sua determinação restringem-se geralmente aos casos onde a dimensão do sistema e n=2 . [11] [26]

A maneira como foi encarado o problema para os sistemas da Dinâmica Industrial é matéria do capítulo V.

CAPÍTULO III - PONTOS DE EQUILÍBRIO

III.1 - INTRODUÇÃO

Dado um sistema dinâmico descrito pela equação X(k+1) = F(X(k)), a nossa preocupação inicial estará em sabermos da existência de pontos de equilibrio nesse sistema, uma vez que o estudo e a análise da estabilidade são relativos a esses pontos. Um sistema do tipo de II.2.1 poderá, em principio, ter um, dois, ..., infinitos ou nenhum ponto de equilibrio, e a priori, apenas considerando a forma da função F, prever a existência de pontos de equilibrio, de uma maneira geral, não é um problema solucionado. O "principio da contração" [19] [29] nos garante a existência de um ponto de equilibrio (ponto fixo), porém sua análise é apenas local e for nece apenas condições suficientes de existência.

Sendo o nosso um problema mais voltado às aplicações práticas, uma tentativa no sentido de busca e determinação dos pontos de equilíbrio de um sistema por um método computacional, utilizando-se o método de Newton Raphson associado a um planejamento de experimentos (plano de BOX) [4] é exposto neste capítulo e aplicado ao problema exemplo.

III.2 - SOLUÇÃO DE UM SISTEMA DE EQUAÇÕES NÃO LINEARES

A determinação dos pontos de equilibrio des um sistema do tipo II.2.1 pode ser considerado como sendo o problema da determinação das soluções ou dos zeros da equação vetorial

$$G(X) = 0 (III.2.1)$$

onde G(X) = F(X)-X, ou seja, $G:R^n \to R^n$ é um operador não linear; a equação III.2.1 pode ser escrita como um sistema de equações não lineares

$$G_1(x_1, x_2 \dots x_n) = 0$$

 $G_2(x_1, x_2 \dots x_n) = 0$
 \vdots
 $G_n(x_1, x_2 \dots x_n) = 0$

onde $X^* = (x_1^*, x_2^* \dots x_n^*)$ é uma solução, que, se existir, pode não ser única.

Há, em princípio, muitos métodos para a de terminação das soluções de III.2.1, que podem ser: métodos
gráficos, métodos baseados em simulações em computadores ana
lógicos [11], isso quando a dimensão do sistema permitir.Pa
ra sistemas de dimensão elevada é preciso recorrer a métodos

numéricos, métodos de otimização, todos esses associados à <u>u</u> tilização do computador digital.

Um método bastante utilizado por sua simplicidade e eficiência é o de Newton-Raphson, que fornece uma solução de III.2.1 suficientemente acurada para efeitos de comparação com X*. Baseia-se em achar uma equação linear

$$L X = y (III.2.2)$$

que se aproxime a III.2.1 numa vizinhança do ponto X* e se ja resolvida por métodos numéricos convencionais. A solução X* é dita obtida por linearização de III.2.1 . Para a construção da equação linear III.2.2 , sendo G contínua e diferenciável segundo Frêchet, podemos escrever:

$$G(X) = G(X_0) + G'(X_0)(X-X_0) + \eta(X,X_0)$$

onde

$$\lim_{||X-X_{O}|| \to 0} \frac{\eta(X,X_{O})}{||X-X_{O}||} = 0$$

Se $G(X^*) = 0$ teremos:

$$G(X_O) + G'(X_O)(X^*-X_O) = -\eta(X^*, X_O)$$

Seaainda, considerarmos X_0 nas vizinhanças de X^* , podemos desprezar $\eta(X,X_0)$ e obter a equação linear

$$G(X_0) + G'(X_0)(X-X_0) = 0$$

ou

$$G'(X_0)X = G'(X_0)X_0 - G(X_0)$$

que tem uma única solução $X=X_1$ se $G'(X_0)$ existe e que é \underline{u} ma aproximação de X^* onde

$$X_1 = X_0 - [G'(X_0)]^{-1} G(X_0)$$
 (III.2.3)

A partir da equação III.2.3 podemos formar um processo iterativo baseado em que se X_0 está próximo de X^* , X_1 estará provavelmente mais próximo, e X_2 calculado a partir de X_1 , idem; donde construimos o processo iterativo definido por

$$X_{n+1} = X_n - [G'(X_n)]^{-1} G(X_n)$$
 (III.2.4)

que define o processo de Newton Raphson. Observe-se que o processo iterativo acima pode ser considerado como sendo uma equação a diferenças finitas de primeira ordem, cujo único ponto de equilíbrio é X*.

Uma vez que consideramos G sendo diferenciável segundo Frèchet, e o processo III.2.4 sendo uma equação do tipo de II.2.1 , vamos analisar a estabilidade do ponto de equilíbrio X* aplicando o teorema(3.6). Para tanto, vamos analisar os auto valores de N'(X*), onde:

$$N(X) = X - \left[G'(X)\right]^{-1} G(X)$$

е

$$N'(X) = I - [G'(X)]^{-1} G'(X) - \begin{bmatrix} G(X)^T & H_1'(X) \\ \vdots & & & \\ G(X)^T & H_n'(X) \end{bmatrix}$$

onde

$$G(X)^{T} = [G_1(X) \ G_2(X) \ \dots \ G_n(X)]$$

$$H_{n}(x) = \begin{bmatrix} \frac{\partial G_{n}(x)}{\partial x_{1}} & \frac{\partial G_{n}(x)}{\partial x_{2}} & \cdots & \frac{\partial G_{n}(x)}{\partial x_{n}} \end{bmatrix}^{T}$$

Como no ponto X=X* temos G(X*)=0, então N'(X*)=0, ou seja,os auto valores de N'(X*) são todos nulos, donde o processo iterativo descrito por III.2.4 é as sintoticamente estável, além de a condição $\lambda_1=0$ garantir a convergência rápida do processo numa vizinhança de X*.

Pelo exposto na página anterior, concluimos que: desde que estamos buscando os pontos de equilíbrio de X(k+1) = F(X(k)), ou seja, os pontos X^* tais que $X^*=F(X^*)$ ou ainda os "zeros" de G(X) = 0, qualquer ponto de equilíbrio X^* (desde que exista) de X(k+1) = F(X(k)) estável ou não, para o processo iterativo de Newton Raphson é um ponto assintoticamente estável, porém não globalmente, isto é, o processo III.2.4 tem o seu domínio de estabilidade assintotica, que geralmente é pequeno comparado com o domínio de X^* (X^* estável) considerado o processo II.2.1.

Desde que tomarmos uma condição inicial para o processo de Newton Raphson suficientemente próxima de X^* , ele convergirá para X^* , independente da condição de X^* ser estável ou não por X(k+1) = F(X(k)).

III.3 - PLANEJAMENTO DE EXPERIMENTOS

Como foi citado na introdução deste capítulo, não há condições de saber a priori quantas soluções tem a equação III.2.1 ou seja, quantos pontos de equilíbrio tem o sistema X(k+1) = F(X(k)). Uma tentativa no sentido de uma solução prática para o problema, foi a de se recorrer a um cratério de busca de pontos de equilíbrio em um dado domínio de interesse E, definido a partir de considerações físicas. Geralmente definido a partir dos valores máximos e mínimos que podem assumir as variáveis de estado,

$$E = \{X: X_{\min} \le X \le X_{\max}\}$$

Sendo E o dominio de interesse, fazemos uma exploração em E segundo um critério de experimentos (o plano de BOX) [4]. Essa exploração, segundo o critério de Box, pretende, dentro da idéia do método, conseguir o máximo de informações sobre E com um mínimo de experiências. As informações sobre E, no nosso caso, são a existência ou não de pontos de equilibrio, e o plano irá, a partir da definição de E fornecer um conjunto de pontos experimentais que serão tomados para condições iniciais para a aplicação do método de Newton Raphson.

Desta maneira, procuramos fazer uma explora-

ção, sabendo que: desde que existe um ponto de equilibrio de III.2.1 estável ou não e X_O a condição inicial for tomada na vizinhança de X*, o processo de Newton Raphson convergira para X* e teremos determinado um dos pontos de equilibrio.

CAPÍTULO IV - SENSIBILIDADES EM RELAÇÃO AOS PARÂMETROS

IV.1 - INTRODUÇÃO

A análise de sensibilidades tem por finalida de no nosso caso, a identificação dos parâmetros importantes na dinâmica e na estabilidade dos pontos de equilibrio do sistema. De grande valia é a identificação dos parâmetros que influem na "posição" de determinado ponto de equilibrio, ou se ja, de uma solução de regime. Considerando determinado ponto de equilibrio, é dada, a partir de um método proposto por Faddeeva [6], uma maneira de calcular as sensibilidades dos auto valores do Jacobiano, calculado no ponto de equilibrio, em relação aos parâmetros do sistema.

Esses resultados nos fornecem dados para uma análise da influência dos parâmetros na velocidade de convergência do sistema nas vizinhanças do ponto de equilíbrio, bem como na sua estabilidade. Não nos ateremos aos problemas de "bifurcação", ou seja, aos valores de parâmetros para os quais há a passagem de algum dos $\lambda_{\bf i}$ de $|\lambda_{\bf i}|$ < 1 para $|\lambda_{\bf i}|$ > 1 ou vice-versa; para tal sugerimos as referências [13] e [30] no caso em que a dimensão do sistema é n=2.

Um dos parâmetros importantes, comum a todos os sistemas de Dinâmica Industrial é o período de amostragem,

DT que é introduzido na discretização do sistema, tal parâmetro muitas vezes dependendo do sistema é crítico no sentido de que, a partir dos resultados da simulação podemos ser levados a tirrar conclusões erradas sobre o sistema real, desde que a sensibilidade em relação à discretização seja muito elevada; cabe notar porém que o valor de DT não influi nos pontos de equilibrio, ou seja, na solução de regime.

IV.2 - INFLUÊNCIA DOS PARÂMETROS NA POSIÇÃO DO PONTO DE EQUILÍBRIO.

Consideremos o sistema

$$X(k+1) = \widetilde{F}(X(k), P)$$
 (IV.2.1)

onde

$$\tilde{F}: R^n \times R^r \to R^n$$
 e $P = (p_1, p_2 \dots p_r)^T$ é o vetor dos parâmetros do sistema.

 \tilde{F} é diferenciável em relação a P e a X e para $P=\bar{P}$, fixo, temos:

$$X(k+1) = F(X(k)) \qquad F:R^{n} \to R^{n}$$

Os pontos de equilíbrio do sistema são tais que:

$$X^* = \widetilde{F}(X^*, P) \tag{IV.2.2}$$

ou

$$X^* = \phi(P)$$

onde $\phi: \mathbb{R}^r \to \mathbb{R}^n$ e onde ϕ , a menos de casos bastante simples, não é conhecida analiticamente. Como estamos interessa dos na variação de X* em relação a um determinado parâmetro p_j , tomemos as derivadas parciais de ambos osmmembros de IV.2.2

$$\begin{bmatrix} \frac{\partial X^*}{\partial p_j} \end{bmatrix} = \begin{bmatrix} \frac{\partial \tilde{F}}{\partial X^*} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial X^*}{\partial p_j} \end{bmatrix} + \begin{bmatrix} \frac{\partial \tilde{F}}{\partial p_j} \end{bmatrix}$$

Mas, considerando-se um sistema definido onde $P=\bar{P}$ e calculando as derivadas parciais no ponto X=X* , tere mos:

$$\left[\mathbf{I} - \frac{\partial \mathbf{F}}{\partial \mathbf{X}}\right]_{\mathbf{X}=\mathbf{X}^*} \cdot \left[\frac{\partial \mathbf{X}^*}{\partial \mathbf{p_j}}\right] = \left[\frac{\tilde{\partial} \mathbf{F}}{\partial \mathbf{p_j}}\right]_{\mathbf{X}=\mathbf{X}^*} \quad (IV.2.3)$$

donde resolvendo-se o sistema IV.2.3 linear, obtemos:

$$\begin{bmatrix} \frac{\partial x^*}{\partial p_j} \\ \frac{\partial x^*}{\partial p_j} \end{bmatrix} = \begin{bmatrix} \frac{\partial x^*}{\partial p_j} \\ \vdots \\ \frac{\partial x^*}{\partial p_j} \end{bmatrix}$$

que fornece as sensibilidades de todas as variáveis de estado no ponto de equilábrio X=X* em relação ao parâmetro p. .

IV.3 - INFLUÊNCIA DOS PARÂMETROS NOS AUTO VALORES DO JACOBIANO

Um método para o estudo das sensibilidades dos auto valores de uma matriz (nxn) em relação aos seus parâmetros é proposto por Faddeeva [6] e será utilizado no nosso caso.

Consideremos a aproximação linear do sistema X(k+1) = F(X(k)) no ponto de equilibrio X^* .

$$X(k+1) = J(X^*)X(k)$$
 (IV.3.1)

onde

$$J(X^*) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & & & & \\ \frac{\partial F_n}{\partial x_1} & \frac{\partial F_n}{\partial x_2} & \cdots & \frac{\partial F_n}{\partial x_n} \end{bmatrix}_{X=X^*}$$

sendo λ_i , i=1,2 ...n os auto valores do Jacobiano calculado em X^* , podemos escrever:

$$J(X^*)V_{i} = \lambda_{i}V_{i}$$
 (IV.3.2)

onde

Tomando-se a derivada parcial de ambos os membros de IV.3.2 em relação a um dos parâmetros de P = $= \left(p_1, p_2 \ldots p_r\right)^T \quad \text{que denotaremos} \quad p_j = p \quad \text{e chamando}$ $\text{J}(\text{X*}) = \text{A} \quad \text{, temos:}$

$$\frac{\partial A}{\partial p}$$
 V_{i} + $A \frac{\partial V_{i}}{\partial p}$ = $\lambda_{i} \frac{\partial V_{i}}{\partial p}$ + $\frac{\partial \lambda_{i}}{\partial p}$ V_{i} (IV.3.3)

Sejam W_j os auto vetores de A^T , fazendo o produto escalar de W_j com cada um dos termos de IV.3.3 , temos:

$$\frac{\partial A}{\partial p} V_{i}, W_{j} > + \langle A \frac{\partial V_{i}}{\partial p}, W_{j} \rangle = \lambda_{i} \langle \frac{\partial V\Psi}{\partial p}, W_{j} \rangle + \frac{\partial \lambda_{i}}{\partial p} \langle V_{i}, W_{j} \rangle$$

$$(IV.3.4)$$

Se em IV.3.4 tomarmos i=j , poderemos escrever:

$$<\frac{\partial A}{\partial p} V_{i}, W_{i}> + < A \frac{\partial V_{i}}{\partial p}, W_{i}> = <\frac{\partial V_{i}}{\partial p}, A^{T}W_{i}> + \frac{\partial \lambda_{i}}{\partial p} < V_{i}, W_{i}>$$

pois

$$A^{T}W_{i} = \lambda_{i}W_{i}$$

e como

$$\langle A \frac{\partial V_{i}}{\partial p}, W_{i} \rangle = \langle \frac{\partial V_{i}}{\partial p}, A^{T}W_{i} \rangle$$

tiramos

$$\frac{\partial \lambda_{\mathbf{i}}}{\partial \mathbf{p}} = \frac{\langle \frac{\partial \mathbf{A}}{\partial \mathbf{p}} \mathbf{v}_{\mathbf{i}}, \mathbf{w}_{\mathbf{i}} \rangle}{\langle \mathbf{v}_{\mathbf{i}}, \mathbf{w}_{\mathbf{i}} \rangle}$$
(IV.3.5)

onde os elementos da matriz $C = \begin{bmatrix} \frac{\partial A}{\partial p} \end{bmatrix}$ são dados por:

$$c_{ij} = \sum_{k=1}^{n} \frac{\partial a_{ij}}{\partial x_{k}} \cdot \frac{\partial x_{k}}{\partial p} + \frac{\partial a_{ij}}{\partial p}$$

calculados no ponto de equilibrio X*; note-se que para o cálculo de $\frac{\partial \lambda_i}{\partial p_j}$ por IV.3.5 necessitamos dos auto vetores de A, auto vetores de A e da solução do sistema IV.2.3.

