

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO IGEO - DEPARTAMENTO DE GEOLOGIA

EFEITOS DA AÇÃO FÍSICA DE CONGELAMENTO CÍCLICO EM ROCHAS SILICÁTICAS DE BAIXA POROSIDADE

Vitor Gorne Silva

Rio de Janeiro

Fevereiro de 2012

EFEITOS DA AÇÃO FÍSICA DE CONGELAMENTO CÍCLICO EM ROCHAS SILICÁTICAS DE BAIXA POROSIDADE

Vitor Gorne Silva

Trabalho de conclusão do curso de Graduação em Geologia apresentado ao Departamento de Geologia da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Geólogo.

Orientador: Emílio Velloso Barroso

Rio de Janeiro

Fevereiro de 2012

SILVA, V. G.

Efeitos da ação física de congelamento cíclico em rochas silicáticas de baixa porosidade. Vitor Gorne Silva - Rio de Janeiro: UFRJ/ IGEO — Departamento de Geologia, 2012.

XI, 43 p.

Trabalho de Conclusão de Curso – Universidade Federal do Rio de Janeiro, Instituto de Geociências, Departamento de Geologia, 2012.

Orientador: Emílio Velloso Barroso

1. Caracterização Tecnológica 2. Congelamento e Degelo 3. Resistência à Compressão Uniaxial I. BARROSO, E. V. II. IGeo/UFRJ. III. Efeitos da ação física de congelamento cíclico em rochas silicáticas de baixa porosidade.

EFEITOS DA AÇÃO FÍSICA DE CONGELAMENTO CÍCLICO EM ROCHAS SILICÁTICAS DE BAIXA POROSIDADE

Vitor Gorne Silva

Trabalho de conclusão do curso de Graduação em Geologia apresentado ao Departamento de Geologia da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Geólogo.

Orientador: Emílio Velloso Barroso

Examina	do por:							
	Professor Doutor Emílio Velloso Barroso – UFRJ (orientador)							
-	Professor Doutor Gerson Cardoso da Silva Júnior – UFRJ							
	Professor Doutor Fábio André Perosi - UFRJ							

Rio de Janeiro

Fevereiro de 2012

AGRADECIMENTOS

Ao Professor Emílio pelo conhecimento e orientação passados durante o decorrer deste trabalho.

Ao auxílio financeiro do projeto, realizado pelo SEBRAE/RJ, e da Bolsa PIBIC, oferecida durante o decorrer do mesmo.

Aos amigos do Laboratório de Mecânica e Tecnologia de Rochas, que me auxiliaram e compartilharam seus conhecimentos durante a realização do projeto.

Aos meus familiares e amigos mais próximos, por todo carinho e apoio durante os anos de aprendizado na graduação.

Aos amigos de graduação e do Laboratório de Petrofísica Básica, do Cenpes, que sempre estiveram ao meu lado, vivenciando diversas situações, tanto em trabalhos desenvolvidos quanto em atividades de puro lazer, e pelo incentivo dado para a realização deste trabalho.

Aos professores do Departamento de Geologia pelos conhecimentos transmitidos e pela amizade.

RESUMO

SILVA, V. G. Efeitos da ação física de congelamento cíclico em rochas silicáticas de baixa porosidade. Rio de Janeiro, 2012. XI, 43 p.Trabalho de Conclusão de Curso. Instituto de Geociências — Departamento de Geologia. Universidade Federal do Rio de Janeiro, Rio de Janeiro.

O presente trabalho busca por meio da caracterização tecnológica de rochas, avaliar se os efeitos da ação física de congelamento cíclico nos poros das rochas influenciam de forma negativa a sua resistência mecânica.

Para tal, foram estudados diversos tipos comerciais de rochas silicáticas produzidas na região noroeste do estado do Rio de Janeiro, nos quais foram efetuados alguns ensaios tecnológicos. O ensaio de resistência à compressão uniaxial associado ao congelamento e degelo destaca-se por ser um ensaio muito solicitado para as rochas exportadas a regiões de clima temperado.

Os resultados obtidos atestam rochas de boa qualidade e sanidade, podendo ter seu uso indicado como rochas de revestimento interno ou externo. O ensaio de congelamento e degelo propiciou dados que não demonstraram clareza sobre a influência do congelamento cíclico nos poros à resistência mecânica destas rochas.

Dessa forma verifica-se que a quantidade de ciclos propostos pelo órgão normatizador brasileiro (ABNT) não é suficiente para influenciar diretamente a resistência destas.

ABSTRACT

SILVA, V. G. Effects of physical action of cyclical freezing in silicatical rocks of low porosity. Rio de Janeiro, 2011. XI, 43 p. Trabalho de Conclusão de Curso. Instituto de Geociências – Departamento de Geologia. Universidade Federal do Rio de Janeiro, Rio de Janeiro.

This present study looks through by technological characterization of rocks, to assess whether the effects of physical action of cyclical freezing in the pores of the rocks affects negatively their mechanical strength.

For this purpose, were studied a number of commercial types of silicatical rocks produced in the Northwest of the state of Rio de Janeiro, in which were carried out some technological tests. The test of uniaxial compressive strength associated with freezing and thawing stands out because it is a great demand for exported rocks in temperate regions.

The results obtained qualify rocks with good quality and sanity, and may have its indicated use as rocks internal coating or external. The freezing and thawing test provided data that showed no clarity about the influence of cyclical freezing in the pores of the mechanical strength of these rocks.

Therefore, it was found that the number of cycles proposed by responsible agency of standard tests (ABNT) is not enough to directly influence the resistance of these rocks.

LISTA DE FIGURAS

Pigura 1: Ilustração da ZCPS controlando o curso do rio Paraíba do Sul. (Extraído de Dayan & Valença, 2008)
Figura 2: O município de Santo Antônio de Pádua, em vermelho, sobre a ZCPS. Em roxo, as pedreiras do litotipo Pedra-Madeira; em verde, as pedreiras do litotipo Olho-de-Pombo; em azul, as siglas de cada cidade: SAP (Santo Antônio de Pádua), I (Itaocara), P (Pirapetininga) e AP (Além Paraíba) (Extraído de Dayan & Valença, 2008)
Figura 3: Figura ilustrativa dos quatro litotipos principais amostrados
Figura 4: Fotografia ilustrativa das amostras preparadas para o cálculo dos índices físicos
Figura 5: Fotografia ilustrativa do ensaio de resistência à compressão uniaxial 9
Figura 6: Gráfico mostrando o ponto de ruptura do corpo de prova PMV-2-A (inflexão da curva).
Figura 7: Corpos de prova de imersos sob condição de congelamento
Figura 8: Amostra do litotipo Granito-Fino.
Figura 9: Amostra do litotipo Olho-de-Pombo
Figura 10: Amostra do litotipo Pinta-Rosa
Figura 11: Amostra do litotipo Pedra-Madeira
Figura 12: Amostra do litotipo Pedra-Madeira-Branca
Figura 13: Amostra do litotipo Pedra-Madeira-Rosa
Figura 14: Amostra do litotipo Pedra-Madeira-Verde
Figura 15: Amostra do litotipo Pedra-Carijó-Cinza
Figura 16: Observam-se as fitas de quartzo e minerais de biotita e hornblenda, sob nicóis cruzados
Figura 17: Observam-se as fitas de quartzo marcando a foliação. Visada feita com nicóis cruzados
Figura 18: Observam-se as fitas de quartzo e os porfiroclastos de microclina, sob nicóis cruzados
Figura 19: Fitas de quartzo marcando foliação milonítica do litotipo Pedra-Madeira, sob nicóis cruzados

Figura 20: Visualização do litotipo Pedra-Madeira-Branca sob nicóis cruzados. Destaque para os porfiroclastos de granada (tom amarronzado)
Figura 21: Destaque para as fitas de quartzo marcando forte foliação milonítica no litotipo Pedra-Madeira-Rosa. Visada realizada sob nicóis cruzados
Figura 22: Presença de forte foliação milonítica evidenciada no litotipo Pedra-Madeira-Rosa. Visada obtida com nicóis descruzados
Figura 23: Visualização sob nicóis cruzados do litotipo Pedra-Madeira-Verde. Destaque para a grande quantidade de epidotos
Figura 24: Visualização em microscópio do litotipo Pedra-Carijó-Cinza, sob nicóis cruzados
Figura 25: Relação entre os valores de resistência à compressão uniaxial ao estado "após ciclagem" e ao estado natural
Figura 26: Relação entre o coeficiente de enfraquecimento e absorção entre os litotipos.
Figura 27: Relação entre o coeficiente de enfraquecimento e porosidade entre os litotipos

LISTA DE TABELAS

Tabela 1: Dados de localização e litologia das amostras	5
Tabela 2: Valores médios de absorção, porosidade e massa específica aparente (MEA)	
Tabela 3: Tabela contendo os valores obtidos de resistência à compressão uniaxial (valores médios, desvio padrão e coeficiente de variação).	
Tabela 4: Valores de resistência à compressão simples no estado "após ciclagem"	28
Tabela 5: Valores médios de resistência nos dois estados considerados, coeficiente de variação e o coeficiente de enfraquecimento para cada litotipo	
Tabela 6: Resultados para o litotipo Granito-Fino (GF-1).	35
Tabela 7: Resultados para o litotipo Granito-Fino (GF-2).	35
Tabela 8: Resultados para o litotipo Olho-de-Pombo (OP-1).	36
Tabela 9: Resultados para o litotipo Olho-de Pombo (OP-2)	36
Tabela 10: Resultados para o litotipo Olho-de-Pombo (OP-3)	37
Tabela 11: Resultados para o litotipo Pedra-Carijó-Cinza (PCC)	37
Tabela 12: Resultados para os litotipo Pedra-Madeira (PM-1)	38
Tabela 13: Resultados para o litotipo Pedra-Madeira (PM-2)	38
Tabela 14: Resultados para o litotipo Pedra-Madeira-Branca (PMB-1)	39
Tabela 15: Resultados para o litotipo Pedra-Madeira-Branca (PMB-2)	39
Tabela 16: Resultados para o litotipo Pedra-Madeira-Rosa (PMR-1)	40
Tabela 17: Resultados para o litotipo Pedra-Madeira-Rosa (PMR-2)	40
Tabela 18: Resultados para o litotipo Pedra-Madeira-Verde (PMV-1)	41
Tabela 19: Resultados para o litotipo Pedra-Madeira-Verde (PMV-2)	41
Tabela 20: Resultados para o litotipo Pinta-Rosa (PR-1)	42
Tabela 21: Resultados para o litotipo Pinta-Rosa (PR-2)	42
Tabela 22: Resultados para o litotipo Pinta-Rosa (PR-3)	43

