

Universidade Federal do Rio de Janeiro Centro de Ciências Matemáticas e da Natureza Instituto de Geociências Departamento de Geologia

A INFLUÊNCIA DA SALINIDADE NO TRANSPORTE DE SEDIMENTOS DAS DUNAS DO PERÓ

Wander de Araújo Machado

Trabalho de Conclusão de Curso

(Bacharelado em Geologia)

Orientadora: Prof^a. Dr^a. Andrea Borges

Rio de Janeiro Agosto de 2010 Wander de Araújo Machado

A INFLUÊNCIA DA SALINIDADE NA ERODIBILIDADE DAS DUNAS DO PERÓ

Trabalho de Conclusão de Curso de graduação em Geologia apresentado ao Instituto de Geociências da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do grau de bacharel em Geologia.

Área de Concentração: Geologia de Engenharia e Ambiental.

Orientadoras: Prof.^a Dr.^a Andrea Borges

Aprovada por:

Prof.^a Dr.^a Andrea Borges

Prof. Dr. Emílio Velloso Barroso

Prof.^a Dr.^a Helena Polivanov

Rio de Janeiro

Agosto 2010

Machado, Wander de Araujo.

A influência da salinidade na erodibilidade das dunas do Peró.

IX,27p. 29,7 cm (Instituto de Geociências – UFRJ, B. Sc., Curso de Graduação em Geologia, 2010).

Monografia – Universidade Federal do Rio de Janeiro, realizada no Instituto de Geociências

1. Dunas 2. Salinidade 3. Cisalhamento direto

"Determinação, coragem e autoconfiança são fatores decisivos para o sucesso. Se estamos possuídos por uma inabalável determinação conseguiremos superá-los. Independentemente das circunstâncias, devemos ser sempre humildes, recatados e despidos de orgulho." Dalai Lama

AGRADECIMENTOS

À Profa. Dra. Andrea Borges pelas sugestões, esclarecimentos e orientação durante a realização deste trabalho.

À Prof. Dr. Emílio Velloso pela ajuda e opiniões durante o desenvolvimento do trabalho.

Ao técnico e amigo Eduardo pela elaboração da caixa em alumínio que possibilitou a realização dos ensaios.

À engenheira Fátima Seabra pelo auxílios durante a realização dos ensaios.

Ao amigo Vitor Silos pela ajuda nos ensaios e durante toda graduação.

Ao amigo Thiago Telles pela ajuda na elaboração do texto e durante toda a graduação.

À minha família por todo apoio durante minha graduação.

RESUMO

MACHADO, Wander de Araújo. **A influência da salinidade na erodibilidade das dunas do Peró.** Rio de Janeiro, 2010. ix 27p. Monografia (Graduação em Geologia) – Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2010.

O presente trabalho visa compreender melhor o quanto o sal no afeta o transporte de sedimentos da região. A região estudada, no Município de Cabo Frio no estado do Rio de Janeiro, sofre com tal processo de erosão que está associado ao regime de ventos e chuvas que agrava tal processo erosivo, e para melhor compreende-los foram realizados diversos ensaios em laboratório como granulometria, teste de sucção osmótica, cisalhamento direto e inclinação.

Os sedimentos caracterizados como finos presentes na região sofrem uma grande ação da sucção osmótica. Isso devido a nevoa salina presente na região, que provoca um comportamento mais coeso entre eles e diminuindo o processo erosivo.

Os modelos existentes para explicar a erosão eólica se baseiam em dados que incluem a força de arrasto do vento, a força de suspensão aerodinâmica, a força coesiva entre as partículas e a rugosidade da superfície. Por isso, este estudo foi baseado na resistência ao cisalhamento dos sedimentos. Foram definidos os parâmetros de resistência ao cisalhamento, ângulo de atrito e coesão dos sedimentos, a partir de ensaios com e sem sal.

Além disso, foi analisado o ângulo de colapso em testes de inclinação realizados em amostras sem a presença de sal e com a presença de sal, sendo que as amostras com sal possuem um ângulo de colapso maior que as amostras sem a presença de sal. Esse processo está associado à sucção osmótica e à resistência ao cisalhamento da mesma.

Sendo assim, o sal possui uma grande influência no transporte de sedimentos da região podendo diminuir tal processo em regiões com névoa salina e regime de chuvas favorável.

vi

LISTA DE FIGURAS

Figura 1	- Campo de dunas avançando sobre a área urbana (Agosto 2007)1
Figura 2	 Localização do município de Cabo Frio (A) e da área de estudo (B). Retirado de Google Earth
Figura 3	- Mapa geológico da região de Búzios e Cabo Frio. Retirado de Schmitt (2001)5
Figura 4	– Feições onduladas em duna barcana da região6
Figura 5 –	Representação dos critérios de ruptura: (a) Coulomb e (b) Mohr. Retirado de Pinto <i>et al.</i> (2000)
Figura 6	 Campo de dunas com uma placa de areia em destaque, formada devido a sucção osmótica
Figura 7	 – Gráfico da representação do ensaio de cisalhamento onde τ_{máx} é a tensão de ruptura e τ_{res} é a tensão residual, Pinto et at. (2000)10
Figura 8	– Modelo do ensaio. Retirado de Pinto et at. (2000)11
Figura 9	 Ensaio de cisalhamento direto: (a) motor com a velocidade; (b) anel e extensômetro; (c) caixa do ensaio; (d) extensômetro que mede o deslocamento superior
Figura 10	- Extensômetro do anel e o de deslocamento da parte superior da caixa12
Figura 11	– Curva granulométrica13
Figura 12	- Concentração de sal por teor de umidade14
Figura 13	- Gráfico teor de umidade x tempo, em diferentes concentrações de sal14
Figura 14	- Gráfico de cisalhamento sem sal com uma carga de 4kgf16
Figura 15	– Gráfico de cisalhamento sem sal com uma carga de 9kgf17
Figura 16	- Gráfico de cisalhamento sem sal com carga de 10,228kgf18
Figura 17	 – Gráfico de cisalhamento sem sal com carga de 12,566kgf19
Figura 18	 Amostra após a realização do ensaio sem a presença de sal19
Figura 19	– Envoltória de cisalhamento com os padrões c(0,96kPa) e \u00f8 (12,3°)19
Figura 20	– Gráfico de cisalhamento com sal com carga de 3,671kgf21
Figura 21	- Gráfico de cisalhamento com sal com carga de 8,668kgf22
Figura 22	- Gráfico de cisalhamento com sal com carga de 9,896kgf23
Figura 23	- Gráfico de cisalhamento com sal com carga de 12,234kgf24
Figura 24	- Amostra após a realização do ensaio com a presença de sal24
Figura 2	5 – Envoltória de cisalhamento com sal e os padrões c(0,9203) e ø
(13,9°)	

