
A PROPOSAL FOR AN IMPROVED VERSION OF EIGENANT ALGORITHM

WITH PERFORMANCE EVALUATION ON COMBINATORIAL

OPTIMIZATION PROBLEMS

Mahan Mahrueyan

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia Elétrica,

COPPE, da Universidade Federal do Rio de

Janeiro, como parte dos requisitos necessários

à obtenção do t́ıtulo de Doutor em Engenharia

Elétrica.

Orientador: Amit Bhaya

Rio de Janeiro

Agosto de 2017

A PROPOSAL FOR AN IMPROVED VERSION OF EIGENANT ALGORITHM

WITH PERFORMANCE EVALUATION ON COMBINATORIAL

OPTIMIZATION PROBLEMS

Mahan Mahrueyan

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Examinada por:

Prof. Amit Bhaya, Ph.D.

Prof. Eugenius Kaszkurewicz, D.Sc.

Prof. Marley Maria Bernardes Rebuzzi Vellasco, Ph.D.

Prof. Nelson Francisco Favilla Ebecken, D.Sc.

Prof. Oumar Diene, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

AGOSTO DE 2017

Mahrueyan, Mahan

A proposal for an improved version of EigenAnt

algorithm with performance evaluation on combinatorial

optimization problems/Mahan Mahrueyan. – Rio de

Janeiro: UFRJ/COPPE, 2017.

XVII, 112 p.: il.; 29, 7cm.

Orientador: Amit Bhaya

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2017.

Referências Bibliográficas: p. 98 – 103.

1. Parameter Impact Analysis. 2. Improved

EigenAnt Algorithm. 3. Routing Networks. 4.

Multidimensional Knapsack Problem. 5. Constraint

Handling. 6. Dynamic Optimization Problem. I. Bhaya,

Amit. II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Elétrica. III. T́ıtulo.

iii

I dedicate this Thesis to my

mother Mitra and my father

Masoud who always are available

for helping me because of their

infinite love for me.

I also dedicate this thesis to the

soul of my grandfather Mahmoud

who was my first teacher in math

before entering the school.

iv

ACKNOWLEDGMENTS

I would like to thank Professor Amit Bhaya for his supervision and support. I would

also like to thank the staff of NACAD, especially Ms. Mara Prata, for their kind

support. I would also like to thank Dr. Rolando Cuevas for his helps upon my

arrival when I did not know Portuguese. Finally, I would like to thank CAPES for

their financial support.

v

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

UMA PROPOSTA PARA UMA EXTENSÃO DO ALGORITMO EIGENANT

COM AVALIAÇÃO DE DESEMPENHO EM PROBLEMAS DE OTIMIZAÇÃO

COMBINATÓRIA

Mahan Mahrueyan

Agosto/2017

Orientador: Amit Bhaya

Programa: Engenharia Elétrica

O algoritmo denominado EigenAnt foi introduzido recentemente para a resolução

do problema de encontrar o menor caminho entre dois nós de um grafo, utilizando

uma dinâmica com evaporação local de feromônio. O referido algoritmo possui

uma prova matemática de convergência ao menor caminho. Nesta tese, realiza-se a

análise de estabilidade e sensibilidade paramêtrica do algoritmo EigenAnt aplicado

a problemas de caminhos mı́nimos em cadeias binárias entre N nós. Motivado por

esta análise, propõe-se uma extensão do algoritmo EigenAnt (denotado Improved

EigenAnt), no qual a exploração de distintos equiĺıbrios estáveis e a velocidade

de convergência a estes podem ser ajustada independentemente. Realiza-se também

uma análise comparativa entre os algoritmos EigenAnt, Improved EigenAnt e outros

algoritmos existentes do tipo Colônia de Formigas, no contexto de problemas de

caminho mı́nimo em redes de roteamento. Adicionalmente, aplica-se o algoritmo

novo proposto a problemas multidimensionais de mochileiro, por meio da modelagem

destes como problemas de caminhos mı́nimos em cadeias binárias entre N nós, com

restrições. Evaporação local de feromônio e convergência rápida são propriedades de

algoritmos da classe EigenAnt que tornam esta classe vantajosa para rastreamento

de soluções ótimas de problemas de otimização dinâmica, nos quais as instâncias

do problema, a função objetivo e os parâmetros das restrições podem mudar

ao longo do tempo. Uma investigação experimental da aplicação do algoritmo

proposto (Improved EigenAnt) para rastrear a solução ótima em redes dinâmicas

de roteamento e em problemas dinâmicos do mochileiro constituem uma outra

contribuição desta tese.

vi

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

A PROPOSAL FOR AN IMPROVED VERSION OF EIGENANT ALGORITHM

WITH PERFORMANCE EVALUATION ON COMBINATORIAL

OPTIMIZATION PROBLEMS

Mahan Mahrueyan

August/2017

Advisor: Amit Bhaya

Department: Electrical Engineering

The EigenAnt algorithm has recently been introduced to solve the problem of

finding the shortest path between two nodes by using dynamics involving local

pheromone evaporation. This algorithm has a mathematical proof of convergence

to the shortest path between two nodes. In this thesis, the stability and

parameter impact analysis of EigenAnt algorithm applied to N -node Binary Chain

Problems is carried out. Motivated by this analysis, an improved EigenAnt

algorithm is proposed, in which the exploration of different stable equilibria and

speed of convergence to them can be tuned separately. A comparative analysis

of Improved EigenAnt algorithm with its predecessor EigenAnt and other Ant

Colony Optimization algorithms is performed for combinatorial Routing Network

shortest path problems. In addition, the application of the proposed Improved

EigenAnt algorithm to Multidimensional Knapsack Problems is investigated, by

modeling these problems as an N-node Binary Chain shortest path problems with

constraints. Local pheromone evaporation and fast convergence features of the

EigenAnt algorithm are advantageous for tracking the optimal solutions of dynamic

optimization problems in which the problem instances, objective function and

constraint parameters change over time. An experimental investigation of the

application of the proposed Improved EigenAnt algorithm to track the optimal

Dynamic Routing Networks and Dynamic Multidimensional Knapsack problems is

another contribution of this thesis.

vii

Contents

List of Figures x

List of Tables xii

List of Symbols xiii

List of Abbreviations xvi

1 Introduction 1

1.1 Brief Description of the Objectives of this Thesis 2

1.2 Review of the Main Classes of Ant Colony Algorithms 4

1.2.1 ACO Algorithm . 4

1.2.2 EigenAnt . 7

1.3 Structure of the Thesis . 8

2 Improvement and Extension of the EigenAnt Algorithm 10

2.1 Improved EigenAnt Algorithm . 10

2.1.1 Motivations . 10

2.1.2 1-node BCP . 11

2.1.3 2-Node BCP . 15

2.1.4 N -node BCPs . 20

2.2 Extended IEigenAnt . 24

2.2.1 SIEigenAnt Algorithm . 24

2.2.2 Experimental Results . 25

2.3 Summary . 30

3 IEigenAnt for Combinatorial Optimization Problems 31

3.1 Introduction . 31

3.2 Routing Networks . 31

3.2.1 IEigenAnt Application to RN 32

3.2.2 Experimental Results . 33

3.3 Multidimensional Knapsack Problem 44

viii

3.3.1 Constraint Handling . 45

3.3.2 Avoiding the Stagnation Problem 50

3.3.3 Experimental Results . 50

3.4 Summary . 56

4 IEigenAnt for Dynamic Combinatorial Optimization Problems 57

4.1 IEigenAnt for DRN . 60

4.1.1 Solving DRN with Undetectable Change Time 62

4.1.2 Solving DRN with Detectable Change Time 75

4.2 IEigenAnt for DMKP . 87

4.3 Summary . 93

5 Contributions, Conclusions and Future Works 94

5.1 Contributions . 94

5.2 Conclusions . 95

5.3 Future Works . 96

Bibliography 98

A Routing Network Benchmarks 104

A.1 Original Problem . 104

A.2 Increased Optimal Cost . 105

A.3 Emergence of a New Optimal Solution 107

A.4 Radical Change . 108

B DMKP Benchmarks 110

B.1 Original Benchmark . 110

B.2 Increased Optimal Cost . 110

B.3 Emergence of a New Optimal Solution 111

B.4 Radical Change . 111

ix

List of Figures

2.1 The 1-node BCP . 11

2.2 Influence of parameter α1 on the speed of convergence in IEigenAnt . 14

2.3 Speed of convergence analysis for IEigenAnt 15

2.4 IEigenAnt with α1 = α2 = α = 0.3 16

2.5 The 2-node BCP . 16

2.6 Finding K shortest paths between two nodes 26

2.7 Finding dynamic K shortest paths between two nodes 27

2.8 Finding K shortest path with equal or nearly equal lengths 28

2.9 Finding dynamic K shortest path with equal or nearly equal lengths . 29

3.1 A Routing Network of size 3× 3 . 32

3.2 Pheromone removal evaluation for EigenAnt from the CV point of view 34

3.3 Pheromone removal evaluation for EigenAnt from the CS point of view 35

3.4 Statistical comparison for IEigenAnt from the CV point of view . . . 36

3.5 Statistical comparison for IEigenAnt from the CS point of view . . . 37

3.6 Illustration of IEigenAnt parameter analysis for CV 39

3.7 Illustration of IEigenAnt parameter analysis for CS 40

3.8 Statistical comparison of IEigenAnt with ACO algorithms for CV . . 42

3.9 Statistical comparison of IEigenAnt with ACO algorithms for CS . . 43

3.10 A BCP model for an MKP with N items 45

4.1 Change cycle events 1 and 6:DRN with short Due and undetectable

change . 64

4.2 Change cycle events 2 and 7:DRN with short Due and undetectable

change . 65

4.3 Change cycle events 3 and 8:DRN with short Due and undetectable

change . 66

4.4 Change cycle events 4 and 9:DRN with short Due and undetectable

change . 67

4.5 Change cycle events 5 and 10:DRN with short Due and undetectable

change . 68

x

4.6 Change cycle events 1 and 6:DRN with long Due and undetectable

change . 70

4.7 Change cycle events 2 and 7:DRN with long Due and undetectable

change . 71

4.8 Change cycle events 3 and 8:DRN with long Due and undetectable

change . 72

4.9 Change cycle events 4 and 9:DRN with long Due and undetectable

change . 73

4.10 Change cycle events 5 and 10:DRN with long Due and undetectable

change . 74

4.11 Change cycle events 1 and 6:DRN with short Due and detectable change 77

4.12 Change cycle events 2 and 7:DRN with short Due and detectable change 78

4.13 Change cycle events 3 and 8:DRN with short Due and detectable change 79

4.14 Change cycle events 4 and 9:DRN with short Due and detectable change 80

4.15 Change cycle events 5 and 10:DRN with short Due and detectable

change . 81

4.16 Change cycle events 1 and 6:DRN with long Due and detectable change 82

4.17 Change cycle event 2 and 7:DRN with long Due and detectable change 84

4.18 Change cycle events 3 and 8:DRN with long Due and detectable change 85

4.19 Change cycle event 4 and 9:DRN with long Due and detectable change 86

4.20 Change cycle events 5 and 10:DRN with long Due and detectable

change . 87

4.21 Comparing EigenAnt with IEigenAnt for solving DMKP 90

xi

List of Tables

3.1 Statistical analysis of IEigenAnt with respect to 0 < α1 ≤ 1.5 and ρ . 38

3.2 Minimum Pheromone limit change order 51

3.3 Hybrid RR-IEigenAnt on 500-5 MKP with 25% tightness ratio 53

3.4 Hybrid RR-IEigenAnt on 500-5 MKP with 50% tightness ratio 54

3.5 Hybrid RR-IEigenAnt on 500-5 MKP with 75% tightness ratio 55

4.1 The stationary results of DRN change cycle events from the CV point

of view . 61

4.2 The stationary results of DRN change cycle events from the CS point

of view . 61

4.3 The Mean and Best values of each change cycle event in the

application of EigenAnt, IEigenAnt and ACS to DRN with short

change cycle duration and undetectable change time 69

4.4 The Mean and Best values of each change cycle event in the

application of EigenAnt, IEigenAnt and ACS to DRN with long

change cycle duration and undetectable change time 75

4.5 The Mean and Best values of each change cycle event in the

application of EigenAnt, IEigenAnt and ACS to DRN with short

change cycle duration and detectable change time 83

4.6 The Mean and Best values of each change cycle event in the

application of EigenAnt, IEigenAnt and ACS to DRN with long

change cycle duration and detectable change time 88

4.7 The Mean and Best values of each change cycle event of DMKP in

the stationary mode . 92

4.8 The Mean and Best values of each change cycle event in the

application of EigenAnt and IEigenAnt to DMKP 92

xii

List of Symbols

B Total number of cities in TSP, p. 4

C Pheromone deposition coefficient, p. 12

D The total amount of pheromone deposited on a path in N -node

BCP, p. 21

Due Change cycle duration, p. 62

H The finite countable set of all the possible edges forming a path,

p. 21

Lgb The cost of best constructed solution, p. 6

Lm The cost of constructed solution for the ant m, p. 5

Lnn Rough approximation of the optimal cost, p. 7

Lr The cost of constructed solution r, p. 17

M Total number of ants, p. 4

N Total number of layers, p. 10

O Total number of outgoing nodes, p. 7

P (α1) The probability transition function in IEigenAnt, p. 17

P (α2) The normalized function in the pheromone update of

IEigenAnt, p. 17

Q Scaling parameter, p. 5

Rjx The finite countable set of all the possible solutions containing

the edge jx, p. 21

S The location of an equilibrium points, p. 20

V The profit of the chosen item in MKP, p. 44

xiii

W Capacity of a constraint in MKP, p. 44

Z Total number of constraints, p. 44

Ω Penalty value, p. 47

Φ The ensemble transition probability for a path in N -node BCP,

p. 21

Υ Pheromone decay parameter, p. 6

α Pheromone amplification parameter, p. 4

α1 Pheromone amplification parameter for the IEigenAnt in its

construction solution phase, p. 13

α2 Pheromone amplification parameter for the IEigenAnt in its

pheromone update phase, p. 13

β Heuristic amplification parameter, p. 4

χ Normalized constraint value, p. 49

δ Scaling factor used in the pheromone evaporation of

SIEigenAnt, p. 24

η Heuristic function, p. 4

κ Deposition parameter, p. 12

λ Penalty factor, p. 47

µz The violation amount of a constraint z, p. 47

ν Scaling parameter for penalty factor, p. 49

φ Expanded objective function, p. 47

ρ Pheromone evaporation parameter, p. 5

σ Standard Deviation, p. 33

τ Pheromone trail concentration, p. 4

ζ Penalty amplification parameter, p. 47

a The surrogate multiplied, p. 45

d The distance between two nodes, p. 4

xiv

e Change cycle event, p. 60

f Evaluated Cost, p. 46

i Index that represent the current node(layer) of an ant, p. 4

j Index that represents the next node (layer) in which an ant

goes to, p. 4

l Counter index, p. 4

m Index that represents the ant number, p. 4

n Index that represents the node number, p. 4

q0 Tuning parameter to control biased exploration vs exploitation

search, p. 6

r The index represents different constructed solutions, p. 17

u Pseudo-utility value, p. 46

wzj The consumption of the constraint z by the chosen object j,

p. 44

x The index that represents the two possible choices at each layer

of a BCP, and O possible choices at each layer of RN, p. 17

y Temporary variable, p. 48

z The index that represents the constraint number in MKP, p.

44

xv

List of Abbreviations

ACO Ant Colony Optimization, p. 1

ACS Ant Colony System, p. 3

AS Ant System, p. 4

BCP Binary Chain Problem, p. 2

COP Combinatorial Optimization Problem, p. 3

CS Convergence in Solution, p. 2

CV Convergence in Value, p. 2

DCOP Dynamic Combinatorial Optimization Problem, p. 3, 57

DMKP Dynamic Multidimensional Knapsack Problems, p. 3

DOP Dynamic Optimization Problem, p. 57

DRN Dynamic Routing Network, p. 3

EA Evolutionary Algorithm, p. 57

IEigenAnt Improved EigenAnt, p. 2

IN Iteration Number, p. 51

LP linear Programming, p. 45

MKP Multidimensional Knapsack Problems, p. 3

NA Not Available, p. 52

PMLV Pheromone Minimum Limit Value, p. 51

RN Routing Networks, p. 2

RR Randomized Rounding, p. 51

xvi

RWS Roulette-Wheel Selection, p. 4

SACO Simple Ant Colony Optimization, p. 2

SCP Set Covering Problem, p. 2

SD Standard Deviation, p. 33

SIEigenAnt Sorting Improved EigenAnt, p. 24

SOP Sequential Ordering Problem, p. 2

TMO Tracking the Moving of Optimum, p. 57

TSP Traveling Salesman Problem, p. 4

xvii

Chapter 1

Introduction

Biologically inspired (bio-inspired) computing is an area of research that borrows

ideas from areas that are traditionally classified, in broad terms, as biology:

connectionism, social behavior and emergence. These ideas are applied to problems

in optimization and machine learning, in a mathematical framework. The first

major examples of bio-inspired computing came from evolutionary theory, leading to

evolutionary computation and genetic algorithms. Another important development

was the use of social behavior leading to the emergent solution of a problem.

Specifically, Dorigo was inspired by the optimal foraging behavior of ants to propose

the so-called Ant Colony Optimization (ACO) paradigm, in which agents (ants)

deposit pheromone as they travel and can also sense the concentration of pheromone

that may already be present on a path. Amongst a set of alternative paths that

lead from the source to the destination, the path that happens to be more heavily

traveled on by ants, and therefore has a higher concentration of pheromone, tends

to be chosen by the ants that follow (BONABEAU et al., 1999; DENEUBOURG

et al., 1990; DORIGO et al., 2006). The seemingly simple behavior of depositing

and sensing pheromone can lead to the emergence of a foraging trail on the shortest

path between the source and the destination.

In the most basic application of ACO, a set of artificial ants find the shortest

path between a source and a destination. Ants deposit pheromone on paths they

take, preferring paths that have more pheromone on them. Since shorter paths are

traversed faster, more pheromone accumulates on them in a given time, attracting

more ants and leading to reinforcement of the pheromone trail on shorter paths.

This is a positive feedback process, that can also cause trails to persist on longer

paths, even when a shorter path becomes available. To counteract this persistence

on a longer path, ACO algorithms employ remedial measures, such as using negative

feedback in the form of uniform evaporation on all paths. The paper (JAYADEVA

et al., 2013) proposed a new ACO algorithm, called EigenAnt, for finding the shortest

path between a source and a destination, based on selective pheromone removal

1

that occurs only on the path that is actually chosen for each trip. In other words,

EigenAnt algorithm has local pheromone evaporation unlike the global pheromone

evaporation in the conventional ACO algorithms.

In an attempt to develop the theoretical aspects of ACO, it was proved that the

shortest path is the only stable equilibrium for the EigenAnt algorithm to find the

shortest path between two nodes. The proof of the EigenAnt algorithms shows

that this property is maintained for arbitrary initial pheromone concentrations

on paths, and even when path lengths change with time (JAYADEVA et al.,

2013). Furthermore, EigenAnt was applied successfully to Routing Networks (RN)

(JAYADEVA et al., 2013; SHAH, 2011), Sequential Ordering Problem (EZZAT

et al., 2014) and Set Covering Problem (KUMAR, 2016). However, none of the cited

papers present a theoretical analysis approach to justify the success of EigenAnt

dealing with larger problems than the basic problem of finding the shortest path

between two nodes.

1.1 Brief Description of the Objectives of this

Thesis

A stability analysis given in (IACOPINO and PALMER, 2012) for the application

of Simple ACO (SACO) algorithm (DORIGO and STÜTZLE, 2001) to N -node

Binary Chain Problems (BCP) motivates us to map the EigenAnt algorithm to

the analytical model used for such analysis in order to get a theoretical insight

for the application of EigenAnt to larger problems. Apart from the stability

analysis, a parameter impact analysis is done for SACO application to N -node

BCPs in (IACOPINO and PALMER, 2012). In order to follow the same direction

for the EigenAnt, we propose the introduction of two additional parameters into

the EigenAnt algorithm and refer to this as the Improved EigenAnt algorithm.

The Improved EigenAnt demonstrates some promising features due to the fact

that the introduction of the proposed parameters allows stability and speed of

convergence issued to be treated separately and simultaneously. In contrast, in

SACO (IACOPINO and PALMER, 2012), one can choose parameters to achieve

either stability or speed of convergence, but not both simultaneously. Furthermore,

we apply IEigenAnt to RNs in order to investigate the theoretical analysis done for

the extended versions of BCP with number of edges more than two at each layer.

We compare the results from two points of view: Convergence in Solution (CS) (i.e.,

the algorithm converges to a situation in which it generates the optimal solution

over and over) and Convergence in Value (CV) (i.e., the algorithm will eventually

find the optimal solution) (STÜTZLE and DORIGO, 2002). We also investigate

2

the influence of constraints on the stability analysis done for BCP by empirically

analyzing the application of IEigenAnt to Multidimensional Knapsack Problems

(MKP) modeled as an N -node BCPs.

Many real-world optimization problems are Combinatorial Optimization

Problems (COP) subject to dynamic environments. In such Dynamic Combinatorial

Optimization Problems (DCOPs), the objective, decision variables and/or

constraints may change over time (YANG et al., 2013). It is a challenge for an ACO

solving a DCOP to track the optimal solutions because the algorithm might stagnate

as the pheromone trails converge to an optimal solution that is no longer valid after

the change takes place. EigenAnt demonstrated a promising performance dealing

with Dynamic Routing Networks (DRN) due to its local pheromone evaporation

(pheromone removal) (SHAH, 2011). In other words, EigenAnt keeps its convergence

behavior while avoids stagnation problem which permits us to use the results based

on CS point of view. Being able to use CS point of view when dealing with DCOP

is an advantage for an algorithm because the CV point of view has the downside

of missing the to date best optimal solution whenever the new optimal solution

is greater than the previous one. For this reason, knowledge of the change time

is essential for ACO algorithms that consider the CV point of view, in order that

the algorithm be able to reset the best-to-date optimal value soon after the change

occurs so as to not miss the new optimal value greater than the previous one. The

fundamental drawback of the CV point of view is rarely discussed in the papers

on the subject of solving DCOP with ACO algorithms since they assume, without

further comment, that the change time is known. In this thesis, we compare the

performance of IEigenAnt with EigenAnt dealing with challenging scenarios in DRN.

Very little work has been done in solving DCOPs with constraints that change

over time, which makes the subject interesting. The Dynamic Multidimensional

Knapsack Problem (DMKP) is solved by Ant Colony System (ACS) algorithms

which is similar to the EigenAnt in the sense of using local pheromone evaporation

(RANDALL, 2005). However, the paper used a correction procedure for avoiding

violation of constraints which is difficult to implement in practice. We solve DMKP

problem with IEigenAnt algorithm without any correction procedure due to the use

of BCP modeling for DMKP that increases the adaptability of the algorithm as

suggested in (BRANKE et al., 2006).

3

1.2 Review of the Main Classes of Ant Colony

Algorithms

In this section we give a brief review of the main classes of ACO algorithms, taking

the opportunity to cite the main papers in the area.

1.2.1 ACO Algorithm

Ant System (AS)

The Ant colony optimization algorithm was first introduced in (DORIGO et al.,

1991) as a meta-heuristic method called Ant System (AS) to solve the well-known

Traveling Salesman Problem (TSP). Since the application of ACO algorithms to

TSP has been used as a benchmark to propose ACO algorithms in order to solve

COPs, we briefly explain the application of ACO algorithms to solve TSP.

TSP can be stated as follows: given a list of B cities and the distances between

each pair of cities i and j as dij , what is the shortest possible route that visits each

city exactly once and returns to the original city?

In order to apply ACO algorithms to TSP, three phases are usually defined.

1- Solution Construction:

ACO algorithms are defined by the movement of M ants between B cities. Each

ant m starts its travel from a random city n1 and selects its next city through

a random procedure called Roulette-Wheel Selection (RWS) until the last one is

reached.

Roulette-Wheel Selection is a probabilistic rule to define the choice of the next

city j for the ant located in the current city i. This could be imagined similar to

a Roulette wheel in a casino. Usually a proportion of the wheel is assigned to each

of the possible selections based on their fitness value. This could be achieved by

dividing the fitness of a selection by the total fitness of all the selections, thereby

normalizing them to 1. Then a random selection is made similar to how the roulette

wheel is rotated. The transition probability function used in the RWS is defined for

the ant m as follows:

pmij =
ταijη

β
ij∑

l∈Nm
i
ταil η

β
il

(1.1)

where Nm
i is a set of available cities for the ant m situated in the city i, ηij is a

heuristic function, β is the heuristic amplification parameter, τij is the pheromone

trail concentration and α is the pheromone amplification parameter. Parameter

4

tuning of α and β is a challenge. The methods for parameter tuning in ACO

algorithms are discussed in (WONG et al., 2008). In TSP, ηij is set to
1
dij

. In TSP,

each pheromone trail τij corresponds with each graph edge. Apart from the proper

initialization of pheromone trail concentrations, finding the appropriate values for

all parameters is crucial for an AS algorithm.

To exemplify, for the mth ant starting from city n1 the second city n2 is selected

by the ant m according to the transition probability pm12. Then, ant m selects the

third city among the remaining B−2 cities via a transition probability function pm23.

This continues until the last city in which the transition probability for selecting it

from the last city nB would be as pmB−1,1 = 1. At the end, all the cities from n1 to

nB are saved as the solution (path) constructed by the ant m.

2- Cost Evaluation:

Having constructed a solution, a function is defined to evaluate the cost of the

constructed solution. The constructed solution cost for the ant m is denoted by

Lm. In TSP, the constructed solution cost is the summation of all edge lengths

dij starting from n1 through all the other cities until it returns to n1. Generally

speaking, the number of cost function evaluations is a criterion for comparing the

complexity between ACO algorithms.

3- Pheromone Update:

Pheromone update phase takes place in two steps at each iteration. First, a

global process named pheromone evaporation reduces all the τij globally for all the

edges as follows:

τij = (1− ρ) τij (1.2)

where ρ ∈ [0, 1] is the evaporation parameter. Second, the pheromone deposition

process occurs only for the nodes included in the constructed solution by each ant

m upon returning from the path it traversed as follows:

τmij = τij +△τmij (1.3)

where different values are defined for the △τmij in the various versions of the AS. In

(DORIGO et al., 1991), three versions of AS are suggested based on different values

for the △τmij in Eq. (1.3): Ant-density in which △τmij = Q, Ant-quantity in which

△τmij = Q

dij
and Ant-cycle in which △τmij = 1

Lm
. It should be mentioned that Q is

a scaling parameter. In (DORIGO et al., 1996), it was concluded that Ant-cycle

in which uses the whole constructed solution cost Lm in pheromone update gives

better results than the other versions.