SUMÁRIO

1.	INTR	ODUÇÃO	1
2.	GEOL	OGIA REGIONAL	3
3.	MATI	ERIAIS E MÉTODOS	5
•	3.1. N	MATERIAIS	5
•	3.2. N	MÉTODOS	7
	3.2.1.	Análise Petrográfica	7
	3.2.2.	Porosidade Aparente, Massa Específica Aparente e Absorção Aparente .	7
	3.2.3.	Resistência à Compressão Uniaxial	9
	3.2.4. Comp	Congelamento e Degelo associado à verificação da Resistência à ressão Uniaxial	10
4.	RESU	ILTADOS	12
4	4.1. <i>A</i>	Análise Petrográfica	12
	4.1.1.	Descrição macroscópica	12
	4.1.2.	Descrição Microscópica	17
4	4.2. I	Porosidade Aparente, Massa Específica Aparente e Absorção Aparente	25
4	4.3. I	Resistência à Compressão Uniaxial	26
		Congelamento e Degelo associado à verificação da Resistência à Compress	
5.	CONC	CLUSÃO	33
6.	REFE	RÊNCIAS BIBLIOGRÁFICAS	34
7.	ANEX	KOS	35

1. INTRODUÇÃO

As rochas ornamentais têm sido muito empregadas na construção civil como elemento decorativo. Os motivos de emprego são principalmente a estética final que o produto confere em fachadas e pisos, e a durabilidade que possuem quando aplicadas de maneira correta. No entanto, este último motivo é dependente do conhecimento de suas características e propriedades tecnológicas.

Os ensaios tecnológicos são de grande importância para a previsão do comportamento das rochas no local da obra. A partir deles são verificadas importantes características físicas e mecânicas que permitem uma avaliação inicial e podem propor especificamente sua melhor forma de uso.

Devido à grande variação de uso de rochas na construção civil, tanto em ambientes internos como externos, onde são aplicadas em pisos, fachadas verticais, tampos de mesa, pias e outras ocasiões, tem-se a necessidade do conhecimento prévio das propriedades tecnológicas destas.

As características físicas são conhecidas através do cálculo de porosidade, massa específica e absorção. As mecânicas são referentes às resistências que a rocha possui quando submetida a cargas externas. Em conjunto estas características atestam a qualidade da rocha, importante fator no mercado de rochas ornamentais. Baixas alterabilidades, capacidade de absorção, dilatação térmica e altas resistências à flexão e desgaste, são algumas destas propriedades.

O uso da caracterização tecnológica, especialmente da resistência à compressão simples de rochas, é amplamente difundido por vários órgãos normatizadores como a ABNT (Associação Brasileira de Normas Técnicas), ASTM (American Society for Tests and Materials) e CEN (Comitê Europeu de Normalização), tanto para a utilização em forma de placas quanto de agregados (britas), que são empregados na construção civil.

Mesmo tratando-se de um ensaio relativamente dispendioso, devido à obtenção de amostras para a sua realização, no qual há a necessidade de sondagens com brocas diamantadas, e sua posterior preparação laboratorial, com serras e tornos diamantados, a determinação da resistência à compressão simples é necessária, pois permite avaliar a reação de rochas impostas a diversas formas de carregamentos e assim auxiliam a identificar o seu melhor modo de aplicação.

Verifica-se que o alto grau de alteração, a presença de microdescontinuidades e valores de porosidade alta, resultam em baixos valores de resistência mecânica das rochas. Daí a necessidade de associar os resultados do ensaio de compressão simples a outros parâmetros obtidos nos diferentes ensaios para rochas de revestimento.

O ensaio de resistência à compressão uniaxial também é realizado de forma conjugada ao congelamento e degelo. Desse modo é possível verificar se as rochas sujeitas a temperaturas inferiores ao ponto de congelamento da água são susceptíveis a este tipo de alteração, tendo sua resistência mecânica afetada pelo efeito de congelamento cíclico nos poros.

Segundo (Barroso & Barroso, 2003), este mecanismo de alteração física das rochas prende-se ao fato de que a água, fluido que mais comumente ocupa os espaços vazios (poros ou microfissuras) de uma rocha ornamental, sofre um aumento volumétrico de cerca de 9% ao passar do estado líquido para o estado sólido. Este aumento de volume pode induzir o aparecimento de tensões internas na rocha e fazer com que fissuras pré-existentes se propaguem. Sendo assim, pode-se levar a perda da resistência da rocha, influenciando a sua qualidade na forma de uso.

Com isso, o objetivo deste trabalho é verificar para rochas silicáticas de baixas porosidade e absorção, caso mais comum das rochas ornamentais, se este ensaio responde de fato pela eventual queda de resistência associada ao congelamento cíclico de água nos poros.

O ensaio de congelamento e degelo é muito requisitado para rochas exportadas a regiões de climas temperados, onde a variação de temperatura influencia de forma direta a alteração física de rochas. Para tal, foram estudados alguns tipos comerciais de rochas produzidos na região noroeste do estado do Rio de Janeiro (município de Santo Antônio de Pádua e regiões adjacentes).

Os materiais encontrados na região são conhecidos comercialmente como Olho-de-Pombo, Pinta-Rosa, Granito-Fino e Pedra-Madeira. São comercializados na forma de revestimento (lajotas e lajinhas), blocos, paralelepípedos, pedra almofadada. (Silva & Margueron, 2002). A produção destina-se ao abastecimento do mercado interno brasileiro, atingindo estados do Sudeste, Sul e Centro-Oeste, além do mercado externo, para Estados Unidos, Uruguai e países da Europa, com uso em revestimentos interiores e exteriores.

2. GEOLOGIA REGIONAL

O município de Santo Antônio de Pádua e regiões adjacentes, estão localizados sobre a Zona de Cisalhamento do Rio Paraíba do Sul (ZCPS) (Dayan & Corrêa Neto, 2000 *apud* Dayan & Valença, 2008) (Figura 1).

A ZCPS é uma zona de falha formada num regime transcorrente-dextral, relacionada à evolução tectônica da Faixa Ribeira, durante a orogenia Brasiliana (Machado, 1998 *apud* Dayan & Valença, 2008), que corta rochas de alto grau metamórfico e controla o curso do rio Paraíba do Sul por aproximadamente 120 km (Figura 2).

A ocorrência de rochas miloníticas e uma forte lineação de estiramento nestas zonas de maior deformação foram descritas por Tupinambá *et al.* (2007).

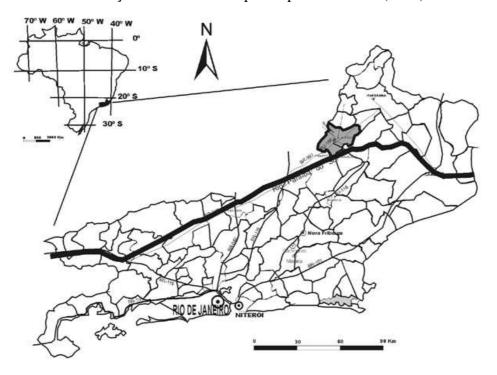


Figura 1: Ilustração da ZCPS controlando o curso do rio Paraíba do Sul. (Extraído de Dayan & Valença, 2008)

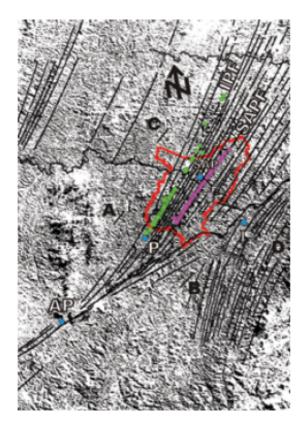


Figura 2: O município de Santo Antônio de Pádua, em vermelho, sobre a ZCPS. Em roxo, as pedreiras do litotipo Pedra-Madeira; em verde, as pedreiras do litotipo Olho-de-Pombo; em azul, as siglas de cada cidade: SAP (Santo Antônio de Pádua), I (Itaocara), P (Pirapetininga) e AP (Além Paraíba) (Extraído de Dayan & Valença, 2008)

Segundo (Brandalise et al. 1976 *apud* Baptista Filho & Tanaka, 2002) os principais litotipos encontrados nesta região, pertencem a um complexo denominado Associação Paraíba do Sul, e correspondem a gnaisses milonitizados com uma ampla variação mineralógica e textural, quartzitos, rochas calcáreas, xistos e anfibolitos.

3. MATERIAIS E MÉTODOS

3.1. MATERIAIS

Para a realização dos ensaios laboratoriais foram recolhidas amostras de algumas pedreiras produtoras da região. Primeiramente foi feito um levantamento das pedreiras e logo após, foram selecionadas 19 delas para a amostragem. Abaixo segue uma tabela (Tabela 1) representando as frentes produtoras, localização e litologia amostrada.

Tabela 1: Dados de localização e litologia das amostras.