Figura 26	6 – Ensaio de inclinação em amostra sem sal	25
Figura 27	– Placas de sal formadas devido a sucção osmótica em ensaio com sal	26

LISTA DE TABELAS

15
16
17
18
20
21
22
23

SUMÁRIO

RESUMOvi
LISTA DE FIGURASvi
LISTA DE TABELASvii
SUMÁRIOix
1 INTRODUÇÃO
1.1 Localização
1.2 Objetivos
2 GEOLOGIA REGIONAL4
3 RESISTÊNCIA AO CISALHAMENTO6
3.1 Critérios de Ruptura7
4 SUCÇÃO OSMÓTICA
5 METODOLOGIA8
5.1 Etapa de Gabinete
5.2 Etapa de Campo
5.3 Etapa de Laboratório9
5.3.1 Ensaios Físicos
5.3.1.1 Granulometria
5.3.1.2 Teste de evaporação de água dos poros9
5.3.1.3 Ensaio de Cisalhamento Direto10
5.3.1.4 Ensaio de Inclinação12
6 RESULTADOS13
6.1 Granulometria13
6.2 Teste de evaporação de água dos poros13
6.3 Ensaios de Cisalhamento Direto15
6.3.1 Ensaios de Cisalhamento Direto Sem Sal15
6.3.2 Ensaios de Cisalhamento Direto Com Sal20
6.4 Ensaios de Inclinação25
7 CONCLUSÕES26
8 REFERÊNCIAS BIBLIOGRÁFICAS27

1 INTRODUÇÃO

Várias pesquisas vêm sendo desenvolvidas atualmente na região costeira do Peró em Cabo Frio, Rio de Janeiro, a fim de estudar os efeitos no transporte de sedimentos das dunas (Castro, 2006; Castro & Avilla, 2002; Castro *et. al*, 2007; Rangel, 2005). Condições ambientais como o regime de vento, regime de chuva e clima de ondas da região favorecem o desenvolvimento do campo de dunas. Tal impacto pode ser observado na região através do soterramento de instalações públicas e também de ruas da região (Figura 1).

Figura 1. Campo de dunas avançando sobre a área urbana (Agosto 2007, Wander Machado)

Dunas costeiras estão sujeitas a variações nas condições de umidade e de salinidade, que são influenciadas pela velocidade do vento, umidade relativa do ar, temperatura, pluviosidade e exposição à névoa salina (Castro *et al.* 2007). Estas condições influenciam no transporte dos sedimentos, possivelmente promovendo maior agregação das partículas, dificultando a sua remoção, devido ao aumento da umidade e da salinidade.

A sucção osmótica é uma parcela da sucção total no solo (composta pela sucção mátrica e pela sucção osmótica), e resulta da presença de sais no fluido dos poros. A sucção mátrica atua em solos não saturados, em função da tensão superficial da água e da curvatura dos meniscos formados entre os grãos sólidos, enquanto osmótica pode atuar em solos saturados ou não saturados.

Uma variação na sucção osmótica tem efeito no comportamento mecânico do solo, se variar a concentração de sais no fluido dos poros, ocorrerá uma variação de volume e na resistência ao cisalhamento do solo (Fredlund & Rahardjo, 1993). No caso de dunas costeiras, esta variação pode ser causada, por exemplo, pela precipitação pluviométrica, após um período de seca no qual os sedimentos foram submetidos à ação da névoa salina, durante o período seco, a concentração de sais nos poros aumenta, e a água da chuva dilui a solução presente nos poros, mudando a sucção osmótica.

Os modelos existentes para entender os mecanismos de transporte de sedimentos se baseiam em dados que incluem a força de arrasto do vento, a força de suspensão aerodinâmica, a força coesiva entre as partículas e a rugosidade da superfície (e.g. Shao, 2000).Sendo esta a motivação deste estudo, o mesmo se baseia na resistência ao cisalhamento dos sedimentos.

1.1 Localização

A área estudada está localizada no município de Cabo Frio na Região dos Lagos do Estado do Rio de Janeiro situado no sudeste do Brasil (Figura 2) que pertence a APA do Pau-Brasil ocupando uma área de aproximadamente 7km², segundo Rangel *et al.* (2005). O município é caracterizado pela presença de dunas em uma área costeira como no bairro estudado no Peró.

Figura 2. Localização do município de Cabo Frio (A) e da área de estudo (B). Retirado de Google Earth.

1.2 Objetivos

O presente trabalho tem como objetivo geral caracterizar a influência do sal no campo de dunas de Cabo Frio e qualificar os efeitos causados pelo mesmo na erosão eólica dos sedimentos.

2 GEOLOGIA REGIONAL

A região de Cabo Frio está inserida dentro do contexto geológico da Faixa Ribeira. A região mais conhecida como região dos Lagos foi caracterizada, segundo Schmitt *et al.* (2001), por quatro domínios litoestratigráficos. Os domínios Ortognaisses Félsicos Região dos Lagos, Ortoanfibolitos Forte São Mateus, Seqüência Supracrustal e Depósitos Quaternários (Figura 3).

As unidades Ortognaisses Félsicos Região dos Lagos e Ortoanfibolitos Forte São Mateus são consideradas embasamento com idades pré-cambriana e paleozóica, respectivamente. Tais unidades estão presentes como limitadores das unidades fisiográficas e praias. Sendo a unidade Ortognaisses Félsico Região dos Lagos caracterizada por metagranitóides e metaquartzo-dioritos no qual limitam o arco praial estudado.

A unidade Seqüência Supracrustal é caracterizada por sucessões de rochas metassedimentares, intercaladas com rochas anfibolíticas, resultante de depósitos Meso-Neoproterozóica e deformação tectono-metamorfica durante Cambriano-Ordoviciano. A unidade é dividida em Sucessão Búzios caracterizada por metassedimentos aluminosos, intercalações de rochas siliciclásticas e corpos de anfibolitos. A sucessão Palmital é caracterizada por metassedimentos quartzo-feldspáticos com intercalações de metassedimentos aluminosos, rochas clacissiliclásticas e quartzitos feldspáticos.