These three phases are carried out in each global iteration for all the ants, until

5

a stopping criterion is satisfied.

Another version of AS is SACO which does not have the heuristic function ηij

in (Eq. 1.1) (DORIGO and STÜTZLE, 2001):

pmij =
ταij∑

l∈Nm
i
ταil

(1.4)

In (DORIGO et al., 1996) the parameters for AS are suggested as follows:

Q = 10, ρ = 0.5

α = 1, β = 5

Ant Colony System (ACS)

Another version of ACO algorithm is also proposed as ACS to solve TSP (DORIGO

and GAMBARDELLA, 1997). Three phases of ACS are as follows:

1-Solution Construction:

In ACS, a parameter 0 ≤ q0 ≤ 1 is pre-defined. Then, a random number 0 ≤

q ≤ 1 is generated and compared with the pre-defined q0 whenever an ant wants to

move from a city i to the city j. If q > q0 the solution construction procedure takes

place through RWS. However, if q ≤ q0, the ant at city i goes to the city j with

the maximum value of τijη
β
ij . The first is entitled biased exploration search and the

latter is entitled exploitation. In contrast with AS, α in Eq.(1.1) is not in the ACS

solution construction phase.

2- Cost Evaluation:

This phase is exactly the same as in AS.

3-Pheromone Update

The pheromone update phase in ACS is done in two steps:

• Global Update: Takes place for the pheromone trails of the best constructed

solution to date. The dynamic for the global pheromone update in ACS is as

follows:

τij = (1−Υ) τij +Υ△ij (1.5)

where 0 ≤ Υ ≤ 1 is the pheromone decay parameter and △ij is
1

Lgb
where Lgb

denotes cost of the best constructed solution to date.

• Local Update: The local update has the objective of avoiding stagnation by

decreasing the pheromone value on the previously used edges and making them

6

less attractive for other ants. In other words, the local pheromone evaporation

takes places in this step. This pheromone update takes place for each ant that

constructs a solution as follows:

τij = (1− ρ) τij +
ρ

BLnn

(1.6)

where Lnn is a very rough approximation of the optimal cost. In TSP, rough

approximation can be assumed as the cost of solution resulting from the greedy

choice of city ni to the neighboring city nj until the construction of a complete

solution.

In (DORIGO and GAMBARDELLA, 1997) the following parameter values are

suggested for the ACS:

ρ = 0.1, β = 2

q0 = 0.9,Υ = 0.1

1.2.2 EigenAnt

The EigenAnt algorithm was first introduced in (JAYADEVA et al., 2013) as an

algorithm that finds the shortest path between two nodes, with a proven convergence

to the optimal path as follows:

1-Solution Construction:

Unlike ACO that is a population based algorithm, EigenAnt only uses one ant

at each iteration. In the problem of finding the shortest path between two nodes,

the solution construction procedure consists of selecting one path among O outgoing

paths through RWS. The transition probability function for the EigenAnt selection

phase is as follows:

Pij =
(τij)∑O
l=1 (τil)

(1.7)

Apart from the lack of heuristic function, the pheromone amplification parameter

α is also not used in the EigenAnt transition probability function in Eq. (1.7).

2- Cost Evaluation:

Cost evaluation for the constructed solution for the problem of finding the

shortest path between two nodes is easy: each edge length L = dij is the solution

cost.

7

3-Pheromone Update:

The major difference between EigenAnt and ACO is in this phase in which

EigenAnt uses a specific dynamical model to update the pheromone concentration

trails which leads to a proof of convergence to the shortest path between two nodes

via nonlinear perturbation theory (JAYADEVA et al., 2013).

The model used to update the pheromone trails for the problem of finding the

shortest path between two nodes is as follows:

τij (t + 1) = (1− ρ) τij (t) + (Q/Lij)
τij (t)∑O

l=1 τij (t)
(1.8)

EigenAnt is the same as ACS in the sense of using local pheromone evaporation

ρ (pheromone removal).

1.3 Structure of the Thesis

In Chapter 2, we improve the EigenAnt algorithm by adding two pheromone

amplification parameters to it: one in the transition probability function and

the other in the pheromone update dynamic. We elaborate the implementation

of EigenAnt on the analytical model, applied to N -node BCP, with stability

and parameter impact analysis which results in the proposal of the IEigenAnt

algorithm. We explain the advantages of IEigenAnt in tuning stability and speed

of convergence independently, whereas in SACO, the choice must be made between,

either stability or faster convergence. Moreover, an extension of IEigenAnt, with

promising applications to K shortest paths problem or sorting networks, is proposed

for the basic problem of finding the K shortest paths between two nodes.

In Chapter 3, we investigate the performance of IEigenAnt application to RN by

doing a comparative analysis with the EigenAnt and ACO algorithms. Besides, an

empirical parameter analysis is done for IEigenAnt in order to verify the conclusions

of the Chapter 2 considering the fact that RN is an extended form of N -node BCP

with number of edges more than two at each layer. Moreover, the performance of

IEigenAnt is experimented on MKP modeled as an N -node BCP with constraints

in order to investigate the extent to which the results of Chapter 2 remain relevant

in this new setting.

In Chapter 4, the application of IEigenAnt to track the optimal solutions dealing

DCOPs is investigated. The advantage of solving DRN with IEigenAnt is also

discussed. Finally, DMKP problem in which its constraints, constraint capacity and

problem instances change over time is solved by IEigenAnt.

In Chapter 5, the contributions and conclusions of the thesis are given. In closing,

8

a path to future research in the area of EigenAnt algorithms is suggested.

.

9

Chapter 2

Improvement and Extension of the

EigenAnt Algorithm

In this chapter we Improve EigenAnt algorithm by adding two parameters to it in

order to control the stability and convergence behavior of the algorithm separately.

Then, we extend the IEigenAnt to a sorting algorithm that finds the K shortest

path between two nodes.

2.1 Improved EigenAnt Algorithm

2.1.1 Motivations

Theoretical development accompanying the design of algorithms is desirable because

the long-term behavior of an algorithm and the influence of certain parameters in

the algorithm can be predicted (IACOPINO and PALMER, 2012). In the area

of ACO algorithms, researchers have developed some theoretical approaches. In

(BIRATTARI et al., 2000), an analytical model called ant programming is proposed

for ACO algorithms in order to analyze the convergence of ACO through optimal

control theory. In (GUTJAHR, 2000, 2002; STÜTZLE and DORIGO, 2002), the

probability of convergence to the optimal solution in ACO algorithm is analyzed.

Later, in (GUTJAHR, 2006), a formal framework for theoretical investigation of

ACO is developed through demonstrating a limit theorem for a system of differential

equations which constitute its dynamical skeleton. In (IACOPINO and PALMER,

2012), a complete stability analysis is made for the application of SACO (DORIGO

and STÜTZLE, 2001) algorithm to the N -node Binary Chain Problems (BCPs)

through implementation of SACO on an analytical model. In addition, an analysis

of the impact of pheromone amplification parameter α (Eq. (1.1)) is carried out.

Such a numerical parameter impact analysis for the TSP is carried out in (MEYER,

2004).

10

S Aτ1

τ0

Figure 2.1: The 1-node BCP of finding the shorter of the two paths from the start
node S to the arrival node A . τx, x = {0, 1} denote the pheromone concentration
on the path.

The paper (JAYADEVA et al., 2013) proposed the EigenAnt dynamics for the

shortest path problems (for paths of different lengths between a source and a

destination node). In (IACOPINO and PALMER, 2012), an analysis for the SACO

algorithm applied to a 2-node 2-path problem, was given and then extended to a

N -node 2-path BCP. Their proposal involves an exploration phase, also known as a

path selection phase, which uses a transition probability to choose a path to move

from one node to the next. This probability is calculated using the pheromone

concentration ratio as well as a pheromone amplification parameter. The path

selection phase is followed by a pheromone update phase, for which the SACO model

is used. In this Chapter, we extend the stability analysis of EigenAnt algorithm to

the larger problems modeled as the N -node BCP. In contrast with the probability

transition function of the original EigenAnt in (Eq. 1.7), which lacks the pheromone

amplification parameter α, we consider an improved version of EigenAnt with the

parameter α in order to apply the parameter impact analysis used in (IACOPINO

and PALMER, 2012).

2.1.2 1-node BCP

We begin the analysis of EigenAnt application to the BCPs for the smallest version

of 1-node BCP (Fig. 2.1). In fact, the 1-node BCP is the simplest limited case of

the general problem with only two edges that searches for the shortest path between

two nodes, and to which we can apply the general convergence proof to the shortest

path was given in (JAYADEVA et al., 2013). We consider this simplest problem of

1-node binary chain in order to perceive the correspondence between the results of

(IACOPINO and PALMER, 2012) and those of (JAYADEVA et al., 2013) in order

to use the former to elucidate and extend the results of the latter paper to our

applications.

Formation of the Analytical Model for SACO

In the following, we elaborate the procedure of implementing SACO on the analytical

model done in (IACOPINO and PALMER, 2012). As explained in Chapter 1, SACO

algorithm is the AS algorithm without any heuristics (Eq. (1.4)).

11

The global behavior of the system can be described using the statistical physics

idea of ensemble averaging over a large number of copies or instances of the system

(ensemble), each of which represents a possible system state. This procedure applied

to Eqs. (1.2, 1.3 and 1.4) leads to the deterministic difference equation below:

τx (t+ 1) = (1− ρ) τx (t) +△τ

(
ταx (t)

τα0 (t) + τα1 (t)

)
(2.1)

(
ταx (t)

τα0 (t) + τα1 (t)

)
∈ [0 1]

x = {0, 1}

Denoting Px =
(

ταx (t)
τα
0
(t)+τα

1
(t)

)
, x ∈ {0, 1}, we pass from a discrete representation

to a continuous one:

{
dτ0
dt

= −ρτ0 + C0P0

dτ1
dt

= −ρτ1 + C1P1

(2.2)

The pheromone deposition coefficients C0 and C1 = κC0 represent the △τ in Eq.

(2.1) associated with the related paths. It should be mentioned that κ = C1

C0

= L0

L1

is

referred to as the deposition parameter. In (IACOPINO and PALMER, 2012), Eq.

(2.2) is referred to as the analytical model for a 1-node BCP.

EigenAnt Algorithm Mapped to the Analytical Model of (IACOPINO

and PALMER, 2012)

The EigenAnt algorithm is similar with SACO in not using any heuristic at its

probability transition function (Eq. 1.7). In contrast with SACO, the evaporation

function in EigenAnt is done locally- in other words, it is a pheromone removal of the

selected edge. Moreover, EigenAnt does not use pheromone amplification parameter

α in its transition probability function. Hence, we assume an improved version of

EigenAnt that includes the parameter α in its probability transition function in

order to be the same as SACO in this sense. Similar to SACO, the selection phase

of IEigenAnt is merged with its pheromone update phase through the ensemble

hypothesis. However, the evaporation function in the IEigenAnt is done locally for

the selected edge x that causes the merge of the whole pheromone update phase,

consisting both the evaporation and deposition functions, with the selection phase.

Therefore, the following analytical model is generated for the IEigenAnt:

12

τx (t+ 1) =

(
(1− ρ) τx (t) +

Q

Lx

(
τx (t)

τ0 (t) + τ1 (t)

))(
ταx (t)

τα0 (t) + τα1 (t)

)
(2.3)

It can be noticed in (Eq. 2.3) that the left term of the equation still lacks the

parameter α pertains to the pheromone update dynamic of the EigenAnt (Eq. 1.8).

Thus, IEigenAnt algorithm is further improved defining the following pheromone

update dynamic:

τx (t + 1) = (1− ρ) τx (t) + (Q/Lx)
ταx (t)

τα0 (t) + τα1 (t)
(2.4)

In order to distinguish between α in the transition probability function of the

IEigenAnt, and the deposition function of the pheromone update dynamic, we denote

the first α1 and the latter α2 . As a result, the analytical model for IEigenAnt is as

follows:

τx (t + 1) =

(
(1− ρ) τx (t) +

Q

Lx

(
τα2

x (t)

τα2

0 (t) + τα2

1 (t)

))(
τα1

x (t)

τα1

0 (t) + τα1

1 (t)

)
(2.5)

It can be noticed that the left term in Eq. (2.5) is the same as the discrete version

of the analytical model in Eq. (2.1). Passing from the discrete representation to the

continuous one, gives the following analytical model for EigenAnt:

{
f : dτ0

dt
= (−ρτ0 + C0P0 (α2))P0 (α1)

g : dτ1
dt

= (−ρτ1 + C1P1 (α2))P1 (α1)
(2.6)

Discussion

In (IACOPINO and PALMER, 2012), it is concluded from the stability analysis of

the equilibrium points of the dynamic in Eq. (2.2) that with α = 1 the system

converges to the shortest path. However, it is also concluded that the speed of

convergence is the slowest with α = 1. Therefore, choosing α = 1 in SACO

application to the 1-node BCPs guarantees the convergence to the shortest path

at the expense of increased convergence time. It is also concluded that with α > 1

the system might converge to a non-optimal path, although the speed of convergence

is faster than in the case α = 1. Finally, it is concluded that the system does not

demonstrate convergence behavior with α < 1.

The analytical model of IEigenAnt (Eq. (2.6)) has the same equilibrium points

as the SACO (Eq. (2.2)). The only distinction between the two analytical models

13

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

iter

τ 1

0 50 100 150 200 250 300 350 400 450 500

0.7

0.8

0.9

1

1.1

1.2

1.3

τ 2

iter

α
1
=0.3

α
1
=0.6

α
1
=1

α
1
=1.5

Figure 2.2: Influence of parameter α1 on the speed of convergence in IEigenAnt

is in the additional factor P (α1) in Eq. (2.6) that affects the speed of convergence

without affecting the nature of the stability of the equilibrium point. A larger value

of P (α1) causes faster convergence. The parameter α1 in P (α1), pertains to the

transition probability function, has an inverse relation with the value of 0 ≤ P ≤ 1.

Since α2 can be chosen independently of α1, we have an additional freedom in the

design of the dynamics. Specifically, choosing α2 = 1 causes the pheromone trails

converge to the shortest path in 1-node BCPs which has already been proved in

(JAYADEVA et al., 2013). Similar to SACO, α2 > 1 causes the pheromone trails

converge to the non-optimal path and α2 < 1 does not demonstrate convergence

behavior in the pheromone trails.

In order to demonstrate such a result about the speed of convergence we apply

IEigenAnt with the pheromone removal parameter of ρ = 0.2 to a 1-node binary

chain problem with the two edges of length 5 and 3.75. The pheromone amplification

parameter in the pheromone update phase of IEigenAnt is α2 = 1 that guarantees the

convergence to the shortest path. Fig. 2.2 illustrates that the speed of convergence

has direct relation with value of α1 as the pheromone trail corresponding with the

non-optimal edge converges to zero with the smallest value of α1 = 0.3 after 300

iterations while the slowest convergence with α1 = 1.5 is depicted as it has not yet

converged to zero until 500 number of iterations.

We now apply IEigenAnt to the general problem of finding the shortest path

between two nodes with four edges of length {5, 3, 7, 2} with α2 = 1 and ρ = 0.2.

Fig. 2.3 demonstrates the inverse relation of α1 with the speed of convergence.

In order to emphasize the benefit of using IEigenAnt in having the freedom of

choice for the values of parameter α1 pertaining to the probability transition function

14

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

τ 1

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

τ 2

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

τ3

0 50 100 150 200 250 300 350 400 450 500
0

2

4

iter

τ 4

α
1
=0.3

α
1
=1

α
1
=1.5

Figure 2.3: Speed of convergence analysis in finding the shortest path between two
nodes by IEigenAnt

and α2 pertaining to the pheromone update dynamic, we apply IEigenAnt to the

previous problem with α1 = α2 = α = 0.3. Fig. 2.4 demonstrates that pheromone

concentrations converge to values that do not suggest a clear choice of a specific

edge, emphasizing that in order to maintain stability of the desired equilibrium and

also attain a fast speed of convergence it is necessary to make the choices α1 < 1

and α2 = 1.

2.1.3 2-Node BCP

Fig. 2.5 depicts a 2-node BCP model. Fig. 2.5 shows that every edge (in the 2-node

BCP graph) belongs to two distinct paths out of four possible paths from node S

to node B, passing through node A. Pheromone trails correspond with each edge in

Fig.2.5.

SACO Implementation on the Analytical Model

The analytical model proposed in (IACOPINO and PALMER, 2012) through the

implementation of SACO algorithm applied to 2-node BCP is as follows:

15

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

τ 1

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

τ 2

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

τ 3

0 50 100 150 200 250 300 350 400 450 500

0.7
0.8
0.9

iter

τ 4

Figure 2.4: IEigenAnt with α1 = α2 = α = 0.3 showing that the choice of α2 < 1
might result in pheromone concentrations converging to values such that no edge
emerges as a clear choice (in terms of having a larger pheromone concentration than
the other edges)

S A BτA1

τA0

τB1

τB0

Figure 2.5: The 2-node BCP

dτA0

dt
= −ρτA0

+ (C00PB0 + C01PB1)PA0

dτA1

dt
= −ρτA1 + (C10PB0 + C11PB1)PA1

dτB0

dt
= −ρτB0 + (C00PA0 + C10PA1)PB0

dτB1

dt
= −ρτB1 + (C01PA0 + C11PA1)PB1

(2.7)

Similar to the 1-node BCP, the selection phase is only merged with the deposition

function of each pheromone trail. For example, the pheromone trail τAo in the first

line of Eq. (2.7) can be a member of a path including τA0τB0 or τA0τB1 where two

different pheromone deposition coefficients of C00 and C01 (depending on the selected

total path length) are considered for them, respectively.

The probability of choosing each path relating to the deposition parameters C00

and C01 (PA0PB0 and PA0PB1) is multiplied by its respective deposition parameter.

16

IEigenAnt Algorithm Applied to 2-node BCPs

The selection phase of IEigenAnt applied to the 2-node BCP consists of two steps.

First, selection between edges relating to pheromone trails of τA0 and τA1. Second,

the selection between τB0 and τB1. It should be mentioned that the transition

probability function is dependent on the parameter α1 (P (α1)) .

Furthermore, two distinct pheromone updates occur at each layer in Fig. 2.5.

The pheromone update of IEigenAnt applied to the 2-node binary chain at each

layer has the following dynamic:

τAx (t+ 1) = (1− ρ) τAx (t) +
Q

Lr
PAx (α2)

τBx (t+ 1) = (1− ρ) τBx (t) +
Q

Lr
PBx (α2)

(2.8)

where Lr is the total length of the path r selected out of possible four paths and x ∈

{0, 1}. Moreover, the local evaporation is used in Eq. (2.8). Solution convergence

analysis considers whether the pheromone trail equations τAx and τBx (Eq. (2.8))

converge to the edges of a path with the minimum value of Ls.

Deriving the Analytical Model of IEigenAnt Applied to the 2-node BCPs

Since the evaporation function takes place locally in IEigenAnt, the probability

of selecting each pheromone trail at its layer is multiplied by the corresponding

evaporation term. Therefore, through the ensemble hypothesis, we obtain the

following analytical continuous-time model for the IEigenAnt:

dτA0

dt
= PA0 (α1)

(
− ρτA0

+ (C00PB0 (α1) + C01PB1 (α1))PA0 (α2)
)

dτA1

dt
= PA1 (α1)

(
−ρτA1 +

(
C10PB0 (α1) + C11PB1 (α1)

)
PA1 (α2)

)
dτB0

dt
= PB0 (α1)

(
−ρτB0 +

(
C00PA0 (α1) + C10PA1 (α1)

)
PB0 (α2)

)
dτB1

dt
= PB1 (α1)

(
−ρτB1 +

(
C01PA0 (α1) + C11PA1 (α1)

)
PB1 (α2)

)
(2.9)

Similar to the 1-node BCP case, the factorized terms P (α1) demonstrate the

effect of the parameter α1 from the transition probability function on the speed of

convergence. However, there are differences in the stability analysis of the analytical

model in Eq. (2.9) and the analytical model of SACO in Eq. (2.7) due to the P

functions dependent on both α1 and α2 (P (α1) and P (α2)). It remains to show

that only the parameter α2 has effect on the equilibrium points of the system so that

parameter selection of α1 can be made with a view only to speed of convergence. In

order to observe the effect of each parameter α1 and α2 in Eq. (2.9), we modify the

mathematical procedure used in (IACOPINO and PALMER, 2012) for finding the

17

equilibrium points of the corresponding analytical model.

At the equilibrium points of Eq. (2.9), the following holds:

ρτA0
= (C00PB0 (α1) + C01PB1 (α1))PA0 (α2)

ρτA1 = (C10PB0 (α1) + C11PB1 (α1))PA1 (α2)

ρτB0 = (C00PA0 (α1) + C10PA1 (α1))PB0 (α2)

ρτB1 = (C01PA0 (α1) + C11PA1 (α1))PB1 (α2)

(2.10)

Since PA0 (α2) + PA1 (α2) = 1 and PB0 (α2) + PB1 (α2) = 1,

ρ
(

τA0

C00PB0(α1)+C01PB1(α1)
+ τA1

C10PB0(α1)+C11PB1(α1)

)
= 1

ρ
(

τB0

C00PA0(α1)+C10PA1(α1)
+ τB1

C01PA0(α1)+C11PA1(α1)

)
= 1

(2.11)

Starting from the first equations of the system in Eq. (2.10), relative to the node

A, since PAx (α2) =
τ
α2

Ax

τ
α2

A0
+τ

α2

A1

:

{
ρ (τα2

A0 + τα2

A1) = τα2−1
A0 (C00PB0 (α1) + C01PB1 (α1))

ρ (τα2

A0 + τα2

A1) = τα2−1
A1 (C10PB0 (α1) + C11PB1 (α1))

(2.12)

Dividing the second formula by the first, we would have:

1 =

(
τA1

τA0

)α2−1(
C10PB0 (α1) + C11PB1 (α1)

C00PB0 (α1) + C01PB1 (α1)

)
(2.13)

⇒ τA0 = τA1

(
C10PB0 (α1) + C11PB1 (α1)

C00PB0 (α1) + C01PB1 (α1)

) 1

α2−1

(2.14)

Considering mA =
(

C10PB0(α1)+C11PB1(α1)
C00PB0(α1)+C01PB1(α1)

)
and γ = α2

α2−1
, we would have

a straight line through the origin in the (τA0, τA1) plane as τA0 = τA1m
γ−1
A .

Substituting mA in the first equation of Eq. (2.11), we would have:

τA0

C00PB0 (α1) + C01PB1 (α1)
+

τA1

mA (C00PB0 (α1) + C01PB1 (α1))
=

1

ρ

⇒ τA0 =
C00PB0 (α1) + C01PB1 (α1)

ρ
−

τA1

mA

(2.15)

This is a straight line of slope − 1
mA

in the (τA0, τA1) plane and it is valid when

both τ 6= 0. The intersection of these two lines is a unique point in this plane, but

it depends on its location in the (τB0, τB1) plane.

18

Similarly, for the node B:

{
τB0 =

C00PA0(α1)+C10PA1(α1)
ρ

− τB1

mB

τB0 = τB1m
γ−1
B Let mB =

(
C01PA0(α1)+C11PA1(α1)
C00PA0(α1)+C10PA1(α1)

) (2.16)

Imposing one of the τ = 0 (Eq. (2.11)) for each couple of equations gives directly

four equilibrium points, one for each combination:

S00 =

τA0 =
C00

ρ

τA1 = 0

τB0 =
C00

ρ

τB1 = 0

S01 =

τA0 =
C01

ρ

τA1 = 0

τB0 = 0

τB1 =
C01

ρ

S10 =

τA0 = 0

τA1 =
C10

ρ

τB0 =
C10

ρ

τB1 = 0

S11 =

τA0 = 0

τA1 =
C11

ρ

τB0 = 0

τB1 =
C11

ρ

(2.17)

If we impose one τ = 0 for only one couple of equations, the other couple of

equations can be simplified; e.g, for τA0 = 0, the system can be written as:

{
dτB0

dt
= −ρτB0 + C10PB0 (α2)

dτB1

dt
= −ρτB1 + C11PB1 (α2)

(2.18)

This system has an equilibrium point lying on the side connecting two vertices

solutions presented above (Eq. (2.17)), in this case it lies on the side between S11 and

S10. Imposing the condition τ = 0 for all the τ gives the following four equilibrium

points:

S20 =

τA0 =
C00

ρ

(

C10

C00

)γ

1+
(

C10

C00

)γ

τA1 =
C00

ρ

(

C10

C00

)

1+
(

C10

C00

)γ

τB0 =
C00

ρ

(

C10

C00

)(

C10

C00

)γ

1+
(

C10

C00

)γ

τB1 = 0

S21 =

τA0 =
C01

ρ

(

C11

C01

)γ

1+
(

C11

C01

)γ

τA1 =
C01

ρ

(

C11

C01

)

1+
(

C11

C01

)γ

τB0 = 0

τB1 =
C01

ρ

(

C11

C01

)(

C11

C01

)γ

1+
(

C11

C01

)γ

(2.19)

S02 =

τA0 =
C00

ρ

(

C01

C00

)(

C01

C00

)γ

1+
(

C01

C00

)γ

τA1 = 0

τB0 =
C00

ρ

(

C01

C00

)γ

1+
(

C01

C00

)γ

τB1 =
C00

ρ

(

C01

C00

)

1+
(

C01

C00

)γ

S12 =

τA0 = 0

τA1 =
C10

ρ

(

C11

C10

)(

C11

C10

)γ

1+
(

C11

C10

)γ

τB0 =
C10

ρ

(

C11

C10

)γ

1+
(

C11

C10

)γ

τB1 =
C10

ρ

(

C11

C10

)

1+
(

C11

C10

)γ

Finally, imposing that all the τ 6= 0, we are interested in finding the point given

19

by the interception of the four lines described by the Eq. (2.14), Eq. (2.15) and Eq.

