
DETECTION AND LOCALIZATION OF EVENTS IN COMPUTER

NETWORKS USING END-TO-END MEASUREMENTS TIME SERIES

Diego Ximenes Mendes

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Edmundo Albuquerque de Souza

e Silva

Rio de Janeiro

Novembro de 2017

DETECTION AND LOCALIZATION OF EVENTS IN COMPUTER

NETWORKS USING END-TO-END MEASUREMENTS TIME SERIES

Diego Ximenes Mendes

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE

SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Edmundo Albuquerque de Souza e Silva, Ph.D.

Prof. Antonio Jorge Gomes Abelém, D.Sc.

Prof. Daniel Sadoc Menasche, Ph.D.

Prof. Pedro Braconnot Velloso, Dr.

RIO DE JANEIRO, RJ – BRASIL

NOVEMBRO DE 2017

Mendes, Diego Ximenes

Detection and Localization of Events in Computer

Networks Using End-to-End Measurements Time

Series/Diego Ximenes Mendes. – Rio de Janeiro:

UFRJ/COPPE, 2017.

IX, 48 p.: il.; 29, 7cm.

Orientador: Edmundo Albuquerque de Souza e Silva

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2017.

Bibliography: p. 45 – 48.

1. Time Series. 2. Change Point Detection.

3. Machine Learning. 4. Network Measurements.

5. Network Troubleshooting. I. Silva, Edmundo

Albuquerque de Souza e. II. Universidade Federal do Rio

de Janeiro, COPPE, Programa de Engenharia de Sistemas

e Computação. III. T́ıtulo.

iii

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

DETECÇÃO E LOCALIZAÇÃO DE EVENTOS EM REDES DE

COMPUTADORES UTILIZANDO SÉRIES TEMPORAIS DE MEDIÇÕES

FIM-A-FIM.

Diego Ximenes Mendes

Novembro/2017

Orientador: Edmundo Albuquerque de Souza e Silva

Programa: Engenharia de Sistemas e Computação

Com o objetivo de melhor entender o desempenho de sua rede, um grande tier-3

ISP brasileiro, em parceria com a UFRJ e uma startup incubada nessa universidade,

estabeleceram um projeto para, através de medidas fim-a-fim de QoS, monitorar o

serviço prestado em um subconjunto dos seus clientes.

Nesse contexto, guiada pelas caracteŕısticas da rede do ISP, e do atual processo

de medição, esta dissertação se propõe a avaliar a viabilidade de apenas utilizar

métricas fim-a-fim de QoS, e traceroutes, para identificar e localizar eventos de rede.

Um evento pode ser interpretado como uma mudança no comportamento de um

equipamento, que por sua vez afeta a qualidade de serviço percebida pelos usuários,

como por exemplo, um defeito em um roteador. O procedimento de localização

define um conjunto de posśıveis locais onde o evento pode ter acontecido.

Com esse propósito, este trabalho propõe um framework de análise de dados, que

permite explorar mudanças estat́ısticas nas séries temporais de QoS de diferentes

clientes. Para detectar e localizar eventos, o mecanismo correlaciona esses padrões

de alteração com traceroutes. A fim de aumentar o desempenho do sistema proposto,

esta dissertação também indica posśıveis melhorias na atual metodologia de medição.

iv

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

DETECTION AND LOCALIZATION OF EVENTS IN COMPUTER

NETWORKS USING END-TO-END MEASUREMENTS TIME SERIES

Diego Ximenes Mendes

November/2017

Advisor: Edmundo Albuquerque de Souza e Silva

Department: Systems Engineering and Computer Science

To better understand the performance of its own network, a major tier-3 Brazil-

ian ISP, in partnership with UFRJ and a startup incubated at this university, es-

tablished a project to monitor the service provided to a subset of its customers.

In this context, guided by the specific ISP’s network’s characteristics, and the

current measurement process, this dissertation aims to check the viability of only

using end-to-end QoS measures, and traceroutes, to identify and localize network

events. An event can be interpreted as a behavioral change in a network equipment,

that affect the quality of service perceived by the end-users, such as a router failure.

The localization procedure defines a set of feasible locations where the event could

have happened.

For such purpose, this work proposes a data analytics framework, which is able

to track statistical changes in the QoS time series of different clients. To detect and

localize events, the mechanism correlates these modification patterns with tracer-

outes. In order to increase the system’s performance, this dissertation also indicates

possible improvements in the current measurement methodology.

v

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Contributions . 1

1.2 Dissertation Outline . 2

2 Literature Review 3

2.1 Argus . 3

2.2 NetNorad . 5

2.3 CEM . 7

3 Change Point Detection 8

3.1 Problem Definition . 9

3.2 Notation . 10

3.3 Preprocessing . 10

3.4 Sliding Windows . 11

3.5 Optimization Model . 13

3.6 HMM . 15

3.7 Bayesian Inference . 16

3.8 Final Remarks . 17

4 Methodology 19

4.1 Measurement Environment . 19

4.2 Proposed Workflow . 20

4.3 Spatial Correlation . 21

4.4 Time Correlation . 23

4.5 Spatial-Time Correlation . 25

4.6 Change Point Detection Issues . 28

4.7 Differences from Previous Work . 33

vi

5 Results 34

5.1 Possible Correct Outcomes . 35

5.2 Possible Incorrect Outcomes . 36

5.3 Final Remarks . 40

6 Conclusions 42

6.1 Contributions . 42

6.2 Future Work . 43

Bibliography 45

vii

List of Figures

2.1 Argus’ pipeline. [1] . 4

2.2 Argus’ spatial aggregation. [1] . 4

2.3 Facebook’s network architecture. [2] 6

3.1 Median filter RTT. w = 6. Plots with different scales. 11

3.2 Median filter loss fraction. w = 2. 11

3.3 Online Sliding Windows. 12

3.4 Offline Sliding Windows. 13

3.5 Optimization model. 15

3.6 HMM filter. 16

3.7 Bayesian Inference. 17

4.1 Pipeline. 20

4.2 User-groups structure. 23

4.3 Network event location examples. 26

4.4 Co-occurrent events. 28

4.5 Survey system snapshot. 30

4.6 Number of votes per change point histogram. 30

4.7 Classifications agreements. 31

4.8 Classifications disagreements. 32

4.9 Different classification pattern in the same time series. 33

5.1 Before first hop. 35

5.2 Correlation of problem locations detected by analysis that started in

zero indegree vertices. 35

5.3 Network event in only one zero indegree user-group. 36

5.4 Time correlation unmatch. 37

5.5 Untraceable location. Plots with different scales. 37

5.6 RTT per hop of client of Figure 5.5a. Plots with different scales. . . . 39

5.7 RTT per hop of client of Figure 5.5b. Plots with different scales. . . . 40

5.8 Possible contract bandwidth change. 41

5.9 Clients sparsity. 41

viii

List of Tables

5.1 Number of events. 36

ix

Chapter 1

Introduction

To better understand the performance of its own network, a major tier-3 Brazilian

Internet Service Provider (ISP), in partnership with the Federal University of Rio

de Janeiro (UFRJ) and a startup incubated at this university, established a project

to monitor the service provided to a subset of its customers.

Considering the ISP’s cable-television infrastructure, which runs Data Over Ca-

ble Service Interface Specification (DOCSIS), Quality of Service (QoS) metrics are

gathered through a software placed at home routers connected to cable modems.

This software is responsible to perform end-to-end measurements against servers

strategically located by the ISP.

In this context, guided by the specific ISP’s network’s characteristics, and the

current measurement process, this dissertation aims to check the viability of only

using end-to-end QoS measures, and traceroutes, to identify and localize network

events. An event can be interpreted as a behavioral change in a network equipment,

that affects the quality of service perceived by the end-users, such as a router failure.

The localization procedure defines a set of feasible locations where the event could

have happened.

For such purpose, this work proposes a data analytics framework, which is able

to track statistical changes in the QoS time series of different clients. To detect and

localize events, the mechanism correlates these modification patterns with tracer-

outes. In order to increase the system’s performance, this dissertation also indicates

possible improvements in the current measurement methodology.