Os depósitos quaternários são caracterizados por uma planície costeira na região de Cabo Frio e por depósitos eólicos recentes. A região de planície costeira é resultante da variação do nível relativo do mar ocorrido durante todo o Quaternário, tal sistema se caracteriza por dois sistemas lagunares sendo um interno e outro externo, isolados do oceano Atlântico por barreiras arenosas, restinga interna e externa. Os depósitos eólicos da praia do Peró ocorrem sobre a planície costeira e áreas de brejos, segundo Martin *et al.* (1993) e Castro *et al.* (2007).

4

Figura 3. Mapa geológico da região de Búzios e Cabo Frio. Retirado de Schmitt (2001).

Tais sedimentos resultante de processos eólicos associados a condições como, regime de vento, clima de ondas, baixo índice pluviométrico e as variações do nível do mar na região durante o Holoceno permitiram o desenvolvimento dessa extensa planície costeira controlada por dunas, segundo Castro *et al.* (2002).

As dunas da região são classificadas como dunas barcanas ou barcanóide migratórias, esse tipo de duna assume forma de meia-lua ou lua crescente com as suas extremidades voltadas para o sentido do vento. Tais dunas não formam campos contínuos e tendem a ser pequenas não superando 50m de altura e 350m de largura. As barcanóides que se diferenciam das barcanas por ocorrem unidas. Além disso, nas dunas podem ser identificadas feições como estratificações cruzadas e feições onduladas (Figura 4).

Figura 4. Feições onduladas em duna barcana da região (Wander, 2007).

3 RESISTÊNCIA AO CISALHAMENTO

A resistência do cisalhamento da areia é definida pela tensão máxima de cisalhamento que ela pode resistir antes da ruptura, ou a tensão de cisalhamento no plano em que estiver ocorrendo a ruptura. O cisalhamento ocorre devido ao deslizamento entre os grãos ao longo de uma superfície. De acordo com o modelo de ruptura de Mohr-Columb, os parâmetros que controlam resistência ao cisalhamento são o atrito e a coesão entre as partículas, segundo Pinto et *al.* (2000).

O atrito entre as duas faces da superfície depende do atrito entre as partículas e da dimensão e arranjo destas, que define a rugosidade da superfície, e pode ser definido como a força tangencial necessária para ocorrer o deslizamento de um plano paralelo ao outro. O ângulo formado entre a força normal e a resultante das forças tangencial e normal é chamado de ângulo de atrito. Este ângulo que a força cisalhante pode ter com a normal ao plano para que não haja deslocamento é chamado de máximo ângulo de atrito.

A coesão entre as partículas é um fator muito importante já que independe da força normal. Esse fator é a atração química entre os grãos.

3.1 Critérios de Ruptura

Segundo Pinto et al. (2000), os critérios que melhor representam o comportamento da amostra é o de Coulomb e de Mohr, que levam como base o estudo das tensões aplicadas a amostra. Tais critérios definem o comportamento das amostras até a ruptura.

O critério de Coulomb é expresso como uma expressão ($c + f\sigma$), sendo c e f constantes do material e σ a tensão normal do plano de cisalhamento, na qual não há ruptura se a tensão de cisalhamento não ultrapassar o valor dado pela expressão. Os parâmetros c e f são respectivamente, coesão e coeficiente de atrito interno, que pode ser expresso pela tangente de um ângulo denominado ângulo de atrito. A expressão descreve uma reta com inclinação f e intercepto c (Figura 5(a)), segundo Pinto *et al.* 2000.

O critério de Mohr é expresso por não haver ruptura enquanto o circulo representativo do estado de tensões se encontraram no interior da envoltória dos círculos relativos ao estado de ruptura que foi observado experimentalmente para a amostra (Figura 5(b)), segundo Pinto *et al.* 2000.

Figura 5. Representação dos critérios de ruptura: (a) Coulomb e (b) Mohr. Retirado de Pinto *et al.* (2000).

4 SUCÇÃO OSMÓTICA

A sucção osmótica é pressão osmótica da água no solo, e depende da habilidade das partículas de solo em restringir o movimento dos íons adsorvidos. A água tende a fluir no sentido do aumento da concentração de íons. Sendo assim, quanto maior a concentração de sal na areia maior será a saturação de água nos poros (Figura 6).

A sucção, ao lado da tensão efetiva, é reconhecida como uma das mais significativas variáveis na descrição das propriedades de resistência, compressibilidade e permeabilidade de um solo, segundo Vilar *et. al* (1997).

Os principais fatores que influenciam nas curvas de sucção são a porosidade e a mineralogia dos grãos.

Figura 6: Campo de dunas com uma placa de areia em destaque, formada devido a sucção osmótica.

5 METODOLOGIA

Para o estudo dos processos da influência da salinidade na erodibilidade das dunas do Peró, Município de Cabo Frio, foram realizadas etapas de gabinete, etapa de campo além de ensaios e análise em laboratório.

5.1 Etapa de Gabinete

Durante essa etapa realizou-se uma revisão bibliográfica referente ao assunto, consultando teses, dissertações e livros. Em seguida analisamos os resultados obtidos pelos ensaios de laboratório.

5.2 Etapa de Campo

Durante essa etapa foi feita a coleta em dois pontos distintos no campo de dunas do Peró, Município de Cabo Frio, com a retirada das coordenadas dos mesmos além de coleta de água do mar da região para ensaios de laboratório. Foi feita também uma análise visual no local confirmando a direção do vento.

5.3 Etapa de Laboratório

Nesta etapa foram realizadas análises granulométrica, textural e mineralógica. Além disso, teste de evaporação de água dos poros, ensaio de cisalhamento direto e teste de inclinação.

5.3.1 Ensaios Físicos5.3.1.1 Granulometria

Para o reconhecimento do tamanho dos grãos das dunas, realizou-se a análise granulométrica, de acordo com a norma, NBR-7181 (ABNT, 1984). Esta norma prescreve o método para análise granulométrica de solos, realizada por peneiramento ou por combinação de sedimentação e peneiramento.