(2.16):

S22 =

τA0 =
C01+C00m

γ
B

ρ

m
γ
A

(1+m
γ
B)(1+m

γ
A)

τB0 =
C10+C00m

γ
A

ρ

m
γ
B

(1+m
γ
B)(1+m

γ
A)

(2.20)

Once the slopes mA and mB are determined, we can determine a unique location

given by the interception of these lines. As mentioned before the equilibrium points

should all be dependent on the parameter α2 in order to be able to implement

EigenAnt on the analytical model (Eq. (2.7)) analyzed in (IACOPINO and

PALMER, 2012). However, the equilibrium point S22 is dependent on mA and

mB which are dependent on α1. In (IACOPINO and PALMER, 2012), the relation

between mA and mB is found as follows:

{
mγ

A = C11−C10mB

C00mB+C01

mγ
B = C11−C01mA

C00mA+C10

(2.21)

In (IACOPINO and PALMER, 2012), it is concluded from the above equations

that there is a unique solution mA for a given mB and vice versa. Moreover, it is

concluded that mA and mB have the following range by plotting the equation pair

in Eq. (2.21):

mA ∈

[
C10

C00
,
C11

C01

]
mB ∈

[
C01

C00
,
C11

C10

]
(2.22)

The aforementioned conclusions imply the lumping ofmA andmB to a deposition

parameter κ which makes the analysis independent of α1 possible.

2.1.4 N-node BCPs

SACO Implementation on the Analytical Model

The analytical model that is used to prove the convergence of SACO algorithm

applied to the N -node BCPs is proposed as the following set of N pairs of equation

(IACOPINO and PALMER, 2012):

{
dτj0
dt

= −ρτj0 +Dj0
dτj1
dt

= −ρτj1 +Dj1

(2.23)

20

whereDjx describes the amount of pheromone deposited. The structure for this term

is rather complex; considering the equation for the edge jx, Djx can be expressed

as:

Djx =
∑

r∈Rjx

Cr
jxΦ

r
jx (2.24)

Φr
jx = Pjx

∏

l∈H,l 6=j0,j1

Pl (2.25)

where Rjx is the finite countable set of all the possible solutions containing the edge

jx. The size of this set is 2N−1, Cr
jx is the pheromone update coefficient for a specific

path r , and Φr
jx indicates the transition probability for such a path. H is the finite

countable set of all the possible edges forming a path, its size is 2N , and Pjx is the

generic transition probability:

Pjx =
ταjx

ταj0 + ταj1
(2.26)

IEigenAnt Implementation on the Analytical Model for the N-node BCPs

Considering the local pheromone evaporation feature in IEigenAnt, we assume a

SACO algorithm with local evaporation in order to implement IEigenAnt on the

analytical model of the N -node BCPs:

dτj0
dt

= (Pj0)
(
−ρτj0 +

(∑
r∈Rj0

Cr
j0

∏
l∈H,l 6=j0,j1Pl

))

dτj1
dt

= (Pj1)
(
−ρτj1 +

(∑
r∈Rj1

Cr
j1

∏
l∈H,l 6=j0,j1Pl

)) (2.27)

As can be noticed from Eq. (2.27) and Eq. (2.25), the analytical model formed

for the SACO with local pheromone evaporation lacks the factored term Pjx in

the parenthesis of Eq. (2.27). Thus, the term Pjx should be augmented in the

parenthesis in order to have a successful implementation on the model. The term

Pjx can be augmented through the pheromone update dynamic which results in

the transformation of SACO algorithm with local evaporation to the EigenAnt

algorithm. As a result, we would have the following pheromone update dynamic

for an ant that goes to the layer j in the IEigenAnt algorithm applied to the N -

node BCP:

τjx (t+ 1) = (1− ρ) τjx (t) +

(
Q

Lr

)
Pjx (α2) (2.28)

21

Merging the above dynamic with the selection phase, the analytical model

relating to the IEigenAnt algorithm is formed as follows:

dτj0
dt

= (Pj0 (α1))
(
−ρτj0 +

(∑
r∈Rj0

Cr
j0Pj0 (α2)

∏
l∈H,l 6=j0,j1Pl (α1)

))

dτj1
dt

= (Pj1 (α1))
(
−ρτj1 +

(∑
r∈Rj1

Cr
j1Pj1 (α2)

∏
l∈H,l 6=j0,j1Pl (α1)

)) (2.29)

Considering α1 = α2 = α the same as the original EigenAnt algorithm, the

analytical model in Eq. (2.29) and Eq. (2.23) have the same equilibrium points

which means that stability analysis done in (IACOPINO and PALMER, 2012) for

the application of SACO algorithm to the N -node BCPs is satisfied for the EigenAnt

algorithm. However, there are differences between Eq. (2.29) and Eq. (2.23) when

α1 6= α2 for the IEigenAnt similarly to the discussion above for the 2-node binary

chain. Our goal is to show that the equilibrium points of Eq. (2.29) are only

dependent on α2 so that the difference of α1 with α2 can be overlooked in the

stability analysis which makes the stability analysis done for the implementation of

SACO on the analytical model Eq. (2.23) the same as the one for the IEigenAnt in

Eq. (2.29).

In (IACOPINO and PALMER, 2012), it is demonstrated that the equilibrium

points of Eq. (2.23) have the same format of the equilibrium points in the analytical

model (Eq. (2.7)) relating to the application of SACO to the 2-node BCP. For the

IEigenAnt, there is an N -cube space where at each surface Su defined for the related

pair x there are equilibrium points at the vertices with the format of Eq. (2.17),

equilibrium points connecting the vertices on the sides of the surface with the format

of Eq. (2.19) and the midpoint equilibrium point with the format of Eq. (2.20).

As mentioned before, the mid-point equilibrium point depends on the ml (α1). A

theorem is proved in (IACOPINO and PALMER, 2012) for midpoint equilibrium

points for N -node BCP. We rewrite the theorem as follows:

Theorem 1. Given a generic mid-point and the surface Su where it lies, the

coordinates of this mid-point along any pheromone variable pair jx defining the

surface Su are given by the following equations:

Pair jx :

τj0 =
Cj0

ρ

(
m

γ
j

1+m
γ
j

)

τj1 =
Cj1

ρ

(
mj

1+m
γ
j

) mj =
Cj1

Cj0

γ =
α2

α2 − 1
(2.30)

As it can be noticed from Theorem. 1, m is lumped to a pheromone deposition

parameter in (IACOPINO and PALMER, 2012); hence, the position of mid-point

equilibrium is only dependent on α2. Therefore, the stability analysis that used in

(IACOPINO and PALMER, 2012) for the application of SACO to the N -node BCPs

is also true for the application of IEigenAnt algorithm. The impact of parameter α1

22

on the speed of convergence is the same as the 1-node binary problem case as for

the IEigenAnt application due to the Pjx (α1) factor in Eq. (2.29).

Conclusions

The stability analysis done in (IACOPINO and PALMER, 2012) for the application

of SACO algorithm to the N -node BCPs with different values of α are hold for

different values of α2 in the application of IEigenAnt to N -node binary chain

problems. On the other hand, there is a direct effect of parameter α1 on the speed

of convergence of the analytical model of the IEigenAnt applied to N -node binary

chain problems. We summarize our conclusions as follows for the application of

IEigenAnt to N -node BCPs with different values of α1 and α2:

1. For α1 = 1 and α2 = 1, the algorithm is the original EigenAnt algorithm. The

system is driven towards the local optimal solution, represented by vertex, but

its velocity is low.

2. For α1 < 1 and α2 = 1, the system converges to the local optimal solutions

with a faster speed than the original EigenAnt.

3. For α1 > 1 and α2 = 1, the system converges to the local optimal solution

with a lower speed than the original EigenAnt.

4. For α1 < 1 and α2 < 1, the system shows only one stable point, lying inside

the N -cube, representing uniform distribution of pheromones on the BCP. In

the terms of problem solutions, the system does not converge, but fluctuates

around this stable point performing continuous explorations for new vertices.

The speed of explorations is also high.

5. For α1 = 1 and α2 < 1, the system shows an exploratory (non-convergent)

behavior with a lower speed than the previous case.

6. For α1 > 1 and α2 < 1, the system shows an exploratory behavior with the

lowest speed.

7. For α1 < 1 and α2 > 1, all the possible problem solutions are stable points.

The speed of convergence is also very high which makes the possibility of

premature convergence large due to the greedy behavior of the algorithm.

8. For α1 = 1 and α2 > 1, the system still has the risk of premature convergence

but with a lower possibility than the previous case due the the reduction in

the speed of convergence.

23

9. For α1 > 1 and α2 > 1, all the possible solutions are stable points; however, the

convergence speed is at the lowest speed which might render some exploration

behavior.

2.2 Extended IEigenAnt

In this section, we propose an extension of IEigenAnt entitled Sorting IEigenAnt.

SIEigenAnt demonstrates a convergence behavior in which each pheromone trail

converges to a value proportional the corresponding path length. Moreover, we

illustrate the capability of SIEigenAnt in findingK shortest paths between two nodes

in both the stationary and dynamic problem cases. It should be mentioned that an

extensions of EigenAnt entitled M-unit EigenAnt is also proposed for finding the K

shortest paths between two nodes in (SHAH, 2011; SHAH et al., 2011). However,

they used K pheromone trails for each edge which means that M-unit EigenAnt

uses a great amount of time and memory attributed to K×O number of pheromone

trails for a simple problem of optimization between two nodes, whereas SIEigenAnt

only requires O number of pheromone trails.

2.2.1 SIEigenAnt Algorithm

The solution construction phase of SIEigenAnt algorithm is the same of IEigenAnt.

The difference is in pheromone update phase where the pheromone evaporation

parameter is as follows:

ρ (P (α2)) = P (α2)
2 δ (2.31)

As a result, the following pheromone update dynamic is assumed for the selected

path j:

τj (t + 1) =
(
1− Pj (α2)

2 δ
)
τj (t) +

βδ

Lj

Pj (α2) (2.32)

where δ is a scaling factor which is also added to the deposition term together with

the evaporation term. The following constraint for the parameter δ in Eq. (2.32)

should be maintained:

24

(
1− Pj (α2)

2 δ
)
≥ 0 7→ Pj (α2)

2 δ ≤ 1

⇒ δ ≤
1

Pj (α2)
2 (2.33)

Maintaining the condition Eq. (2.33) is a challenge due to the variable value of

0 ≤ Pj (α2) ≤ 1 over time. We assume a constant value for δ in which δ > 1 renders

the risk of negative pheromone trail value while δ ≤ 1 is free of such a risk but with a

very slow speed of convergence. In order to have an algorithm that has the fast speed

of convergence and does not result in negative pheromone trails, we propose the use

of minimum procedure in SIEigenAnt algorithm. The minimum procedure is similar

to the Max-Min algorithm proposed in (STÜTZLE and HOOS, 2000). However, the

procedure only checks the violation of minimum pheromone trail value. Whenever

the minimum trail value is violated the corresponding pheromone trail value is set

to the minimum limit value and δ is decreased by a constant value.

2.2.2 Experimental Results

In this subsection, we illustrate the performance of SIEigentAnt algorithm dealing

with four types of problem to which it is applicable. First, we illustrate the

performance of SIEigenAnt algorithm in finding the K shortest paths between two

nodes. Second, we illustrate the capability of SIEigenAnt in finding the K shortest

paths between two nodes in the so-called dynamic case, in which these paths change

over time. Third, we illustrate the performance of SIEigenAnt algorithm in solving

the K shortest path problem when it has paths with equal length and lengths with

small differences. Finally, we illustrate the application of SIEigenAnt to the dynamic

version of the previous problem. In all the experiments, we set δ = 10, α1 = 0.3,

α2 = 1, β = 1 and we decrease δ = δ − 0.5 whenever it violates the minimum

pheromone value τmin = 10−3. Initial pheromone trail values are set to their related

path lengths, as suggested in (SHAH et al., 2011), in order to make the problem

more difficult to solve.

We apply SIEigenAnt algorithm to the problem with the following ten edges:

L = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Fig. 2.6 demonstrates the convergence of the pheromone trails. As it can be

noticed, the trail initiating from the smallest value terminates at the highest value

for the edge L = 1. It continues with the same inverse relation between initial value

to the final value for other paths from L = 2 to L = 10 that illustrates the successful

25

0 100 200 300 400 500
1

2

3

4

5

6

7

8

9

10

L=1
L=2
L=3
L=4
L=5
L=6
L=7
L=8
L=9
L=10

Figure 2.6: Finding K shortest paths between two nodes

finding of 10 shortest paths. The speed of convergence is fast enough considering

the convergence occurred before the 100th iteration. The following final pheromone

trail values also verify the success of SIEigenAnt algorithm:

τ500 = {5.0274, 3.5556, 2.9038, 2.5164, 2.2507, 2.0547, 1.9028, 1.7844, 1.6850, 1.5941}

It should be mentioned that no violation of minimum pheromone trails occurred

in this experiment.

Then, we apply SIEigenAnt algorithm to the dynamic version of the previous

problem where the edge lengths change, at the 200th iteration, from the previous

values 1 through 10 to the following:

L = {1, 2, 12, 4, 0.5, 6, 7, 8, 1.5, 10}

Fig. 2.7 demonstrates that the new optimal path L = 0.5 is found by SIEigenAnt

right after the change. Besides, the new third optimal path L = 1.5 which

previously had length L = 9 is found relatively quickly. The SIEigenAnt algorithm

demonstrates slow but successful reaction in finding the new worst path L = 12

26

0 100 200 300 400 500
1

2

3

4

5

6

7

8

9

10

L=1
L=2
L=12
L=4
L=0.5
L=6
L=7
L=8
L=1.5
L=10

Figure 2.7: Finding dynamic K shortest paths between two nodes. The change that
took place at the 200th iteration for the corresponding edge is denoted by 7→ as:
L = {1, 2, 3 7→ 12, 4, 5 7→ 0.5, 6, 7, 8, 9 7→ 1.5, 10}

which used to be the third optimal path L = 3. The following final pheromone trail

values also verify the success of SIEigenAnt algorithm:

τ500 = {6.1379, 4.3342, 1.8232, 3.0042, 8.6838, 2.4706, 2.2430, 2.0933, 5.0051, 1.8816}

It should be mentioned that no violations of minimum pheromone trail occurred

in this experiment.

We now apply SIEigenAnt to a version of problems that are more challenging to

solve in which the paths length are equal or slightly different. The following path

length is chosen for experiment:

L = {1, 1.5, 0.2, 4.9, 0.22, 5, 0.25, 1.5, 9, 5}

Fig. 2.8 illustrates that the algorithm detects the two almost optimal paths of

L{0.2, 0.22}. Two equal paths of length 1.5 and the three nearly equal paths of

L{4.9, 5, 5}. Apart from that, K shortest paths are successfully found. It should be

mentioned that in this experiment minimum pheromone trail limit is violated and

27

0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

20

L=1
L=1.5
L=0.2
L=4.9
L=0.22
L=5
L=0.25
L=1.5
L=9
L=5

Figure 2.8: Finding K shortest path with equal or nearly equal lengths. The
pheromone trails corresponding with three paths with lengths {4.9, 5, 5} are
converged equally near the value 2. The pheromone trails corresponding with two
equal paths of length 1.5 are converged to the value 6.

therefore δ is decreased to 13.2.

Finally, we apply SIEigenAnt to the dynamic version of this type of problem

where the path’ lengths change at the 200th iteration as follows:

L = [15.24.9.195.251.515]

Fig. 2.9 illustrates that after the 250th iteration the orange plot relating to 1.5 7→

5 path length change decreases in reaction to the change. Moreover, the new optimal

value of 0.19 which is slightly shorter than the previous of 0.2 is distinguished.

However, the algorithm is incapable of finding the sudden change of the previously

worst path 9 to the length 1. It should be mentioned that in this experiment

minimum pheromone trail limit is violated and therefore δ is decreased to 12.3.

28

0 100 200 300 400 500
0

5

10

15

20

25

 L=1
L=5
L=0.2
L=4.9
L=0.19
L=5
L=0.25
L=1.5
L=1
L=5

Figure 2.9: Finding dynamic K shortest path with equal or nearly equal lengths.
After the 250th iteration the orange plot relating to 1.5 7→ 5 path length change
decreases in reaction to the change and converges to a pheromone value equal to the
path with length 5. The new optimal value of 0.19 which is slightly shorter than
the previous optimal of 0.2 is distinguished. The algorithm is incapable of finding
the sudden change of the previously worst path 9 to the length 1 (red plot).

29

2.3 Summary

In this chapter, we investigated the properties of EigenAnt using an analytical model

originally developed for the related SACO algorithm in (IACOPINO and PALMER,

2012) for analysis of the stability and the impact of pheromone amplification

parameter α. As a result, we improved EigenAnt algorithm by introducing

two independent pheromone amplification parameters in its transition probability

function as well as in the pheromone update dynamic.

We recalled the results of (IACOPINO and PALMER, 2012) regarding the effects

of the parameter α on the SACO algorithm: it either accelerates the speed of the

algorithm or influences the stability of the local optimal solution. In contrast,

we illustrated that the two independent pheromone amplification parameters in

IEigenAnt isolate these two effects so that IEigenAnt is able to maintain stability

of the local optimal solution together with a fast speed of convergence to it. In

a nutshell, IEigenAnt demonstrates a behavior which enables the designer of the

algorithm to tune the convergence versus exploration and the speed of the algorithm

separately. Subsequently, we investigate the conclusions about IEigenAnt in the

application to RN which is an extended model for BCP and MKP modeled as

an N -node BCP which involves constraints both in the stationary and dynamic

environments.

Finally, we proposed a Sorting Improved EigenAnt algorithm with the pheromone

removal parameter dependent on the corresponding pheromone trail distribution.

We showed examples that suggest that SIEigenAnt is capable of finding K shortest

paths between two nodes in both the stationary and dynamic cases.

30

Chapter 3

IEigenAnt for Combinatorial

Optimization Problems

3.1 Introduction

In this Chapter, we investigate the performance of IEigenAnt algorithm applied to

RN and MKP. The first is an investigation for the conclusions about the application

of IEigenAnt to BCP when it is modeled as a graph with number of edges more than

2 at each node in each layer. The latter checks the compatibility of the conclusions

with the BCP with constraint. In addition, we compare the IEigenAnt with its

predecessor EigenAnt and common ACO algorithms applied to the problems. It

should be mentioned that we check the results of each experiment based on both of

the CV and CS points of view.

3.2 Routing Networks

A three stage multi-hop network as in Fig.3.1 is solved by EigenAnt in (JAYADEVA

et al., 2013). Note that, without loss of generality, all edges in the last layer can

be chosen to have length one. Generally speaking, the multi-hop network in Fig.3.1

can be modeled as an N ×O matrix.

The goal of an algorithm that solves a 3×3 RN problem in Fig. 3.1 is to find the

shortest path that starts from the node 1 and ends in the node 11 , and takes

three hops from the starting node 1 through the intermediate nodes in layers

{1, 2, 3} until it gets to the destination node 11 .

31

1

2

3

4

5

6

7

8

9

10

11

7

7

9

3

9

5

7

10

5

6
1

2

9

85

9

10

4

7
1

6

1

1

1

Figure 3.1: A Routing Network of size 3× 3

3.2.1 IEigenAnt Application to RN

Solution Construction

One ant at each iteration constructs a solution from the source node 1 to the final

node 11 (Fig.3.1).

As in the simple two node case, each pheromone trail corresponds to an edge of

the graph in Fig.3.1. Initial pheromone values for each edge are chosen to be equal

to the length of the corresponding edge as suggested in (SHAH, 2011) in order to

initially make bad paths preferable to the ants and, thus to make convergence more

difficult. At each node of the layer i, an ant chooses the outgoing edge j from the

O possible choices with the following general transition probability function:

Pij (α1) =
τα1ij∑O
l=1 τ

α1

ij

(3.1)

Generally speaking, each ant in the N×O RN has O edges to choose via roulette-

wheel selection, from the first layer to the N th layer.

Cost Evaluation

The cost of the rth constructed solution is evaluated by summing the length of the

edges that form the solution from the first to the N th layer (Lr =
∑N

l=1 dl), where

dl is the length of the edge selected at the lth layer.

Pheromone Update

At each iteration, the pheromone trails relating to the edges of the constructed

solution are updated successively. The following dynamic is for IEigenAnt

32

pheromone update of each edge x ∈ {1, · · ·O} at the layer j for the rth path:

τjx (t+ 1) = (1− ρ) τjx (t) +

(
Q

Lr

)
Pjx (α2) (3.2)

where Pjx (α2) =
τα2

jx
∑O

l=1
τ
α2

jl

.

Finding the Final Result

In the CS point of view, the final path is constructed by selecting each edge based on

the maximum pheromone trail at each layer from the source node to the destination

node. In the CV point of view, the path with the smallest evaluated cost to date is

saved.

3.2.2 Experimental Results

We generate a 10×10 RN randomly with edges lengths in the range of [1 100]. First,

we compare EigenAnt algorithm results with different pheromone removal parameter

values of ρ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. It should be mentioned that all

the experiments in this Subsection are done 30 times. We run each algorithm for

the 10 × 10 RN model until 20000 cost evaluations take place. Also, we set the

scaling parameter Q = N = 10. Fig. 3.2 and Fig. 3.3 illustrate the boxplots of

the experiments in the CV and CS points of views, respectively. The mean of each

experiment is marked using the symbol ♦. Standard Deviation σ of each experiment

is also shown in the figures. It can be seen from the figures that the results from the

CV point of view are better, as expected, due to the weaker convergence condition.

Fig. 3.2 depicts the complete dominance of parameter ρ = 0.1 for the CV point of

view with the mean cost of 67.13. Fig. 3.3 depicts the dominance of ρ = 0.1 for the

CS point of view with the mean cost of 77.23 while the use of ρ = 0.2 illustrates a

risky behavior that has three failures which causes its mean increase to 79.26 even

though it has the best median. Besides, the SD of EigenAnt with ρ = 0.1 through

the CS point of view (σ = 7.35) emphasizes the dominance of this type of EigenAnt

algorithm.

Then, we apply the IEigenAnt algorithm to 10 × 10 RN problem. We test all

the 8 cases of IEigenAnt in a way that whenever the parameters α1 or α2 are bigger

or smaller than one, it is half less or half greater than one(i.e. α1 or α2 < 1 7→

α1 or α2 = 0.5 and α1 or α2 > 1 7→ α1 or α2 = 1.5). Fig. 3.4 and Fig.

3.5 demonstrate the boxplots of the experiments related to all the 9 conclusions

drawn about IEigenAnt in the CV and CS points of view, respectively. It should be

mentioned that we used ρ = 0.1 due to the best result achieved for the pheromone

33

65

70

75

80

85

90

95

100

105

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ

C
os

t

mean

8.627.759.668.347.026.076.045.192.95σ=

Figure 3.2: EigenAnt comparison for CV as the pheromone removal parameter varies
from 0.1 to 0.9. As is usual for box plots, the whiskers represent the quartiles, and
the red crosses the outliers, while we have added the means (shown as diamonds)
and the numerical values of the SD across thirty runs for each parameter settings
(row of numbers at the top of the plot).

34

65

70

75

80

85

90

95

100

105

110

115

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ

C
os

t

 mean

σ= 7.35 11.34 11.71 12.4910.31 9.05 12.05 9.93 9.31

Figure 3.3: EigenAnt comparison for CS as the pheromone removal parameter varies
from 0.1 to 0.9. As is usual for box plots, the whiskers represent the quartiles, and
the red crosses the outliers, while we have added the means (shown as diamonds)
and the numerical values of the SD across thirty runs for each parameter settings
(row of numbers at the top of the plot).

35

60

80

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8 9
IEigenant type

C
os

t

mean

σ= 2.95 1.47 4.44 13.15 14.82 14.1 27.92 33.59 24.84

Figure 3.4: EigenAnt (the first box plot) compared with IEigenAnt (the second box
plot to the ninth) for CV with pheromone removal parameter ρ = 0.1. IEigenAnt
types are numbered associated with the conclusions from the Chapter 2 as follows:
1 (α1 = 1, α2 = 1),2 (α1 < 1, α2 = 1),3 (α1 > 1, α2 = 1),
4 (α1 < 1, α2 < 1),5 (α1 = 1, α2 < 1),6 (α1 > 1, α2 < 1),
7 (α1 < 1, α2 > 1),8 (α1 = 1, α2 > 1),9 (α1 > 1, α2 > 1)
As is usual for box plots, the whiskers represent the quartiles, and the red crosses
the outliers, while we have added the means (shown as diamonds) and the numerical
values of the SD across thirty runs for each parameter settings (row of numbers at
the top of the plot).

removal value for the EigenAnt application in the previous experiments. The first

box plot in each of the figures is related to the first conclusion which is about the

original EigenAnt. It can be seen that EigenAnt outperforms all other IEigenAnt

types except for the second one which is with α1 = 0.5 and α2 = 1. The theoretical

conclusions in Chapter 2 explained that the second type of IEigenAnt converges to

the local optimal solution with a faster speed than the EigenAnt. Thus, this type

of IEigenAnt outperforms EigenAnt verifying the theoretical expectations.

Fig. 3.4 and Fig. 3.5 also depict the major dominance of IEigenAnt algorithms

with α2 = 1 over those with α 6= 0 is noticeable. We perform an empirical analysis

of pheromone removal parameters ρ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} for

the IEigenAnt algorithms with α2 = 1 and different values of parameter α1 =

{0.1, 0.2 . . .1.5}. Considering 15 cases of IEigenAnt algorithm and 9 pheromone

36

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9
IEigenant type

C
os

t

mean

σ= 7.35 4.89 9.31 22.23 28.88 27.02 63.31 56.13 39.23

Figure 3.5: EigenAnt (the first box plot) compared with IEigenAnt (the second box
plot to the ninth) for CS with pheromone removal parameter ρ = 0.1. IEigenAnt
types are numbered associated with the conclusions from the Chapter 2 as follows:
1 (α1 = 1, α2 = 1),2 (α1 < 1, α2 = 1),3 (α1 > 1, α2 = 1),
4 (α1 < 1, α2 < 1),5 (α1 = 1, α2 < 1),6 (α1 > 1, α2 < 1),
7 (α1 < 1, α2 > 1),8 (α1 = 1, α2 > 1),9 (α1 > 1, α2 > 1)
As is usual for box plots, the whiskers represent the quartiles, and the red crosses
the outliers, while we have added the means (shown as diamonds) and the numerical
values of the SD across thirty runs for each parameter settings (row of numbers at
the top of the plot).

37

removal parameters for each case, we have the total 15 ∗ 9 = 135 algorithms to

experiment. We experiment each algorithm 30 times and all other parameters and

initial values are set the same as the previous experiments. Table 3.1 demonstrates

the mean and SD of the best results and the associated pheromone removal

parameter ρ for each of the IEigenAnts with different parameters α1 from CV and

CS points of view.