1.1 Contributions

Considering the specific ISP’s network topology, and the already implemented mea-

surement process, next is listed this dissertation’s main contributions.

• A data analytics procedure, that only uses the available end-to-end QoS mea-

1

surements, and traceroutes, to detect and localize network events.

• A list of possible improvements in the measurement methodology currently

employed by the startup, in order to enhance the proposed system’s perfor-

mance.

1.2 Dissertation Outline

Chapter 2 consists of a literature review, that describes three previous systems that

use end-to-end measurements to localize network events. To track statistical changes

in the time series, the current work deploys change point detection methods. Then,

Chapter 3 presents several of these algorithms, including the developed strategies to

better handle the end-to-end QoS data characteristics. In Chapter 4 is detailed the

measurement methodology and the proposed data analytics workflow. Chapter 5

presents several results when the proposed pipeline was applied to real data. Finally,

Chapter 6 concludes the work and points future directions.

The code developed to support this dissertation is available at https://

bitbucket.org/diegoximenes/master_thesis. Unfortunately, due to a Non-

Disclosure Agreement (NDA), the data used in this project can not be open sourced.

2

https://bitbucket.org/diegoximenes/master_thesis
https://bitbucket.org/diegoximenes/master_thesis

Chapter 2

Literature Review

This chapter briefly describes three projects, Argus [1], NetNorad [2], and Crowd-

sourcing Event Monitoring (CEM) [3], that use end-to-end QoS to identify and

localize events, or in some cases only faults, in computer networks.

These previous works share common approaches. For instance, Argus and Net-

Norad track the end-to-end QoS evolution over time of different end-hosts, and the

anomalies identified in these time series are interpreted as events. Anomalies are

defined as the time points when the data stream deviates from its standard. Be-

sides this similarity, considering that these projects where designed to be deployed

in different network architectures, they differ in several aspects, such as in the QoS

data collection, anomaly detection, and event localization procedures.

2.1 Argus

In [1] is presented Argus, a system to detect and localize problems in ISP’s networks.

To achieve this goal, Argus uses network global information, and also data passively

collected from the ISP’s viewpoint to infer end-to-end QoS, such as traffic to/from

end-users to estimate achievable download speed [4].

The system’s analytics pipeline is illustrated in Figure 2.1.

3

Figure 2.1: Argus’ pipeline. [1]

The analysis starts with the Spatial Aggregation procedure, in which end-users

are clustered into user-groups. Each user-group is characterized by a set of clients

that share some attributes, such as Autonomous System (AS) or Border Gateway

Protocol (BGP) prefix. The used features define the possible fault locations to be

inferred. Also, this step improves the system’s scalability, since avoids keeping track

the performance of all individual end-users. An example of a spatial aggregation is

depicted in Figure 2.2.

Figure 2.2: Argus’ spatial aggregation. [1]

The Temporal Aggregation phase determines how data from different clients

of an end-group are combined. For each user-group, the measurements samples

of all end-users are grouped in time-bins, and for each time-bin, a statistic, such

as median or mean, is selected. Each type of fault can be better tracked by a

specific statistic. As an example, the minimum of the Round Trip Times (RTTs)

can capture the physical propagation delay, while the average can be related with

network congestion. Argus uses median by default, since it was empirically verified

as an effective transformation to track network flaws, and also robust to individual

4

end-users variability caused by their local infrastructure.

The Event Detection procedure identifies anomalies in the time series obtained

in the Temporal Aggregation mechanism. Argus uses a Holt-Winters [5] variation.

Using spatial and events’ times correlations, the Event Localization step infer

fault locations. However, the detailed description of how this process is implemented

was not published.

Finally, the detected problems are sorted according with their significance, which

considers metrics obtained through the event detection algorithm, and also the num-

ber of affected customers.

Argus was evaluated using RTT measurements of a Content Delivery Network

(CDN) hosted in a tier-1 ISP. During one month, 2909 anomalous events were

detected. In general, lower level user-groups were more responsible for the events

than the higher level groups, and only a small fraction of the customers caused the

user-groups anomalies. Also, 90% of the events lasted for at most 1 hour, which was

the used time-bin granularity.

Although not investigated by the Argus’s authors, the fact that only a small num-

ber of clients are responsible for the user-groups events, is an indication that fault

localization can achieve higher precision with finer spatial aggregation granularity.

Besides, the system’s accuracy was not studied.

2.2 NetNorad

NetNorad [2] consists of a Facebook’s internal project to automate its network’s

faults analysis. Previous deployed techniques by Facebook exhibit several disadvan-

tages, for instance, human-driven investigation may take hours. Also, cases known

as gray failures, can’t be detected only collecting devices information through Simple

Network Management Protocol (SNMP), or command line interface. For example,

some equipments can’t report its own malfunctioning, or some problems can be

related with the global network structure.

Facebook’s network is structured hierarchically. At the lowest level there are

servers in racks, which are then organized in clusters. A set of clusters in the

same building, and attached to the same network, characterize a data center. Data

centers are grouped through a network that interconnects them within the same

region, and appends them to the Facebook’s global backbone. Figure 2.3 illustrates

this architecture.

5

Figure 2.3: Facebook’s network architecture. [2]

Unlike Argus, NetNorad uses active probing to assess loss and RTT statistics.

Facebook’s servers ping each other, in which a pinger sends User Datagram Protocol

(UDP) packets to responders, and the latter sends the packets back. The process

happens in turns. Each pinger sends packets to all targets, collects the responses,

and then repeats the procedure. A small number of pingers are placed in each

cluster, and the responders are deployed on all machines. All pingers share a target

list, which includes at least two machines of every rack.

As with Argus, NetNorad applies spatial aggregation techniques. The pingers

group the responses of machines that belong to the same cluster, and tags them

according with their relative location. Tags are defined by the following patterns:

“DC” if the target cluster is in the pinger’s data center; “Region” if the target cluster

is outside the pinger’s data center but within the same region; “Global” if the target

cluster is outside the pinger’s region.

With the tagging process, each cluster has three time series reflecting different

spatial viewpoints. To mitigate problems, these data streams are tracked through

distinct percentiles over 10 minutes intervals. For instance, a packet loss spike at

the 50th percentile means that probably there is a failure affecting the majority of

machines, while a peak at the 90th and not at 50th percentile can indicate a small

fraction of anomalous servers. For each combination of proximity tag and percentile,

it is defined two thresholds, one to trigger and another to clear an alarm.

Considering the three tags, if a high loss is detected in a cluster, then the fault

is probably located at the cluster’s data center. Also, if all clusters in a data cen-

ter identify a QoS degradation, then the fault is likely to be placed a layer above

the clusters. Although these simple inferences can reduce the set of possible fault

6

locations, they are unable to exactly isolate them. However, a Facebook tool called

fbtracert can improve this analysis, exploring multiple paths between two endpoints,

and checking the packet loss levels at every hop. Nonetheless, fbtracert exhibits sev-

eral limitations.

When automatic investigation is unable to find the failure, then there is a human

involvement to find it. A detailed accuracy analysis is not presented, however, the

infrastructure allows alarms to be raised about 30 seconds far from the network

events.

2.3 CEM

In [3] is proposed a framework called CEM, in which a monitoring software, that

runs inside or alongside applications, is placed at end-hosts, enabling the detection

of service level events within seconds or minutes.

In CEM, each end-host passively collects performance metrics related with a

specific service, such as a Video on Demand (VoD) application. To increase the

system’s scalability, each end-host identifies local problems by their own, and pushes

these information to a distributed storage to further analysis. The framework doesn’t

specify how events should be detected, however, they must be associated with service

level problems.