5.3.1.2 Teste de evaporação de água dos poros

Para este ensaio foram utilizadas três amostras. Uma de areia com ausência de cloreto de sódio; uma segunda amostra com teor médio de 1,88g de cloreto de sódio por kg de areia; e uma amostra com teor de 3,43g de cloreto de sódio por kg de areia, simulando um ambiente com diferentes concentrações salinas.

As amostras de areia foram previamente lavadas com água destilada, retirando o cloreto de sódio presente nas mesmas. A água do mar foi caracterizada com massa específica de 1,014g/cm³ e concentração de sais de 35g/l. As amostras foram analisadas em cinco períodos de tempo (27h e 30min; 49h e 30min; 70h e 30min; 144h e 30min; e 167h e 30min). A partir disso foram obtidas as curvas de teor de umidade por concentração de sal na areia e teor de umidade em relação ao tempo.

Com isso, foi possível analisar a influência da sucção osmótica no tempo de evaporação da água nas amostras.

5.3.1.3 Ensaio de Cisalhamento Direto

Este ensaio foi utilizado para determinação da resistência ao cisalhamento e baseia-se diretamente no critério de Coulomb, aplicando uma tensão normal num plano e verifica-se a tensão cisalhante no momento que ocorre a ruptura. Como vemos na figura 7, onde o cisalhamento ocorre a partir do pico da curva.

Figura 7. Gráfico da representação do ensaio de cisalhamento onde $\tau_{máx}$ é a tensão de ruptura e τ_{res} é a tensão residual, Pinto et at. (2000).

Para este ensaio o corpo de prova de areia foi colocado numa caixa de cisalhamento, cuja metade superior é móvel e a metade inferior imóvel.

É aplicada à amostra uma força vertical (N), que irá permanecer constante ao longo do ensaio, e logo após uma força tangencial (T) que é aplicada na sua parte superior da caixa, provocando assim o seu deslocamento (Figura 8). A força tangencial aumenta gradativamente e é medida através de um anel dinamométrico em intervalos previamente definidos. Com um extensômetro é medido o deslocamento da caixa superior, como temos uma velocidade estável de 1mm/min a caixa possui um deslocamento estável (Figuras 9 e 10). Como sabemos a área da caixa previamente medida com 2560,36mm² e a constante do anel de 0,017kgf/0,001mm podemos calcular as tensões normal e cisalhante na superfície horizontal ao longo do ensaio. Neste ensaio foram utilizados quatro diferentes forças verticais (N), 4kgf,

9kgf, 10,288kgf e 12,566kgf estáveis para amostras sem sal. E para ensaios com sal foram utilizados 3,671kgf, 8,668kgf, 9,869kgf e 12,234kgf como forças verticais (N).

Figura 8. Modelo do ensaio. Retirado de Pinto et at. (2000).

Figura 9. Ensaio de cisalhamento direto(a) motor com a velocidade; (b) anel e extensômetro;(c) caixa do ensaio; (d) extensômetro que mede o deslocamento superior.

Figura 10. Extensömetro do anel e o de deslocamento da parte superior da caixa.

5.3.1.4 Ensaio de Inclinação

Esse ensaio foi constituído de amostras com a presença de cloreto de sódio e outra sem a presença de cloreto de sódio. Uma delas sem nenhuma concentração de cloreto de sódio, que foi lavado previamente como no ensaio de evaporação de água dos poros. Na outra foi acrescentada da água do mar para que simulasse a névoa salina sobre o campo de dunas. Depois de um dia, para que as amostras secassem naturalmente, se deu o inicio do teste, na qual o objetivo é termos o ângulo de colapso quando inclinamos as amostras. Foram obtidos dois ângulos de colapsos diferentes, no qual fizemos uma comparação da amostra com cloreto de sódio e da amostra sem cloreto de sódio.

Porém, este ensaio fornece o ângulo de atrito de materiais não coesivos em um nível de tensão muito baixa. Para materiais com coesão, o resultado do ensaio é função tanto do ângulo de atrito quanto da coesão, e não é possível quantificar estes parâmetros com base somente neste ensaio.

6 RESULTADOS

6.1 Granulometria

A partir dos ensaios de granulometria segundo os padrões ABNT, podemos classificar a areia da região como areia média, como mostrado na figura 11.

Figura 11. Curva granulométrica.

6.2 Testes de evaporação de água dos poros

As curvas de sucção obtidas durante os ensaios mostraram que o teor de umidade das amostras aumenta de acordo com a maior concentração de sal. Como podemos ver na figura 12 e 13 as amostras 1, C e D representam, respectivamente, as maiores concentrações de sal. De acordo com a figura 12 amostras com concentração de sal maiores apresentam maior teor de umidade.

Figura 12. Concentração de sal por teor de umidade.

Na figura 13, relacionam-se o tempo e o teor de umidade em diferentes concentrações de sal. Observa-se que amostras com maior concentração de sal possuem teor de umidade maior, independente do tempo de exposição.

Figura 13. Gráfico teor de umidade x tempo, em diferentes concentrações de sal.

6.3 Ensaios de Cisalhamento Direto

6.3.1 Ensaios de Cisalhamento Direto Sem Sal

Os ensaios de cisalhamento direto foram realizados sem a presença de sal, com diferentes cargas de 4kgf, 9kgf, 10,288kgf e 12,566kgf, respectivamente.

No ensaio de 4kgf, sem a presença de sal, foi obtida uma variação no diâmetro do anel (L_{anel}) máxima de 2,067mm como mostra a tabela 1. Assim, tendo um gráfico de tensão cisalhante por deslocamento horizontal variando de 4kPa a 5kPa, aproximadamente (Figura 14).