α1 ρ of Best CV Best CV Result ρ of Best CS Best CS Result

0.1 0.9
Mean= 66

0.9
Mean=74.43

SD=2.02 SD=5.73

0.2 0.5
Mean= 65.87

0.8
Mean=73.87

SD=1.81 SD=5.27

0.3 0.3
Mean= 66

0.5
Mean=73.8

SD=2.16 SD=7.72

0.4 0.2
Mean= 65.93

0.2
Mean=73.2

SD=1.57 SD=6.99

0.5 0.2
Mean= 66.2

0.4
Mean=71.37

SD=1.83 SD=5.5

0.6 0.3
Mean= 66.47

0.3
Mean=74.73

SD=2.19 SD=6.17

0.7 0.1
Mean= 66.47

0.2
Mean=75.6

SD=2.91 SD=5.86

0.8 0.1
Mean= 67.03

0.1
Mean=74.1

SD=3.19 SD=7.69

0.9 0.1
Mean= 68.1

0.2
Mean=75.8

SD=4.91 SD=9.51

1 0.1
Mean= 67.13

0.1
Mean=77.23

SD=2.96 SD=7.35

1.1 0.1
Mean= 68.7

0.2
Mean=77.9

SD=3.85 SD=10.06

1.2 0.1
Mean= 69.33

0.2
Mean=78.27

SD=4.44 SD=6.26

1.3 0.1
Mean= 69.33

0.2
Mean=79.57

SD=4.4 SD=9.69

1.4 0.1
Mean= 69.87

0.1
Mean=79.53

SD=4.57 SD=10.35

1.5 0.1
Mean= 72.93

0.1
Mean=83.93

SD=5.21 SD=7.41

Table 3.1: Statistical analysis of IEigenAnt with respect to 0 < α1 ≤ 1.5 and ρ

From Table 3.1, we notice that IEigenAnt with α1 = 0.2 and ρ = 0.5

demonstrates the best performance from the CV point of view. Moreover, the

IEigenAnt with α1 = 0.5 and ρ = 0.4 demonstrates the best performance from

the CS point of view. It can be noticed that the CV point of view has better results

than the CS which makes it preferable unless the application of the problem requires

38

0

0.5

10 0.5 1 1.5

60

70

80

90

100

110

120

130

140

150

160

ρ

α
1

M
ea

n
C

os
t

Figure 3.6: Illustration of IEigenAnt parameter analysis for CV. The parameter α2

is set to 1 in order to guarantee the convergence of system to local optima while α1,
associated with the y axis, varies from 0.1 to 1.5 and ρ, associated with the x axis,
is tested with the value varying from 0.1 to 0.9 for each choice of α1. The z axis
depicts the mean value of 30 experiments for each case while the star point depicts
the optimal parameter tuning.

the CS point of view. Furthermore, the advantage of decoupling the stability and

convergence tuning can be noticed from Table 3.1 because generally the smaller

the α1 is the better performance can be expected. Besides, the worse result of the

algorithm in case of α1 > 1 than the α1 < 1 is also noticeable. EigenAnt has

performance inferior to IEigenAnt2 (α1 < 1) except for the case with α1 = 0.9 from

the CV point of view. The worsening performance of the IEigenAnt algorithm with

the increase of α1 verifies that the theoretical analysis given in Chapter 2. Fig. 3.6

and Fig. 3.7 illustrate the 3D plot of mean value empirical parameter analysis of

IEigenAnt with respect to α1 and ρ from the CV and CS points of view, respectively.

The marked points at each figure depict the optimal parameter values.

Next, we compare IEigenAnt and EigenAnt with ACO algorithms. The

39

0

0.2

0.4

0.6

0.8

1

0
0.5

1
1.5
50

100

150

200

250

ρ

α
1

M
ea

n
C

os
t

Figure 3.7: Illustration of IEigenAnt parameter analysis for CS. The parameter α2

is set to 1 in order to guarantee the convergence of system to local optima while α1,
associated with the y axis, varies from 0.1 to 1.5 and ρ, associated with the x axis,
is tested with the value varying from 0.1 to 0.9 for each choice of α1. The z axis
depicts the mean value of 30 experiments for each case while the star point depicts
the optimal parameter tuning.

40

parameter settings and number of cost evaluations are the same as previous cases for

IEigenAnt; however, in order to make an allowance for ACO algorithms we run them

until 40000 cost evaluations take place. We use the optimal parameters chosen from

the previous experiments for EigenAnt and IEigenAnt namely, α1 = 0.2, α2 = 1 and

ρ = 0.5 for IEigenAnt, from CV point of view. For the CS case, we use α1 = 0.5,

α2 = 1 and ρ = 0.4. Also, ρ = 0.1 is used for the EigenAnt experiments from both

the CV and CS points of view. The ACO algorithms are as follows:

1. ACSh: We choose ACS with the parameters suggested in (DORIGO and

GAMBARDELLA, 1997) (i.e. ρ = 0.1, β = 2, q0 = 0.9, Υ = 0.1 in (Eq.

(1.5))). Also, Lnn in (Eq. (1.6)) is the cost of a path constructed through the

greedy choice of each edge from the source to the destination node. We set the

heuristic ηij the same as Eq. (1.1) inversely proportional to each edge length.

Finally, 10 ants construct the solutions at each iteration.

2. ACS1: As suggested in (MONTEMANNI et al., 2005), we use a transition

probability function similar to IEigenAnt; without heuristics. We use the q0

parameter as of ACS algorithms, all other parameters are set as in the previous

case and α = 1.

3. ACS0.5: We use the ACS algorithm as the previous case with α = 0.5 in

order to check the performance of the algorithm with a smaller α.

4. ASh: We apply AS algorithm with a heuristic similar to the one used for

ACS. The parameters in AS are those suggested in (DORIGO et al., 1996)

(Q = 10, ρ = 0.5, α = 1, β = 5). Moreover, 10 ants construct solutions at

each iteration.

5. SACO: We apply SACO algorithm with ρ = 0.1 and α = 1.

We ran the above ACO algorithms 30 times until 40000 cost evaluations take

place. Fig. 3.8 demonstrates the comparison of IEigenAnt with ACO algorithms

from the CV point of view in which the superiority of IEigenAnt algorithm is

noticeable. It should be mentioned that the ACS with heuristic and SACO had

a poor performance to such an extent that we exclude them from Fig. 3.8. Fig.

3.9 illustrates the comparison of the algorithms from the CS point of view. It can

be seen from the Fig. 3.9 that ACS algorithms without heuristic demonstrate a

competitive performance with the IEigenAnt from the CS point of view.

41

65

70

75

80

85

90

95

100

105

110

115

Eig IEig ACS1 ACS0.5 ASh

C
os

t

 mean

2.96 8.435.561.81 10.33σ=

Figure 3.8: EigenAnt with ρ = 0.1 (the first box plot), IEigenAnt with the optimal
parameter tuning (the second box plot) are compared with other ACO algorithms
including ACS without heuristic that has the parameter choices of α1 = 1 and
α1 = 0.5 (the third and the fourth box plots, respectively) and AS algorithm with
heuristic (the last box plot) for CV. As is usual for box plots, the whiskers represent
the quartiles, and the red crosses the outliers, while we have added the means
(shown as diamonds) and the numerical values of the SD across thirty runs for each
parameter settings (row of numbers at the top of the plot).

42

60

80

100

120

140

160

180

Eig IEig ACS1 ACS0.5 ASh

C
os

t

mean

5.56 19.317.35 5.5 8.43σ=

Figure 3.9: EigenAnt with ρ = 0.1 (the first box plot), IEigenAnt with the optimal
parameter tuning (the second box plot) are compared with other ACO algorithms
including ACS without heuristic that has the parameter choices of α1 = 1 and
α1 = 0.5 (the third and the fourth box plots, respectively) and AS algorithm with
heuristic (the last box plot) for CS. As is usual for box plots, the whiskers represent
the quartiles, and the red crosses the outliers, while we have added the means
(shown as diamonds) and the numerical values of the SD across thirty runs for each
parameter settings (row of numbers at the top of the plot).

43

3.3 Multidimensional Knapsack Problem

The multidimensional knapsack problem is an NP-hard subset problem which has

been studied for its wide range of applications relating to distributed systems

(LAHAMI et al., 2012), allocation problems (DUENAS et al., 2014) and cognitive

radio networks (SONG et al., 2008). A set of N items with profits vj > 0 and Z

resources with capacities Wz > 0 are given. Each item j consumes an amount of

wzj ≥ 0 from each resource z. The 0 − 1 decision variables xj indicate which item

are selected. The goal is to choose a subset of items with maximum total profit.

Selected items must, however, not exceed resource capacities; this is expressed by

the knapsack constraints. The MKP is formulated as follows:

max

(
N∑

j=1

xj .vj

)
(3.3)

N∑

j=1

xj .wzj < Wz (3.4)

x ∈ {0, 1}

z ∈ {1, 2, . . . , Z}

j ∈ {1, 2, . . . , N}

In (KE et al., 2010; LEGUIZAMON and MICHALEWICZ, 1999), MKP is

modeled as a graph in which each ant k drops pheromone on the nodes corresponding

each item j. In (FIDANOVA, 2002), the MKP is modeled as a complete graph in

which two edges connect each pair of nodes in order to illustrate the consecutive

order of the selected items. Each ant drops pheromone on the edge corresponding

the order of selection between the items i and j. In (ALAYA et al., 2004), one edge

connects each item i to the item j so that the order of selection is not important in

the process of dropping pheromones by the ants. The mentioned types of modeling

have a graph-based format in which all the items are considered by each ant from

every step of the solution construction phase. Hence, the violation of constraints is

checked before each step of the solution construction phase.

In order to use the IEigenAnt algorithm, which proved promising for the RN

problem, we choose to model MKP as a BCP. Among the works done in the area

of ACO application to MKP, the paper (KONG et al., 2008) modeled MKP as a

BCP depicted in Fig. 3.10. Each pheromone trail τjx corresponds to choosing the

item j at the related layer number j = {1 · · ·N} through the edge with x = 1,

or not choosing the item j through the edge with x = 0. In contrast with graph-

based modelings, the ants do not consider all the items at each step of the solution

construction phase in BCP. Since the order of checking each item is predefined in

44

S 1 2 Nτ11

τ10

τ21

τ20

τN1

τN0

Figure 3.10: A BCP model for an MKP with N items

BCP, the violation of constraints can not be checked before each step of the solution

construction phase. In other words, in a graph-based modeling, you have N items

from which you pick item j and decides to select or not select the item, while in

BCP modeling you have all the N items already sorted and based on this order you

check which item to choose or not. The former has much freedom of exploration and

complexity while the latter has less freedom of exploration and is simpler. Thus,

the use of constraint handling techniques is necessary in modeling MKP as BCP

(COELLO, 2002; MEZURA-MONTES and COELLO, 2011).

3.3.1 Constraint Handling

In (KONG et al., 2008), a repair algorithm that modifies item choices until

constraints are satisfied suggested in (CHU and BEASLEY, 1998) is used as a

constraint handling technique. The other possible constraint handling technique for

the application of IEigenAnt algorithm applied to MKP modeled as BCP is penalty

function (COELLO, 2002; MEZURA-MONTES and COELLO, 2011). First, we

explain the application of IEigenAnt to MKP with the repair algorithm used in

(KONG et al., 2008). Then, we explain the application of IEigenAnt to the MKP

with penalty function.

Repair Algorithm

In order to initiate the repair algorithm, the items should be resorted and

renumbered according to the decreasing order of their pseudo-utility value. The

pseudo-utility value is calculated through surrogate relaxation method introduced

in (PIRKUL, 1987). The surrogate relaxation method is the simplification of the

problem into a single constraint problem as follows:

N∑

j=1

(
Z∑

z=1

azwzj

)
xj ≤

Z∑

z=1

Wz (3.5)

where az is the surrogate multiplier.

Surrogate multipliers are determined by solving the relaxed MKP (i.e. variable

x can take any value ∈ [0, 1]) by linear Programming and using the values of the

45

dual variable as surrogate multipliers. Then, the pseudo-utility value is calculated

as follows:

uj =
vj∑Z

z=1wzazj
(3.6)

The items are then sorted in decreasing order based on their pseudo-utility values

uj. It should be mentioned that the above procedure is used in (BRANKE et al.,

2006) with the title of real valued representation with weight coding.

An ant constructs its solution at each iteration by defining the value of x = {0, 1}

at each layer j from 1st to the N th(i.e. selecting or deselecting the 1st to the N th

corresponding item). The transition probability function is calculated at each layer

j separately as follows:

Pjx =
τα1

jx

τα1

j0 + τα1

j1

(3.7)

After construction of each solution, the feasibility of the solution is checked. In

case of an infeasible solution, the repair algorithm takes charge. The repair algorithm

in (KONG et al., 2008) is inspired from (CHU and BEASLEY, 1998) in which it

has two phases: DROP and ADD. In the first phase, each bit of the solution string

is examined in increasing order of pseudo-utility uj and each bit with the value of

one is changed to zero until the solution becomes feasible. In the second phase, the

reversion process of examining each bit in decreasing order of uj takes charge. A

bit changes from zero to one as long as feasibility is not violated. Having executed

the repair algorithm, the cost of the solution r is evaluated. The shortcoming of

repair method is its time complexity because the procedures of ADD and DROP

are time consuming attributed to the increase in the number of function evaluation

they impose. Moreover, the repair method has a weak exploration behavior because

the infeasible space would not be searched.

Before evaluating the solution cost, we should observe that MKP is a maximum

problem while IEigenAnt is designed to find minimum values. Thus, MKP is recast

as a minimum value problem. Since in (3.3), the goal is to maximize the profit of

selected items xj ; inversely minimizing the profits of unselected items 1 − xj leads

to the following minimization problem:

minf (x) =

(
N∑

j=1

vj . (1− xj)

)
(3.8)

46

Thus, the evaluated cost is the summation profits of the unselected items (Lr =

f (x)). Then, the pheromone update phase takes charge in which at each layer j the

following pheromone update takes place for the edge x associated with the solution

r:

τjx (t+ 1) = (1− ρ) τjx (t) + (Q/Lr)
τα2

jx (t)

τα2

j0 (t) + τα2

j1 (t)
(3.9)

Finally, the result associated with the CV point of view is the solution with the

best-to-date evaluated cost. Furthermore, the result associated with CS point of

view is the solution constructed from the greedy choice of each edge x at the layer

j based on the value of corresponding pheromone trail τjx.

Penalty Function

The solution construction is the same as the previous constraint handling technique

except for the repair algorithm that is not used in the penalty function method. In

other words, the constructed solution might be infeasible so that the exploration

also takes place in the infeasible region. However, the cost evaluation of IEigenAnt

application to MKP with penalty function constraint handling technique is different

from the previous repair method. In the penalty function method the constraint

problem is transformed into an unconstrained problem by augmenting the objective

function f (x) as follows:

φ (x) = f (x) + Ω (x) (3.10)

where φ (x) is the expanded objective function to be optimized, and Ω (x) is the

penalty value (MEZURA-MONTES and COELLO, 2011). The evaluated cost is

also the expanded objective φ (x).

We propose to calculate the penalty Ω (x) as follows:

Ω (x) =

Z∑

z=1

λz max (0, µz)
ζ (3.11)

where λ is a penalty factor, ζ is a penalty amplification parameter and µz is the

violation amount of a constraint z.

Various methods for defining penalty factor λ have been suggested. The penalty

factor should be selected in such a way that it generates feasible solutions while

maintaining a sufficient exploration behavior. Choosing a penalty factor that is too

47

large always leads to feasible solutions; however, the search of the algorithm could

be limited to the interior of the feasible region so that the boundaries of the region

could be missed. On the other hand, choosing a penalty factor that is too small

could lead to an infeasible solution. An ideal penalty factor λ generates the feasible

solutions frequently while it sometimes generates infeasible solutions so that the

algorithm can search the boundaries more accurately.

Generally speaking, three approaches for defining the penalty factor are

suggested(COELLO, 2002; MEZURA-MONTES and COELLO, 2011):

1. Static Penalty: In this approach, the penalty factors remain constant during

the algorithm. The main drawback of this approach is poor generalization (i.e

the values suitable for one problem might be unsuitable for another one).

2. Dynamic Penalty: In this approach, the penalty factors are dependent on

time t. Normally, they increase over time. In spite of claims about the out-

performance of dynamic penalty approach over the static, in practice such

advantages have not been observed (COELLO, 2002).

3. Adaptive Penalties: In this approach, the penalty factors change by using

a feedback from the search process. However, some additional parameters

are added to the problem in order to apply the feedback. Those additional

parameters introduce the tuning challenges.

Discussion

Repair method is not suitable for the MKP problems with large number of items

because the number of cost evaluations would soar up through the ADD and DROP

procedures in the repair algorithm; thus, in (KONG et al., 2008) the experiments

are only done for problems with 100 items. Adaptive and dynamic penalty methods

are experimented with and found to have similar performance with static method

in (ALI et al., 2014; COELLO, 2002; MOHAMMADI et al., 2015). As a result the

static penalty function is found to be suitable for solving MKP with IEigenAnt.

We propose a novel static penalty approach for the IEigenAnt application to

MKP in which it performs competitively for different benchmarks of MKP. First,

we normalize the constraint violation amount µz as follows:

yz =

∑N
j=1wzjxj −Wz

Wz

(3.12)

µz = max (0, yz) (3.13)

48

As a result, the expanded objective function φ is rewritten as follows:

φ =
N∑

j=1

vj. (1− xj)

(
1 +

Z∑

z=1

λzµz

)
(3.14)

The recipe for defining penalty factors λz consists of normalization of each

constraint based on its maximum limit. The equation for normalization is as follows:

y =
Z∑

z=1

Wz (3.15)

χz =
Wz

y
(3.16)

The idea is to set higher penalty factors λz to the constraints with smaller

constraint capacity Wz. In order to do so, constraints are sorted based on their

capacity Wz in an ascending order while χz is sorted in a descending order. As a

result, the higher value of χ is set to the constraint with lower capacity. Finally,

a scaling parameter ν is multiplied by each χ from which the penalty factor λ is

formed. The scaling parameter value depends on the number of constraints and the

constraint tightness(CHU and BEASLEY, 1998). It should be mentioned that the

parameter ζ in (3.11) is set to one.

The pheromone update phase is the same as the previous repairing method

except for the parameter Lr in (3.9) is usually chosen to be equal to evaluated cost

φ. However, we use the following value for Lr which is suggested in (ALAYA et al.,

2004):

Lr =
1

1 + φ− Lgb

(3.17)

where Lgb is the best-to-date evaluated cost.

The final results in CV and CS points of view are calculated in the same way

as the previous method. The preliminary experiments demonstrate that the final

feasible solution for CS point of view is not always guaranteed; hence, we only

consider CV point of view in subsequent experiments. Subsequently, we will apply

IEigenAnt to the MKP benchmarks with 500 items and 5 constraints using the novel

static penalty function as the constraint handling method.

49

3.3.2 Avoiding the Stagnation Problem

Pheromone trails on a path not included in the current solution tends to converge

to zero (JAYADEVA et al., 2013). As soon as a pheromone trail on a given path

becomes zero, there is no chance for the RWS to choose that path as a component of

future solutions. Unfortunately, such paths might belong to a better solution which

has not been discovered yet. Therefore, the algorithm could stagnate in a sub-

optimal solution. Three methods have been suggested in the literature for escaping

from this type of stagnation. The first one is an ad-hoc local search changing a

certain number of random indices of global best solution tour for a certain number

of times in each iteration (KONG et al., 2008). This method is completely based

on chance and increases the time complexity too much. Another method is to

reinitialize the pheromone concentrations before they reach zero (KONG et al.,

2008). This is also problematic as the evolution of concentration is forgotten, the

program continues as if it had been completely reinitialized.

The third alternative is the use of a Max-Min method for controlling the

pheromone concentrations which means to check each pheromone concentration so

that it neither becomes larger than a maximum limit nor smaller than a minimum

one. Whenever any pheromone trail violates the minimum or maximum limit, its

value should be replaced by the relative minimum or maximum limit value. This

method is introduced in (STÜTZLE and HOOS, 2000) as Max-Min ACO. In order

to escape the stagnation better, the minimum pheromone value is suggested to

change dynamically (KE et al., 2010). In the subsequent experiments we check the

violations of pheromone limits before the dynamical update. Besides, the minimum

pheromone limit changes after passing predefined numbers of iterations.

3.3.3 Experimental Results

In this Subsection, the results of the algorithm are compared with the previously

proposed ACO algorithms applied to the benchmarks extracted from OR library

(BEASLEY, 1990).

In all the simulations, parameters are chosen as follows:

ρ = 0.001

β = 520×N

α1 = 0.3

α2

The simulations are done 30 times for each of the OR benchmark problems.

50

Each maximum capacity Wz is equal to a percentage of the total object weight in

the constraint z. This percentage is called tightness ratio (CHU and BEASLEY,

1998). The first 10 problems are with the tightness ratio of 25%, the second 10

problems are with the tightness ratio of 50% and the last 10 problems are with 75%

of the tightness ratio.

Maximum pheromone limit value is set to 3000, 4000 and 5000 for benchmarks

with tightness ratios of 25%,50% and 75%, respectively. Furthermore, the minimum

limit is initially set to 2×10−10. The order in which minimum pheromone limit value

is changed after every 1800th of iterations is demonstrated in table 3.2. In the table

3.2, the order of minimum pheromone limit increase up to 24th (24× 1800 = 43200)

multiplication is demonstrated in the Table.

Table 3.2: Minimum Pheromone limit change order

IN 1 2 3 4 5 6
PMLV 2× 10−9 2× 10−10 2× 10−9 2× 10−8 2× 10−9 2× 10−8

IN 7 8 9 10 11 12
PMLV 2× 10−7 2× 10−8 2× 10−7 2× 10−6 2× 10−7 2× 10−6

IN 13 14 15 16 17 18
PMLV 2× 10−5 2× 10−6 2× 10−5 2× 10−4 2× 10−5 2× 10−4

IN 19 20 21 22 23 24
PMLV 2× 10−3 2× 10−4 2× 10−3 2× 10−2 2× 10−3 2× 10−2

In table 3.2, IN stands for Iteration Number (IN) after which Pheromone

Minimum Limit Value (PMLV) changes.

Inspired by (KUMAR, 2016), we initialize the pheromone trails to the

corresponding LP relaxation solution multiplied by 100. We solve the LP relaxation

problem through CVX, a package for specifying and solving convex programs

(CVX RESEARCH, 2012; GRANT and BOYD, 2008). In addition, we perform

Randomized Rounding algorithm (RAGHAVAN and TOMPSON, 1987) before the

IEigenAnt in order to have an acceptable solution at the beginning of the algorithm.

Randomized rounding is a technique applicable to solve a class of 0-1 integer

programming problems. The technique consists of solving the problem through

linear programming relaxation. The fractional solution obtained through linear

programming, is rounded to integer value using the probabilistic method called

randomized rounding. The procedure is to choose the value of integer 0 or 1, with

a probability dependent on the calculated fractional value x.

Repeating such a random selection several times is proved to give a result

arbitrarily near the optimal integer programming solution (RAGHAVAN and

TOMPSON, 1987). The procedure is illustrated in the algorithm 1 where ΠI is

a 0 − 1 linear program, with variable xi ∈ {0, 1}, and ΠR is its relaxation, with

51

x̂i ∈ [0, 1].

Algorithm 1 Randomized Rounding algorithm

1: Solve ΠR; Let the solutions x̂ = {x̂1, x̂2, . . . , x̂n} take the values x̂ ∈ [0, 1]n.
2: Set the variables xi randomly to one or zero according to the following rule:

Prob.[x = 1] = x̂i

Reviewing the articles that have worked on OR MKP benchmarks, we can see

that only in (KE et al., 2010) the authors attacked all 500 items benchmarks with

ACO algorithm. In (ALAYA et al., 2004) only 5 benchmarks are tested with ACO

algorithm. Also, in (KONG et al., 2008) the benchmarks with 100 items are already

solved optimally and there is no challenge left in this type of benchmark. However,

they did not try benchmarks of 500 items that are more difficult due to the fact that

they use the repair method with a high time-complexity. Therefore, as mentioned

before, we only concentrate on the type of benchmarks with 500 items using our

novel static penalty function method.

In Table 3.3, hybrid RR-IEigenAnt performance on 500 − 5 MKP benchmark

of 25% tightness ratio is illustrated. Best result, average and SD of EigentAnt are

compared with the dynamical Max-Min ACO used in (KE et al., 2010) with and

without local search and the method in (ALAYA et al., 2004). The dynamical Max-

Min ACO with local search is called as DMMAS+ls and the other as DMMAS. Also,

the result of randomized rounding is showed in Table 3.3 as RR. In all of the tables,

NA stands for not available. As can be seen in Table 3.3, the real competition

is between Hybrid RR-IEigenAnt and dynamical Max-Min ACO. As DMMAS+ls

includes local search, it has better results except in three cases that Hybrid RR-

IEigenAnt algorithm wins over it even though it does not use any local search. In

other cases, IEigenAnt method gives results better than Alaya and a little bit worse

than the Dynamical Max-Min without local search. It should be mentioned that the

penalty function parameter λ is set to 50
5
for this category of benchmark problems.

In Table 3.4 the results of Hybrid RR-IEigenAnt algorithm implementation on

500 − 5 benchmarks using 50% tightness ratio with penalty function parameter of

λ = 50
3
are depicted. As can be seen, the results are reasonably close to the DMMAS

method without local search. In one case of benchmark No.11, the best result of

Hybrid RR-IEigenAnt is better than the DMMAS algorithm without local search.

In table 3.5, the results of Hybrid RR-IEigenAnt algorithm implementation on

500− 5 benchmarks using 75% tightness ratio with the penalty function parameter

of λ = 50 are depicted.