Amostra	Pedreira	Ponto	X	Υ	Município	Folha (1:50.000)	Litologia
	MAP'S				Santo Antônio de	Santo Antônio de	Bt-Hbl Gnaisse milonítico
GF-1	PEDRAS	PD-039	786187	7616460	Pádua	Pádua	equigranular
							Bt-Hbl Gnaisse milonítico
GF-2	Mopel	IG-019	194420	7690300	Porciuncula	Varre-Sai	equigranular
							Bt-Hbl Gnaisse milonítico
GF-3	F.J. Almeida	IG-023	797835	7645979	Laje do Muriae	Miracema	equigranular
					Santo Antônio de		Bt-Hbl Gnaisse milonítico
OP-1	São Rafael	PD-001	776153	7606080	Pádua	Recreio	inequigranular
	João Luis				Santo Antônio de	Santo Antônio de	Bt-Hbl Gnaisse milonítico
OP-2	Nacif	PD-042	788985	7619320	Pádua	Pádua	inequigranular
							Bt-Hbl Gnaisse milonítico
OP-3		IG-043	805305	7638922	Miracema	Miracema	inequigranular
	Farrama				Santo Antônio de	Santo Antônio de	Bt-Hbl Gnaisse milonítico
PR-1	Pedras	PD-043	787118	7617461	Pádua	Pádua	inequigranular
					Santo Antônio de		Bt-Hbl Gnaisse milonítico
PR-2		PD-250	791543	7621956	Pádua	Miracema	inequigranular
					Santo Antônio de		Bt-Hbl Gnaisse milonítico
PR-3		PD-613	777880	7607765	Pádua	Recreio	inequigranular
					Santo Antônio de	Santo Antônio de	Gnaisse hololeucocrático milonítico
PMV-1		PD-167	790385	7611871	Pádua	Pádua	de cor verde
						São João do	Gnaisse hololeucocrático milonítico
PMV-2		PD-255	787147	7608943	São José de Ubá	Paraíso	de cor verde
					Santo Antônio de	Santo Antônio de	Gnaisse hololeucocrático milonítico
PMR-1		PD-003	788221	7609887	Pádua	Pádua	de cor rosa
					Santo Antônio de	Santo Antônio de	Gnaisse hololeucocrático milonítico
PMR-2		PD-167	790385	7611871	Pádua	Pádua	de cor rosa
PMB-1					São João do	São João do	Grt-Gnaisse hololeucocrático
(=PC)		PD-007	207905	7635113		Paraíso	milonítico
PMB-2					Santo Antônio de	Santo Antônio de	Grt-Gnaisse hololeucocrático
(=PC)	Denise	PD-004	792292	7617330	Pádua	Pádua	milonítico
					Santo Antônio de		
PMB-3	Denise	PD-004	792292	7617330	Pádua	Pádua	Grt-Bt-Sil Gnaisse milonítico
						São João do	Gnaisse hololeucocrático milonítico
PM-1		IG-048	193038	7639257	São José de Ubá	Paraíso	de cor branca
					Santo Antônio de		Gnaisse hololeucocrático milonítico
PM-2	Monte Café	PD-493	788560	7603789	Pádua	Pádua	de cor branca
							Gnaisse hololeucocrático milonítico
PM-3	NE SJ Uba	IG-025	194972	7639923			de cor branca'

Houve a amostragem de blocos cúbicos, com arestas de trinta centímetros para a realização dos ensaios laboratoriais. A partir dos blocos, já em laboratório, foram retirados corpos de prova de formato cilíndrico, na proporção altura-diâmetro de 1:1, seguindo recomendações da ABNT (1992).

Na etapa de amostragem foram recolhidos quatro litotipos principais: Granito-Fino (GF), Pedra-Madeira (PM), Olho-de-Pombo (OP) e Pinta-Rosa (PR) (Figura 3) e as demais variações destes, o Pedra-Madeira-Branca (PMB), Pedra-Madeira-Verde (PMV), Pedra-Madeira-Rosa (PMR) e Pedra-Carijó-Cinza (PCC).

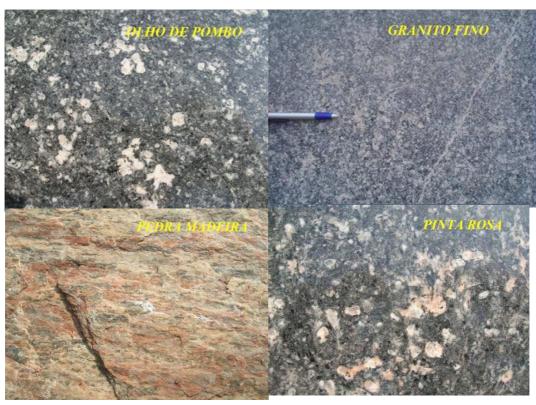


Figura 3: Figura ilustrativa dos quatro litotipos principais amostrados.

3.2. MÉTODOS

Para a obtenção dos dados laboratoriais foram realizados os seguintes ensaios tecnológicos no Laboratório de Mecânica e Tecnologia de Rochas do Departamento de Geologia da UFRJ: análise petrográfica, ensaio de resistência à compressão uniaxial, resistência à compressão uniaxial associada ao congelamento e degelo, cálculo dos índices físicos (absorção aparente, massa específica aparente e porosidade aparente). Estes ensaios seguiram as normas estipuladas pela ABNT e a forma de realização destes será detalhada a seguir.

3.2.1. Análise Petrográfica

A análise petrográfica seguiu os padrões estipulados pela norma NBR12768 (ABNT, 1992) e foi dividida em duas descrições representativas para cada amostra, descrição macroscópica e descrição microscópica.

A descrição macroscópica foi realizada a olho nu, auxiliada pelo uso de lupa de 10 aumentos, em amostras de mão.

A descrição microscópica foi feita com uso de microscópio óptico de luz transmitida, em seções delgadas (lâminas).

3.2.2. Porosidade Aparente, Massa Específica Aparente e Absorção Aparente

A realização dos ensaios de determinação da massa específica aparente, porosidade aparente e absorção d'água aparente seguiram os padrões estipulados pela norma NBR 12766 (ABNT, 1992).

Para a realização dos ensaios determinadores dos índices físicos foram preparadas manualmente 10 amostras de cada litotipo, pesando em torno de 250 gramas (Figura 4).

Figura 4: Fotografia ilustrativa das amostras preparadas para o cálculo dos índices físicos.

As amostras foram colocadas numa estufa a seco, a uma temperatura de 100°C±5 durante um período de 24 horas e posteriormente pesadas a seco para a obtenção da massa seca. Depois, as amostras foram submersas em água destilada durante um período de 24 horas e assim foram obtidas a massa saturada e massa submersa. Os cálculos de porosidade, massa específica e absorção, foram realizados utilizando-se das fórmulas abaixo:

$$\rho a_{(seca)} = \frac{A}{(B-C)} \quad Kg/m^3 \quad (Massa Específica Aparente Seca)$$

$$\rho a_{(sat)} = \frac{B}{(B-C)} \quad Kg/m^3 \quad (Massa Específica Aparente Saturada)$$

$$\eta a = \left(\frac{(B-A)}{(B-C)}\right) x 100 \quad (Porosidade Aparente)$$

$$\alpha a = \left(\frac{(B-A)}{A}\right) x 100 \quad (Absorção Aparente)$$

Onde A corresponde ao peso seco, B corresponde ao peso saturado e C ao peso submerso.

3.2.3. Resistência à Compressão Uniaxial

Este ensaio seguiu os padrões estipulados pela norma NBR 12767 (ABNT, 1992). Para a realização deste ensaio foram preparadas as amostras em formato cilíndrico, com relação altura-diâmetro de razão 1:1. O corpo de prova é assentado sobre a prensa (Figura 5) e assim inicia-se o ensaio. Durante o decorrer do ensaio, o corpo de prova é submetido a uma carga, de modo contínuo e progressivo, sobre uma taxa constante de 0,6 MPa/s, até o momento do rompimento. Deve-se registrar a força de ruptura máxima do ensaio. Ressalta-se também que a carga é aplicada perpendicularmente à foliação destes corpos de prova.

Figura 5: Fotografia ilustrativa do ensaio de resistência à compressão uniaxial.

Os dados são registrados de forma computadorizada e com eles é possível elaborar gráficos mostrando a variação da carga aplicada em função do tempo, auxiliando assim, a identificação do ponto de máxima resistência à compressão (Figura 6).

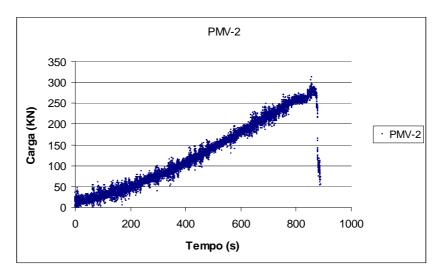


Figura 6: Gráfico mostrando o ponto de ruptura do corpo de prova PMV-2-A (inflexão da curva).

3.2.4. Congelamento e Degelo associado à verificação da Resistência à Compressão Uniaxial

A realização deste ensaio seguiu os padrões estipulados pela norma NBR 12769 (ABNT, 1992). Foram utilizados corpos de prova de relação altura-diâmetro de razão 1. As amostras são submetidas a 25 ciclos de congelamento e degelo (Figura 7). Estes ciclos correspondem a saturação em uma solução aquosa com 5%, em volume, de álcool etílico durante um período de 24 horas. Após, é realizado o congelamento em um "freezer" durante 24 horas e o degelo ocorreu à temperatura ambiente.

Figura 7: Corpos de prova de imersos sob condição de congelamento.

Por final, realizou-se o ensaio de resistência a compressão uniaxial (NBR 12767) nos corpos de prova no estado natural (sem o efeito cíclico do congelamento) e nos

estados "após ciclagem". Sendo assim, obtém-se o coeficiente de enfraquecimento (K), que corresponde à relação:

$$K = \frac{RCS(cd)}{RCS(nat)}$$

Onde RCS (cd) corresponde a média dos valores de resistência após ciclagem e RCS (nat) corresponde a média dos valores de resistência ao estado natural.

Foram executados os ensaios de compressão em 5 corpos de prova para o estado "após ciclagem" e em 3 corpos de prova para o estado natural.

4. RESULTADOS

Com os dados obtidos após a realização das análises petrográficas e dos ensaios tecnológicos, foram gerados Tabelas com os valores médios, desvio padrão e coeficiente de variação, além de gráficos para que pudesse ser feita a comparação entre os diferentes litotipos analisados.

4.1. Análise Petrográfica

4.1.1. Descrição macroscópica

A partir das amostras coletadas em campo foi realizada uma descrição macroscópica das rochas, no qual, foram descritas 18 amostras representativas de 8 litotipos presentes na região: Granito-Fino, Olho-de-Pombo, Pinta-Rosa, Pedra-Madeira, Pedra-Madeira-Branca, Pedra-Madeira-Verde, Pedra-Madeira-Rosa e Pedra-Carijó-Cinza.

A seguir são apresentadas as descrições macroscópicas realizadas a olho nu e com auxílio de uma lupa.