tempo	L _h	L _{anel}	L _v	Δh	ΔL_{anel}	Δν	А	σ	F _h	τ
(s)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm ²)	(kPa)	(kN)	(kPa)
	1,000	2,000		0,000	0,000		2560,360	15,3284	0,000	0
	1,500	2,045		0,500	0,045		2535,060	15,48137	0,008	2,959333
	2,000	2,060		1,000	0,060		2509,760	15,63744	0,010	3,985554
	2,500	2,062		1,500	0,062		2484,460	15,79668	0,010	4,160344
	3,000	2,065		2,000	0,065		2459,160	15,95919	0,011	4,406524
	3,500	2,060		2,500	0,060		2433,860	16,12509	0,010	4,109843
	4,000	2,059		3,000	0,059		2408,560	16,29447	0,010	4,083797
	4,500	2,061		3,500	0,061		2383,260	16,46745	0,010	4,267053
	5,000	2,055		4,000	0,055		2357,960	16,64414	0,009	3,888623
	5,500	2,060		4,500	0,060		2332,660	16,82466	0,010	4,288144
	6,000	2,055		5,000	0,055		2307,360	17,00914	0,009	3,9739
	6,500	2,060		5,500	0,060		2282,060	17,19771	0,010	4,383225
	7,000	2,058		6,000	0,058		2256,760	17,39051	0,010	4,284619
	7,500	2,058		6,500	0,058		2231,460	17,58768	0,010	4,333198
	8,000	2,062		7,000	0,062		2206,160	17,78938	0,010	4,685158
	8,500	2,054		7,500	0,054		2180,860	17,99575	0,009	4,127961
	9,000	2,055		8,000	0,055		2155,560	18,20697	0,009	4,253752
	9,500	2,067		8,500	0,067		2130,260	18,4232	0,011	5,243385
	10,000	2,058		9,000	0,058		2104,960	18,64464	0,010	4,593606
	10,500	2,061		9,500	0,061		2079,660	18,87146	0,010	4,88998
	11.000	2.058		10.000	0.058		2054.360	19.10386	0.010	4.706749

Tabela 1: Tabela de cisalhamento sem sal com carga de 4kgf.

Figura 14: Gráfico de cisalhamento sem sal com uma carga de 4kgf.

No ensaio de 9kgf, sem a presença de sal, foi obtida uma variação no diâmetro do anel (L_{anel}) máxima de 2,067mm como mostra a tabela 2 e figura 15. Assim, tendo um gráfico de tensão cisalhante por deslocamento horizontal variando de 8kPa a 10kPa, aproximadamente.

tempo	L _h	L _{anel}	L _v	Δh	ΔL_{anel}	Δv	Α	σ	F _h	τ
(s)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm ²)	(kPa)	(kN)	(kPa)
	1,000	2,000		0,000	0,000		2560,360	34,47166	0,000	0
	1,500	2,110		0,500	0,110		2535,060	34,81568	0,018	7,233926
	2,000	2,125		1,000	0,125		2509,760	35,16665	0,021	8,303237
	2,500	2,130		1,500	0,130		2484,460	35,52476	0,022	8,723303
	3,000	2,128		2,000	0,128		2459,160	35,89024	0,021	8,677463
	3,500	2,128		2,500	0,128		2433,860	36,26332	0,021	8,767666
	4,000	2,127		3,000	0,127		2408,560	36,64424	0,021	8,790546
	4,500	2,129		3,500	0,129		2383,260	37,03324	0,022	9,023767
	5,000	2,121		4,000	0,121		2357,960	37,4306	0,020	8,554971
	5,500	2,121		4,500	0,121		2332,660	37,83657	0,020	8,647758
	6,000	2,121		5,000	0,121		2307,360	38,25144	0,020	8,74258
	6,500	2,121		5,500	0,121		2282,060	38,67552	0,020	8,839504
	7,000	2,122		6,000	0,122		2256,760	39,1091	0,020	9,012475
	7,500	2,121		6,500	0,121		2231,460	39,55251	0,020	9,039947
	8,000	2,121		7,000	0,121		2206,160	40,0061	0,020	9,143616
	8,500	2,121		7,500	0,121		2180,860	40,4702	0,020	9,24969
	9,000	2,121		8,000	0,121		2155,560	40,94521	0,020	9,358254
	9,500	2,121		8,500	0,121		2130,260	41,43149	0,020	9,469398
	10,000	2,121		9,000	0,121		2104,960	41,92947	0,020	9,583213
	10,500	2,121		9,500	0,121		2079,660	42,43956	0,020	9,699797
	11,000	2,121		10,000	0,121		2054,360	42,96221	0,020	9,819252

Tabela 2: Tabela de cisalhamento sem sal com carga de 9kgf.

Figura 15: Gráfico de cisalhamento sem sal com uma carga de 9kgf.

Já nos ensaios de carga 10,228kgf sem sal, a variação do diâmetro do anel (Lanel) máxima obtida foi de 2,151mm como mostram a tabela 3 e a figura 16. Assim, tendo uma tensão cisalhante variando de 9,5kPa a 11kPa, aproximadamente.

tempo	L _h	L _{anel}	L _v	Δh	ΔL_{anel}	Δv	А	σ	F _h	τ
(s)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm ²)	(kPa)	(kN)	(kPa)
	1,000	2,000		0,000	0,000		2560,360	39,17512	0,000	0
	1,500	2,110		0,500	0,110		2535,060	39,56609	0,018	7,233926
	2,000	2,139		1,000	0,139		2509,760	39,96494	0,023	9,233199
	2,500	2,150		1,500	0,150		2484,460	40,37192	0,025	10,06535
	3,000	2,151		2,000	0,151		2459,160	40,78727	0,025	10,23669
	3,500	2,149		2,500	0,149		2433,860	41,21125	0,025	10,20611
	4,000	2,141		3,000	0,141		2408,560	41,64414	0,024	9,759583
	4,500	2,140		3,500	0,140		2383,260	42,08622	0,023	9,793236
	5,000	2,139		4,000	0,139		2357,960	42,53779	0,023	9,827611
	5,500	2,141		4,500	0,141		2332,660	42,99916	0,024	10,07714
	6,000	2,135		5,000	0,135		2307,360	43,47064	0,023	9,754118
	6,500	2,135		5,500	0,135		2282,060	43,95258	0,023	9,862257
	7,000	2,139		6,000	0,139		2256,760	44,44532	0,023	10,26831
	7,500	2,140		6,500	0,140		2231,460	44,94923	0,023	10,45944
	8,000	2,135		7,000	0,135		2206,160	45,46471	0,023	10,20155
	8,500	2,141		7,500	0,141		2180,860	45,99214	0,024	10,77856
	9,000	2,138		8,000	0,138		2155,560	46,53195	0,023	10,67305
	9,500	2,137		8,500	0,137		2130,260	47,08459	0,023	10,72155
	10,000	2,137		9,000	0,137		2104,960	47,65051	0,023	10,85041
	10,500	2,136		9,500	0,136		2079,660	48,2302	0,023	10,90225
	11,000	2,137		10,000	0,137		2054,360	48,82417	0,023	11,11767

Tabela 3: Tabela de cisalhamento sem sal com carga de 10,228Kgf.