To spatially isolate network flaws, locally detected events, and spatial infor-

mation, are centrally correlated. The first subproblem of this step is to check if

concurrent events of different end-users are caused by a network fault. There are

several reasons to different hosts identify simultaneous events not caused by the

network. For instance, a high volume of requests in a web service can impact the

end-hosts’ service performance. Also, it is possible that simultaneous events oc-

cur only by chance, as an example, users can suffer signal interference on distinct

wireless routers. Therefore, through service specific dependencies, and the empir-

ical rate of simultaneous events, CEM provides a statistical model to determine if

concurrent problems are a coincidence. In this model, the confidence of a network

fault increases with the number of hosts that detect the event, and also with the

number of affected metrics. The detailed method indicating how to realize spatial

and temporal correlations to localize problems is not specified.

CEM was deployed and evaluated in a P2P system, using traces collected from

users of the Ono plugin in the Vuze BitTorrent client. The system’s output was

contrasted with ISPs’ public available reports. In general, CEM provides a high

level system abstraction, lacking several important deployment issues.

7

Chapter 3

Change Point Detection

A change point detection algorithm seeks to identify points in time where the sta-

tistical properties of a time series change. This problem has a broad application

in different knowledge areas, and in general, an algorithm’s performance is closely

related with the data characteristics. Further, if the latent information of the proce-

dures that generated the time series is missing, the target statistical properties can

be considered subjective, bringing difficulties not only in the detection phase, but

also in the problem formalization.

The choice of detecting events through change points was motivated during a

visual inspection of the time series. It was noticed that, statistical changes, such

as in the underlying distribution, persist for long time periods. In contrast, Argus

applies an anomaly detection procedure. The difference between these two problems

is subtle, and can be fuzzy in the literature. The anomaly detection assumes that

a standard pattern is already known or is identified by the procedure, then, the

goal is to find when the data stream deviates from its standard. The change point

detection only seeks for points where the statistical properties change, and doesn’t

take into consideration a standard time series behavior.

In this context, this chapter studies the problem and briefly discusses several

change point detection algorithms. The literature of this area is extensive, and

it is common to find methods that present a poor performance due to a variety of

reasons, such as being too specific to the application area, or because the mechanisms

were only analyzed through theoretical aspects. Therefore, it was selected a set

of techniques with a good level of theoretical formalism, and flexibility to adapt,

in order to handle specificities of the problem domain. Furthermore, this chapter

exposes several challenges when dealing with real network measurements data, and

some adopted solutions which are not described in the literature.

8

3.1 Problem Definition

The problem can be treated in an offline or online fashion. In the offline version,

to decide if a specific point at time t is a change point, the solver has available the

whole time series, including past and future information w.r.t. t. On the other hand,

in the online version, the information is available up to time t. The choice between

these options is defined by the application domain. In some cases data is processed

in real time, and change points should be detected as soon as possible. But in other

applications changes are identified by historical purposes, and offline algorithms can

be used.

It is intuitive that the offline case is more robust, since there is more information

to analyze. In practice, to increase the statistical confidence of a decision, the

online definition is relaxed, and to decide if a point is a change point, it is possible

to use data up to a small window in the future, which in real time processing means

that the application should wait until additional data is available. Hence, there

is a trade-off between minimizing the time to detect a change and maximize the

correct classification of a point. Therefore, in some cases, the online version can be

transformed in offline by minor modifications.

In this work it is considered the following input and change points attributes,

which were defined considering the final application scenario:

• Univariate time series. However, it is possible to extend several methods pre-

sented here to deal with multivariate data. This is an important feature since,

as is going to be presented in Chapter 4, the measurement software is able to

simultaneously collect more than one QoS metric.

• Unevenly spaced time series. As is going to be explained in Chapter 4, the QoS

data is not regularly sampled in time. However, in general, two consecutive

points are approximately 30 minutes apart.

• Unknown number of change points, since an arbitrary number of events can

occur in a specific time period.

• Different number of points between change points, since events can persist for

an arbitrary period of time.

• Focus on changes in the underlying mean and distribution, disregarding other

kinds of changes, such as in seasonality. As stated in [6], an ongoing chal-

lenge for the change point detection problem is to handle time series with

non-stationary segments. However, as it will be visually noticed through this

chapter, and as it was presented in [7], even without change points, the time

series used in this work are non-stationary.

9

• There is no latent information of the time series. Also, there isn’t a change

points’ ground truth. Therefore, it is only possible to use unsupervised change

point detection methods.

• Outliers are not considered statistical changes.

• It is considered the online and offline options.

3.2 Notation

An univariate time series composed of n points is defined by two vectors, x =

(x1, . . . , xn) and y = (y1, . . . , yn). The value yi indicates the i-th sampled value, and

xi indicates the associated sample time. It is assumed that the points are sorted

by time, that is, xi−1 < xi for i = 2, . . . , n. Since unevenly spaced time series is

considered, xi− xi−1 can be distinct for different i values. The following notation is

also adopted: ys:t = (ys, . . . , yt) for s ≤ t.

The presence of k change points implies that data is split into k + 1 segments,

also called windows. Let τi indicates the i-th change point for i = 1, . . . , k. Also

let τ0 = 0, τk+1 = n, and τ = (τ0, . . . , τk+1). Then, the i-th segment is defined by

yτi−1+1:τi , assuming that τi−1 < τi for i = 1, . . . , k + 1.

Through the previous definitions, change point detection algorithms mainly aim

to find both k and τ .

3.3 Preprocessing

To reduce noise and remove outliers, the time series are preprocessed before being

presented to a change point detection algorithm. Several filters were tested, such

as moving averages, sliding windows percentiles, z-score, wavelet thresholding [8],

optimal 1D clustering [9], and Savitzky-Golay filter [10]. Also, since several time

series exhibit a seasonal pattern, it was also considered the possibility of only using

the trend, or the trend + residual transformation, resulted from the STL decompo-

sition [11].

This chapter uses time series only filtered by a centered median sliding windows,

in which given a parameter w, yi is set to be the median of the raw samples with

indexes in [i−w, i+w]. The choice of this method among the others was guided by

two reasons. First, it was empirically verified its effectiveness in removing outliers.

Second, its simplicity allows to easily interpret the impact of its parameter, which

is an important feature to manually fine tune the procedure for the different QoS

metrics. Figures 3.1 and 3.2 show some examples of this preprocessing.

10

(a) (b)

Figure 3.1: Median filter RTT. w = 6. Plots with different scales.

(a) (b)

Figure 3.2: Median filter loss fraction. w = 2.

3.4 Sliding Windows

Sliding windows techniques use two sliding windows over the time series, and reduce

the problem of detecting change points, to the problem of testing whether data from

the segments were generated by different distributions. One approach is to consider

a distance metric between two empirical distributions as the base to infer the change

points. Letting d(a,b) to be the distance between two empirical distributions defined

by the windows a and b, and considering windows of length m, Algorithm 1 presents

a simple online sliding windows method [12].

11

Algorithm 1 Online Sliding Windows

1: i← 1

2: while i+ 2m− 1 ≤ n do

3: if d(yi:i+m−1,yi+m:i+2m−1) > α then

4: Report i+m− 1 as a change point

5: i← i+m

6: else

7: i← i+ 1

8: end if

9: end while

The distance function has a direct impact on the classification accuracy. There-

fore, several distance measures where tested, such as mean difference, relative mean

difference, Hellinger [13], Kolmogorov-Smirnov, and Earth Mover’s Distance [14].

Figure 3.3 is an example of the online sliding windows execution. The top plot

shows the RTT over time, and in the bottom plot, the (i,Di) point represents the

distance between yi−m:i−1 and yi:i+m−1. The red vertical line indicates a detected

change point, and the green horizontal line illustrates the used threshold α.

Figure 3.3: Online Sliding Windows.

It is possible to note that the detected change point is on the left of the correct

location. This occurred since the distance between the windows was still increasing

when reached the threshold. Therefore, for the offline version, it was defined that a

peak detection method is applied on the sliding windows distance time series. An

execution example is found in Figure 3.4.

12

Figure 3.4: Offline Sliding Windows.

As stated in [12], a performance improvement can be achieved concurrently ex-

ecuting the same sliding windows algorithm with different windows lengths. This

adaptation facilitates the detection of segments with distinct number of points.

