SMALL-SIGNAL SECURITY ASSESSMENT CONSIDERING MINIMUM REDISPATCH

Tese de Doutorado apresentada ao Programa de Pós-graduação em Engenharia Elétrica, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Doutor em Engenharia Elétrica.

Orientadores: Glauco Nery Taranto
Sergio Gomes Junior

Rio de Janeiro
Julho de 2017

SMALL-SIGNAL SECURITY ASSESSMENT CONSIDERING MINIMUM REDISPATCH

Thiago José Masseran Antunes Parreiras

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Examinada por:

Prof. Glauco Nery Taranto, Ph.D.

Prof. Sergio Gomes Junior, D.Sc.

Prof. Tatiana Mariano Lessa de Assis, D.Sc.

Prof. João Alberto Passos Filho, D.Sc.

Prof. Kjetil Uhlen, Ph.D.

Dr. Nelson Martins, Ph.D.

Parreiras, Thiago José Masseran Antunes
Small-signal Security Assessment Considering Minimum Redispatch / Thiago José Masseran Antunes Parreiras. Rio de Janeiro: UFRJ/COPPE, 2017.

XV, 143 p : il.; $29,7 \mathrm{~cm}$.
Orientadores: Glauco Nery Taranto
Sergio Gomes Junior
Tese (doutorado) - UFRJ/COPPE / Programa de Engenharia Elétrica, 2017.

Referências Bibliográficas: p. 113 - 118 .

1. Power system stability. 2. Small-signal security assessment. 3. Small-signal security boundary. 4. Oscillation damping control. I. Taranto, Glauco Nery et al. II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Elétrica. III. Título.

This work is dedicated to all my relatives, for everything that they always provided to me, for all the support that they always gave to me, because they have been by my side, in all the moments of my life, especially, when I most needed.
"One does not make friends. One recognizes them."
Garth Henrichs
"If I have seen further, that is because I stood on the shoulders of giants." Isaac Newton

Acknowledgment

I thank God for my existence and for all the blessings that He always provides to me, my mother, Maria Helena Masseran, my father, Nivaldo Parreiras, my sister, Viviane Masseran, and all my family, which always supported me in all the moments of my life, and all my friends that helped me during this journey in this graduation.

I would like to thank all the professors that participated of my academic formation during this doctoral course and, especially, I thank professor Glauco Nery Taranto, from Electrical Engineering Program (PEE) of Alberto Luiz Coimbra Institute of Graduation and Engineering Research (COPPE), which was my advisor in this work.

I also thank all my work friends and colleagues from Energetic Research Company (EPE) and from Electrical Energy Research Center (CEPEL), especially, my friends Nicolas Abreu and Tiago Amaral, for all the help that they gave to me during this graduation, and, more especially, I would like to thank researcher Sergio Gomes Junior, which was my coadvisor during this doctoral course, providing all the support to the development of the researches made and described in this doctoral thesis.

Finally, I thank the National Council for Scientific and Technological Development (CNPq) for the financial support, which allowed the realization of an interchange in Norway, through the Science Without Borders program, at the Norwegian University of Science and Technology (NTNU), which was important to the success of the researches made in this thesis, and, especially, I thank professor Kjetil Uhlen, which was my advisor during this interchange period, and my friend Knut Bjorsvik for all the help that he gave to me during the realization of the work in this interchange.

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Doutor em Ciências (D.Sc.)

AVALIAÇÃO DE SEGURANÇA A PEQUENOS SINAIS CONSIDERANDO REDESPACHO MÍNIMO

Thiago José Masseran Antunes Parreiras

Julho/2017

Orientadores: Glauco Nery Taranto
Sergio Gomes Junior

Programa: Engenharia Elétrica

Este trabalho apresenta uma revisão dos principais conceitos relacionados à estabilidade eletromecânica de sistemas de potência e das características associadas às avaliações de segurança de tensão, transitória e a pequenos sinais (VSA, TSA e SSA). A última é o foco desta pesquisa.

O desenvolvimento de novas ferramentas de avaliação de segurança a pequenos sinais e suas implementações computacionais no programa PacDyn, do Centro de Pesquisas de Energia Elétrica (CEPEL), são descritos.

Um método para determinação de redespacho mínimo em sistemas de potência usando sensibilidades de geração (CSBGRES) é proposto. Este é um método de otimização que considera um fator de amortecimento desejado para modos de oscilação como restrição.

O método CSBGRES pode ser utilizado para a determinação de margens de segurança a pequenos sinais ou de medidas corretivas, visando a melhoria do comportamento dinâmico de sistemas de potência.

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Doctor of Science (D.Sc.)

SMALL-SIGNAL SECURITY ASSESSMENT CONSIDERING MINIMUM REDISPATCH

Thiago José Masseran Antunes Parreiras

July /2017

Advisors: Glauco Nery Taranto
Sergio Gomes Junior
Department: Electrical Engineering

This work presents a review of the main concepts related to electromechanical stability of power systems and of characteristics associated to the voltage, transient and small-signal security assessments (VSA, TSA and SSA). The last one is the focus of this research.

The development of new tools for small-signal security assessment and their computational implementations in software PacDyn, from Electrical Energy Research Center (CEPEL), are described.

A method for determining minimum redispatch for power systems using generation sensitivities (CSBGRES) is proposed. This is an optimization method that considers a desired damping factor for oscillation modes as constraint.

The CSBGRES method can be utilized for the determination of small-signal security margins or of corrective measures, aiming at the dynamic behavior improvement of power systems.

Summary

List of Figures xii
List of Tables xv
1 Introduction 1
1.1 Contextualization 1
1.2 Research Motivations 3
1.3 Thesis Contributions 3
1.4 Thesis Structure 4
1.5 Published Papers 5
1.6 Submitted Papers 6
1.7 Related Dissertations 6
1.8 Final Considerations 7
2 Power System Stability 8
2.1 Basic Concepts 8
2.2 Transient Stability 10
2.2.1 Non-linear System Modelling 11
2.3 Small-signal Stability 12
2.3.1 System Model Linearization 13
2.3.2 Eigenvalues and Eigenvectors 15
2.3.3 Participation Factors and Mode Shapes 17
2.3.4 Residue, Controlability and Observability 20
2.3.5 Control System Design 26
2.4 Final Considerations 30
3 State of Art and Concepts 31
3.1 DSA Tools and Techniques 31
3.2 On-line DSA Method 32
3.3 DSA Tool in an EMS 33
3.4 SSA Tools and Characteristics 34
3.5 SSA Numerical Index 35
3.6 DSA in Planning and Operation 36
$3.7 \quad$ Static and Dynamic Security 37
3.8 Oscillation Monitoring in SDSA 38
3.9 Final Considerations 39
4 Security Assessment Theory 40
4.1 Basic Concepts 40
4.2 Power System VSA and TSA 42
4.3 Power System SSA 47
4.3.1 Damping Nomogram Method 49
4.3.2 Root-locus Method 50
4.3.3 On-line Monitoring of Oscillations 52
4.4 Computational Implementations 56
4.4.1 Damping Nomogram Method 56
4.4.2 On-line Monitoring of Oscillations 58
4.5 Final Considerations 60
5 Hopf Bifurcation Application 61
5.1 Hopf Bifurcation Analysis 61
5.2 Closest Hopf Bifurcation Review 63
5.3 Generation Sensitivities. 67
5.4 Hopf Bifurcation for Redispatch 69
5.5 Computational Implementations 77
5.5.1 Generation Sensitivities 77
5.5.2 Hopf Bifurcation for Redispatch 79
5.6 Final Considerations 81
6 Tests and Results 82
6.1 SAGE System Results 82
6.2 Two Areas System Results 90
6.3 Brazilian Power System Results 96
6.4 Nordic 44 System Results 100
6.5 Final Considerations 108
7 Conclusion 109
7.1 Considerations 109
7.2 Conclusions 111
7.3 Future Works 112
References 113
A SAGE System 119
A. 1 Power Flow Data File 120
A. 2 Dynamic Data File 123
B Two Areas System 124
B. 1 Power Flow Data File 125
B. 2 Dynamic Data File 126
C Brazilian Power System 128
C. 1 Power Flow Data File 129
C. 2 Dynamic Data File 131
D Nordic 44 System 137
D. 1 Power Flow Data File 138
D. 2 Dynamic Data File 142

List of Figures

2.1 Power system stability division. 9
2.2 Rotor angle stability subdivision. 10
2.3 Schematic examples of mode shapes. 20
2.4 Transfer function $G(s)$ with feedback through $\operatorname{PSS}(s)$. 26
2.5 Schematic Nyquist diagram for the range $0 \leq \omega<\infty$. 27
2.6 Nyquist diagram with module and phase compensation. 28
2.7 Nyquist diagram with phase compensation. 29
4.1 Schematic example of a SDSA nomogram. 41
4.2 Off-line voltage security assessment scheme. 43
4.3 On-line voltage security assessment scheme. 43
4.4 Off-line transient security assessment scheme. 44
4.5 On-line transient security assessment scheme. 45
4.6 Nomogram relating Gen 1 and Gen 2 generation groups. 45
4.7 Nomogram relating Gen 1 and Gen 3 generation groups. 46
4.8 Nomogram relating Gen 2 and Gen 3 generation groups. 46
4.9 Off-line small-signal security assessment scheme. 48
4.10 On-line small-signal security assessment scheme. 48
4.11 Schematic example of a SSA nomogram. 49
4.12 Schematic SSA root-locus example. 51
4.13 Mode damping factor mapping. 51
4.14 Schematic OLMO of a secure system. 53
4.15 Schematic OLMO of an insecure system. 53
4.16 Schematic OLMO of a secure system with forecasting. 54
4.17 Schematic OLMO of an insecure system with forecasting. 54
4.18 Schematic OLMO with forecasting and corrective measure. 55
4.19 SSA scenario creation algorithm. 57
4.20 Damping nomogram method algorithm. 58
4.21 OLMO algorithm. 59
5.1 Generation sensitivity calculation algorithm. 78
5.2 CSBGRES method algorithm. 80
6.1 SAGE system single-line diagram. 83
6.2 Gen 1 x Gen 2 nomogram for system normal operation using QR. 83
6.3 Gen 1 x Gen 3 nomogram for system normal operation using QR. 84
6.4 Gen $2 \times$ Gen 3 nomogram for system normal operation using QR. 84
6.5 Gen $1 \times$ Gen 2 nomogram for contingency situations using QR. 84
6.6 Gen $1 \times$ Gen 3 nomogram for contingency situations using QR. 85
6.7 Gen $2 \times$ Gen 3 nomogram for contingency situations using QR. 85
6.8 Gen $1 \times$ Gen 2 nomogram for system normal operation using DPSE. 85
6.9 Gen $1 \times$ Gen 3 nomogram for system normal operation using DPSE. 86
6.10 Gen $2 \times$ Gen 3 nomogram for system normal operation using DPSE. 86
6.11 Gen $1 \times$ Gen 2 nomogram for contingency situations using DPSE. 86
6.12 Gen $1 \times$ Gen 3 nomogram for contingency situations using DPSE. 87
6.13 Gen $2 \times$ Gen 3 nomogram for contingency situations using DPSE. 87
6.14 Comparison of nomograms obtained through QR and DPSE methods. 88
6.15 Corrective measure through power plant redispatch. 89
6.16 Corrective measure through PSS tuning. 89
6.17 Two areas system single-line diagram. 90
6.18 Mode damping factor timeline for Two areas system. 92
6.19 Mode frequency timeline for Two areas system. 92
6.20 Normalized generation sensitivity phasors for Two areas system. 93
6.21 CSBGRES histogram (MW) to reach 5% of damping factor in Two areas system. 94
6.22 CSBGRES histogram (MW) to reach 8% of damping factor in Two areas system. 95
6.23 Brazilian power system single-line diagram. 96
6.24 Normalized generation sensitivity phasors for Brazilian power system. 97
6.25 CSBGRES histogram (MW) to reach 5% of damping factor in Brazilian power system. 99
6.26 Nordic 44 system single-line diagram. 100
6.27 Normalized generation sensitivity phasors for Nordic 44 system. 101
6.28 CSBGRES histogram (MW) to reach 8\% of damping factor in Nordic 44 system. 102
6.29 Mode damping factor timelines for Nordic 44 system. 104
6.30 Mode frequency timelines for Nordic 44 system. 104
6.31 Mode damping factor timelines for Nordic 44 system, using CSBGRES method. 105
6.32 Mode frequency timelines for Nordic 44 system, using CSBGRES method. 105
6.33 OLMO results with and without utilization of CSBGRES method. 106
6.34 CSBGRES histogram (MW) to reach 5\% of damping factor in Nordic 44 system in worst scenario. 106

List of Tables

6.1 Normalized generation sensitivity list for Two areas system. 93
6.2 CSBGRES redispatches (MW) to reach 5\% of damping factor in Two areas system. 94
6.3 CSBGRES redispatches (MW) to reach 8% of damping factor in Two areas system. 95
6.4 Normalized generation sensitivity list for Brazilian power system. 98
6.5 CSBGRES redispatches (MW) to reach 5% of damping factor in Brazilian power system. 99
6.6 Normalized generation sensitivity list for Nordic 44 system. 101
6.7 CSBGRES redispatches (MW) to reach 8% of damping factor in Nordic 44 system. 103
6.8 CSBGRES redispatches (MW) to reach 5% of damping factor in Nordic 44 system in worst scenario.

Chapter 1

Introduction

This chapter will describe the main topics covered by this work, containing the motivations, objectives and contributions of this research. This thesis is focusing on power system stability, small-signal security assessment and determination of corrective measures to improve the system dynamic behavior.

1.1 Contextualization

Different kind of studies must be done in the expansion and operation planning of power systems, in order to forecast possible problems in the energy supply to the consumers. These studies are related to power flow, fault and electromechanical stability analyses, among others.

Power flow analyses are concerned with the study of system steady-state conditions, aiming at the determination of bus voltage levels. Active and reactive power flow in branches of the electrical grid are also determined (1).

Fault analyses consist of studying short-circuit levels to which system equipment are submitted, in order to adequate their capability so they can resist to high electrical currents, without suffering any damage. Capability of circuit breakers are also identified in this evaluation [2].

Electromechanical stability analyses are concerned with the study of system dynamic behaviors when disturbances occur in the electrical grid, aiming at the identification of undesired transient or stability problems [3, 4].

Issues that can be detected through power system stability analyses are related to loss of synchronism between power plants or poorly damped oscillations in the electrical grid [4.

Disturbances considered in these analyses are events that may happen in the grid, such as: short-circuits, equipment trip-outs or shunt switching [3, 4].

Small variations are also evaluated, such as: load modifying during a day, control system set-point changing, power plant redispatches or automatic generation control (AGC) and coordinated voltage control (CVC) actions [3, 4].

Computational programs capable of performing these studies for large-scale power systems are extremely important. The Electrical Energy Research Center (CEPEL) develops these kinds of software. Some of them can be highlighted, such as: ANAREDE [5], ANAFAS [6], ANATEM [7] and PacDyn [8].

ANAREDE is a software able to perform power flow analyses, giving important information about steady-state conditions of electrical grids [5].

ANAFAS is a software capable of performing fault analyses, giving important information about short-circuit levels of electrical grids [6].

ANATEM is a software able to perform transient stability analyses, giving important information about system dynamic behavior, considering occurrences of large disturbances in its electrical grid [7].

PacDyn is a software capable of performing small-signal stability analyses, giving important information about system dynamic behavior, regarding natural oscillations and control systems [8].

The pursuit of an adequate, continuous and secure supply of electrical energy is increasing worldwide, each day more. Power system analyses are needed to improve system planning and operation, increasing its robustness and minimizing risks of failure in this process.

Power system security assessments arise in this context. Voltage security assessment (VSA) is concerned with bus voltage levels, transient security assessment (TSA) is concerned with transient dynamic behavior and small-signal security assessment (SSA) is concerned with dynamic behavior in face of small disturbances [9].

Some academic publications about VSA, TSA and SSA will be reviewed and several concepts and methodologies related to these analyses will be studied [10-17].

1.2 Research Motivations

First motivation of this research is the fact that concepts of power system security assessment are not well defined in the academy, needing a better organization.

Second motivation is the lack of methodologies and computational tools for smallsignal security assessment. The development of new SSA features is important.

Third motivation of this work is the lack of discussion regarding solutions for security problems that may be detected in power system monitoring.

These are the main reasons for choosing small-signal security assessment as the theme of this doctoral thesis.

1.3 Thesis Contributions

This work presents a description of power system security assessment, reviewing and organizing its basic concepts. Besides, new tools for SSA were developed, considering its applications in real-time operation and planning studies.

This research studies methods and corrective measures that can be used to increase the damping factor of power system oscillations, considering control tuning and plant redispatches.

On-line control tuning is not a practice currently adopted by operators, but, in a future, this solution could be feasible.

On the other hand, power plant redispatches are more reasonable to be adopted as a solution of oscillation problems in a real-time operation.

The main contribution of this thesis is a mathematical development of algorithm capable of determining a minimum redispatch for power system, based on Hopf bifurcation analysis [18-33], which uses generation sensitivities and considers a damping factor criteria for oscillation modes.

This algorithm can be used to determine small-signal security margins and corrective measures to improve the dynamic behavior of power systems.

The redispatch algorithm and SSA tools proposed in this work represent an advance in the state of art of power system security assessment. The planning and operation of power systems can be improved using these developments.

1.4 Thesis Structure

This thesis is divided in chapters as follow:

- Chapter 1 - Introduction: In this chapter, the main topics of this research were described, including the motivations and contributions of this thesis;
- Chapter 2 - Power System Stability: In this chapter, the basic concepts of power system stability will be reviewed, focusing on the small-signal stability;
- Chapter 3 - State of Art and Concepts: In this chapter, the actual state of art related to the power system security assessment will be presented;
- Chapter 4 - Security Assessment Theory: In this chapter, the main concepts of power system security assessment will be reviewed, focusing on SSA;
- Chapter 5 - Hopf Bifurcation Study: In this chapter, the method for determination of minimum redispatch for power systems will be presented;
- Chapter 6 - Tests and Results: In this chapter, the methods and computational tools developed in this thesis will be tested in example systems;
- Chapter 7 - Conclusion: In this chapter, the conclusions of the thesis will be made, evidencing the benefits brought by the proposed methods.

1.5 Published Papers

Through the research and methods proposed in this thesis, the following papers were produced and published:

- PARREIRAS, T. J. M. A., GOMES JUNIOR, S., TARANTO, G. N., LEITE NETTO, N. A. R., AMARAL, T. S., UHLEN, K., "Avaliação de Segurança a Pequenos Sinais de Sistemas de Potência com o PacDyn", XXIII Seminário Nacional de Produção e Transmissão de Energia Elétrica - SNPTEE, october, 2015;
- PARREIRAS, T. J. M. A., GOMES JUNIOR, S., TARANTO, G. N., "Damping Nomogram Method for Small-Signal Security Assessment of Power Systems", IEEE Latin America Transactions, may, 2017.

1.6 Submitted Papers

Through the research and methods proposed in this thesis, the following paper was produced and submitted to publication:

- PARREIRAS, T. J. M. A., GOMES JUNIOR, S., TARANTO, G. N., UHLEN, K., "Closest Security Boundary for Improving Oscillation Damping through Generation Redispatch using Eigenvalue Sensitivities", IEEE Transactions on Power Systems, june, 2017.

1.7 Related Dissertations

The following master dissertations are related to the work made in the development of this doctoral thesis:

- BJORSVIK, K., A Scheme for Creating a Small-Signal On-line Dynamic Security Assessment Tool - Using PSS/E and PacDyn, M. Sc. dissertation, NTNU, Trondheim, Sor-Trondelag, Norway, 2016;
- LEITE NETTO, N. A. R., Novas Ferramentas para a Análise de Segurança Estática e Dinâmica de Sistemas de Potência, M. Sc. dissertation, COPPE/UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil, 2016.

1.8 Final Considerations

Power flow, fault and electromechanical stability analyses should be done for the planning and operation of electrical power systems. These studies were briefly described in this chapter.

Research motivations and thesis contributions were presented. This work is focusing on the small-signal security assessment and development of a method for determining of minimum redispatch for power systems.

The thesis structure with chapter descriptions and lists of produced papers were also presented, finishing this chapter.

Chapter 2

Power System Stability

This chapter will review the basic concepts related to power system stability analyses, focusing on the rotor angle stability. The transient and small-signal stability analyses will be described in this topic.

2.1 Basic Concepts

Electromechanical stability analyses are concerned with the dynamic behavior of power systems, before, during and after the occurrence of faults or disturbances in their electrical grid [4, 34].

Stability problems can be identified in these analyses. Redispatches and control tuning may be used to solve these problems [4, 34].

Operative constraints necessary to avoid stability problems can be obtained in the operation planning and reinforcements needed to improve the system dynamic behavior can be determined in the expansion planning.

Software capable of performing stability analyses of large-scale power systems are necessary to study real electrical systems. ANATEM [7] and PacDyn [8], developed by CEPEL, are examples of these kinds of software.

Power system stability can be divided into voltage stability, frequency stability and rotor angle stability. Figure 2.1 illustrates this division [4, 35.

Figure 2.1: Power system stability division.

Voltage stability analyses are concerned with the bus voltage levels, considering contingencies and several disturbances, in order to determine the system capability of coming back to an acceptable operating point [34] 36].

These studies are directly related to the transmission system capability and verifies abrupt voltage drops or voltage collapse [34, 35].

Frequency stability analyses are concerned with the system capability of keeping its frequency in acceptable value after the occurrence of large disturbances which may cause large unbalance between load and generation [34, 35].

Rotor angle stability analyses are concerned with the dynamic behavior of generators upon the occurrence of disturbances in the electrical grid [34, 35].

These studies are directly related to the mechanical and electromagnetic torques applied to power plant rotors [34, 35].

Rotor angle stability can be subdivided into transient stability and small-signal stability, as shown in figure 2.2 [4, 35].

Figure 2.2: Rotor angle stability subdivision.

Power systems are considered stable when they have acceptable oscillatory and nonoscillatory stability. The oscillatory stability is related to damping factor of system natural oscillations and the non-oscillatory stability is related to maintenance of synchronism between the power plants [4, 34].

2.2 Transient Stability

Transient stability analyses are concerned with the determination of system dynamic behavior in face of large disturbances in the electrical grid, such as: short-circuits, equipment trip-outs, loss of generation, load rejection and others [4, 34].

The dynamic behavior of the load angle and rotor speed of power plants can be observed, in order to verify the maintenance of synchronism between the system machines and the oscillation damping factor [4, 34, 35].

Power systems of order n can be mathematically described through n differential equations of first order. These equations represent dynamic behavior and are necessary to model these systems. The state variable vector x is defined according to this equation set [4, 34].

These systems also have algebraic equations, which are related to electrical grid or control systems and are also needed in this modelling. The algebraic variable vector r can be defined according to this equation set [4, 34].

2.2.1 Non-linear System Modelling

The mathematical model of power systems can be described through equations (2.1), (2.2) and (2.3), including an input variable vector u and an output variable vector y, according to references [4, 34, 37.

$$
\begin{align*}
\dot{x} & =f(x, r, u) \tag{2.1}\\
0 & =g(x, r, u) \tag{2.2}\\
y & =h(x, r, u) \tag{2.3}
\end{align*}
$$

Where:
$x=$ State variable vector;
$r=$ Algebraic variable vector;
$u=$ Input variable vector;
$y=$ Output variable vector;
$\dot{x}=$ State variable derivative vector;
$f=$ Differential equation set;
$g=$ Algebraic equation set;
$h=$ Output equation set.

The analysis of power system transients is mainly focused on time response simulations of large disturbances in its electrical grid, obtained through using the mathematical model described before.

A software is needed for the analysis of large-scale power systems, as the Brazilian interconnected power system. ANATEM [7] can be used in this study.

Numerical integration methods are needed to determine time responses through the equations (2.1), (2.2) and (2.3). One of these methods is the numerical integration using trapezoidal approximation.

The dynamic behavior of power systems in face of disturbances can be verified through these time response simulations.

2.3 Small-signal Stability

Small-signal stability analyses are concerned with the system dynamic behavior in face of small disturbances in its electrical grid, such as: dispatch variations, load variations and controller set-point modification and others [4, 34].

The non-linear power systems are linearized in this study, which enables the use of linear control techniques and modal analysis. These tools help to determine characteristics of the system dynamic behavior [4, 34].

Modes of power systems can be determined through using modal analysis techniques. These modes represent the dynamic behavior of the system and have information about its small-signal stability. They may represent natural oscillations of power systems, being called oscillation modes [4, 34].

Control systems can be tuned using modal analysis techniques, in order to improve the system dynamic behavior. Power system stabilizers (PSS) and power oscillation damper (POD) are examples of controllers that may be used to increase the damping factor of oscillation modes [4, 34].

A software is needed for performing modal analysis of large-scale power systems, as the Brazilian power system. PacDyn [8] can be used in this study.