- **Granito-Fino**: rocha de coloração acinzentada, de textura equigranular, de granulometria fina e com foliação milonítica, composta por quartzo, feldspato e minerais máficos (Figura 8).

Figura 8: Amostra do litotipo Granito-Fino.

- Olho-de-Pombo: rocha de coloração acinzentada, textutra inequigranular porfirítica (porfiroclastos de feldspato), apresentando foliação milonítica e composta por quartzo, feldspato, biotita e hornblenda (Figura 9).

Figura 9: Amostra do litotipo Olho-de-Pombo.

- **Pinta-Rosa**: rocha de coloração acinzentada, de textura inequigranular porfirítica (porfiroclastos de feldspato rosa), com foliação milonítica e composta por quartzo, feldspato e minerais máficos (Figura 10).

Figura 10: Amostra do litotipo Pinta-Rosa.

- **Pedra-Madeira**: rocha de coloração amarelada, de granulometria fina, coloração branca, com foliação milonítica e composta por quartzo, feldspato potássico, plagioclásio e minerais máficos (Figura 11).

Figura 11: Amostra do litotipo Pedra-Madeira.

- **Pedra-Madeira-Branca**: rocha de coloração branca, textura inequigranular porfirítica (porfiroclastos de granada), com foliação milonítica e composta por quartzo, feldspato, granada e minerais máficos (Figura 12).

Figura 12: Amostra do litotipo Pedra-Madeira-Branca.

- **Pedra-Madeira-Rosa**: rocha de coloração branca, apresentando foliação milonítica e composta por quartzo, feldspato e minerais máficos (Figura 13).

Figura 13: Amostra do litotipo Pedra-Madeira-Rosa.

- **Pedra-Madeira-Verde**: rocha de coloração esverdeada, apresentando textura inequigranular porfirítica (porfiroclatos de granada), foliação milonítica e composta por quartzo, feldspato, granada, epidoto e minerais máficos (Figura 14).

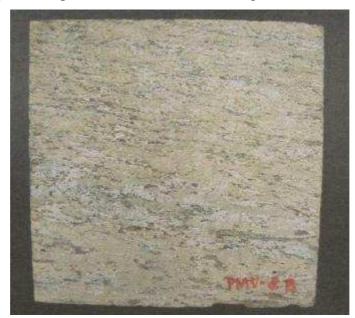


Figura 14: Amostra do litotipo Pedra-Madeira-Verde.

- **Pedra-Carijó-Cinza**: rocha mesocrática apresentando textura inequigranular porfirítica (porfiroclastos de granada), foliação milonítica e composta por quartzo, feldspato, biotita, granada e minerais máficos (Figura 15).

Figura 15: Amostra do litotipo Pedra-Carijó-Cinza.

4.1.2. Descrição Microscópica

A partir das lâminas petrográficas, as amostras foram analisadas pelo seu conteúdo mineralógico, textura, estrutura e grau de alteração. Foram descritas 18 lâminas representativas dos 8 litotipos amostrados, apresentando características distintas.

- Granito Fino: rocha de granulometria fina, com forte foliação milonítica caracterizada pela presença de fitas de quartzo. Mineralogicamente a rocha é composta por quartzo, k-feldspato, plagioclásio, hornblenda, biotita e como acessórios, zircão, apatita, sericita e minerais opacos. Os quartzos apresentam forte extinção ondulante e contato poligonal entre si, o que é indicativo de recristalização com formação de subgrãos. O plagioclásio apresenta na borda alteração para sericita. O zircão apresentase como pequenos cristais hipidiomórficos. A apatita encontra-se inclusa no quartzo e apresenta-se como cristal euédrico (Figura 16).

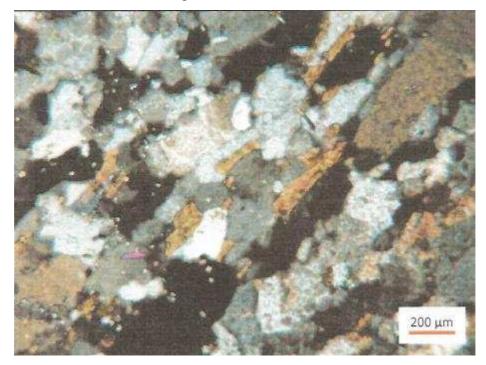


Figura 16: Observam-se as fitas de quartzo e minerais de biotita e hornblenda, sob nicóis cruzados.

- Olho-de-Pombo: rocha de textura inequigranular porfirítica, com porfiroclastos xenomórficos de ortoclásio, apresentando forte foliação milonítica marcada pela presença de fitas de quartzo. Mineralogicamente é composta por quartzo, microclima, ortoclásio, plagioclásio, hornblenda, biotita e como acessórios, zircão, apatita, sericita, titanita e minerais opacos. O quartzo apresenta forte extinção ondulante e contato poligonal entre os grãos, indicativo de processo de recristalização com formação de subgrãos. O plagioclásio apresenta nas bordas alteração para sericita. A apatita ocorre inclusa nos grãos de quartzo e apresenta-se subédrica. Zircão e apatita ocorrem como cristais hipidiomórficos (Figura 17).

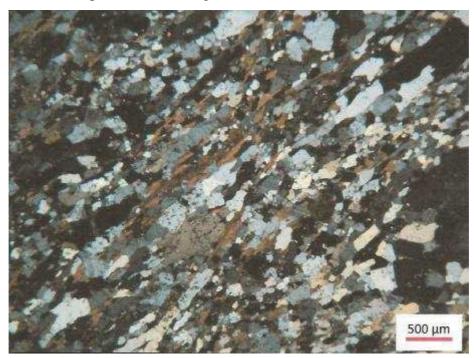


Figura 17: Observam-se as fitas de quartzo marcando a foliação. Visada feita com nicóis cruzados.

- Pinta-Rosa: rocha de textura inequigranular porfirítica, com porfiroclastos xenomórficos de microclima, apresentando forte foliação milonítica marcada pela presença de fitas de quartzo. Mineralogicamente é composta por quartzo, microclima, ortoclásio, plagioclásio, hornblenda, biotita e como acessórios, zircão, apatita, titanita, sericita e minerais opacos. O quartzo apresenta forte extinção ondulante e contato poligonal entre os grãos, indicativo de processo de recristalização com formação de subgrãos. O plagioclásio apresenta nas bordas alteração para sericita. Zircão e titanita ocorrem como cristais hipidiomórficos (Figura 18).

Figura 18: Observam-se as fitas de quartzo e os porfiroclastos de microclina, sob nicóis cruzados.

- **Pedra-Madeira**: rocha de granulometria fina, apresentando forte foliação milonítica indicada pela presença de fitas de quartzo. Mineralogicamente é composta por quartzo, microclima, ortoclásio, plagioclásio, hornblenda, biotita e como acessórios, zircão, apatita e opacos. O quartzo apresenta forte extinção ondulante e contato poligonal entre os grãos, indicativo de processo de recristalização com formação de subgrãos. O plagioclásio apresenta nas bordas alteração para sericita. Opacos apresentam-se como pequenos filetes escuros (Figura 19).

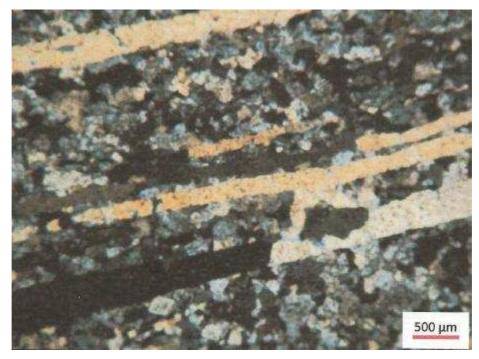


Figura 19: Fitas de quartzo marcando foliação milonítica do litotipo Pedra-Madeira, sob nicóis cruzados.

- Pedra-Madeira-Branca: rocha inequigranular porfirítica com porficlastos de granada, apresentando forte foliação milonítica indicada pela presença de fitas de quartzo. Mineralogicamente é composta por quartzo, microclima, ortoclásio, plagioclásio, hornblenda, biotita e como acessórios, zircão, apatita e opacos. O quartzo apresenta forte extinção ondulante e contato poligonal entre os grãos, indicativo de processo de recristalização com formação de subgrãos. O plagioclásio apresenta nas bordas alteração para sericita (Figura 20).

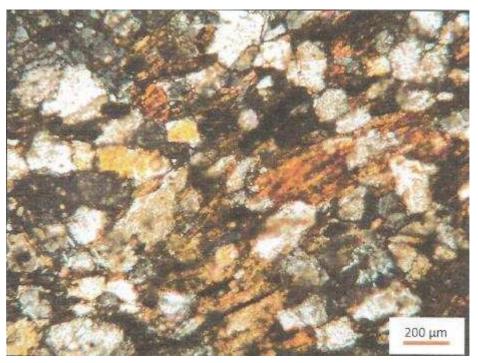


Figura 20: Visualização do litotipo Pedra-Madeira-Branca sob nicóis cruzados. Destaque para os porfiroclastos de granada (tom amarronzado).

- Pedra-Madeira-Rosa: rocha inequigranular porfirítica, com porfiroclastos de microclina, apresentando forte foliação milonítica indicada pela presença de fitas de quartzo. Mineralogicamente é composta por quartzo, microclina, ortoclásio, plagioclásio, hornblenda, biotita e como acessórios zircão apatita e opacos. O quartzo apresenta forte extinção ondulante e contato poligonal entre os grãos, indicativo de processo de recristalização com formação de subgrãos. O plagioclásio apresenta nas bordas alteração para sericita. A apatita encontra-se inclusa no quartzo e apresenta-se como cristal euédrico. Zircão apresenta-se como cristais euédricos e os opacos em forma de filetes escuros (Figuras 21 e 22).

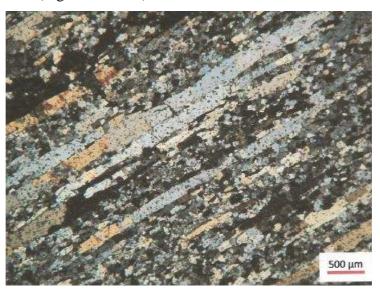


Figura 21: Destaque para as fitas de quartzo marcando forte foliação milonítica no litotipo Pedra-Madeira-Rosa. Visada realizada sob nicóis cruzados.