3.5 Optimization Model

Given a fixed number of windows (segments), k, one approach is to define a cost

function that measures the homogeneity of a window, and therefore, choose the

change points that globally optimize this homogeneity. Let the cost of the i-th

segment be defined as C(yτi−1+1:τi), then the cost of a segmentation is the sum of

all segments costs.

A common choice for the function C is the Mean Squared Error (MSE), which

can capture changes in the mean. Another usual approach is to consider distribution

changes through negative maximum log-likelihood functions, considering that data

within a window is iid.

Therefore, given a fixed k, the optimal segmentation is obtained through the

following optimization problem, which is called the constrained case [15]:

min
τ1:k

k+1∑
i=1

C(yτi−1+1:τi) (3.1)

This problem can be solved using dynamic programming with O(kn2f(n)) time

complexity, where f(n) is a function of the cost to evaluate C. Several segment

cost functions can be evaluated in O(1) after a O(n) preprocessing phase, implying

an overall O(kn2) complexity. It is possible to prove that MSE, negative maximum

13

log-likelihood functions of normal, exponential, Poisson and binomial distributions

have this characteristic. Also, the formulation can consider a minimum value of a

window length.

Modeling segments with distributions can lead to practical difficulties. One of

them is the fact that segments can form degenerate distributions, that is, the data of

a window can have zero variance, which is always the case of unitary length windows.

In these scenarios, the negative maximum log-likelihood can be undefined. Although

this issue has not been addressed in the literature, this work followed two approaches

to overcome this situation. The first one tries to avoid degenerate segments adding

a white noise with small variance to the data stream. The second one considers that

the cost of any degenerate distribution is equal to a constant.

When the number of change points is unknown, an usual way is to introduce a

non decreasing penalty function g(k). Then, the new optimization problem, called

penalized case [15], is:

min
k,τ1:k

k+1∑
i=1

C(yτi−1+1:τi) + g(k) (3.2)

This problem can be solved in O(kn2f(n)). However, if the penalty function is

linear in k, the problem can be formulated more efficiently and solved in O(n2f(n)).

Also, there are several pruning algorithms to speedup the computation [15–17],

in general trying to reduce the τ search space but maintaining optimality.

When a negative maximum log-likelihood is used, the cost of a segment with

an outlier can be orders of magnitude greater than the cost of a window without

outliers. Therefore, in this case, the method is sensible to outliers.

Figure 3.5 presents two output examples.

14

(a) (b)

Figure 3.5: Optimization model.

3.6 HMM

The idea that each segment is associated with a specific latent configuration has

a direct interpretation to a Hidden Markov Model (HMM) model [18–20]. In this

context, each window is related to a hidden state of a HMM, and the observation

distribution of this state represents the distribution of that segment. Therefore, the

mechanism models the time series using a HMM, and through the hidden state path,

assesses the times when a transition between different hidden states occurs.

There are several approaches in the detection and training phases. For example,

given a trained HMM, the most likely hidden state path can be checked through

the Viterbi algorithm. Also, it is possible to evaluate the probability of a transition

between different hidden states at time t, and then apply a threshold and peak

detection methods, such as those in sliding windows techniques. For the training

step, it is possible to use several time series to train a single HMM, and then use

this model to detect change points in all time series. Another way is to train for

each data stream a single model using only the target time series.

It is important to note that the structure of the hidden state graph has a large

impact on the performance. Using a fully connected graph, the number of states

defines the maximum number of distribution configurations. Employing a left to

right structure, the number of hidden states will impact the maximum number of

segments.

In [20] is stated that when using a fully connected structure, the time interval

that a time series stays in the same hidden state is low, which may not reflect real

data. To overcome this problem, [20] suggests to increase the time that a time series

15

stands in the same hidden state using a Dirichlet prior regularization. However, it

was empirically verified that it is difficult to choose good hyperparameters for this

strategy. Instead, to surpass this issue, when using the best hidden state path, this

dissertation used a HMM as a filter, which acts as a dimensional reduction that

takes into consideration temporal patterns. In this scenario, the best hidden state

sequence is the input to a sliding windows method with a discrete Hellinger distance.

Figure 3.6 presents an execution using a fully connected HMM with observations

following a Normal distribution. The top plot is the median filtered time series,

which was used to train the HMM. The middle plot is the best hidden state path

of the previous time series, in which the vertical axis indicates the distribution of

each hidden state. The bottom plot is the discrete Hellinger distance of consecutive

segments resulted from applying the sliding windows method to the best hidden

state path.

Figure 3.6: HMM filter.

3.7 Bayesian Inference

There are several Bayesian methods which aim to assess the probability that a point

is a change point. Following an offline fashion, the work of [21] recursively calculates,

for each i, the probability of yi:n given a change point at i. With these probabilities

is possible to simulate the time of the first change point, and then, compute the

conditional distribution of the time of the second change given the first, and so on.

To achieve this, the mechanism assumes that observations are independents, and

16

that each segment is modeled by conjugate priors. Also, the procedure considers

priors to model the number of changes and the time between two consecutive change

points. The overall complexity of this method is quadratic in n.

In [22] it is also considered that parameters of different segments are indepen-

dents, and that data within a window is iid. However, through an online mode,

the procedure is concerned with the estimation of the distribution of the length of

the current time since the last change point, called run length, given the data so

far observed. To achieve this, the method assumes the probability of current run

length given the last run length as a prior. Assuming exponential-family likelihoods

to model a segment, the time complexity to process a point is linear in the number

of points already observed.

As with the previous procedures, in both cases is applied a peak detection algo-

rithm in the probability time series. Also, these methods can be sensible to outliers,

specially the online version. Furthermore, it was empirically noticed that, in gen-

eral, the probabilities are only non zero around the probability peaks. Figure 3.7

illustrates the bayesian inference algorithms executions.

(a) Offline. (b) Online.

Figure 3.7: Bayesian Inference.

3.8 Final Remarks

Despite not being explicitly approached, it is possible to observe through this chapter

that network measurements data has different patterns. In addition, the absence of

a change points dataset ground truth, turn the selection of the most appropriate set

of algorithms and hyperparameters a manual procedure.

In this context, the HMM and bayesian inference methods face a major dis-

advantage, since it was empirically verified that it is a challenging task to proper

17

choose their hyperparameters. The optimization model was the easier to manually

fine tune, in order to establish a single set of hyperparameters that could generalize

to different time series characteristics.

In Chapter 4 is discussed the issue relative to how to construct an events dataset.

18

Chapter 4

Methodology

This chapter describes the proposed data analytics workflow. The QoS data gath-

ering procedures are briefly presented, and the proposed methodology is compared

against those used in previous projects.

4.1 Measurement Environment

The time series used in this work result from end-to-end measures of a cable-

television infrastructure, which runs DOCSIS with asymmetric download and upload

bandwidths. A home gateway, connected to a cable modem, communicates with a

server strategically located by the ISP. Each server is responsible for measurements

of several end-users. Measurements are triggered from each home router every half

hour and, by the end of every day, the results are transferred to a database. The

measurement software was developed by the startup, and is spread over approxi-

mately two thousand customers of a major Brazilian tier-3 ISP.

To measure the round trip packet loss fraction, and the RTT, between the end-

user and the associated server, the home router sends a train of short UDP packets,

and the server bounces them back. The final RTT is the average of the individual

packets’ RTTs. The data here presented considers a train of 100 UDP packets of

32 bytes, separated by 1 millisecond. Maximum achievable upstream throughput is

measured by overflowing the upload links with parallel Transmission Control Proto-

col (TCP) data transfers from the home router to the server. Traceroutes from the

end-users to the respective servers are collected at 30 minutes intervals. The ping

packets used in this process is also used to infer RTT per hop. Traceroutes from

servers to end-users are not gathered. In [7] is presented a preliminary descriptive

investigation of these metrics.

The resulting time series are unevenly spaced due to several reasons. First, mea-

surements are initiated only if the residential link is not under use by the customer.

Also, the client may have no Internet connection to start a measurement, or the

19

home gateway may be turned off.

Other details about the measurement software are presented during the text, as

needed.