A partir dos resultados de IV.3.5 e IV.2.3,

a análise será dirigida no sentido de identificarmos quais os parâmetros que tem maior influência na variação dos auto valores, e do ponto de equilíbrio, pela análise do sinal e do valor numérico respectivamente de $\frac{\partial}{\partial p_j}$ e de $\left[\frac{\partial}{\partial p_j}\right]$. Cumpre notar que poderemos ter os casos onde a sensibilidade, tanto de determinados auto valores como da posição de equilíbrio, se jam elevadas para um certo parâmetro, e, em caso de fazermos modificações nos parâmetros do sistema, deve-se ter em mente a possibilidade dessas interações. Ou seja, desejando alterar algum auto valor, poderemos alterar simultaneamente a posição do ponto de equilíbrio, bem como o valor numérico de outros au to valores, donde uma solução de compromisso é necessária, verificando-se os valores numéricos de todas as sensibilidades de interesse.

Como os valores numéricos de $\frac{\partial \lambda_i}{\partial p_j}$ e $\left[\frac{\partial X^*}{\partial p_j}\right]$ são calculados em um determinado ponto de equilíbrio e que quando vamos calcular a variação de $\Delta\lambda_i$ em um dado auto valor devido a uma variação Δp_j a partir de $\frac{\Delta}{\Delta}\frac{\lambda_i}{p_j}$ $=\frac{\partial}{\partial}\frac{\lambda_i}{\partial p_j}$; essa relação é considerada uma aproximação linear das varia - ções em X* e é válida apenas para pequenas variações de $\Delta\lambda_i$ e Δp_j . Podemos ainda, a partir da magnitude relativa dos elementos de um auto vetor associado a um determinado auto valor, identificar em qual variável de estado do sistema tem in fluência preponderante esse auto valor. Se, por exemplo, tiver

mos o auto valor $\lambda_{\bf i}$ e o auto vetor a ele associado tiver a forma $V_{\bf i} = (\alpha \ 3\alpha \ \alpha)^T$, a variável de estado ${\bf x}_2$ tem ma ${\bf i}$ or influência do modo $\lambda_{\bf i}$ do que ${\bf x}_1$ e ${\bf x}_3$ que tem, por sua vez, a mesma influência do auto valor $\lambda_{\bf i}$.

CAPÍTULO V - DOMÍNIO DE ESTABILIDADE

V.1 - INTRODUÇÃO

O problema da determinação do domínio de esta bilidade está intimamente relacionado com a geração de funções de Liapunov, embora em certos casos consegue-se a sua determinação a partir de métodos considerados diretos, baseados no estados das propriedades da fronteira desse domínio [11], os métodos ditos diretos tem sua limitação na dimensão do sistema, que se for elevada, torna o problema complexo.

A geração de funções de Liapunov por um procedimento sistemático tem sido uma preocupação constante desde a publicação de seu trabalho original (1892). Embora existam muitos métodos [14] e na maioria para sistemas contínuos, tais como o de Zubov, Krasovskii, e outros, não se pode afirmar que o problema da geração de funções de Liapunov tenha sido resolvido; sendo esse um dos motivos pelos quais o segundo método de Liapunov não teve uma maior aceitação nos meios mais voltados às aplicações práticas. No caso das equações a diferenças finitas os trabalhos são poucos [11] [26], talvez desestimulados pelo conhecimento das dificuldades sentidas no caso das equações diferenciais.

A intenção deste capítulo não está em expor ou analisar os métodos existentes, para o que sugerimos [14] [31], mas procura mostrar um tipo de solução que pode ser utilizado para a determinação de um domínio de estabilidade aproximado a partir de uma função de Liapunov relacionada com a dinâmica do sistema. Para sistemas de dimensão elevada é indispensável a utilização do computador digital para a solução desse problema. A necessidade da determinação do domínio de estabilidade no nosso caso, sistemas de Dinâmica Industrial está ligada ao fato de que dado um ponto de equilibrio conhecido, as condições iniciais do sistema não devem ultrapassar certos limites, o que faria com que o sistema se afastasse do ponto de equilíbrio desejado.

O método que utilizaremos, usando funções de Liapunov nos fornecerá apenas o domínio aproximado, pois as condições de estabilidade são apenas suficientes.

V.2 - <u>FUNÇÃO DE LIAPUNOV</u>

Desde que vamos determinar o dominio de esta bilidade aproximado de um ponto de equilibrio assintoticamente estável pelas funções de Liapunov, teremos que tentar uma função de Liapunov para o determinado sistema. Para sistemas de dimensão elevada é bastante trabalhoso o processo de tentati-

va e erro, e as considerações físicas sobre o sistema, que em outros casos são úteis, tornam-se difíceis; portanto, nos restringiremos às formas quadráticas e utilizaremos um critério baseado naquele proposto por Schultz [31] para sistemas continuos.

Considerando o sistema

$$x(k+1) = f(x(k)) \tag{V2.1}$$

cuja aproximação linear é:

$$x(k+1) = Ax(k) \tag{V2.2}$$

onde $A = J(X^*)$

 X^* - ponto de equilibrio assintoticamente estável de X(k+1) = F(X(k)).

Seja a transformação linear P tal que x=Pz; nas novas coordenadas z o sistema V.2.2 fica

$$z(k+1) \triangleq P^{-1} APz(k)$$
 ou

$$z(k+1) = \Lambda z(k) \qquad (V.2.3)$$

onde

 $A = \text{diag } (\lambda_1, \lambda_2, \dots, \lambda_n) \quad \text{\'e a matriz diagonal dos autovalores}$ de A , reais e $\lambda_1 \neq \lambda_1 \quad \text{se } i \neq j \quad .$

Fazendo-se os raciocínios nas coordenadas z, usaremos como função de Liapunov a forma quadrática

$$V(z) = z^{T}z$$

como

$$\Delta V(z(k)) = V(z(k+1)) - V(z(k)), \text{ com } V.2.3 \text{ temos}$$

$$\Delta V(z(k)) = z^{T}(k) A^{T} A z(k) - z^{T}(k)z(k)$$

como $\Lambda^{T} = \Lambda$ temos

$$\Delta V(z) = z^{T}(\Lambda^{2} - I) z$$

como

$$\lambda_{i}^{2} < |\lambda_{i}| < 1$$

a matriz $B=\Lambda^2-I$ é definida negativa, donde V(z) é uma função de Liapunov na vizinhança do ponto x=0. Uma interpretação dessa função de Liapunov está no fato de que quanto maior o módulo do autovalor λ_i , tanto menor a "velocidade de convergência" de V(z) correspondente aquela variável de estado z_i .

 $\Delta V(z) = \Delta V(z_1, z_2 \dots z_n) \quad \text{o que faz com que a função}$ $V(z) \quad \text{assim definida, esteja ligada à dinâmica do sistema nas}$ $vizinhanças \quad \text{do ponto de equilibrio onde a aproximação linear}$ $z(k+1) = \Delta z(k) \quad \text{é preponderante em relação aos termos não lineares.}$

Desta maneira relacionamos a função V às características do sistema nas coordenadas z. Para voltarmos ao sistema inicial, é preciso calcular V(x), o que teoricamente é fácil, pois:

$$V(x) = x^{T} (p^{-1})^{T} p^{-1} x$$

е

$$\Delta V(x) = x^{T} (P^{-1})^{T} B P^{-1} x$$

onde V(x) e $\Delta V(x)$ mantém as propriedades de serem definidas positiva e negativa respectivamente [21]. O problema da determinação do domínio de estabilidade resume-se em determinar a máxima superfície fechada no R^n definida por $V(x) = x^T (P^{-1})^T P^{-1} x = K$ tal que $\Delta V(x) < 0$, utilizando $\Delta V(x)$ a partir do sistema não linearizado, ou seja:

$$\overline{\Delta V}$$
 (x) = V(f(x)) - V(x)

Se para $x \rightarrow \infty$ tivermos $K \rightarrow \infty$ o ponto x = 0 será globalmente assintoticamente estável. Quando não for o caso, como a função de Liapunov para um dado sistema não é única, dependendo de uma melhor ou pior escolha, poderemos determinar um menor ou maior domínio de estabilidade.

V.3 - DETERMINAÇÃO DO DOMÍNIO DE ESTABILIDADE

O problema da determinação numérica do domínio de estabilidade a partir de uma dada função de Liapunov, pode ser reduzido a um problema de minimização de uma função não linear $-\overline{\Delta V}(x)$ sujeita a uma restrição de igualdade V(x) = K, ou seja buscar o mínimo de $-\overline{\Delta V}(x)$ na superfície fecha da do R^n dada por V(x) = K.

O procedimento básico é a procura de $-\overline{\Delta V}(x)$ mínimo na superfície V(x)=K e daí dando incrementos para K e recomputando o mínimo de $-\overline{\Delta V}(x)$ nessa superfície cuja "distância" à origem é "maior". O maior domínio será aquele determinado pelo K para o qual $-\overline{\Delta V}(x)=0$. Esse procedimento é inicializado em valores de K para os quais $-\overline{\Delta V}(x)$ é positiva.

Uma das maneiras de colocar o problema é, a partir das restrições de igualdade, transformá-lo em um sem restrições, ou seja, minimizar a função original aumentada:

minimizar
$$F = \{ -\overline{\Delta V}(x) + \frac{C'}{2} [V(x) - K]^2 \}$$

onde C' é uma constante positiva que define a precisão re - querida; quando C' tende a tornar-se suficientemente grande, o mínimo de função sem restrições irá se aproximar do mínimo de função original, satisfazendo a restrição de igualdade.

No nosso caso, para a determinação de $\Delta V(x)$ mínimo para cada um dos K foi utilizado o algoritmo "OPTIM" [35] que se baseia na escolha do mínimo da função F computa do em 3^n pontos na vizinhança de um ponto inicial X_o , tratando-se, portanto, de um método direto de minimização.

CAPÍTULO VI - PROBLEMA EXEMPLO

VI . 1 - INTRODUÇÃO

Este capítulo tem por finalidade a apresen tação de um problema exemplo de Dinâmica Industrial ao qual são aplicados os métodos de análise sugeridos neste trabalho. Na parte de computação dos resultados numéricos, muitos problemas aparentemente simples do ponto de vista teórico são de solução difícil quando se exigem resultados dentro de determina da precisão.

Apresenta-se neste capítulo um sistema de produção-distribuição simplificado; o conjunto de equações da Dinâmica Industrial que define o sistema é transformado em um sistema de equações a diferenças finitas de primeira ordem e analisado como tal. Não nos prendemos na explicação detalhada do modelo pois esta não é a intenção; para consulta, sugerimos a referência [8] de onde foi retirado o exemplo. Em seguida à apresentação do modelo, é dada uma sequência lógica dos programas FORTRAN utilizados com os respectivos resulta dos, diagramas de blocos e cujas listagens encontram-se no apêndice.

VI.2 <u>SISTEMA PRODUÇÃO-DISTRIBUIÇÃO</u> (Simplificado)

Nesta seção são apresentadas as equações da "Dinâmica Industrial", que no conjunto vão constituir o modelo do sistema produção-distribuição de bens de consumo duráveis considerados ao nível do retalhista. O modelo constitui-se nu ma simplificação daquele exposto em detalhes na referência [8], capítulo 15.

Na sequência de apresentação das equações, com a definição das respectivas variáveis, será utilizada a mesma notação da referência [8]. A numeração das equações é aquela referente ao diagrama de blocos do modelo (fig.VI.2.1). As letras N referem-se às equações de nível; F, às equações de fluxo e A às equações auxiliares.

As equações do modelo são as seguintes:

$$UOR.K = UOR.J + (DT) (RRR.JK - SSR.JK)$$
 1N

- UOR pedidos não preenchidos pelo retalhista (medidos em unidades de bens a serem pedidos)
- RRR Pedidos recebidos pelo retalhista (unidades/semana)
- DT Intervalo de tempo considerado (semanas)

$$IAR.K = IAR.J + (DT) (SRR.JK - SSR.JK)$$
 2N

IAR - Estoque real de bens existente: no retalhista(unidades)

SRR - Pedidos recebidos pelo retalhista (unidades/semana)

SSR - Remessas enviadas pelo retalhista aos clientes (unida- des/semana)

$$SSR.KL = \frac{UOR.K}{DFR.K}$$
 3F

- SSR Remessas enviadas pelo retalhista aos clientes (unida des/semana)
- UOR Pedidos não preenchidos pelo retalhista (unidades/semana)
- DFR Atraso (variável) no preenchimento de pedidos pelo retalhista (semanas)

$$DFR.K = DHR + DUR . IAR.K$$
4A

- DFR Atraso no preenchimento de pedidos pelo retalhista (se manas)
- DHR Atraso minimo devido ao manuseio de pedidos pelo retalhista (semanas)
- DUR Atraso médio no preenchimento de pedidos pelo retalhis ta quando o estoque de bens é normal (semanas)
- IDR Estoque ideal desejado no retalhista (unidades)
- IAR Estoque real existente no retalhista (semanas)

$$IDR.K = (AIR)(RSR.K)$$

5A

IDR - Estoque desejado no retalhista (unidades)

AIR - Constante de proporcionalidade entre o estoque e a média de vendas pelo retalhista (semanas)

RSR - Média de vendas (unidades/semana)

RSR.K = RSR.J + (DT) (
$$\frac{1}{DRR}$$
) (RRR.JK - RSR.J) 6N

RSR. - Média dos pedidos feitos ao retalhista (unidades/se-mana)

RRR - Pedidos recebidos pelo retalhista (vendas) (unidades/ /semana)

DRR - Atraso na avaliação da média das vendas do retalhista (semanas)

PDR_{*}KL = RRR.JK + (
$$\frac{1}{DIR}$$
) (IDR.K - IAR.K) + (LDR.K - - LAR.K) + (UOR.K - UNR.K) 7F

PDR - Decisão da quantidade de compras a serem efetuadas pelo retalhista (unidades/semana)