Figura 22: Presença de forte foliação milonítica evidenciada no litotipo Pedra-Madeira-Rosa. Visada obtida com nicóis descruzados.

- Pedra-Madeira-Verde: rocha inequigranular porfirítica com porfiroclastos de microclina e ortoclásio, apresentando forte foliação milonítica indicada pela presença de fitas de quartzo. Mineralogicamente é composta por quartzo, microclina, ortoclásio, plagioclásio, hornblenda, biotita, sericita, epidoto, zircão, apatita e opacos. O quartzo apresenta forte extinção ondulante e contato poligonal entre os grãos, indicativo de processo de recristalização com formação de subgrãos. Epidoto ocorre incluso em quartzo e feldspato, e também, preenchendo fraturas. O plagioclásio apresenta nas bordas alteração para sericita. A apatita encontra-se inclusa no quartzo e apresenta-se como cristal euédrico. O zircão ocorre como cristal euédrico (Figura 23).

Figura 23: Visualização sob nicóis cruzados do litotipo Pedra-Madeira-Verde. Destaque para a grande quantidade de epidotos.

-Pedra-Carijó-Cinza: rocha inequigranular porfirítica com porfiroclastos de granada, apresentando forte foliação milonítica indicada pela presença de fitas de quartzo. Mineralogicamente é composta por quartzo, plagioclásio, granada, microclina, ortoclásio, biotita, hornblenda e como acessórios, zircão, apatita e opacos. O quartzo apresenta forte extinção ondulante e contato poligonal entre os grãos, indicativo de processo de recristalização com formação de subgrãos. A biotita encontra-se geralmente alterada de forma parcial. A apatita encontra-se inclusa no quartzo e apresenta-se como cristal euédrico. Zircão ocorre como cristal euédrico (Figura 24).

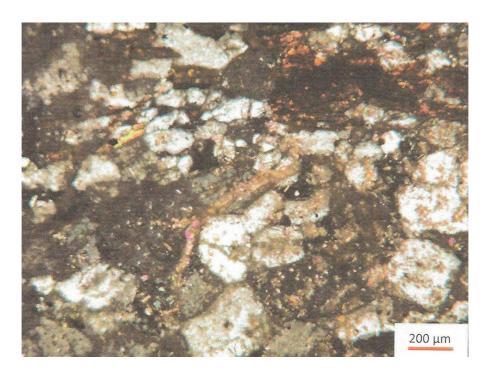


Figura 24: Visualização em microscópio do litotipo Pedra-Carijó-Cinza, sob nicóis cruzados.

4.2. Porosidade Aparente, Massa Específica Aparente e Absorção Aparente

A realização do ensaio de determinação dos índices físicos propiciou a criação de uma tabela (Tabela 2) com os valores de porosidade, massa específica e absorção. Segundo (Frazão e Farjallat,1996) os valores índices para porosidade aparente e absorção aparente são menor ou igual a 1% e 0,4%, respectivamente em granitos. As amostras analisadas que apresentaram valores de porosidade acima de 1%, foram os litotipos GF-1, GF-3, OP-1, PM-1, PCC, PM-1, PM-2, PMB-1, PMB-2, PMV-1 e PMV-2, e valores de absorção maiores que 0,4% foram os litotipos OP-1, PCC, PM-1, PM-2, PMB-1, PMB-2, PMR-1, PMR-2, PMV-1 e PMV-2.

No capítulo 7 (ANEXOS) seguem as tabelas com os resultados de porosidade, massa específica e absorção aparentes para as 10 amostras de cada litotipo analisado.

Tabela 2: Valores médios de absorção, porosidade e massa específica aparente (MEA).

Identificação da Amostra	Absorção (%)	MEA Seca (kg/m³)	MEA Saturada (kg/m³)	Porosidade (%)
GF-1	0,45	2671,50	2683,65	1,21
GF-2	0,38	2668,98	2679,11	1,01
OP-1	0,73	2645,31	2664,62	1,93
OP-2	0,38	2712,89	2723,12	1,02
OP-3	0,41	2701,88	2713,06	1,12
PCC	0,5	2719,07	2732,65	1,36
PM-1	0,73	2552,01	2570,56	1,86
PM-2	0,49	2614,28	2627,13	1,29
PMB-1	0,54	2583,61	2597,58	1,4
PMB-2	0,54	2609,3	2623,41	1,41
PMR-1	0,43	2607,19	2618,43	1,12
PMR-2	0,44	2608,03	2619,5	1,15
PMV-1	0,48	2610,43	2622,9	1,26
PMV-2	0,5	2601,52	2614,47	1,3
PR-1	0,29	2680,49	2688,31	0,78
PR-2	0,44	2655,55	2667,12	1,16
PR-3	0,34	2691,45	2700,7	0,92

4.3. Resistência à Compressão Uniaxial

Os valores encontrados para a resistência à compressão uniaxial estão respresentados na tabela abaixo (Tabela 3). Estes valores foram utilizados para o cálculo do coeficiente de enfraquecimento(K). Para uma melhor análise da dispersão dos dados experimentais, foi calculado o coeficiente de variação, expresso pela razão entre o desvio padrão e a média de cada litotipo.

Segundo (Frazão e Farjallat, 1996) o valor limite para a resistência a compressão uniaxial deve ser maior ou igual a 100 MPa. Os litotipos que não se apresentaram dentro deste padrão com os valores médios de resistência foram: GF-3, OP-1, OP-2, PR-1, PR-3, PM-1, PMB-1, PMV-1, PMV-2, PMR-2 e PCC.

Tabela 3: Tabela contendo os valores obtidos de resistência à compressão uniaxial (valores médios, desvio padrão e coeficiente de variação).

	Resistência à Compressão Uni	iaxial		
Corpo de prova	Resistência à Compressão Uniaxial (Mpa)	Média	Desvio Padrão	Coef. De Variação (%)
GF-1 F	126,1			
GF-1 G	124,5	112,4	22,4	19,9
GF-1 H	86,5			
GF-2 F	117,1			
GF-2 G	111,7	110,6	7,1	6,4
GF-2 H	103,1			
GF-3 F	102,3			
GF-3 G	90,6	91,0	11,1	12,2
GF-3 H	80,1			
OP-1 F	85,3			
OP-1 G	78,3	87,8	11,0	12,5
OP-1 H	99,8			
OP-2 F	92,9			
OP-2 G	73,5	87,0	11,6	13,4
OP-2 H	94,5			
OP-3 F	109,2			
OP-3 G	99,2	104,6	5,0	4,8
OP-3 H	105,3			
PR-1 F	109,1			
PR-1 G	84,1	92,5	14,4	15,6
PR-1 H	84,1			
PR-2 F	121,4			
PR-2 G	139,6	127,8	10,3	8,1
PR-2 H	122,3			

	T			1
PR-3 F	94,2			
PR-3 G	86,5	86,1	8,3	9,7
PR-3 H	77,5			
PM-1 F	85,1			
PM-1 G	87,2	86,9	1,6	1,9
PM-1 H	88,3			
PM-2 F	90,2			
PM-2 G	109,1	100,6	9,6	9,5
PM-2 H	102,3			
PMB-1 F	85,2			
PMB-1 G	67,0	88,9	24,0	27,0
PMB-1 H	114,5			
PMB-2 F	105,1			
PMB-2 G	130,9	108,5	20,9	19,3
PMB-2 H	89,4			
PMV-1 F	84,5			
PMV-1 G	89,7	85,0	4,5	5,3
PMV-1 H	80,8			
PMV-2 F	109,9			
PMV-2 G	76,4	92,5	16,8	18,1
PMV-2 H	91,3			
PMR-1 F	81,4			
PMR-1 G	137,9	124,5	38,2	30,7
PMR-1 H	154,2			
PMR-2 F	70,4			
PMR-2 G	79,5	99,5	42,7	42,9
PMR-2 H	148,5			
PCC F	65,3			
PCC G	83,5	70,7	11,2	15,8
PCC H	63,1			

4.4. Congelamento e Degelo associado à verificação da Resistência à Compressão Uniaxial

Os resultados de resistência a compressão simples no estado "após ciclagem" são encontrados na tabela (Tabela 4) abaixo. A tabela seguinte (Tabela 5) contém os valores de resistência a compressão simples ao estado natural e estado "após ciclagem", além do coeficiente de enfraquecimento (K) e do coeficiente de variação para cada estado.

Tabela 4: Valores de resistência à compressão simples no estado "após ciclagem".

Resistência à	Resistência à Compressão Uniaxial - CONJUGADA AO CONGELAMENTO E DEGELO							
Corpo de prova	Resistência à Compressão Uniaxial (Mpa)	Média	Desvio Padrão	Coef. De Variação				
GF-1 A	136,3							
GF-1 B	110,4							
GF-1 C	103,0	116,6	21,4	18,4				
GF-1 D	80,4							
GF-1 E	125,2							
GF-2 A	125,7							
GF-2 B	106,1							
GF-2 C	67,9	104,4	23,0	22,1				
GF-2 D	100,3							
GF-2 E	122,2							
GF-3 A	84,6							
GF-3 B	113,7							
GF-3 C	83,3	87,9	14,6	16,6				
GF-3 D	77,7							
GF-3 E	80,3							
OP-1 A	107,4							
OP-1 B	107,0							
OP-1 C	130,9	115,0	9,9	8,6				
OP-1 D	111,4							
OP-1 E	118,1							
OP-2 A	117,8							
OP-2 B	113,2							
OP-2 C	109,1	118,2	7,8	6,6				
OP-2 D	122,3							
OP-2 E	128,9							
OP-3 A	127,4							
OP-3 B	173,1							
OP-3 C	146,9	142,4	19,0	13,3				
OP-3 D	127,1							
OP-3 E	137,7							