4.2 Proposed Workflow

This section describes, in a high level abstraction, the proposed workflow used to

detect network events and localize their cause. When necessary, some steps are

better explored in later sections.

The mechanism was motivated by an empirical visual investigation of the QoS

time series. Besides the statistical changes that persist for long time periods, it was

identified that clients with the same change point pattern, including the occurrence

time, usually share physical network equipments.

The analysis seeks for events during a specific time interval, in a single mea-

surement server, and considers a particular metric (round trip loss fraction, RTT,

or maximum achievable upstream throughput), which are specified as parameters.

A complete analysis can be accomplished through different executions with distinct

parameters. Figure 4.1 illustrates the process.

Figure 4.1: Pipeline.

The workflow starts with the End-Users Filtering step, which aims at removing

clients that can negatively affect the analysis. As an example, this work eliminates

clients with a small number of measurement samples.

The Change Point Detection phase preprocess the end-users’ time series and

identify change points for each time series. Also, the change points are classified

in three types of events: failure, improvement, or inconclusive. For the RTT and

round trip loss fraction, a change point defines a failure event if the average of the

window after this point is greater than the average of the preceding window. The

improvement event is analogous, however it is characterized by a mean decrease.

The inconclusive event means that the segments averages are within a given toler-

ance. The same reasoning is applied to maximum achievable upstream throughput,

however, a decrease means a failure, and a increase is related to an improvement.

20

The Spatial Correlation procedure clusterizes the end-users in user-groups ac-

cording with their position in the network. This clustering can then be used in

further steps to isolate possible events locations. This stage must produce a specific

grouping structure, which is detailed in Section 4.3.

The Time Correlation step aims at combining similar events of different end-

users. For example, if three clients detect a failure at approximately the same time,

then this information is identified at this step. The grouped end-users events of an

user-group are named as network events. The details of this method are enlightened

in Section 4.4.

Finally, to localize events’ causes, the Spatial-Time Correlation method matches

network events with the user-groups structure. This is better explained in Sec-

tion 4.5.

4.3 Spatial Correlation

This method provides the necessary information to determine which network equip-

ments are shared by end-users that perceive the same network event. The developed

strategies were guided by the specific ISP’s topology.

The server position relative to the client can be distinguished in two scenarios.

In the OFF-NET case, the traffic between them goes through a tier-2 ISP. In the

ON-NET case, the traffic doesn’t leave the tier-3 ISP’s infrastructure. The latter

situation represents a simpler Internet Protocol (IP) topology, since the tier-3 ISP

uses static routing and doesn’t applies load balancing nor Multi Protocol Label

Switching (MPLS), techniques that are usual in the tier-2 ISP’s network.

Then, considering measurements against a single server and the ON-NET case,

paths from end-users to the server form a hierarchically structured topology, which is

a required design for the Spatial-Time Correlation procedure 4.5. This work doesn’t

have access to the ISP’s routing tables, therefore, this structure is reconstructed

through traceroutes. In this context, each equipment that responds to traceroute

pings is used as an user-group. An user-group is formed by all end-users in which

traceroutes contain the associated network equipment.

The first hop of the traceroutes, which corresponds to the home gateway, is

removed from the analysis. Additionally, Cable Modem Termination Systems

(CMTSs) configured to answer traceroute pings are reported with private IP ad-

dresses, since they are located in the same subnetwork of the home router. Besides,

due to multiple network interfaces, these equipments can be related to different IP

addresses. Therefore, considering the lack of a private IP address to name mapping,

the CMTSs were also discarded.

In the OFF-NET case, due to the load balancing applied by the tier-2 ISP,

21

the traceroute reconstruction doesn’t lead in a hierarchical topology. Routers can

implement three types of load balancing policies [23]. The per destination load

balancing can be disregarded in the current analysis, since the target is always the

same. The per flow load balancing attempts to maintain packets from the same

flow in the same path. A flow is identified by header’s fields of IP packets. For

instance, a router can employ that packets with equal source/destination addresses,

protocol, and source/destination ports, belong to the same flow. The per packet

load balancing ensures that the load is equally distributed over the feasible output

links, deploying, for example, a round-robin strategy. However, the latter method

doesn’t make attempts to keep packets from the same flow in the same path.

For an end-user and server pair, the measurement software uses the same ports

over time to execute a specific measurement type, e.g., round trip loss fraction.

Hence, if routers only apply per flow load balancing, and considering a time period

without routing tables updates, and depending of which IP header’s fields are used

to define a flow, it is possible that all packets generated by a specific measurement

type traverse the same path. However, these are strong and unlikely assumptions.

Additionally, since the implemented traceroute also uses the same ports over time,

and considering that different measurements types use distinct ports, the path fol-

lowed by traceroute packets can be different from the path followed by the QoS

measurements packets. Then, in this scenario, even with static paths in the tier-2

ISP’s network, the correlation between traceroutes results with end-to-end metrics

can lead to wrong conclusions.

Therefore, this work assumes that the tier-2 ISP only applies per packet load

balancing, which is modeled here as a random strategy. With this hypothesis, if

two end-users are geographically near, then it is likely that their packets traverse

the same set of routers in the tier-2 network. This implies that if an event occurs in

a tier-2 router, it is not possible that only one of these clients perceives the event.

This is an important consequence explored in Section 4.5.

To handle the OFF-NET case, sequential hops related to the tier-2 ISP are

compressed to a single hop. As an example, the path (tier-3 Router 1, tier-2 Router

1, tier-2 Router 2, tier-3 Router 2, Server) is transformed to (tier-3 Router 1, tier-2,

tier-3 Router 2, Server). In general, this process conducts to a hierarchical topology.

The exception occurs when the tier-2 ISP has output connections to different routers

of the tier-3 ISP in the same network region. However, this is an unusual situation in

the current dataset, and therefore, was removed from the analysis. The distinction

between tier-3 and tier-2 hops is made through the investigation of hop names.

Figure 4.2 presents an example of the reconstructed topology. The equipments

were anonymised, and the edges were oriented from the end-users to the server.

22

Figure 4.2: User-groups structure.

In this oriented tree, the zero indegree vertices indicate equipments that only

appear as the first hop, however, an internal vertex can be a first hop in a traceroute.

Considering an arc (A, B), all users who belong to A also belong to B, but the inverse

is not necessarily true.

During the End-Users Filtering step, some clients are removed due to traceroute

inconsistencies [23]. As an example, there are cases in which the same equipment

appears in different hops of the same end-user traceroute. Also, the measurement

software limits the maximum number of hops, then, scenarios in which the traceroute

doesn’t reach the server are discarded. Since routing tables can be updated, after

the tier-2 vertices compression, it is only considered clients with static traceroutes

during the specified time period. Situations characterized by tier-2 routers that not

appear as consecutive elements in the traceroute are also deleted.

4.4 Time Correlation

The motivation of this mechanism is to infer network events that can explain end-

users events of an user-group.

There are two main reasons to erroneous detect the same network event, such

as an equipment failure, at distinct times in different clients. The first is related

to the fact that the time series are not regularly sampled. The second is due to

the change point detection algorithm behavior. Therefore, a procedure to group

end-users events based on their type and time, should be flexible enough to take

into consideration time delay effects. Also, it must be robust to deal with multiple

change points per time series.

In order to relax a change location, a detected change point is transformed into

an interval according to a time tolerance. Hence, given a parameter δ, a change point

identified at time t implies that there is a change point in the interval [t− δ, t+ δ].

To be consistent, change point algorithms must report points in time separated by

23

more than 2δ time units. In general, the algorithms presented in Chapter 3 can

be adapted to respect this restriction. However, this can also be achieved by the

following post processing step: considering that the points are sorted by time, and

sweeping points from left to right, if two points are at most 2δ time units apart,

then the right one is removed.

Consequently, the problem can be defined as selecting a set of network events,

that explain all end-users events. It is important to note that events are defined

only by their time and type. A client event is explained by a network event if they

have the same type, and the end-user event time is inside the network event time

interval. This problem has several possible solutions, and the comparison between

them is subjective.