RRR - Pedidos feitos ao retalhista (unidades/semana)

DIR - Atraso na atualização do estoque do retalhista (semana§)

- IDR Estoque desejado (ideal) no retalhista (unidades)
- LDR Pedidos em trânsito para suprir o retalhista (unidades)
- LAR Pedidos feitos pelo retalhista (unidades)
- UOR Pedidos não preenchidos pelo retalhista (unidades)
- UNR Pedidos não preenchidos pelo retalhista; número considerado normal (unidades)

$$LDR.K = (RSR.K) (DCR + DMR + DUD + DHD + DTR)$$
 8A

- LDR Pedidos em trânsito necessários para suprir o retalhis ta (unidades)
- RSR Média das vendas feitas pelo retalhista (unidades/sema na)
- DCR Atraso no processamento dos pedidos no retalhista (semanas)
- DMR Atraso na expedição dos pedidos no retalhista (semanas)
- DUD Atraso médio no preenchimento de pedidos pelo distribuidor
- DHD Atraso devdo ao tempo minimo de manuseio dos pedidos
 pelo distribuidor (semanas)
- DTR Atraso no transporte de bens para o retalhista (semana)

LAR - Pedidos em trânsito para suprir o retalhista (unidades)

CPR - Pedidos sendo processados pelo retalhista (unidades)

PMR - Pedidos de compra do retalhista, no correio (unidades)

UOD - Pedidos não preenchidos pelo distribuidor (unidades)

MTR - Bens em trânsito para o retalhista (unidades)

$$UNR.K = (RSR.K) (DHR + DUR)$$
 10A

UNR - Quantidade normal de pedidos no retalhista (unidades)

RSR - Média dos pedidos de compra feitos para o retalhista (média das vendas) (unidades/semana)

DHR - Atraso no manuseio de pedidos pelo retalhista (semanas)

DUR - Atraso médio no preenchimento de pedidos pelo retalhis ta quando o estoque é normal (semanas)

$$CPR.K = CPR.J + (DT) (PDR.JK - PSR.JK)$$
 11N

$$PSR.JK = \frac{CPR.J}{DCR}$$

CPR - Pedidos sendo processados pelo retalhista (unidades)

PDR - Decisão da quantidade de compras feita pelo retalhis ta (unidades/semana)

PSR - Pedidos de compra enviados pelo retalhista (unidades/ /semana)

DCR - Atraso no processamento dos pedidos de compra pelo retalhista

$$PMR.K = PMR.J + (DT) (PSR.JK - RRD.JK)$$
 13N

$$RRD.JK = \frac{PMR.J}{DMR}$$

PMR - Pedidos de compra ao retalhista, no correio (unidades)

PSR - Pedidos de compra enviados ao distribuidor pelo retalhista (unidades/semana)

RRD - Pedidos recebidos pelo distribuidor (unidades/semana)

$$MTR.K = MTR.J + DT (SSD.JK - SRR.JK)$$
 15N

$$SRR.JK = \frac{MTR.J}{DTR}$$
 16F

MTR - Material em trânsito para o retalhista (unidades)

SSD - Remessas enviadas pelo estoque do distribuidor (unidades/semana)

SRR - Remessas recebidas no estoque do retalhista (unidades/ /semana)

DTR - Atraso no transporte dos bens - do distribuidor para o retalhista (semanas)

$$UOD.K = UOD.JC + DT(RRD.JK - SSD.JK)$$
 17N

$$SSD.JK = \frac{UOD.J}{DUD}$$
18F

- UOD Pedidos não preenchidos pelo distribuidor (unidades)
- RRD Pedidos recebidos pelo distribuidor
- SSD Remessas enviadas pelo estoque do distribuidor para o
 retalhista (unidades/semana)
- DUD Atraso médio no preenchimento dos pedidos pelo dis tribuidor (semanas)

Note-se que a parte do modelo de produção-distribuição referente ao distribuidor, no nosso modelo foi substituida por um sistema de primeira ordem descrito pelas equações 17N e 18F. No nosso estudo, ainda consideraremos apenas variações em degrau na quantidade de pedidos feitos ao retalhista, ou seja, consideraremos RRR.JK = constante.

Tomando-se o modelo descrito pelas 18 equa ções de Dinâmica-Industrial acima, colocando-as na forma de \underline{e} quações de diferenças finitas de primeira ordem , representamos o modelo por sete equações, cada uma delas representando uma variável de estado.

O sistema na forma X(k+1) = F(X(k)), uma vez definidos os valores numéricos dos parâmetros, é analisado do ponto de vista da estabilidade e os resultados dessa análise, bem como a sequência dos métodos desenvolvidos para utilização em computador digital, fazem parte da seção seguinte.

VALORES NUMÉRICOS DOS PARÂMETROS DO SISTEMA

DT = 0.05 semanas

RRR = 1.100 unidades/semana

DHR = 1.0 semanas

DUR = 0.4 semanas

AIR = 8,0 semanas

DRR = 8,0 semanas

DCR = 3.0 semanas

DIR = 4,0 semanas

DMR = 0,5 semanas

DUD = 2,0 semanas

DHD = 1,0 semanas

DTR = 1.0 semanas

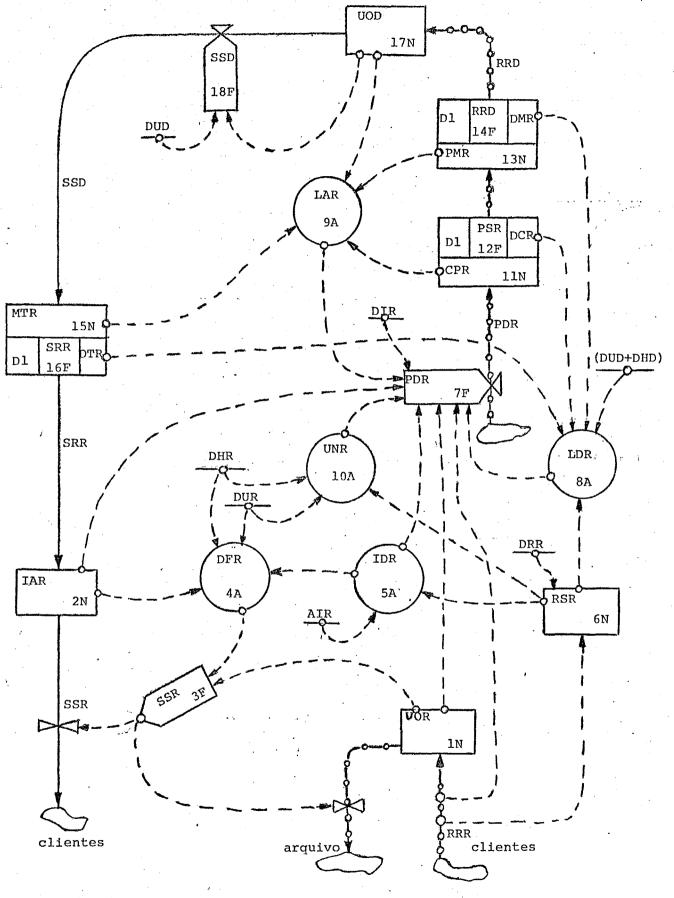


fig.VI.2.1

As equações do modelo colocadas sob a forma $x(k+1) \, = \, F\left(X\left(k\right)\right)$

$$x_1(k+1) = x_1(k) + p_1 \cdot p_2 - \frac{p_1 x_1(k)}{p_3 + p_4 p_5} \frac{x_3(k)}{x_2(k)}$$

$$x_{2}(k+1) = x_{2}(k) + \frac{p_{1}}{p_{12}} x_{6}(k) - \frac{p_{1}x_{1}(k)}{p_{3}+p_{4}p_{5}\frac{x_{3}(k)}{x_{2}(k)}}$$

$$x_3(k+1) = x_3(k) + \frac{p_1p_2}{p_6} - \frac{p_1}{p_6}x_3(k)$$

$$x_{4}(k+1) = x_{4}(k) - (\frac{p_{1}}{p_{7}} + \frac{p_{1}}{p_{8}}) x_{4}(k) + \frac{p_{1}}{p_{8}} [x_{1}(k) - x_{2}(k) - x_{3}(k) - x_{4}(k) - x_{5}(k) - x_{6}(k) - x_{7}(k)] + \frac{p_{1}}{p_{8}} (-p_{3} - p_{4} + p_{7} + p_{9} + p_{10} + p_{11} + p_{12}) x_{3}(k) + p_{1} \cdot p_{2}$$

$$x_{5}(k+1) = x_{5}(k) + \frac{p_{1}}{p_{7}} x_{4}(k) - \frac{p_{1}}{p_{9}} x_{5}(k)$$

$$x_{6}(k+1) = x_{6}(k) + \frac{p_{1}}{p_{10}} x_{7}(k) - \frac{p_{1}}{p_{12}} x_{6}(k)$$

$$x_{7}(k+1) = x_{7}(k) + \frac{p_{1}}{p_{9}} x_{5}(k) - \frac{p_{1}}{p_{10}} x_{7}(k)$$

Onde:

=	UOR	p_1	=	DT
=	IAR	p ₂	=	RRR
=	RSR	p ₃	=	DHR
=	CPR	p ₄	=	DUR
=	DMR	p ₅	=	AIR
=	MTR	p ₆	=	DRR
=	UOD	р ₇	=	DCR
		p ₈	=	DIR
		p ₉	=	DMR
	= = = = = = = = = = = = = = = = = = = =	= UOR = IAR = RSR = CPR = DMR = MTR = UOD	= IAR	= IAR p_2 = = RSR p_3 = = CPR p_4 = = DMR p_5 = = MTR p_6 =

 $p_{10} = DUD$

P₁₁= DHD

p₁₂= DTR

VI.3 * RESULTADOS NUMÉRICOS

O problema da automatização dos métodos de a nálise poderia, no nosso caso, ser simplificada de maneira sig nificativa com o uso da Linguagem Formac [27], adequada para a manipulação de símbolos, expressões matemáticas e cálculo de derivadas. Como não dispunhamos do Formac, não foi possível conseguir uma maior generalização dos métodos, e a cada novo exemplo, jacobianos, matrizes de derivadas parciais de parâme tros tem de ser construídos a partir da determinação manual das derivadas, o que em certos casos mais complexos é trabalhoso e amplia a probabilidade de se introduzir erros.

Toda a programação foi feita em Fortran IV , os diagramas de blocos, bem como as listagens dos programas en contram-se no apêndice.

VI.3.1 - PONTOS DE EQUILIBRIO

Para a determinação dos pontos de equilibrio foi programado (vide apêndice) o método exposto no capítulo III; utiliza o algoritmo Newton Raphson, para o qual as condições iniciais são geradas a partir do planejamento de experimentos de Box.

Definindo-se $E=\{X:X_{\min} \le X \le X_{\max}\}$ a partir das

considerações físicas do sistema produção-distribuição e no domínio de continuidade da função F(X(k)) o resultado foi a determinação de um ponto de equilíbrio (pag.70). Fazendo-se a extensão de E além da região de interesse, tomando-se inclusive valores negativos para X_{min}, o método determinou ou tro ponto de equilíbrio distinto do primeiro anteriormente desconhecido (pag.71); esses dois pontos são os dois únicos pontos de equilíbrio do sistema. Na determinação dos pontos de equilíbrio, não foi feita a análise do erro de arredondamento do processo iterativo de Newton Raphson [29]. Porém os resultados, pelo menos para o ponto de equilíbrio conhecido, são bas tante satisfatórios.

Dos pontos de equilibrio encontrados, um deles (ponto de equil. nºl) é assintoticamente estável, e o outro (ponto de equil. nº 2) não é estável).

Os auto valores do Jacobiano calculado no ponto de equilíbrio no 1 são:

 $\lambda_1 = 0,9499999 + 0,0i$

 $\lambda_2 = 0.9616899 + 0.0i$

 $\lambda_3 = 0,9937499 + 0,0i$

 $\lambda_{A} = 0,9833297 + 0,0i$

 $\lambda_5 = 0,9875002 + 0,0i$

 $\lambda_6 = 0,9000000 + 0,0i$

 $\lambda_7 = 0.9750001 + 0.0i$

YM I i	1	XMAX
	00000	3000.00000
	.00000	12000.00000
	00000	3000.00000
	00000	5000.00000
	00000	2000.00000
	00000	3000.00000
חו	00000	
		5000.00000 DE EQUILIBRID
	PONTO	DE EQUILIBRIO 1
	PONTO X(1) =	DE EQUILIBRID 1 1492.97600
	PONTO X(1) = X(2) =	DE EQUILIBRIO 1 1492.97600 9852.98000
	PONTO X(1) = X(2) = X(3) =	DE EQUILIBRIO 1 1492.97600 9852.98000 1100.00000
	PONTO X(1) = X(2) = X(3) = X(4) =	DE EQUILIBRID 1 1492.97600 9852.98000 1100.00000 3300.00000
	PONTO X(1) = X(2) = X(3) =	DE EQUILIBRIO 1 1492.97600 9852.98000 1100.00000

XMIN	XMAX
-9000.00000 -1000.00000	3000.00000 12000.00000
-106C.00000	3006.0 0000.
-1000.00000	5000,00000
-10 co. 00000	2000.00000
-1000.00000	3000 . 00000
-1000.00000	5000.00000
•	
PONTO	DE EQUILIBRIO
ملت مند بين. حجه فحد شند است الله الله عنيد	1
	1100 0001
X(1) =	1492.98511
X(2) =	9852.93438
X(3) =	1100.00000
X(4) =	3299.99976
X(5) =	550,00060
X(6) =	1100.05000
X(7) =	2199.99976
PONTO	DE EQUILIBRIO
	2
	2
X(1) =	-8753.04688
X(2) =	-393.04248
X(3) =	1100.00000
X(4) =	3295.99927
X(5) =	550.00000
X(6) =	1102.00000
X(7) =	2200.00000
0 ^(1) =	<u> </u>
	•

Dos auto valores do Jacobiano calculado no ponto de equilíbrio nº 2, são:

 $\lambda_1 = 0,9937999 + 0,0i$

 $\lambda_2 = 0.8938480 + 0.0i$

 $\lambda_3 = 0.9463988 + 0.03405047i$

 $\lambda_{\Lambda} = 0.9463988 - 0.03405047i$

 $\lambda_5 = 1,004577 + 0,02426179i$

 $\lambda_6 = 1,004577 + 0,02426179i$

 $\lambda_7 = 1,163699 + 0,0i$

Todos os cálculos de auto valores foram efetuados pelo método QR , pelo programa CTLMAT (vide apêndice).

O problema do cálculo dos auto valores de A, de sistemas do tipo X(k+1) = A X(k) e onde A é uma matriz qualquer, exige que se utilizem processos bastante precisos, pois caso o sistema seja de dimensão elevada e estável, todos os auto valores deverão estar no círculo de raio unitário, ou seja, um bastante próximo do outro, o que exige do processo de cálculo uma boa precisão.