	1	1	1	1
PR-1 A	126,9			
PR-1 B	108,2			
PR-1 C	97,7	106,7	19,9	18,7
PR-1 D	77,9			
PR-1 E	123,0			
PR-2 A	139,8			
PR-2 B	113,1			
PR-2 C	143,2	132,3	13,0	9,9
PR-2 D	124,3			
PR-2 E	140,9			
PR-3 A	96,8			
PR-3 B	105,0			
PR-3 C	85,2	96,5	10,2	10,5
PR-3 D	87,5			
PR-3 E	107,9			
PM-1 A	64,9			
PM-1 B	81,9			
PM-1 C	84,1	84,4	17,3	20,5
PM-1 D	78,9	Ī		
PM-1 E	112,3			
PM-2 A	92,7			
PM-2 B	95,7			
PM-2 C	79,5	91,1	6,7	7,3
PM-2 D	92,4			ı
PM-2 E	95,1			
PMB-1 A	121,8			
PMB-1 B	96,7			
PMB-1 C	82,4	91,5	18,9	20,7
PMB-1 D	83,7			
PMB-1 E	72,9			
PMB-2 A	118,6			
PMB-2 B	109,8			
PMB-2 C	117,1	110,1	7,7	7,0
PMB-2 D	103,6			
PMB-2 E	101,4			
PMV-1 A	91,8			
PMV-1 B	81,3			
PMV-1 C	94,0	93,8	9,3	9,9
PMV-1 D	94,8			
PMV-1 E	107,3			
PMV-2 A	88,4			
PMV-2 B	92,4			
	132,3	98,9	21,7	22,0
PMV-2 C PMV-2 D	75,1			22,0
		\dashv		
PMV-2 E	106,2		<u> </u>	<u> </u>

PMR-1 A	152,0			
PMR-1 B	141,6			
PMR-1 C	134,2	142,5	9,4	6,6
PMR-1 D	132,6			
PMR-1 E	152,0			
PMR-2 A	102,8			
PMR-2 B	118,2			
PMR-2 C	81,9	99,1	13,2	13,3
PMR-2 D	95,0			
PMR-2 E	97,4			
PCC A	78,4			
PCC B	84,0			
PCC C	83,5	78,0	10,8	13,9
PCC D	85,1			
PCC E	59,2			

Tabela 5: Valores médios de resistência nos dois estados considerados, coeficiente de variação e o coeficiente de enfraquecimento para cada litotipo.

	COEFICIENTE DE ENFRAQUECIMENTO (K)									
Identificação	Resistência Média Cong Degelo (Mpa)	Coef. Variação (%)	Resistência Média Estado Natural (Mpa)	Coef. Variação (%)	Coeficiente de Enfraquecimento (K)					
GF-1	116,6	18,4	112,4	19,9	1,0					
GF-2	104,4	22,1	110,6	6,4	0,9					
GF-3	87,9	16,6	91,0	12,2	1,0					
OP-1	115,0	8,6	87,8	12,5	1,3					
OP-2	118,2	6,6	87,0	13,4	1,4					
OP-3	142,4	13,3	104,6	4,8	1,4					
PCC	78,0	13,9	70,7	15,8	1,1					
PM-1	84,4	20,5	86,9	1,9	1,0					
PM-2	91,1	7,3	100,6	9,5	0,9					
PMB-1	91,5	20,7	88,9	27,0	1,0					
PMB-2	110,1	7,0	108,5	19,3	1,0					
PMR-1	142,5	6,6	124,5	30,7	1,1					
PMR-2	99,1	13,3	99,5	42,9	1,0					
PMV-1	93,8	9,9	85,0	5,3	1,1					
PMV-2	98,9	22,0	92,5	18,1	1,1					
PR-1	106,7	18,7	92,5	15,6	1,2					
PR-2	132,3	9,9	127,8	8,1	1,0					
PR-3	96,5	10,5	86,1	9,7	1,1					

A seguir, um gráfico (Figura 25) evidenciando a relação entre a resistência à compressão uniaxial no estado após ciclagem e ao estado natural encontrada para cada litotipo, o coeficiente de enfraquecimento. A reta indica valores de K iguais a um, abaixo da reta, valores menores que um, indicando a perda da resistência após a ciclagem. Nota-se que os valores estão muito próximos de um ou um pouco maiores.

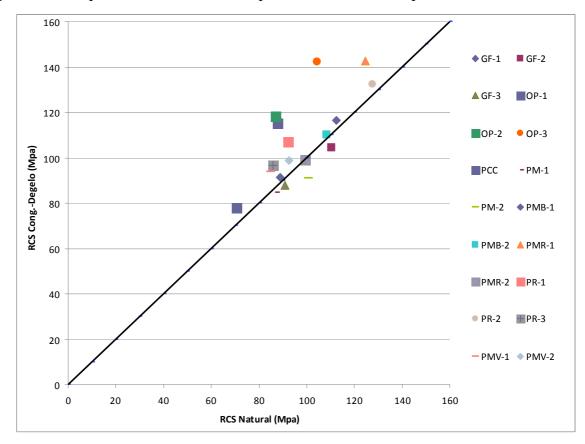


Figura 25: Relação entre os valores de resistência à compressão uniaxial ao estado "após ciclagem" e ao estado natural.

Também foram criados dois gráficos comparando os parâmetros de absorção e porosidade com o coeficiente de enfraquecimento (K) de cada amostra. Observa-se que não há uma relação expressiva entre a absorção e porosidade junto ao coeficiente de enfraquecimento (Figuras 26 e 27).

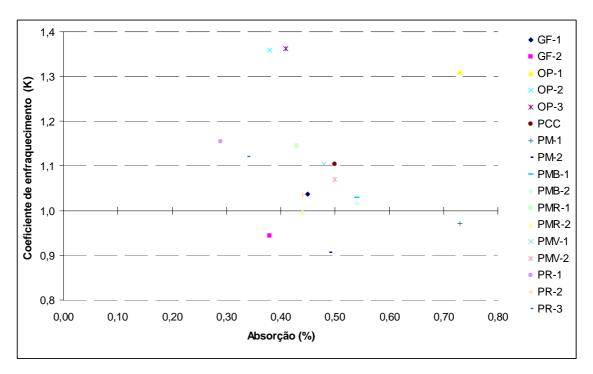


Figura 26: Relação entre o coeficiente de enfraquecimento e absorção entre os litotipos.

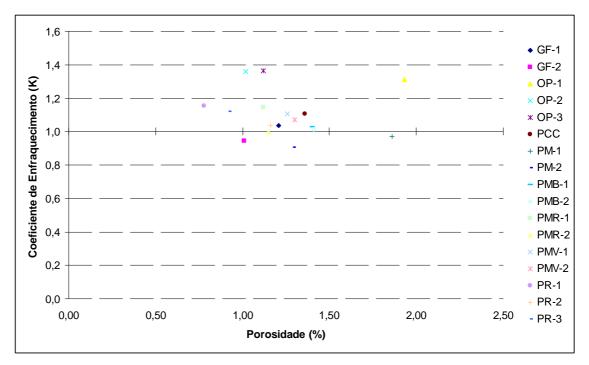


Figura 27: Relação entre o coeficiente de enfraquecimento e porosidade entre os litotipos.

5. CONCLUSÃO

Os litotipos comerciais estudados foram submetidos a ensaios tecnológicos e apresentaram bons resultados. As rochas apresentaram baixos valores de absorção e de porosidade, e estes parâmetros, analisados juntamente com as descrições petrográficas, que não evidenciaram grau de alteração elevado para estas rochas, ressaltam bem às características das rochas silicáticas sãs.

Na análise petrográfica verificou-se que as rochas não apresentaram grandes indícios de alteração, o que justifica os bons valores obtidos para a resistência mecânica destas rochas.

Os resultados obtidos pelo coeficiente de enfraquecimento (K) não demonstram com clareza os efeitos da ação física de congelamento e degelo nos poros e porventura, nas microdescontinuidades destas rochas. Percebe-se também que os valores obtidos para o coeficiente de enfraquecimento (K) e o coeficiente de variação das amostras analisadas possuem, em grande parte, a mesma de ordem de grandeza, corroborando o fato da falta de influência do congelamento cíclico neste tipo de rocha.

Verificou-se com isso que a quantidade de ciclos realizados não foram suficentes para atribuir uma eventual queda de resistência aos cargueamentos solicitados durante os ensaios, como já havia sido demonstrado no trabalho de Barroso e Barroso, (2003).

Como o ensaio de congelamento e degelo conjugado à resistência à compressão uniaxial é muito requisitado para as rochas exportadas, sugere-se focar um estudo maior, através de pesquisas, trabalhos acadêmicos, sobre a capacidade de influência do congelamento cíclico nos poros através de um número maior de ciclos, buscando assim, quantificar o número de ciclos necessários para que haja queda significativa da resistência mecânica.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- ABNT, 1992. NBR12767, Rochas para revestimento Determinação da massa específica aparente, porosidade aparente e absorção d'água aparente. 2p.
- ABNT, 1992. NBR12767, Rochas para revestimento determinação da resistência à compressão uniaxial. 2p.
- ABNT, 1992. NBR12768, Rochas para revestimento análise petrográfica. 2p.
- ABNT, 1992. NBR12769, Rochas para revestimento ensaio de congelamento e degelo conjugado à verificação da resistência à compressão. 2p.
- Baptista Filho, J. & Tanaka, M. D. 2002. Caracterização econômica e mercadológica da região produtora de rochas ornamentais de Santo Antônio de Pádua (RJ). Anuaário do Instituto de Geociências, UFRJ. Vol. 25, 85-98 p.
- Barroso, E.V.; Barroso, J.A. 2003. O efeito do ciclos de congelamento e degelo na resistência de rochas ornamentais silicáticas de baixa porosidade. IV Simpósio de Rochas Ornamentais do Nordeste. Fortaleza, CE, Brasil. 129-132 p.
- Dayan, H. & Valença, J. G. 2008. The structural geology of the of quarries of dimension stones in the mining district of Santo Antônio de Pádua, SE Brazil.
 Anuário do Instituto de Geociências, UFRJ. Vol. 31, 83-87 p.
- Frazão, E.B. & Farjallat, J.E.S., 1996. Proposta de Especificação para Rochas Silicáticas de Revestimento. Contribuição técnica ao 8° Congresso Brasileiro de Geologia de Engenharia. Rio de Janeiro, RJ. P. 369-380.
- Silva, R. E. C. & Margueron, C. 2002. Estudo geológico-técnico de uma pedreira de rocha ornamental no município de Santo Antônio de Pádua – Rio de Janeiro. Anuário do Instituto de Geociências, UFRJ. Vol. 15, 125-150 p.
- Tupinambá, M; Heilbron, M.; Duarte, B. P.; Nogueira, J. P.; Valladares, C.; Almeida, J.; Silva, L. G. E.; Medeiros, S. R. de; Almeida, C. G. de; Miranda, A.; Ragatky, C. D.; Mendes, J.; Ludka, I. 2007. Geologia da Faixa Ribeira Setentrional: estado da arte e conexões com a Faixa Araçuaí. Revista Geonomos, UFMG. Vol. 2007/1, 67-79 p.