To this goal, it was developed a heuristic inspired in the Inexact Voting in Totally

Ordered Space problem [24]. In this problem, people vote in a single point in the

real line. Also considering a δ parameter, the objective is to select the interval with

the greatest number of voters.

The created greedy procedure, called here as Multiple Inexact Voting in Totally

Ordered Space, is specified in Algorithm 2

Algorithm 2 Multiple Inexact Voting in Totally Ordered Space

1: Let l be the end-users events of a specific type.

2: while l is not empty do

3: Select the interval d with the greatest number of end-users events that belong

to l, and that all these events are at most 2δ apart. In case of ties, choose the

left most one.

4: Report the average time of the d extremes as the network event time.

5: Remove all end-users events from l that are in d.

6: end while

It is possible to note that, in each iteration the procedure solves an instance of

the Inexact Voting in Totally Ordered Space problem. The proposed algorithm is

executed three times in every user-group, one for each event type.

A more straightforward solution, that was not used in this work, is to create

regular time-bins, and interpret all end-users events that occur in the same bin as

a common network event. However, this strategy can introduce discontinuities. If

a network event occurs in the end/beginning of a time-bin, then it is likely that

different clients events, associated with this network event, are going to be located

in different bins.

If co-occurrent events of the same type affect the same end-users set, it is not

possible to distinguish them. Nonetheless, the chances of detecting different events

at the same time can be reduced by increasing the time series sampling frequency.

24

4.5 Spatial-Time Correlation

This section describes the steps that leads to matching network events from different

user-groups in order to define a set of feasible events locations.

It is not possible to determine if changes in round trip metrics, such as RTT, are

caused in the path from the end-user to the server or in the reverse path. There-

fore, correlate these metrics with the available traceroutes can lead to erroneous or

inconclusive conclusions. Also, the maximum achievable upstream throughput can

be affected by a service degradation on the path from the server to the end-user,

since losses of TCP ACKs can influence the measurement performance. Hence, this

work restricts to report possible events locations considering that they are caused

by equipments in the path from the end-user to the server.

With exception of the tier-2 user-group, the proposed mechanism assumes that

if an event occurs in an user-group, all traffic that goes through the corresponding

cluster is affected by the event. Since there is a direct connection between an user-

group and an unique network equipment, this is a reasonable assumption. It is also

assumed a hierarchical user-groups structure, and that there is at most one link

between two network equipments.

In the first reasoning part, cases with no tier-2 user-groups will be processed.

Also, traceroutes paths that do not start in a zero indegree vertex will be removed.

Additionally, co-occurrent events with the same type will be disregarded. Moreover,

it is assumed that the change point detection algorithm setup is able to detect

all end-users affected by a network event, or no end-user is identified. Later, the

mechanism will be expanded, and these restrictions will be removed. Unless stated

otherwise, in the rest of this section an unique network event during the period of

study is considered.

In order to better explain the proposed procedure, Figure 4.3 presents several

topologies and different network events. The gray vertices indicate a network event

that occurred in this location.

25

(a) (b) (c) (d)

Figure 4.3: Network event location examples.

The procedure starts analyzing zero indegree vertices. Suppose that only a

proper subset of the clients that belong to a zero indegree node perceive the event.

In this situation, it is possible to affirm that this vertex is not the cause of the event,

since not all clients detected it. For the same reason, the cause is not located in

posterior nodes in the path to server. Then, if this set’s size is larger than one,

these end-users must share a network equipment, which is the cause, that is located

before the first hop. As an example, this equipment can be a fiber node.

However, if all clients of the zero indegree vertex detect the event, then there are

three options: this vertex can be the cause, or these end-users share an equipment

before the first hop that explains the event, or the cause is located after the first

hop. Due to the lack of information about the topology below the IP layer, the first

two cases can’t be distinguished. Nonetheless, to check the latter scenario, the same

type of analysis is applied to the next vertex in the path to the server. If not all

clients of the second hop detected this event, then it is surely located in the first

hop or before. Otherwise, the procedure continues to the next hop.

When applied to different zero indegree vertices, this method results in possible

events locations that are prefixes of the paths to the server. Also, these prefixes

can be correlated. If different paths detect the same network event, then they must

share at least one equipment. The ones that are not common can be discarded from

the possible cause list, since there are end-users that don’t belong to them and still

perceive the event.

Additionally, it is possible to note that a failure in the directed link from a router

A to a router B is identified as a fault in A.

In Figure 4.3a, the analysis starting at vertex A results in the following feasible

event locations, {A, B, C, D}. The same reasoning using node E leads to {E, F,

C, D}. Correlating both results, the possible locations are {C, D}. Figure 4.3b

26

presents a scenario with the same conclusion.

In Figure 4.3c, the analysis made using the zero indegree vertices results in the

paths from them to the server. Matching the outcomes, the D vertex is the only

possible event location.

In Figure 4.3d, the reasoning through node G doesn’t detect the event. The

analysis in A finds {A, B, C}. Through node E, {E, F, C} is the result. Correlating

the outcomes, C is the only feasible event location.

The previous analysis can’t be fully applied in situations with the tier-2 user-

group. As an example, suppose two geographically distant end-users in an OFF-NET

case. The packets from these two users can go through completely different routers

in the tier-2 ISP. Then, it is possible that an event in the tier-2 ISP only affects

one of the users, which contradicts one of the assumptions. To overcome this issue,

when analyzing a path, if an event can be located in the previous hop of the tier-2

user-group, then the event can also be located at the tier-2 vertex, even considering

that not all end-users of this user-group perceive the event.

Now, consider paths that does not start in zero indegree vertices. After the

previous analysis, if all clients of the first hop user-group detect the event, then this

path was already treated. Otherwise, the end-users that detected the event share

an equipment before the first hop that is the cause.

The hypothesis that a change point detection algorithm setup is able to identify

all, or none, end-users affected by an event, is too strict. As an example, consider

two clients, one closer to the server than the other. If a failure in a router impacts

the RTT of both users, probably, the RTT of the client that is closest to this router

will suffer a larger relative variation than the other’s RTT. Therefore, instead of

checking if all users perceive the event, it is defined a threshold, and is verified if

the fraction of clients that detect the event is greater than this value.

If there are co-occurrent events with the same type, the complete procedure can

result in a wrong conclusion. Figure 4.4 illustrates this case.

27

Figure 4.4: Co-occurrent events.

Through node A, the feasible locations are {A, B, C, D}. Checking E, the

result is {E, F, C, D}. In vertex G, the outcome is {G, H, D}. The paths results

correlation leads to the location D, which is a mistake. Therefore, when considering

co-occurrent events with the same type, the step of matching the conclusions of

different paths must not be applied, and the union of these results should be the

final answer.

4.6 Change Point Detection Issues

As stated in Chapter 3, one of the main issues to be dealt with in this work is to

select the proper algorithms and parameters. In general, this process requires a

dataset to allow evaluation of the algorithm chosen and its related parameters.

There are several approaches to construct a change points dataset in the lit-

erature. Some works create simulated time series, in which distinct segments are

sampled by the same generative model with different parameters [25]. In general,

this type of data is more easily handled by change point detection algorithms, since

some methods assume the same models used in the dataset building process. Also,

real data can have complex characteristics that are difficult to be reproduced by gen-

erative models. Another strategy is to join segments from different real time series

with different characteristics [20]. However, this can introduce unrealistic change

points scenarios. Since one of the goals of this work is to deal directly with real

data, this approach was discarded.

When the latent information of the time series are available, and if there is a

complete knowledge of what configurations changes in the latent state impact data,

it is possible to check the change points only analyzing this underlying information.

As an example, consider a time series that represents the cardiac frequency of a

28

soccer player during a match. Also, consider that, in this controlled environment,

the only causes of changes in the cardiac frequency are the variations of physical

activities, such as starting or stopping to run. Therefore, it is possible to use the

times in which a player changed his movement behavior as the change points, without

even analyzing the time series. However, in the application domain of the present

work, this approach is impractical. First, it would be necessary to know the network

topology, routers congestion, physical equipment problems, among other features,

and how they affect the different end-to-end QoS metrics. Second, this kind of

information is absent in the dataset, and would be too complex to collect it.