VI.3.2 - SENSIBILIDADES

Para o cálculo de sensibilidades dos auto valores em relação aos parâmetros, há a necessidade do cálculo dos auto vetores, que também foi efetuado pela sub-rotina CTLMAT (vide apêndice). O programa de cálculo de sensibilida des se baseia no método exposto no capítulo IV (listagem de diagrama de blocos no apêndice). O programa usa uma série de sub-rotinas que efetuam o cálculo do valor numérico de deriva das parciais no ponto de equilíbrio. O conjunto de resulta dos dá farto material de análise. Por exemplo: a sensibilida de do ponto de equilíbrio em relação aos parâmetros (pag.75) representados por DX(I)/DP(J), ou seja, sensibilidade da variável de estado X(I) em relação ao parâmetro P(J) no ponto de equilíbrio X* (ponto de equilíbrio assintoticamente estável).

Note-se que os parâmetros p_6 e p_8 - DRR e DIR respectivamente, não influenciam na posição do ponto de equilibrio. O parâmetro p_1 = DT pelos resultados DX(1)//DP(1) e DX(2)/DP(1) parece ter, embora pequena, certa influência na posição de equilibrio, o que não é verdadeiro, pois DT não influi no equilibrio. O motivo de terem sido encontrados tais valores ($\frac{DX(1)}{DP(1)}$ = 0,1470 e $\frac{DX(2)}{DP(1)}$ = 0,2070) é devido ao acúmulo de erros de cálculo, pois jã o ponto de equili

brio é determinado com erro de arredondamento, que é adiciona do ao erro introduzido no cálculo dos valores numéricos das derivadas nesse ponto.

Observa-se também que p_2 = RRR influi no ponto de equilíbrio em todas as variáveis de estado, pois é basicamente a variável exógena (entrada) que definirá a solução de regime do sistema. Ainda sobre a posição do ponto de equilíbrio, cumpre notar que há uma grande sensibilidade $\frac{DX(I)}{DP(J)} = 1.100$ de certas variáveis de estado em relação a certos parâmetros. A tais variáveis de estado, correspondem exatamente os parâmetros que representam as constantes de tempo dos "delays". Por exemplo, $x_7 = \text{UOD}$ e $p_{10} = \text{DUD}$ é a constante de tempo do "delay" correspondente a $x_7 = \frac{DX(7)}{DP(10)} = +1.100.0$ e assim $\frac{DX(6)}{DP(12)}$, $\frac{DX(5)}{DP(9)}$, $\frac{DX(4)}{DP(7)}$, pois o valor numérico da constante de tempo também representa o "ganho" do "delay".

Poucos são os parâmetros que influem em muitas variáveis de estado simultaneamente; geralmente as influências são isoladas, ou se restringem a duas variáveis \mathbf{x}_1 e \mathbf{x}_2 , ou seja, UOR e IAR . Quanto às sensibilidades dos auto valores do Jacobiano no ponto de equilíbrio em relação aos parâmetros, os resultados são pouco mais complexos e sua análise é mais delicada. Porêm, nota-se de imediato que todos os auto valores tem sensível influência do parâmetro \mathbf{p}_1 = DT e DL(I)//DP(1) tem sempre valor negativo; ou seja, os auto valores diminuem para um aumento no valor numérico de DT (período de a-

SENSIBILIDADE DO PONTO DE EQUILIBRIO EM RELACAD AOS PARAMETROS

	DX(1)/	DX(2)/	DX(3)/	DX(4)/	DX(5)/	DX (6)/	DX(7)/
/DP(1)	-0.1470	-0.2070	-0.0000	0.9090	0.0000	0.0000	0.0000
/DP(2)	1.3573	8.9573	1.0000	3.0000	0.5000	1.0000	2.0000
/DP (3.)	1100.0055	o _• 0059	-0.0000	-0.0001	-0.0000	-0.0000	-0.0001
/DP(4)	986. 9569	-113.0428	-0.0000	-0.0001	-0.0000	-0.0000	-0.0001
70P(-5)	5.0484	1105.0486	e.0000	-0.0000	-0.0000	-0.0000	-0.0000
/DP(6)	n . 0	0.0	0.0	0.0	0.0	0.0	0.0
/DP(7)	-0.c000	0.0004	-0.0000	1100.0001	0.0000	0.0000	0.0000
/DP(8)	-0.0000	0.0007	0.0000	0,0000	0.000	0.0000	0.0000
/DP(9)	n. 1000	-0.0003	-0.0000	-0.0000	1100.0004	-0.0000	-0.0000
NOP (1 n)	-2.0000	0.1002	0.000	0.0000	-0.0000	0.0000	1100.0001
/DP(11)	-42.1900	1057.8103	0.0000	0.0000	0.0000	0.0000	0.0000
/DP(12)	-0.0000	0.0005	-0.0000	-0.0002	-0.0000	1100.0000	-0.0001

mostragem), donde a convergência do processo é mais rápida nas vizinhanças do ponto de equilíbrio, para períodos de amostragem maiores. Deve-se, portanto, no caso do sistema, fazer uma escolha cuidadosa de DT para que seja representado o sistema real.

Nota-se pela magnitude relativa das componen tes de todos os auto vetores que as variáveis de estado x_1 (UOR) e x2(IAR), mormente x2 tem influência de quase todos os au to valores do sistema, ou seja, o seu comportamento no tempo é uma mistura de todos os modos. Além de DT , as influências mais significativas nos valores numéricos dos auto valores são dadas pelos parâmetros correspondentes às constantes de tempo dos "delays". Por exemplo: Para o auto valor $\lambda_1 = 0.95000 + 1.0000$ + 0,0i , o auto vetor correspondente (pag.78) tem as componen tes v_2 e v_6 maiores em módulo, e a sensibilidade maior alem daquela relativa a DT(p_1) é em relação ao parâmetro p_{12} = = DTR . Isto significa que é a constante de tempo do "delay" (DTR) que influi no auto valor λ_1 , que por sua vez influencia basicamente as variáveis de estado x_2 (IAR) e x_6 (MTR) . Analogamente para o auto valor $\lambda_7 = 0.97500$, é DUD o par \hat{a} metro que influi em λ_7 , que, por sua vez, influencia ($x_1 x_2$ $e x_6 x_7$).

Observa-se tambem que certos parâmetros não tem influência alguma sobre a estabilidade do ponto de equil<u>1</u>

brio, p₂ (RRR) por exemplo, como era de se esperar, pois é a entrada do sistema (constante) e outros parâmetros como AIR(p₅) tem muito pouca influência nas características dos auto valores.

Para modificações no sistema através da variação de seus parâmetros, os resultados são bastante úteis.

Porem, deve-se ter em conta que a análise é apenas local, isto é, em torno do ponto de equilibrio, e de que se alterarmos uma constante de tempo para modificar a convergência de alguma variável de estado, alteraremos também a posição do ponto de equilibrio. Para tanto, uma solução de compromisso deve ser estudada com cuidado.

SENSIBILIDADES DOS AUTO VALODES EM RELACAC AOS PARAMETROS

0.9500C $(\mathbf{0}, \mathbf{0})$ AUTO VALOR(1) = -

AUTO VETOR

0.11170F 00 0.0 0.0 0.10000E 01 0.0 0.0 0.0 0.0 0.0 0.0 -0.88830E 00 600 0.0 0.0

**** SENSIBILIDADES *****

DL(1)/DP(1) = -0.12000E 01DL(1)/DP(2) = 0.00.0 DL(1)/DP(3) =0.0 0.0 DL(1)/DP(4) =0.0 0.0 DL(1)/DP(-5) = -ಿ. ೧ 0.0 · (2.0) DL(1)/DP(6) = 0.0DL(1)/DP(7) = 10.0 0.0 DL(1)/DP(8) = -0.69912E-090.0 DL(1)/DP(9) =0.0 0.0 DL(1)/DP(10) =DL(1)/DP(11) = 0.00.0

DL(1)/DP(12) = -0.50000F-U1

李本本本 本本本本本本本 本本本本

0.0

```
AUTO VALOR(2) = 0.96169 0.0 J
```

AUTO VETOR

**** SENSIBILIDADES *****

```
AUTO VALCE(3) = 0.99375 - 0.0 J
```

AUTO VETOR

**** SENSIBILIDADES ****

	DL(3)/DP(1)		-0.12500E 00	0.0
	DL(3)/DP(2)	=	2.0	0.0
	DL (3) /DP (3)	=	0.0	0.0
	DL(3)/DP(4)	=	0.0	0.0
	DL(3)/DP(5)	=	0.0	0.0
-	DL(3)/DP(6).	=	0. 78125E-03	0.0
	DL(3)/DP(7)	II.	0.0	0.0
	DL(3)/DP(8:)	= 2	nog	0.0
	DL(3)/DP(9)	= .	0.0	0.0
	DL(3)/DP(1	Lo)	=	0.0	0.0
	DL(3)\DP(1	11)	=	0.0	0.0
	DL(3)/DP(1	2)	=	a _o a	0.0

AUTC VALOR(4) = 0.98333 0.0 J

AUTO VETOR

**** SENSIBILIDADES ****

DL(4)/DP(-1) = --0.33333E-00 0.0 DL(4)/PP(2) =-0.24572E-08 0.0 DL(4)/DP(3) =0.30465E-05 0.0 DL(4)/OP(-4) = -0.15352E-04 0.0 DL(4)/DP(5) =-0.48268E-06 0.0 DL(4)/DP(6) =0.0 0.55542F-02 DL(4)/DP(7) 0.0 DL(4)/DP(8) =-0.93724E-08 0.0 DL(4)/DP(9) =0.0 0.0 0.0 DL(4)/DP(10) =0.0 DL(4)/DP(11) =-0.11889E-05 0.0 0.0 DL(4)/DP(12) =

杂零衣字 零杂零零零零零 零零零零

```
AUTO VALOR(5) = 0.98750 0.0 J
```

AUTO-VETOR-

**** SENSIBILIDADES *****

				·	
	DL(5)/DP(1,)	= -	-0.25000E 00	0.0
	DL(5)/DP(2)	#	0.0	0.0
	DL (5)/DP(3)	=	o. o	0.0
	DL(5)/09(4)	=	0.0	0.0
	DL (5)/DP(5)	<u>.</u>	0.0	0.0
	DL (5)/DP(6)	=	0.0	() o ()
٠	DL(5)/DP(7)	₹.	0.0	0.0
	DL (5)/DP(8)	=	0.31250E-02	0.0
	DL(5)/DP(9)	=	0.0	0.0
	DL(5)/DP(10)	=	0.0	0.0
	DL (5)/DP(11)	· · · · · · · · · · · · · · · · · · ·	O. C	0.0.
	DL(5)/DP(12)	=	0.0	0.0

AUTO VALOR(6) = $0.90000 \quad 0.0$ J

AUTO VETOR

**** SENSIBILIDADES ****

DL(6)/DP(-0.20000E 01 1) = 0.0 DL(61/DP(2) 0.0 0.0 DL (6)/DP(0.0 0.0 3) =DL(6)/DP(4) =0.0 0.0 DL(6)/DP(5) =0.0 7.0 0.0 DL(6)/DP(6) 0.0 OL(6)/DP(7) 9.0 0.0 DL(6)/DP(8) =0.27680E=08 0.0 DL(6)/DP(9) 0.20009E 00 0.0 DL(6)/DP(10) =0.0 0.0 DL(6)/DP(11) =0.0 0.0 DL(6)/DP(12) =0.0 0.0

水水水水 水水水水水水水 水水水水

```
AUTO VALOR(7) = 0.97500 0.0 J
```

AUTO VETOR

**** SENSIBILIDADES ****

DL(7)/DP(1)	= -	-0.5000E 00	0.0
DL(7)/DP(2)	=	0.0	0.0
DL(7)7DP(3)	=	0.0	0.0
DL(7)/DP(4)	=	0.0	0.0
DL(7)/DP(5)	=	0.0	0.0
DL(7)/DP(6)	=	0.0	0.0
DL(7)/DP(7)	≖.	0.0	0.0
DL(7)/DP(8)	=	0.22088E-08	0.0
DL(7)/DP(9)	=	0° 0	0.0
DL(7)/DP(1	(0)		-0.12500E-01	0.0
DL(7)/DP(1	.1)	=	0.0	0.0
DL(7)/DP(1	2)	=	9.0	0.0

VI.3.3 - DOMÍNIO DE ESTABILIDADE

Sabendo-se que o sistema produção-distribuição tem dois pontos de equilibrio, um assintoticamente está ve, outro não, depreende-se que: o ponto de equilibrio assintoticamente estável não o é globalmente, ou seja, seu domínio de estabilidade assintótica é limitado. Pelo exposto no capí tulo V, para a determinação numérica do domínio de estabilida de, fêz-se um programa (vide apêndice) que utiliza o algoritmo Optim que é um método direto de minimização; na sua esco lha foi levada em conta a facilidade de programação e o fato de não haver a necessidade de explicitar a função $-\overline{\Delta V}(x)$, o que, no nosso caso, tornaria o problema mais complexo. lor da função a ser minimizada (EQ) , em dado ponto é calcula do diretamente pela sub-rotina FONCT que, por sua vez, utiliza a sub-rotina FU (que é a propria função f) para o cálculo $x_{k+1} = f(x(k))$, ou seja de

DELV =
$$f(x(k))^T Q f(x(k)) - x'(k) Q x(k)$$

onde a matriz $Q = (P^{-1})^T P^{-1}$

A primeira dificuldade sentida na utiliza - ção do processo é que, para a determinação do mínimo de $-\overline{\Delta V}(x)$ na superfície fechada $V_1(x)=KA$, o algoritmo somente determina mínimos locais, donde para valores de

KA crescentes, não necessariamente os valores de $-\overline{\Delta V}(x)$ decrescem em módulo e trocam de sinal. Portanto, é necessário fazer uma busca de condições iniciais para que: para valores de KA crescentes, o valor de $-\overline{\Delta V}(x)$ troque de sinal.

O processo (programa) foi inicializado com valores das variáveis K(I) (vide apêndice), para os quais $-\overline{\Delta V}(x)$ é positivo (pag. 88). Para KA(1) = 0,11x10⁷ e para o valor do incremento $\Delta K = OK = 0,1x10^6$, o valor de $\overline{\Delta V}(x)$ teve oscilações em seu módulo, e a partir de KA(75), teve uma queda brusca, havendo uma troca de sinal, de KA(86) para KA(87) (pag.91).

O programa faz com que o ponto de mínimo para o último valor positivo de $\overline{\Delta V}(x)$ seja tomado como condição inicial e com um incremento de KA, (OK) dez vezes menor.