2.3.1 System Model Linearization

Non-linear power system model can be linearized around its initial operating point $\left(x_{0}, r_{0}, u_{0}\right)$ to obtain linear approximate model, which is represented by equations (2.4) and (2.5), according to [4, 34, 37]. This is called descriptor system model.

$$
\begin{gather*}
{\left[\begin{array}{c}
\Delta \dot{x} \\
0 \\
\Delta y
\end{array}\right]=J_{\left(x_{0}, r_{0}, u_{0}\right)} \cdot\left[\begin{array}{c}
\Delta x \\
\Delta r \\
\Delta u
\end{array}\right]} \tag{2.4}\\
{\left[\begin{array}{c}
\Delta \dot{x} \\
0 \\
\Delta y
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial r} & \frac{\partial f}{\partial u} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial r} & \frac{\partial g}{\partial u} \\
\frac{\partial h}{\partial x} & \frac{\partial h}{\partial r} & \frac{\partial h}{\partial u}
\end{array}\right]_{\left(x_{0}, r_{0}, u_{0}\right)} \cdot\left[\begin{array}{c}
\Delta x \\
\Delta r \\
\Delta u
\end{array}\right]} \tag{2.5}
\end{gather*}
$$

Where:
$\Delta x=$ State variable deviation vector;
$\Delta r=$ Algebraic variable deviation vector;
$\Delta u=$ Input variable deviation vector;
$\Delta y=$ Output variable deviation vector;
$\Delta \dot{x}=$ State variable derivative deviation vector;
$J_{\left(x_{0}, r_{0}, u_{0}\right)}=$ System jacobian matrix in $\left(x_{0}, r_{0}, u_{0}\right) ;$
$\frac{\partial f}{\partial x}=$ Function f derivatives with respect to vector $x ;$
$\frac{\partial f}{\partial r}=$ Function f derivatives with respect to vector r;
$\frac{\partial f}{\partial u}=$ Function f derivatives with respect to vector u;
$\frac{\partial g}{\partial x}=$ Function g derivatives with respect to vector $x ;$
$\frac{\partial g}{\partial r}=$ Function g derivatives with respect to vector r;
$\frac{\partial g}{\partial u}=$ Function g derivatives with respect to vector $u ;$
$\frac{\partial h}{\partial x}=$ Function h derivatives with respect to vector $x ;$
$\frac{\partial h}{\partial r}=$ Function h derivatives with respect to vector r;
$\frac{\partial h}{\partial u}=$ Function h derivatives with respect to vector u;
$\left[\begin{array}{lll}\frac{\partial f}{\partial x} & \frac{\partial f}{\partial r} & \frac{\partial f}{\partial u} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial r} & \frac{\partial g}{\partial u} \\ \frac{\partial h}{\partial x} & \frac{\partial h}{\partial r} & \frac{\partial h}{\partial u}\end{array}\right]_{\left(x_{0}, r_{0}, u_{0}\right)}=$ Detailed system jacobian matrix.

Algebraic variables can be eliminated from the model through mathematical manipulations. This new model is represented by equations (2.6) and 2.7), according to [4, 34, 37, 38, and is called state space model.

$$
\begin{align*}
& \Delta \dot{x}=A \cdot \Delta x+B \cdot \Delta u \tag{2.6}\\
& \Delta y=C \cdot \Delta x+D \cdot \Delta u \tag{2.7}
\end{align*}
$$

Where:
$\Delta x=$ State variable deviation vector;
$\Delta u=$ Input variable deviation vector;
$\Delta y=$ Output variable deviation vector;
$\Delta \dot{x}=$ State variable derivative deviation vector;
$A=$ State transition matrix;
$B=$ System input matrix;
$C=$ System output matrix;
$D=$ Direct transfer matrix .

System modes can be obtained through the eigenvalues of matrix A and represent the system dynamic behavior in face of small disturbances. These modes may represent characteristics of power system natural oscillations [4, 34].

The oscillation modes related to electromechanical dynamics can be divided into: intra-plant modes, local modes, inter-area modes and multi-machine modes.

Intra-plant modes represent oscillations between generating units of a single power plant. Local modes represent oscillations of a power plant against all other system machines. Inter-area modes represent oscillations between power plants of some areas against others. Multi-machine modes represent oscillations between several machines of several areas.

2.3.2 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors of the matrix A can be determined through equations (2.8) and (2.9), according to [4, 34, 37 (39].

$$
\begin{gather*}
A \cdot v=\lambda \cdot v \tag{2.8}\\
w \cdot A=w \cdot \lambda \tag{2.9}
\end{gather*}
$$

Where:
$A=$ State matrix;
$v=$ Right eigenvector;
$w=$ Left eigenvector;
$\lambda=$ Eigenvalue.
Equations (2.10), (2.11), (2.12) and (2.13) can be obtained through mathematical manipulations, according to [4, 34].

$$
\begin{gather*}
A \cdot v-\lambda \cdot v=0 \tag{2.10}\\
(A-\lambda \cdot I) \cdot v=0 \tag{2.11}\\
w \cdot A-w \cdot \lambda=0 \tag{2.12}\\
w \cdot(A-\lambda \cdot I)=0 \tag{2.13}
\end{gather*}
$$

Where:
$A=$ State matrix;
$v=$ Right eigenvector;
$w=$ Left eigenvector;
$\lambda=$ Eigenvalue;
$I=$ Identity matrix.

The matrix $A-\lambda \cdot I$ must be singular, so eigenvalues can be obtained. The system characteristic equation is presented in equation (2.14), according to [4, 34].

$$
\begin{equation*}
\operatorname{det}(A-\lambda . I)=0 \tag{2.14}
\end{equation*}
$$

Where:
$A=$ State matrix;
$\lambda=$ Eigenvalue;
$I=$ Identity matrix;
$\operatorname{det}=$ Determinant of the matrix $A-\lambda . I$.

A n order system will have n eigenvalues. This system will also have n right and left eigenvectors related to each one of these eigenvalues. They can be obtained through equations (2.15) and (2.16), according to [4, 34].

$$
\begin{gather*}
\left(A-\lambda_{i} \cdot I\right) \cdot v_{i}=0 \tag{2.15}\\
w_{i} \cdot\left(A-\lambda_{i} \cdot I\right)=0 \tag{2.16}
\end{gather*}
$$

Where:
$A=$ State matrix;
$v_{i}=$ Right eigenvector associated to mode i;
$w_{i}=$ Left eigenvector associated to mode i;
$\lambda_{i}=$ System mode $i ;$
$I=$ Identity matrix.

These eigenvalues and eigenvectors have important information about the natural oscillations that may appear in power systems [4, 34].

2.3.3 Participation Factors and Mode Shapes

Participation factors represent the contribution of each system state variable for the appearance of modes in its model [4, 34].

These factors can be obtained through the multiplication of elements of the right eigenvector matrix Φ and left eigenvector matrix Ψ and their calculation is shown in equations (2.17) and (2.18), according to [4, 34].

$$
P=\left[\begin{array}{lllll}
P_{1} & \cdots & P_{i} & \cdots & P_{n} \tag{2.17}
\end{array}\right]
$$

$$
P_{i}=\left[\begin{array}{c}
P_{1 i} \tag{2.18}\\
\vdots \\
P_{i i} \\
\vdots \\
P_{n i}
\end{array}\right]=\left[\begin{array}{c}
\Phi_{1 i} \cdot \Psi_{i 1} \\
\vdots \\
\Phi_{i i} \cdot \Psi_{i i} \\
\vdots \\
\Phi_{n i} \cdot \Psi_{i n}
\end{array}\right]
$$

Where:
$P=$ Participation factor matrix;
$P_{1}=$ Participation factor vector for mode 1;
$P_{i}=$ Participation factors vector for mode i;
$P_{n}=$ Participation factors vector for mode $n ;$
$P_{1 i}=$ Participation factor of state variable 1 for mode $i ;$
$P_{i i}=$ Participation factor of state variable i for mode i;
$P_{n i}=$ Participation factor of state variable n for mode i;
$\Phi_{1 i}=$ Element of right eigenvector matrix related to state variable 1 and mode i;
$\Phi_{i i}=$ Element of right eigenvector matrix related to state variable i and mode i;
$\Phi_{n i}=$ Element of right eigenvector matrix related to state variable n and mode i;
$\Psi_{i 1}=$ Element of left eigenvector matrix related to state variable 1 and mode $i ;$
$\Psi_{i 1}=$ Element of left eigenvector matrix related to state variable i and mode i;
$\Psi_{i n}=$ Element of left eigenvector matrix related to state variable n and mode i.

The participation factors can be used to determine the system mode origins, which can be related to power flow equations, control system equations or electromechanical interactions [4, 34].

Electromechanical oscillation modes present high participation factors for rotor angles and rotor speeds [4, 34].

Mode shapes are the graphics obtained through plotting elements of right eigenvector matrix Φ. They are related to a desired state variable and a mode and their calculation is shown in equations (2.19) and (2.20), according to [4, 34].

$$
\begin{gather*}
\Phi=\left[\begin{array}{llcll}
\Phi_{1} & \cdots & \Phi_{i} & \cdots & \Phi_{n}
\end{array}\right] \tag{2.19}\\
 \tag{2.20}\\
\Phi_{i}=\left[\begin{array}{c}
\Phi_{1 i} \\
\vdots \\
\Phi_{i i} \\
\vdots \\
\Phi_{n i}
\end{array}\right]
\end{gather*}
$$

Where:
$\Phi=$ Right eigenvector matrix;
$\Phi_{1}=$ Right eigenvector related to mode 1;
$\Phi_{i}=$ Right eigenvector related to mode $i ;$
$\Phi_{n}=$ Right eigenvector related to mode $n ;$
$\Phi_{1 i}=$ Element of right eigenvector matrix related to state variable 1 and mode $i ;$
$\Phi_{i i}=$ Element of right eigenvector matrix related to state variable i and mode i;
$\Phi_{n i}=$ Element of right eigenvector matrix related to state variable n and mode i.

The mode shapes can be used to determine if system variables oscillate in a coherent or non-coherent way, when a small disturbance occurs in the electrical grid [4, 34]. Figure 2.3 illustrates examples of mode shapes.

Figure 2.3: Schematic examples of mode shapes.

Coherent oscillations are those in which variables behave similarly and present oscillations almost in phase. Non-coherent oscillations are those in which variables have opposite behaviors and present oscillations almost in counter-phase [4, 34].

Rotor speed mode shapes are very important to electromechanical oscillation modes, enabling the determination of their types, such as: intra-plant modes, local modes, inter-area modes or multi-machine modes [4, 34].

2.3.4 Residue, Controlability and Observability

A variable linear transformation can be performed, in order to obtain a new state transition matrix Λ and modal state variables z for power systems [4, 34].

This similarity transformation is represented through equations (2.21) and 2.22). The new state transition matrix Λ will have a diagonal form, if the system presents n distinct eigenvalues [4, 34].

$$
\begin{gather*}
x=\Phi . z \tag{2.21}\\
\Lambda=\Phi^{-1} \cdot A \cdot \Phi=\left[\begin{array}{ccccc}
\lambda_{1} & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{i} & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & \lambda_{n}
\end{array}\right] \tag{2.22}
\end{gather*}
$$

Where:
$x=$ Original state variable vector;
$z=$ Modal state variable vector;
$A=$ Original state transition matrix;
$\Phi=$ Right eigenvector matrix;
$\Lambda=$ Modal state transition matrix;
$\lambda_{1}=$ System mode 1;
$\lambda_{i}=$ System mode $i ;$
$\lambda_{n}=$ System mode n.

Each modal state variable is directly related to a system mode, which defines its dynamic behavior. The original state variables can be obtained through linear combinations of the modal state variables [4, 34].

This similarity transformation can be expanded to the input matrix B, output matrix C and direct transfer matrix D, yielding a new state space model for the power system, which is represented in equations (2.23), (2.24), 2.25), (2.26), 2.27) and (2.28), according to [4, 34].

$$
\begin{equation*}
x=\Phi . z \tag{2.23}
\end{equation*}
$$

$$
\begin{gather*}
\Lambda=\Phi^{-1} \cdot A \cdot \Phi \tag{2.24}\\
B^{\prime}=\Phi^{-1} \cdot B \tag{2.25}\\
C^{\prime}=C \cdot \Phi \tag{2.26}\\
\Delta \dot{z}=\Lambda \cdot \Delta z+B^{\prime} \cdot \Delta u \tag{2.27}\\
\Delta y=C^{\prime} \cdot \Delta z+D \cdot \Delta u \tag{2.28}
\end{gather*}
$$

Where:
$x=$ Original state variable vector;
$z=$ Modal state variable vector;
$A=$ Original state transition matrix;
$\Phi=$ Right eigenvector matrix;
$\Lambda=$ Modal state transient matrix;
$B=$ Original input matrix;
$B^{\prime}=$ Modal input matrix;
$C=$ Original output matrix;
$C^{\prime}=$ Modal output matrix;
$D=$ Direct transfer matrix;
$\Delta u=$ Input variable deviation vector;
$\Delta y=$ Output variable deviation vector;
$\Delta z=$ Modal state variable deviation vector;
$\Delta \dot{z}=$ Modal state variable derivative deviation vector.

If there are no direct transfer terms in the system, the matrix D will be null and its model can be represented through equations (2.29) and 2.30. A transfer function [40] relating the input and output of the system can be obtained applying the Laplace transform in this new model, which is shown in equation (2.31).

$$
\begin{gather*}
\Delta \dot{z}=\Lambda \cdot \Delta z+B^{\prime} \cdot \Delta u \tag{2.29}\\
\Delta y=C^{\prime} \cdot \Delta z \tag{2.30}\\
\frac{\Delta Y(s)}{\Delta U(s)}=C^{\prime} \cdot(s \cdot I-A)^{-1} \cdot B^{\prime} \tag{2.31}
\end{gather*}
$$

Where:
$\Lambda=$ Modal state transition matrix;
$B^{\prime}=$ Modal input matrix;
$C^{\prime}=$ Modal output matrix;
$\Delta u=$ Input variable deviation vector;
$\Delta y=$ Output variable deviation vector;
$\Delta z=$ Modal state variable deviation vector;
$\Delta \dot{z}=$ Modal state variable derivative deviation vector;
$\Delta Y(s)=$ Laplace transform of output variable deviation vector;
$\Delta U(s)=$ Laplace transform of input variable deviation vector;
$\frac{\Delta Y(s)}{\Delta U(s)}=$ Transfer function matrix relating input and output variables.
If the system has only one input and one output variables (SISO system), equation (2.31) can be rewritten through equations (2.32) and (2.33).

$$
\begin{equation*}
\frac{\Delta Y(s)}{\Delta U(s)}=c^{\prime} \cdot(s \cdot I-A)^{-1} \cdot b^{\prime} \tag{2.32}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\Delta Y(s)}{\Delta U(s)}=\sum_{i=1}^{n} \frac{c_{i}^{\prime} \cdot b_{i}^{\prime}}{s-\lambda_{i}}=\sum_{i=1}^{n} \frac{R_{i}}{s-\lambda_{i}} \tag{2.33}
\end{equation*}
$$

Where:
$\Lambda=$ Modal state transition matrix;
$b^{\prime}=$ Modal input vector;
$c^{\prime}=$ Modal output vector;
$b_{i}^{\prime}=$ Element i of input variable deviation vector;
$c_{i}^{\prime}=$ Element i of output variable deviation vector;
$R_{i}=$ Residue related to mode i in transfer function $\frac{\Delta Y(s)}{\Delta U(s)} ;$
$\Delta Y(s)=$ Laplace transform of output variable deviation vector;
$\Delta U(s)=$ Laplace transform of input variable deviation vector;
$\frac{\Delta Y(s)}{\Delta U(s)}=$ Transfer function matrix relating input and output variables.
Controlability factor can be defined as an input variable capability of exciting a system mode and can be determined through equation (2.34), according to [4, 34].

$$
\begin{equation*}
C t r l_{i}=b^{\prime}=\Psi_{i} . b \tag{2.34}
\end{equation*}
$$

Where:
$C t r l_{i}=$ Controlability factor of mode $i ;$
$b_{i}^{\prime}=$ Element i of modal input vector;
$\Psi_{i}=$ Left eigenvector related to mode i;
$b=$ Original input vector.

Observability factor can be defined as an output variable capability of reflecting a mode dynamic and can be obtained through equation (2.35), according to [4, 34].

$$
\begin{equation*}
{O b s v_{i}}=c^{\prime}=c . \Phi_{i} \tag{2.35}
\end{equation*}
$$

Where:
$O b s v_{i}=$ Observability factor of mode $i ;$
$c_{i}^{\prime}=$ Element i of modal output vector;
$\Phi_{i}=$ Right eigenvector related to mode $i ;$
$c=$ Original output vector.
Transfer function residue can be defined as a system mode influence in output variable dynamic behavior when this mode is excited by input variable and can be determined through equation (2.36), according to [4, 34].

$$
\begin{equation*}
R_{i}=C \operatorname{tr} l_{i} \cdot O b s v_{i}=c^{\prime} \cdot b^{\prime}=c \cdot \Phi_{i} \cdot \Psi_{i} \cdot b \tag{2.36}
\end{equation*}
$$

Where:
$R_{i}=$ Residue related to mode i in transfer function $\frac{\Delta Y(s)}{\Delta U(s)} ;$
$C t r l_{i}=$ Controlability factor of mode $i ;$
$O b s v_{i}=$ Observability factor of mode $i ;$
$c_{i}^{\prime}=$ Element i of modal output vector;
$b_{i}^{\prime}=$ Element i of modal input vector;
$c=$ Original output vector;
$b=$ Original input vector;
$\Phi_{i}=$ Right eigenvector related to mode $i ;$
$\Psi_{i}=$ Left eigenvector related to mode i

The modal analysis is very important to small-signal stability of power systems. This analysis enables the identification of equipment most responsible for causing undesired oscillations and the improvement of their damping factors through control system tuning, such as: PSS or POD.

2.3.5 Control System Design

Power system stabilizers (PSS) can be used to increase the damping factor of electromechanical oscillation modes. Module and phase compensation are needed in PSS tuning, according to [34, 41, 42].

Nyquist diagrams can be used to design control systems, as PSS, and determine these compensations. These diagrams analyze the open loop system, in order to evaluate the closed loop dynamic behavior [34, 41, 42].

Figure 2.4 represents a power system model, where $G(s)$ considers a generator, its automatic voltage regulator (AVR), its speed governor (GOV) and other system equipment. $P S S(s)$ is the transfer function of a power system stabilizer, which is used in a negative feedback [34, 41, 42].

System input variable is the voltage reference signal $V_{\text {ref }}$, output variable is the rotor speed $W W$ and $V_{\text {pss }}$ is the stabilization signal [34, 41, 42].

Figure 2.4: Transfer function $G(s)$ with feedback through PSS(s).
$P S S(s)$ can be decomposed into a WASHOUT block and the function $\operatorname{Comp}(s)$, which is responsible for module and phase compensation of the stabilizer, according to equations (2.37) and 2.38).

$$
\begin{align*}
& \operatorname{PSS}(s)=\operatorname{Comp}(s) \cdot\left(\frac{T_{w} \cdot s}{1+T_{w} \cdot s}\right) \tag{2.37}\\
& \operatorname{Comp}(s)=K_{p s s} \cdot\left(\frac{1+T \cdot s}{1+\alpha \cdot T \cdot s}\right)^{n b} \tag{2.38}
\end{align*}
$$

Where:
$P S S(s)=$ Transfer function of power system stabilizer;
$\operatorname{Comp}(s)=$ Transfer function of module and phase compensation;
$T_{w}=$ WASHOUT block time constant;
$K_{p s s}=$ Gain of $\operatorname{Comp}(s) ;$
$\alpha=$ Phase parameter of $\operatorname{Comp}(s) ;$
$T=$ Frequency parameter of $\operatorname{Comp}(s)$.

Function module M and phase ϕ for the mode frequency ω can be obtained through a traditional Nyquist diagram (with damping factor of 0%) of transfer function $G(s) \cdot\left(\frac{T_{w} \cdot s}{1+T_{w} \cdot s}\right)$ [4, 34, 42], as can be seen in figure 2.5.

Figure 2.5: Schematic Nyquist diagram for the range

$$
0 \leq \omega<\infty .
$$

$\operatorname{Comp}(s)$ parameters can be obtained, so the compensated Nyquist diagram can involve the point -1 of the complex plane, counterclockwise. Then, system will become stable, according to Nyquist criteria [34, 40, 42]. This module and phase compensations can be observed in figure 2.6 .

Figure 2.6: Nyquist diagram with module and phase compensation.

Gain and phase margins must be considered in compensation to ensure a satisfactory damping factor for the mode of interest [34, 40, 42].

The phase and frequency parameters of $\operatorname{Comp}(s)$ can be determined through equations (2.39), (2.40) and (2.41), according to [34, 40, 42].

$$
\begin{gather*}
\phi_{a d v}=180^{\circ}-\phi \tag{2.39}\\
\sin \left(\frac{\phi_{a d v}}{n b}\right)=\frac{1-\alpha}{1+\alpha} \tag{2.40}\\
\omega=\frac{1}{T \cdot \sqrt{\alpha}} \tag{2.41}
\end{gather*}
$$

Where:
$\phi_{a d v}=$ Desired phase advance;
$\phi=$ Phase of open loop system for frequency $\omega ;$
$n b=$ Number of lead-lag blocks used in compensation;
$\omega=$ Frequency of system mode;
$\alpha=$ Phase parameter of $\operatorname{Comp}(s) ;$
$T=$ Frequency parameter of $\operatorname{Comp}(s)$.

Module compensation can be determined through the Nyquist diagram with phase compensation. The new module $M_{\text {comp }}$ for mode frequency ω can be obtained in this new diagram, as can be seen in figure 2.7.

Figure 2.7: Nyquist diagram with phase compensation.

The gain $K_{p s s}$ can be obtained through the module $M_{c o m p}$, as can be seen in equation (2.42), according to [34, 40, 42].

$$
\begin{equation*}
K_{p s s}=\frac{1}{M_{c o m p}} \tag{2.42}
\end{equation*}
$$

Where:
$K_{p s s}=$ Gain of $\operatorname{PSS}(s) ;$
$M_{\text {comp }}=$ Module of phase compensated transfer function for the mode frequency ω.

This equationing is related to control system design using traditional Nyquist diagram, which is not the only way to project controllers.

Other formulations for tuning control systems or loops can be performed through using Nyquist diagrams with damping factor [41, 42].

These other methods allow positioning complex pole pair in a desired location in complex plane, ensuring a desired damping factor and frequency for the oscillation mode of interest, according to [41, 42].

2.4 Final Considerations

Power system electromechanical stability was briefly described in this chapter, including a transient and small-signal stability analyses review.

Modal analysis principles were presented, including the concepts of eigenvalues, eigenvectors, participation factors, mode shapes, controlability, observability and transfer functions residues.

Control system design was discussed and a basic methodology for control tuning was also presented, finishing this chapter.

Chapter 3

State of Art and Concepts

This chapter will present the power system security assessment state of art, including a literature review about concepts of voltage, transient and small-signal security assessments (VSA, TSA and SSA).

3.1 DSA Tools and Techniques

DSA tools and techniques are described in [14]. Several stability analyses should be done in a DSA, such as: voltage, frequency and rotor angle stability [14].

Developments related to voltage and transient security assessment (VSA and TSA) are presented in [14]. The main applications in DSA field are: operation planning analysis, available transmission capability (ATC) determination and on-line security assessment of power systems [14].

The voltage stability is related to power system ability of keeping acceptable bus voltage levels under normal operation and contingency situations [14].

Voltage security assessment consists of evaluating system voltage stability and should have important characteristics, such as: critical contingency list to be consider, properly voltage security analysis and corrective measures to improve power system behaviors [14].

On-line transient security assessment is a computational challenge due to the high processing time in the determination of time response simulations of large-scale power systems, according to [14].

TSA tools should use adequate technique, as time responses and Prony analysis [43], for determining oscillation damping factors, through a fast computational processing with minimum human interference [14].

Transient security assessment tools should have important characteristics, such as: critical contingency list to be consider and properly transient security analysis to determine system security margins [14].

The criteria of DSA tools are related to oscillation damping factors and transient voltages, in order to determine these security margins, according to [14].

3.2 On-line DSA Method

Methods for performing on-line DSA are presented in [11], such as: second kick method, fast second kick method and free mode second kick method.

These methods are based on calculation of kinetic energy injected in the system, in order to determine stability or security margins of power systems [11].

Power systems are operating, each day more, under stressed scenarios and close to their limits. Power system security assessments are very important in this context, to ensure a safe system operation [11].

On-line transient security assessment can be divided into three steps, according to [11: critical contingency selection, TSA considering these contingencies and determination of power system security limits.

Implementations of on-line DSA are based on time responses and should have important characteristics, such as: system dynamic behavior evaluation, stability margin determination, calculation of stability margin sensitivities with respect to power system key variables [11].

The second kick method for on-line DSA consists of applying two artificial shortcircuits in the power system and verifying the kinetic energy variation of certain power plants, aiming at the transient energy margin determination [11].