52

Table 3.3: Hybrid RR-IEigenAnt on 500-5 MKP with 25% tightness ratio

No Hybrid RR-IEigenAnt DMMAS+ls DMMAS Alaya RR

00 Best 119926 120148 120116 119893 119504
Mean 119830 120111 120056 119658 119504
SD 25.2 17.3 25.5 NA 0.0

01 Best 117660 117879 117857 117604 117604
Mean 117610 117841 117786 117423 117604
SD 16.8 13.7 27.9 NA 0.0

02 Best 121061 121131 121109 120846 120556
Mean 120970 121097 121043 120622 120556
SD 37.4 17.7 27.2 NA 0.0

03 Best 120695 120804 120785 120534 120298
Mean 120600 120776 120715 120279 120298
SD 102.7 11.3 24.1 NA 0.0

04 Best 122123 122319 122319 122126 121600
Mean 122040 122303 122254 121829 85158
SD 43.9 16.3 29.8 NA 56702

05 Best 121910 122024 121992 NA 121479
Mean 121800 121991 121936 NA 121479
SD 52.8 14.8 23.6 NA 0.0

06 Best 119266 119127 119096 NA 119076
Mean 119170 119093 119043 NA 43445
SD 34.9 12.6 26.4 NA 58074

07 Best 120634 120568 120536 NA 120078
Mean 120520 120525 120472 NA 120078
SD 47.1 20.0 27.6 NA 0.0

08 Best 121436 121575 121551 NA 121003
Mean 121290 121537 121479 NA 121003
SD 54.2 14.4 31.9 NA 0.0

09 Best 120579 120717 120692 NA 120328
Mean 120500 120678 120627 NA 120328
SD 33.7 17.9 25.7 NA 0.0

53

Table 3.4: Hybrid RR-IEigenAnt on 500-5 MKP with 50% tightness ratio

No Hybrid RR-IEigenAnt DMMAS+ls DMMAS RR

10 Best 218289 218428 218400 218201
Mean 218240 218397 218344 218201
SD 35.4 12.9 28.1 0.0

11 Best 221114 221202 221191 220450
Mean 220980 221168 221117 220160
SD 60.06 47.7 30.9 67177

12 Best 217390 217534 217528 217304
Mean 217320 217513 217459 217304
SD 25.5 13.4 30.9 0.0

13 Best 223534 223560 223560 222979
Mean 223360 223547 223499 148460
SD 44.8 11.0 24.6 106770

14 Best 218894 218966 218962 218722
Mean 218790 218956 218905 218722
SD 37.2 11.1 25.9 0.0

15 Best 220425 220530 220496 220078
Mean 220310 220497 220455 220078
SD 45.0 14.1 17.2 0.0

16 Best 219914 219989 219987 219247
Mean 219850 219974 219924 109520
SD 73.6 15.8 31.5 111390

17 Best 218057 218194 218180 217888
Mean 218040 218171 218124 217888
SD 3.5 10.9 25.8 0.0

18 Best 216827 216963 216958 216402
Mean 216780 216948 216904 129660
SD 25.6 111.2 28.6 107670

19 Best 219601 219719 219704 219281
Mean 219570 219694 219657 219281
SD 26.1 8.0 20.6 0.0

54

Table 3.5: Hybrid RR-IEigenAnt on 500-5 MKP with 75% tightness ratio

No Hybrid RR-IEigenAnt DMMAS+ls DMMAS RR

20 Best 295763 295828 295828 295271
Mean 295720 295809 295764 167290
SD 40.5 13.9 20.9 148790

21 Best 308010 308086 308077 307582
Mean 307930 308069 308023 307582
SD 35.1 9.7 25.6 0.0

22 Best 299720 299796 299796 299352
Mean 299680 299781 299738 199500
SD 34.7 13.0 16.5 143480

23 Best 306453 306480 306480 306258
Mean 306320 306467 306427 306150
SD 52.6 9.0 27.5 19.7

24 Best 300262 300342 300334 299914
Mean 300200 300334 300280 299914
SD 38.7 11.2 22.2 0.0

25 Best 302491 302571 302560 302433
Mean 302440 302556 302525 302433
SD 11.3 7.6 19.7 0.0

26 Best 301239 301329 301325 300889
Mean 301180 301317 301278 300889
SD 27.5 7.9 26.7 0.0

27 Best 306349 306454 306422 306157
Mean 306290 306426 306388 306157
SD 25.1 8.5 20.4 0.0

28 Best 302751 302828 302809 302197
Mean 302680 302810 302765 271980
SD 43.2 13.5 22.1 92209

29 Best 299859 299906 299902 299406
Mean 299790 299894 299845 299406
SD 68.3 9.1 23.8 0.0

55

3.4 Summary

In this chapter, we verified the theoretical analysis done for the IEigenAnt algorithm

application to the RN problem as a generalized case of BCP. Besides, we performed

a statistical comparison of IEigenAnt with EigenAnt and ACO algorithm applied to

the RN problem in which IEigenAnt algorithm outperformed the other algorithms.

MKP as a BCP problem with constraint is also checked for the benchmarks with

500 items and 5 constraints. We introduced a novel static penalty function for the

constraint handling technique that is fast enough to cope with 500 nodes in BCP.

Moreover, we hybridized IEigenAnt with RR in order to make the algorithm faster

and used an iteration based dynamic mix-min method for stagnation avoidance.

The results of the IEigenAnt algorithm with fast speed of convergence α1 = 0.3 < 1

and the convergence to local optimal solution α2 = 1 tuning were competitive with

the best ACO algorithm that applied to these benchmarks to date while even in the

two of benchmarks the algorithm found unknown optimal solutions.

Since EigenAnt was not capable of finding the feasible solutions, the theoretical

analysis for IEigenAnt is to some extent verified for BCPs with constraint handling.

Yet, it has not completely verified because IEigenAnt competitive performance is

only achieved with CV point of view while the CS point of view is incapable of

achieving the feasible solutions.

56

Chapter 4

IEigenAnt for Dynamic

Combinatorial Optimization

Problems

A Combinatorial Optimization Problem (COP) might change over time in a way

that its optimal solution changes. This type of COP is entitled Dynamic COP

(DCOP) which is simply defined as a sequence of static COPs linked up by some

dynamic rules. (YANG et al., 2013). Generally speaking, DCOP is in the family of

Dynamic Optimization Problems (DOP) which is an optimization problem within

a dynamic environment. In other words, a DOP is a problem with time dependent

parameters (JIN and BRANKE, 2005).

In this thesis, we focus on DCOPs in which the problem instances change

over time. The frequency and the magnitude of the change are related to the

dynamics. After each change, the optimal solution might change. Tracking the

Moving of Optimum (TMO) is the main goal of an algorithm dealing with DCOPs

(MAVROVOUNIOTIS et al., 2017).

The main challenge in TMO for algorithms applied to DCOPs is that the

algorithms converge to the optimal solution before the change takes place so that

the algorithm stagnates to the old solution (MAVROVOUNIOTIS et al., 2017).

Traditionally, Evolutionary Algorithms (EA) have been applied to solve DOPs

because of their natural adaptive behavior (JIN and BRANKE, 2005). Recently,

Swarm Intelligence (SI) algorithms that also have adaptive features have also been

applied to DOPs. The adaptive feature in EA and SI promotes the knowledge

transfer from the previously optimized environments (MAVROVOUNIOTIS et al.,

2017). Since IEigenAnt is inspired by ACO algorithms, we focus on the works

done in the area of ACO algorithms in solving DCOPs. Two types of ACO

frameworks are used to solve DCOPs: evaporation based and population based

57

(MAVROVOUNIOTIS et al., 2017). We are interested in the former framework

because the EigenAnt uses one ant at each iteration.

In order to tackle the premature stagnation problem, four strategies are adopted

from EA algorithms (JIN and BRANKE, 2005) of which the two following strategies

are applicable to IEigenAnt algorithm 1.

1. Generate diversity after change:

In this strategy, the diversity is generated whenever a change is detected. Re-

initializing the pheromone trails is the basic method to generate diversity

in ACO algorithms; however, all the previous knowledge stored in the

pheromone trails is destroyed in this way (EYCKELHOF and SNOEK, 2002).

Nevertheless, complete resetting of the algorithm is necessary whenever the

magnitude of change is too large (JIN and BRANKE, 2005). Another

alternative is partial resetting whenever a change is detected near the place

that the dynamic change occurs (GUNTSCH et al., 2001) and (EYCKELHOF

and SNOEK, 2002). The downside of this method is that the instant of the

change should also be detected. In (ANGUS and HENDTLASS, 2002), the

pheromone trails in ACS algorithm are normalized whenever the change is

detected. In (EYCKELHOF and SNOEK, 2002), a so-called shaking action

takes place whenever a change is detected by which the pheromone trails τij are

decreased toward a small pheromone value τ0 (τij > τ0) through the following

logarithmic formula:

τij = τ0

(
1 + log

τij
τ0

)
(4.1)

The shaking action is applicable near the change location in big problems.

2. Maintain diversity throughout the run:

The advantage of this strategy is that it does not necessarily require the

detection of the change in order to tackle the stagnation problem. Local

pheromone evaporation is considered as a method to maintain diversity; hence,

EigenAnt is successful in finding the shortest path between two nodes when

the paths’ lengths change over time (JAYADEVA et al., 2013) and in solving

time-linkage 2 dynamic RN (SHAH, 2011). For such a reason, ACS algorithm

1Memory and population based strategies are also suggested; however, they require more than

one ant at each iteration; which is not applicable to EigenAnt algorithm.
2Time-linkage DOP is a type of DOP in which the optimal solutions affect future changes in

the dynamic environment.

58

is also successful dealing with DCOP in (LORPUNMANEE et al., 2007) and

(RANDALL, 2005).

It can be noticed that maintaining diversity is preferable to generating the

diversity because detection of the change is not required. However, one important

factor apparently overlooked by the researchers in the area of DCOPs is that the

results should be stored in order to use the CS point of view. Storing the results to

use in the CV point of view is problematic because the value of the optimal solution

to date might be smaller than that the value of the new optimal solution. Such

a scenario causes the algorithm to miss the new optimal solution in CV point of

view so that change detection is required in order to reset the best-to-date value for

the CV point of view which is in contrast with the motivation of using maintaining

diversity strategy.

The aim of TMO is to find the best solution of the problem at any time. Different

performance measurement methods are suggested to TMO in (MAVROVOUNIOTIS

et al., 2017). We use a performance measurement method that pays more attention

to extreme behavior of the system, in particular, the best that the system can

do in which the final solution before change, either from the CV or CS points of

view, is compared with the global optimum. The global optimum can be measured

by running the algorithm for each state of the problem separately as a stationary

problem.

Some researchers suggested benchmark generators in order to compare different

algorithms on DCOPs. For example, an XOR benchmark generator is suggested

for BCPs in which the problem is not actually changing but flips the values of

constructed solution from 0 to 1 and vice versa by filtering the constructed solution

to different XOR maps over time (YANG, 2003). Hence, the optimal cost is constant

over time. The generality of the benchmark generator is the motivation of using

such a generator; however, the real-world scenario is sacrificed by using such a

benchmark generator. Moreover, the constant optimal cost over time of such a

benchmark generator is incapable of producing some challenging scenarios for an

algorithm dealing with DCOPs. On the other hand, some researchers prefer to

concentrate on benchmarks specified for single problems by defining the dynamics

through switching between static instances. In this method, we can generate change

instances in a controlled manner, as suggested in (UYAR and UYAR, 2009), so

that the algorithm can be tested with different change severities. We use the

latter method of generating dynamics in order to be able to verify the IEigenAnt

performance dealing with different change severity. In the sequel, we test the

performance of IEigenAnt algorithm dealing with DRN when the change time is

not required to be detected. Such a test illustrates the application of CS point of

view in IEigenAnt. Next, we assume that the change time can be detected and

59

perform a comparative analysis between EigenAnt, IEigenAnt and ACO algorithms

designed for such problems. Furthermore, we verify the performance of IEigenAnt

dealing with a more challenging problem of DMKP. Such a problem has rarely been

taken into account by researchers due to the challenges that the change in constraints

imposes on the problem.

4.1 IEigenAnt for DRN

As mentioned before, in (SHAH, 2011) EigenAnt is applied to 10 × 10 dynamic

multi-hop network. The scenario used in (SHAH, 2011) is that the traffic on the

optimal path after some time makes it non optimal and a second path becomes

optimal. Then, after some additional time a third path becomes optimal due to the

accumulated traffic on the second path. Later, the second path becomes optimal

again since its traffic is decreased. Finally, a new optimal path emerges.

The dynamic scenario used in (SHAH, 2011), does not consider the challenging

environmental changes that might occur in a DCOP. Moreover, the experiment done

in (SHAH, 2011) lacks a performance index to evaluate the power of EigenAnt in

adapting to change. Before generating a scenario for DRN, we should review some

concepts in the topic of DOP. A change in a DOP occurs when the domain of

feasible solutions and/or the evaluated cost f is modified during the optimization

process. A change cycle event e is a series of iterations of an algorithm between

two consecutive changes. The first change cycle event begins in the first iteration

of the optimization process and ends one iteration before the first change, while the

last change cycle event begins at the iteration after the last change and ends at the

last iteration of the optimization processes(TINÓS and YANG, 2014). We propose

the following change cycle events for our DRN problem:

1. Original problem: An algorithm faces a problem in its original state.

2. Increased optimal cost: This is a challenging situation for CV point of

view. The problem changes in a way that the new optimal solution has a cost

greater than the older one. For CV point of view, the best-to-date cost should

be reset when a change takes place in order to be able to tackle such a problem

change. In contrast, there would be no requirement of detecting the changing

time from the CS point of view. In (SHAH, 2011), such a case of problem

change is used whenever the optimal path is no longer available due to the

heavy traffic.

3. Emergence of a new optimal solution: This case is also considered in

SHAH (2011) where a new optimal path emerges.

60

Table 4.1: The stationary results of DRN change cycle events from the CV point of
view

Change cycle event number
1 2 3 4 5

IEigenAnt
Mean 65.87 70.37 48 65.87 137.7
Best 65 67 48 65 132

EigenAnt
Mean 67.16 71.87 50.4 67.16 137.23
Best 65 67 48 65 132

ACS
Mean 72.5 73.83 65.06 72.5 143.5
Best 65 67 48 65 132

Table 4.2: The stationary results of DRN change cycle events from the CS point of
view

change cycle event number
1 2 3 4 5

IEigenAnt
Mean 71.37 79.73 50.87 71.37 144.5
Best 65 69 48 65 132

EigenAnt
Mean 78.43 79.77 59.93 78.43 145.23
Best 65 70 48 65 132

ACS
Mean 72.5 84.13 65.06 72.5 143.5
Best 65 67 48 65 132

4. Return of the optimal solution: This case is also once used in (SHAH,

2011). This type of problem change is challenging and often memory-based

strategies are suggested to solve such cases (JIN and BRANKE, 2005).

5. Radical change: This type of change is not considered in (SHAH, 2011). We

generate a high magnitude of change in optimal value. The optimal solution

is of higher cost than the one before change, so that this case also includes the

second type.

We tested each of the change cycle events above for 30 times in a stationary

RN problem with the best parameters of algorithms in algorithm in Chapter 3:

IEigenAnt from CV point of view (i.e. α1 = 0.2 and ρ = 0.5), IEigenAnt from CS

point of view (i.e. α1 = 0.5 and ρ = 0.4), EigenAnt (i.e. ρ = 0.1) and ACS without

heuristic (i.e. ρ = 0.1, β = 2, q0 = 0.9, Υ = 0.1 and α = 0.5). The other settings of

the algorithms are the same as in Chapter 3. The best cost and mean cost of each

algorithm from the CV and CS points of view are shown in Table 4.1 and Table 4.2,

respectively.

It should be mentioned that Dijkstra’s algorithm (DIJKSTRA, 1959) also found

the values equal to the best found values in Table 4.1 for each stationary problem.

We tried to include the typical challenges that might occur in a DOP problem in

the defined change cycle events. We create change dynamics by implementing the

61

mentioned change cycle events in such a way that the problem starts with the first

change cycle event e1 and changes until the 5th change cycle event e5. Furthermore,

we repeat the 5 change cycle events once during the optimization.

The number of consecutive iterations of the algorithm in a change cycle event

e is defined as change cycle duration Due in (TINÓS and YANG, 2014). Other

definitions given in (TINÓS and YANG, 2014) are also valid for the DRN we have

generated:

1. Single time-dependent: The optimal point in change cycle event e is

dependent on optimal point in change cycle event g. Therefore, our DRN

is a single time-dependent DOP because each of the change cycle events is

generated based on the previous ones.

2. Periodic: The optimal point in change cycle event e is equal to the optimal

point in the change cycle event e − g. We generate such a periodic DRN by

repeating all the 5 change cycle events as mentioned before.

3. Last environment dependent: The optimal point in the change cycle event

e is only dependent on the optimal point in the change cycle event e− 1. All

the change cycle event except for the return of the optimal solution are last

environment dependent change cycle events.

Change cycle duration (Due) is an important factor for an algorithm dealing with

a DOP because a large Due can cause the algorithm converge to the optimal path of

the older change cycle event. On the other hand, small Due requires the algorithm

to have a fast reaction to change. Thus, we consider two types of change cycle

events duration in our test. First, we test the algorithms on the DRN problem with

Due = 2400 cost evaluations. Then, we test the algorithms on the DRN problem

with Due = 7200 cost evaluations. Shorter change cycle duration means a lower

frequency of dynamics in (JIN and BRANKE, 2005).

4.1.1 Solving DRN with Undetectable Change Time

We assume that the change time is not detectable; hence, we use CS point of view in

our algorithms. We apply EigenAnt (with ρ = 0.1), IEigenAnt (with α1 = 0.5 and

ρ = 0.4) and ACS without heuristic. We test ACS on DRN because it illustrated

a competitive performance with IEigenAnt in Chapter 3. Moreover, ACS also has

a local evaporation which is promising for DOPs according to (LORPUNMANEE

et al., 2007) and (RANDALL, 2005).

62

Short Change Cycle Duration Test

Fig. 4.1 demonstrates the comparison of EigenAnt, IEigenAnt and ACS algorithms

in the first change cycle event (original problem) of DOP with short change cycle

duration. The second box plots in Fig. 4.1 end with the suffix 6 after the name of

each algorithm relates to the repeat of the first change cycle event. The mean of

each experiment is depicted through ♦. SD (σ) of each experiment is also shown

in this figure. We maintain these features in all the box plot figures. Generally,

the algorithms perform better in the repeating change cycle event for the problems

with shorter change cycle duration because more iterations have passed and the

pheromone trails had more time to converge. Table 4.3 demonstrates the best and

mean value of the test of each algorithm corresponding with each change cycle event.

In order to evaluate the performance of each algorithm for this change cycle event

and the future change cycle events, we can compare the results of each algorithm in

4.3 with its associated results in the stationary problem from the CS point of view

in Table 4.2. Fig. 4.1 and Table 4.3 depict the superiority of IEigenAnt to such an

extent that for the repeat of the original change cycle event (6th change cycle event)

IEigenAnt almost achieved a result as if it is solving a stationary problem. The

mean IEigenAnt achieves for the 6th change cycle event is even better than the mean

EigenAnt achieves for stationary problem of the corresponding change cycle event

from the CS point of view. It is important in the sense that the IEigenAnt adapts

fast enough from the 5th change cycle event of radical change with the mean cost of

212.93 to the 6th change cycle event with the mean cost of 76.93 (5 7→ 6 change).

EigenAnt is successful in performing this adaptation while ACS was unsuccessful

according to Table 4.3.

Fig. 4.2 demonstrates the results dealing with the second change cycle event

and its periodical repeat (7th change cycle event) entitled increased of the optimal

cost. We can notice that even in the first emergence of second change cycle event,

IEigenAnt performs well in spite of the short change cycle duration of the DRN. For

the repeat of the second change cycle event (7th change cycle event), we also note

the small value of σ = 5.89 and the Mean=77.73 which is smaller than the value

79.37 of the stationary solution.

Fig. 4.3 demonstrates the results of the algorithms dealing with the third change

cycle event and its periodical repeat (8th change cycle event) entitled the emergence

of a new optimal solution. It can be noticed from Fig. 4.3, IEigenAnt illustrates

its superiority over the other algorithms. Even in the third change cycle event,

IEigenAnt achieved the best result of 48 which is the best found cost of the stationary

problem (Table 4.3). For the change 2 7→ 3 the mean of IEigenAnt changes as

107.7 7→ 70.83 and for the change 7 7→ 8 the mean of IEigenAnt changes as 77.73 7→

63

100

200

300

400

500

600

700

Eig1 Eig6 IEig1 IEig6 ACS1 ACS6
Algorithms

C
os

t

mean

σ= 68.43 12.19 71.23 6.82 98.85 173.99

Figure 4.1: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CS point of view applied to the DRN with short change cycle duration.
The performance of the algorithms are compared for change cycle events 1 and the
repeat of change cycle event 1 (denoted 6) assuming that no information is available
about the change time in DRN. The number of each change cycle event is brought
as a suffix to the name of its corresponding algorithm. Thus, for instance, the label
IEig6 refers to the IEigenAnt algorithm applied to the second presentation of change
cycle event 1, which occurs again at the 1 + 5(period of cycle)= 6th presentation.

64

100

200

300

400

500

600

Eig2 Eig7 IEig2 IEig7 ACS2 ACS7
Algorithms

C
os

t

mean

σ= 75.98 11.12 18.21 5.89 86.59 88.01

Figure 4.2: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CS point of view applied to the DRN with short change cycle duration.
The performance of the algorithms are compared for change cycle events 2 and the
repeat of change cycle event 2 (denoted 7) assuming that no information is available
about the change time in DRN. The number of each change cycle event is brought
as a suffix to the name of its corresponding algorithm. Thus, for instance, the label
IEig7 refers to the IEigenAnt algorithm applied to the second presentation of change
cycle event 2, which occurs again at the 2 + 5(period of cycle)= 7th presentation.

65

50

100

150

200

250

300

350

400

450

500

Eig3 Eig8 IEig3 IEig8 ACS3 ACS8
Algorithms

C
os

t

mean

σ= 44.39 12.52 10.17 100.018.5 73.63

Figure 4.3: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CS point of view applied to the DRN with short change cycle duration.
The performance of the algorithms are compared for change cycle events 3 and the
repeat of change cycle event 3 (denoted 8) assuming that no information is available
about the change time in DRN. The number of each change cycle event is brought
as a suffix to the name of its corresponding algorithm. Thus, for instance, the label
IEig8 refers to the IEigenAnt algorithm applied to the second presentation of change
cycle event 3, which occurs again at the 3 + 5(period of cycle)= 8th presentation.

68.9. Therefore, IEigenAnt demonstrates an acceptable reaction to the emergence of

a new optimal solution. The achievement of ACS is also noticeable in the Table 4.3

with the newly found Best result of 40. It should be mentioned that even Dijkstra’s

algorithm applied to the stationary problem of the third change cycle event could

not achieve a solution better than 48 because the solution corresponding with the

value of 40 includes edges with the cost of zero that Dijkstra’s algorithm assumes

them unreachable. EigenAnt performs poorly in this type of change cycle event.

Fig. 4.4 demonstrates the performance of the algorithms dealing with the fourth

change cycle event entitled return of the original state. The IEigenAnt illustrates

superiority and even in the 4th change cycle event we notice that IEigenAnt performs

well. We can notice from Table 4.3 that EigenAnt and IEgenAnt achieve the best

result of 65 in the 4th change cycle event while ACS as incapable of doing so.

Fig. 4.5 demonstrates the performance of the algorithms dealing with the last

change cycle event entitled radical change which is the most challenging dynamical

change to the problem due to its high magnitude of the change. In fact, in (JIN and

BRANKE, 2005) it is suggested to reset the problems dealing with such changes,

which we are ruling out by supposing that the change time is unknown. The

66

50

100

150

200

250

300

350

400

450

500

Eig4 Eig9 IEig4 IEig9 ACS4 ACS9
Algorithms

co
st

mean

34.96 67.83130.146.486.5510.33σ=

Figure 4.4: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CS point of view applied to the DRN with short change cycle duration.
The performance of the algorithms are compared for change cycle events 4 and the
repeat of change cycle event 4 (denoted 9) assuming that no information is available
about the change time in DRN. The number of each change cycle event is brought
as a suffix to the name of its corresponding algorithm. Thus, for instance, the label
IEig9 refers to the IEigenAnt algorithm applied to the second presentation of change
cycle event 4, which occurs again at the 4 + 5(period of cycle)= 9th presentation.

67

150

200

250

300

350

400

Eig5 Eig10 IEig5 IEig10 ACS5 ACS10
Algorithms

C
os

t

mean

42.9761.8552.7148.0416.0218.1σ=

Figure 4.5: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CS point of view applied to the DRN with short change cycle duration.
The performance of the algorithms are compared for change cycle events 5 and the
repeat of change cycle event 5 (denoted 10) assuming that no information is available
about the change time in DRN. The number of each change cycle event is brought
as a suffix to the name of its corresponding algorithm. Thus, for instance, the
label IEig10 refers to the IEigenAnt algorithm applied to the second presentation
of change cycle event 5, which occurs again at the 5 + 5(period of cycle)= 10th

presentation.

IEigenAnt performs worse than the other algorithms in this condition, although

it achieved the best cost of 140 in both of the 5th and 10th change cycle events,

while EigenAnt demonstrates the superiority over other algorithms especially in

the 5th change cycle event. The lower evaporation parameter of EigenAnt ρ = 0.1

contradicts the conclusion from (MAVROVOUNIOTIS and YANG, 2013) in which

it is claimed that the higher magnitude of change, the higher evaporation rate is

needed.

Long Change Cycle Duration Test

We performed the previous experiment for the DRN problem with the change cycle

duration of Due = 7200 cost evaluations in order to compare different algorithms

in case of a DOP with longer change cycle duration (lower frequency of dynamics).

This problem is easier than the previous one with shorter change cycle duration in

the sense that the algorithm has more time to adapt to the change; however, the

stagnation challenge in this case might make the problem more difficult to solve.

Fig. 4.6 demonstrates the comparison of EigenAnt, IEigenAnt and ACS

algorithms in the first change cycle event (original problem) of DOP with long

68

Change Cycle Event Number EigenAnt IEigenAnt ACS

1
Mean= 528.5 Mean= 258.43 Mean=439.23
Best=397 Best= 137 Best=254

2
Mean= 419.83 Mean=107.7 Mean=380.13

Best=238 Best= 80 Best=222

3
Mean= 306.4 Mean=70.83 Mean=205.1
Best=179 Best= 48 Best=87

4
Mean= 119.57 Mean=76.4 Mean=179.6

Best=65 Best= 65 Best=76

5
Mean= 200.1 Mean= 212.93 Mean=243.53
Best=166 Best=140 Best= 148

6
Mean= 88.83 Mean= 76.93 Mean=191.87

Best=65 Best= 65 Best=65

7
Mean= 87.5 Mean=77.73 Mean=108.7
Best=70 Best= 70 Best=69

8
Mean= 81.7 Mean=68.9 Mean=88.77
Best=69 Best= 48 Best=40

9
Mean= 82.63 Mean=76.1 Mean=101.1

Best=65 Best= 65 Best=65

10
Mean= 191.97 Mean= 226.9 Mean=199.37

Best=157 Best=140 Best= 142

Table 4.3: The Mean and Best values of each change cycle event in the application
of EigenAnt, IEigenAnt and ACS to DRN with short change cycle duration and
undetectable change time

change cycle duration. In contrast with EigenAnt and ACS, IEigenAnt has equal

performance for the first and the repeating change cycle event of the sixth due to

the faster convergence speed of IEigenAnt. Table 4.4 exhibits the best and mean

value of the test of each algorithm corresponding with each change cycle event. The

best value is found by IEigenAnt, whereas ACS could not even achieve 65 for the

repeated change cycle event.