O problema foi não se ter conseguido determinar o ponto exato onde é feita a troca de sinal de $-\overline{\Delta V}(x) > 0$ para $-\overline{\Delta V}(x) < 0$. Sucessivas tentativas foram infrutiferas, pois o processo de minimização retoma valores negativos de $\overline{\Delta V}$ e para valores de KA crescente, o sinal não mais chega a trocar. Diante do fato, foi tomado para valor de KA_{max} o último valor para o qual $\overline{\Delta V}(x)$ (DELV) é negativo, ou seja, o domínio seria

$$V(x) = x' O x = 0.96 \times 10^7$$

onde a matriz Q é:

			and the state of t	The second second	Para Caral	grander and the second	•
1.04154	-1.03938	25.68270	-1.30601	-1.00697	-1.04024	-1.01563	
-1.03938	1.03999 -	25.69227	1.30758	1.00606	1.04120	1.01526	
25.68270	-25,69227 6	58,78147	-31.57170	-25.05282	-25 . 712 85	-25.22449	
-1.30601	1.30758 -	31.57170	1.71047	1.23367	1.31250	1.25545	
-1.00697	1.00606 -	25 . 05282	1.23367	1.00799	1.00)01	1.00085	
-1.04024	1.04120 -	25.71285	1.31250	1.00001	1.04505	1.01283	
-1.01563	1.01526 -	25.22449	1.25545	1.00085	1.012.83	1.00334	
Table in the manager of	process of the contract of the		and the same regions	KI MANUAL TO A CONTRACT OF THE STATE OF THE	A war war and the second of	f .	

A validade desse resultado (valor de KA_{max}) ainda carece de verificações experimentais para poder ser considerado confiável.

COMDICAG INICIAL

K(1) = -9.649300000 04PAS = 0.50000000D-02 K(2) = -9.10353000D 05PAS = 0.50000000000-02PAS = 0.5000000D-02 PAS = 0.500000000-02 K(5) = 0.1000000000000K(6) = 0.300000000 02PAS = 0.5000000000-02K(7) = 0.200000000 02PAS = 0.5000000000-02

EQ(0) = 0.15737992E 19

· PONTO DE MINIMO

X(1) = -0.704750220000000 04

X(2) = -0.947713620000000 04

X(4) = 0.542699999999999 02

X(5) = 0.1085399999999999 02

X(7) = 0.217079999999999 02

EQ(2) = 0.22989497E 15

KA(1) = 0.110000000 07 --- DELV=-0.36793211D 05

CONCICAO INICIAL

$$K(1) = -3.70475022D 04$$
 PAS = 0.500000000D-02
 $K(2) = -0.94771362D 04$ PAS = 0.50000000D-02
 $K(3) = -0.54270000D 02$ PAS = 0.50000000D-02
 $K(4) = 0.54270000D 02$ PAS = 0.50000000D-02
 $K(5) = 0.10854000D 02$ PAS = 0.50000000D-02
 $K(6) = 0.32562000D 02$ PAS = 0.50000000D-02
 $K(7) = 0.21708000D 02$ PAS = 0.50000000D-02

EQ(0) = 0.51816834E14

PONTO DE MINIMO

- X(1)=-0.70827397110000D 04
- X(2)=-0.952452188100CGD 04
- X(4) = 0.539986499999999 22
- X(5) = 0.107997299999990 02
- X(7) = 0.215994599595990 02
 - EQ(1) = 0.12362250E 13
 - KA(2) = 0.120CC0C0D 07 --- DELV=-0.37521667D 05

- CONDICAO INICIAL

K(1)	=	-0.926227170	94	PAS	=	0.5000000000-02
K (,2)	=	-0.127832370	05	PAS	=	0.50000000D-02
K(3)	=	-0.58174503D	02	PAS	=	0.500000000-02
K (4)	=	0.518333470	02	PAS	=	0.50000000D-02
K(5)	≖.	0.10161140D	02	PAS	=	0.5000000000-02
K(6)	=	0.31098453D	02	PAS	=	0.50000000D-02
K (7)	=	0.202211740	02	PAS	=	0.50000000D-02

EQ(-7) = 7.50096418E 15

PONTO DE MINIMO

X(1) = -0.830358308677710 04

X(2) = -3.12847152792146D 05

X(3) = -0.584653754501970.02

X(4) = 0.515741799934089 02

X(5) = 0.101103341114870 02

X(6) = 0.312539453205370 02

X(7) = 0.20120067883559D 02

EQ(1) = 0.94834768E 08

KA(85) = 0.95000000D 07 --- DELV=-0.12464562D 06

CONDICAU INICIAL

K(1) = -0.839358310.04PAS = 0.570000000D-02K(2) = -9.12847153D 05PAS = ...0.50009)09D-02 0.5000000000-02 K(3) = -0.584653750 02PAS = K(4) = 0.515741800 020.50000000D-02 PAS = K(5) = .0.101103340 02PAS = 0.50000)000-020.50000000D-02 K(6) = 0.312539450 02PAS = K(7) = 0.201200680 020.50000000D-02 PAS =

EQ(0) = 0.49956483E 15

PONTO DE MINIMO

X(1) = -0.834510100221090 04

X(2)=-0.129113885551970.05

X(3)=-0.587577023274480 02

X(4) = 0.513163090934410 02

X(5) = 0.101608857820440 02

X(6) = 0.314102152471400 02

X(7) = 0.201200673835590.02

FO(-1) = -0.28625408E.08

KA(86) = 0.960000000 C7 --- DELV=-0.70582337D 05

CONDICAG INICIAL

K(1) = -0.834510100 04PAS = 0.5000000000-02K(2) = -0.12911389D 05PAS = 0.50000000D-02 K(3) = -0.58757702D 02PAS = 0.5000000000-02K(4) = 0.513163090 02PAS = 0.5000000D-02 K(5) = 0.10160886D 02PAS = 0.50000000D-02 K(6) = 0.314102150 02PAS = G. 50000000D-02 K(7) = 0.201200680 02PAS = 0.50000000D-02

EQ(0) = 0.50023887E 15

PONTO DE MINIMO

X(1) = -0.838682650722200 04

X(2)=-0.12975945498887D 05

X(3) = -0.59051490839085D 02

X(4) = 0.51572890638908D 02

X(5) = 0.101100813531340 02

X(6) = 0.312531639719040 02

X(7) = 0.20019467544141D 02

EQ(1) = 0.20190912E 08

KA(87) = 0.97000000D 07 --- DELV= 0.28054468D 05

COMPLEASE INTOTAL

 $K(1) = -6.83451 \cdot 100 \text{ or}$ PAS = 0.52000000D-02K(2) = -0.12911389D 050.5000000000-02 PAS = K(3) = -0.587577020 02PAS = 0.500003000-02 0.5000000000-02 K(4) = 0.513163090 02PAS = K(5) = -0.10160886D 02PAS = 0.5000000000-02K(6) = 0.314102150 C2PAS. = 0.50000000D-02 K(7) = 0.20120068D 02PAS = 0.50000000D-02

EQ(0) = 0.50239258513

PONTO DE MINIMO

X(1)=-0.834510100221090 04

X(2) = -0.129113885561070 05

X(3) = -0.58757702327448D 02

X(4) = 0.505491302724940 02

X(5) = 0.10109573308845D 02

X(6) = 0.309406323321850 02

X(7) = 0.200184615407470.02

EQ(2) = 0.40292634E 09

KA(88) = 0.961000000 07 --- DELV=-0.70891984D 05

CONDICAD INICIAL

$$K(1) = -0.83451010D 04$$
 PAS = 0.500000000D-02
 $K(2) = -0.12911389D 05$ PAS = 0.50000000D-02
 $K(3) = -0.58757702D 02$ PAS = 0.50000000D-02
 $K(4) = 0.50549130D 02$ PAS = 0.50000000D-02
 $K(5) = 0.10109573D 02$ PAS = 0.50000000D-02
 $K(6) = 0.30940632D 02$ PAS = 0.50000000D-02
 $K(7) = 0.20018462D 02$ PAS = 0.50000000D-02

EQ(-0) = 0.50901633E 13

PONTO DE MINIMO

X(1)=-0.8345101C022109D 04 X(2)=-0.129113885561C7D 05 X(3)=-0.58757702327448D 02 X(4)= 0.49793420774920D 02 X(5)= 0.10008477575757D 02 X(6)= 0.30478069378818D 02 X(7)= 0.19917368309966D 02 EQ(2) = 0.47329820E C7

KA(89) = 0.962000000 07 --- DELV=-0.71206988D 05

CONCLUSÕES

Sobre os métodos de análise propostos nesse trabalho, somente a contínua aplicaçãoa problemas de Dinâmica Industrial poderá fornecer elementos para a sua avaliação. O método da busca e determinação de pontos de equilíbrio pode ser considerado bastante satisfatório, tendo funcionado a contento no problema exemplo, sua limitação porém está ligada à dimensão do sistema, que se for elevada, exigirá um número muito elevado de experimentos, pois sendo n a dimensão do sistema, o número de pontos experimentais é dado por MT= $2^{n} + 2n+1$.

A análise de sensibilidades tem suas limitações devido ao fato de ser uma análise apenas local, porém, mesmo assim, fornece dados quantitativos bastante úteis so - bre a influência dos parâmetros nas características do sistema.

Talvez, o maior problema seja o do domínio de estabilidade assintótica, pois sua determinação, ainda que aproximada, para sistemas de dimensão elevada é de difícil solução. Observe-se que a função de Liapunov, que foi tomada para o sistema, é válida apenas no caso em que os auto valores do Jacobiano são reais e distintos entre si, que é o caso

do sistema tomado como exemplo.

No caso de termos auto valores múltiplos, o que é bastante provável de ocorrer, tomando-se $V(z)=z^Tz$ não teremos $\Delta V(z)$ negativa definida, ou seja, V(z) não serã uma função de Liapunov. Portanto, a cada sistema diferente, teremos que tentar novas funções de Liapunov, pois um procedimento geral seria difícil de ser encontrado.

Convém ressaltar que grande parte da análise pode ser facilmente generalizada para qualquer sistema do tipo X(k+1) = F(X(k)) desde que se disponha da linguagem Formac, pois daí poderemos, a partir da função F, calcular automaticamente, Jacobianos, matrizes de derivadas parciais e fazer eventuais substituições algébricas, facilitando sobremaneira o cálculo.

APÊNDICE

PROGRAMA I

Finalidade: busca e determinação dos pontos de equilibrio do sistema X(k+1) = F(X(k)), ou das soluções de G(X) = 0

Sub-rotina BOX

- gera pontos experimentais (XO(L,J)), segundo o planejamento de experimentos de Box.
- argumentos:

XMI : vetor dos valores mínimos das variáveis

XMA: vetor dos valores máximos das variáveis

N: número de variáveis

MT : número total de pontos experimentais

Sub-rotina NEWRA

- computa a solução de um sistema não linear pelo método de Newton Raphson.
- argumentos:

N: número de variáveis

ITMAX : número máximo de iterações do processo

EPS1 : valor númérico que define se o Jacobiano é singular

EPS2 : precisão desejada para a solução do sistema

IERRl :=-1 matriz do Jacobiano é singular

IERR2 :=-1 número de iterações do processo é superior

a ITMAX

XOLD: vetor inicial para o processo

XNEW: vetor solução do sistema

Sub-rotina JACO

- computa os valores numéricos dos elementos da matriz (Jacobiano G'(X))

- argumentos:

AA : elementos da matriz G'(X)

XNEW: vetor das variáveis

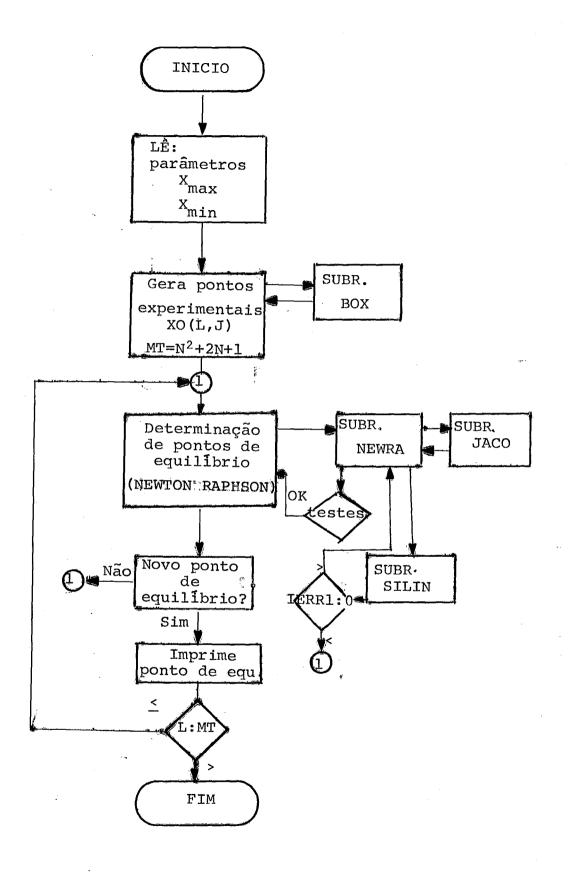
P : vetor dos parâmetros do sistema

N : número de variáveis

Sub-rotina SILIN

- computa a solução do sistema linear G'(X) .ΔX=G(X) não homogêneo pelo método de redução de Gauss-Jordan

- argumentos:


N: número de variáveis

EPS1 : valor numérico que define se a matriz AA é sinqular

IERRl : = -l matriz AA é singular

AA: coeficientes da matriz

X : vetor solução do sistema linear


```
CEMMEN XC(143,7)
   DIMENSION : XMI(7), XMA(7), XS(20,7), XOLU(7), XNEW(7), P(12)
   \Lambda = 7
   MA = 20
   NP = 12
   EPS1=0.0001
   EPS2=0.1
   DI = C.1
   1TMAX=1000
   READ(5,29)(XMI(I),XMA(I),I=1,N)
   REAC(5.80)(P(I), I=1.NP)
   WRITE(6,701)
   DO 87 J = 1.NP
87 WRITE(6,900)J,P(J)
   WRITE (6.700)
   WRITE(6,860)(XMI(I),XMA(I),I=1,N)
   CALL BOX (XMI, XMA, N, MT)
   IP = C
   IM = C
   IN=0
   DO 39 L=1,MT
   DO 40 J=1.N
40 \times 0 \times 0 (J) = \times 0 (L,J)
   CALL NEWRA(N,ITMAX,EPS1,EPS2,IERR1,1ERR2,XGLE,XNEW,P)
   IF ( IERRI . LT . 0 ) GO TO 333
   IF ( IERR2 . LT. O ) GC TO 44
   IF (IN. NE. C) GU TO 65
33 IN=IN+1
   IF (IN. GT. MA) GU TO 63
   WRITE(6,702) -
   WRITE(6,300) IN
   DC 50 I=1.N
   XS(IN,I) = XNEW(I)
50 WRITE(6,400)I, XS(IN,I)
   GO TC 39
65 CONTINUE
   CO 51 K=1, IN
   0=0
   DO 14 J=1,N
14 D= 0+(XNEW(I)-XS(K,I))**2
   D=SGRT(D)
   IF (D.LT.DI)GO TO 39
51 CONTINUE
   GO TC 33
44 CONTINUE
   DO 55 I=1.N
   IF (XNEW(I), GT, XMA(I)) GU TC 444
   IF (XNEW (I) . LT. XMI(I) ) GO TO 444
55 CUNTINUE
```

```
DO 66 I=1.N
 66 WRITE(6,500)XU(L,1),XNEW(1)
    WR [TE (6,600)
    GO TO 444
333 IM=IM+1
    GO. TC. 39
444 IP=1P+1
 39 CONTINUE
    WRITE(6,334) IM
    WRITE (6,445) IP
    GO TO 99
 63 WRITE(6,28)
 99 WRITE(6,93)
 29 FORMAT (2F15,3)
 80 FGRMAT(F20.5)
701 FORMAT(//22X, 'PARAMETROS', /)
900 FORMAT(8X, 15, F20.5)
700 FORMAT(///13X, XMIN
                                       (\PXAMX
800 FURMAT(2X,2F20.5)
702 FORMAT(//18X, PONTO: DE EQUILIBRIO',/)
300 FORMAT(15X,'----', 15,' -----',//)
400 FORMAT(18X, (1, 11, 1) = 1, F14.5)
500 FORMAT (20X, 2F20.5)
600 FORMAT(10x, 'ANALISAR',///)
334 FURMAT(10X, 15)
445 FORMAT (2X, 15)
 28 FORMAT(10X, 'VERIFICAR ISOLAMENTO')
 93 FGRMAT (21X, '----FIM-----'///)
    CALL EXIT
    END
```

```
SUBROUTINE BOX (XM1, XMA, N, MT)
   COMMON XG(143,7)
   DIMENSION XM1(7), XMA(7), UM(7), RUM(7), S(7), D(7)
   M=2*N
   MM=2**N
   MT = M+814+1
   DO 18 I=1,A
   S(I) = (XMA(I) + XMI(I))/2
   D(1) = (XMA(1) - XMI(1))/2
   UM(I) = S(I) + D(I) / N
18 SUM(I) = S(I) + O(I) / A
   DO 11 J=1, A
LL=J-1
   LP=2**LL
   DU 11 K=1,LP
   LRR=N-J+1
   LTT=1+(K-1) *2 ** LRR
   LQC=2**(LKR-1)+(K-1)*2**LRR
   DO 13 I=LTT, LQQ
13 XO(I,J)=UM(J)
   LSS=LTT+2**(LRk-1)
   LPP=K*2**LRR
   DO 14 I=LSS, LPP
14 XO(I,J)=RUA(J)
11 CONTINUE
   KTT=MM+1
   KPP=MM+M
   KQC=MM+N
   DU 6 T=KTT,KQQ
   00 6 J=1,N
   XG(I,J)=S(J)
   IF (1.NE. (J+MM))GO TO 6
   (L) \wedge MX = (L, I) \oplus X
 6 CONTINUE
   00 7 1=1,N
   L = KQQ + I
   DO 7 J = L, KPP
   (I)S=(I, L)0X
   IF (J.NE. (I+KQQ)) GO TO 7
   XU(J,I) = XYI(I)
 7. CONTINUE
   DU 3 1=1, N
 3 \times J(MT, I) = S(I)
   RETURN
   ENC
```

```
SUBREUTINE NEEDS A(N, ITHAX, EPSI, EPS2, TERRI, TERRI, ACLO, XNEW, P)
  DIMENSION XOLU(7), XNEW(7), X(7), AA(7,6), P(12), IR(7), JC(7)
  IERRI=J
  IERR2=0
  00 - 2 I = 1, N
  XNEK(I)=XCLO(I)
2. CONTINUE
  DO 5 ITER=1, ITMAX
  CALL JACC (AA, XA EW, P, N)
  CALL SILLA(N, IPSI, IERRI, AA, X)
  IF (IFS 21. LT. ) GU TO 11
  DC 3 I=1,A
  IF ( NOT ASS(X(I)) LT EPS2) GO TO 4
3 CONTINUE
  GG TC 9
4 CUNTINUE
  DO 5 I=1,N
  XNEW(I) = XNEW(I) + X(I)
5 CONTINUE
  GG TC 10
```

9 IERR2=+1 RETURN 10 IERR2=-1 11 RETURN END

```
SUBROUTINE JACO(AA, XNEW, P, N)
     DIMENSION AA(7.8), XNEW(7), P(12)
     NV = N + 1
     DO 1 I=1,N
   DD 1 J=1, NV
1 \text{ AA(I,J)} = 0.0
     \Delta A(1,1) = -(P(1))/(P(3)+P(4)*P(5)*XNEW(3)/XNEW(2))
     AA(1,2) = -(P(1)*P(4)*P(5)*XNEW(3)*XNEW(1))/(P(3)*XNEW(2)*
   1P(4)*P(5)*XNEW(3))**2
     AA(1,3) = (P(1)*P(4)*P(5)*XNEW(2)*XNEW(1))/(P(3)*XNEW(2)+
   2P(4)*P(5)*XNEW(3))**2
     AA(2,1) = AA(1,1)
     AA(2,2) = AA(1,2)
     AA(2,3) = AA(1,3)
     AA(2,6) = P(1)/P(12)
     AA(3,3) = -P(1)/P(5)
     AA(4,1) = P(1)/P(3)
     AA(4,2) = -P(1)/P(8)
     AA(4,3) = (P(1)/P(3))*(-P(3)-P(4)+P(5)+P(7)+P(9)+P(10)+P(11)
   3+P(12))
     \Delta A(4,4) = -(P(1)/P(7)+P(1)/P(8))
     AA(4,5) = -P(1)/P(8)
     AA(4,6) = -P(1)/P(8)
     \Delta\Delta(4,7) = -P(1)/2(8)
     AA(5,4)=P(1)/P(7)
     AA(5,5) = -P(1)/P(9)
     AA(6,6) = -P(1)/P(12)
     AA(6,7) = P(1)/P(10)
     AA(7,5)=P(1)/P(9)
     AA(7,7) = -P(1)/P(10)
     AA(1,8) = -(P(1)*P(2)-(P(1)*XNEW(1))/(P(3)+P(4)*P(5)*XNEW(3)
   1/XNEW(2)))
     AA(2,8) = -((P(1)/P(12))*XNEX(6)-(P(1)*XNEX(1))/(P(3)+P(4)*
   2P(5) *XNEW(3) /XNEW(2)))
     AA(3,8) = -(P(1)*P(2)/P(6)-(P(1)/P(6))*XNEW(3))
     AA(4,8) = -(-(P(1)/P(7)+P(1)/P(8))*XNEW(4)+(P(1)/P(8))*(XNEW(4)+(P(1)/P(8))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8))*(XNEW(4))*(XNEW(4)+(P(1)/P(8)))*(XNEW(4)+(P(1)/P(8)))*(
   2(1)-XNEW(2)-XNEW(5)-XNEW(6)-XNEW(7))+(P(1)/P(8))*(-P(3)
   3-P(4)+P(5)+P(7)+P(9)+P(10)+P(11)+P(12))*XNEW(3)+P(1)*P(2))
     AA(5.8) = -((P(1)/P(7))*XNEA(4) - (P(1)/P(9))*XNEW(5))
     AA(5,8)=-((P(1)/P(10))*XNEW(7)-(P(1)/P(12))*XNEW(5))
     AA(7,8) = -((P(1)/P(9))*XNEW(5) - (P(1)/P(10))*XNEW(7))
     RETURN
     END
```

```
SUBROUTINE SILIN(N, EPS1, IERR1, AA, X)
  DIMENSION AA(7,8), IR(7), JC(7), X(7)
  NPI=N+1
  DO 7 K=1,N
  KM1=K-1
  BIGA=C.O
  DC 3 I=1,N
  00-3 J=1,N
  IF (KM1.EQ.0) GO TO 2
  DO 1 II=1,KM1
  IF (1.EQ.IR(II)) GO TO 3
  DU 1 JJ=1,KM1
  IF (J.EC.JC(JJ)) GO TO 3
1 CONTINUE
2 IF ( ONUT O AES (AA(1, J)) OGT OBIGA) GG TG 3
  BIGA=ABS(AA(I,J))
  IR(K)=I
  JC(K)=J
3 CONTINUE
  IF (.NOT.BIGA.LT.EPS1) GC TO 4
  IERR1=-1
  RETURN
4 IRK=IR(K)
  JCK=JC(K)
  BIGA=AA(IRK, JCK)
  DD 5 J=1, NP1
5 AA(IRK,J)=AA(IRK,J)/BIGA
  DO 7 I = 1, N
  IF(I.EQ.IRK) GU TO 7
  AJCK=AA(I,JCK)
  DO 6 J=1, NP1
6 AA(1,J)=AA(1,J)-AJCK*AA(IRK,J)
7 CONTINUE
  DO 8 I = 1, N
  IRI=IR(I)
  JCI=JC(I)
8 X(JCI) = AA(IRI, NPI) .
  IERR1=+1
  RETURN.
  END
```

PROGRAMA CTLMAT

Trata-se de um programa elaborado (Iowa State University) com linguagem própria, usado na manipulação de matrizes, especialmente adequado aos problemas existentes em sistemas de controle, tais como cálculo de auto vetores, auto valores, inversão de matrizes, etc. Acha-se atualmente implantado no Núcleo de Computação Eletrônica da Universidade Federal do Rio de Janeiro. Os programas para o cálculo de auto vetores e auto valores dão uma idéia de sua simplicidade, e cujos resultados são bastante satisfatórios.

*PGM AUTO VALORES * AUTO VETORES

LABL

READ (MATA)

PRNT (MATA)

TVEC (MATA)

*DATA

***PGM** AUTO VALORES

LABL

READ(MATA)

PRNT(MATA)

EIGN(MATA).

*DATA

*PGM CALCULO DE Q

READ(MATP)

READ(MATT)

LABL

MATK=MATP(I)

MATQ=MATT * MATK

PRNT(MATQ)

*DATA

PROGRAMA II

Finalidade: Cálculo de sensibilidades do ponto de equilíbrio em relação aos parâmetros e cálculo de sensibilidades dos auto valores do Jacobiano (F'(X*)) em relação aos parâmetros.

Sub-rotina DEFEP

- computa os valores numéricos de $\frac{\partial F_{i}}{\partial p_{j}}$
- argumentos:

N : número de variáveis

NP : número de parâmetros

Sub-rotina DAAPE

- computa os valores numéricos de $\frac{\partial a_{ij}}{\partial x_k}$
- argumentos:

N: número de variáveis

NP : número de parâmetros

Sub-rotina DAAXIS

- computa os valores numéricos de $\frac{\partial x_i}{\partial p_j}$
- argumentos:

N : número de variáveis

NP : número de parâmetros

Sub-rotina SENSI

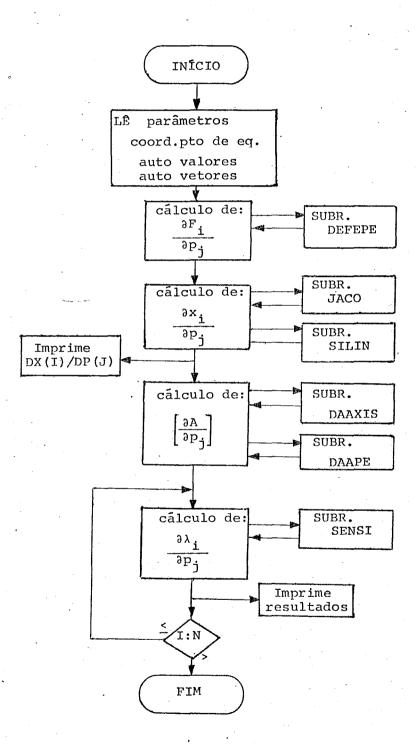
- computa os valores numéricos de $\frac{\partial \lambda_{i}}{\partial p_{i}}$

- argumentos:

AD: elementos da matriz $\frac{\partial A}{\partial p_i}$

AV : matriz dos auto vetores de A (por colunas)

AT: matriz dos auto vetores de A^{T} (por colunas)


N : número das variáveis

NP : número de parâmetros

ESC3: valor numérico de $\frac{\partial \lambda_{i}}{\partial p_{i}}$

K : indice do auto valor

KK : indice do parâmetro


```
COMMON XS(7), DEP(7,12), P(12), DAX(7,7,7), DAP(7,7,12)
  DIMENSION XNEW(7), AA(7,8), X(7), DXSP(7,12)
   DOUBLE PRECISION XNEW, AA, X, DXSP, XS, DFP, P, DAX, DAP
  COMPLEX AU(7), AV(7,7), AT(7,7), AD(7,7,12), ESC3(7,12)
   NP=12
  READ(5,500)(P(I),I=1,NP)
   READ(5,500)(XS(I), I=1,N)
   READ(5,600)(AU(1),1=1,N)
   READ(5,600)((AV(I,J),I=1,N),J=1,N)
   READ(5,600)((AT(I,J),I=1,N),J=1,N)
  EPS1=0.0001
   NU=N+1
   CALL DEFEP(N, NP)
   DO 1 I = 1 \cdot N
1 \times XNEW(I) = XS(I)
   D() 2 IP=1,NP
   CALL JACO(AA, XNEW, P, N, NP)
   DO 3 I = 1.N
   DO 3 J=1.N
 3 \text{ AA}(I,J) = -\text{AA}(I,J)
 DO 4 I = 1.N
4 AA(I,NU)=DFP(I,IP)
   CALL SILIN(N, EPSI, IERRI, AA, X)
   IF ( IERR 1. GT. 0 ) GO TO 10
   WRITE(6,44) IP
10 CONTINUE
   DU 5 I = 1, N
5 DXSP(I,IP)=X(I)
2 CONTINUE : -
   MRITE(6,700)
   WRITE(6,701)(1,1=1,7)
   DO 11 J=1,NP
   WRITE(6,800)J,(DXSP(I,J),I=1,N)
11 CONTINUE
   WRITE(6,900)
   WRITE(6,1000)
   CALL DAAXIS(N, NP)
   CALL DAAPE(N, NP)
   DO 66 I=1,N
   DO 66 J=1,N
   DO 66 K=1,NP
   SUMA=0.
   DO 55 L=1,N
55 SUMA=SUMA+DAX(I,J,L)*DXSP(L,K)
   SUMA=SUMA+DAP(I,J,K)
66 AD (I, J, K) = CMPLX(SUMA, 0.0)
   00.6 \text{ K} = 1.0
   WRITE(6,1001)K, AU(K)
```

```
WRITE (6, 1002)
     00.7 I = 1.N
     WRITE(6,1003)AV(I,K)
   7 CONTINUE
     WRITE(6,1004)
     00. 8 KK=1 NP
     CALL SENSI(AD, AV, AT, N, NP, ESC3, K, KK)
     WRITE(6,1005)K, KK, ESC3(K, KK)
   8 CONTINUE
     WRITE(6,1006)
   6 CONTINUE
  44 FORMAT (1.2X, I_2, IERR1 = -1 '/)
 700 FORMAT(20X'SENSIBILIDADE DO PONTO DE EQUILIBRIO EM RE"
    1, LACAO AUS PARAMETROS!//)
 701 FORMAT(14X,7('PX(',I1,')/',9X)/)
 800 FORMAT(3X, '/DP(', I2, ')', 7(F13.4, 2X)/)
 900 FORMAT (//2X, ***************************
1000 FORMAT(2X, 'SENSIBILIDADES DOS AUTO VALORES EM RELACAO'
    4. AOS PARAMETROS!,//)
1001 FORMAT (1H1,5X'AUTO VALOR(', I1,') = ', 2F10.5, 'J'//)
1002 FORMAT(8X, 'AUTO VETOR'/)
1003 FORMAT(10X, 2E16.5/)
1004 FORMAT (16X, **** SENSIBILIDADES *****/)
1005 FORMAT(5X, 'DL(', Il,')/DP(', I2,') = ',2E14.5/)
1006 FORMAT (/20X, **** ***** **** *//)
 500 FORMAT (F15.5)
 600 FORMAT (2F15, 7)
     CALL EXIT
```