The fast second kick method is defined through mathematical manipulations in the original second kick method, in order to enable a faster computational determination of the transient energy margin [11.

The free mode second kick method is presented in [11], which is a variation of the original second kick method and fast second kick method.

This new method aims at determining the kinetic energy margin, deleting the need of mode of disturbance (MOD) information, which is a machine set where the oscillation of interest is more observable [11].

A variable replacement is used to eliminate the MOD information from the second kick method and a Newton-Raphson algorithm is utilized to determine system kinetic energy and stability margins [11].

3.3 DSA Tool in an EMS

Off-line stability analyses are used for determining power system stability limits, but they are very conservative studies and, many times, consider scenarios in which the system may never operate [10].

On-line methods are better for the determination of these stability limits, because they are based on the analysis of the actual system operating point 10 .

On-line dynamic security assessment is very important in this context, for determining these limits and improving power system reliability [10.

Some characteristics of on-line DSA are presented in [10, such as: critical contingency selection, time responses simulations, power transfer limit determination and parallel processing use to increase simulation speed.

This on-line security assessment aims at the periodic monitoring of power system state to ensure a secure operation [10].

Methods for calculating stability margins based on transient energy determination are also presented in [10], which enable faster simulations.

The basic requirements to on-line DSA implementations are described in [10], such as: critical contingencies selection, contingency analyses, power system modelling, algorithms for evaluating transient stability, and power system monitoring.

On-line DSA should supply important information about the system operation, as well as, power transfer limits and security margins [10].

3.4 SSA Tools and Characteristics

A small-signal security assessment tool is presented in [16]. The small-signal stability analyses determine important information about power system dynamic behavior and characteristics, according to [16].

This study is performed through the power system model linearization and its modal analysis, which enables the determination of bad damped oscillations [16].

SSA is directly related to small-signal stability analyses. This assessment includes contingency evaluation and bad damped oscillation mode determination [16].

The main motivations to a SSA tool development are presented in [16], such as: poorly damped oscillation mode determination, controller design for improving mode damping factors, small-signal security level determination and a possible on-line small-signal security assessment.

The basic requirements for a SSA tool implementation are defined in [16], such as: power system model linearization, eigensolvers to calculate modes, small-signal stability criteria, friendly interface development with result presentation.

This implementation of a SSA tool can be divided into two steps, according to [16]: eigenvalues or modes calculation and security assessment execution.

SSA tools have two important objectives, according to [16]: power system security margin determination and small-signal stability limit calculation.

These stability limits and security margins can be obtained through indexes, which are calculated considering damping factor criteria [16].

A relation between power transfer levels practiced in electrical systems and these security indexes can be defined and used to ensure a safe operation [16].

Small-signal security assessment tools should have some features, according to [16], such as: full eigensolvers, partial eigensolvers, time response simulations, frequency response simulations, small-signal security indexes, small-signal stability limits and system oscillation mode monitoring.

3.5 SSA Numerical Index

A SSA numerical index is proposed in [17], in order to represent qualitative smallsignal security assessment results, identifying the system security.

The main objective of SSA consists of determining system critical modes, which could represent undesired oscillations in its electrical grid [17].

Oscillation problems can be identified through modal analysis tools, which are capable of calculating system modes, identifying the critical ones [17].

Small-signal security assessment is related to small-signal stability and should consider a critical contingency list to be evaluated [17].

The monitored power system will be defined as secure if mode damping factors are greater than the desired minimum damping factor, according to [17.

The power system will be considered insecure if, at least, one mode presents undesired damping factor [17].

A SSA index for power system is proposed in [17], which is called SSSI. This index can be determined through equations (3.1) and (3.2).

$$
\begin{gather*}
S S S I=\min \left(1, \max \left(\frac{\xi_{i}}{\xi_{m_{i n_{d}}}}\right)^{-n}\right), \xi_{i}>\xi_{\text {mind }_{d}} \tag{3.1}\\
S S S I=1, \xi_{i} \leq \xi_{\text {mind }_{d}} \tag{3.2}
\end{gather*}
$$

Where:
$n=$ SSSI security index norm;
$\xi_{i}=$ Damping factor of mode $\lambda_{i} ;$
$\xi_{\text {mind }_{d}}=$ Desired minimum damping factor.

3.6 DSA in Planning and Operation

Results of initial experiences using a DSA computational tool are presented in [15]. The DSA is an important part of power system security assessment, which should be based on fast time response simulations and contingency analysis [15].

Dynamic security assessments should consider a criteria related to voltage, transient and small-signal stability analyses, according to [15.

The power system security assessment must be used in order to optimize system operation and should have some objectives, such as: load forecast, resource storage, power transfer planning, static and dynamic security assessment [15].

These security assessments should have a criteria related to: critical contingency analysis, equipment charging limits, desired minimum damping factor, transient stability margins, dynamic limits for frequency and voltage deviation [15.

A DSA tool prototype is proposed in [15], which has graphical interface, application platform and computational device.

This DSA prototype was used to monitor a power system in [15]. The tool was capable of determining the system security index and identifying the critical contingencies for its operation [15].

This computational tool was used in an EMS/SCADA and the results obtained through the detailed power system model and from monitoring data were coherent, once the same problems were detected in both situations [15].

The prototype security index consists of a scale from 0 to 1 , where 0 represents a secure system operation and 1 represents a insecure operation. The intermediary values represent different system security levels [15].

3.7 Static and Dynamic Security

An integration between software ANAREDE [5] and ANATEM [7, both from CEPEL, is presented in [12], which can be used for performing static and dynamic security assessment of power system (SDSA).

The Brazilian interconnected power system may operate in several different power transfer scenarios between its electrical areas, which is a serious challenge for the system operators, according to [12].

The voltage, transient and small-signal security assessments should be performed to increase the robustness of the Brazilian system planning and operation, due to this important characteristic [12].

Power flow and transient stability data are needed for performing off-line SDSA, which should be used for the analysis of several feasible operation scenarios, so the system security can be evaluated [12].

On-line SDSA uses the actual operating point data, instead of analyzing several scenarios of the system. These data are obtained through the power system EMS/SCADA, according to [12].

Computational performance of on-line SDSA tools is very important for obtaining useful results for the system operator. The parallel processing is an interesting technique to be used in this context [12].

SDSA results can be observed through nomograms, which are orthogonal projections of the security regions. These regions are three-dimensional, relating the dispatches of three generating groups to the security criteria [12].

The dispatches of these generating groups are modified for the creation of different scenarios that must be evaluated in SDSA. The criteria of this security assessment are related to steady-state and dynamic limits recommended by the Electrical System National Operator (ONS) [12].

3.8 Oscillation Monitoring in SDSA

The importance of voltage and transient security assessments is discussed in [13], which can be used to improve the power system planning and operation.

VSA and DSA tools can be utilized to determine the relative position of power system operating points in relation to security region borders, which can be graphically observed through the nomograms [13.

Impact of detailed power plant representation in software ANAREDE [5] and ANATEM [7] is also discussed in [13], which can modify SDSA results.

Oscillation damping monitoring implementation is presented in [13], in order to adequate the dynamic security assessment results to the criteria recommended by the Brazilian power system operator.

This detailed representation of generating units can have a significant influence in VSA and DSA results, modifying the power system security regions determined through a SDSA execution, according to [13].

3.9 Final Considerations

The actual power system security assessment state of art were briefly described in this chapter, including a voltage, transient and small-signal security assessments literature review.

Critical contingencies and several scenarios should be evaluated in these security assessment, in order to determine power system security margins.

Security indexes and nomograms can be obtained as results of static and dynamic security assessment, according to the literature review made in this chapter.

Chapter 4

Security Assessment Theory

This chapter will present the main concepts related to the voltage, transient and small-signal security assessments. SSA methods will be proposed and their computational implementation will be described.

4.1 Basic Concepts

The concern and pursuit of an adequate, continuous and secure electrical energy supply are increasing worldwide.

Several power system analyses are needed to ensure a robust planning and operation, enabling the system to operate in different scenarios, many times very stressed, with minimized risks of failures.

An adequate security level is extremely important so the system can operate with continuity and robustness, ensuring the energy supply $9,12,14,44$.

Power system security assessment appears in this context, where the bus voltage levels (VSA), transient dynamic behavior (TSA) and small-signal stability analysis (SSA) are evaluated, according to [9, 12-14, 44.

These security assessments consist of evaluating several scenarios and critical contingencies for the power system of interest, aiming at the determination of critical operating points [12-17].

The processing time of these evaluations is a challenge. TSA, for example, is very time consuming. Some methods are presented in the literature, trying to deal with this problem, as the extended equal area criterion (EEAC) 455.

Stability margins [11, security indexes [17] and security regions [12, 13] can be obtained through the power system security assessments.

Power system stability margins can be obtained through the determination of transient kinetic energy margin, according to [11].

A numerical small-signal security index is presented in [17], called SSSI.

The security regions determined through static and dynamic security assessment of power system can be viewed by using nomograms, according to [12, 13].

Figure 4.1 illustrates a nomogram that can be used in voltage and transient security assessments of power systems.

Figure 4.1: Schematic example of a SDSA nomogram.

Five security regions are defined in the schematic SDSA nomogram: blue, green, brown, yellow and orange.

Blue region represents the secure operating points. Outside, there were voltage violations in the system.

Green region represents the operating points with only voltage violations. Outside, there were voltage and charging limit violations.

Brown region represents the operating points with voltage and charging limit violations. Outside, there were also reactive compensation limit violations.

Yellow region represents the operating points with all already mentioned violations. Outside, there were also stability limit violations.

Lastly, orange region represents the operating points all the four mentioned violations. Outside, the power flow calculations were not convergent, considering a normal operation of the system.

4.2 Power System VSA and TSA

Voltage security assessment (VSA) is directly related to voltage stability concepts and consists of determining and evaluating bus voltage levels.

VSA should consider system normal operation and critical contingency situations, in order to determine the power system security.

Operating point will be considered secure if no critical contingencies are capable of leading the system to undesired bus voltage levels, which could cause interruptions in electrical energy supply.

A VSA criteria, in general, are related to limits of: under-voltage, over-voltage, generator active power, reactive power reserve, equipment charging and voltage stability margins [12 14].

The off-line VSA should use power flow data and a contingency list, in order to evaluate the system, determining its security regions [12, 13].

The on-line VSA uses EMS/SCADA data as power flow information and should be executed during system operation, aiming to obtain the security regions [12, 13].

Figure 4.2 presents a scheme for off-line VSA tools [12, 13].

Figure 4.2: Off-line voltage security assessment scheme.

Figure 4.3 presents a scheme for on-line VSA tools [12, 13].

Figure 4.3: On-line voltage security assessment scheme.

Transient security assessment (TSA) is directly related to transient stability concepts and consists of determining and evaluating system dynamic behavior.

TSA should perform non-linear time responses for critical contingency situations, in order to determine the power system security.

Operating point will be considered secure if no critical contingencies are capable of leading the system to loss of synchronism between the power plants.

A TSA criteria, in general, are related to limits of: under-voltage, over-voltage, generator active power, reactive power reserve, equipment charging and transient stability margins 12 15].

The off-line TSA should use power flow data, dynamic data and a contingency list, in order to evaluate the system, determining its security regions [12, 13].

The on-line TSA uses EMS/SCADA data as power flow information and should also be executed during system operation, aiming to obtain the security regions [12, 13].

Figure 4.4 presents a scheme for off-line TSA tools [12, 13].

Figure 4.4: Off-line transient security assessment scheme.

Figure 4.5 presents a scheme for on-line TSA tools [12, 13].

Figure 4.5: On-line transient security assessment scheme.

The power plants must be divided into three generator groups and their dispatches should be modified in order to obtain several system operation scenarios that will be evaluated in VSA or TSA [12, 13].

This generator group definition and processing time for large-scale power systems are challenges for VSA and TSA tool developers [12, 13].

All the scenarios are evaluated by the security assessment tool, aiming to determine the system security regions and their nomograms [12, 13].

Figures 4.6, 4.7 and 4.8 present illustrative nomograms example [12, 13].

Figure 4.6: Nomogram relating Gen 1 and Gen 2 generation groups.

Figure 4.7: Nomogram relating Gen 1 and Gen 3 generation groups.

Figure 4.8: Nomogram relating Gen 2 and Gen 3 generation groups.

Green border represents voltage limits, blue border represents charging limits, brown border represents reactive power reserve limits, yellow border represents voltage (VSA) or transient (TSA) stability limits, and orange border represents power flow convergence limits for system normal operation.

Dark green region represents secure operating points, light green region represents operating points with one violation, yellow region represents operating points with more than one violation, orange region represents operating points with contingency issues, and red region represents operating points with normal operation issues.

The nomograms present power system security regions and can be used to identify the relative position of actual operating point in relation to the security limits, improving system planning and operation.

Power system planning studies can use the nomograms to recommend new equipment for the system, trying to improve its security.

Power system operation studies can use the nomograms to determine operative measures for the system, trying to keep its security.

4.3 Power System SSA

Small-signal security assessment (SSA) is directly related to small-signal stability concepts and consists of determining and evaluating system dynamic behavior, in face of small disturbances.

SSA should perform modal analysis and consider critical contingency situations, in order to calculate oscillation modes and determine system security.

Operating point will be considered secure if no oscillation mode presents undesired damping factor, which represents small-signal stability problems. This analysis should be done for system normal operation and contingency situations.

A SSA criteria are related with damping factors presented by system oscillation modes, which should be higher than a desired minimum value [12, 13, 16, 17].

The off-line SSA should use power flow data, dynamic data and a contingency list, in order to evaluate the system, calculating its oscillation modes and determining its security regions or root-locus contours [12, 13, 16, 17].

The on-line SSA uses EMS/SCADA data as power flow information and should also be executed during system operation, aiming to obtain the security regions, root-locus contours or on-line monitoring of oscillations [12, 13, 16, 17].

Figure 4.9 presents a scheme for off-line SSA tools [12, 13, 16, 17].

Figure 4.9: Off-line small-signal security assessment scheme.

Figure 4.10 presents a scheme for on-line SSA tools [12, 13, 16, 17.

Figure 4.10: On-line small-signal security assessment scheme.

The thesis is proposing three SSA methods: damping nomogram method (DNM), root-locus method (RLM) and on-line monitoring of oscillations (OLMO).

4.3.1 Damping Nomogram Method

Damping nomogram method (DNM) consists of determining small-signal security regions for power systems, based on mode damping factors [9, 46, 48].

The power plants must also be divided into three generator groups and their dispatches should be modified in order to obtain several system operation scenarios that will be evaluated in this SSA method.

All the scenarios are evaluated by the security assessment tool, aiming to determine the system small-signal security regions and their nomograms.

These SSA nomograms present the small-signal security regions, based on the minimum mode damping factor of each operating point, and can be used to identify the relative position of actual scenario in relation to the security limits, improving power system planning and operation.

Figure 4.11 illustrates a nomogram that can be used in small-signal security assessments of power systems.

Figure 4.11: Schematic example of a SSA nomogram.

Five security regions are defined in the schematic SSA nomogram: green, blue, purple, red and white.

Green region represents the operating points defined as secure and stable, with minimum damping factor higher or equal to 10%.

Blue region represents the operating points defined as secure and stable, with minimum damping factor lower than 10% and higher or equal to 5%.

Purple region represents the operating points defined as insecure and stable, with minimum damping factor lower than 5% and higher or equal to 0%.

Red region represents the operating points defined as insecure and unstable, with minimum damping factor lower than 0% (negative damping factors), which represents instability in face of small disturbances.

Lastly, white region represents the operating points where power flow calculations were not convergent, considering a normal operation of the system.

Power system planning studies can use the SSA nomograms to recommend new equipment for the system or a new control tuning, trying to improve its security.

Power system operation studies can use the nomograms to determine operative measures for the system, as redispatches, trying to keep its security.

4.3.2 Root-locus Method

Root-locus method (RLM) consists of determining root-locus contours for power systems, considering load flow parameter variation [46, 47, 49].

These root-locus contours obtained through load flow parameter variation already exist, as can be seen in [49]. The proposed SSA method uses this kind of evaluation, in order to obtain small-signal security margins.

Important power flow variables can be used in this root-locus analysis, such as bus loads and plant dispatches.

The DNM analysis considers proportional redispatches for the power plants of the same generator group, during the scenario creation.

The RLM analysis can consider any proportion for plant redispatches and is applicable to a more detailed SSA evaluation.

Figure 4.12 presents an illustrative SSA root-locus, showing an oscillation mode displacement in complex plane caused by a load flow parameter variation.

Figure 4.12: Schematic SSA root-locus example.

Figure 4.13 presents the same information as figure 4.12, showing a mapping of the mode damping factor in function of a parameter variation [16, 17].

Figure 4.13: Mode damping factor mapping.

First RLM application consists of verifying system robustness and determining variation amount of parameter set that would produce poorly damped oscillations. Load increasing with correspondent redispatch should be used in this case, in order to determine how much these loads can increase before a problem occurs.

Second RLM application consists of determining corrective measures to improve system dynamic behavior, increasing critical mode damping factors.

Power plant redispatches, terminal voltages and reactive power compensation should be used in this case, in order to obtain a better operating point.

Contingency analysis could also be considered in the RLM, yielding different rootlocus contours for each one of these emergency situations.

4.3.3 On-line Monitoring of Oscillations

On-line monitoring of oscillations (OLMO) consists of monitoring small-signal stability of power systems, during their operations 47.

This monitoring is based on modal analysis, determining system oscillation modes and their damping factors, in order to detect possible oscillation problems.

Frequencies and damping factors of oscillation modes are monitored in the OLMO, which represent power system natural oscillations.

System will be considered secure if the monitored modes present damping factors higher than a desired minimum value. Otherwise, the system will be considered insecure, presenting poorly damped oscillations.

Security criteria used in OLMO are focusing on damping factors: 5% may be consider as a security limit and 0% is the stability limit.

Figure 4.14 illustrates OLMO of a secure power system, where monitored mode is always presenting a damping factor higher than the minimum desired.

Figure 4.14: Schematic OLMO of a secure system.

Figure 4.15 illustrates OLMO of an insecure power system, where monitored mode is violating the security criteria in some operating points.

Figure 4.15: Schematic OLMO of an insecure system.

The OLMO may consider a method to forecast frequency and damping factor of important system modes, in order to preview future oscillation problems.

This forecasting may be related to simple extrapolation based on previous measurements or more complex methods based on load curve estimates.

Figure 4.16 illustrates OLMO of a secure power system, with forecasting, where monitored mode is always presenting a damping factor higher than the minimum desired, in measured and foreseen operating points.

Figure 4.16: Schematic OLMO of a secure system with forecasting.

Figure 4.17 illustrates OLMO of an insecure power system, with forecasting, where monitored oscillation mode is violating the small-signal security criteria in some measured or foreseen operating point.

Figure 4.17: Schematic OLMO of an insecure system with forecasting.

The OLMO can also consider critical contingencies, in order to monitor the system modes of the normal operation scenarios and emergency situations.

Corrective measures can be used in power system, aiming to keep a secure operation, increasing damping factors of critical oscillation modes.

Figure 4.18 illustrates OLMO of a power system, where a security violation was foreseen and a corrective measure was used to keep a secure system operation, through increasing monitored mode damping factor.

Figure 4.18: Schematic OLMO with forecasting and corrective measure.

Oscillation mode dynamic behaviors can be modified through using corrective measures in power systems, which are used to increase mode damping factors and can be related to automatic or operator actions.

Automatic actions can be related to supervisory control system utilization or power system stabilizer tuning. Adaptive control systems can also be used, in order to improve power system dynamic behavior.

Operator actions can be related to manual control system tuning or power plant redispatches, aiming to obtain better damping factor for monitored modes and keeping the system inside the security limits [44].

Nowadays, there are methods and strategies for power system monitoring based on phase measurement units (PMU) utilization [50].

The OLMO uses the steady-state and dynamic power system model, differently from these methods, which are based on real-time measurements [50].

PMU methods are more accurate and direct, since they do not depend on power system model. On the other hand, OLMO depends on the state estimator and system model data base. However, OLMO enables the forecasting, which can be used for corrective measure determination.

Then, OLMO could be used with PMU methods, in order to validate power system models and have forecasting tools, in order to improve system monitoring and determine corrective measures whenever needed.

Parallel processing may be utilized in OLMO tools, for improving computational performance to run eigensolver, specially for real-time applications 51.

4.4 Computational Implementations

The damping nomogram method and on-line monitoring of oscillations were implemented in software PacDyn [8], from CEPEL. These developments will be described following. The root-locus method, already existent [49], was not focused in this work, therefore, its implementation will not be described.

4.4.1 Damping Nomogram Method

Damping nomogram method was implemented in software PacDyn [8] and can be used to determine small-signal security regions for power systems.

These regions are based on damping factors of system modes, which can be calculated through QR [52, 53] or DPSE [54] methods.

QR method [52, 53] is capable of determining all the modes of a power system, while, DPSE [54] only calculates a mode set of interest.

A communication between software ANAREDE [5] and PacDyn [8] was developed for the creation of scenarios to be evaluated in DNM.

Figure 4.19 presents the algorithm used by ANAREDE [5] to define the operating point list necessary in this SSA method.

Figure 4.19: SSA scenario creation algorithm.

PacDyn [8] uses this communication with ANAREDE [5] for creating several scenarios to be evaluated in SSA.

Modes are obtained through QR [52, 53] or DPSE [54] methods, for all operating points, considering system normal operation and contingency situations.

Then, mode damping factors are verified, in order to determine the small-signal security regions, defining the SSA nomograms.

There are three nomograms for system normal operation and other three nomograms for the critical contingency situations.

Figure 4.20 presents the damping nomogram method algorithm, implemented in PacDyn [8] for SSA executions.

Figure 4.20: Damping nomogram method algorithm.

4.4.2 On-line Monitoring of Oscillations

On-line monitoring of oscillations was implemented in software PacDyn [8] and can be used to execute small-signal stability monitoring of power systems.

PacDyn monitors a mode set, which is calculated through using DPSE [54] method, considering system normal operation and contingency situations.

The software stays monitoring system steady-state data. When an EMS/SCADA updates these data, PacDyn [8] updates mode calculation, running DPSE [54] again, and obtains new frequencies and damping factors for monitored modes.

The OLMO results and their graphical views are also updated. These results are frequency and damping factor graphics over the time.

OLMO feature implemented in PacDyn [8] has several functions of this software available for using, such as: mode view in complex plane, linear time responses, frequency responses, root-locus calculations, sensitivities calculations, from among other modal analysis tools.

Figure 4.21 presents the OLMO algorithm, implemented in PacDyn [8] for smallsignal stability monitoring.

Figure 4.21: OLMO algorithm.

4.5 Final Considerations

Main concepts of voltage, transient and small-signal security assessment were briefly described in this chapter, focusing on SSA.

The damping nomogram method (DNM), root-locus method (RLM) and on-line monitoring of oscillations (OLMO) were proposed for SSA execution.

Computational implementations of the DNM and OLMO in software PacDyn [8] were presented, finishing this chapter.

Chapter 5

Hopf Bifurcation Application

This chapter will make a Hopf bifurcation literature review and will propose a method for power plant redispatches, considering a mode damping factor criteria. Generation sensitivity calculation will also be presented.

5.1 Hopf Bifurcation Analysis

Power system stability analysis aims at evaluating system dynamic behavior in face of disturbances, in order to detect possible focus of instability [4].

Hopf bifurcation analysis consists of determining specific situations of power systems, where their dynamic behaviors change [24].

System Hopf bifurcation points, considering small-signal stability analysis, are those where oscillation modes are positioned at the imaginary axis [24].

These situations represent the small-signal stability limits, which separates stable operating points from the unstable ones [24].

Several applications of Hopf bifurcation analysis for determining stability issues in power systems are presented in [18]33]. Parameter modifications that could lead them to a stability problem are calculated.

Some applications consider control system parameter variations, as presented in [18 20]. Other applications, however, are concerned with power flow parameter variations, as proposed in [29 33].

A method for determining minimum redispatch for power systems will be presented in this thesis, which considers a damping factor criteria for oscillation modes. This method is an extension of the algorithm proposed in [18-20].

An algorithm that uses optimization techniques and a predictor-corrector procedure is presented in [29], which can be utilized to detect power system bifurcations, including the Hopf bifurcations.

The method proposed in [29] is concerned with critical oscillation mode calculation and is applied to dynamic voltage security assessment, where modifications in the electrical grid and redispatches are considered for problem mitigation.

Power system bifurcation analysis is presented in [30], which considers several load situations. System demands are the parameters used in this study, for determining these bifurcations.

Methodology to control Hopf bifurcations through set-point modification of power systems is presented in [31], which uses reactive compensation, tap tuning, load shedding, plant terminal voltage changing, among others.

Method for determining the minimum distance to a Hopf bifurcation of power system is proposed in [32], which is based on genetic algorithm utilization. Active and reactive load variations were considered in the analysis.