Fig. 4.7 demonstrates the results dealing with the second change cycle event

and its periodical repeat (7th change cycle event) entitled increased optimal cost.

The IEigenAnt demonstrates superiority over the other algorithms. For the ACS

algorithm, we note from Fig. 4.7 and Table 4.4 that its performance for the repeated

change cycle event (7th change cycle event) is worse than the second which is in

contrast with the other algorithms and all the previous tests.

Fig. 4.8 demonstrates the results of the algorithms dealing with the third change

cycle event and its periodical repeat. In contrast with the short change cycle

duration, the ACS has superiority over the other algorithms.

Fig. 4.9 demonstrates the performance of the algorithms dealing with the fourth

change cycle event entitled return of the original state. IEigenAnt demonstrates its

superiority and good performance for both of the change cycle events. Again, we

69

50

100

150

200

250

300

350

400

450

Eig1 Eig6 IEig1 IEig6 ACS1 ACS6
Algorithms

C
os

t

mean

5.88 11.191.5910.58.9270.48σ=

Figure 4.6: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CS point of view applied to the DRN with long change cycle duration.
The performance of the algorithms are compared for change cycle events 1 and the
repeat of change cycle event 1 (denoted 6) assuming that no information is available
about the change time in DRN. The number of each change cycle event is brought
as a suffix to the name of its corresponding algorithm. Thus, for instance, the label
IEig6 refers to the IEigenAnt algorithm applied to the second presentation of change
cycle event 1, which occurs again at the 1 + 5(period of cycle)= 6th presentation.

70

60

80

100

120

140

160

180

200

220

Eig2 Eig7 IEig2 IEig7 ACS2 ACS7
Algorithms

C
os

t

mean

4.94 4.89 27.3310.3 7.53 11.22σ=

Figure 4.7: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CS point of view applied to the DRN with long change cycle duration.
The performance of the algorithms are compared for change cycle events 2 and the
repeat of change cycle event 2 (denoted 7) assuming that no information is available
about the change time in DRN. The number of each change cycle event is brought
as a suffix to the name of its corresponding algorithm. Thus, for instance, the label
IEig7 refers to the IEigenAnt algorithm applied to the second presentation of change
cycle event 2, which occurs again at the 2 + 5(period of cycle)= 7th presentation.

71

40

50

60

70

80

90

Eig3 Eig8 IEig3 IEig8 ACS3 ACS8
Algorithms

C
os

t

mean

σ= 10.67 8.59 8.95 12.66 11.8913.01

Figure 4.8: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CS point of view applied to the DRN with long change cycle duration.
The performance of the algorithms are compared for change cycle events 3 and the
repeat of change cycle event 3 (denoted 8) assuming that no information is available
about the change time in DRN. The number of each change cycle event is brought
as a suffix to the name of its corresponding algorithm. Thus, for instance, the label
IEig8 refers to the IEigenAnt algorithm applied to the second presentation of change
cycle event 3, which occurs again at the 3 + 5(period of cycle)= 8th presentation.

72

65

70

75

80

85

90

95

100

105

110

Eig4 Eig9 IEig4 IEig9 ACS4 ACS9
Algorithms

C
os

t

 mean

8.18 5.36 11.0411.15.358.22σ=

Figure 4.9: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CS point of view applied to the DRN with long change cycle duration.
The performance of the algorithms are compared for change cycle events 4 and the
repeat of change cycle event 4 (denoted 9) assuming that no information is available
about the change time in DRN. The number of each change cycle event is brought
as a suffix to the name of its corresponding algorithm. Thus, for instance, the label
IEig9 refers to the IEigenAnt algorithm applied to the second presentation of change
cycle event 4, which occurs again at the 4 + 5(period of cycle)= 9th presentation.

can notice the decrease in the performance of ACS for the repeated change cycle

event (8th change cycle event).

Fig. 4.10 demonstrates the performance of the algorithms dealing with the last

change cycle event entitled radical change. EigenAnt demonstrates its superiority

over the other algorithms in this type of change cycle event. Again, the ACS

algorithm showed decrease of performance in the repeated change cycle event.

In a nutshell, CS point of view is suggested for the DOPs in which the

change detection is not possible. The EigenAnt, IEigenAnt and ACS algorithms

are suggested for such problems due to their acceptable performance from CS

point of view and the local pheromone evaporation feature. However, IEigenAnt

demonstrates superiority in most cases of change severity, except for problems with

radical changes; rather EigenAnt is suggested for such problems. From the results

for the long change cycle duration, we conclude that ACS has a stagnation problem

with this case and IEigenAnt performs well to such an extent that it performs almost

equally well for the first emerging and the periodical repeat change cycle events.

73

150

200

250

300

350

Eig5 Eig10 IEig5 IEig10 ACS5 ACS10
Algorithms

C
os

t

mean

44.2238.5348.4154.0136.78 37.2σ=

Figure 4.10: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CS point of view applied to the DRN with long change cycle duration.
The performance of the algorithms are compared for change cycle events 5 and the
repeat of change cycle event 5 (denoted 10) assuming that no information is available
about the change time in DRN. The number of each change cycle event is brought
as a suffix to the name of its corresponding algorithm. Thus, for instance, the
label IEig10 refers to the IEigenAnt algorithm applied to the second presentation
of change cycle event 5, which occurs again at the 5 + 5(period of cycle)= 10th

presentation.

74

Change Cycle Event Number EigenAnt IEigenAnt ACS

1
Mean= 296.27 Mean= 76.97 Mean=202.93

Best=164 Best= 65 Best=90

2
Mean= 85.97 Mean=75.1 Mean=88.1

Best=70 Best= 67 Best=67

3
Mean= 73.07 Mean=67.83 Mean=59.37

Best=48 Best= 48 Best=40

4
Mean= 76.9 Mean=72.43 Mean=86.67
Best=65 Best= 65 Best=67

5
Mean= 204.7 Mean= 232.2 Mean=204.73
Best=144 Best=160 Best= 142

6
Mean= 78.33 Mean= 72.47 Mean=88.67

Best=65 Best= 65 Best=67

7
Mean= 80.4 Mean=74.7 Mean=89.2
Best=70 Best= 67 Best=67

8
Mean= 74.83 Mean=67.63 Mean=57.5

Best=48 Best= 48 Best=40

9
Mean= 76.47 Mean=71.9 Mean=88.6

Best=65 Best= 65 Best=67

10
Mean= 204.6 Mean= 222.3 Mean=209.07
Best=144 Best=160 Best= 142

Table 4.4: The Mean and Best values of each change cycle event in the application
of EigenAnt, IEigenAnt and ACS to DRN with long change cycle duration and
undetectable change time

4.1.2 Solving DRN with Detectable Change Time

Most works in the area of solving DOPs assume that the change time is detectable

and algorithms are designed on this basis. For the ACO algorithms, CV point

of view, which is known to get better results, can be used since the best-to-date

time can be reset before the change. In addition, other strategies, as explained

previously, can be used before the change, in order to generate diversity after the

change. However, the method used in (EYCKELHOF and SNOEK, 2002) is based

on the location of change which is specifically designed for the TSP; hence, it is not

applicable to DRN. Moreover, the method used in (ANGUS and HENDTLASS,

2002) is not competitive with the algorithms we are using in our experiment.

Thus, we perform an empirical comparison between EigenAnt, IEigenAnt and ACS

algorithm without heuristic. For the ACS algorithm, we update the cost of a path

constructed through the greedy choice of each edge from the source to the destination

node denoted Lnn at each change time. For the EigenAnt (ρ = 0.1) and IEigenAnt

(α1 = 0.2 and ρ = 0.5) we use the optimal parameter setting for the CV points of

view. Other settings are also the same as previous experiments for the DRN.

75

Short Change Cycle Duration

We performed the experiments for the DRN with short change cycle duration of

Due = 2400 cost evaluations with the assumption of detecting the change and

resting the best-to-date cost at each change time.

Table 4.5 exhibits the mean and best values of each algorithm for each of the 10

change cycle events. We can compare the results of each algorithm in 4.3 with its

associated results in the stationary problem from the CV point of view in Table 4.2.

Fig. 4.11 demonstrates the box plots of EigenAnt, IEigenAnt and ACS from CV

point of view applied to the change cycle events 1 and the repeat of change cycle

event 1 (denoted 6) of DRN with detectable change. We can observe the superiority

of EigenAnt and IEigenAnt algorithms over the ACS from Fig. 4.11. In fact, the

adaptability of an algorithm can be interpreted more clearly by observing the change

cycle event 6 (instead of the change cycle event 1) where algorithms should react to

the sudden transition of change cycle 5 7−→ 6. We can observe from the Best value of

Table 4.5 that EigenAnt and IEigenAnt achieved this best value of 65 for the change

cycle event 6. The mean transition of EigenAnt and IEigenAnt are 193.7 7−→ 70.03

and 164.03 7−→ 71.67, respectively. Such a transition together with their small SD

values in Fig. 4.11 demonstrate the fast reaction of the EigenAnt and IEigenAnt to

the change 5 7−→ 6.

Fig. 4.12 demonstrates box plots of the algorithms associated with change cycle

events 2 and the repeat of change cycle event 2 (denoted 7) of the DRN. Both

EigenAnt and IEigenAnt demonstrate superiority over the ACS. We can see that all

the algorithms require more time to be able to react to the change, and therefore

the results for the change cycle event 7 are noticeable in the sense that it gives

information about the reaction of each algorithm to change. From Table 4.5 we

can observe that only IEigenAnt achieved the Best value of 67 (equal to the value

it achieved in the stationary condition). The change from 6 7−→ 7 means that

the optimal path of 65 in the change cycle event 6 is not available anymore while

the algorithm should look for an alternative path with a slightly larger cost. From

the Mean values in the Table 4.5 we can observe the superiority of IEigenAnt over

EigenAnt in this sense (71.17 7−→ 71.67). The mean value 71.67 that IEigenAnt

achieves is better than those which EigenAnt and ACS achieve in their stationary

results (Fig. 4.1).

Fig. 4.13 demonstrates box plots of the algorithms associated with change cycle

events 3 and the repeat of change cycle event 3 (denoted 8) of the DRN. For the

more challenging change cycle event 3, we can see that only IEigenAnt demonstrated

a weak reaction to the change. We can even observe that IEigenAnt once achieved

a path with the cost of 55 which is almost optimal. For the change cycle event 8 we

76

100

150

200

250

Eig1 Eig6 IEig1 IEig6 ACS1 ACS6
Algorithms

C
os

t

mean

20.53σ= 6.37 22.81 5.04 23.23 18.37

Figure 4.11: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CV point of view applied to the DRN with short change cycle duration.
The performance of the algorithms are compared for change cycle events 1 and
the repeat of change cycle event 1 (denoted 6) assuming that the change time is
detectable in DRN. The number of each change cycle event is brought as a suffix to
the name of its corresponding algorithm. Thus, for instance, the label IEig6 refers
to the IEigenAnt algorithm applied to the second presentation of change cycle event
1, which occurs again at the 1 + 5(period of cycle)= 6th presentation.

77

60

80

100

120

140

160

180

200

220

240

260

Eig2 Eig7 IEig2 IEig7 ACS2 ACS7
Algorithms

C
os

t

mean

σ= 21.2830.162.9319.564.4622.23

Figure 4.12: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CV point of view applied to the DRN with short change cycle duration.
The performance of the algorithms are compared for change cycle events 2 and
the repeat of change cycle event 2 (denoted 7) assuming that the change time is
detectable in DRN. The number of each change cycle event is brought as a suffix to
the name of its corresponding algorithm. Thus, for instance, the label IEig7 refers
to the IEigenAnt algorithm applied to the second presentation of change cycle event
2, which occurs again at the 2 + 5(period of cycle)= 7th presentation.

78

40

60

80

100

120

140

160

180

200

220

240

Eig3 Eig8 IEig3 IEig8 ACS3 ACS8
Algorithms

C
os

t

mean

19.3941.727.08σ= 16.1214.08 9.38

Figure 4.13: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CV point of view applied to the DRN with short change cycle duration.
The performance of the algorithms are compared for change cycle events 3 and
the repeat of change cycle event 3 (denoted 8) assuming that the change time is
detectable in DRN. The number of each change cycle event is brought as a suffix to
the name of its corresponding algorithm. Thus, for instance, the label IEig8 refers
to the IEigenAnt algorithm applied to the second presentation of change cycle event
3, which occurs again at the 3 + 5(period of cycle)= 8th presentation.

can also observe the superiority of IEigenAnt. The reaction of IEigenAnt to change

in this change cycle event is so good that although IEigenAnt is incapable of finding

the optimal path of 40 even in the stationary problem; it has a noticeable smaller

mean than the EigenAnt (Table 4.5).

Fig. 4.14 demonstrates box plots of the algorithms associated with change cycle

events 4 and the repeat of change cycle event 4 (denoted 9) of the DRN. Again,

only IEigenAnt is capable of reacting to change in the more challenging change

cycle event 4; however, it does not achieve the best cost of 65 but achieved the best

cost of 67 which is very good comparing with the other algorithms (Table 4.5). For

the change cycle event 9, we observe that all the algorithms react to the change.

However, IEigenAnt demonstrates superiority while ACS has a weak reaction. The

mean value of 67.07 achieved by IEigenAnt (which is smaller than the stationary

results of the EigenAnt and ACS) is noticeable in Table 4.5.

Fig. 4.15 demonstrates box plots of the algorithms associated with change cycle

events 5 and the repeat of change cycle event 5 (denoted 10) of the DRN. The

performance of ACS in reaction to these change cycle events entitled radical change

is improved. We can observer that ACS and IEigenAnt react to the change for the

79

60

80

100

120

140

160

180

Eig4 Eig9 IEig4 IEig9 ACS4 ACS9
Algorithms

C
os

t

mean

σ= 18.8 10.45.74 3.65 26.16 18.5

Figure 4.14: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CV point of view applied to the DRN with short change cycle duration.
The performance of the algorithms are compared for change cycle events 4 and
the repeat of change cycle event 4 (denoted 9) assuming that the change time is
detectable in DRN. The number of each change cycle event is brought as a suffix to
the name of its corresponding algorithm. Thus, for instance, the label IEig9 refers
to the IEigenAnt algorithm applied to the second presentation of change cycle event
4, which occurs again at the 4 + 5(period of cycle)= 9th presentation.

80

140

150

160

170

180

190

200

210

220

Eig5 Eig10 IEig5 IEig10 ACS5 ACS10
Algorithms

C
os

t

mean

σ= 9.53 9.317.619.1912.3212.51

Figure 4.15: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CV point of view applied to the DRN with short change cycle duration.
The performance of the algorithms are compared for change cycle events 5 and
the repeat of change cycle event 5 (denoted 10) assuming that the change time is
detectable in DRN. The number of each change cycle event is brought as a suffix to
the name of its corresponding algorithm. Thus, for instance, the label IEig10 refers
to the IEigenAnt algorithm applied to the second presentation of change cycle event
5, which occurs again at the 5 + 5(period of cycle)= 10th presentation.

change cycle events 5 and 10 with a competitive performance.

Long Change Cycle Duration

Finally, we test the DRN with long change cycle duration of Due = 7200 cost

evaluations with the assumption of detectable change from the CV point of view.

Table. 4.6 exhibits the best and mean value of the algorithms EigenAnt, IEigenAnt

and ACS for such an experiment.

Fig. 4.16 demonstrates the box plots of each algorithm dealing with the change

cycle event 1 and and the repeat of change cycle event 1 (denoted 6). For the

change cycle event 1, IEigenAnt demonstrate its superiority due to its faster speed

of convergence. The reaction to change of IEIgenAnt also demonstrates superiority

over the other algorithms for the change cycle event 6.

Fig. 4.17 demonstrates the box plots of each algorithm dealing with the change

cycle event 2 and and the repeat of change cycle event 2 (denoted 7). IEigenAnt

demonstrates superiority over the other algorithms for the change cycle events 2 and

7. Also, we can observe that all the algorithms react to the change in the change

cycle event 2 since they have more time to react with long change cycle duration.

81

60

80

100

120

140

160

180

200

220

Eig1 Eig6 IEig1 IEig6 ACS1 ACS6
Algorithms

C
os

t

mean

18.4232.383.5112.114.5120.07σ=

Figure 4.16: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CV point of view applied to the DRN with long change cycle duration.
The performance of the algorithms are compared for change cycle events 1 and
the repeat of change cycle event 1 (denoted 6) assuming that the change time is
detectable in DRN. The number of each change cycle event is brought as a suffix to
the name of its corresponding algorithm. Thus, for instance, the label IEig6 refers
to the IEigenAnt algorithm applied to the second presentation of change cycle event
1, which occurs again at the 1 + 5(period of cycle)= 6th presentation.

82

Change Cycle Event Number EigenAnt IEigenAnt ACS

1
Mean= 242.13 Mean= 188.17 Mean= 230.07

Best=197 Best= 127 Best= 178

2
Mean= 177.67 Mean=141.47 Mean= 183.57

Best=115 Best= 92 Best= 128

3
Mean= 150.97 Mean=103.03 Mean= 158

Best=110 Best= 55 Best= 76

4
Mean= 117.5 Mean=85.5 Mean= 112.97

Best=87 Best= 67 Best= 78

5
Mean= 193.7 Mean= 164.03 Mean= 162.83
Best=172 Best=139 Best= 138

6
Mean= 70.73 Mean= 71.17 Mean= 96.4

Best=65 Best= 65 Best=67

7
Mean= 73.03 Mean=71.67 Mean= 93.83

Best=70 Best= 67 Best= 69

8
Mean= 65.3 Mean=51.17 Mean= 84.83
Best=40 Best= 48 Best= 56

9
Mean= 69.1 Mean=67.07 Mean= 87.1
Best=65 Best= 65 Best=65

10
Mean= 153.13 Mean= 149.87 Mean= 149.07

Best=138 Best=137 Best= 137

Table 4.5: The Mean and Best values of each change cycle event in the application
of EigenAnt, IEigenAnt and ACS to DRN with short change cycle duration and
detectable change time

However, the challenge in DRN with long change cycle duration can be observed

from the performance of ACS in which its performance is poorer for the change cycle

event 7 than the 2 since ACS encountered the stagnation problem in the transition

of change cycle 6 7−→ 7.

Fig. 4.18 demonstrates the box plots of each algorithm dealing with the change

cycle event 3 and and the repeat of change cycle event 3 (denoted 8). For the

change cycle event 3, all the algorithms react to the change since they have enough

time to react due to the longer change cycle duration. Moreover, IEigenAnt is

capable of finding the best path of cost 40, hence it demonstrates a significant

superiority over the other algorithms. For the change cycle event 8, we can observe

that all the algorithms have poorer performance than the change cycle event 3 due

to the stagnation problem occurred with longer change cycle duration. Table 4.6

depicts that ACS do not react well to the change due to the stagnation problem

while EigenAnt and IEigenAnt still can cope with this problem, and IEigenAnt

demonstrates superiority over all the other algorithms.

Fig. 4.19 demonstrates the box plots of each algorithm dealing with the change

cycle event 4 and and the repeat of change cycle event 4 (denoted 9). Again we can

observe the stagnation problem due to the poorer performance of IEigenAnt and

83

70

80

90

100

110

120

130

Eig2 Eig7 IEig2 IEig7 ACS2 ACS7
Algorithms

C
os

t

mean

15.3513.413.65 3.28 2.5 3.02σ=

Figure 4.17: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CV point of view applied to the DRN with long change cycle duration.
The performance of the algorithms are compared for change cycle event 2 and
the repeat of change cycle event 2 (denoted 7) assuming that the change time is
detectable in DRN. The number of each change cycle event is brought as a suffix to
the name of its corresponding algorithm. Thus, for instance, the label IEig7 refers
to the IEigenAnt algorithm applied to the second presentation of change cycle event
2, which occurs again at the 2 + 5(period of cycle)= 7th presentation.

84

40

50

60

70

80

90

100

110

120

130

Eig3 Eig8 IEig3 IEig8 ACS3 ACS8
Algorithms

C
os

t

 mean

14.15σ= 16.676.574.4610.567.55

Figure 4.18: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CV point of view applied to the DRN with long change cycle duration.
The performance of the algorithms are compared for change cycle events 3 and
the repeat of change cycle event 3 (denoted 8) assuming that the change time is
detectable in DRN. The number of each change cycle event is brought as a suffix to
the name of its corresponding algorithm. Thus, for instance, the label IEig8 refers
to the IEigenAnt algorithm applied to the second presentation of change cycle event
3, which occurs again at the 3 + 5(period of cycle)= 8th presentation.

85

70

80

90

100

110

120

Eig4 Eig9 IEig4 IEig9 ACS4 ACS9
Algorithms

C
os

t

mean

σ= 13.897.874.073.183.83.89

Figure 4.19: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CV point of view applied to the DRN with long change cycle duration.
The performance of the algorithms are compared for change cycle event 4 and
the repeat of change cycle event 4 (denoted 9) assuming that the change time is
detectable in DRN. The number of each change cycle event is brought as a suffix to
the name of its corresponding algorithm. Thus, for instance, the label IEig9 refers
to the IEigenAnt algorithm applied to the second presentation of change cycle event
4, which occurs again at the 4 + 5(period of cycle)= 9th presentation.

ACS in change cycle event 9 than the change cycle event 4. However, IEigenAnt

still demonstrates superiority for both of the change cycle event 4 and 9. Due to the

stagnation problem occurred in IEigenAnt, EigenAnt demonstrates a competitive

performance with the IEigenAnt in the change cycle event 9 (Table 4.6).

Fig. 4.20 demonstrates the box plots of each algorithm dealing with the change

cycle event 5 and and the repeat of change cycle event 5 (denoted 10). IEigenAnt

does not demonstrate a good reaction to these change cycle events entitled radical

change while ACS demonstrate a significant superiority. Radical change cycle events

are so challenging that it is suggested in (JIN and BRANKE, 2005) to restart the

algorithms; hence IEigenAnt encountered a problem dealing with such a change.

On the other hand, the ACS which is the worst algorithm for all the changes,

demonstrates a great performance with such a change (with the mean almost near

its stationary results).

In summary, we observed from the experience of applying the algorithm to DRN

with detectable change time that IEigenAnt has a noticeable superiority due to its

faster speed and reaction to the change. For the long change cycle duration, we

observed the stagnation problem in all the algorithms, however, IEigenAnt handled

86

130

140

150

160

170

180

190

Eig5 Eig10 IEig5 IEig10 ACS5 ACS10
Algorithms

C
os

t

 mean

σ= 13.69 7.1915.1814.1115.46 7.24

Figure 4.20: Box Plots comparing the results of 30 tests of EigenAnt, IEigenAnt and
ACS from CV point of view applied to the DRN with long change cycle duration.
The performance of the algorithms are compared for change cycle events 5 and
the repeat of change cycle event 5 (denoted 10) assuming that the change time is
detectable in DRN. The number of each change cycle event is brought as a suffix to
the name of its corresponding algorithm. Thus, for instance, the label IEig10 refers
to the IEigenAnt algorithm applied to the second presentation of change cycle event
5, which occurs again at the 5 + 5(period of cycle)= 10th presentation.

the problems in a way that although it had a poor performance in its second

periodical change cycle events than its first periodical change cycle events, the results

of IEigenAnt in the second periodical change cycle events were still competitive with

its corresponding stationary results.

4.2 IEigenAnt for DMKP

Solving DMKP is a challenge because the change to the constraints will make

the feasible solutions infeasible and vice versa. Hence, there are only a few

papers on evolutionary algorithms applied to DMKP (UYAR and UYAR, 2009),

(BRANKE et al., 2006) and (ÜNAL and KAYAKUTLU, 2016). To the best of our

knowledge, only one earlier attacks DMKP with ACO algorithms in (RANDALL,

2005). Moreover, DMKP is also solved with firefly algorithm in (BAYKASOĞLU

and OZSOYDAN, 2014). In (BRANKE et al., 2006), the effect of modeling

the constraint handling technique is also discussed. It is concluded that for the

repair method (entitled real valued representation with weight coding in the paper)

explained in Chapter 3, the pseudo-utility value (Eq. (3.6)) should be calculated

87

Change Cycle Event Number EigenAnt IEigenAnt ACS

1
Mean= 146.67 Mean= 103.43 Mean= 137.27

Best=102 Best= 81 Best= 83

2
Mean= 72.8 Mean= 71.57 Mean= 84.87
Best=70 Best= 67 Best= 67

3
Mean= 54.53 Mean=49.7 Mean= 60.8
Best=40 Best= 40 Best= 40

4
Mean= 68.7 Mean=67.6 Mean= 74.33
Best=65 Best= 65 Best= 65

5
Mean= 154.53 Mean= 168.47 Mean= 146

Best=140 Best=137 Best= 135

6
Mean= 69.23 Mean= 67.57 Mean= 98.53

Best=65 Best= 65 Best=69

7
Mean= 71.8 Mean=71.37 Mean= 92.47
Best=67 Best= 67 Best= 69

8
Mean= 58.93 Mean=52.8 Mean= 83.53
Best=40 Best= 40 Best= 57

9
Mean= 68.23 Mean=67.97 Mean= 85.27

Best=65 Best= 65 Best=65

10
Mean= 153.27 Mean= 168.33 Mean= 143.97

Best=135 Best=142 Best= 132

Table 4.6: The Mean and Best values of each change cycle event in the application
of EigenAnt, IEigenAnt and ACS to DRN with long change cycle duration and
detectable change time

after each change which is time consuming and also the algorithm should not only

now the change time but also the details of the change in the constraints which is

not practical. Using the BCP modeling together with penalty function as explained

in Chapter 3 brings an adaptive feature to the ACO family algorithms. Since in

(RANDALL, 2005) such a modeling is not used, a type of repair method entitled

the solution deconstruction process is suggested to take charge after each change.

It should be mentioned that ACS is used in (RANDALL, 2005) due to the local

pheromone removal used in the algorithm. As a result, we model our DMKP as

an N -node BCP with a penalty function handling method in order to have an

adaptability to the change in constraints. We use the adaptive penalty function from

(RASHEED, 1998) in which the penalty factors are increased whenever a violation

happens and decreased when no violations occur after a defined amount of cost

evaluations. As a result, the algorithm has an intrinsic adaptive behavior to the

change in constraints.