7. ANEXOS

Resultados do ensaio de porosidade aparente, massa específica aparente (MEA) e absorção aparente.

Tabela 6: Resultados para o litotipo Granito-Fino (GF-1).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
GF-1 A	270,96	272,27	170,70	0,48	2668	2681	1,29
GF-1 B	245,13	246,29	154,54	0,47	2672	2684	1,26
GF-1 C	238,20	239,16	150,14	0,40	2676	2687	1,08
GF-1 D	249,59	250,67	157,24	0,43	2671	2683	1,16
GF-1 E	259,74	260,97	163,80	0,47	2673	2686	1,27
GF-1 F	269,05	270,25	169,60	0,45	2673	2685	1,19
GF-1 G	272,08	273,32	171,39	0,46	2669	2681	1,22
GF-1 H	251,96	253,11	158,72	0,46	2669	2682	1,22
GF-1 I	272,95	274,10	171,97	0,42	2673	2684	1,13
GF-1 J	270,78	272,14	170,76	0,50	2671	2684	1,34
DADOS ESTA	TÍSTICOS:						
			Média	0,45	2671,50	2683,65	1,21
			Desvio Padrão	0,03	2,33	1,97	0,08
		Co	ef. Variação (%)	6,6	0,1	0,1	6,6

Tabela 7: Resultados para o litotipo Granito-Fino (GF-2).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³	MEA Saturada (Kg/m³)	Porosidade (%)
GF-2 A	272,15	273,07	171,02	0,34	2667	2676	0,90
GF-2 B	236,29	237,12	148,66	0,35	2671	2681	0,94
GF-2 C	272,43	273,45	171,54	0,37	2673	2683	1,00
GF-2 D	259,75	260,74	163,29	0,38	2665	2676	1,02
GF-2 E	256,08	257,20	161,29	0,44	2670	2682	1,17
GF-2 F	253,57	254,59	159,42	0,40	2664	2675	1,07
GF-2 G	251,61	252,55	158,43	0,37	2673	2683	1,00
GF-2 H	274,91	275,82	173,00	0,33	2674	2683	0,89
GF-2 I	256,39	257,55	161,13	0,45	2659	2671	1,20
GF-2 J	250,18	251,07	157,46	0,36	2673	2682	0,95
DADOS ESTA	TÍSTICOS:						
			Média	0,38	2668,97	2679,11	1,01
			Desvio Padrão	0,04	4,87	4,30	0,11
		Co	ef. Variação (%)	10,6	0,2	0,2	10,5

Tabela 8: Resultados para o litotipo Olho-de-Pombo (OP-1).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
OP-1 A	267,15	269,46	167,98	0,86	2633	2655	2,28
OP-1 B	256,26	257,94	161,11	0,66	2646	2664	1,73
OP-1 C	257,47	259,46	161,75	0,77	2635	2655	2,04
OP-1 D	271,10	272,91	170,59	0,67	2650	2667	1,77
OP-1 E	242,97	244,80	152,96	0,75	2646	2666	1,99
OP-1 F	249,30	251,19	157,03	0,76	2648	2668	2,01
OP-1 G	244,51	246,09	154,19	0,65	2661	2678	1,72
OP-1 H	265,14	267,08	166,74	0,73	2642	2662	1,93
OP-1 I	233,63	235,35	147,14	0,74	2649	2668	1,95
OP-1 J	270,69	272,62	170,27	0,71	2645	2664	1,89
DADOS ESTA	TÍSTICOS:						
			Média	0,73	2645,31	2664,62	1,93
			Desvio Padrão	0,07	7,79	6,53	0,17
		Co	ef. Variação (%)	8,9	0,3	0,2	8,7

Tabela 9: Resultados para o litotipo Olho-de Pombo (OP-2).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
OP-2 A	260,98	261,84	165,64	0,33	2713	2722	0,89
OP-2 B	276,07	277,33	175,46	0,46	2710	2722	1,24
OP-2 C	264,98	265,84	168,37	0,32	2719	2727	0,88
OP-2 D	245,38	246,40	155,80	0,42	2708	2720	1,13
OP-2 E	272,49	273,46	173,16	0,36	2717	2726	0,97
OP-2 F	249,20	250,20	158,00	0,40	2703	2714	1,08
OP-2 G	267,91	268,96	170,47	0,39	2720	2731	1,07
OP-2 H	276,83	277,84	175,92	0,36	2716	2726	0,99
OP-2 I	266,44	267,58	169,25	0,43	2710	2721	1,16
OP-2 J	268,39	269,20	170,29	0,30	2713	2722	0,82
DADOS ESTA	DADOS ESTATÍSTICOS:						
			Média	0,38	2712,89	2723,12	1,02
			Desvio Padrão	0,05	5,29	4,79	0,13
		Co	13,2	0,2	0,2	13,2	

Tabela 10: Resultados para o litotipo Olho-de-Pombo (OP-3).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
OP-3 A	231,49	232,47	146,84	0,42	2703	2715	1,14
OP-3 B	237,35	238,25	150,36	0,38	2701	2711	1,02
OP-3 C	233,21	234,06	147,88	0,36	2706	2716	0,99
OP-3 D	258,38	259,43	164,09	0,41	2710	2721	1,10
OP-3 E	246,63	247,80	156,29	0,47	2695	2708	1,28
OP-3 F	236,56	237,54	149,84	0,41	2697	2709	1,12
OP-3 G	260,14	261,30	164,89	0,45	2698	2710	1,20
OP-3 H	240,19	241,27	152,40	0,45	2703	2715	1,22
OP-3 I	236,08	237,05	149,61	0,41	2700	2711	1,11
OP-3 J	251,08	252,01	159,20	0,37	2705	2715	1,00
DADOS ESTA	TÍSTICOS:						
			Média	0,41	2701,88	2713,06	1,12
			Desvio Padrão	0,04	4,53	4,06	0,10
		Co	ef. Variação (%)	8,7	0,2	0,1	8,6

Tabela 11: Resultados para o litotipo Pedra-Carijó-Cinza (PCC).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
PCC A	261,53	262,72	167,38	0,46	2743	2756	1,25
PCC B	247,69	248,70	156,68	0,41	2692	2703	1,10
PCC C	256,95	258,33	163,68	0,54	2715	2729	1,46
PCC D	269,44	270,70	170,36	0,47	2685	2698	1,26
PCC E	246,99	248,02	156,28	0,42	2692	2704	1,12
PCC F	246,39	247,46	158,42	0,43	2767	2779	1,20
PCC G	274,11	275,93	173,62	0,66	2679	2697	1,78
PCC H	244,49	245,68	153,67	0,49	2657	2670	1,29
PCC I	273,54	275,12	177,09	0,58	2790	2806	1,61
PCC J	243,53	244,86	156,93	0,55	2770	2785	1,51
DADOS ESTA	TÍSTICOS:						
			Média	0,50	2719,07	2732,65	1,36
			Desvio Padrão	0,08	45,43	45,95	0,22
		Co	ef. Variação (%)	16,3	1,7	1,7	16,5

Tabela 12: Resultados para os litotipo Pedra-Madeira (PM-1).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
PM-1 A	267,44	268,93	164,67	0,56	2565	2579	1,43
PM-1 B	232,66	234,57	143,11	0,82	2544	2565	2,09
PM-1 C	263,06	265,03	161,97	0,75	2552	2572	1,91
PM-1 D	258,63	260,52	159,03	0,73	2548	2567	1,86
PM-1 E	276,55	279,71	169,61	1,14	2512	2541	2,87
PM-1 F	233,04	234,45	143,35	0,61	2558	2574	1,55
PM-1 G	252,72	254,34	155,93	0,64	2568	2584	1,65
PM-1 H	240,05	241,83	148,00	0,74	2558	2577	1,90
PM-1 I	244,77	246,30	150,49	0,63	2555	2571	1,60
PM-1 J	252,63	254,31	155,60	0,67	2559	2576	1,70
DADOS ESTA	TÍSTICOS:						
			Média	0,73	2552,01	2570,56	1,86
			Desvio Padrão	0,17	15,86	12,07	0,41
		Co	ef. Variação (%)	22,8	0,6	0,5	22,0

Tabela 13: Resultados para o litotipo Pedra-Madeira (PM-2).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
PM-2 A	272,69	273,64	169,91	0,35	2629	2638	0,92
PM-2 B	243,17	244,22	151,18	0,43	2614	2625	1,13
PM-2 C	257,79	259,56	160,35	0,69	2598	2616	1,78
PM-2 D	245,98	247,07	152,96	0,44	2614	2625	1,16
PM-2 E	275,12	276,11	171,29	0,36	2625	2634	0,94
PM-2 F	221,51	222,80	138,05	0,58	2614	2629	1,52
PM-2 G	223,71	224,82	139,32	0,50	2616	2629	1,30
PM-2 H	266,38	268,13	165,70	0,66	2601	2618	1,71
PM-2 I	269,16	270,41	167,62	0,46	2619	2631	1,22
PM-2 J	262,12	263,30	163,03	0,45	2614	2626	1,18
DADOS ESTA	TÍSTICOS:						
			Média	0,49	2614,28	2627,13	1,29
	0,12	9,33	6,71	0,30			
		Co	ef. Variação (%)	23,5	0,4	0,3	23,1