An analysis of generation redispatch effects in system stability margins is presented in [33], where the Hopf bifurcation and load uncertainties are considered.

The methodologies presented in [29-33] are directly related to the research made in this work. However, they are quite different from the minimum redispatch method proposed by this thesis.

The proposed method is unique and uses optimization techniques and a mode damping factor criteria to determine, directly, a new dispatch for power systems.

5.2 Closest Hopf Bifurcation Review

Hopf bifurcation analysis applications are proposed in [18-20] for determining the lowest control parameter variation capable of making a specific system oscillation mode λ present a desired damping factor ξ_{d}.

The situation, determined by using this method for desired damping factor of 0%, can be defined as the closest Hopf bifurcation of power systems.

Optimization techniques are used in [18-20], in order to minimize an objective function, which ensures the minimum parameter variations.

This function is the normalized square difference sum of chosen parameters [18-20], known as euclidean norm, which is presented in equation (5.1).

$$
\begin{equation*}
f_{o b j}(p)=\sum_{i=1}^{n}\left(\frac{p_{i}-p_{i 0}}{p_{i 0}}\right)^{2} \tag{5.1}
\end{equation*}
$$

Where:
$f_{o b j}=$ Objective function;
$n=$ Number of chosen parameters;
$p=$ Chosen parameter vector;
$p_{i}=$ Parameter i value;
$p_{i 0}=$ Parameter i initial value.

This optimization method must consider some boundary conditions, according to [18-20], as can be seen in equations (5.2), (5.3), (5.4), (5.5) and (5.6).

$$
\begin{equation*}
M i n f_{o b j}(p) \tag{5.2}
\end{equation*}
$$

S.t.:

$$
\begin{gather*}
f\left(x_{0}, p\right)=0 \tag{5.3}\\
\left(\lambda . T-J\left(x_{0}, p\right)\right) \cdot v=0 \tag{5.4}\\
c \cdot v-1=0 \tag{5.5}\\
B(\sigma, \omega)=\sigma+\frac{\xi_{d}}{\sqrt{1-\xi_{d}^{2}}} \cdot \omega \tag{5.6}
\end{gather*}
$$

Where:
$f_{o b j}=$ Objective function;
$p=$ Chosen parameter vector;
$x_{0}=$ System variable vector;
$T=$ Expanded identity, containing 1 in diagonal elements related to state variables and 0 in those related to the algebraic variables;
$J=$ System jacobian matrix;
$v=$ Right eigenvector;
$c=$ Sparse line vector used for normalization of $p ;$
$\sigma=$ Mode real component;
$\omega=$ Mode imaginary component;
$\xi_{d}=$ Desired damping factor;
$f=$ Vector including power flow equations and equipment initialization equations;
$B=$ Function representing the desired relation between σ and ω.

The Lagrange method can be used to solve this optimization problem. A lagrangian function $L F$ is defined in equation (5.7) and must be minimized for obtaining the optimal solution [18-20].

$$
\begin{equation*}
M i n L F=f_{o b j}(p)+l^{t} . h(x, p) \tag{5.7}
\end{equation*}
$$

Where:
$L F=$ Lagrangian function;
$f_{o b j}=$ Objective function;
$l=$ Lagrangian multiplier vector;
$h=$ Function representing equality constrains;
$p=$ Chosen parameter vector;
$x=$ Vector containing independent variables, except vectors p and l.

The solution is obtained when the lagrangian function gradient is null $(\nabla L F=0)$, which is represented by equations (5.8), (5.9) and (5.10), according to [18-20].

$$
\begin{gather*}
\frac{\partial L F}{\partial x}=l^{t} \cdot \frac{\partial h}{\partial x}=0 \tag{5.8}\\
\frac{\partial L F}{\partial p}=\frac{\partial f_{o b j}}{\partial p}+l^{t} \cdot \frac{\partial h}{\partial p}=0 \tag{5.9}\\
\frac{\partial L F}{\partial l}=h=0 \tag{5.10}
\end{gather*}
$$

Where:
$l=$ Lagrangian multiplier vector;
$p=$ Chosen parameter vector;
$x=$ Vector containing independent variables, except vectors p and $l ;$
$h=$ Function representing equality constrains;
$\frac{\partial L F}{\partial x}=$ Lagrangian function derivative with respect to vector x;
$\frac{\partial L F}{\partial p}=$ Lagrangian function derivative with respect to vector $p ;$
$\frac{\partial L F}{\partial l}=$ Lagrangian function derivative with respect to vector $l ;$
$\frac{\partial h}{\partial x}=$ Function h derivative with respect to vector $x ;$
$\frac{\partial f_{o b j}}{\partial p}=$ Objective function derivative with respect to vector $p ;$
$\frac{\partial h}{\partial p}=$ Function h derivative with respect to vector p.
The non-linear system defined in equations (5.8), (5.9) and (5.10) can be solved through using Newton-Raphson method. Then, the equations (5.11), 5.12) and (5.13) can be defined [18-20].

$$
\begin{gather*}
l^{t} \cdot \frac{\partial^{2} h}{\partial x^{2}} \cdot \Delta x+l^{t} \cdot \frac{\partial^{2} h}{\partial p \partial x} \cdot \Delta p+\left(\frac{\partial h}{\partial x}\right)^{t} \cdot \Delta l=\Delta \frac{\partial L F}{\partial x} \tag{5.11}\\
l^{t} \cdot \frac{\partial^{2} h}{\partial x \partial p} \cdot \Delta x+\left(\frac{\partial^{2} f_{o b j}}{\partial p^{2}}+l^{t} \cdot \frac{\partial^{2} h}{\partial p^{2}}\right) \cdot \Delta p+\left(\frac{\partial h}{\partial p}\right)^{t} \cdot \Delta l=\Delta \frac{\partial L F}{\partial p} \tag{5.12}\\
\frac{\partial h}{\partial x} \cdot \Delta x+\frac{\partial h}{\partial p} \cdot \Delta p=\Delta \frac{\partial L F}{\partial l} \tag{5.13}
\end{gather*}
$$

Where:
$\Delta l=$ Lagrangian multiplier variation vector;
$\Delta p=$ Chosen parameter variation vector;
$\Delta x=$ Variation vector containing independent variables, except vectors p and $l ;$
$\Delta \frac{\partial L F}{\partial x}=$ Variation of lagrangian function derivative with respect to vector $x ;$
$\Delta \frac{\partial L F}{\partial p}=$ Variation of lagrangian function derivative with respect to vector $p ;$
$\Delta \frac{\partial L F}{\partial l}=$ Variation of lagrangian function derivative with respect to vector l;
$\frac{\partial^{2} h}{\partial x^{2}}=$ Second order derivative of function h with respect to vector $x ;$
$\frac{\partial^{2} h}{\partial p \partial x}=$ Second order derivative of function h with respect to vectors x and $p ;$
$\frac{\partial h}{\partial x}=$ Function h derivative with respect to vector $x ;$
$\frac{\partial^{2} h}{\partial x \partial p}=$ Second order derivative of function h with respect to vectors p and x;
$\frac{\partial^{2} f_{o b j}}{\partial p^{2}}=$ Second order derivative of objective function with respect to vector p;
$\frac{\partial^{2} h}{\partial p^{2}}=$ Second order derivative of function h with respect to vector $p ;$
$\frac{\partial f_{o b j}}{\partial p}=$ Objective function derivative with respect to vector $p ;$
$\frac{\partial h}{\partial p}=$ Function h derivative with respect to vector p.

Using this equationing in an iterative algorithm, the closest security boundary in control parameter space can be defined, according to [18 20].

This method can be used to determine the minimum parameter variation capable of making a system mode present a desired damping factor [18-20].

Mathematical difficulties arise when considering power flow parameter variation in the method proposed in [18-20], such as plant dispatches.

This thesis solved these mathematical issues in a different way, defining a minimum redispatch method, which will be described in this chapter.

5.3 Generation Sensitivities

A method for calculating oscillation mode sensitivities with respect to power plant dispatches was developed, which was called generation sensitivities.

These sensitivities can be mathematically defined as the derivative of oscillation mode λ with respect to active power dispatched by specific power plant P.

The analytical determination of these derivatives is very complex, once many jacobian elements depend on power plant dispatches.

Then, a numerical method was used for determining the generation sensitivities. Small positive and negative variations $(P+\Delta P$ and $P-\Delta P)$ are applied in a specific power plant dispatch and oscillation modes are obtained for both situations $\left(\lambda_{+\Delta P}\right.$ and $\left.\lambda_{-\Delta P}\right)$, using DPSE method [54].

Other system plants take on opposite dispatch variation, proportionally to their nominal capability (MVA base), ensuring the load-generation balance.

The generation sensitivity can be obtained through a first order approximation, which is represented by equations (5.14), (5.15) and (5.16)

$$
\begin{gather*}
\frac{\partial \lambda}{\partial P} \approx \frac{\Delta \lambda}{\Delta P^{\prime}}, \Delta P^{\prime} \rightarrow 0 \tag{5.14}\\
\Delta P^{\prime}=2 . \Delta P \tag{5.15}\\
\frac{\partial \lambda}{\partial P} \approx \frac{\lambda_{+\Delta P}-\lambda_{-\Delta P}}{2 . \Delta P} \tag{5.16}
\end{gather*}
$$

Where:
$\frac{\partial \lambda}{\partial P}=$ Generation sensitivity of mode with respect to dispatch;
$\Delta \lambda=$ Oscillation mode variation;
$\Delta P^{\prime}=$ Total dispatch variation;
$\Delta P=$ Absolute dispatch value used in positive and negative variations;
$\lambda_{+\Delta P}=$ Oscillation mode for dispatch $P+\Delta P ;$
$\lambda_{-\Delta P}=$ Oscillation mode for dispatch $P-\Delta P$.

If ΔP is very small, numerical problems may happen in power flow solution. Otherwise, if ΔP is very high, the sensitivity calculation loses accuracy. In this thesis, ΔP was considered equal to 0.1 per unit in system power base.

Generation sensitivities can be used for selecting power plants to be used in the redispatch method that will be proposed in this thesis.

5.4 Hopf Bifurcation for Redispatch

Hopf bifurcation analysis can also be applied for determining a minimum power plant redispatch capable of making a specific system oscillation mode λ present a desired damping factor ξ_{d}.

This new application was called the closest security boundary for generation redispatch using eigenvalue sensitivities (CSBGRES method).

Similarly to the method presented in [18-20], optimization techniques can be used to minimize an objective function, which ensures the minimum dispatch variation for system power plants.

Several system jacobian elements, power flow and equipment initialization equations change in function of plant dispatches, which is a challenge.

Other mathematical issues are related to the discontinuous control of power flow model, which should be considered in the method.

A new optimization problem can be proposed, which avoids these difficulties using a different approach. This formulation is presented through equations (5.17), (5.18) and (5.19), where a mode damping factor criteria and a load-generation balance equation (without including loss variations) are considered as constraints.

$$
\begin{equation*}
\operatorname{Minf} f_{o b j}(P)=\sum_{i=1}^{n}\left(P_{i}-P_{i_{0}}\right)^{2} \tag{5.17}
\end{equation*}
$$

S.t.:

$$
\begin{equation*}
\sigma(P)+\frac{\xi_{d}}{\sqrt{1-\xi_{d}^{2}}} \cdot \omega(P)=0 \tag{5.18}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{m} P_{i}-\sum_{i=1}^{m} P_{i_{0}}=0 \tag{5.19}
\end{equation*}
$$

Where:
$f_{o b j}=$ Objective function;
$P=$ Active power vector;
$P_{i}=$ Power plant i dispatch;
$P_{i_{0}}=$ Power plant i initial dispatch;
$n=$ Number of chosen power plants;
$m=$ Total number of system power plants;
$\sigma(P)=$ Mode real component;
$\omega(P)=$ Mode imaginary component;
$\xi_{d}=$ Desired damping factor.

The variables σ and ω were considered independent variables in the optimization method presented in [18 [20]. In the equationing of this thesis, these variables depend on the power plant dispatches, being dependent variables.

These σ and ω characteristics enable the CSBGRES method development, which is the main contribution of this thesis.

The Lagrange method can be used again to solve this new optimization problem. A lagrangian function $L F$ is defined in equation (5.20) and must be minimized for obtaining the optimal solution.
$\operatorname{MinLF}=\sum_{i=1}^{n}\left(P_{i}-P_{i_{0}}\right)^{2}+l_{1} \cdot\left(\sigma(P)+\frac{\xi_{d}}{\sqrt{1-\xi_{d}^{2}}} \cdot \omega(P)\right)+l_{2} \cdot\left(\sum_{i=1}^{m} P_{i}-\sum_{i=1}^{m} P_{i_{0}}\right)$

Where:
$L F=$ Lagrangian function;
$P=$ Active power vector;
$P_{i}=$ Power plant i dispatch;
$P_{i_{0}}=$ Power plant i initial dispatch;
$n=$ Number of chosen power plants;
$m=$ Total number of system power plants;
$\sigma(P)=$ Mode real component;
$\omega(P)=$ Mode imaginary component;
$\xi_{d}=$ Desired damping factor;
$l_{1}=$ First lagrangian multiplier;
$l_{2}=$ Second lagrangian multiplier.

Similarly to [18-20], the solution is obtained when the lagrangian function gradient is null $(\nabla L F=0)$, which is represented by equations (5.21), (5.22) and (5.23).

$$
\begin{gather*}
\frac{\partial L F}{\partial P}=2\left(P-P_{0}\right)+l_{1} \cdot\left(\frac{\partial \sigma}{\partial P}+\frac{\xi_{d}}{\sqrt{1-\xi_{d}^{2}}} \cdot \frac{\partial \omega}{\partial P}\right)+l_{2}=0 \tag{5.21}\\
\frac{\partial L F}{\partial l_{1}}=\sigma+\frac{\xi_{d}}{\sqrt{1-\xi_{d}^{2}}} \cdot \omega=0 \tag{5.22}\\
\frac{\partial L F}{\partial l_{2}}=\sum_{i=1}^{m} P_{i}-\sum_{i=1}^{m} P_{i_{0}}=0 \tag{5.23}
\end{gather*}
$$

Where:
$P=$ Active power vector;
$P_{i}=$ Power plant i dispatch;
$P_{i_{0}}=$ Power plant i initial dispatch;
$n=$ Number of chosen power plants;
$m=$ Total number of system power plants;
$\sigma(P)=$ Mode real component;
$\omega(P)=$ Mode imaginary component;
$\xi_{d}=$ Desired damping factor;
$l_{1}=$ First lagrangian multiplier;
$l_{2}=$ Second lagrangian multiplier;
$\frac{\partial L F}{\partial P}=$ Lagrangian function derivative with respect to vector $P ;$
$\frac{\partial L F}{\partial l_{1}}=$ Lagrangian function derivative with respect to multiplier l_{1};
$\frac{\partial L F}{\partial l_{2}}=$ Lagrangian function derivative with respect to multiplier $l_{2} ;$
$\frac{\partial \sigma}{\partial P}=$ Derivative of mode real component with respect to vector P;
$\frac{\partial \omega}{\partial P}=$ Derivative of mode imaginary component with respect to vector P.
The derivatives $\frac{\partial \sigma}{\partial P}$ and $\frac{\partial \omega}{\partial P}$ can be obtained through the generation sensitivities of mode λ with respect to vector P, according to equations (5.24) and (5.25).

$$
\begin{align*}
& \frac{\partial \sigma}{\partial P}=\operatorname{Re}\left\{\frac{\partial \lambda}{\partial P}\right\} \tag{5.24}\\
& \frac{\partial \omega}{\partial P}=\operatorname{Im}\left\{\frac{\partial \lambda}{\partial P}\right\} \tag{5.25}
\end{align*}
$$

Where:
$\frac{\partial \lambda}{\partial P}=$ Generation sensitivity of mode λ with respect to vector $P ;$
$\frac{\partial \sigma}{\partial P}=$ Derivative of mode real component with respect to vector P;
$\frac{\partial \omega}{\partial P}=$ Derivative of mode imaginary component with respect to vector P.
Similarly to [18 20], the non-linear system defined in equations (5.21, 5.22) and (5.23) can be solved through using Newton-Raphson method. Then, the equations (5.26), 5.27) and (5.28) can be defined.

$$
\begin{gather*}
2 . \Delta P+\left(\frac{\partial \sigma}{\partial P}+\frac{\xi_{d}}{\sqrt{1-\xi_{d}^{2}}} \cdot \frac{\partial \omega}{\partial P}\right) \cdot \Delta l_{1}+\Delta l_{2}=\Delta \frac{\partial L F}{\partial P} \tag{5.26}\\
\left(\frac{\partial \sigma}{\partial P}+\frac{\xi_{d}}{\sqrt{1-\xi_{d}^{2}}} \cdot \frac{\partial \omega}{\partial P}\right) \cdot \Delta P=\Delta \frac{\partial L F}{\partial l_{1}} \tag{5.27}\\
\Delta P=\Delta \frac{\partial L F}{\partial l_{2}} \tag{5.28}
\end{gather*}
$$

Where:
$\Delta P=$ Active power variation vector;
$\Delta l_{1}=$ First lagrangian multiplier variation;
$\Delta l_{2}=$ Second lagrangian multiplier variation;
$\xi_{d}=$ Desired damping factor;
$\Delta \frac{\partial L F}{\partial P}=$ Variation of lagrangian function derivative with respect to vector P;
$\Delta \frac{\partial L F}{\partial l_{1}}=$ Variation of lagrangian function derivative with respect to first lagrangian multiplier;
$\Delta \frac{\partial L F}{\partial l_{2}}=$ Variation of lagrangian function derivative with respect to second lagrangian multiplier;
$\frac{\partial \sigma}{\partial P}=$ Derivative of mode real component with respect to vector $P ;$
$\frac{\partial \omega}{\partial P}=$ Derivative of mode imaginary component with respect to vector P.
The second derivative of mode λ with respect to vector P was not considered for the simplification of this optimization problem. Then, a dishonest Newton-Raphson method is used here, instead of the traditional one.

Maximum and minimum limits must be consider for the active power vector P. Variable replacement can be done, aiming at their implementations.

Similarly to [18-20], the vector P can be replaced by an auxiliary vector a through using equations (5.29) and (5.30).

$$
\begin{gather*}
P=\frac{P_{\max }+P_{\min }}{2}+\frac{P_{\max }-P_{\min }}{2} \cdot \sin (a) \tag{5.29}\\
a=\arcsin \left(\frac{P-\frac{P_{\max }+P_{\min }}{2}}{\frac{P_{\max }-P_{\min }}{2}}\right) \tag{5.30}
\end{gather*}
$$

Where:
$P=$ Active power vector;
$P_{\max }=$ Maximum active power vector;
$P_{\text {min }}=$ Minimum active power vector;
$a=$ Auxiliary vector.

All the derivatives with respect to vector P must be replaced by the ones with respect to auxiliary vector a through using correction factors f_{1} and f_{2}, which are defined in equations (5.31) and (5.32).

$$
\begin{gather*}
f_{1}=\frac{\partial P}{\partial a}=\frac{P_{\max }-P_{\min }}{2} \cdot \cos (a) \tag{5.31}\\
f_{2}=\frac{\partial^{2} P}{\partial a^{2}}=-\frac{P_{\max }-P_{\min }}{2} \cdot \sin (a) \tag{5.32}
\end{gather*}
$$

Where:
$P=$ Active power vector;
$P_{\max }=$ Maximum active power vector;
$P_{\text {min }}=$ Minimum active power vector;
$a=$ Auxiliary vector;
$f_{1}=$ Correction factor representing vector P derivative with respect to vector a;
$f_{2}=$ Correction factor representing vector P second order derivative with respect to vector a;
$\frac{\partial P}{\partial a}=$ Vector P derivative with respect to vector $a ;$
$\frac{\partial^{2} P}{\partial a^{2}}=$ Vector P second order derivative with respect to vector a.

Correction factors f_{1} and f_{2} should be used in linearized system shown in equations (5.26), (5.27) and (5.28), so the optimization problem can be modelled in function of vector a, instead of vector P.

This new system can be defined through equations (5.33), (5.34) and (5.35).

$$
\begin{gather*}
\left(2 \cdot f_{1}^{2}+\left(2 \cdot\left(P-P_{0}\right)+l_{1} \cdot\left(\frac{\partial \sigma}{\partial P}+\frac{\xi_{d}}{\left.\left.\left.\sqrt{1-\xi_{d}^{2}} \cdot \frac{\partial \omega}{\partial P}\right)+l_{2}\right) f_{2}\right) \cdot \Delta a} \begin{array}{c}
+f_{1} \cdot\left(\frac{\partial \sigma}{\partial P}+\frac{\xi_{d}}{\sqrt{1-\xi_{d}^{2}}} \cdot \frac{\partial \omega}{\partial P}\right) \cdot \Delta l_{1}+f_{1} \cdot \Delta l_{2}=f_{1} \cdot \Delta \frac{\partial L F}{\partial P} \\
f_{1} \cdot\left(\frac{\partial \sigma}{\partial P}+\frac{\xi_{d}}{\sqrt{1-\xi_{d}^{2}}} \cdot \frac{\partial \omega}{\partial P}\right) \cdot \Delta a=\Delta \frac{\partial L F}{\partial l_{1}} \\
f_{1} \cdot \Delta a=\Delta \frac{\partial L F}{\partial l_{2}}
\end{array}\right. \text { }\right.\right. \tag{5.33}
\end{gather*}
$$

Where:
$\Delta a=$ Auxiliary vector variation;
$\Delta l_{1}=$ First lagrangian multiplier variation;
$\Delta l_{2}=$ Second lagrangian multiplier variation;
$\xi_{d}=$ Desired damping factor;
$\Delta \frac{\partial L F}{\partial P}=$ Variation of lagrangian function derivative with respect to vector $P ;$
$\Delta \frac{\partial L F}{\partial l_{1}}=$ Variation of lagrangian function derivative with respect to first lagrangian multiplier;
$\Delta \frac{\partial L F}{\partial l_{2}}=$ Variation of lagrangian function derivative with respect to second lagrangian multiplier;
$\frac{\partial \sigma}{\partial P}=$ Derivative of mode real component with respect to vector P;
$\frac{\partial \omega}{\partial P}=$ Derivative of mode imaginary component with respect to vector $P ;$
$P=$ Active power vector;
$P_{0}=$ Initial active power vector;
$l_{1}=$ First lagrangian multiplier used in the method;
$l_{2}=$ Second lagrangian multiplier used in the method;
$f_{1}=$ Correction factor representing vector P derivative with respect to vector a;
$f_{2}=$ Correction factor representing vector P second order derivative with respect to vector a.

Using this equationing in an iterative algorithm, the closest security boundary for generation redispatch using eigenvalue sensitivities can be defined.

The CSBGRES method can be used to determine minimum redispatches capable of making a system mode present a desired damping factor.

Computational implementation of the method should use step-length controls in desired damping factor and active power variations, in order to keep mode track and improve algorithm convergence.

The proposed method can be applied to determine power system security margins or possible corrective measures to improve its dynamic behavior.

5.5 Computational Implementations

The generation sensitivity calculation and CSBGRES method were implemented in software PacDyn [8]. These developments will be described following.

5.5.1 Generation Sensitivities

Generation sensitivity calculation was implemented in software PacDyn [8, using equations (5.14) and (5.16), and can be used to determine system mode displacement trend in complex plane in function of power plant dispatches.

These sensitivities can also be used to select the power plants to be utilized in CSBGRES method for minimum redispatches.

This development was made through programming an iterative algorithm that runs the calculation defined in equations (5.14) and (5.16) for each power plant.

Software ANAREDE [5] is used for the several power flow executions needed to obtain the generation sensitivities.

The results are phasors that show this displacement trend in complex plane of the mode of interest, when modifying power plant dispatches.

This numerical method used in this computational implementation is generic and can be utilized to determine the sensitivities of oscillation modes with respect to any parameter of electrical power systems.

Figure 5.1 presents the generation sensitivity calculation algorithm, implemented in PacDyn [8] for obtaining a first order relation between system oscillation mode and power plant dispatches.

Figure 5.1: Generation sensitivity calculation algorithm.

5.5.2 Hopf Bifurcation for Redispatch

The CSBGRES method was implemented in software PacDyn [8, using equations (5.26), 5.27) and (5.28), and can be used to determine minimum redispatch to achieve a desired damping factor for a system mode.

This development was made through programming an iterative algorithm that runs the calculation defined in equations (5.26), (5.27) and (5.28), which is based on dishonest Newton-Raphson method.

The algorithm is an alternating method, similar to a predictor-corrector process.

Power flow calculation and mode determination are made considering the dispatches of actual iteration, using ANAREDE [5] and PacDyn [8].

If the desired damping factor was not reached, a new Newton-Raphson iteration is executed to determine power plant dispatch variations.

This alternating procedure is repeated until desired damping factor is reached for the mode of interest and the minimum redispatch is obtained.

Convergence verification is made through a comparison between the mode damping factor and the desired value. If this difference is lower than a tolerance, which is 0.1% in this work, the process is convergent.