Figura 16. Gráfico de cisalhamento sem sal com carga de 10,228kgf.

No ultimo ensaio sem sal de carga 12,566kgf, a variação do diâmetro do anel (Lanel) máxima obtida foi de 2,172mm como mostram a tabela 4 e a figura 17. Assim, tendo uma tensão cisalhante variando de 10kPa a 12kPa, aproximadamente.

tempo	L _h	L _{anel}	L _v	Δh	ΔL_{anel}	Δv	А	σ	F _h	τ
(s)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm ²)	(kPa)	(kN)	(kPa)
	1,000	2,000		0,000	0,000		2560,360	48,13009	0,000	0
	1,500	2,138		0,500	0,138		2535,060	48,61043	0,023	9,075289
	2,000	2,167		1,000	0,167		2509,760	49,10046	0,028	11,09312
	2,500	2,171		1,500	0,171		2484,460	49,60046	0,029	11,4745
	3,000	2,172		2,000	0,172		2459,160	50,11075	0,029	11,66034
	3,500	2,160		2,500	0,160		2433,860	50,63166	0,027	10,95958
	4,000	2,152		3,000	0,152		2408,560	51,1635	0,025	10,52097
	4,500	2,149		3,500	0,149		2383,260	51,70664	0,025	10,4228
	5,000	2,140		4,000	0,140		2357,960	52,26143	0,023	9,898313
	5,500	2,141		4,500	0,141		2332,660	52,82826	0,024	10,07714
	6,000	2,140		5,000	0,140		2307,360	53,40752	0,023	10,11538
	6,500	2,140		5,500	0,140		2282,060	53,99962	0,023	10,22753
	7,000	2,132		6,000	0,132		2256,760	54,60499	0,022	9,751202
	7,500	2,138		6,500	0,138		2231,460	55,2241	0,023	10,31002
	8,000	2,146		7,000	0,146		2206,160	55,8574	0,024	11,03279
	8,500	2,151		7,500	0,151		2180,860	56,5054	0,025	11,543
	9,000	2,145		8,000	0,145		2155,560	57,16861	0,024	11,21444
	9,500	2,131		8,500	0,131		2130,260	57,84757	0,022	10,25199
	10,000	2,138		9,000	0,138		2104,960	58,54285	0,023	10,92961
	10,500	2,142		9,500	0,142		2079,660	59,25505	0,024	11,38323
	11,000	2,138		10,000	0,138		2054,360	59,9848	0,023	11,19882

Tabela 4: Tabela de cisalhamento sem sal com carga de 12,566Kgf.

Figura 17. Gráfico de cisalhamento sem sal com carga de 12,566kgf.

Em todos ensaios realizados sem a presença de sal nas amostras, ao retirar o anel superior da caixa, os sedimentos perderam a sustentação e colapsaram lateralmente (Figura 18).

Figura 18. Amostra após a realização do ensaio sem a presença de sal.

A partir dos quatro ensaios realizados sem a presença de sal foi obtido a envoltória do cisalhamento com o ângulo de atrito e a coesão, c e ϕ com valores de 0,96kPa e 12,3°, respectivamente (Figura 19).

6.3.2 Ensaios de Cisalhamento Direto Com Sal

Os ensaios de cisalhamento direto foram realizados com a presença de sal, com diferentes cargas de 3,671kgf, 8,668kgf, 9,896kgf e 12,234kgf, respectivamente.

Nos ensaios de carga 3,671kgf com sal, a variação do diâmetro do anel (Lanel) máxima obtida foi de 2,057mm como mostram a tabela 5 e a figura 20. Assim, tendo uma tensão cisalhante variando de 3,5kPa à 4kPa, aproximadamente.

							0		<u> </u>	
tempo	L _h	L _{anel}	L _v	Δh	ΔL_{anel}	Δv	А	σ	F _h	τ
(s)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm ²)	(kPa)	(kN)	(kPa)
	1,000	2,000		0,000	0,000		2560,360	14,05678	0,000	0
	1,500	2,042		0,500	0,042		2535,060	14,19706	0,007	2,762044
	2,000	2,050		1,000	0,050		2509,760	14,34018	0,008	3,321295
	2,500	2,052		1,500	0,052		2484,460	14,48621	0,009	3,489321
	3,000	2,054		2,000	0,054		2459,160	14,63524	0,009	3,660805
	3,500	2,057		2,500	0,057		2433,860	14,78738	0,010	3,904351
	4,000	2,053		3,000	0,053		2408,560	14,94271	0,009	3,668496
	4,500	2,053		3,500	0,053		2383,260	15,10133	0,009	3,707439
	5,000	2,053		4,000	0,053		2357,960	15,26337	0,009	3,747219
	5,500	2,054		4,500	0,054		2332,660	15,42891	0,009	3,85933
	6,000	2,052		5,000	0,052		2307,360	15,59809	0,009	3,757142
	6,500	2,054		5,500	0,054		2282,060	15,77102	0,009	3,944903
	7,000	2,054		6,000	0,054		2256,760	15,94782	0,009	3,989128
	7,500	2,053		6,500	0,053		2231,460	16,12864	0,009	3,959646
	8,000	2,051		7,000	0,051		2206,160	16,3136	0,009	3,853921
	8,500	2,051		7,500	0,051		2180,860	16,50285	0,009	3,89863
	9,000	2,050		8,000	0,050		2155,560	16,69655	0,008	3,867047
	9,500	2,050		8,500	0,050		2130,260	16,89484	0,008	3,912974
	10,000	2,050		9,000	0,050		2104,960	17,0979	0,008	3,960005
	10,500	2,050		9,500	0,050		2079,660	17,30591	0,008	4,00818
	11,000	2,050		10,000	0,050		2054,360	17,51904	0,008	4,057542

Tabela 5: Tabela de cisalhamento com sal com carga de 3,671Kgf.

Figura 20. Gráfico de cisalhamento sem sal com carga de 3,671kgf.