- FND

```
SUBROUTINE DEFER(N, NP)
  COMMON XS(7), DFP(7,12), P(12), DAX(7,7,7), DAP(7,7,12)
  DOUBLE PRECISION XS.DEP.P.DAX.DAP
  DO 1 I=1,N
  DO 1 J=1 , NP
1 DEP(I, J) =0.
  DEP(1,1)=P(2)-\{XS(1)\}/\{P(3)+P(4)*P(5)*XS(3)/XS(2)\}
  DFP(1,2) = P(1)
  DFP(1,3)=P(1)*XS(1)/(P(3)+P(4)*P(5)*XS(3)/XS(2))**2
  DFP(1,4)=(P(1)*XS(1)*(P(5)*XS(3)/XS(2)))/(P(3)+P(4)*P(4))
 15) * XS(3) / XS(2) ) * * 2
  DFP(1,5) = (DFP(1,3)*(P(4)*XS(3)/XS(2)))
  DFP(2,1)=XS(6)/P(12)-XS(1)/(P(3)+P(4)*P(5)*XS(3)/XS(2))
  DFP(2,3) = DFP(1,3)
  DFP(2,4) = DFP(1,4)
  DFP(2.5) = DFP(1.5)
  DFP(2,12) = -(P(1)*XS(6))/(P(12))**2
  DFP(3,1)=(P(2)/P(6)-XS(3)/P(6))
  DEP(3,2)=P(1)/P(6)
  DFP(3,6)=-P(1)*P(2)/P(6)**2+P(1)*XS(3)/P(6)**2
  DFP(4,1)=-(1.0/P(7)+1.0/P(8))*XS(4)+(1.0/P(8))*(XS(1)-XS(1))
 22)-XS(5)-XS(6)-XS(7))+(1./P(8))*(-P(3)-P(4)+P(5)+P(7)+
 3P(9)+P(10)+P(11)+P(12))*XS(3)+P(2)
  DFP(4,2)=P(1)
  DFP(4,3) = -(P(1)/P(8)) * XS(3)
  DFP(4,4) = DFP(4,3)
  DFP(4,5) = -DFP(4,3)
  DFP(4,7)=DFP(4,5)+P(1)*XS(4)/P(7)**2
  DFP(4,8)=(P(1)/P(8)**2)*((XS(4)-XS(1)+XS(2)+XS(5)+XS(6))
 6)+XS(7)+XS(3)*(P(3)+P(4)-P(5)-P(7)-P(9)-P(10)-P(11)-P
 7(12)))
  OFP(4,9) = (P(1)*XS(3))/P(8)
  DEP(4,10)=DEP(4,9)
  DFP(4, 11) = DFP(4, 9)
  DFP(4,12) = DFP(4,9)
  DFP(5,1)=XS(4)/P(7)-XS(5)/P(9)
  DFP(5,7)=-(P(1)*XS(4))/P(7)**2
  DFP(5,9) = \{P(1) \times XS(5)\}/P(9) \times 2
  PP(6,1) = XS(7)/P(10) - XS(6)/P(12)
  DFP(6,10) = -P(1)*XS(7)/P(10)**2
  DFP(6,12) = (P(1) * XS(6)) / P(12) * * 2
  DEP(7,1)=XS(5)/P(9)-XS(7)/P(10)
  DEP(7,9) = -(P(1)*XS(5))/P(9)**2
  DFP(7,10) = (P(1)*XS(7))/P(10)**2
  RETURN
  END
```

```
SUBROUTINE DAAPE(N.NP)
       COMMON XS(7), DFP(7,12), P(12), DAX(7,7,7), DAP(7,7,12)
       DOUBLE PRECISION XS.DEP.P.DAX.DAP
       00 \cdot 1 \cdot 1 = 1 \cdot N
      00 1 J=1.N
      00 1 K=1.NP
1 DAP(I, J, K)=0.
       D=P(3)*XS(2)+P(4)*P(5)*XS(3)
      DAP(1,1,1) = -XS(2)/D
       DAP(1,1,3)=(P(1)*(XS(2)**2))/D**2
       DAP(1,1,4)=(P(1)*P(5)*XS(3)*XS(2))/D**2
      DAP(1,1,5) = (P(1)*P(4)*XS(2)*XS(3))/D**2
       DAP(1, 2, 1) = -(P(4) *P(5) *XS(1) *XS(3))/D**2
      DAP(1,2,3) = (P(1) \times P(4) \times P(5) \times XS(1) \times XS(3) \times (2 \times P(3) \times (XS(2))
   1) * *2+2, *XS(2) *P(4) *P(5) *XS(3))) / 0 * *4
       DAP(1,2,4)=(P(1)*P(4)*P(5)*XS(3)*XS(1)*(2*P(3)*XS(2)
   2*P(5)*XS(3)+2,*P(4)*(P(5)**2)*(XS(3)**2))-(D**2)*P(1)
   3*P(5)*XS(3)*XS(1))/D**4
       DAP(1,2,5)=(P(1)*P(4)*P(5)*XS(3)*XS(1)*(2**P(3)*XS(2)**P(3)*XS(2)**P(3)*XS(2)**P(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3)*XS(3
   5*P(4)*XS(3)*XS(1))/D**4
      DAP(1,3,1)=(P(4)*P(5)*XS(2)*XS(1))/D**2
      DAP(1,3,3) = (P(1)*P(4)*P(5)*XS(2)*XS(1)*(-2,*P(3)*(XS(2)*XS(1))*(-2,*P(3)*(XS(2)*XS(1))*(-2,*P(3))*(XS(2)*XS(1))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*P(3))*(-2,*
   6)**2)-2,*P(4)*P(5)*XS(2)*XS(3)))/D**4
      DAP(1,3,4) = (P(1)*P(5)*XS(2)*XS(1)*D**2-P(1)*P(4)*P(5)*
   7XS(2)*XS(1)*(2°*P(3)*XS(2)*P(5)*XS(3)+2°*P(4)*(P(5)**2
   8)*(XS(3)**2)))/0**4
      DAP(1,3,5) = (P(1)*P(4)*XS(2)*XS(1)*B**2-P(1)*P(4)*P(5)*
   1xS(2)*xS(1)*(2,*P(3)*xS(2)*P(4)*XS(3)+2,*P(5)*(P(4)**2
   2)*(XS(3)**2)))/D**4
      DAP(2,1,1) = DAP(1,1,1)
       DAP(2,1,3)=DAP(1,1,3)
       DAP(2,1,4) = DAP(1,1,4)
      DAP(2,1,5)=DAP(1,1,5)
       DAP(2,2,1)=DAP(1,2,1)
      DAP(2,2,3)=DAP(1,2,3)
       DAP(2,2,4)=DAP(1,2,4)
       DAP(2,2,5)=DAP(1,2,5)
      DAP(2,3,1) = DAP(1,3,1)
       DAP(2,3,3)=DAP(1,5,3)
      DAP(2,3,4)=DAP(1,3,4)
     ·DAP(2,3,5)=DAP(1,3,5)
       DAP(2.6.1)=1.7P(12)
       DAP(2,6,12)=-P(1)/P(12)**2
       DAP(3,3,1)=-1.0/P(6)
       DAP(3,3,6)=P(1)/P(6)**2
      DAP(4,1,1)=1.7P(8)
       PAP(4,1,3)=-P(1)/P(2)**?
       DAP(4,2,1) = -DAP(4,1,1)
```

```
DAP(4, 2, 8) = -DAP(4, 1, 3)
 DAP(4,3,1)=(1.0/P(8))*(-P(3)-P(4)+P(5)+P(7)+P(9)+P(10)
1+P(11)+P(12))
 DAP(4,3,3) = -P(1)/P(8)
 DAP(4,3,4)=DAP(4,3,3)
 DAP(4,3,5) = -DAP(4,3,3)
 DAP(4, 3, 7) = DAP(4, 3, 5)
 DAP(4,3,3)=-(P(1)/P(8)**2)*(-P(3)-P(4)+P(5)+P(7)+2(9)
2+P(10)+P(11)+P(12))
 DAP(4,3,9)=DAP(4,3,5)
DAP(4,3,10)=DAP(4,3,5)
 DAP(4,3*11) = DAP(4,3,5)
-DAP(4,3*12)=DAP(4,3,5)
 DAP(4,4,1)=-(1.7P(7)+1.7P(8))
 DAP(4,4,7) = P(1)/P(7)**2
 DAP(4, 4, 5) = P(1)/P(8) **2
 DAP(4,5,1)=-1./P(8)
 DAP(4,5,3) = P(1)/P(8) **2
 DAP(4,6,1)=DAP(4,5,1)
 DAP(4.6.8) = DAP(4.5.8)
 DAP(4,7,1)=DAP(4,5,1)
 DAP(4,7_*8)=DAP(4,5,8)
 DAP(5,4,1)=1.0/P(7)
 DAP(5.4.7) = -P(1)/P(7)**2
 DAP(5, 5, 1) = -1 \cdot /P(9)
 DAP(5,5,9)=P(1)/P(9)**2
 DAP(6,6,1)=-1.7P(12)
 DAP(6,6,12)=P(1)/P(12)**2
 DAP(6,7,1)=1./P(10)
 DAP(6, 7, 10) = -P(1)/P(10) **2
 DAP(7,5,1) = -DAP(5,5,1)
 DAP(7,5,9) = -DAP(5,5,9)
 DAP(7,7,1) = -DAP(6,7,1)
 DAP(7,7,10) = -DAP(6,7,10)
 RETURN
 END
```

```
SUBROUTINE DAAXIS(N, NP)
 COMMEN XS(7), DEP(7,12), P(12), DAX(7,7,7), DAP(7,7,12)
 DOUBLE PRECISION XS, DEP, P, DAX, DAP
 DO 1 !=1, M
 DO 1 J=1,N
 DO 1 K=1.N
1 DAX(I,J,K)=0.
 D=P(3)*XS(2)+P(4)*P(5)*XS(3)
 DAX(1,1,2)=-(P(1)*P(4)*P(5)*XS(3))/D**2
  DAX(1,1,3)=(P(1)*P(4)*P(5)*XS(2))/D**2
 DAX(1,2,1) = DAX(1,1,2)
  DAX(1,2,2)=(P(1)*P(4)*P(5)*XS(1)*XS(3)*(2.*XS(2)*(P(3)
1)**2+2**P(3)*P(4)*P(5)*XS(3)))/D**4
  DAX(1,2,3) = (P(1)*P(4)*P(5)*XS(1)*((P(4)**2)*(P(5)**2)*
 2(XS(3)**2)))/)**4
  DAX(1,3,2) = DAX(1,2,3)
 DAX(1,3,3)=(P(1)*P(4)*P(5)*XS(2)*XS(1)*(-2.*P(3)*P(4)*
 3P(5)*XS(2)-2.*(P(4)**2)*(P(5)**2)*XS(3)))/D**4
  DAX(2,1,2) = DAX(1,1,2)
  DAX(2,1,3)=DAX(1,1,3)
  DAX(2,2,1) = DAX(1,2,1)
  DAX(2,2,2) = DAX(1,2,2)
  DAX(2,2,3)=DAX(1,2,3)
  DAX(2,3,2) = DAX(1,3,2)
  DAX(2,3,3)=DAX(1,3,3)
  KETURN
  END
```

```
SUBROUTINE SENSI(AD, AV, AT, N, NP, ESC3, K, KK)
   COMPLEX AD(N,N,KK),AV(N,N),AT(N,N),ESC1(7,12),
  1ESC2(7,12), ESC3(N,NP), C(7)
   DO 15 I=1.N
   C(I) = (0.0, 0.0)
  00 15 J=1,N
   C(I)=C(I)+AD(I,J,KK)*AV(J,K)
15 CONTINUE
   ESC1(K,KK)=(0.0,0.0)
  ES C2 (K, KK) = (0.0,0.0)
   DO 17 I=1,N
   ESC1(K,KK)=ESC1(K,KK)+C(I)*AT(I,K)
   ESC2(K,KK)=ESC2(K,KK)+AV(I,K)*AT(I,K)
17 CONTINUE
   ESC3(K,KK)=ESC1(K,KK)/ESC2(K,KK)
   RETURN
```

END

PROGRAMA III

Finalidade: Determinação numérica do domínio de estabilidade assintótica V(x) = KA

Sub-rotina OPTIM

- determina o mínimo local de uma função de n variáveis (método direto)
- argumentos:

NINC : número de variáveis

PASK : valor numérico do passo

NBITER : número máximo de iterações para o processo de minimização

PRECD: precisão relativa desejada para a solução

IMPRES: impressão das iterações, se Impress=I impressão dos resultados a cada I iterações

DELV : valor numérico de $\overline{\Delta V}(x)$

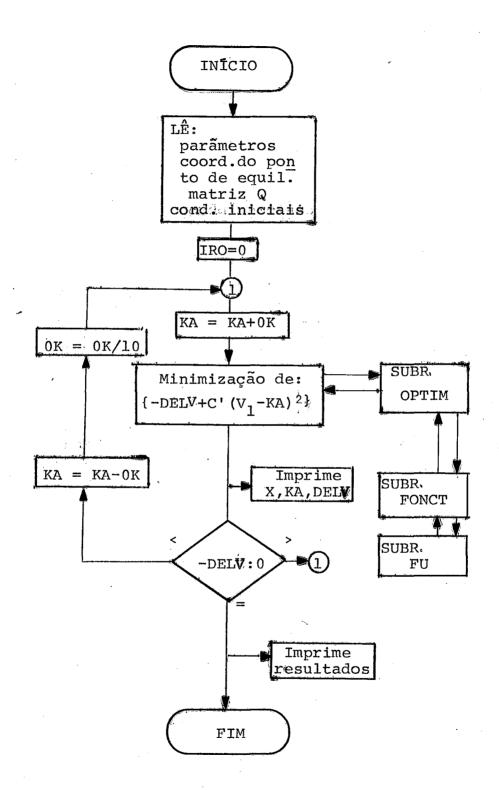
KA: valor numérico de K, (V(x) = K)

Sub-rotina FONCT

- computa o valor numérico da função a ser minimizada (EQ)
- argumentos:

EQ : valor da função a minimizar

DELV : valor numérico de $\overline{\Delta V}(x)$


KA : valor numérico de K, (V(x) = K)