Losses variations are taken on by the power plants selected to be used in the method.

This numerical procedure used in this computational implementation is generic and can be utilized to consider the variation of any power system parameter, in order to obtain its security margins.

Figure 5.2 presents the CSBGRES method algorithm, implemented in PacDyn [8] for determining minimum dispatches for power systems, considering a damping factor criteria for oscillation modes.

Figure 5.2: CSBGRES method algorithm.

5.6 Final Considerations

Hopf bifurcation analysis and the closest security boundary in control parameter space algorithm were reviewed in this chapter.

A generation sensitivity calculation was developed and can be used to determine mode displacement trend in complex plane in function of power plant dispatches and select machines to be used in system redispatch.

The CSBGRES method was also developed and can be used to obtain minimum redispatches for power plants needed to achieve a desired damping factor for a specific system mode.

Chapter 6

Tests and Results

This chapter will perform tests and simulations using the methods developed in this thesis. Results will be evaluated, in order to highlight the benefits obtained through applying these methods in power system analyses.

6.1 SAGE System Results

Damping nomogram method (DNM) was tested in a Brazilian equivalent system (appendix A), containing about 65 buses and 29 machines (related to Itaipu, South and Southeast power plants).

Power flow base case from the energy management open system (SAGE) [55], developed by CEPEL, was used in this analysis.

Figure 6.1 [56] presents the single-line diagram of SAGE system, showing interconnections between three electrical areas.

Figure 6.1: SAGE system single-line diagram.

Power plants of area 1 were chosen to form the generation group 1, power plants of area 2 were chosen to form the generation group 2 and the other power plants were chosen to form the generation group 3 .

Ten redispatch directions were used for creating scenarios to be evaluated. Two outages were considered as contingencies: of transmission line inside area 3, and interchanging line between areas 1 and 2 .

Figure 6.2 to 6.13 present DNM results with oscillation modes obtained through QR [52, 53] and DPSE 54] methods, considering system normal operation and contingency situations.

Figure 6.2: Gen $1 \times$ Gen 2 nomogram for system normal operation using QR.

Figure 6.3: Gen $1 \times$ Gen 3 nomogram for system normal operation using QR.

Figure 6.4: Gen $2 \times$ Gen 3 nomogram for system normal operation using QR.

Figure 6.5: Gen $1 \times$ Gen 2 nomogram for contingency situations using QR.

Figure 6.6: Gen $1 \times$ Gen 3 nomogram for contingency situations using QR.

Figure 6.7: Gen 2 x Gen 3 nomogram for contingency situations using QR.

Figure 6.8: Gen $1 \times$ Gen 2 nomogram for system normal operation using DPSE.

Figure 6.9: Gen $1 \times$ Gen 3 nomogram for system normal operation using DPSE.

Figure 6.10: Gen $2 \times$ Gen 3 nomogram for system normal operation using DPSE.

Figure 6.11: Gen $1 \times$ Gen 2 nomogram for contingency situations using DPSE.

Figure 6.12: Gen $1 \times$ Gen 3 nomogram for contingency situations using DPSE.

Figure 6.13: Gen $2 \times$ Gen 3 nomogram for contingency situations using DPSE.

Small-signal security regions can be obtained through DNM, which can be observed using a set of nomograms. The distance of actual operating point (yellow dot) to the security borders can be determined.

The influence of contingencies and power plant dispatches in mode damping factors and security regions can be observed.

SAGE system presents 628 state variables and 129 scenarios were evaluated in these tests. The QR method [52, 53] was monitoring all oscillation modes and DPSE method [54] was monitoring only 8 modes.

The processing time was around 5 minutes for DNM by QR method [52, 53] and 2 minutes for DNM by DPSE method [54], using a processor Intel (R) Core (TM) i7-3537U CPU @ 2.00 GHz .

A comparison between the DNM results obtained through both eigensolutions can be made, which is presented in figure 6.14.

Figure 6.14: Comparison of nomograms obtained through QR and DPSE methods.

The results obtained through QR [52, 53] and DPSE [54] are different, because all modes are calculated in DNM by QR (full eigensolution), but only a mode set is determined in DNM by DPSE (partial eigensolution).

DNM by DPSE is faster than DNM by QR, but it loses some information about mode damping factor when monitoring only a set of oscillation modes. In this case, the inter-area oscillation modes should be chosen for monitoring, due to their importance to power systems.

The DNM by QR method should not be used for evaluating large-scale power system. The processing time would be very large, so its use would not be feasible. In this case, DNM by DPSE method is recommended.

Small-signal stability margins and corrective measures for power systems can be determined through using the damping nomogram method, in order to improve their planning and operation.

These corrective measures can be related to power plant redispatches and control system tuning, as represented in figures 6.15 and 6.16 .

Figure 6.15: Corrective measure through power plant redispatch.

Figure 6.16: Corrective measure through PSS tuning.

Power plant redispatches could be made, in order to change the system operating point to a better scenario, as presented in 6.15, where the small yellow dot is the initial scenario and big yellow dot is the new operating point.

A control system tuning could also be made, in order to improve system security levels, as presented in 6.16, where the secure regions (green and blue) of the nomogram become bigger after a PSS tuning.

6.2 Two Areas System Results

On-line monitoring of oscillation (OLMO), generation sensitivity calculation and CSBGRES method were tested in Two area system (appendix B), containing about 11 buses and 4 machines [4, 57].

Figure 6.17 presents the single-line diagram of Two areas system, showing interconnections between two electrical areas. The area 1 has the power plants of buses 1 and 2, while, area 2 has the power plants of buses 3 and 4 .

Figure 6.17: Two areas system single-line diagram.

The system was presenting a base case with the following characteristics:

- Power plant dispatch and terminal voltage at bus $1=700 \mathrm{MW}$ and 1.03 pu ;
- Power plant dispatch and terminal voltage at bus $2=450 \mathrm{MW}$ and 1.05 pu ;
- Power plant dispatch and terminal voltage at bus $3=533 \mathrm{MW}$ and 1.03 pu ;
- Power plant dispatch and terminal voltage at bus $4=150 \mathrm{MW}$ and 1.01 pu ;
- Load at bus $7=600 \mathrm{MW}$;
- Load at bus $9=1167$ MW.

The electromechanical oscillation mode $-0.2493+j 3.9152$ was monitored, which presents damping factor of 6.35% and frequency of $3.9152 \mathrm{rad} / \mathrm{s}$.

OLMO was executed and several events were applied in electrical grid, aiming to test the on-line monitoring of oscillations tool.

These events are described following:
1°) Modification in load at bus 9 to 1150 MW and dispatch at bus 3 to 515 MW , applied at 15.643 hours;
2°) Modification in dispatch at bus 1 to 690 MW and bus 3 to 523 MW , applied at 15.656 hours;
3°) Modification in dispatch at bus 1 to 680 MW and bus 3 to 532 MW, applied at 15.679 hours;
4°) Modification in terminal voltage at bus 2 to 1.03 pu and bus 4 to 1.03 pu , applied at 15.710 hours;
5°) Modification in load at bus 7 to 610 MW, dispatch at bus 1 to 690 MW and bus 3 to 533 MW, applied at 15.760 hours;
6°) Modification in load at bus 7 to 620 MW and dispatch at bus 3 to 543 MW , applied at 15.796 hours;
7°) Modification in terminal voltage at bus 1 to 1.04 pu and bus 3 to 1.04 pu , applied at 15.841 hours;
8°) Modification in load at bus 7 to 610 MW and dispatch at bus 3 to 533 MW , applied at 15.903 hours;
9°) Modification in load at bus 7 to 600 MW and dispatch at bus 3 to 523 MW , applied at 15.965 hours.

Figure 6.18 presents the mode frequency results obtained through the OLMO.

Figure 6.18: Mode damping factor timeline for Two areas system.

Figure 6.19 presents the mode damping factor results obtained through the OLMO.

Figure 6.19: Mode frequency timeline for Two areas system.

The mode dynamic behavior can be observed in the results of the on-line monitoring of oscillations. If a problem is seen during OLMO, corrective measures should be used to improve system operation, through increasing mode damping factor.

Generation sensitivities were calculated for mode $-0.2493+j 3.9152$ and the results are presented in figure 6.20 and table 6.1.

Figure 6.20: Normalized generation sensitivity phasors for Two areas system.

Table 6.1: Normalized generation sensitivity list for Two areas system.

Generator	Module	Phase
Bus 3	1.0000	91.3540
Bus 1	0.6340	-81.8740
Bus 4	0.6002	114.0800
Bus 2	0.5273	-86.1590

Two areas system presents 28 state variables in this test. The processing time for generation sensitivity calculation was around 1 second, using a processor Intel (R) Core (TM) i7-3537U CPU @ 2.00 GHz .

The CSBGRES method was used, in order to obtain a system security margins, through determining a minimum redispatch for all power plants capable of decreasing the mode damping factor from 6.35% to 5%.

Figure 6.21 and table 6.2 present the CSBGRES results for this case.

Figure 6.21: CSBGRES histogram (MW) to reach 5% of damping factor in Two areas system.

Table 6.2: CSBGRES redispatches (MW) to reach 5% of damping factor in Two areas system.

Generator	Old dispatch	New dispatch	Variation
Bus 4	150.0000	73.9690	-76.0310
Bus 1	700.0000	738.9400	38.9400
Bus 3	532.8000	563.9000	31.1000
Bus 2	450.0000	467.6300	17.6300

Then, CSBGRES method was used, in order to obtain a corrective measure for the system, through determining a minimum redispatch for all power plants capable of increasing the mode damping factor from 6.35% to 8%.

Figure 6.22 and table 6.3 present the CSBGRES results for this other case.

Figure 6.22: CSBGRES histogram (MW) to reach 8% of damping factor in Two areas system.

Table 6.3: CSBGRES redispatches (MW) to reach 8% of damping factor in Two areas system.

Generator	Old dispatch	New dispatch	Variation
Bus 3	532.8000	288.3500	-244.4500
Bus 4	150.0000	350.0000	200.0000
Bus 2	450.0000	625.8600	175.8600
Bus 1	700.0000	566.4600	-133.5400

The first CSBGRES application consists of determining security margins, obtaining the maximum power plant redispatches that can be used before the system presents oscillation problems.

In this case, the damping factor was decreased to 5% and mode $-0.1926+j 3.8090$ was obtained in 3 iterations, which presents 5.0495% of damping factor.

The second CSBGRES application consists of determining corrective measures, obtaining the minimum power plant redispatches that must be used to improve system dynamic behavior.

In this case, the damping factor was increased to 8% and mode $-0.2986+j 3.7527$ was obtained in 9 iterations, which presents 7.9311% of damping factor.

The CSBGRES results were tested and validated. The obtained modes does not have exact desired damping factor, because method tolerance is 0.1% and is used in damping factor converge verification.

The processing time for these CSBGRES applications to reach damping factors of 5% and of 8% were, respectively, around 1 second and around 2 seconds, using a processor Intel (R) Core (TM) i7-3537U CPU @ 2.00 GHz .

6.3 Brazilian Power System Results

Generation sensitivity calculation and CSBGRES method were tested in Brazilian power system (appendix C), using planning study data base of 2020 [58].

Figure 6.23 presents the single-line diagram of Brazilian power system [59].

Figure 6.23: Brazilian power system single-line diagram.

Campos Novos (CNV), Machadinho (MCD), Governador Bento Munhoz (GBM1 and GBM2), Porto Primavera (PPM), Tucuruí (TUC70 and TUC71) and Belo Monte (BMT1 and BMT2) power plants are highlighted in figure 6.23, because they will be used to test the CSBGRES method.

The electromechanical oscillation mode $-0.0527+j 2.5482$, with 2% of damping factor, was obtained through using QR method [52, 53]. This mode represents the natural oscillation between North and South regions of Brazilian system.

CSBGRES method will be used to increase damping factor of this mode, but, first, the generation sensitivities must be utilized to select the better power plants for redispatch. The main results are presented in figure 6.24 and table 6.4

Figure 6.24: Normalized generation sensitivity phasors for Brazilian power system.

Table 6.4: Normalized generation sensitivity list for Brazilian power system.

Generator	Module	Phase
TUC71	0.4577	-60.6150
TUC70	0.4516	-60.6970
BMT1	0.4490	-62.9370
BMT2	0.4249	-62.9080
CNV	0.3593	116.4900
MCD	0.3464	118.7500
GBM1	0.3455	122.1100
PPM	0.3438	119.3800
GBM2	0.3384	121.8600

CNV, MCD, GBM1, GBM2, PPM, TUC70, TUC71, BMT1 and BMT2 are highlighted in the results, again, because they are the largest power plants with the highest generation sensitivities.

These machines were selected to be used in CSBGRES method, through evaluating their generation sensitivities in comparison with the other plants.

Brazilian power system presents 7868 state variables in this test. The processing time for generation sensitivity calculation was around 18 minutes, using a processor Intel (R) Core (TM) i7-3537U CPU @ 2.00 GHz .

The CSBGRES method was used, in order to obtain a corrective measure for the system, through determining a minimum redispatch for selected power plants capable of increasing the mode damping factor from 2% to 5%.

Figure 6.25 and table 6.5 present the CSBGRES results for redispatch the power plants of interest in this case.

Figure 6.25: CSBGRES histogram (MW) to reach 5% of damping factor in Brazilian power system.

Table 6.5: CSBGRES redispatches (MW) to reach 5% of damping factor in Brazilian power system.

Generator	Old dispatch	New dispatch	Variation
TUC71	2460.0000	1930.7000	-529.3000
TUC70	1406.0000	987.1400	-418.8600
MCD	468.5000	837.0000	368.5000
CNV	364.2000	622.0000	257.8000
BMT1	8151.0000	8014.5000	-136.5000
PPM	616.0000	672.0000	56.0000
GBM1	376.6500	419.0000	42.3500
GBM2	376.6500	419.0000	42.3500
BMT2	2299.0000	2260.5000	-38.5000

Loss variation was -356.16 MW and was considered in the redispatches of selected power plants. The system losses decreased, because the new dispacthes are relieving the North-South interconnection.

The CSBGRES results show redispatches needed to achieve the damping factor of 5% for the North-South oscillation mode. The mode $-0.1351+j 2.6886$ was obtained in 16 iterations, which presents 5.0186% of damping factor.

The processing time for the CSBGRES execution was around 1 minute, using a processor Intel (R) Core (TM) i7-3537U CPU @ 2.00 GHz .

6.4 Nordic 44 System Results

Generation sensitivity calculation, CSBGRES method and OLMO were tested, again, in a Nordic equivalent system, called Nordic 44 (appendix D), containing about 44 buses and 18 machines [60].

Figure 6.26 presents the single-line diagram of Nordic 44 system [60], showing interconnections between Norway, Sweden and Finland.

Figure 6.26: Nordic 44 system single-line diagram.

The generation sensitivities were calculated for the inter-area oscillation mode $-0.1021+j 2.0400$, which is the lower damped mode of the system. These results are presented in figure 6.27 and table 6.6 .

Figure 6.27: Normalized generation sensitivity phasors for Nordic 44 system.

Table 6.6: Normalized generation sensitivity list for Nordic 44 system.

Generator	Module	Phase
GEN5300	1.0000	-49.9100
GEN6100	0.9383	-45.2760
GEN6000	0.5193	-56.2070
GEN5400	0.5035	-57.3040
GEN5600	0.4871	-59.1980
GEN3359	0.4369	121.8500
GEN8500	0.3930	123.6100
GEN3300	0.3791	126.0500
GEN3245	0.3769	127.4300
GEN6500	0.3595	128.5700
GEN3000	0.3546	127.0900
GEN6700	0.3290	133.4300
GEN7000	0.3206	139.8100
GEN3115	0.3189	133.9300
GEN3249	0.3136	135.7000
GEN7100	0.2993	137.6200
GEN5100	0.1595	126.5700
GEN5500	0.0354	-83.7440

These results show the mode displacement trend in complex plane in function of power plant dispatches.

Nordic 44 system presents 224 state variables in this test. The processing time for generation sensitivity calculation was around 3 seconds, using a processor Intel (R) Core (TM) i7-3537U CPU @ 2.00 GHz .

The CSBGRES method was used, in order to obtain a corrective measure for the system, through determining a minimum redispatch for all power plants capable of increasing the mode damping factor from 5% to 8%.

Figure 6.28 and table 6.7 present the CSBGRES results for redispatch all system power plants in this case.

Figure 6.28: CSBGRES histogram (MW) to reach 8% of damping factor in Nordic 44 system.

Table 6.7: CSBGRES redispatches (MW) to reach 8% of damping factor in Nordic 44 system.

Generator	Old dispatch	New dispatch	Variation
GEN6100	4730.0000	4638.0000	-92.0000
GEN5300	6151.0000	6062.0000	-89.0000
GEN6000	523.0000	483.2200	-39.7800
GEN5400	1858.0000	1819.9000	-38.1000
GEN5600	1774.0000	1738.7000	-35.3000
GEN7000	7038.0000	7063.8000	25.8000
GEN3249	2048.0000	2073.1000	25.1000
GEN7100	1620.0000	1645.0000	25.0000
GEN3115	1700.0000	1724.7000	24.7000
GEN6700	3506.0000	3530.5000	24.5000
GEN6500	2442.0000	2466.1000	24.1000
GEN8500	754.0000	777.3700	23.3700
GEN3000	2000.0000	2022.9000	22.9000
GEN3245	6599.0000	6621.8000	22.8000
GEN3359	5400.0000	5422.7000	22.7000
GEN5100	972.0000	980.2500	8.2500
GEN3300	2223.9000	2232.0000	8.1000
GEN5500	1132.0000	1128.0000	-4.0000

The CSBGRES results show redispatches needed to achieve the damping factor of 8% for the inter-area oscillation mode. The mode $-0.1690+j 2.1233$ was obtained in 7 iterations, which presents 7.9359% of damping factor.

The processing time for the CSBGRES execution was around 4 seconds, using a processor Intel (R) Core (TM) i7-3537U CPU @ 2.00 GHz .

Then, the on-line monitoring of oscillations tool was tested in the Nordic 44 system. The CSBGRES method was used to keep the system modes with, at least, 5% of minimum damping factor, during the OLMO execution.

The inter-area oscillation modes $-0.3750+j 3.7519$, with 10% of damping factor, and $-0.1021+j 2.0400$, with 5% of damping factor, obtained in first operating point, were monitored in the OLMO.

Real Nordic electrical system measurement data were utilized to create several operation scenarios for Nordic 44 system.

These scenarios were being sent to software PacDyn [8], during the OLMO execution, in a regular time interval, to simulate a system real-time operation.

Figure 6.29 presents mode damping factor timelines obtained through OLMO.

Figure 6.29: Mode damping factor timelines for Nordic 44 system.

Figure 6.30 presents mode frequency timelines obtained through OLMO.

Figure 6.30: Mode frequency timelines for Nordic 44 system.

System oscillation mode 2 presented undesired damping factors (lower than the desired value of 5%) in some operating points.

The CSBGRES method can be used to solve this oscillation problem, determining a minimum redispatch for the power system, so mode 2 can present 5% of damping factor in the critical scenarios.

Figure 6.31 presents mode damping factor timelines obtained through OLMO.

Figure 6.31: Mode damping factor timelines for Nordic 44 system, using CSBGRES method.

Figure 6.32 presents mode frequency timelines obtained through OLMO.

Figure 6.32: Mode frequency timelines for Nordic 44 system, using CSBGRES method.

A comparison between original and CSBGRES results for mode 2, during the OLMO execution, is presented in 6.33.

Figure 6.33: OLMO results with and without utilization of CSBGRES method.

Power plant redispatches determined through CSBGRES method was able to solve the problem observed in the OLMO, keeping the system oscillation modes with, at least, 5% of damping factor, during all the monitoring.

The worst scenario obtained in the OLMO presented -4.5\% of damping factor for oscillation mode 2. The CSBGRES results for this operating point can be observed in figure 6.34 and table 6.8 .

Figure 6.34: CSBGRES histogram (MW) to reach 5% of damping factor in Nordic 44 system in worst scenario.

Table 6.8: CSBGRES redispatches (MW) to reach 5% of damping factor in Nordic 44 system in worst scenario.

Generator	Old dispatch	New dispatch	Variation
GEN5300	6326.0000	6081.2000	-244.8000
GEN6100	5022.3000	4785.4000	-236.9000
GEN6000	555.3200	486.1900	-69.1300
GEN5400	1972.8000	1907.9000	-64.9000
GEN7000	7416.8000	7472.7000	55.9000
GEN5600	1883.6000	1828.1000	-55.5000
GEN3249	2196.6000	2249.9000	53.3000
GEN7100	1707.2000	1760.2000	53.0000
GEN6700	3034.0000	3086.7000	52.7000
GEN3115	1823.4000	1875.9000	52.5000
GEN3359	5722.1000	5774.3000	52.2000
GEN6500	1827.3000	1878.7000	51.4000
GEN8500	661.0000	711.5100	50.5100
GEN3245	7229.0000	7278.3000	49.3000
GEN3000	2119.3000	2168.1000	48.8000
GEN5100	961.8400	993.8700	32.0300
GEN5500	1120.2000	1129.2000	9.0000
GEN3300	2537.7000	2537.7000	0.0000

Small redispatches were capable of modifying considerably the damping factor of the mode of interest. The largest dispatch variation obtained through CSBGRES method was, approximately, 250 MW for power plant GEN5300.

This plant was dispatching 6000 MW. Thus, 250 MW is a reasonable and feasible value for the redispatch of this specific machine.

The CSBGRES results show redispatches needed to achieve the damping factor of 5% for the mode 2 . The mode $-0.1005+j 2.0300$ was obtained in 19 iterations, which presents 4.9436% of damping factor.

The processing time for this CSBGRES execution was around 7 seconds, using a processor Intel (R) Core (TM) i7-3537U CPU @ 2.00 GHz .

6.5 Final Considerations

SAGE system was used to test the damping nomogram method, which was able to determine the small-signal security regions.

Two areas system was utilized to test the on-line monitoring of oscillations, generation sensitivity calculation and CSBGRES method.

Brazilian power system was used to test the generation sensitivity calculation and CSBGRES method in a large-scale power system.

Nordic 44 system was utilized to test the generation sensitivity calculation and CSBGRES method during an OLMO execution.

The results obtained in this chapter evidence benefits brought by the methods developed in this thesis for power system analysis.

Chapter 7

Conclusion

This chapter will review the main topics covered by this thesis, which are related to power systems security assessment, focusing on SSA. Conclusions will be made, in order to show the benefits brought by the application of the methods proposed in this work for power system analyses.

7.1 Considerations

Power flow, fault and electromechanical stability analyses should be done for power system planning and operation and were described in chapter 1.

The research motivations and thesis contributions were presented. This work focused on SSA and development of CSBGRES method.

The thesis structure with chapter descriptions and lists of produced papers were also presented, finishing chapter 1.

Power system electromechanical stability was described in chapter 2. The transient and small-signal stability analyses were reviewed.

Then, modal analysis principles were presented, including the concepts of eigenvalues, eigenvectors, participation factors, mode shapes, controlability, observability and transfer functions residues.

Control system design was discussed, including a methodology for control tuning based on Nyquist diagrams, finishing chapter 2.

Power system security assessment state of art was described in chapter 3, including a VSA, TSA and SSA literature review.

Critical contingencies and several scenarios should be evaluated in the determination of power system security margins.

Chapter 3 is finished with a discussion about SDSA results, which can be observed through security indexes or nomograms.

The main concepts of voltage, transient and small-signal security assessment were described in chapter 4 , focusing on SSA.

Damping nomogram method (DNM), root-locus method (RLM) and on-line monitoring of oscillations (OLMO) were proposed for SSA execution.

The computational implementations of DNM and OLMO in software PacDyn [8], from CEPEL, were presented, finishing chapter 4.

Hopf bifurcation analysis and the closest security boundary in control parameter space algorithm were reviewed in chapter 5 .

A generation sensitivity calculation was developed. These sensitivities show mode displacement trend in complex plane in function of power plant dispatches.

The CSBGRES method was presented, which can be used to obtain minimum redispatch considering a damping factor criteria, finishing chapter 5 .

In chapter 6, four systems were used to test the proposed methods: SAGE system, Two areas system, Brazilian power system and Nordic 44 system.

The results obtained in these tests evidence the benefits brought by the methods developed in this thesis for power system analysis.

7.2 Conclusions

The damping nomogram method (DNM), root-locus method (RLM) and on-line monitoring of oscillations (OLMO) were developed in this work for small-signal security assessment (SSA) of power systems.

A numerical generation sensitivity calculation and the CSBGRES method were developed and presented in this thesis.

This method can be used for determining minimum redispatch for power systems, considering a desired damping factor for oscillation modes.

The main innovations and contributions of this thesis are:

- Damping nomogram method development, which can be used to determine smallsignal security regions;
- On-line monitoring of oscillations development, which can be utilized to monitor small-signal stability;
- Numerical generation sensitivity calculation, which can be used to select power plants for being utilized in the CSBGRES method;
- CSBGRES method development, which can be used to determine a minimum redispatch for electrical power systems capable of making a oscillation mode presents a desired damping factor.