Another way is to use visual annotations, as it was done in [26]. Manual labeling

has been used for anomaly identification in Internet traffic traces [27]. In this strat-

egy, an application domain expert is exposed to a time series, and visually indicates

his opinion about the change points locations.

It is known that visual inspection methods can bring erroneous conclusions [28],

and also amplify subjectivity. However, to better understand the problem, this

approach was experimented in this work.

Through a web system a user freely marked the change points with a mouse.

The fact that data is not regularly sampled in time could bring an unwanted visual

change perception. Therefore, the X axis of the displayed time series represented

only the temporal order of the measures. The user had visual access to the loss

fraction time series with 10 days of data. Also, the selected series had at least 85%

of the maximum possible number of points during the specified period, considering

that data is sampled at most twice per hour. Change points can be interpreted as

rare events in this dataset, and several data streams have almost all measures with

zero losses. Therefore, to increase the entropy, it was selected time series that had

at least one window of length 48 with more than 5 measures with loss fraction larger

than 0.01.

Additionally, it was provided a set of tips to the specialist:

• In the case of packet loss fraction, mean changes between 0 and 0.1 are more

sensible to the end users.

• The time axis only represents the temporal order of the measurements. How-

ever, in general, consecutive points in time axis are separated by 30 minutes.

• Outlier is not a statistical change. An outlier is an observation that lies outside

the overall pattern of a distribution.

Figure 4.5 presents a system snapshot. The vertical red line means that the user

marked a change point in that position.

29

Figure 4.5: Survey system snapshot.

Six specialists with experience in network measurements and statistical modeling,

but without background in change point detection, classified 71 time series. To

analyze the agreement between different users classifications, for each time series,

was applied the Time Correlation procedure 4.4. Therefore, it was considered that

each specialist voted to a set of change points positions. The δ parameter described

in Section 4.4 was set to 7.

Then, for each change point voted at least once, it was counted the number

of specialists that voted in that location. Figure 4.6 shows the histogram of this

counting.

Figure 4.6: Number of votes per change point histogram.

It is possible to note that, 44% of the change points were only voted by a single

30

user, and only 23% were voted by the majority (more than 3 votes). Therefore, in

general, the consensus of change point locations is low.

Figure 4.7 shows the classifications obtained from this experiment in one of the

time series that had a high level of agreement on the change points locations.

(a) Specialist 1 (b) Specialist 2

(c) Specialist 3 (d) Specialist 4

(e) Specialist 5 (f) Specialist 6

Figure 4.7: Classifications agreements.

Figure 4.8 shows a time series with several disagreements. It was verified that

31

this case is the most representative in the constructed dataset, fact that corroborates

with the problem subjectiveness.

(a) Specialist 1 (b) Specialist 2

(c) Specialist 3 (d) Specialist 4

(e) Specialist 5 (f) Specialist 6

Figure 4.8: Classifications disagreements.

Also, it is possible to note that some users apparently changed their classification

pattern in the same time series. As an example, Figure 4.9 presents two specialists

that fits this description. Also, in general, users changed their classification pattern

32

in different time series.

(a) Specialist 1 (b) Specialist 6

Figure 4.9: Different classification pattern in the same time series.

Since this initial experiment resulted in a noisy dataset, in which change points

probably don’t reflect real network events, this strategy was aborted. Also, it would

be difficult to scale the study to include more specialists and time series.

It is important to note that the algorithms described in Chapter 3 are unsuper-

vised methods. Once a change point dataset is constructed, it is possible to apply

supervised learning procedures, which are not much explored in the change point

detection literature.

4.7 Differences from Previous Work

The proposed data analytics architecture has several similarities with the projects

described in Chapter 2.

As with Argus and NetNorad, this work clusters end-users in user-groups, how-

ever with finer topology granularity. Also, to increase the system’s scalability, Net-

Norad and Argus use this grouping to reduce the number of tracked time series.

This strategy was not applied in this work, since the finer granularity requires more

time series to be spread in different network locations, and the number of tracked

end-users tracked by the measurement software is low.

Additionally, beyond the network edge point of view, Argus and NetNorad uses

some internal network information, which is absent in the present work. Besides,

Argus uses anomaly detection, while this work deploys change point detection.

33

Chapter 5

Results

As stated in Chapter 4, due to the absence of an events dataset, it is not possible

to extensively study the accuracy of the proposed procedure. However, this chapter

presents illustrative examples when the proposed workflow was applied to real data.

It was considered 7 months of measurements, from May to November 2016.

This data was then split in batches of 10 days, and for each batch, a complete

offline analysis was executed. During this time period the measurement software

was deployed in 35 servers, and the mean number of client-server pairs, such that

at least one measurement between them occurred during a batch, was 2246. After

the End-Users Filtering step 4.2, this average reduced to 741. In general, one client

measured against a single server through the batch.

For all cases, the time series were preprocessed with a median filter. The change

points were detected through the optimization model described in Chapter 3. For

each QoS metric, the algorithms’ hyperparameters were manually selected. It was

opted to use conservative values, in order to avoid change points that, through a

visual inspection, may be arguably not related to a network event. These algorithms

choices were guided by two facts. First, through an empirical visual analysis, it

was verified their reasonable performance with real data. Also, the impact of their

hyperparameters can be easily interpreted, which is an important feature for manual

tuning.

The fraction of clients threshold, used to check if an event can be located in a

vertex, was set to 0.75. The δ parameter, used to verify if two change points are

close, was set to 4 hours. It was disconsidered the presence of co-occurrent events

of the same type in the same network region.

Section 5.1 presents examples with potential correct outcomes, and Section 5.2

exposes cases with possible wrong results. These conclusions were manually corrob-

orated with a visual check.

34

5.1 Possible Correct Outcomes

Figure 5.1 shows a proper subset of clients that belong to a specific user-group,

modeled by a zero indegree vertex.

(a) Client 1. (b) Client 2.

Figure 5.1: Before first hop.

From the 4 clients that belong to this user-group, the system detected the illus-

trated events only in these 2 customers. Then, considering the established supposi-

tions, these clients must share a physical equipment before the first hop that caused

the events.

Figure 5.2a shows a client with a specific network event, and Figure 5.2b presents

the user-group structure in which this customer belong. The vertices are defined by

a tuple, in which the first entry is a label to the user-group, and the second specifies

the fraction of clients that detected the considered event. The gray vertices represent

possible locations resulted from the analysis starting in zero indegree user-groups.

The blue vertex indicates the correlation between these results.

(a) Client 1. (b) User-groups structure.

Figure 5.2: Correlation of problem locations detected by analysis that started in
zero indegree vertices.

35

It was visually verified that the same change point pattern of Figure 5.2a is

present in all clients that belong to the subtree rooted in the tier-2 vertex. Therefore,

the system incorrectly did not detect the event in one of the D user-group clients.

However, since several other G children detected the event, the system’s output

was not compromised by this error. Through the correlation of the zero indegree

analysis, the only match between the problem locations was the tier-2 group.

Figure 5.3 presents an example of a network event that was only identified in

one zero indegree user-group.

(a) Client 1. (b) User-groups structure.

Figure 5.3: Network event in only one zero indegree user-group.

Table 5.1 summarizes the number of events, discriminating per metric and type

(“Improvement” or “Failure”). The system didn’t detect inconclusive events.

Metric

Events

Improvement Failure

RTT 1520 1532

Round trip loss fraction 310 262

Maximum achievable upstream throughput 730 641

Table 5.1: Number of events.

5.2 Possible Incorrect Outcomes

Figure 5.4 shows two clients that belong to the same zero indegree user-group.

36

(a) Client 1. (b) Client 2.

Figure 5.4: Time correlation unmatch.