Nos ensaios de carga 8,668kgf com sal, a variação do diâmetro do anel (Lanel) máxima obtida foi de 2,160mm como mostram a tabela 6 e a figura 21. Assim, tendo uma tensão cisalhante variando de 10,8kPa à 13kPa, aproximadamente.

tempo	L _h	L _{anel}	L _v	Δh	ΔL_{anel}	Δν	A	σ	F _h	τ
(s)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm ²)	(kPa)	(kN)	(kPa)
	1,000	2,000		0,000	0,000		2560,360	33,20004	0,000	0
	1,500	2,078		0,500	0,078		2535,060	33,53137	0,013	5,129511
	2,000	2,110		1,000	0,110		2509,760	33,86939	0,018	7,306848
	2,500	2,134		1,500	0,134		2484,460	34,21429	0,022	8,991712
	3,000	2,145		2,000	0,145		2459,160	34,56629	0,024	9,829939
	3,500	2,159		2,500	0,159		2433,860	34,92561	0,027	10,89108
	4,000	2,159		3,000	0,159		2408,560	35,29247	0,027	11,00549
	4,500	2,160		3,500	0,160		2383,260	35,66713	0,027	11,19227
	5,000	2,159		4,000	0,159		2357,960	36,04982	0,027	11,24166
	5,500	2,159		4,500	0,159		2332,660	36,44082	0,027	11,36358
	6,000	2,159		5,000	0,159		2307,360	36,84039	0,027	11,48818
	6,500	2,159		5,500	0,159		2282,060	37,24882	0,027	11,61555
	7,000	2,159		6,000	0,159		2256,760	37,66641	0,027	11,74577
	7,500	2,159		6,500	0,159		2231,460	38,09346	0,027	11,87894
	8,000	2,159		7,000	0,159		2206,160	38,53032	0,027	12,01516
	8,500	2,159		7,500	0,159		2180,860	38,9773	0,027	12,15455
	9,000	2,159		8,000	0,159		2155,560	39,43478	0,027	12,29721
	9,500	2,159		8,500	0,159		2130,260	39,90313	0,027	12,44326
	10,000	2,159		9,000	0,159		2104,960	40,38274	0,027	12,59282
	10,500	2,159		9,500	0,159		2079,660	40,87401	0,027	12,74601
	11,000	2,159		10,000	0,159		2054,360	41,37738	0,027	12,90298

Tabela 6: Tabela de cisalhamento com sal com carga de 8,668Kgf.

Figura 21. Gráfico de cisalhamento com sal com carga de 8,668kgf.

Nos ensaios de carga 9,896kgf com sal, a variação do diâmetro do anel (Lanel) máxima obtida foi de 2,169mm como mostram a tabela 7 e a figura 22. Assim, tendo uma tensão cisalhante variando de 11kPa à 13,8kPa, aproximadamente.

tempo	L _h	L _{anel}	L _v	Δh	ΔL_{anel}	Δv	А	σ	F _h	τ
(s)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm ²)	(kPa)	(kN)	(kPa)
	1,000	2,000		0,000	0,000		2560,360	37,9035	0,000	0
	1,500	2,129		0,500	0,129		2535,060	38,28178	0,022	8,483422
	2,000	2,153		1,000	0,153		2509,760	38,66768	0,026	10,16316
	2,500	2,165		1,500	0,165		2484,460	39,06145	0,028	11,07188
	3,000	2,168		2,000	0,168		2459,160	39,46332	0,028	11,38917
	3,500	2,169		2,500	0,169		2433,860	39,87354	0,028	11,57606
	4,000	2,168		3,000	0,168		2408,560	40,29238	0,028	11,62844
	4,500	2,168		3,500	0,168		2383,260	40,72011	0,028	11,75188
	5,000	2,168		4,000	0,168		2357,960	41,15702	0,028	11,87798
	5,500	2,168		4,500	0,168		2332,660	41,60341	0,028	12,0068
	6,000	2,168		5,000	0,168		2307,360	42,05959	0,028	12,13846
	6,500	2,168		5,500	0,168		2282,060	42,52588	0,028	12,27303
	7,000	2,168		6,000	0,168		2256,760	43,00263	0,028	12,41062
	7,500	2,168		6,500	0,168		2231,460	43,49019	0,028	12,55133
	8,000	2,168		7,000	0,168		2206,160	43,98893	0,028	12,69527
	8,500	2,168		7,500	0,168		2180,860	44,49924	0,028	12,84254
	9,000	2,168		8,000	0,168		2155,560	45,02153	0,028	12,99328
	9,500	2,168		8,500	0,168		2130,260	45,55623	0,028	13,14759
	10,000	2,168		9,000	0,168		2104,960	46,10378	0,028	13,30562
	10,500	2,168		9,500	0,168		2079,660	46,66465	0,028	13,46749
	11,000	2,168		10,000	0,168		2054,360	47,23934	0,028	13,63334

Tabela 7: Tabela de cisalhamento com sal com carga de 9,896Kgf.

Figura 22. Gráfico de cisalhamento com sal com carga de 9,896kgf.

No último ensaio de carga 12,234kgf com sal, a variação do diâmetro do anel (Lanel) máxima obtida foi de 2,175mm como mostram a tabela 8 e a figura 23. Assim, tendo uma tensão cisalhante variando de 12kPa à 14kPa, aproximadamente.

tempo	L _h	L _{anel}	L _v	Δh	ΔL_{anel}	Δv	А	σ	F _h	τ
(s)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm ²)	(kPa)	(kN)	(kPa)
	1,000	2,000		0,000	0,000		2560,360	46,85847	0,000	0
	1,500	2,070		0,500	0,070		2535,060	47,32612	0,012	4,603407
	2,000	2,128		1,000	0,128		2509,760	47,8032	0,021	8,502514
	2,500	2,158		1,500	0,158		2484,460	48,28999	0,026	10,60217
	3,000	2,175		2,000	0,175		2459,160	48,7868	0,029	11,86372
	3,500	2,175		2,500	0,175		2433,860	49,29394	0,029	11,98704
	4,000	2,175		3,000	0,175		2408,560	49,81174	0,029	12,11296
	4,500	2,175		3,500	0,175		2383,260	50,34052	0,029	12,24154
	5,000	2,175		4,000	0,175		2357,960	50,88066	0,029	12,37289
	5,500	2,175		4,500	0,175		2332,660	51,43251	0,029	12,50709
	6,000	2,175		5,000	0,175		2307,360	51,99646	0,029	12,64423
	6,500	2,175		5,500	0,175		2282,060	52,57292	0,029	12,78441
	7,000	2,175		6,000	0,175		2256,760	53,1623	0,029	12,92773
	7,500	2,175		6,500	0,175		2231,460	53,76505	0,029	13,0743
	8,000	2,175		7,000	0,175		2206,160	54,38162	0,029	13,22424
	8,500	2,175		7,500	0,175		2180,860	55,0125	0,029	13,37765
	9,000	2,175		8,000	0,175		2155,560	55,65818	0,029	13,53467
	9,500	2,175		8,500	0,175		2130,260	56,31921	0,029	13,69541
	10,000	2,175		9,000	0,175		2104,960	56,99612	0,029	13,86002
	10,500	2,175		9,500	0,175		2079,660	57,68951	0,029	14,02863
	11,000	2,175		10,000	0,175		2054,360	58,39997	0,029	14,2014