Small-signal stability margins and security levels can be determined through using the methods proposed in this work, which facilitate the determination of corrective measures to improve power system dynamic behavior.

Corrective measures can be related to control system tuning or power plant redispatch. This last can be obtained through using the CSBGRES method, which was developed in this thesis.

Concluding, the methods and methodologies proposed in this work and implemented in software PacDyn [8] contribute greatly to small-signal security assessment of power systems, enabling a better planning and operation.

7.3 Future Works

The following future works can be proposed:

- Improvement of the methods proposed in this work, through using parallel processing and other techniques, in order to increase algorithm efficiency;
- Development of CSBGRES method extension, in order to consider loading limits for the equipment of power systems;
- Development of methods based on CSBGRES algorithm, considering variation of other power flow parameters, such as terminal voltages or bus loads.

References

[1] MONTICELLI, A. J. Fluxo de Carga em Redes de Energia Elétrica. 1 ed. São Paulo, Edgard Blucher Ltda, 1983.
[2] ANDERSON, P. M. Analysis of Faulted Power Systems. 1 ed. New York, WileyIEEE press, 1995.
[3] STEVENSON, W. D., GRAINGER, J. J. Power System Analysis. 4 ed. New York, McGraw-Hill, 1994.
[4] KUNDUR, P. Power System Stability and Control. 4 ed. New York, McGrawHill, 1994.
[5] CEPEL. ANAREDE - Programa de Análise de Redes Elétricas - Versão 10.1.3. Manual do usuário, Rio de Janeiro, Rio de Janeiro, Brazil, 2016.
[6] CEPEL. ANAFAS - Programa de Análise de Faltas Simultâneas - Versão 6.5.1. Manual do usuário, Rio de Janeiro, Rio de Janeiro, Brazil, 2014.
[7] CEPEL. ANATEM - Programa de Análise Transitórios Eletromecânicos - Versão 11.1.0. Manual do usuário, Rio de Janeiro, Rio de Janeiro, Brazil, 2016.
[8] CEPEL. PacDyn - Program of Small-signal Stability Analysis and Control Version 9.8.3. User's manual, Rio de Janeiro, Rio de Janeiro, Brazil, 2017.
[9] MORISON, K., WANG, L., KUNDUR, P. "Power System Security Assessment", IEEE Power and Energy Magazine, v. 2, n. 5, pp. 30-39, october, 2004.
[10] EJEBE, G. C., JING, C., WAIGHT, J. G., et al. "Online Dynamic Security Assessment in an EMS", IEEE Computer Applications in Power, v. 11, n. 1, pp. 43-47, january, 1998.
[11] VAAHEDI, E., MANSOUR, Y., TSE, E. K. "A General Purpose Method for On-line Dynamic Security Assessment", IEEE Transactions on Power Systems, v. 13, n. 1, pp. 243-249, february, 1998.
[12] ALVES, F. R. M., HENRIQUES, R. M., PASSOS FILHO, J. A., et al. "Ferramenta Integrada para Avaliação de Segurança Estática e Dinâmica de Sistemas Elétricos de Potência de Grande Porte", XII Simpósio de Especialistas em Planejamento da Operação e Expansão Elétrica - SEPOPE, may, 2012.
[13] HENRIQUES, R. M., ALVES, F. R. M., PASSOS FILHO, J. A., et al. "Melhorias da Avaliação de Segurança de Sistemas Elétricos Através da Representação Detalhada de Equipamentos e Monitoração do Amortecimento de Oscilações", XXII Seminário Nacional de Produção e Transmissão de Energia Elétrica - SNPTEE, october, 2013.
[14] MORISON, K., HAMADANIZADEH, H., WANG, L. "Dynamic Security Assessment Tools", IEEE Power Engineering Society Summer Meeting, v. 1, pp. 282-286, july, 1999.
[15] KERIN, U., BALAURESCU, R., LAZAR, F., et al. "Dynamic Security Assessment in System Operation and Planning - First Experiences", IEEE Power and Energy Society General Meeting, pp. 1-6, july, 2012.
[16] WANG, L., HOWELL, F., KUNDUR, P., et al. "A Tool for Small-signal Security Assessment of Power Systems", IEEE International Conference on Power Industry Computer Applications, pp. 246-252, may, 2001.
[17] KERIN, U., TRINH, N. T., LERCH, E., et al. "Small Signal Security Index for Contingency Classification in Dynamic Security Assessment", IEEE Trondheim PowerTech, pp. 1-6, june, 2011.
[18] GOMES JUNIOR, S. Modelagem e Métodos Numéricos para Análise Linear de Estabilidade Eletromecânica, Ressonância Subsíncrona, Transitórios Eletromagnéticos e Desempenho Harmônico de Sistemas de Potência. D.Sc. thesis, COPPE/UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil, 2002.
[19] GOMES JUNIOR, S., MARTINS, N., PORTELA, C. "Computing Small-signal Stability Boundaries for Large-scale Power Systems", IEEE Transactions on Power Systems, v. 18, n. 2, pp. 747-752, may, 2003.
[20] GOMES JUNIOR, S., MARTINS, N., PARREIRAS, T. J. M. A. "Computing the Closest Small-signal Security Boundary in the Control Parameter Space for Large Scale Power Systems", Electric Power Systems Research, v. 149, pp. 10-18, august, 2017.
[21] ALVARADO, F., DOBSON, I., HU, Y. "Computation of Closest Bifurcation in Power Systems", IEEE Transactions on Power Systems, v. 9, n. 2, pp. 918-928, may, 1994.
[22] ALVARADO, F. "Bifurcations in Nonlinear Systems: Computational Issues", Proceedings of ISCAS Conference, may, 1990.
[23] HILL, D. "Nonlinear Computational and Control for Small Disturbance Stability", Proceedings of IEEE Summer Meeting, july, 2000.
[24] SEYDEL, R. From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis. 2 ed. New York, Elsevier Science Publishing Co, 1988.
[25] AJJARAPU, V., LEE, B. "Bifurcation Theory and its Application to Nonlinear Dynamical Phenomena in an Electrical Power System", IEEE Transactions on Power Systems, v. 7, n. 1, pp. 424-431, february, 1992.
[26] KIM, K., SCHATTLER, H., VENKATASUBRAMANIAN, V., et al. "Methods for Calculating Oscillations in Large Power Systems", IEEE Transactions on Power Systems, v. 12, n. 4, pp. 1639-1648, november, 1997.
[27] YANG, D., AJJARAPU, V. "Critical Eigenvalues Tracing for Power System Analysis via Continuation of Invariant Subspaces and Projected Arnold Method", IEEE Transactions on Power Systems, v. 22, n. 1, pp. 324-332, february, 2007.
[28] LI, C., DU, Z. "A Novel Method for Computing Small-signal Stability Boundaries of Large-scale Power Systems", IEEE Transactions on Power Systems, v. 28, n. 2, pp. 877-883, may, 2013.
[29] SARIC, A. T., STANKOVIC, A. M. "Dynamic Voltage Stability Assessment in Large Power Systems with Topology Control Actions", IEEE Transactions on Power Systems, v. 31, n. 4, pp. 2892-2902, july, 2016.
[30] REVEL, G., LEON, A. E., ALONSO, D. M., et al. "Bifurcation Analysis on a Multimachine Power System Model", IEEE Transactions on Circuits and Systems I: Regular Papers, v. 57, n. 4, pp. 937-949, april, 2010.
[31] LERM, A. A. P., SILVA, A. S. "Avoid Hopf Bifurcations in Power Systems via Set-points Tuning", IEEE Transactions on Power Systems, v. 19, n. 2, pp. 1076-1084, may, 2004.
[32] PHADKE, A. R., FOZDAR, M., NIAZI, K. R., et al. "New Technique for Computation of Closest Hopf Bifurcation Point Using Real-coded Genetic Algorithm", IET Generation, Transmission and Distribuition, v. 5, n. 1, pp. 11-18, february, 2011.
[33] ZECEVIC, A. I., MILJKOVIC, D. M. "The Effects of Generation Redispatch on Hopf Bifurcations in Electric Power Systems", IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, v. 49, n. 8, pp. 11801186, august, 2002.
[34] PARREIRAS, T. J. M. A. Metodologia e Implementação Computacional para Análise da Estabilidade a Pequenos Sinais em Múltiplos Cenários. M.Sc. dissertation, COPPE/UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil, 2012.
[35] KUNDUR, P., PASERBA, J., AJJARAPU, V., et al. "Definition and Classification of Power System Stability", IEEE Transactions on Power Systems, v. 19, n. 2, pp. 1387-1401, june, 2004.
[36] CORTEZ, A. N. Proposta de Critério e Procedimentos para a Avaliação de Estabilidade de Tensão em Sistemas Elétricos de Potência. M.Sc. dissertation, UFMG, Belo Horizonte, Minas Gerais, Brazil, 2001.
[37] SILVA, R. R. Análise Dinâmica Frente a Pequenas e Grandes Perturbações do Sistema Elétrico Acre-Rondônia. M.Sc. dissertation, COPPE/UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil, 2011.
[38] SEVILLANO, J. E. V. Análise Modal no Sistema Elétrico Peruano. M.Sc. dissertation, COPPE/UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil, 2005.
[39] CHEN, C. T. Linear System Theory and Design. 2 ed. New York, CBS College Publishing, 1984.
[40] OGATA, K. Engenharia de Controle Moderno. 4 ed. New York, Prentice Hall, 2003.
[41] GUIMARAES, C. H. C., TARANTO, G. N., GOMES JUNIOR, S., et al. "Projeto de Estabilizadores de Sistemas de Potência por Posicionamento Parcial de Par de Pólos Complexos Conjugados", XIII Congresso Brasileiro de Automática - CBA, september, 2000.
[42] GOMES JUNIOR, S., MARTINS, N., PINTO, H. J. C. P. "Utilização do Método de Nyquist para a Estabilização de Sistemas de Potência Envolvendo Alocação de Par de Pólos Complexos", XII Congresso Brasileiro de Automática - $C B A$, september, 1998.
[43] HAUER, J. F., DEMEURE, C. J., SCHARF, L. L. "Initial Results in Prony Analysis of Power System Response Signals", IEEE Transactions on Power Systems, v. 5, n. 1, pp. 80-89, february, 1990.
[44] ASSIS, T. M. L. Cálculo da Capacidade de Transmissão Dinâmica em Sistemas de Potência Através de Ferramentas Integradas e Sistemas Inteligentes. D.Sc. thesis, COPPE/UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil, 2007.
[45] XUE, Y., VAN CUSTEM, T., RIBBENS-PAVELA, M. "Extended Equal Area Criterion Justifications, Generalizations, Applications", IEEE Transactions on Power Systems, v. 4, n. 1, pp. 44-52, february, 1989.
[46] ASSIS, T. M. L., KUENZEL, S., PAL, B. C. "Impact of Multi-terminal HVDC Grids on Enhancing Dynamic Power Transfer Capability", IEEE Transactions on Power Systems, v. 32, n. 4, pp. 2652-2662, july, 2017.
[47] PARREIRAS, T. J. M. A., GOMES JUNIOR, S., TARANTO, G. N., et al. "Avaliação de Segurança a Pequenos Sinais de Sistemas de Potência com o PacDyn", XXIII Seminário Nacional de Produção e Transmissão de Energia Elétrica - SNPTEE, october, 2015.
[48] PARREIRAS, T. J. M. A., GOMES JUNIOR, S., TARANTO, G. N. "Damping Nomogram Method for Small-signal Security Assessment of Power Systems", IEEE Latin America Transactions, v. 15, n. 5, pp. 877-883, may, 2017.
[49] GOMES JUNIOR, S., AMARAL, T. S., PARREIRAS, T. J. M. A. "Avaliação do Amortecimento de Oscilações Eletromecânicas no PacDyn Utilizando Lugar das Raízes com Variações no Fluxo de Potência", XXIII Seminário Nacional de Produção e Transmissão de Energia Elétrica - SNPTEE, october, 2015.
[50] HUANG, X., LIU, J., LIU, Y., et al. "A GA Based Optimized PMU-locationdecision Algorithm Considering WAMS Reliability", IEEE International Conference on Power System Technology, pp. 433-439, october, 2014.
[51] KHAITAN, S. K., GUPTA, A. High Performance Computing in Power and Energy Systems. Springer, 2013.
[52] FRANCIS, J. G. "The QR Transformation a Unitary Analogue to the LR Transformation - Part 1", The Computer Journal, v. 4, n. 3, pp. 265-271, october, 1961.
[53] FRANCIS, J. G. "The QR Transformation - Part 2", The Computer Journal, v. 4, n. 4, pp. 332-345, january, 1962.
[54] MARTINS, N. "The Dominant Pole Spectrum Eigensolver for Power System Stability Analysis", IEEE Transactions on Power Systems, v. 12, n. 1, pp. 245254, february, 1997.
[55] CEPEL. SAGE - Sistema de Gerenciamento Aberto de Energia. Site: www.sage.cepel.br.
[56] GUHLE, B. D., COSTA, M. R., BORGES, C. L. T., et al. "Integração de uma Ferramenta VSA/DSA ao EMS SAGE", XXIII Seminário Nacional de Produção e Transmissão de Energia Elétrica - SNPTEE, october, 2015.
[57] GOMES JUNIOR, S., CASTRO, A., PARREIRAS, T. J. M. A. "Integração entre o PacDyn e ANATEM para Estudos Dinâmicos de Sistemas Elétricos", XX Seminário Nacional de Produção e Transmissão de Energia Elétrica SNPTEE, november, 2009.
[58] EPE. Plano Decenal 2022 - Base de Dados de Dinâmica - Ano de 2020. Site: www.epe.gov.br.
[59] ONS. Mapas do Sistema Interligado Nacional - Horizonte de 2015. Site: www.ons.org.br.
[60] HAMRE, S. M. Inertia and FCR in the Present and Future Nordic Power System. M.Sc. dissertation, NTNU, Trondheim, Sor-Trondelag, Norway, 2015.

Appendix A

SAGE System

A. 1 Power Flow Data File

!
DSHL
$\begin{array}{lllllll}12 & 64 & 1 & -330 . & -150 . & \text { L } & \text { L } \\ 12 & 72 & 2 & -330 . & -150 . & \text { L } & \text { L } \\ 18 & 19 & 1 & -100 . & & \text { L } & \\ 18 & 21 & 1 & -100 . & & \text { L } \\ 19 & 23 & 1 & & -150 . & & \text { L } \\ 21 & 24 & 1 & & -100 . & & \text { L } \\ 23 & 25 & 1 & & -150 . & & \text { L } \\ 24 & 25 & 1 & & -150 . & & \text { L } \\ 65 & 14 & 1 & -330 . & -330 . & \text { L } & \text { L } \\ 66 & 14 & 2 & -330 . & -330 . & \text { L } & \text { L } \\ 67 & 15 & 1 & & -165 . & & \text { L } \\ 68 & 15 & 2 & & -165 . & & \text { L }\end{array}$
DGER
${ }_{1}$
1
2
3
4
4
5
6
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
99999
DCAR
barr
barr
barr
barr $\quad 2$
$\begin{array}{ll}\text { barr } & 23 \\ \text { barr } & 30\end{array}$
barr
99999
DGLT
$\begin{array}{llllll}\begin{array}{ccc}\text { DGLT } \\ 0\end{array} & .5 & 1.5 & .5 & 1.5\end{array}$
0. $723.55 \quad 16.67100$
0. $723.55 \quad 16.67 \quad 100$
o. 723.5516 .67100
0. $723.55 \quad 16.67 \quad 100$
0. $723.55 \quad 16.67100$
$\begin{array}{rrr}723.55 & 16.67 & 100 \\ 355 & 3.046 & 100\end{array}$ $\begin{array}{ll}\text { 355. } 3.046 & 100 . \\ \text { 355. } 3.046 & 100 .\end{array}$ 355. 3.046100. 355. 3.046100.
315. 2.703100.
$\begin{array}{lll}315 . & 2.703 & 100 \\ 315 . & 2.703 & 100 .\end{array}$
$\begin{array}{lll}\text { 315. } & 2.703 & 100 \\ \text { 315. } 2.703 & 100 .\end{array}$
$\begin{array}{lll}315 . & 2.703 & 100 \\ 419 . & 3.596 & 100\end{array}$
415.443 .565100
419. 3.596100
419. 3.596100
$\begin{array}{lll}294.8 & 2.53 & 100 \\ 294.8 & 2.53 & 100\end{array}$
0. $294.8 \quad 2.53 \quad 100$
0. $294.8 \quad 2.53 \quad 100$
-9999. $294.8 \quad 2.53 \quad 100$
$\begin{array}{cccc}0 . & 0 . & 0 . & 100 . \\ 0 . & 440.94 & 8.317 & 100 .\end{array}$
o. 441.74
8.332
0. 440.828 .315
0
$\begin{array}{llll}0 . & 440.828 .315 & 100 \\ 0 . & 441.74 & 8.332 & 100\end{array}$
$\begin{array}{llll}\text { a. } 441.74 & 8.332 & 100 \\ & 440.81 & 8.314 & 100\end{array}$
$\begin{array}{lrr}\text { D. } 444.82 & 8.39 & 100\end{array}$
$\begin{array}{rllllllllll}7 \mathrm{E} \text { barr } & 19 \mathrm{E} \text { barr } & 27 \mathrm{E} \text { barr } & 31 \mathrm{~A} & 25 & 25 & 25 & 25 & 60 . \\ 21 \mathrm{E} \text { barr } & 24 \mathrm{E} \text { barr } & 25 \mathrm{E} \text { barr } & 29 \mathrm{~A} & 25 & 25 & 24 & 24 & 60 . \\ 23 & & & & & \text { A } & 24 & 24 & 25 & 25 & 60 . \\ 30 & & & & & \text { A } & 0 & 0 & 0 & 0 & 60 .\end{array}$

DARE	0.	ÁREA	$1-\mathrm{S} 101$	-.1 E 8
1	2E8			
2	0.	AREA	$2-\mathrm{S} 101$	-.1 E

99999
DGBT
G3

750
500.
$\begin{array}{r}345 . \\ \hline\end{array}$
20.
99999

A. 2 Dynamic Data File

Appendix B

Two Areas System

B. 1 Power Flow Data File

B. 2 Dynamic Data File

```
TITU
** Two areas system **
2
2areas.sav
ULOG
\({ }_{8}^{8}\) areas.plt
DOPC IMPR CONT FILE
IMPR FI
9999
\(\begin{array}{lr}\text { TEPQ } & .01 \\ \text { TEMD } & 1 . \mathrm{E}-7\end{array}\)
\(\begin{array}{ll}\text { TEMD } & 1 . \mathrm{E}-7 \\ \text { TETE } & 1 . \mathrm{E}-7 \\ \text { TABS } & 1 . \mathrm{E}-7\end{array}\)
TABS \(1 . E-7\)
999999
ARQV REST
01
DMDG MD03
\(\begin{array}{llllllllllll}\text { DMDG } \\ 0001 & 0001 & 180 & 170 & 030 & 055 & 025 & 020 & 8.0 & 0.4 & 0.03 & 0.05\end{array}\)
\(\begin{array}{llllllllllll}0001 & .25 & 6.5 & 0.0 & 1200 \\ 0002 & 0001 & 180 & 170 & 030 & 055 & 025 & 020 & 8.0 & 0.4 & 0.03 & 0.05\end{array}\)
\(\begin{array}{llllllllllll}0002 & .25 & 6.5 & 0.0 & 900 \\ 0003 & 0001 & 180 & 170 & 030 & 055 & 025 & 020 & 8.0 & 0.4 & 0.03 & 0.05\end{array}\)
\(\begin{array}{llllllllllll}0003 & .25 & 6.175 & 0.0 & 900 & 055 & 025 & 020 & 8.0 & 0.4 & 0.03 & 0.05 \\ 0004 & 0001 & 180 & 170 & 030 & 055 & 025 & 020 & 8.0 & 0.4 & 0.03 & 0.05\end{array}\)
\(\begin{array}{rlrrr}0004 & 0001 & 180 & 170 & 030 \\ 0004 & .25 & 6.175 & 0.0 & 350\end{array}\)
999999
999999
DCST
\(\begin{array}{lllll}\text { DCST } & & & \\ 0001 & 20.015 & 9.6 & 0.9\end{array}\)
999999
DCDU IMPR
0001 AVRMAQ1
DEFPAR \#Tr
DEFPAR \#Ka
DEFPAR \#Ka
DEFPAR \#Lmin
    \(\begin{array}{ll}\text { FPPAR \#Lmin } & \\ \text { FPAR \#Lmax } & \\ 1 \text { IMPORT VOLT } & \text { ET } \\ 2 \text { ENTRAD } & \text { VREF }\end{array}\)
    \begin{tabular}{lllllll}
2 & ENTRAD & & VREF & & & \\
3 & IMPORT VSAD & & VPSS & & & \\
4 & LeDLAG & ET & X4 & 1.0 & 1.0 & \#Tr \\
5 & SOMA & +VREF & X5 & & & \\
\hline
\end{tabular}
    \(\begin{array}{lll}5 \text { LEDLAG } & \text { ET } & \text { X4 } \\ 5 \text { SOMA } & \text { +VREF } & \text { X5 } \\ & & \text {-X4 } \\ & \text { X5 } & \text { X5 }\end{array}\)
    \(\begin{array}{llllll}6 & \text { VANHO } & \text { X5 } & & & \\ 7 & \text { X5 } & \text { X6 } & \text { \#Ka } & & \\ 7 & \text { LIMITA } & \text { X6 } & \text { EFD } & & \\ 8 \text { EXPORT EFD } & \text { EFD } & & & & \end{array}\)
DEFVAL EXORT EFD EFD
DEFVAL LMAX \#Lmax
0002 AVRMAQ2
```



```
DEFVAL LMIN \#Lmin
\(\begin{array}{lll}\text { DEFVAL } & \text { LMAX } & \text { \#Lmin } \\ \text { \#Lmax }\end{array}\)
FIMCDU
0004 AVRMAQ4
DEFPAR \#Tr
defpar \#Ka
defpar \#Lmin
DEFPAR \#Imax
    1 IMPORT VOLT
    2 ENTRAD
3 IMPORT VSA
        0.01
400.0
\(\quad-4\)
\(\quad 4\)
ET
VREF
VPSS
```


Appendix C

Brazilian Power System

C. 1 Power Flow Data File


```
31 0. CEMIG - REGIAO SUL
    GEMIG - bARRAS DE tERCIARIO
    AES-TIETE
    CESP
    DUKE-G
    EMAE
    CPFL - SANTA CRUZ
    CPFL - SUDESTE
    CPFL - NOROEST
    CPFL PIRATININGA - BAIXADA
    CPFL PIRATININGA - OESTE
    CTEEP - SISTEMA DE 440KV E 500KV
    CTEEP - 138KV DA REGIÃO OESTE
    TEEP - SISTEMA DE 88KV
    CTEEP - 138kV DO LITORAL E C. BONITO
    TEEP - 138KV DA REGIAO DO PARDD
    TEEP - SISTEMA DE 345KV E 230KV
    LEkTRO - CENTRO
    lektro - leste
    LEkTRO - NOROESTE
    ELEKTRO - SUL
    BANDEIRANTE
    lETROPAULO
    pFL JAGUARIUNA
    CONSUMIDORES LIVRES (RB) - SE/CD
    URNAS - ITAIPU 50 Hz
    FURNAS - GERACAO E CONTROLE
    FURNAS - TRANSMISSAO RJ ES MG SP
    FURNAS - TRANSMISSAO GO DF MT
    FURNAS- BARRAS TERCIARIAS E FIC
    IGHT
    MPLA-REGIAO SUL FLUMINENSE
    AMPIA-REGIAO NORTE FLUMINENSE
    MPLA-REGIAO NITEROI
    CENF
    ESCELS
    TELES PIRES
    BELO MONTE
    MADEIRA
    ACRE E RONDONI
    CGG - SE/CO
    RANSMISSORAS SUDESTE-COESTE
    GERADORES HTDR SUDESTE-COESTE
    A.E.S.
    A.E.
    CEEE DISTRIBUIDORA
    ENERSUL
    RGE
    celesc - area leste
    celesc - oeste + sul
    LETROSUL 230kV - SE/CO
    COPEL - G&T
    COPEL - D
    Letrosul 525kV
    letrosul 230kv - SUl
    CPFL
    ERASUL
    UUTRAS EmPRESAS DE GERACAO SUI
    CONSUMTDORES LIVRES (RB) - SUI
    COELSA
    COSERN
    SAELPA
    CELPE
    CEAL
    ENERGIPE
    COELBA
        CEMAR
        CElb
        CONSUMIDORES LIVRES (RB) - Norte
        MANAUS
    MMAPA
        RORAIMA
        CONSUMIDORES LIVRES (RB) - Nordeste
        EOLICAS NORDESTE
    Banco de Dados - }2020\mathrm{ (aproximadamente, 40 elos de corrente continua)
Banco de Dados - }202
- Banco de Dados - }202
- Banco de Dados - }202
Banco de Dados - }202
EPE - Banco de Dados - 2020
99999
(EBEE - Banco de Dados - 2020
99999
FIM
```