Tabela 14: Resultados para o litotipo Pedra-Madeira-Branca (PMB-1).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
PMB-1 A	237,57	238,95	147,05	0,58	2585	2600	1,50
PMB-1 B	255,26	256,64	157,75	0,54	2581	2595	1,40
PMB-1 C	245,11	246,57	151,90	0,60	2589	2605	1,54
PMB-1 D	254,68	255,99	157,12	0,51	2576	2589	1,32
PMB-1 E	243,25	244,35	150,25	0,45	2585	2597	1,17
PMB-1 F	262,32	264,13	162,18	0,69	2573	2591	1,78
PMB-1 G	262,38	263,45	162,63	0,41	2602	2613	1,06
PMB-1 H	259,52	260,93	160,57	0,54	2586	2600	1,40
PMB-1 I	261,90	263,35	161,87	0,55	2581	2595	1,43
PMB-1 J	263,32	264,72	162,56	0,53	2578	2591	1,37
DADOS ESTA	TÍSTICOS:						
			Média	0,54	2583,61	2597,58	1,40
			Desvio Padrão	0,08	8,28	7,23	0,20
		Co	ef. Variação (%)	14,2	0,3	0,3	14,0

Tabela 15: Resultados para o litotipo Pedra-Madeira-Branca (PMB-2).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
PMB-2 A	239,73	240,92	149,10	0,50	2611	2624	1,30
PMB-2 B	244,59	245,83	152,67	0,51	2625	2639	1,33
PMB-2 C	273,53	275,04	169,92	0,55	2602	2616	1,44
PMB-2 D	254,74	256,45	158,48	0,67	2600	2618	1,75
PMB-2 E	272,88	274,43	169,85	0,57	2609	2624	1,48
PMB-2 F	254,42	255,94	157,97	0,60	2597	2612	1,55
PMB-2 G	259,90	261,57	162,27	0,64	2617	2634	1,68
PMB-2 H	276,74	278,00	172,00	0,46	2611	2623	1,19
PMB-2 I	261,52	262,53	162,75	0,39	2621	2631	1,01
PMB-2 J	275,09	276,56	170,72	0,53	2599	2613	1,39
DADOS ESTA	TÍSTICOS:						
			Média	0,54	2609,30	2623,41	1,41
	0,09	9,77	8,96	0,22			
		Co	ef. Variação (%)	15,8	0,4	0,3	15,7

Tabela 16: Resultados para o litotipo Pedra-Madeira-Rosa (PMR-1).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
PMR-1 A	252,34	253,32	156,61	0,39	2609	2619	1,01
PMR-1 B	237,09	237,97	147,16	0,37	2611	2621	0,97
PMR-1 C	273,80	274,78	169,80	0,36	2608	2617	0,93
PMR-1 D	234,42	235,61	145,49	0,51	2601	2614	1,32
PMR-1 E	268,69	269,88	166,45	0,44	2598	2609	1,15
PMR-1 F	235,74	236,93	145,99	0,50	2592	2605	1,31
PMR-1 G	240,71	241,61	149,76	0,37	2621	2630	0,98
PMR-1 H	264,25	265,38	164,45	0,43	2618	2629	1,12
PMR-1 I	266,73	268,05	165,57	0,49	2603	2616	1,29
PMR-1 J	265,45	266,63	164,96	0,44	2611	2623	1,16
DADOS ESTA	TÍSTICOS:						
			Média	0,43	2607,19	2618,44	1,12
			Desvio Padrão	0,06	8,83	7,93	0,15
		Co	ef. Variação (%)	13,3	0,3	0,3	13,1

Tabela 17: Resultados para o litotipo Pedra-Madeira-Rosa (PMR-2).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
PMR-2 A	275,33	276,39	170,97	0,38	2612	2622	1,01
PMR-2 B	245,31	246,36	152,36	0,43	2610	2621	1,12
PMR-2 C	270,69	271,73	168,02	0,38	2610	2620	1,00
PMR-2 D	230,05	231,04	142,98	0,43	2612	2624	1,12
PMR-2 E	250,43	251,57	155,64	0,46	2611	2622	1,19
PMR-2 F	259,71	260,85	161,29	0,44	2609	2620	1,15
PMR-2 G	270,84	271,92	168,09	0,40	2608	2619	1,04
PMR-2 H	263,41	264,61	163,55	0,46	2606	2618	1,19
PMR-2 I	240,45	241,80	149,26	0,56	2598	2613	1,46
PMR-2 J	260,68	261,88	161,77	0,46	2604	2616	1,20
DADOS ESTA	TÍSTICOS:						
			Média	0,44	2608,03	2619,50	1,15
			Desvio Padrão	0,05	4,22	3,19	0,13
		Co	ef. Variação (%)	11,7	0,2	0,1	11,5

Tabela 18: Resultados para o litotipo Pedra-Madeira-Verde (PMV-1).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m3)	MEA Saturada (Kg/m³)	Porosidade (%)
PMV-1 A	263,62	264,91	163,58	0,49	2602	2614	1,27
PMV-1 B	274,32	275,45	170,63	0,41	2617	2628	1,08
PMV-1 C	270,28	271,52	168,05	0,46	2612	2624	1,20
PMV-1 D	244,78	245,95	152,06	0,48	2607	2620	1,25
PMV-1 E	264,90	266,16	164,79	0,48	2613	2626	1,24
PMV-1 F	270,22	271,57	168,43	0,50	2620	2633	1,31
PMV-1 G	278,48	279,74	173,21	0,45	2614	2626	1,18
PMV-1 H	275,10	276,43	171,04	0,48	2610	2623	1,26
PMV-1 I	274,18	275,43	170,55	0,46	2614	2626	1,19
PMV-1 J	260,76	262,34	161,84	0,61	2595	2610	1,57
DADOS ESTA	TÍSTICOS:						
			Média	0,48	2610,43	2622,99	1,26
			Desvio Padrão	0,05	7,54	6,65	0,13
		Co	ef. Variação (%)	10,5	0,3	0,3	10,2

Tabela 19: Resultados para o litotipo Pedra-Madeira-Verde (PMV-2).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
PMV-2 A	252,04	253,14	156,33	0,44	2603	2615	1,14
PMV-2 B	271,59	273,29	168,67	0,63	2596	2612	1,62
PMV-2 C	254,53	256,05	157,79	0,60	2590	2606	1,55
PMV-2 D	255,33	256,53	158,06	0,47	2593	2605	1,22
PMV-2 E	273,31	274,54	169,80	0,45	2609	2621	1,17
PMV-2 F	233,62	234,77	145,12	0,49	2606	2619	1,28
PMV-2 G	269,93	271,08	167,64	0,43	2610	2621	1,11
PMV-2 H	258,25	259,49	160,01	0,48	2596	2608	1,25
PMV-2 I	263,28	264,86	163,53	0,60	2598	2614	1,56
PMV-2 J	262,77	263,83	163,28	0,40	2613	2624	1,05
DADOS ESTA	TÍSTICOS:						
			Média	0,50	2601,52	2614,47	1,30
			Desvio Padrão	0,08	7,88	6,60	0,21
		Co	ef. Variação (%)	16,1	0,3	0,3	15,9

Tabela 20: Resultados para o litotipo Pinta-Rosa (PR-1).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
PR-1 A	270,98	271,77	170,80	0,29	2684	2692	0,78
PR-1 B	258,56	259,30	162,95	0,29	2684	2691	0,77
PR-1 C	246,63	247,34	155,39	0,29	2682	2690	0,77
PR-1 D	251,57	252,28	158,19	0,28	2674	2681	0,75
PR-1 E	239,14	240,09	150,38	0,40	2666	2676	1,06
PR-1 F	253,27	254,14	159,60	0,34	2679	2688	0,92
PR-1 G	273,97	274,54	172,74	0,21	2691	2697	0,56
PR-1 H	273,64	274,38	172,49	0,27	2686	2693	0,73
PR-1 I	272,32	272,96	171,49	0,24	2684	2690	0,63
PR-1 J	262,47	263,30	165,23	0,32	2676	2685	0,85
DADOS ESTA	TÍSTICOS:						
			Média	0,29	2680,49	2688,31	0,78
			Desvio Padrão	0,05	7,15	6,01	0,14
		Co	ef. Variação (%)	18,1	0,3	0,2	17,9

Tabela 21: Resultados para o litotipo Pinta-Rosa (PR-2).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
PR-2 A	234,71	235,61	147,01	0,38	2649	2659	1,02
PR-2 B	276,37	277,51	173,43	0,41	2655	2666	1,10
PR-2 C	278,02	279,06	174,70	0,37	2664	2674	1,00
PR-2 D	278,04	279,31	174,60	0,46	2655	2667	1,21
PR-2 E	271,25	272,46	170,28	0,45	2655	2666	1,18
PR-2 F	241,99	242,94	151,91	0,39	2658	2669	1,04
PR-2 G	271,49	272,70	170,53	0,45	2657	2669	1,18
PR-2 H	273,31	274,69	171,50	0,50	2649	2662	1,34
PR-2 I	272,39	273,75	171,21	0,50	2656	2670	1,33
PR-2 J	273,26	274,47	171,60	0,44	2656	2668	1,18
DADOS ESTA	TÍSTICOS:						
			Média	0,44	2655,55	2667,12	1,16
			Desvio Padrão	0,05	4,41	4,10	0,12
		Со	ef. Variação (%)	10,4	0,2	0,2	10,3

Tabela 22: Resultados para o litotipo Pinta-Rosa (PR-3).

Identificação da Amostra	Massa Seca (g)	Massa Saturada (g)	Massa Submersa (g)	Absorção (%)	MEA Seca (Kg/m³)	MEA Saturada (Kg/m³)	Porosidade (%)
PR-3 A	240,75	241,39	152,00	0,27	2693	2700	0,72
PR-3 B	257,59	258,38	162,47	0,31	2686	2694	0,82
PR-3 C	247,68	248,38	156,19	0,28	2687	2694	0,76
PR-3 D	255,88	256,74	161,59	0,34	2689	2698	0,90
PR-3 E	247,57	248,57	156,47	0,40	2688	2699	1,09
PR-3 F	272,96	273,87	172,75	0,33	2699	2708	0,90
PR-3 G	254,42	255,33	160,95	0,36	2696	2705	0,96
PR-3 H	235,69	236,54	149,20	0,36	2699	2708	0,97
PR-3 I	266,76	267,82	168,48	0,40	2685	2696	1,07
PR-3 J	258,47	259,48	163,49	0,39	2693	2703	1,05
DADOS ESTA	TÍSTICOS:						
			Média	0,34	2691,45	2700,70	0,92
	0,05	5,22	5,40	0,13			
		Co	ef. Variação (%)	13,9	0,2	0,2	13,9