NINC : número de variáveis

Sub-rotina FU

- computa os valores de x(k+1) = f(x(k))
- argumentos:

NINC : número de variáveis.


```
COMMEN Q(7,7), K(7), P(12), Z(7), XS(7)
     DOUBLE PRECISION Q.K.P.Z.XS
     DIMENSION PASK (7) - VOL (7)
     DOUBLE PRECISION PASK, DELV, KA, OK, VOL
     PEAD(5.100) NINC, NSITER, IMPRES, PRECD
 100 FORMAT (314.F17.6)
     READ(5.1007)(XS(I), I=I.NINC)
1007 FORMAT(F15.5)
     READ(5, 101)(K(I), I=1, MINC)
101 FORMAT (F10.5)
     NP = 1.2
     READ(5,55)(P(I),I=1.NP)
  55 FORMAT (F15.5)
     READ(5,79)((Q(I,J),I=1,NINC),J=1,NINC)
  79 FORMAT (F15.5)
     DO 1872 I=1.NINC
1872 \cdot K(I) = K(I) - XS(I)
     KA=0.10 07
     0K = 0.10 06
     NUMA=100
     TUL=0.1
     IR0=0
     DO 44 I=1, NINC
     DO 44 J=1,NINC
     Q(I_{\bullet}J) = 0(I_{\bullet}J)/356.560
  44 CONTINUE
     WRITE (6,71) ((Q(I,J), J=1, NINC), I=1, NINC)
  71 FORMAT(2X, 7F12, 5)
  15 K\Delta = K\Delta + \Omega K
     DO 1977 I=1, NING-
1977 \text{ VOL}(I) = K(I)
     DO 111 I=1.NINC
 111 \cdot PASK(I) = 0.5D - 02
     CALL OPTIM(NIRC, PASK, NBITER, PRECD, IMPRES, DELV, KA)
      IRN=IRU+1
     WRITE(5,11) IRO, KA, OELV
  11 FORMAT (/8X, 'KA(!, 15, !) = ', 015, 8, !
                                                     DELV=',D15.8/)
     IF (IRC. GT. NUMA) GO. TO 88
     IF (DASS(DELV), LT. TGL) SO TO 88
     IF (DELV. GT. 0) GO TO 17
     GO TO 15
  17 KA=KA-OK
     CK=CK/17.
     DO 1988 I=1,NINC
1988 K(I)=VOL(I)
     GC TO 15
  88 WRITE (6,600) KA, IRO, DELV
ADD FORMAT (2X, *KA = 1, F2) , 5, 1
                                  IRO=*,15,*
                                                    DELV=1,F20, 8)
     CALL EXIT
     END
```

```
SUBROUTINE OPTIM (NINC, PASK, NBITER, PRECD, IMPRES, DEL V, KA)
   COMPON Q(7,7),K(7),P(12),Z(7),XS(7)
   DOUBLE PRECISION Q,K,P,Z,XS
   DIMERSION-PASK 471, QELK 471, KBON (7), VALKBA (7), DIFK (7),
  2DIFKBA(7),KR(7),KV(7,7)
   DOUBLE PRECISION PASK, DELK, KBON, VALKBA, DIFK, DIFKBA, KR,
  3KV,KA,DELV
   FACTPA = 2.
   WRITE(6,234)
   DO I I=1, NINC
   WRITE(6,205)1,K(I),PASK(I)
   VALKPA(I)=K(I)
   DIFK(I)=0.
 I \times BON(I) = K(I)
   IS=0
   N=0
   CALL FONCT(EQMIN, DELV, KA, NINC)
   WRITE(6,201)N, EQMIN
   EQBON=EQMIN
 2 DO 3 I=1, NINC
   KR(I)=K(I)
   IF (DABS(KR(I)) \circ LT\circ 1) KR(I) = 1\circ
 3 CONTINUE
   IF (IS. EQ. 0) GO TO 5
   DO 4 T=1.NINC
   IF(DABS(PASK(I)*KR(I)/K(I)).GT.PRECD) GO TO 5
 4 CONTINUE
   GO TO 28
 5 NLIMI=3*NINC
= 00 6 I=1, NLIMI
 I1 = I - ((I-1)/3) *3
   12 = (1-1)/3+1
 6 \text{ KV}(12, 11) = \text{K}(12) + (\text{FLOAT}(11) - 2.) *PASK(12) *KR(12)
   NL IM2=3**NINC
   DO 9 I = 1, NLIM2
   DO 7 J=1,NINC
   L=MOD((I-1)/(3**(NINC-J)),3)+1
 7 K(J) = KV(J,L)
   CALL FONCT(EQ, DELV, KA, NINC)
   IF (EQ. GE. EQBON) GO TO 9
   EQBON=EQ
  00811=1.000
   KBON(II)=K(II)
 8 CONTINUE
 9 CONTINUE
10 IF (EQBON, GE, EQMIN) GO TO 19
   ECR=EQBON
   IF(IS.FQ.1)GU TO 15
   DO 11 I=1.NINC
11 OFLK(I)=KBON(I)-VALKBA(I)
12 00 13 I=1,NINC
```

```
13 K(1) = KBON(I) + DELK(I)
    CALL FONCT(EQ. PELV, RA, NINC)
    TF(EQ.GE.FOR)GO TO 15
    FOR=FO
    DO 14 I=1.NINC
    DELK(I)=2.*DELK(I)
 14 KBCN(I)=K(I)
    GO TU 12
 15 00 16 I=1,NINC
    DIFKPA(I)=DIFK(I)
 16 DIFK(I)=KBON(I)-VALKBA(I)
    1S=0
    EQMIN=EQR
    EOBON=EOR
    N=N+1
    IF (N. GT. NBITER) GO TO 27
    DO 18 I = 1, NINC
    IF (DAES(DIFK(1)/KBON(I)).GT.PRECD)GO TO 21
 18 CONTINUE
    GO TO 28
 19 DO 20 I=1.NINC
 20 PASK(I)=PASK(I)/FACTPA
    TS=1
    GO TO 25
 21 IF(NoLTo2) GO TO 25
    DO 24 I=1, NINC
    IF(DIFK(I)*DIFKBA(I))22,24,23
 22 PASK(1)=PASK(1)/FACTPA
    GO TO 24
 23 PASK(\hat{I})=PASK(\hat{I})*FACTPA
 24 CONTINUE
 25 CONTINUE
    DO 26 [=1.NINC
    VALKSA(I)=KSON(I)
 26 K(I)=KEON(I)
    60 TC 2
 27 MRITE (6,202) N
 28 CONTINUE
    DO 29 14=1, NINC
 29 K([4]=KBON([4]
    WRITF(6,203)(J,K(J),J=1,NINC)
    WRITE(6,201)N,EQMIN
    CALL FONCT(FO, DELV, KA, NINC)
    CONT INVE
    RETURN
201 FORMAT(/,10X,3HEQ(,I_4,4H) = ,E15.8,//)
202 FORMAT(1H-,////30X,30HPRECISAD DESEJADA NAO FOI DBTI,
   15HDA EM, I4, 12H ITERACOES.
                                 ,//)
203 FURMAT(///, 25%, 17HPUNTO DE MINIMO
                                          ,///,(1H ,5X,2 HX(,
   2I1,2H)=,001.14.77)
204 FORMAT(14),30%, CONDICAR INICIAL*//)
205 FORMAT(30X,2HK(,I1,4H) = ,D15.8,5X,6HPAS = ,D15.8,/)
```

FND

```
SUBROUTINE FONCT(FO, DELV, KA, NINC)
   COMMON Q(7,7),K(7),P(12),Z(7),XS(7)
  DOUBLE PRECISION Q,K,P,Z,XS
   DOUBLE PRECISION KA, DELV, V1, V2, CL
   CL=0.10 06
   V1 = 0
   DO 33 I=1, NINC
   DO 33 J=1,NINC
33 V1=V1+Q(I,J)*K(I)*K(J)
   CALL FU(NINC)
   V2 = 0_{\bullet}
   DO 44 I=1, NINC
   DO 44 J=1, NINC
44 V2=V2+Q(1,J)*Z(1)*Z(J)
   DELV=V2-V1
   E0=-DELV+(CL/2)*(V1-KA)**2
   RETURN
   END
```

```
SUBROUTINE FU (NINC)
   COMMON O(7,7), K(7), P(12), Z(7), XS(7)
   DOUBLE PRECISION Q, K, P, Z, XS
   DO 11 I=1.NINC
11 K(I)=K(I)+XS(I)
   Z(1)=K(1)+P(1)*P(2)-(P(1)*K(1))/(P(3)+P(4)*P(5)*K(3)/K
  1(2))
   7(2)=K(2)+(P(1)/P(12))*K(6)-(P(1)*K(1))/(P(3)+P(4)*P(5)
  2)*K(3)/K(2))
   Z(3)=K(3)+P(1)*P(2)/P(6)-(P(1)/P(6))*K(3)
   Z(4)=K(4)-(P(1)/P(7)+P(1)/P(8))*K(4)+(P(1)/P(8))*(K(1)
  3-K(2)-K(5)-K(6)-K(7))+(P(1)/P(8))*(-P(3)-P(4)+P(5)+P(7)
  4)+P(9)+P(10)+P(11)+P(12))*K(3)+P(1)*P(2)
   Z(5)=K(5)+(P(1)/P(7))*K(4)-(P(1)/P(9))*K(5)
   Z(6)=K(6)+(P(1)/P(10))*K(7)-(P(1)/P(12))*K(6)
   Z(7)=K(7)+(P(1)/P(9))*K(5)+(P(1)/P(10))*K(7)
   DO 1 I=1, NINC
 1 Z(I)=Z(I)-XS(I)
   DO 22 I=1,NINC -
22 \cdot K(I) = K(I) - XS(I)
   RETURN
   EN D
```

REFERÊNCIAS

- 2 Barnett, S and Storey, C., "Matrix Methods in Stability Theory", Thomas Nelson and Sons Ltd, 1970.
- 3 Berger, Albert J. and Lapidus, Leon, "Stability of High Dimensional Nonlinear Systems Using Krasovskii's Theorem", AIChE Journal, Vol.15, Nº2, pp.171-177.
- 4 Box, G.E.P. and Hunter J.S., "Multifactor Experimental Designs for Exploring Response Surfaces", Ann. Math. Stat.

 March, 1957, pp. 195-241.
- 5 Durand E., "Solutions Numériques des Équations Algèbriques", tome 2, Masson & Cie, Paris, 1961.
- 6 Faddeev D.K. and Faddeva V.N., "Computational Methods of Linear Algebra", Freeman, 1963.
- 7 Fonseca, Luiz G. de Souza, "Dominios de Estabilidade Assintótica", Tese M.Sc., COPPE, 1971.
- 8 Forrester, J.W., "Industrial Dynamics", The M.I.T Press September, 1969.

- 9 Forrester, J.W., "Urban Dynamics", The M.I.T.Press,
 Cambridge, Massachusetts, 1969.
- 10 Forrester, Nathan B., "A Computer Approach to Environmental System Design - Dynamics of Predator Prey Relationship", Massachusetts, 1969.
- 11 Giraud, Alain , "Applications des Récurrences à l'Étude de Certains Systèmes de Commande" , Thèse de Docteur Ingéneur, Toulouse, Avril, 1969.
- 12 Gumowski, I et Mira C., "L'Optimization, la Théorie et ses Problèmes", Dunod, 1970.
- 13 Gumowski, I et Mira C., "Sensitivity Problems Related to Certain Bifurcations in Non-Linear Recurrence Re lations", Automatica, Vol.5, pp. 303-317 , "Pergamon Press, 1969.
- 14 Gurel, O. & Lapidus, L., "A Guide to Methods for the Generation of Liapunov Functions", IBM Tech. Dep. Rep., Nº 320 2937.
- 15 Hahn, W., "On the Applications of the Method of Liapunov to Difference Equations", Mathematische Annalen, Vol. 136, 1958, pp. 430-441.
- 16 Hurt, James , "Some Stability Theorems for Ordinary

- Difference Equations", SIAM J. Numer.Anal, Vol.4, N94, 1967.
- 17 Jarmain, W.Edwin, "Problems in Industrial Dynamics",
 Cambridge, M.I.T. Press, 1963.
- 18 Kalman R.E. and Bertram J.E., "Control System Analysis and Design Via the "Second Method" of Liapunov: I. Continuous-Time Systems; II. Discrete-Time Systems", Trans. ASME. J.Basic Eng. 82D PP. 371-400.
- 19 Kolmogorov, A.N. and Fomin, S.N., "Elements of the Theory of Functions and Functional Analysis", Vol 1, Rochester, Nº 4, 1957.
- 20 Lagasse, J. C. Mira et Y. Sevely, "Conditions Suffisan te de Stabilité des Systèmes Régis par des Systèmes d'équations aux Differences du Premier Ordre", C.R. Ac Sciences Tome 256, pp. 3583, 1963.
- 21 La Salle & Lefshetz, "Stability by Liapunov's Direct Method, with Applications", Ac. Press, 1961.
- 22 Leake, R.J., "Discrete-Time System Analysis", Univ.Notre Dame, 1971.
- 23 Liapunov, A.M., "Stability of Motion", Ac. Press, New York, 1966.

- 24 Mira, C., "Cours de Systèmes Asservis Non-Linéaires ",
 Dunod.
- 25 Ortega, J.M., "Stability of Difference Equations and Convergence of Iterative Processes", Technical Report TR-191, University of Maryland, May, 1972.
- 26 O'Shea,R.P., "The Extension of Zubov's Method to Sampled
 Data Control Systems Described by Nonlinear Autonomous
 Difference Equations", IEEE Transactions on Automatic
 Control, January, 1964. (pp. 62-70)
- 27 PL/1 FORMAC Symbolic Mathematics Interpreter Prog. IBM 360 D 03.3.004 , September 1969.
- 28 Pugh, Alexander L., III, DYNAMO User's Manual", 2nd ed., The M.I.T. Press, Cambridge, Mass., 1963.
- 29 Rall, L.B., "Computational Solution of Nonlinear Operator Equations", John Wiley & Sons, Inc., 1969.
- 30 Roubellat, F., "Contribution à L'étude des Solutions des Récurrences non linéaires et Applications aux Systèmes à Données Échantillonées", Thèse de Doctorat Sciences Physiques, Toulouse, Septembre, 1969.
- 31 Schultz, D.G., "The Generation of Liapunov Fuctions", Advances in Control, Vol.2, Ac. Press, New York, 1965.

- 32 Sevely, Y., "Sistèmes et Asservissements Linéaires Echantillonés", Dunod, Paris, 1969.
- 33 Van Ess, J.E. & Imad F.P., "Sensitivities of Large

 Multiple-Loop Control Systems", IEEE Transactions on

 Automatic Control, pp. 308-315, July, 1965.
- 34 Vidal, P., "Systèmes Echantillonés Non Linéaires", Dunod, Paris, 1968.
- 35 Vignes, J., "Algorithme pour la Determination d'un Extremum Local d'une Fonction de Plusieurs Variables", Revue de l'Institut Français du Pétrole, Avril, 1968.