The change to the MKP can occur from the change of each item’s profit, weight

of each item associated to a constraint and/or constraint capacity. We compare

EigenAnt, IEigenAnt and ACS with each other. We assume that the change time

is detectable, and thus we have the results from the CV point of view. We use the

88

benchmark introduced in (WEINGARTNER and NESS, 1967), with N = 28 items

and Z = 2 number of constraints, that is available in the OR library (BEASLEY,

1990). We use the change cycle events the same as the experiments for DRN except

for the periodical repeat of the change cycle events. The details of each change cycle

for DMKP is given in Appendix B.

For the adaptive penalty function, the expanded objective function φ is written

as follows:

φ =

N∑

j=1

vj . (1− xj)

(
1 +

Z∑

z=1

λ1µ

)
+

Z∑

z=1

λ2µ (4.2)

where µ is derived from Eq. (3.13). The violation µ is not dependent on the

constraints and is the total violation. Moreover, the penalty factors λ1 and λ2 are

not dependent on the constraints in contrast with our novel static penalty function in

Chapter 3. We choose the initial value of λ1 = 2 and λ2 = 6 for the penalty factors.

After every 200 cost evaluations during which no violation occurs, we perform the

following decrease for the penalty factors:

λ1 = λ1 − 0.5

λ2 = λ2 − 1.5

In case of a constraint violation the following increase is applied to the penalty

factors:

λ1 = λ1 + 1

λ2 = λ2 + 3

It can be noted that the adaptive penalty method has the shortcoming of

requiring tuning of too many parameters; however, the adaptive method provides

an intrinsic reaction to the change in constraints.

The results for the ACS algorithm were so poor that we will not show them.

We use the parameter choice (α1 = .2, α2 = 1) for IEigenAnt and the pheromone

removal parameter is chosen as ρ = 0.1 for both IEigenAnt and EigenAnt. We use

the change cycle duration Due = 4800 cost evaluations in the following experiments

and have the initial pheromone values of 300. Finally, we choose Q = 320×N = 7360

in Eq. 1.8. The box plots of Comparing EigenAnt with IEigenAnt is shown in Fig.

4.21. Since the goal is to maximize the profit in MKP, the box plots with higher

89

0

5

10

15
x 10

4

E1 I1 E2 I2 E3 I3 E4 I4 E5 I5
Algorithms

P
ro

fit

mean

Figure 4.21: Comparing EigenAnt with IEigenAnt for solving DMKP

profit is better. From Fig. 4.21, we can observe the superiority of IEigenAnt, except

for the first change cycle event, over EigenAnt (E stands for EigenAnt and I stands

for IEigenAnt in the figure).

We apply EigenAnt and EigenAnt for 30 times to the stationary problems of each

change cycle event within 5 ×Du = 24000 cost evaluations. Table 4.7 exhibits the

mean and best value that EigenAnt and IEigenAnt achieved for each change cycle

event in the stationary mode while Table 4.8 exhibits the results achieved for the

DMKP change cycle events. From Tables 4.7 and 4.8, we can observe the acceptable

reaction to the change for EigenAnt and IEigenAnt applications to DMKP. It should

be mentioned that since MKP is a maximization problem, the larger the solution

cost the better.

In this second change cycle event entitled the increased optimal cost, the profit

of one item is decreased as 14148 7→ 4952. As a result, the optimal cost of unselected

items are increased while the optimal cost of selected items brought in the tables are

decreased. The mean solution cost of EigenAnt algorithm applied to the stationary

problem of the second change cycle event is 133400 (Table 4.7) while in the DMKP

after changing from the original problem it achieves the mean solution cost of 127280

(Table 4.8) which is worse than the solution to the stationary problem. On the

other hand, IEigenAnt achieves the mean solution cost of 132010 for the stationary

problem (Table 4.7) while in the DMKP problem it achieves the mean solution

cost of 132350 (Table 4.8) which is better than its stationary solution while worse

than the stationary solution of EigenAnt. We conclude that IEigenAnt has a better

90

reaction to the change than the EigenAnt in this change cycle event.

In the third change cycle event entitled emergence of new optimal solution, the

profit of four items are increased as {1898 7→ 2164, 440 7→ 792, 560 7→ 767, 3720 7→

5208}, two weight coefficients associated with each of the two constraints are

decreased as {85 7→ 82, 20 7→ 4}, {30 7→ 10, 12 7→ 8} and both of the constraint

capacities are increased as {600 7→ 738, 600 7→ 750}. As a result, the cost of optimal

solution for the unselected items decreases while the cost of optimal solution for the

selected items increases. This case is challenging as it includes all possible type of

change that might take place in a DCOP with constraints. For the application of

EigenAnt to the third stationary problem the mean solution cost of the achieved

optimal solution is 137700 (Table 4.7) while the mean solution cost of optimal

solution found by EigenAnt in DMKP after the change from the second optimal

solution is 142020 (Table 4.8) which is even better than its stationary solution.

For the IEigenAnt application to the stationary problem of the third change cycle

event, the mean solution cost of 138700 is achieved (Table 4.7) while for its DMKP

application the mean solution cost of 143180 is achieved (Table 4.8). Therefore,

EigenAnt and IEigenAnt have a good reaction to the change for this change cycle

event while IEigeAnt demonstrates superiority over EigenAnt.

In the fourth change cycle event entitled the return of the original problem,

the change is more challenging because all the changes in the third and second

change cycle event are undone. The application of EigenAnt to its stationary

problem results in the mean solution cost of 140530 (Table 4.7) while the EigenAnt

application to DMKP achieves the mean solution cost of 140890 (Table 4.8) which

is even better than its stationary solution. For the application of IEigenAnt

to the fourth change cycle event, the mean solution cost of 140690 is achieved

(Table 4.7) while its application to DMKP achieves the mean solution cost of

141270 (Table 4.8) which is almost near the best found solution with the cost of

141278. Therefore, EigenAnt and IEigenAnt both demonstrate a great performance

to the this type of change that usually requires the memory based strategies while

IEigenAnt demonstrate an almost ideal performance to this type of change.

In the fifth change cycle event entitled radical change, the profit of one item

is decreased as 30800 7→ 24948 and one of the weight coefficients are increased

as 0 7→ 61. Therefore, this type of change is less challenging the the second and

the fourth change cycle event. This type of change is called radical change in the

sense of its radical magnitude of change. The best known optimal solution for this

change cycle event is 125821 while the optimal solution of the original problem is

141278 (142278− 125821 = 15457). The application of EigenAnt to the stationary

problem achieved the mean solution cost of 125190 (Table 4.7) while its application

to DMKP achieves the mean solution cost of 124500 (Table 4.7) which is worse

91

that its stationary result. The application of IEigenAnt to the stationary problem

of the fifth change cycle event achieves the mean solution cost of 124570 (Table

4.7) while the application of IEigenAnt to the DMKP achieves the mean solution

cost of 125821 (Table 4.8) which is equal to the best found solution. Therefore,

EigenAnt algorithm has a poor performance dealing with this type of change in

its application to DMKP than solving its corresponding stationary problem while

IEigenAnt algorithm application to DMKP for this type of change cycle event has

such a great performance that it tracks the optimal solution accurately.

Change Cycle Event EigenAnt IEigenAnt

Original Problem
Mean= 140530 Mean= 140690
Best=141278 Best= 141278

Increased Optimal Cost*
Mean= 133400 Mean= 132010
Best=133610 Best= 133615

Emergence of a New Optimal Solution
Mean= 137700 Mean=138700
Best= 147277 Best= 147277

Return of the Original Problem
Mean= 140530 Mean= 140690
Best=141278 Best= 141278

Radical Change
Mean= 125190 Mean= 124570
Best=125821 Best=125821

* It is true that MKP is a maximization problem; however as explained in
Chapter 3, we minimize the total profit of deselected items (Eq. 3.8). In this
sense increased optimal cost means that the total profit of deselected items
is increased, and thus the profit of selected items is decreased.

Table 4.7: The Mean and Best values of each change cycle event of DMKP in the
stationary mode

Change Cycle Event Number EigenAnt IEigenAnt

1
Mean= 140630 Mean= 134430
Best=141278 Best= 141278

2
Mean= 127280 Mean= 132350
Best=132082 Best= 133015

3
Mean= 142020 Mean=143180
Best= 145084 Best= 145987

4
Mean= 140890 Mean=141270
Best= 141278 Best= 141278

5
Mean= 124500 Mean= 125821
Best=125821 Best=125821

Table 4.8: The Mean and Best values of each change cycle event in the application
of EigenAnt and IEigenAnt to DMKP

92

4.3 Summary

In this Chapter, we defined concepts regarding DOP and explained that an algorithm

dealing with these problems has to track the optimal solution over time. Then, we

explained the challenges in this area: increased optimal cost and stagnation.

We explained that IEigenAnt is a good choice for these problems in the sense

that it has a CS feature which tackles the increased optimal cost challenge so that

the algorithm does not require to detect the change time in order to reset its best-to-

date value. Moreover, we explained that IEigenAnt has local pheromone evaporation

(pheromone removal) which is useful in the sense of tackling the stagnation challenge

to the older problem in DOPs.

The simulations of IEigenAnt, EigenAnt and ACS, that have all the mentioned

features of local pheromone evaporation and convergence solution, to DRN problem

demonstrated that all the algorithms can perform well when the change time

is not detectable. However, IEigenAnt demonstrated superiority over the other

algorithms due to its faster convergence property that causes a faster reaction for

the IEigenAnt. The faster convergence property of IEigenAnt is attributed to its

pheromone amplification parameter smaller than one (α1). For the DRN problems

with detectable change, the superiority of the IEigenAnt was also observable.

On the other hand, we concluded that when the speed dynamic is fast, the

algorithms require more time to be able to handle the dynamic problem while for

the slower dynamics, the algorithms perform better at the beginning of the problem,

since the stagnation occurs after a time.

Finally, we applied the IEigenAnt and EigenAnt to DMKP that is challenging

in the sense that the feasibility of the problem is also changing over time. For this

reason, we suggested adaptive penalty function as a constraint handling strategy.

Both of the algorithms, especially IEigenAnt, demonstrated good performance

dealing with our suggested DMKP.

93

Chapter 5

Contributions, Conclusions and

Future Works

5.1 Contributions

The main contributions of the thesis are summarized as follows:

1. We proposed an Improved version of EigenAnt in which the tuning of speed

of convergence is decoupled from the convergence of pheromone trails to the

local optimal solutions.

2. We extended the stability analysis of the EigenAnt to the N -node binary chain

problems through an Improved version of the EigenAnt.

3. We proposed an algorithm entitled Sorting Improved EigenAnt algorithm that

can sort the paths between two nodes through a vector of pheromone trails of

dimension with equal to the number of paths.

4. A hybrid Randomized Rounding dynamical Max-Min IEigenAnt algorithm

was proposed in solving Multidimensional Knapsack problems modeled as

a N -node Binary Chain problem in which a novel static penalty method

was proposed for constraint handling. The dynamical increase of minimum

pheromone trail limit based on the iteration number is also suggested.

5. A scenario for Dynamic Optimization was proposed in which the problem

changes in a controlled manner in order to test the power of an algorithm

dealing with different challenges might encounter in solving Dynamic

Optimization Problems. When the change time is unknown, the increased

Optimal solution change is challenging to solve via Ant Colony Optimization

Algorithms since they store the best-to-date solution as their final results.

Moreover, we included the return of the original problem that usually requires

94

memory based techniques to resolve. Emergence of a new optimal solution and

the most challenging radical change were also included. Finally, all the change

cycles were repeated twice in order to monitor performance when dynamics

are periodic.

6. We proposed adaptive penalty function method for solving dynamical

optimization problems with constraints.

5.2 Conclusions

From the experimental results in Chapter 2, 3 and 4 from the applications of

Improved EigenAnt and Sorting Improved EigenAnt, several concluding remarks

are drawn as follows:

• Using the Improved EigenAnt algorithm the speed of the algorithm can be

tuned while the pheromone trails converges to the one corresponding to the

shortest path, whereas, the algorithm does not converge when the speed and

convergence parameters are identical and smaller than one.

• IEigenAnt algorithm with the speed tuning parameter α1 < 1 and the

convergence tuning parameter α2 = 1 demonstrates a superiority over the

other versions of IEigenAnt algorithm in the Routing Network application.

This conclusion also verifies the stability analysis and speed of convergence

analysis done in Chapter 2.

• IEigenAnt algorithm demonstrated superiority over EigenAnt, Ant Colony

System and Ant system algorithms in solving Routing Network problems from

the point of view entitled Convergence in Value, in which the best-to-date

solution is considered as a final result.

• IEigenAnt algorithm demonstrated superiority over EigenAnt and Ant system

algorithms, and competitive results with Ant Colony System algorithm in

solving Routing Network problems from the point of view entitled Convergence

in Solution in which the construction of a solution based on the choice of

pheromone trails with maximum concentration is considered as the final result.

• The hybrid Randomized Rounding dynamical Max-Min IEigenAnt algorithm

application to 500 item, 5 constraint Multidimensional Knapsack benchmarks

demonstrated competitive results with the best known ACO algorithm. It

should be mentioned that our algorithm had better results than its competitors

in 2 benchmarks.

95

• In solving Dynamic Routing Networks, IEigenAnt algorithm demonstrated

superiority except for the case that radical change takes place over EigenAnt

and Ant Colony System algorithms.

• Convergence in solution point of view resolved the challenge entitled increased

optimal solution dealing with the Dynamic Routing Network when the change

time is not detectable.

• The number of consecutive iterations until a change takes place, entitled

change cycle duration, is critical for an algorithm solving a Dynamic

Optimization Problem. When the change cycle duration is short, the reaction

of the algorithm to the change should be fast. Hence, ACS and EigenAnt

algorithm could only react to the change in the second (periodical) presentation

of the changes while IEigenAnt could react even to the first presentation of the

changes, due to its faster speed of convergence attributed to the decoupling

feature. When the change cycle is long, the challenge is the convergence of

the algorithm to the solutions before the future changes take place. ACS

demonstrated a stagnation problem in the second presentation of the changes

in such a way that its results were near the value of radical change for the

second presentation of other changes, which suggests that its pheromone trails

were stagnated to the first presentation of radical change cycle. EigenAnt and

IEigenAnt could handle this challenge which means that local evaporation in

EigenAnt algorithms can handle the stagnation problem more effectively than

that of the ACS algorithm.

• IEigenAnt and EigenAnt that used adaptive penalty method were capable

of tracking the optimal solution in a Dynamic Multidimensional Knapsack

problem in which its constraint parameters change over time. IEigenAnt

demonstrated a superiority in solving DMKP. The apex of IEigenAnt

performance was in solving the return of original problem in which the profit of

5 items, 4 weight coefficients and 2 constraint capacities were changed. After

applying IEigenAnt algorithm to the DMKP for 30 experiments, a mean result

of 141270 was achieved in the return of original problem, which is almost equal

to the optimal solution of 141278.

5.3 Future Works

For future work, it is suggested to develop the stability analysis from the stochastic

perspective. An approach using stochastic approximation theory would give

insights about the impacts of parameters on convergence. Theoretical analysis

96

for the proposed sorting Improved EigenAnt or its extension to larger problems

is also suggested. Extending Improved EigenAnt to Multi-Objective Optimization

Problems, and then applying it to dynamic Multi-Objective Optimization Problems

is also suggested.

97

Bibliography

ALAYA, I., SOLNON, C., GHÉDIRA, K., “Ant Algorithm for the Multi-

dimensional Knapsack Problem”. In: International Conference on

Bioinspired Optimization Methods and their Applications (BIOMA), pp.

63–72, 2004.

ALI, M., GOLALIKHANI, M., ZHUANG, J., “A Computational Study

on Different Penalty Approaches for Solving Constrained Global

Optimization Problems with the Electromagnetism-Like Method”,

Optimization, v. 63, n. 3, pp. 403–419, 2014.

ANGUS, D., HENDTLASS, T., “Ant Colony Optimisation Applied to a

Dynamically Changing Problem”, Developments in Applied Artificial

Intelligence, pp. 24–38, 2002.

BAYKASOĞLU, A., OZSOYDAN, F. B., “An improved firefly algorithm for

solving dynamic multidimensional knapsack problems”, Expert Systems

with Applications, v. 41, n. 8, pp. 3712–3725, 2014.

BEASLEY, J. E., “OR-Library: Distributing Test Problems by Electronic Mail”,

Journal of the Operational Research Society, pp. 1069–1072, 1990.

BIRATTARI, M., CARO, G. D., DORIGO, M., For a Formal Foundation of

the Ant Programming Approach to Combinatorial Optimization - Part

1: The Problem, the Representation, and the General Solution Strategy.

In: Report TR-H-301, ATR Human Information Processing Research

Laboratories, 2000.

BONABEAU, E., DORIGO, M., THERAULAZ, G., Swarm Intelligence: From

Natural to Artificial Systems. N. 1. Oxford University Press, 1999.

BRANKE, J., ORBAYI, M., UYAR, Ş., “The Role of Representations in Dynamic

Knapsack Problems”. In: Workshops on Applications of Evolutionary

Computation, pp. 764–775, 2006.

98

CHU, P. C., BEASLEY, J. E., “A Genetic Algorithm for the Multidimensional

Knapsack Problem”, Journal of heuristics, v. 4, n. 1, pp. 63–86, 1998.

COELLO, C. A. C., “Theoretical and Numerical Constraint-handling Techniques

Used with Evolutionary Algorithms: A Survey of the State of the Art”,

Computer Methods in Applied Mechanics and Engineering, v. 191, n. 11,

pp. 1245–1287, 2002.

CVX RESEARCH, I. “CVX: Matlab Software for Disciplined Convex

Programming, version 2.0”. http://cvxr.com/cvx, Aug, 2012.

DENEUBOURG, J.-L., ARON, S., GOSS, S., et al., “The Self-Organizing

Exploratory Pattern of the Argentine Ant”, Journal of Insect Behavior,

v. 3, n. 2, pp. 159–168, 1990.

DIJKSTRA, E. W., “A Note on Two Problems in Connexion With Graphs”,

Numerische Mathematik, v. 1, n. 1, pp. 269–271, 1959.

DORIGO, M., GAMBARDELLA, L. M., “Ant Colony System: A Cooperative

Learning Approach to the Traveling Salesman Problem”, IEEE

Transactions on Evolutionary Computation, v. 1, n. 1, pp. 53–66, 1997.

DORIGO, M., STÜTZLE, T., “An Experimental Study of the Simple Ant

Colony Optimization Algorithm”. In: WSES International Conference on

Evolutionary Computation (EC’01), pp. 253–258, 2001.

DORIGO, M., MANIEZZO, V., COLORNI, A., Positive Feedback as a Search

Strategy. In: Report 91-016, Laboratorio di Calcolatori Dipartimento di

Elettronica Politecnico di Milano, Milan, Italy, 1991.

DORIGO, M., MANIEZZO, V., COLORNI, A., “Ant System: Optimization by

a Colony of Cooperating Agents”, IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), v. 26, n. 1, pp. 29–41, 1996.

DORIGO, M., BIRATTARI, M., STÜTZLE, T., “Ant Colony Optimization”,

IEEE Computational Intelligence Magazine, v. 1, n. 4, pp. 28–39, 2006.

DUENAS, A., DI MARTINELLY, C., TÜTÜNCÜ, G. Y., “A Multidimensional

Multiple-Choice Knapsack Model for Resource Allocation in a

Construction Equipment Manufacturer Setting Using an Evolutionary

Algorithm”. In: IFIP International Conference on Advances in

Production Management Systems, pp. 539–546. Springer, 2014.

EYCKELHOF, C. J., SNOEK, M., “Ant Systems for a Dynamic TSP”. In:

International Workshop on Ant Algorithms, pp. 88–99. Springer, 2002.

99

http://cvxr.com/cvx

EZZAT, A., ABDELBAR, A. M., WUNSCH, D. C., “A Bare-bones Ant Colony

Optimization Algorithm that Performs Competitively on the Sequential

Ordering Problem”, Memetic Computing, v. 6, n. 1, pp. 19–29, 2014.

FIDANOVA, S., “Evolutionary Algorithm for Multiple Knapsack Problem”. In:

Seventh International Conference on Parallel Problem Ssolving from

Nature (PPSN-VII), Lecture. Citeseer, 2002.

GRANT, M., BOYD, S., “Graph Implementations for Nonsmooth Convex

Programs”. In: Blondel, V., Boyd, S., Kimura, H. (Eds.), Recent

Advances in Learning and Control, Lecture Notes in Control and

Information Sciences, Springer-Verlag Limited, pp. 95–110, 2008.

http://stanford.edu/~boyd/graph_dcp.html.

GUNTSCH, M., MIDDENDORF, M., SCHMECK, H., “An Ant Colony

Optimization Approach to Dynamic TSP”. In: Proceedings of the 3rd

Annual Conference on Genetic and Evolutionary Computation, pp. 860–

867. Morgan Kaufmann Publishers Inc., Jul, 2001.

GUTJAHR, W. J., “A Graph-based Ant System And Its Convergence”, Future

Generation Computer Systems, v. 16, n. 8, pp. 873–888, 2000.

GUTJAHR, W. J., “ACO Algorithms with Guaranteed Convergence to the

Optimal Solution”, Information Processing Letters, v. 82, n. 3, pp. 145–

153, 2002.

GUTJAHR, W. J., “On the Finite-time Dynamics of Ant Colony Optimization”,

Methodology and Computing in Applied Probability, v. 8, n. 1, pp. 105–133,

2006.

IACOPINO, C., PALMER, P., “The Dynamics of Ant Colony Optimization

Algorithms Applied to Binary Chains”, Swarm Intelligence, v. 6, n. 4,

pp. 343–377, 2012.

JAYADEVA, SHAH, S., BHAYA, A., et al., “Ants Find the Shortest Path: A

Mathematical Proof”, Swarm Intelligence, v. 7, n. 1, pp. 43–62, 2013.

JIN, Y., BRANKE, J., “Evolutionary Optimization in Uncertain Environments-a

Survey”, IEEE Transactions on Evolutionary Computation, v. 9, n. 3,

pp. 303–317, 2005.

KE, L., FENG, Z., REN, Z., et al., “An Ant Colony Optimization Approach for

the Multidimensional Knapsack Problem”, Journal of Heuristics, v. 16,

n. 1, pp. 65–83, 2010.

100

http://stanford.edu/~boyd/graph_dcp.html

KONG, M., TIAN, P., KAO, Y., “A New Ant Colony Optimization Algorithm

for the Multidimensional Knapsack Problem”, Computers & Operations

Research, v. 35, n. 8, pp. 2672–2683, 2008.

KUMAR, U., The EigenAnt Algorithm: Extensions, Applications and Hardware

Implementation. PhD Thesis, Indian Institute of Technology, New Delhi,

India, Jan, 2016.

LAHAMI, M., KRICHEN, M., BOUCHAKWA, M., et al., “Using Knapsack

Problem Model to Design a Resource Aware Test Architecture for

Adaptable and Distributed Systems”. In: IFIP International Conference

on Testing Software and Systems, pp. 103–118. Springer, 2012.

LEGUIZAMON, G., MICHALEWICZ, Z., “A New Version of Ant System

for Subset Problems”. In: Evolutionary Computation, 1999. CEC 99.

Proceedings of the 1999 Congress on, v. 2, pp. 1459–1464. IEEE, 1999.

LORPUNMANEE, S., SAP, M. N., ABDULLAH, A. H., et al., “An Ant

Colony Optimization for Dynamic Job Scheduling in Grid Environment”,

International Journal of Computer and Information Science and

Engineering, v. 1, n. 4, pp. 207–214, 2007.

MAVROVOUNIOTIS, M., YANG, S., “Adapting the Pheromone Evaporation

Rate in Dynamic Routing Problems”. In: European Conference on the

Applications of Evolutionary Computation, pp. 606–615. Springer, 2013.

MAVROVOUNIOTIS, M., LI, C., YANG, S., “A Survey of Swarm Intelligence

for Dynamic Optimization: Algorithms and Applications”, Swarm and

Evolutionary Computation, v. 33, pp. 1–17, 2017.

MEYER, B., “Convergence Control in ACO”. In: Genetic and Evolutionary

Computation Conference (GECCO), Seattle, WA, late-breaking paper

available on CD, 2004.

MEZURA-MONTES, E., COELLO, C. A. C., “Constraint-handling in Nature-

inspired Numerical Optimization: Past, Present and Future”, Swarm and

Evolutionary Computation, v. 1, n. 4, pp. 173–194, 2011.

MOHAMMADI, S., SHANG, C., OUHIB, Z., et al., “A computational Study

on Different Penalty Approaches for Constrained Optimization in

Radiation Therapy Treatment Planning with a Simulated Annealing

Algorithm”. In: Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS

International Conference on, pp. 1–6. IEEE, 2015.

101

MONTEMANNI, R., GAMBARDELLA, L. M., RIZZOLI, A. E., et al., “Ant

Colony System for a Dynamic Vehicle Routing Problem”, Journal of

Combinatorial Optimization, v. 10, n. 4, pp. 327–343, 2005.

PIRKUL, H., “A Heuristic Solution Procedure for the Multiconstraint Zero-one

Knapsack Problem”, Naval Research Logistics, v. 34, n. 2, pp. 161–172,

1987.

RAGHAVAN, P., TOMPSON, C. D., “Randomized Rounding: A Technique for

Provably Good Algorithms And Algorithmic Proofs”, Combinatorica, v. 7,

n. 4, pp. 365–374, 1987.

RANDALL, M., “A Dynamic Optimisation Approach for Ant Colony Optimisation

Using the Multiple Knapsack Problem”. In: The Second Australian

Conference on Artificial Life, Sydney, 2005.

RASHEED, K., “An Adaptive Penalty Approach for Constrained Genetic-

algorithm Optimization”. In: Proceedings of the Third Annual Genetic

Programming Conference, pp. 584–590, 1998.

SHAH, S., Ant Trail Formation: Analysis, Algorithms And Applications. PhD

Thesis, Indian Institute of Technology, New Delhi, India, Jan, 2011.

SHAH, S., JAYADEVA, R. K., KOTHARI, R., et al., “M-Unit EigenAnt: An Ant

Algorithm to Find the M Best Solutions.” In: AAAI, 2011.

SONG, Y., ZHANG, C., FANG, Y., “Multiple Multidimensional Knapsack

Problem and Its Applications in Cognitive Radio Networks”. In: Military

Communications Conference, 2008. MILCOM 2008. IEEE, pp. 1–7.

IEEE, 2008.

STÜTZLE, T., DORIGO, M., “A Short Convergence Proof for A Class of Ant

Colony Optimization Algorithms”, IEEE Transactions on Evolutionary

Computation, v. 6, n. 4, pp. 358–365, 2002.