Tabela 8: Tabela de cisalhamento com sal com carga de 12,234Kgf.

Figura 23. Gráfico de cisalhamento com sal com carga de 12,234kgf

Em todos os ensaios realizados com a presença de sal nas amostras, após a retirarada do anel superior da caixa, os sedimentos mantiveram-se significativamente estáveis (Figura 24), não ocorrendo o colpaso observado nas amostras sem sal, observado na figura 18.

Figura 24. Amostra após a realização do ensaio com a presença de sal.

A partir dos quatro ensaios realizados com a presença de sal foi obtido a envoltória do cisalhamento tendo assim, o ângulo de atrito (ϕ) e a coesão (c) com valor de 0,920315kPa e ϕ com o ângulo de13,9°, respectivamente (Figura 25).

Figura 25. Envoltória de cisalhamento com sal e os parâmetros $c(0,9203) e \phi (13,9^{\circ})$.

6.4 Ensaios de Inclinação

Nos ensaios de inclinação realizados com as amostras sem a presença de sal obtivemos um ângulo de inclinação na ruptura de 27,2° (Figura 26), enquanto nas amostras com sal obtivemos um ângulo na ruptura de 32,54° (Figura 27).

Figura 26. Ensaio de inclinação em amostra sem sal.

Figura 27. Placas de sal formadas devido a sucção osmótica em ensaio com sal.

7 CONCLUSÕES

A partir das análises gráficas e ensaios realizados em laboratório concluímos que, nos testes de evaporação de água dos poros que em todas as amostras com salinidade maior apresentaram uma maior retenção de água em relação com amostras sem a presença de sal ou com baixos teores de sal que apresentaram uma umidade menor. Portanto, a sucção osmótica possui grande efeito em relação ao teor de umidade nas amostras.

Através dos ensaios de cisalhamento direto nos quais obtivemos o ângulo de atrito e coesão das amostras com e sem sal, vemos que a coesão variou muito pouco e o ângulo de atrito muito pouco relativamente. Sendo assim, esse ensaio devido às cargas utilizadas não respondeu bem para que houvesse um aumento significativo. Porém, o ângulo de inclinação na ruptura teve uma variação considerável mas, não podendo ser levado em consideração para uma conclusão do trabalho.

O ensaio de inclinação na ruptura foi o que melhor respondeu tendo uma variação considerável de cinco graus no qual foi obtida a conclusão do presente trabalho.

Sendo assim, os ensaios realizados como o de cisalhamento direto não foi conclusivo, porém o de inclinação foi o que deu a melhor resposta de que o sal possui uma influência no transporte dos sedimentos das dunas.

8 REFERÊNCIAS BIBLIOGRÁFICAS

ABNT - Associação Brasileira de Normas Técnicas. Análise Granulométrica. NBR 7181. 1984.

BAGNOLD, R. A. 1954 – The Physics of Blown Sand and Desert Dunes.

- CASTRO, J. W. A. & AVILA, C. A. Sistema de dunas obliquas do litoral de Cabo Frio -Estado do Rio de Janeiro. In: IV Simposio Nacional de Geomorfologia, 2002, Sao Luiz.
 Boletim de Resumos do IV Simposio Nacional de Geomorfologia. Sao Luiz: Sociedade Brasileira de Geomorfologia, 2002, p. 72-72.
- CASTRO, J.W.A. Dunas da praia do Pero APA Pau Brasil Cabo Frio / RJ: movimentação de sedimentos eólicos e problemas de soterramentos. XLIII CBG, Aracaju. Anais do XLIII CBG. Salvador: UFBA. v. 1. p. 24-25, 2006.
- CASTRO, J. W. A.; SENRA, M.C.E; RAMOS, R.R.C. Coquinas da Paleolaguna da Reserva
 Tauá Pântano da Malhada, Cabo Frio, RJ, um registro do optimum climático
 holocênico. SIGEP Comissão brasileira de sítios geológicos e paleontológicos, 2007.
- FREDLUND, D. G. & RAHARDJO, H. 1993 Soil Mechanics for Unsaturated Soils. Jonh Wiley & Sons, Inc. E.U.A. 544p.
- HAGEN, L.J. 2001 Assessment of Wind Parameters Using Wind Tunnels. In: D. E. Stott,R. H. Mohtar and G. C. Steinhardt (eds.) *Sustaining the Global Farm*. pp. 742-746.
- PINTO, C.S. 2000. Curso Básico de Mecânica dos Solos em 16 Aulas. São Paulo, Oficina de Texto. 247 p.
- SCHMITT, R.S. 2001. A Orogenia Búzios um evento tectono-metamórfico cambroordoviciano caracterizado no Domínio Tectônico de Cabo Frio, Faixa Ribeira,

sudeste do Brasil. Instituto de Geociências da Universidade Federal do Rio de Janeiro, Rio de Janeiro. 273 p. Tese de doutoramento.

- SHAO, Y. 2000 Physics and Modelling of Wind Erosion.
- VARGAS, M. 1977. Introdução à Mecanica dos Solos. São Paulo, Ed. Da Universidade de São Paulo.
- VILAR, O.M. Ensaios de Campo em Solos não Saturados. Anais do III Simpósio Brasileiro de Solos Não Saturados. Rio de Janeiro: Editora Freitas Bastos, v. 2, p. 491, 1997.