C. 2 Dynamic Data File

titu									
SIN 2020									
DOPC IMPR CONT									
IMPR L CONT L 80CO L FILE L									
ULOG									
8									
SIN2020.PLT									
ULOG									
2									
NNE-EXP-PES-CRITICO.SAV									
ARQV ReST									
2									
ULOG									
3									
USINAS-EXISTENTES-EPE.BLT									
ARQM									
ULOG									
3									
USINAS-ExISTENTES-Epe.cdu									
ARQM									
ULOG									
3									
USINAS-FUTURAS-EPE.BLT									
ARQM									
ULOG									
3									
USINAS-FUTURAS-EPE.CDU									
ARQM									
ULOG									
3									
Madeira-EPE.CDU									
ARQM									
ULOG									
3									
Madeira-EPE.blt									
ARQM									
ULOG									
3									
Belomonte-EPE.CDU									
ARQM									
ULOG									
3									
BeloMonte-EPE.BLT									
ARQM									
ULOG									
TelesPires-EPE.CDU									
ARQM									
uLog									
3									
TelesPires-EPE. $\mathrm{BLT}^{\text {L }}$									
ARQM									
ULOG									
3									
Tapajós-EPE.CDU									
ARQM									
JLOG									
apajós-EPE.BLT									
ARQM									
DMAQ									
3581	10	100100	1	100	100u	140u	170u	3581	ANGRA-1--1GR
3582	10	100100	1	101	101u	141u	171u	3582	ANGRA-2--1GR
3586	10	100100	4	103	103u	143u	173u	3586	LCBARRET-4GR
3596	10	100100	2	105	105u	145u		3596	FUNIL----2GR
3587	10	100100	4	107	106u	146u		3587	FURNAS---4GR
3592	10	100100	3	109	108u	148u	178u	3592	ITUMBIAR-3GR
3588	10	100100	4	111	110u	150u	180u	3588	MARIMBON-4GR
3595	10	100100	2	128	128u	159u	189u	3595	MANSO----2GR
3589	10	100100	3	113	111u	151u	181u	3589	M. MOR.A--3GR
3590	10	100100	2	114	112u	152u	182u	3590	M. MOR.B--2GR
3591	10	100100	2	116	113u	153u		3591	P. COLOMB-2GR
3597	10	100100	2	118	114u	154u		3597	SCRUZ-19-2GR
3598	10	100100	2	120	115u	155u		3598	SCRUZ-13-2GR
3601	10	100100	2	121	132u	161u	172u	3601	SCRUZ-16-2GR
3593	10	100100	2	122	116u	156u	186u	3593	CORUMBA--2GR
3594	10	100100	3	124	117u	157u	187u	3594	S.MESA---3GR
3626	10	100100	1	130	120u			3626	B. GERAL1-1CS
3629	10	100100	1	132	121u			3629	vitorial-1cs
3623	10	100100	1	134	126u			3623	GRAJAU-1-1CS
3624	10	100100	1	134	130u			3624	GRAJAU-2-1CS
3625	10	100100	1	132	123u			3625	vitorial-1cs
3622	10	100100	4	138	127u			3622	IBIUNA---4CS
3621	10	100100	1	140	125u			3621	T. PRETO--1CS
4057	10	6973	3	200	200u	240u	270u	4057	NPECANHA-3GR
4057	20	$31 \quad 27$	2	201	201u	241u	271u	4057	NPECANHA-2GR
4060	10	$33 \quad 38$	1	202	202u	242u	272u	4060	FONTES---1GR
4060	20	6762	2	203	203u	243u	273u	4060	FONTES---2GR
4062	10	100100	1	205	205u	245u	275u	4062	P. PASSOS-1GR

4392	10	100	100	2	2603	2603u		2673u	4392	UTCPRESA-2GR
4393	10	100	100	2	2603	2604u		2674u	4393	UTCPRESB-2GR
4374	10	100	100	1	2605	2605u	2645u		4374	UTEROCHG-1GR
4384	10	100	100	1	2606	2606u	2646u		4384	UTEROCHV-1GR
339	10	100	100	4	2700	2700u	2740u	2770u	339	TERMOCEG-4GR
327	10	100	100	2	2900	2900u	2940u	2970u	327	TERMFTZG-2GR
330	10	100	100	1	2901	2901u	2941u	2971u	330	TERMFTZV-1GR
8759	10	100	100	2	3000	3000u	3040u	3070u	8759	QQUEIXO--2GR
160	10	100	100	2	3100	3100u	3140u	3170u	160	TERMOPEG-2GR
161	10	100	100	1	3101	3101u	3141u	3171u	161	TERMOPEV-1GR
7303	10	100	100	2	3200	3200u	3240u	3270u	7303	BGRANDE--2GR
48	10	100	100	2	3300	3300u	3340u	3370u	48	P. CAVALO-2GR
4483	10	100	100	2	3301	3301u			4483	OURINHOS-2GR
1437	10	100	100	1	3302	3302u	3342u	3372u	1437	PICADA---1
26407	10	100	100	2	3400	3400u	3440u	3470u	26407	P. PEDRA--2GR
7309	10	100	100	1	3500	3500u	3540u	3570u	7309	MCLARO---1GR
7311	10	100	100	2	3501	3501u	3541u	3571u	7311	Alves---2GR
7313	10	100	100	1	3502	3502u	3542u	3572u	7313	14JULHO--1GR
4386	10	100	100	1	3600	3600u	3640u	3670u	4386	JFORA-A--1GR
4387	10	100	100	1	3600	3601u	3641u	3671u	4387	JFORA-B--1GR
1442	10	100	100	2	3700	3700u	3740u	3770u	1442	Staclara-2GR
1423	10	100	100	2	3800	3800u	3840u	3870u	1423	R. NEVES--2GR
3599	10	100	100	3	3900	3900u	3940u	3970u	3599	PEIXEANG-3GR
1424	10	100	100	2	4000	4000u	4040u	4070u	1424	AMADORA1-2G
1425	10	100	100	2	4001	4001u	4041u	4071u	1425	AMADORA2-2GR
7301	10	100	100	2	4100	4100u	4140u	4170u	7301	cNOVOS---2GR
4371	10	100	100	1	4300	4300u	4340u	4370u	4371	CORUMBA4-1GR
23310	10	100	100	2	4400	4400u	4440u	4470u	23310	ESPORA---2GR
9512	10	100	100	3	4702	4702u	4742u	4772u	9512	UTETN2-G-3GR
9514	10	100	100	1	4703	4703u	4743u	4773u	9514	UTETN2-v-1GR
9511	10	100	100	4	4704	4704u	4744u		9511	UTETN1---4GR
9501	10	100	100	4	4705	4705u	4745u	4775u	9501	UHESAMUE-4GR
9518	10	100	100	3	4706	4706u	4746u9	99991u	9518	UHEROND2-3GR
413	10	100	100	1	4803	4803u	4843u		413	UTEMANAU-1GR
412	10	100	100	1	4802	4802u	4842u		412	UTEPFERR-1GR
16402	10	100	100	2	4800	4800u	4840u		16402	UTEPOTI1-2GR
16403	10	100	100	3	4801	4801u	4841u		16403	UTEPOTI3-3GR
108	10	100	100	8	4805	4805u	4845u		108	UTEMURIC-8GR
109	10	100	100	60	4804	4804u			109	UTEAREMB60GR
128	10	100	100	60	4807	4810u	4850u		128	UTEGLOBI60GR
129	10	100	100	60	4807	4811u	4851u		129	UTEGLOII60GR
801	10	100	100	1	4808	4812u	4852u	4872u	801	PITAQUI--1GR
3583	10	100	100	2	4900	4900u	4940u	4970u	3583	R.BAIXO--2GR
4540	10	50	50	1	5000	5000u		5070u	4540	CSA-G1---1GR
4540	20	50	50	1	5000	5002u		5072u	4540	CSA-G2---1GR
4539	10	100	100	1	5001	5001u		5071u	4539	CSA-v----1GR
4405	10	50	50	5	5100	5100u	5140u		4405	VIANA-A--5GR
4405	20	50	50	5	5100	5101u	5141u		4405	VIANA-B--5GR
(4406	10	100	100	32	5101	5102u	5142u	5172u	440	U
4364	10	100	100	4	5300	5300u	5340u	5370u	436	DARDANE1-4GR
4360	10	100	100	1	5301	5301u	5341u	5371u	4360	DARDANE2-1GR
80	10	100	100	8	5400	5400u	5440u	5470u	80	EStreito-8GR
8712	10	100	100	1	5500	5500u	5540u	5570u	8712	CANDIOT3-1GR
7305	10	100	100	2	5600	5600u	5640u	5670u	7305	FCHAPECO-2GR
4343	10	100	100	1	5720	5720u	5760u	5780u	4343	CACU-----1GR
4344	10	100	100	1	5721	5721u	5761u	5781u	4344	SALTO----1GR
4342	10	100	100	1	5722	5722u	5762u	5782u	4342	B. CoQuei-1GR
4331	10	100	100	1	5723	5723u	5763u	5783u	4331	S.R.VERD-1GR
4341	10	100	100	1	5724	5724u	5764u	5784u	4341	FRCLARO--1GR
4336	10	100	100	1	5800	5800u	5840u	5870u	4336	SERRAFAC-1GR
5194	10	50	50	4	6000	6000u	6040u	6070u	5194	SANTO-MD-4GR
5194	20	50	50	4	6000	6001u	6041u	6071u	5194	SANTO-MD-4GR
5193	10	100	100	4	6000	6002u	6042u	6072u	5193	SANTO-LE-4GR
5213	10	100	100	8	6000	6003u	6043u	6073u	5213	SANTO-LE-8GR
5192	10	100	100	8	6000	6004u	6044u	6074u	5192	SANTO-ME-8GR
5212	10	100	100	16	6000	6005u	6045u	6075u	5212	SANTO-ME16GR
5191	10	100	100	25	6100	6100u	6140u	6170u	5191	JIRAU-MD25GR
5190	10	100	100	18	6101	6101u	6141u	6171u	5190	JIRAU-ME18GR
13003	10	100	100	2	4810	4815u	4855u	4875u	13003	MARANIVG-2GR
13007	10	100	100	1	1315	40041u	40042u	40052u	13007	MARANIVv-1GR
13008	10	100	100	2	4810	4816u	4856u	4876u	13008	MARANV-G-2GR
13009	10	100	100	1	1315	4413u	4433u	4453u	13009	MARANV-v-1GR
13016	10	100	100	2	1311	1315u	8345u	8375u	13016	MARAN3-G-2GR
(13029		100	100	1	4810	4817u	4857u	4877u	1302	N. VENEC2-1GR
104	10	100	100	23	4809	4818u	4858u	4878u	104	UTEPERN323GR
101	10	100	100	16	6020	6021u	6022u		101	UTESUAP216GR
11001	10	100	100	2	4808	4813u	4853u	4873u	11001	PPECEM1--2GR
11010	10	100	100	1	4808	4814u	4854u	4874u	11010	PPECEM2--1GR
8735	10	100	100	2	6400	6400u	6440u	6470u	8735	UHSROQUE-2GR
6609	10	100	100	2	6500	6500u	6540u	6570u	6609	biguacu -2GR
4398	10	65	65	2	2687	2687u	2667u	2697u	4398	BAIXFLUG-2GR
4398	20	35	35	1	2688	2688u	2668u	2698u	4398	BAIXFLUV-1GR
307	10	100	100	23	6324	6324u	6424u		307	UTE1JAGA23GR
11015	10	100	100	23	6329	6329u	6429u		11015	UTE1JAGB23GR
11016	10	100	100	9	6330	6330u	6430u		11016	UTE2JAGA-9GR
11017	10	100	100	9	6326	6326u	6426u		11017	UTE2JAGB-9GR

2201				9321 U				
2202				9322 U				
2203				9323 U				
2204				9324 U				
3201				301				
3202				302				
3203				301				
3204				302				
3205				303				
3206				304				
3207				303				
3208				304				
4201				4201				
4202				4202				
4203				4201				
4204				4202				
8011				1393u				
8012				1394u				
8021				1395u				
8022				1396u				
8031				1397u				
8032				1398u				
999999								
DFCM								
2		.10 .016						
4		. 10.016						
6		. 10.016						
8		. 10.016						
12020.8		0.016						
12040.8		0.016						
12060.8		0.016						
12080.8		0.016						
22020.8		. 016						
22040.8		. 016						
32020.8		0.016						
32040.8		0.016						
32060.8		0.016						
32080.8		0.016						
42020.8		0.016						
42040.8		0.016						
999999								
ULOG								
DCER-2020.DAT								
DLOC								
1296	CIRCAC	58511594	1	585				
1497	CIRCAC	953441967	1					
999999								
DCNE IMPR								
9000	9300u							
9315	93150							
999999								
DCSC								
4431	3895	1 199u						
539	736	1 1391u						
5000	3895	1 2890u						
539	758	1 2891u						
999999								
ULOG								
1								
DPlt. dat								
DCAR								
AREA 1	1 A A	REA 118			100	0	0	100
999999DSIM								
1.0	0.0005	51						
EXSI								
DSIM								
20.0	0.001	11						
EIM								

Appendix D

Nordic 44 System

D. 1 Power Flow Data File

$0 /$ END OF LOAD DATA, BEGIN FIXED SHUNT DATA
0 / END OF FIXED SHUNT DATA, BEGIN GENERATOR DATA

3000,'1 ' 2000.000, 1934.000, 1934.000, -1934.000,1.00000, $0.00000 \mathrm{E}+0,1.00000,1,100.0, \quad 2625.750,100.000,1,1.0000$ | $3115, ' 1$ | 1700.000, | $358.659,1866.000$, |
| :--- | :--- | :--- |
| $0.1866 .000,1.00000$, | | | $\begin{array}{rrrr}0.00000 \mathrm{E}+0,1.00000,1, & 100.0, & 2000.000, & 0.000, \\ 3245,1.0000 \\ 6599.000, & 670.000, & 670.000, & -670.000,1.00000,\end{array}$ $\begin{aligned} & 0.00000 \mathrm{E}+0,1.00000,1, 100.0, \\ & 7258.000, 0.000, \\ & 1,1.0000\end{aligned}$ 3249,'1', 2048.000, 485.973, 1972.000, -1972.000,1.00000, $0.00000 \mathrm{E}+0,1.00000,1,100.0,2583.000,0.000,1,1.0000$ 3300,'1 ', 2223.852, 2883.988, 2301.000, -2301.000,1.00000, $0.00000 \mathrm{E}+0,1.00000,1,100.0, \quad 2250.000, \quad 0.000,1,1.0000$ 3359,'1' $5400.000, ~ 3281.928,4915.000,-4915.000,1.00000$, $0.00000 \mathrm{E}+0,1.00000,1,100.0,5679.330, \quad 0.000,1,1.0000$ 5100, '1 ' 972.000 , 849.990, 849.990, $849.990,1.00000$,

 $\begin{array}{cccc}5.00000 \mathrm{E}+0,1.00000,1, & 100.0, & 6213.670, & 0.000, \\ 1,1.0000\end{array}$ 5400,'1', 1858.000, 1409.123, 1800.000, -1800.000,1.00700, $0.00000 \mathrm{E}+0,1.00000,1,100.0,1873.440, \quad 0.000,1,1.0000$

$0,2600.000,0.00000 \mathrm{E}+0,2.25000 \mathrm{E}-1,0.00000 \mathrm{E}+0$,
$0,2200.000,0.00000 \mathrm{E}+0,2.30000 \mathrm{E}-1,0.00000 \mathrm{E}+0$
, $8064.000,0.00000 \mathrm{E}+0,1.53850 \mathrm{E}-1,0.00000 \mathrm{E}+0$,
$0,2714.000,0.00000 \mathrm{E}+0,2.10000 \mathrm{E}-1,0.00000 \mathrm{E}+0$,
$0,3300.000,0.00000 \mathrm{E}+0,1.60000 \mathrm{E}-1,0.00000 \mathrm{E}+0$,
0 , $6750.000,0.00000 \mathrm{E}+0,1.93750 \mathrm{E}-1,0.00000 \mathrm{E}+0$,
$0,1199.990,0.00000 \mathrm{E}+0,1.51350 \mathrm{E}-1,0.00000 \mathrm{E}+0$,
0, 7518.020, 0.00000E+0, 2.60000E-1, 0.00000E+0,
$02450.000,0.00000 \mathrm{E}+0,1.60000 \mathrm{E}-1,0.00000 \mathrm{E}+0$,
$0,1450.000,0.00000 \mathrm{E}+0,2.28250 \mathrm{E}-1,0.00000 \mathrm{E}+0$,

5600,'1 ', 1774.000, 1123.709, 1700.000, -1700.000,1.01000 $\begin{array}{cccc}0.00000 \mathrm{E}+0,0.99900,1, & 100.0, & 1788.280, & 0.000, \\ 0.1723 .000,1.0000\end{array}$ 6000,'1', 523.000, 500.000, 500.000, $-500.000,1.00500$ $0.00000 \mathrm{E}+0,1.00000,1,100.0, \quad 620.000, \quad 0.000,1,1.0000$ 6100,'1', 4730.000, 1276.413, 4500.010, -4500.010,1.00000, $0.00000 \mathrm{E}+0,1.00000,1, \quad 100.0, \quad 4750.000,10.000,11.0000$ 6500, '1 ' $2442.000,1190.436,2400.000,-2400.000,1.00000$, .00000E+0,1.00000,1, $100.0,2454.550, \quad 0.000,1,1.0000$ 6700,'1 ' 3506.000 , 66.699, 1800.000, $-1800.000,1.02000$, 7000,'1 1.00000,1, 100.0, 3509.090, $0.000,1,1.0000$ $0.00000 \mathrm{E}+0,1.00000,1, \quad 100.0, \quad 7186.260, \quad 0.000, \quad 1,1.0000$ 7100,'1 ', 1620.000, 533.564, 1400.000, -1400.000,1.00000, $0.00000 \mathrm{E}+0,1.00000,1,100.0,1800.000,0.000,1,1.0000$ 8500,'1 ', 754.000, 917.000, 917.000, -917.000,1.02000, $0.00000 \mathrm{E}+0,1.00000,1,100.0,1183.000,0.000,1,1.0000$ 0 / END OF GENERATOR DATA, BEGIN BRANCH DATA 3000, 3020 , $1,0.00000 \mathrm{E}+0,1$ 00000E-2, $0.0000,-100$
 $\begin{array}{ll} \\ 30000,1,1, & 0.00, \\ 1,1.0000\end{array}$

$0.00000,1,2, \quad 0.00, \quad 1,1.0000$
3000, 3245,'1 ', 8.00000E-3, 1.20000E-1, $0.05000,1200.00,1600.00,1800.00,0.00000,0.00000,0.00000$,
$3000,1,2$, , $0,1,1.000$
$3000,3245, ' 2$ ', $1.80000 \mathrm{E}-2,2.00000 \mathrm{E}-1,0.05000,800.00,1300.00,1600.00,0.00000,0.00000,0.00000$,
3000, $3300, ' 1$ ', $6.00000 \mathrm{E}-3,8.00000 \mathrm{E}-2,0.03000,1100.00,1300.00,1400.00,0.00000,0.00000,0.00000$,
$0.00000,1,1, \quad 0.00,1,1.0000$
3000, 3300,'2 ', $9.00000 \mathrm{E}-3,1.00000 \mathrm{E}-1,0.02500,1100.00,1300.00,1400.00,0.00000,0.00000,0.00000$,
$3100,3115, ' 1$ ', $3.00000 \mathrm{E}-2,4.00000 \mathrm{E}-1,0.11000,1100.00,1300.00,1400.00,0.00000,0.00000,0.00000$,
$0.00000,1,2, \quad 0.00, \quad 1,1.0000$
$3100,3200, ' 1$ ', $4.00000 \mathrm{E}-2,2.40000 \mathrm{E}-1,0.20000,1200.00,2000.00,2500.00,0.00000,0.00000,0.00000$,
3100, 3200, '2 $2,4.00000 \mathrm{E}-2,2.40000 \mathrm{E}-1, ~ 0.20000,1200.00,2000.00,2500.00,0.00000,0.00000,0.00000$,
$0.00000,1,1, \quad 0.00,1,1.0000$
3100, $3200,{ }^{2} 3 ', 4.00000 \mathrm{E}-2,2.40000 \mathrm{E}-1,0.20000,1200.00,2000.00,2500.00,0.00000,0.00000,0.00000$,
$0.00000,1,1, \quad 0.00,1,1.0000$
3100, 3249,'1 ', 3.00000E-2, 4.30000E-1, $0.16000,1100.00,1300.00,1400.00,0.00000,0.00000,0.00000$,
$0.00000,1,2, \quad 0.00, \quad 1,1.0000$
3100, 3359,'1 ', 8.00000E-2, $5.00000 \mathrm{E}-1,0.25000,900.00,1300.00,1600.00,0.00000,0.00000,0.00000$, $0.00000,1,1, \quad 0.00, \quad 1,1.0000$
$3100,3359, ' 2$ ', $4.00000 \mathrm{E}-2,2.30000 \mathrm{E}-1,0.24000,1200.00,2000.00,2500.00,0.00000,0.00000,0.00000$,
$0.00000,1,1, \quad 0.00,1,1.0000$
$3115,3245, ' 1$ ', $4.50000 \mathrm{E}-2,5.00000 \mathrm{E}-1,0.14000,1100.00,1300.00,1400.00,0.00000,0.00000,0.00000$,

$0.00000,1,2, \quad 0.00, \quad 1,1.0000$, 4.00000E-1, $0.10000, ~ 850.00,1000,0000$,
$3115,7100, ' 1$ ', $4.00000 \mathrm{E}-2,1.30000 \mathrm{E}-1, \quad 0.13000,1300.00,1500.00,1700.00,0.00000,0.00000,0.00000$,

$0.00000,1,1,0.00,1,1.0000,00000 \mathrm{E}-1,0.07000,1300.00,1800.00,2000.00,0.00000,0.00000,0.00000$,
$0.00000,1,1, \quad 0.00, \quad 1,1.0000$
3200, 8500,'1 ', 1.00000E-2, 1.70000E-1, $0.06000,1100.00,1300.00,1400.00,0.00000,0.00000,0.00000$,
$0.00000,1,1, \quad 0.00,1,1.0000$
3244, 6500,'1 ', $1.00000 \mathrm{E}-2,2.00000 \mathrm{E}-1,0.06000,1800.00,2300.00,2500.00,0.00000,0.00000,0.00000$,
$0.00000,1,2, \quad 0.00, \quad 1,1.0000$
3249, 7100,'1 ', 2.00000E-2, 7.50000E-2, $0.07800,1300.00,1500.00,1700.00,0.00000,0.00000,0.00000$,
$0.00000,1,1, \quad 0.00, \quad 1,1.0000$
3300, 8500,'1 ', $2.00000 \mathrm{E}-2,2.30000 \mathrm{E}-1,0.06000,1100.00,1300.00,1400.00,0.00000,0.00000,0.00000$,
$0.00000,1,1, \quad 0.00, \quad 1,1.0000$
$3300,8500, ' 2$ ', $1.20000 \mathrm{E}-2,2.70000 \mathrm{E}-1,0.10000,1100.00,1300.00,1400.00,0.00000,0.00000,0.00000$,
$0.00000,1,1, \quad 0.00, \quad 1,1.0000$
3359, 5101,'1 ', 1.60000E-2, 2.60000E-1, $0.09000,1900.00,2200.00,2600.00,0.00000,0.00000,0.00000$,
. $3359,1,2,0.00,1,1.0000$

3359, 8500,'1 ', 1.20000E-2, 2.70000E-1, $0.10000,1500.00,2000.00,2500.00,0.00000,0.00000,0.00000$,

$0.00000,1,1, \quad 0.00,1,1.0000$
3701, $6700, ' 1$ ', $2.50000 \mathrm{E}-1,2.00000 \mathrm{E}+0,0.03000,300.00,400.00,500.00,0.00000,0.00000,0.00000$,
5100, 5500,11 ', $2.70000 \mathrm{E}-2,2.60000 \mathrm{E}-1, ~ 0.04400, ~ 700.00, ~ 800.00, ~ 900.00, ~ 0.00000, ~ 0.00000, ~ 0.00000$,