STÜTZLE, T., HOOS, H. H., “MAX–MIN Ant System”, Future Generation

Computer Systems, v. 16, n. 8, pp. 889–914, 2000.

TINÓS, R., YANG, S., “Analysis of Fitness Landscape Modifications in

Evolutionary Dynamic Optimization”, Information Sciences, v. 282,

pp. 214–236, 2014.

ÜNAL, A. N., KAYAKUTLU, G., “A Partheno-genetic Algorithm for Dynamic

0-1 Multidimensional Knapsack Problem”, RAIRO-Operations Research,

v. 50, n. 1, pp. 47–66, 2016.

102

UYAR, Ş., UYAR, H., “A Critical Look at Dynamic Multi-dimensional Knapsack

Problem Generation”, Applications of Evolutionary Computing, pp. 762–

767, 2009.

WEINGARTNER, H. M., NESS, D. N., “Methods for the Solution of the

Multidimensional 0/1 Knapsack Problem”, Operations Research, v. 15,

n. 1, pp. 83–103, 1967.

WONG, K. Y., OTHERS, “Parameter Ttuning for Ant Colony Optimization: A

Review”. In: Computer and Communication Engineering, 2008. ICCCE

2008. International Conference on, pp. 542–545. IEEE, 2008.

YANG, S., “Non-stationary Problem Optimization Using the Primal-dual Genetic

Algorithm”. In: Evolutionary Computation, 2003. CEC’03. The 2003

Congress on, v. 3, pp. 2246–2253. IEEE, 2003.

YANG, S., JIANG, Y., NGUYEN, T. T., “Metaheuristics for Dynamic

Combinatorial Optimization Problems”, IMA Journal of Management

Mathematics, v. 24, n. 4, pp. 451–480, 2013.

103

Appendix A

Routing Network Benchmarks

The data for the 10 × 10 RN benchmarks solved in Chapter 3 and Chapter 4, are

given as matrices below in MATLAB notation. Each Matrix represents the edge’s

costs of the corresponding layer from 1 to 10. Since in the first layer we only have

10 edges as in Fig. 3.1, the first edge cost matrix is actually a vector. We have

a 10 × 10 matrix for the other layers in which each row of the matrix represents

the 10 output edges relating to the corresponding node in the previous layer. The

Final layer which is not counted as a numbered layer in the model (as explained in

Chapter 3) has edges with equal lengths of 1.

A.1 Original Problem

The Dijkstra’s algorithm applied to the problem results in the optimal solution with

the cost of 65.

D=[23 84 57 78 50 10 61 30 74 81],...

[40 85 27 17 2 26 46 64 7 26;86 17 81 2 58 10 46 77 66 54;...

24 15 33 86 83 12 9 91 45 33;44 32 50 59 4 37 87 86 12 35;...

84 96 37 45 92 29 20 68 82 66;71 65 47 77 45 57 66 74 58 58;...

11 53 49 49 60 65 61 64 94 55;42 55 91 7 5 21 54 32 45 39;...

30 39 96 41 54 49 16 67 41 37;49 36 13 67 38 81 54 56 84 18]...

,[59 69 37 34 55 90 34 62 28 10;19 59 94 94 18 7 8 27 11 26;...

61 52 90 2 9 17 46 8 33 46;32 59 55 90 85 17 67 33 40 75;...

37 22 48 6 90 25 38 77 18 34;91 39 20 48 76 55 63 71 69 75;...

82 42 45 12 20 58 63 77 55 68;11 39 70 36 36 66 66 37 70 55;...

95 100 80 55 34 9 51 27 7 51;53 58 27 44 16 16 9 26 27 2]...

,[40 83 27 24 53 19 19 76 38 19;71 79 56 16 91 34 16 97 9 87;...

99 22 58 40 25 69 30 56 65 42;98 52 56 5 79 85 43 13 2 39;...

73 11 43 60 16 38 16 71 16 92;89 93 16 20 28 31 99 64 98 44;...

104

5 60 64 62 40 58 49 22 4 30;47 45 53 31 27 5 45 28 28 75;...

97 9 9 1 59 99 35 6 32 98;94 82 25 35 62 56 80 3 38 52]...

,[2 81 81 8 38 60 78 85 16 4;58 9 95 23 71 82 18 3 40 99;...

12 33 18 40 89 60 9 66 97 4;67 65 85 19 45 58 25 30 10 13;...

51 22 77 74 47 98 35 79 8 76;36 44 47 21 6 40 76 32 87 15;...

34 84 15 81 92 64 41 83 19 21;45 84 15 79 40 67 35 4 24 65;...

16 96 73 14 73 83 46 21 85 17;46 34 67 84 65 77 34 23 78 32]...

,[28 81 65 46 91 68 22 86 94 74;3 71 96 29 92 37 82 76 88 41;...

53 80 20 55 80 17 38 57 28 87;96 66 42 42 15 57 44 30 95 4;...

93 31 13 33 94 73 13 39 51 20;69 46 25 82 50 91 27 18 91 76;...

56 67 78 54 29 35 4 46 66 80;32 76 11 4 39 15 10 76 89 91;...

86 25 23 51 32 81 55 16 65 44;71 27 61 24 15 98 80 82 85 71]...

,[100 45 81 22 23 77 87 61 98 74;94 4 40 9 35 9 61 23 63 51;...

82 75 18 94 47 87 24 59 82 38;78 24 56 12 24 80 85 46 49 78;...

71 54 63 45 27 30 3 2 100 77;85 30 32 68 50 7 65 24 83 50;...

2 3 8 54 67 35 23 69 21 76;28 12 24 54 80 7 19 80 71 88;...

22 22 70 13 52 14 21 64 74 59;49 18 7 94 38 84 38 9 75 83]...

,[14 17 90 85 90 15 6 25 71 65;31 60 4 11 90 19 63 95 21 15;...

22 2 50 38 31 26 21 16 68 32;93 15 29 38 5 22 67 35 22 43;...

36 55 68 64 47 86 21 22 42 6;84 36 40 25 69 82 38 54 20 37;...

62 47 43 3 78 77 77 4 3 15;28 90 79 62 15 94 25 3 55 35;...

64 56 53 24 18 61 61 53 68 50;80 62 46 36 97 1 93 3 92 38]...

,[11 78 82 94 20 83 57 6 64 57;10 49 19 15 93 35 16 1 5 52;...

4 45 68 26 13 99 91 52 12 1;83 4 24 44 34 55 48 40 47 71;...

88 59 87 43 49 40 23 99 81 5;48 91 80 60 69 36 19 63 70 70;...

25 49 28 19 74 100 15 16 95 93;25 15 86 8 40 53 78 6 54 99;...

10 30 10 71 58 69 41 66 56 49;22 22 18 62 19 52 3 36 20 31]...

,[57 81 91 87 62 61 91 60 95 1;29 36 55 11 1 37 94 61 83 84;...

56 6 16 42 1 28 99 24 69 40;44 89 6 26 38 70 42 11 79 90;...

87 69 69 33 17 33 13 24 23 93;27 73 20 36 91 56 97 96 28 38;...

67 2 28 25 73 75 77 8 28 28;42 31 28 46 10 37 13 50 3 53;...

29 32 51 38 8 37 43 44 1 14;98 38 26 58 68 76 88 1 78 37]...

,ones(10,1);

A.2 Increased Optimal Cost

The Dijkstra’s algorithm applied to this problem results in the optimal solution with

a cost of 67. We generated the increased optimal cost problem by increasing the

cost of some randomly selected edges from the original problem. The edges in red

105

color are the changed edges.

D=[23 84 57 78 50 10 61 30 74 81],[40 85 27 17 2 26 46 64 7 26;...

86 17 81 2 58 10 46 77 66 54;24 15 33 86 83 12 9 91 45 33;...

44 32 50 59 4 37 87 86 12 35;84 96 37 45 92 29 20 68 82 66;...

71 65 47 77 45 57 66 74 58 58;11 53 49 49 60 65 61 64 94 55;...

42 55 91 7 5 21 54 32 45 39;30 39 96 41 54 49 16 67 41 37;...

49 36 13 67 38 81 54 56 84 18],[59 69 37 34 55 90 34 62 28 10;...

19 59 94 94 18 7 8 27 11 26;61 52 90 2 9 17 46 8 33 46;...

32 59 55 90 85 17 67 33 40 75;37 22 48 9 90 25 38 77 18 34;...

91 39 20 48 76 55 63 71 69 75;82 42 45 12 20 58 63 77 55 68;...

11 39 70 36 36 66 66 37 70 55;95 100 80 55 34 9 51 27 7 51;...

53 58 27 44 16 16 9 26 27 2],[40 83 27 24 53 19 19 76 38 19;...

71 79 56 16 91 34 16 97 9 87;99 22 58 40 25 69 30 56 65 42;...

98 52 56 5 79 85 43 13 2 39;73 11 43 60 16 38 16 71 16 92;...

89 93 16 20 28 31 99 64 98 44;5 60 64 62 40 58 49 22 4 30;...

47 45 53 31 27 5 45 28 28 75;97 9 9 1 59 99 35 6 32 98;...

94 82 25 35 62 56 80 3 38 52],[2 81 81 8 38 60 78 85 16 4;...

58 9 95 23 71 82 18 3 40 99;12 33 18 40 89 60 9 66 97 4;...

67 65 85 19 45 58 25 30 10 13;51 22 77 74 47 98 35 79 8 76;...

36 44 47 21 6 40 76 32 87 15;34 84 15 81 92 64 41 83 19 21;...

45 84 15 79 40 67 35 4 24 65;16 96 73 16 73 83 46 21 85 17;...

46 34 67 84 65 77 34 23 78 32],[28 81 65 46 91 68 22 86 94 74;...

3 71 96 29 92 37 82 76 88 41;53 80 20 55 80 17 38 57 28 87;...

96 66 42 42 15 57 44 30 95 4;93 31 13 33 94 73 13 39 51 20;...

69 46 25 82 50 91 27 18 91 76;56 67 78 54 29 35 4 46 66 80;...

32 76 11 4 39 15 10 76 89 91;86 25 23 51 32 81 55 16 65 44;...

71 27 61 24 15 98 80 82 85 71],[100 45 81 22 23 77 87 61 98 74;...

94 4 40 9 35 9 61 23 63 51;82 75 18 94 47 87 24 59 82 38;...

78 24 56 12 24 80 85 46 49 78;71 54 63 45 27 30 3 2 100 77;...

85 30 32 68 50 7 65 24 83 50;2 3 8 54 67 35 23 69 21 76;...

28 12 24 54 80 7 19 80 71 88;22 22 70 13 52 14 21 64 74 59;...

49 18 7 94 38 84 38 9 75 83],[14 17 90 85 90 15 6 25 71 65;...

31 60 4 11 90 19 63 95 21 15;22 2 50 38 31 26 21 16 68 32;...

93 15 29 38 5 22 67 35 22 43;36 55 68 64 47 86 21 22 42 6;...

84 36 40 25 69 82 38 54 20 37;62 47 43 3 78 77 77 4 3 15;...

28 90 79 62 15 94 25 3 55 35;64 56 53 24 18 61 61 53 68 50;...

80 62 46 36 97 1 93 3 92 38],[11 78 82 94 20 83 57 6 64 57;...

10 49 19 15 93 35 16 1 5 52;4 45 68 26 13 99 91 52 12 1;...

83 4 24 44 34 55 48 40 47 71;88 59 87 43 49 40 23 99 81 5;...

106

48 91 80 60 69 36 19 63 70 70;25 49 28 19 74 100 15 16 95 93;...

25 15 86 8 40 53 78 6 54 99;10 30 10 71 58 69 41 66 56 49;...

22 22 18 62 19 52 3 36 20 31],[57 81 91 87 62 61 91 60 95 1;...

29 36 55 11 1 37 94 61 83 84;56 6 16 42 1 28 99 24 69 40;...

44 89 6 26 38 70 42 11 79 90;87 69 69 33 17 33 13 24 23 93;...

27 73 20 36 91 56 97 96 28 38;67 2 28 25 73 75 77 8 28 28;...

42 31 28 46 10 37 13 50 3 53;29 32 51 38 8 37 43 44 1 14;...

98 38 26 58 68 76 88 1 78 37],ones(10,1);

A.3 Emergence of a New Optimal Solution

In order to achieve the emergence of new optimal solution we decreased some edge’s

costs which are marked in red. Dijkstra’s algorithm achieved the optimal cost of 48

while the known optimal cost by ACO and EigenAnt algorithms is 40. The edges

with the cost of zero caused the Dijkstra algorithm to assume the corresponding

edges to be unreachable and thus failed to find the optimal solution.

D=[23 84 57 78 50 10 61 30 74 81],[40 85 2 17 2 26 46 64 7 26;...

86 17 81 2 58 10 46 77 66 54;24 15 33 86 83 12 9 91 45 33;...

44 32 50 59 4 37 87 86 12 35;84 96 37 45 92 29 20 68 82 66;...

71 65 47 77 45 57 66 74 58 58;11 53 49 49 60 65 61 64 94 55;...

42 55 91 7 5 21 54 32 45 39;30 39 96 41 54 49 16 67 41 37;...

49 36 13 67 38 81 54 56 84 18],[59 69 37 34 55 90 34 62 28 10;...

19 59 94 94 18 7 8 27 11 26;61 52 90 1 9 17 46 8 33 46;...

32 59 55 90 85 17 67 33 40 75;37 22 48 9 90 25 38 77 18 34;...

91 39 20 48 76 55 63 71 69 75;82 42 45 12 20 58 63 77 55 68;...

11 39 70 36 36 66 66 37 70 55;95 100 80 55 34 9 51 27 7 51;...

53 58 27 44 16 16 9 26 27 2],[40 83 27 24 53 19 19 76 38 19;...

71 79 56 16 91 34 16 97 9 87;99 22 58 40 25 69 30 56 65 42;...

98 52 56 5 79 85 43 13 1 39;73 11 43 60 16 38 16 71 16 92;...

89 93 16 20 28 31 99 64 98 44;5 60 64 62 40 58 49 22 4 30;...

47 45 53 31 27 5 45 28 28 75;97 9 9 1 59 99 35 6 32 98;...

94 82 25 35 62 56 80 3 38 52],[2 81 81 8 38 60 78 85 16 4;...

58 9 95 23 71 82 18 3 40 99;12 33 18 40 89 60 9 66 97 4;...

67 65 85 19 45 58 25 30 10 13;51 22 77 74 47 98 35 79 8 76;...

36 44 47 21 6 40 76 32 87 15;34 84 15 81 92 64 41 83 19 21;...

45 84 15 79 40 67 35 4 24 65;16 96 73 16 73 83 46 3 85 17;...

46 34 67 84 65 77 34 23 78 32],[28 81 65 46 91 68 22 86 94 74;...

3 71 96 29 92 37 82 76 88 41;53 80 20 55 80 17 38 57 28 87;...

107

96 66 42 42 15 57 44 30 95 4;93 31 13 33 94 73 13 39 51 20;...

69 46 25 82 50 91 27 18 91 76;56 67 78 54 29 35 4 46 66 80;...

32 76 11 4 39 15 3 76 89 91;86 25 23 51 32 81 55 16 65 44;...

71 27 61 24 15 98 80 82 85 71],[100 45 81 22 23 77 87 61 98 74;...

94 4 40 9 35 9 61 23 63 51;82 75 18 94 47 87 24 59 82 38;...

78 24 56 12 24 80 85 46 49 78;71 54 63 45 27 30 3 2 100 77;...

85 30 32 68 50 7 65 24 83 50;2 0 8 54 67 35 23 69 21 76;...

28 12 24 54 80 7 19 80 71 88;22 22 70 13 52 14 21 64 74 59;...

49 18 7 94 38 84 38 9 75 83],[14 17 90 85 90 15 6 25 71 65;...

31 60 4 11 90 19 63 95 21 10;22 2 50 38 31 26 21 16 68 32;...

93 15 29 38 5 22 67 35 22 43;36 55 68 64 47 86 21 22 42 6;...

84 36 40 25 69 82 38 54 20 37;62 47 43 3 78 77 77 4 3 15;...

28 90 79 62 15 94 25 3 55 35;64 56 53 24 18 61 61 53 68 50;...

80 62 46 36 97 1 93 3 92 38],[11 78 82 94 20 83 57 6 64 57;...

10 49 19 15 93 35 16 1 5 52;4 45 68 26 13 99 91 52 12 1;...

83 4 24 44 34 55 48 40 47 71;88 59 87 43 49 40 23 99 81 5;...

48 91 80 60 69 36 19 63 70 70;25 49 28 19 74 100 15 16 95 93;...

25 15 86 8 40 53 78 6 54 99;10 30 10 71 58 69 41 66 56 49;...

22 22 18 62 19 52 0 36 20 31],[57 81 91 87 62 61 91 60 95 1;...

29 36 55 11 1 37 94 61 83 84;56 6 16 42 1 28 99 24 69 40;...

44 89 6 26 38 70 42 11 79 90;87 69 69 33 17 33 13 24 23 93;...

27 73 20 36 91 56 97 96 28 38;67 2 28 25 73 75 77 8 10 28;...

42 31 28 46 10 37 13 50 3 53;29 32 51 38 8 37 43 44 1 14;...

98 38 26 58 68 76 88 1 78 37],ones(10,1);

A.4 Radical Change

In order to achieve the radical change, the cost of more edges is increased with a

larger magnitude of change. As a result Dijkstra’s algorithm finds the optimal value

of 132 for this problem. The changed edges are marked in red.

D=[73 84 57 78 50 46 61 117 74 81],[40 85 27 17 2 26 46 64 7 26;...

86 17 81 2 58 10 46 77 66 54;24 27 33 86 83 12 9 91 45 33;...

44 32 50 59 4 37 87 86 12 35;84 96 37 45 92 29 20 68 82 66;...

71 65 85 77 45 57 66 74 58 58;11 53 49 49 60 65 61 64 94 55;...

42 55 91 7 5 21 54 32 45 39;30 39 96 41 54 49 16 67 41 37;...

49 36 13 67 38 81 54 56 84 18],[59 69 37 34 55 90 34 62 28 10;...

19 59 94 94 18 7 8 27 11 26;61 52 90 2 9 17 46 8 33 46;...

32 59 55 90 85 17 67 33 40 75;37 22 48 51 90 25 38 77 75 34;...

108

91 39 20 48 76 55 63 71 69 75;82 42 45 12 20 58 63 77 55 68;...

11 39 70 36 36 66 66 37 70 55;95 100 80 55 34 9 51 27 7 51;...

53 58 27 44 16 16 9 26 27 2],[40 83 27 24 53 19 19 76 38 19;...

71 79 56 16 91 34 16 97 9 87;99 22 58 40 25 69 30 56 65 42;...

98 52 56 5 79 85 43 80 15 39;73 24 43 60 16 38 16 71 16 92;...

89 93 16 20 28 31 99 64 98 44;5 60 64 62 40 58 49 22 4 30;...

47 45 53 31 27 7 45 28 28 75;97 19 9 1 59 99 35 6 32 98;...

94 82 25 35 62 56 80 6 38 52],[2 81 81 8 38 60 78 85 16 4;...

58 9 95 23 71 82 18 19 40 99;12 33 18 40 89 60 74 66 97 4;...

67 65 85 19 45 58 25 30 10 13;51 22 77 74 47 98 35 79 8 76;...

36 44 47 21 8 40 76 32 87 15;34 84 15 81 92 64 41 83 19 21;...

45 84 15 79 40 67 35 40 24 65;16 96 73 14 73 83 46 21 85 17;...

46 34 67 84 65 77 34 23 78 32],[28 81 65 46 91 68 22 86 94 74;...

3 71 96 29 92 37 82 76 88 41;53 80 20 55 80 17 38 57 28 87;...

96 66 42 42 44 57 44 30 95 12;93 31 13 33 94 73 13 39 51 20;...

69 46 25 82 50 91 27 18 91 76;56 301 78 54 29 35 4 46 66 80;...

32 76 11 4 39 15 68 76 89 91;86 25 23 51 32 81 55 16 65 44;...

71 27 61 24 24 98 80 82 85 71],[100 45 81 22 23 77 87 61 98 74;...

94 4 40 9 35 9 61 23 63 51;82 75 18 94 47 87 24 59 82 38;...

78 24 56 12 24 80 85 46 49 78;71 54 63 45 27 30 3 3 100 77;...

85 30 32 68 50 7 65 24 83 50;2 20 25 54 67 35 23 69 21 76;...

28 12 24 54 80 7 19 80 71 88;22 22 70 13 52 14 21 64 74 59;...

49 18 7 94 38 84 38 9 75 83],[14 17 90 85 90 15 6 25 71 65;...

31 60 6 11 90 19 63 95 21 15;22 5 50 38 31 26 21 16 68 32;...

93 15 29 38 5 22 67 35 22 43;36 55 68 64 47 86 21 22 42 6;...

84 36 40 25 69 82 38 54 20 37;62 47 43 3 78 77 77 4 3 15;...

28 90 79 62 15 94 25 9 55 35;64 56 53 24 18 61 61 53 68 50;...

80 62 46 36 97 1 93 3 92 38],[11 78 82 94 20 83 57 6 64 57;...

10 49 19 15 93 35 16 7 7 52;4 45 68 26 13 99 91 52 12 3;...

83 4 24 44 34 55 48 40 47 71;88 59 87 43 49 40 23 99 81 5;...

48 91 80 60 69 36 19 63 70 70;25 49 28 19 74 100 15 16 95 93;...

25 15 86 8 40 53 78 6 54 99;10 30 10 71 58 69 41 66 56 49;...

22 22 18 62 19 52 3 36 20 31],[57 81 91 87 62 61 91 60 95 1;...

29 36 55 11 7 37 94 61 83 84;56 6 16 42 1 28 99 24 69 40;...

44 89 6 26 38 70 42 11 79 90;87 69 69 33 17 33 13 24 23 93;...

27 73 20 36 91 56 97 96 28 38;67 2 28 25 73 75 77 8 28 28;...

42 31 28 46 10 37 13 50 5 53;29 32 51 38 8 37 43 44 1 14;...

98 38 26 58 68 76 88 1 78 37],ones(10,1);

109

Appendix B

DMKP Benchmarks

B.1 Original Benchmark

Weing1 benchmark from the OR library is with the following Matlab format and

the optimal value of 141278.

v=[1898 440 22507 270 14148 3100 4650 30800 615 4975 ...

1160 4225 510 11880 479 440 490 330 110 560 ...

24355 2885 11748 4550 750 3720 1950 10500];

w=[45 0 85 150 65 95 30 0 170 0 ...

40 25 20 0 0 25 0 0 25 0 ...

165 0 85 0 0 0 0 100];

a=[30 20 125 5 80 25 35 73 12 15 ...

15 40 5 10 10 12 10 9 0 20 ...

60 40 50 36 49 40 19 150];

W=600;

A=600;

where v is the profits matrix including the profit of each item, w and a are the

weighting matrices for the two constraints and W and A are their respective

constraint capacities. The derived change cycle events will be with the same notions.

B.2 Increased Optimal Cost

It is true that MKP is a maximization problem; however as explained in Chapter 3,

we minimize the total profit of deselected items (Eq. 3.8). In this sense increased

optimal cost means that the total profit of deselected items is increased, and thus the

profit of selected items is decreased. The known best value achieved by IEigenAnt

is 133615 for this change cycle event.

110

v=[1898 440 22507 270 4952 3100 4650 30800 615 4975 ...

1160 4225 510 11880 479 440 490 330 110 560 ...

24355 2885 11748 4550 750 3720 1950 10500];

w=[45 0 85 150 65 95 30 0 170 0 ...

40 25 20 0 0 25 0 0 25 0 ...

165 0 85 0 0 0 0 100];

a=[30 20 125 5 80 25 35 73 12 15 ...

15 40 5 10 10 12 10 9 0 20 ...

60 40 50 36 49 40 19 150];

W=600;

A=600;

B.3 Emergence of a New Optimal Solution

The best value achieved by IEigenAnt for is 147277 this change cycle event.

v=[2164 792 22507 270 4952 3100 4650 30800 615 4975 ...

1160 4225 510 11880 479 440 490 330 110 767 ...

24355 2885 11748 4550 750 5208 1950 10500];

w=[45 0 82 150 65 95 30 0 170 0 ...

40 25 4 0 0 25 0 0 25 0 ...

165 0 85 0 0 0 0 100];

a=[10 20 125 5 80 25 35 73 12 15 ...

15 40 5 10 10 8 10 9 0 20 ...

60 40 50 36 49 40 19 150];

W=738;

A=750;

B.4 Radical Change

The known optimal value achieved by IEigenAnt for this problem is 125821.

v=[1898 440 22507 270 14148 3100 4650 24948 615 4975 ...

1160 4225 510 11880 479 440 490 330 110 560 ...

24355 2885 11748 4550 750 3720 1950 10500];

w=[45 0 85 150 65 95 30 0 170 0 ...

40 25 20 0 0 25 0 61 25 0 ...

165 0 85 0 0 0 0 100];

a=[30 20 125 5 80 25 35 73 12 15 ...

111

15 40 5 10 10 12 10 9 0 20 ...

60 40 50 36 49 40 19 150];

W=600;

A=503;

112

	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Brief Description of the Objectives of this Thesis
	Review of the Main Classes of Ant Colony Algorithms
	ACO Algorithm
	EigenAnt

	Structure of the Thesis

	Improvement and Extension of the EigenAnt Algorithm
	Improved EigenAnt Algorithm
	Motivations
	1-node BCP
	2-Node BCP
	N-node BCPs

	Extended IEigenAnt
	SIEigenAnt Algorithm
	Experimental Results

	Summary

	IEigenAnt for Combinatorial Optimization Problems
	Introduction
	Routing Networks
	IEigenAnt Application to RN
	Experimental Results

	Multidimensional Knapsack Problem
	Constraint Handling
	Avoiding the Stagnation Problem
	Experimental Results

	Summary

	IEigenAnt for Dynamic Combinatorial Optimization Problems
	IEigenAnt for DRN
	Solving DRN with Undetectable Change Time
	Solving DRN with Detectable Change Time

	IEigenAnt for DMKP
	Summary

	Contributions, Conclusions and Future Works
	Contributions
	Conclusions
	Future Works

	Bibliography
	Routing Network Benchmarks
	Original Problem
	Increased Optimal Cost
	Emergence of a New Optimal Solution
	Radical Change

	DMKP Benchmarks
	Original Benchmark
	Increased Optimal Cost
	Emergence of a New Optimal Solution
	Radical Change