$0.00000,1,1, \quad 0.00, \quad 1,1.0000$
5101, 5102,'1 ', $8.00000 \mathrm{E}-3,1.00000 \mathrm{E}-1,0.09000,1700.00,1800.00,1900.00,0.00000,0.00000,0.00000$,
$0.00000,1,2, \quad 0.00,1,1.0000$
5101, 5103,'1 ', 1.00000E-2, 1.40000E-1, $0.04000,1350.00,1600.00,1800.00,0.00000,0.00000,0.00000$,
$0.00000,1,2, \quad 0.00,1,1.0000$
5101, 5501,'1 ', $1.00000 \mathrm{E}-2,1.50000 \mathrm{E}-1, \quad 0.55000,2000.00,2200.00,2500.00,0.02230,-0.97440,-0.02160$,
$0.97440,1,2, \quad 0.00, \quad 1,1.0000$
5102, 5103,'1 ', 4.00000E-3, 7.00000E-2, $0.03000,2000.00,2200.00,2400.00,0.00000,0.00000,0.00000$,
$0.00000,1,1, \quad 0.00, \quad 1,1.0000$
5102, 5304,'1 ',' $1.70000 \mathrm{E}-2,2.40000 \mathrm{E}-1,0.07000,1500.00,1800.00,2000.00,0.00000,0.00000,0.00000$,
5102, 6001,'1 ', $3.00000 \mathrm{E}-2,4.60000 \mathrm{E}-1,0.13000,1450.00,1700.00,2000.00,0.00020,0.00010,0.00020$,

$0.00000,1,2$,
$5103,5304,2,1,1.30000 \mathrm{E}-2,2.00000 \mathrm{E}-1$,
$0.06000,1500.00,1800.00,2000.00,0.00000,0.00000,0.00000$,
5103,
$0.00000,1,2$,
$0.00,1.3000$
$1,1.0000$

3244, 3245, $0, '^{\prime} 1,1,1,1,0.00000 \mathrm{E}+0,0.00000 \mathrm{E}+0,2, \prime \quad 1,1,1,1.0000,0,1.0000,0,1.0000$,
$0,1.0000$,
$5.0000 \mathrm{E}-3,2.00000 \mathrm{E}-2,1000.00$
$1.00000, \quad 0.000,50.000,500.00,500.00,0.00,1,3245,1.40000,0.60000,1.01000,0.99000,127,0$,
$0.00000,0.00000,0.000$
$1.00000, \quad 0.000$
3701, 3249, $0, '^{\prime} '^{\prime}, 1,1,1,0.00000 \mathrm{E}+0,0.00000 \mathrm{E}+0,2,1 \quad 1,1,1,1.0000,0,1.0000,0,1.0000$,
$0,1.0000, '$
$2.00000 \mathrm{E}-2$,
$1.00000 \mathrm{E}-1$,
'
1000.00
$\begin{array}{r}2.00000 \mathrm{E}-2,5.00000 \mathrm{E}-1, \\ 1.00000, \\ 0.000, \\ 0.000, \\ 300.00,\end{array} 350.00, \quad 0.00,1, \quad 3701,1.40000,0.60000,1.01000,0.99000,127,0$,
$0.00000,0.00000,0.000$

1.00000,	0.000
3359,	3360,

$\begin{aligned} & 5.00000 \mathrm{E}-3,2.00000 \mathrm{E}-2,1000.00 \\ & 0.99980,\end{aligned} 0.000, \quad 0.000, \quad 1000.00,9000.00,9000.00,1, \quad 3360,1.40000,0.60000,1.01000,0.99000,127,0$,
$\begin{array}{lrr}0.99980, & 0.000, & 0.000 \\ 0.00000, & 0.00000, & 0.000\end{array}$
$\begin{array}{lrr}0.00000, & 0.00000, & 0.000 \\ 1.00000, & 0.000\end{array}$
5101, 5100, 0,'1',1,1,1, 0.00000E+0, 0.00000E+0,2,' ',1, 1,1.0000, 0,1.0000, 0,1.0000,
$0,1.0000, '$
$8.00000 \mathrm{E}-4,3.05000 \mathrm{E}-2,1000.00$
1.00635, $0.000,0.000,1000.00,9000.00,9000.00,1,5101,1.40000,0.60000,1.01000,0.99000,127,0$,
0.00000, 0.00000, 0.000
$1.00000,0.000$
5300, 5301, $0, '^{\prime} '^{\prime} 1,1,1,0.00000 \mathrm{E}+0,0.00000 \mathrm{E}+0,2, ' \quad 1,1,1,0000,0,1.0000,0,1.0000$,
$0,1.0000, '$
$1.60000 \mathrm{E}-3$,
$1.00000,50.000, ~ 0.000,2000.00,9000.00,9000.00,1,5301,1.40000,0.60000,1.01000,0.99000,127,0$,
$0.00000,0.00000,0.000$
$1.00000, \quad 0.000$

$0,1.0000$,
$3.20000 \mathrm{E}-3,1.20000 \mathrm{E}-1,1000.00$
1.00635, $0.000, ~ 0.000,1000.00,9000.00,9000.00,1,5401,1.40000,0.60000,1.01000,0.99000,127,0$,
$0.00000,0.00000,0.000$
$\begin{array}{ll}5400, & 5402, \\ 0,1.0000,1\end{array} '^{\prime}, 1,1,1,0.00000 \mathrm{E}+0,0.00000 \mathrm{E}+0,2, \prime \quad 1,1,1,1.0000,0,1.0000,0,1.0000$,

```
4.00000E-4, 1.50000e-2, 1000,00
1.00000, \(0.000, ~ 0.000,1000.00,9000.00,9000.00,1,5402,1.40000,0.60000,1.01000,0.99000,127,0\),
0.00000, 0.00000, 0.000
\(1.00000,0.0000,11,1,1,1,0.00000 E+0,0.00000 \mathrm{E}+0,2,1\)
    0,'1 ',1,1,1, \(0.00000 \mathrm{E}+0,0.00000 \mathrm{E}+0,2,1 \quad 1,1,1,1.0000,0,1.0000,0,1.0000\),
4.00000E-4, \(1.50000 \mathrm{E}-2,1000.00\)
\(1.01260,0.000,0.000,1000.00,9000.00,9000.00,1,5501,1.40000,0.60000,1.01000,0.99000,127,0\),
0.00000, 0.00000, 0.000
\(\begin{array}{ll}1.00000, & 0.000\end{array}\)
5601, 6001, \(0, '^{\prime} 1,1,1,1,0.00000 \mathrm{E}+0,0.00000 \mathrm{E}+0,2, ' \quad 1,1,1,1.0000,0,1.0000,0,1.0000\),
\(2.00000 \mathrm{E}-4,7.60000 \mathrm{E}-3,1000.00\)
1.01806, \(0.000,0.000,1000.00,9000.00,9000.00,1,5601,1.40000,0.60000,1.01000,0.99000,127,0\),
\(0.00000,0.00000,0.000\)
1.00000, 0.000 5602, \(0,1^{\prime}, 1,1,1,0.00000 \mathrm{E}+0,0.00000 \mathrm{E}+0,2\),
5603, 5602,
0,1.0000,'
\(8.00000 \mathrm{E}-4,3.05000 \mathrm{E}-2,1000.00\)
\(0.96825,0.000, ~ 0.000,1000.00,9000.00,9000.00,1,5602,1.40000,0.60000,1.01000,0.99000,127,0\),
\(0.00000,0.00000,0.000\)
1.00000, \(\begin{array}{r}0.000 \\ 6000\end{array}\) 6001, \(0,1 '^{\prime}, 1,1,1,0.00000 \mathrm{E}+0,0.00000 \mathrm{E}+0,2, ' \quad 1,1,1,1.0000,0,1.0000,0,1.0000\),
\(\begin{array}{ll}0,1.0000, \\ 4.00000 \mathrm{E}-4,1.50000 \mathrm{E}-2,1 & 1000.00\end{array}\)
1.00625, \(0.000, ~ 0.000,1000.00,9000.00,9000.00,1,6001,1.40000,0.60000,1.01000,0.99000,127,0\),
\(0.00000,0.00000,0.000\)
6700, 6701, \(0, '^{\prime}, 1,1,1,0.00000 \mathrm{E}+0,0.00000 \mathrm{E}+0,2,^{\prime} \quad{ }^{\prime}, 1,1,1.0000,0,1.0000,0,1.0000\),
\(\begin{array}{lll}0,1.0000, \\ 5.00000 \mathrm{E}-3, & 2.00000 \mathrm{E}-2, & 1000.00\end{array}\)
1.01250, \(0.000, \quad 0.000,1000.00,9000.00,9000.00,1,6701,1.40000,0.60000,1.01000,0.99000,127,0\),
0.00000, 0.00000, 0.000
\(1.00000, \quad 0.000\)
0 / END OF TRANSFORMER DATA, bEGIN AREA DATA
    11, \(0, \quad 0.000, \quad 10.000\), 'NO1
    0.000, 10.000, 'NO2
    0.000, 10.000,'NO3
    0.000, 10.000,' NO 4
    0.000 , 10.000 ,' NO5
    0.000, 10.000, 'NO6
    0.000, 10.000 ,' NO7
    0.000 , 10.000 , 'NO8
    0.000, 10.000,'SE1
    . 0000 10.000,'SE2
    0.000 , 10.000 , SE3
    0.000 , 10.000 , SE4
    0.000 , 10.000 , FI 2
end of area data, begin two-terminal dc dat
\(0 /\) END OF AREA DARA, BEGIN TWO-TERMINAL DC DATA
\(0 /\) END OF TWO-TERMINAL DC DATA, BEGIN VSC DC LINE DATA
/ END OF TWO-TERMINAL DC DATA, BEGIN VSC DC LINE DATA
\(0 / E N D\) OF VSC DC LINE DATA, BEGIN IMPEDANCE CORRECTION DATA
\(0 /\) END OF VSC DC LINE DATA, BEGIN IMPEDANCE CORRECTION DATA
/ END OF TMPEDANCE CORRECTION DATA, BEGIN MULTI-TERMINAL DC DA
\(0 /\) END OF MULTI-TERMINAL DC DATA, BEGIN MULTI-SECTION LINE DATA
0 / END OF mULTI-SECTION LINE dATA, BEGIN zONE DATA
0 / END OF zone data, begin inter-area transfer data
0 / END OF INTER-AREA TRANSFER DATA, BEGIN OWNER DATA
0 / END of OWNER DATA, bEGIN FACTS DEVICE DATA
\(0 /\) END of facts device data, begin switched shunt data
0 / END OF SWITCHED SHUNT DATA, BEGIN GNE DATA
0 / END OF GNE DATA, BEGIN INDUCTION MACHINE DATA
\(0 /\) END OF INDUCTION MACHINE DATA
```


D. 2 Dynamic Data File

1						
/ Nordic 44 system						
3000						
	'genrou'	1	5.0000	0.50000E-01	1.0000	$0.50000 \mathrm{E}-01$
	5.9700		0.0000	2.2200	2.1300	0.36000
	0.46800		0.22500	0.16875	0.10890	0.37795
/3000	'Stab2A'	' 1	1.0000	2.0000	0.0000	2.0000
1	0.55000		1.0000	$0.10000 \mathrm{E}-01$	$0.30000 \mathrm{E}-01$	
3000	IEEET2'	1	0.0000	729.00	$0.40000 \mathrm{E}-01$	5.3200
	-4.0500		1.0000	0.44000	0.66700E-01	2.0000
	0.44000		6.5000	$0.54000 \mathrm{E}-01$	8.0000	0.20200
3000	IEESGO'	1	$0.10000 \mathrm{E}-01$	0.0000	0.15000	0.30000
	8.0000		0.40000	0.0000	0.70000	0.43000
	1.0000		0.0000			
3115	'gensal'	1	7.5700	$0.45000 \mathrm{E}-01$	0.10000	4.7410
	0.0000		0.94600	0.56500	0.29000	0.23000
	0.11077		0.10239	0.27420		
/3115	'Stab2A'	1	1.0000	4.5000	0.87000	2.0000
1	0.87000	0e-01	1.0000	$0.10000 \mathrm{E}-01$	$0.40000 \mathrm{E}-01$	
3115	'SCRX'	1	0.25385	13.000	31.000	$0.50000 \mathrm{E}-01$
	0.0000		4.0000	0.0000	0.0000	
3115	'Hygov'	1	$0.60000 \mathrm{E}-01$	0.40000	5.0000	0.50000E-01
	0.20000		0.10000	1.0000	0.0000	1.0000
	1.0577		0.50000	0.10000		
3245	'GEnSAL'	1	5.0000	$0.60000 \mathrm{E}-01$	0.10000	3.3000
	0.0000		0.75000	0.50000	0.25000	0.15385
	0.11538		0.10239	0.27420		
3245	SCRX'	1	0.25385	13.000	31.000	$0.50000 \mathrm{E}-01$
	0.0000		4.0000	0.0000	0.0000	
3245	'hygov'	1	$0.60000 \mathrm{E}-01$	0.40000	5.0000	$0.50000 \mathrm{E}-01$
	0.20000		0.10000	1.0000	0.0000	1.0000
	1.0100		0.50000	0.10000 /		
3249	'gensal'	1	10.130	$0.60000 \mathrm{E}-01$	0.10000	4.5430
	0.0000		1.0360	0.63000	0.28000	0.21000
	0.11538		0.10239	0.27420		
3249	SCRX'	1	0.25385	13.000	31.000	$0.50000 \mathrm{E}-01$
	0.0000		4.0000	0.0000	0.0000	
3249	Hygov'	1	$0.60000 \mathrm{E}-01$	0.40000	5.0000	0.50000E-01
	0.20000		0.10000	1.0000	0.0000	1.0000
	1.1000		0.50000	0.10000 /		
3300	'GENROU'	1	10.800	$0.50000 \mathrm{E}-01$	1.0000	$0.50000 \mathrm{E}-01$
	6.0000		0.0000	2.4200	2.0000	0.23000
	0.41080		0.16000	0.14812	0.10890	0.37795
/3300	'STAB2A'	'	1.0000	4.5000	0.0000	2.0000
1	0.55000		1.0000	$0.10000 \mathrm{E}-01$	$0.30000 \mathrm{E}-01$	
3300	SCRX'	1	0.0000	$0.40000 \mathrm{E}-01$	10.000	$0.40000 \mathrm{E}-01$
	0.0000		5.0000	0.0000	0.0000	
3300	Ieesgo'	1	$0.10000 \mathrm{E}-01$	0.0000	0.15000	0.30000
	8.0000		0.40000	0.0000	0.70000	0.43000
	1.0000		0.0000			
3359	'GENROU'	1	4.7500	$0.50000 \mathrm{E}-01$	1.0000	$0.50000 \mathrm{E}-01$
	4.8200		0.0000	2.1300	2.0300	0.31000
	0.40300		0.19370	0.14531	0.10890	0.37795
/3359	'Stab2A'	' 1	1.0000	4.5000	0.0000	2.0000
1	0.68000		1.0000	$0.10000 \mathrm{E}-01$	$0.30000 \mathrm{E}-01$	
3359	SCRX'	1	0.20000	10.000	165.00	0.40000E-01
	0.0000		5.0000	0.0000	0.0000	
3359	'IEESGO'	1	$0.10000 \mathrm{E}-01$	0.0000	0.15000	0.30000
	8.0000		0.40000	0.0000	0.70000	0.43000
	1.0000		0.0000 /			
5100	'GENSAL'	1	4.9629	$0.50000 \mathrm{E}-01$	0.15000	3.9871
	0.0000		1.1332	0.68315	0.24302	0.15135
	0.13405		0.10000	0.30000		
5100	SExs'	1	$0.50000 \mathrm{E}-01$	100.00	200.00	0.50000
	0.0000		4.0000 /			
5100	'HYGOV'	1	$0.60000 \mathrm{E}-01$	0.40000	5.0000	0.50000E-01
	0.20000		0.20000	1.0000	0.0000	1.0000
	1.1000		0.50000	0.10000 /		
5300	'GENSAL'	1	6.4000	$0.50000 \mathrm{E}-01$	0.15000	3.5000
	0.0000		1.1400	0.84000	0.34000	0.26000
	0.20000		0.10000	0.30000 /		
/5300	'Stab2A'	' 1	1.0000	4.5000	0.0000	2.0000
1	0.55000		1.0000	$0.10000 \mathrm{E}-01$	$0.30000 \mathrm{E}-01$	
5300	STAB1' 1		25.00	5.0000 4	2000.03	
	4.200		$0.03 \quad 0.10$	000E-00/		
5300	'SCRX'	1	0.25385	13.000	61.000	$0.50000 \mathrm{E}-01$
	0.0000		4.0000	0.0000	0.0000	
5300	'HYGOV'	1	$0.60000 \mathrm{E}-01$	0.40000	5.0000	$0.50000 \mathrm{E}-01$
	0.20000		0.20000	1.0000	0.0000	1.0000
	1.1000		0.50000	0.10000 /		
5400	'GENSAL'	1	6.5000	$0.50000 \mathrm{E}-01$	0.15000	4.1000
	0.0000		1.0200	0.63000	0.25000	0.16000
	0.13000		0.10000	0.30000 /		
5400	'SEXS'	1	$0.50000 \mathrm{E}-01$	100.00	200.00	0.50000
	0.0000		4.0000 /			
5400	'hygov'	1	$0.60000 \mathrm{E}-01$	0.40000	5.0000	0.50000E-01
	0.20000		0.20000	1.0000	0.0000	1.0000
	1.1000		0.50000	0.10000 /		
5500	'GEnSAL'	1	7.1980	$0.50000 \mathrm{E}-01$	0.15000	3.0000
	0.0000		1.2364	0.65567	0.37415	0.22825
	0.16194		0.10000	0.30000 /		
5500	'SEXS'	1	$0.50000 \mathrm{E}-01$	100.00	200.00	0.50000
	0.0000		4.0000 /			
5500	'Hygov'	1	$0.60000 \mathrm{E}-01$	0.40000	5.0000	$0.50000 \mathrm{E}-01$
	0.20000		0.20000	1.0000	0.0000	1.0000

1.1000			0.50000	0.10000 /		3.5000	
5600	'GENSAL'	1	7.8500	$0.50000 \mathrm{E}-01$	0.15000		
	0.0000		1.0000	0.51325	0.38000	0.28000	
	0.21000		0.10000	0.30000 /	1		
5600	'STAB1' 1	1	26.97	3.0000	7.881	0.03	
	7.881'SCRX'1		0.03 0.10000E-00/				
5600			0.25385	13.000	61.000	0.50000E-01	
	0.0000	1	4.0000	0.0000	0.0000	/	
5600	'HYGOV'	1	$0.60000 \mathrm{E}-01$0.20000	0.30000	5.0000	0.50000E-01	
	0.20000			1.0000	, 0.0000	1.0000	
	1.1000		0.50000	${ }^{0.10000}{ }^{0.50000 \mathrm{E}-01}$			
6000	$\begin{aligned} & \text { 'GENSAL' } 1 \\ & 0.0000 \end{aligned}$	1	$\begin{aligned} & 9.7000 \\ & 1.2800 \end{aligned}$		0.15000	3.50000.28000	
				0.94000	, 0.37000		
	$\begin{array}{r} 0.0000 \\ 0.20000 \end{array}$		0.10000	0.30000	/		
6000	'SExs' 1	1	1.0000	, 0.10000	20.000	0.10000	
	-4.0000		4.0000 /				
6000	'Hygov'	1	$0.60000 \mathrm{E}-01$	0.30000	5.0000	0.50000E-01	
	0.20000		0.200000.50000	1.0000	0.0000	1.0000	
	1.1000			0.10000$0.50000 \mathrm{E}-01$			
6100	'GENSAL'	1	9.9000		0.15000	0.18000	
	0.0000			0.73000	, 0.37000		
	0.15000		1.2000 0.10000	0.30000 /		2.0000	
/6100	'Stab2A'	1	1.00001.0000	4.5000	0.0000		
1	0.55000			$0.10000 \mathrm{E}-01$	1 0.30000E-01/		
6100	'SCRX' 1		0.253854.0000	13.000	61.0000.0000	, 0.50000E-01	
	0.0000	1		0.0000			
6100	$\begin{aligned} & \text { 'HYGOV' }{ }^{1} 0.20000 \end{aligned}$		4.0000 $0.60000 \mathrm{E}-01$	0.40000	5.00000.0000	$0.50000 \mathrm{E}-01$	
			0.20000	0.10000 / 0.000		1.0000	
	1.1000		0.50000				
6500	$\begin{aligned} & \text { 'GENSAL' } 1 \\ & 0.0000 \end{aligned}$		$\begin{aligned} & 5.4855 \\ & 1.0679 \end{aligned}$	$0.50000 \mathrm{E}-01$0.64200	$\begin{aligned} & 0.15000 \\ & 0.23865 \end{aligned}$	3.5580	
			0.15802				
	$\begin{array}{r} 0.0000 \\ 0.13514 \end{array}$			0.10000	0.30000	1	0.50000
6500	$\begin{gathered} \text { SEXS' } \\ 0.0000 \end{gathered}$	1	$\begin{aligned} & 0.50000 \mathrm{E}-01,100.00 \\ & 4.0000 \end{aligned}$		200.00		
					$0.50000 \mathrm{E}-01$		
6500	$\begin{gathered} \text { 'HYGOV' } 1 \\ 0.20000 \end{gathered}$		0.60000E-01	0.40000		$\begin{aligned} & 5.0000 \\ & 0.0000 \end{aligned}$	
			0.200000.50000	1.0000	1.0000		
	1.1000			0.10000$0.50000 \mathrm{E}-01$	0.0000	3.5920	
6700	$\begin{gathered} \text { GENSAL' } 1 \\ 0.0000 \end{gathered}$		$\begin{aligned} & 5.2400 \\ & 1.1044 \end{aligned}$		$\begin{aligned} & 0.15000 \\ & 0.25484 \end{aligned}$		
			0.66186	0.17062			
	0.14737			1.1044 0.10000	0.30000	0.25484	
16700	'STAB2A' 1		1.0000	4.5000	0.0000	2.0000	
1	0.55000	1	1.0000	$0.10000 \mathrm{E}-01$	10.30000	-01/	
6700	'STAB1' 1	1	5.442	$3.0000 \quad 6$	6.962	0.03	
	6.962		$0.03 \quad 0.1$	10000E-00/			
6700	'SCRX'	1	0.25385	13.000	61.000	0.50000E-01	
	0.0000		4.0000	0.0000	0.0000	/	
6700	'Hygov'	1	$0.60000 \mathrm{E}-01$	0.40000	5.0000	$0.50000 \mathrm{E}-01$	
	0.20000		0.20000	1.0000	0.0000	1.0000	
	1.1000		0.50000	0.10000 /	/		
7000	'GENROU'	1	10.000	$0.50000 \mathrm{E}-01$	1.0000	$0.50000 \mathrm{E}-01$	
	5.5000		0.0000	2.2200	2.1300	0.36000	
	0.46800		0.22500	0.16875	0.10890	0.37795	
/7000	STAB2A'	1	1.0000	1.0000	0.0000	2.0000	
1	0.55000		1.0000	$0.10000 \mathrm{E}-01$	10.30000	-01/	
7000	'STAB1' 1		5.192	$5.0000 \quad 13$	3.50	. 03	
	13.50		$0.03 \quad 0.1$	10000E-00/			
7000	IEEET2'	1	0.0000	800.00	0.40000 E	-01 5.3200	
	-4.0500		1.0000	0.44000	0.66700 E	-01 2.0000	
	0.44000		6.5000	0.54000E-01	8.0000	0.20200	
7000	'IEESGO'	1	$0.10000 \mathrm{E}-01$	0.0000	0.15000	0.30000	
	8.0000		0.40000	0.0000	0.70000	0.43000	
	1.0000		0.0000				
7100	'GENSAL'	1	5.0000	$0.60000 \mathrm{E}-01$	0.10000	3.2000	
	0.0000		0.75000	0.50000	0.25000	0.15385	
	0.11538		0.10239	0.27420 /	1		
/7100	'Stab2A'	1	1.0000	4.5000	0.0000	2.0000	
1	0.55000		1.0000	$0.10000 \mathrm{E}-01$	10.30000	-01/	
7100	'SCRX'	1	0.25385	13.000	61.000	$0.50000 \mathrm{E}-01$	
	0.0000		4.0000	0.0000	0.0000	1	
7100	'HYGOV'	1	$0.60000 \mathrm{E}-01$	0.40000	5.0000	$0.50000 \mathrm{E}-01$	
	0.20000		0.10000	1.0000	0.0000	1.0000	
	1.0100		0.50000	0.10000 /			
8500	'GENROU'	1	10.000	$0.50000 \mathrm{E}-01$	1.0000	$0.50000 \mathrm{E}-01$	
	7.0000		0.0000	2.4200	2.0000	0.23000	
	0.41080		0.17062	0.14812	0.10890	0.37795	
/8500	'Stab2A'	1	1.0000	4.5000	0.0000	2.0000	
1	0.55000		1.0000	$0.10000 \mathrm{E}-01$	10.30000	-01/	
8500	'SCRX'	1	0.0000	$0.40000 \mathrm{E}-01$	10.000	$0.40000 \mathrm{E}-01$	
	0.0000		5.0000	0.0000	0.0000	1	
8500	'IEESGO'	1	$0.10000 \mathrm{E}-01$	0.0000	0.15000	0.30000	
	8.0000		0.40000	0.0000	0.70000	0.43000	
	1.0000		0.0000 /				