Visually, both time series have similar patterns. However, in the left client, the

change point was detected near the end of 05/07/16 day, while in the right customer,

the change was identified in the beginning of the same day. All 17 clients of this

zero indegree vertex belong to one of these two cases. Considering the used δ value,

the system recognized two different events, nonetheless, these changes are possibly

related to a single event. This exemplifies the problem difficulty when there isn’t a

ground truth, and also the importance of the algorithms and their hyperparameters

selection. Such kind of subjectivity is common in the current dataset.

Figure 5.5 shows two clients that belong to the same zero indegree vertex.

(a) Client 1. (b) Client 2.

Figure 5.5: Untraceable location. Plots with different scales.

It is possible to note that both RTT time series changed their pattern nearly

at the same time, however, one case is characterized by an improvement, while the

other as a failure. The traffic between these customers and the server doesn’t go

to through the tier-2 ISP, therefore, according to the assumptions, these patterns

37

indicate simultaneous events that occurred at different equipments before the first

hop. Nonetheless, the system detected the same RTT modifications, at the end

of 06/02/16, in several other clients. Comparing these customers, it was verified

that many of them don’t share several attributes. For instance, they executed mea-

surements against different servers, including both ON-NET and OFF-NET cases,

their upstream traffic went to completely different IP layer equipments, and they

were located at different Brazilian states. This can indicate a single global network

event, that simultaneously affected different network regions. As an example, the

event could be a centralized change of DOCSIS’ parameters, that is concurrently

propagated to all customers. As with local events, this work doesn’t have access to

this kind of information, however, it is intriguing the fact that some of the clients

detected a failure while others perceived an improvement. It was manually identified

3 of such cases, and the RTT was the only impacted metric. These cases possibly

explain why RTT events are considerably more frequent than events of other metrics

(see Table 5.1), since several identified events would be related to a single real event.

Motivated by the previous example, next is presented an analysis of the RTT per

hop, which is obtained through the traceroute measurements. However, this inves-

tigation can be fairly different from the analysis of the end-to-end RTT measures.

First, their methodologies are remarkably distinct. Second, the RTT associated

with hop i can be constantly and considerably larger then the RTT related to a

hop j, where j > i. This can be explained by the fact that some routers prioritize

forwarding instead of answering ping packets. Therefore, the analysis of this data

was not included in the framework. For instance, Figure 5.6 presents the RTT per

hop, disregarding the server hop, of the client of Figure 5.5a.

38

(a) Hop 1 (b) Hop 2

(c) Hop 3 (d) Hop 4

Figure 5.6: RTT per hop of client of Figure 5.5a. Plots with different scales.

It is not possible to visually identify the same change pattern of Figure 5.5a in

the hops analysis. Figure 5.7 is analogous, however, related to client of Figure 5.5b.

39

(a) Hop 1 (b) Hop 2

(c) Hop 3 (d) Hop 4

Figure 5.7: RTT per hop of client of Figure 5.5b. Plots with different scales.

In this case, it can be noticed that the RTT is larger in the beginning of the first

hop time series. This same pattern was detected in the RTT between the client and

the server.

5.3 Final Remarks

Various events related to the maximum achievable upstream throughput consist of

a substantial mean increase perceived by a single client, as is exemplified in Fig-

ure 5.8. Possibly, this type of event indicates a change in the customer’s contracted

bandwidth.

40

Figure 5.8: Possible contract bandwidth change.

Several problem locations are supported by a change point detected in a single

client. Figure 5.9 exhibits an example.

(a) Client 1. (b) User-groups structure.

Figure 5.9: Clients sparsity.

It is not possible to exactly locate the event, since the three gray vertices are

composed by the same end-user. This can be avoided with an appropriate selection

of the tracked customers.

41

Chapter 6

Conclusions

Considering the specific ISP’s topology, and the current end-to-end measurement

methodology, this dissertation proposes a data analytics framework to detect and

localize network events. For such purpose, the mechanism tracks statistical changes

in the end-to-end QoS time series from different clients, and correlates these patterns

with traceroutes. Finally, several outcomes were presented when the procedure was

applied to real data.

The results show that, considering the exposed restrictions, it is possible to use

only end-to-end QoS metrics, and traceroutes, from different clients, to identify and

localize network events. However, due to the lack of an events dataset ground truth,

important questions persist unanswered. For instance, a quantitative accuracy study

would allow to check which types of events can’t be handled by the proposed mech-

anism. A dataset would also allow a precise analysis of the events patterns, how

they impact the QoS metrics, and fine tune the system.

The use of end-to-end measurements has the advantage of dealing with metrics

that are directly related with the service perceived by the customers. As an example,

this feature can be used to rank simultaneous failure events according with their

impact to the end-users. Nonetheless, would be interesting to study the impact of

introducing internal network information to the framework.

Besides the data availability, the current measurement process imposed several

restrictions to this work. In order to better explore the proposed solution, a further

continuation of this project would require a stronger partnership with the ISP. In

addition, in order to improve the proposed framework’s performance, it would be

desirable to adapt the measurement software. However, this dissertation can be

used as a first guide to the ISP’s engineers.

6.1 Contributions

Next is summarized this dissertation contributions.

42

• An automatic procedure, that only uses the available end-to-end QoS measure-

ments, and traceroutes, to detect and localize network events in the specific

tier-3 ISP’s infrastructure.

• A list of possible improvements in the measurement methodology currently

employed by the startup, in order to enhance the proposed system’s perfor-

mance. This list is presented in the next Section 6.2.

6.2 Future Work

Next is presented a list of future development directions of this work. Considering

the detection and localization of events, several adaptations to the current measure-

ment methodology are suggested.

• The used QoS metrics are affected by equipments in the path from the server

to the end-user, as well as those in the reverse direction. However, only the

path information from end-users to servers are available. Hence, the tracer-

outes from servers to end-users should also be collected. Besides, instead of

only considering the round trip loss information, the one way loss fraction in

both directions can be tracked. Further, the maximum achievable one way

throughput measurement can be implemented using UDP instead of TCP,

which eliminates the interference of performance degradation in the reverse

path.

• The Hybrid Fibre Coaxial (HFC) plant between the home router and the first

hop of the traceroute can be incorporated to the analysis. Also, in addition to

only using end-to-end QoS metrics, the proposed mechanism can be extended

to use internal network devices information, such as signal-to-noise ratio.

• A network failure events dataset can be built with ISP’s data. As an exam-

ple, customers’ complaints gathered from call centers can be used to, during

a specific time period, infer clients affected by a Quality of Experience (QoE)

deterioration, which can then be translated to true network failures. Addi-

tionally, it is possible to use records from current failure detection methods

deployed by the ISP, such as manual inspection, or through equipments that

are able to report specific faults. However, through preliminary talks with

ISP’s engineers, both databases are noisy, and mining useful information from

them can be a challenging task. For instance, there are cases in which de-

vices flaws are manually detected and corrected, but those information is not

stored. Also, during the dataset construction, the inferred events times can

be considerably different from their true occurrence time. Besides, since the

43

tier-2 ISP is not a project partner, this complete data of the network infras-

tructure may not be available. As stated in Chapter 4, a dataset could open

new supervised learning possibilities to the change point detection problem,

such as hyperparameter optimization and model selection. In this context,

Recurrent Neural Networks can be useful to handle non-stationary segments

and unevenly spaced time series.

• Once a network events dataset is constructed, the correlation between change

points of different QoS metrics can reveal useful information about the network

behavior. This analysis was not done since the algorithms’ hyperparameters

couldn’t be optimized, hence, these comparisons could reach wrong conclu-

sions.

• A deeper knowledge of the tier-2 ISP’s infrastructure can be used to model

the tier-2 network with finer granularity in the Spatial Correlation procedure,

which can improve the system’s event localization precision.

• It is planned in the ISP’s roadmap to increase the number of tracked customers.

In this case, the system’s computational performance can benefit from data

aggregation techniques, as it was done in Argus. Besides, this increase will

naturally improve the internal network equipments coverage by the end-to-end

measurements, which, as the previous topic, can enhance the events localiza-

tion precision.

• Once the system is deployed, the algorithms and parameters can be selected

through a reinforcement learning approach. If network operators feedback the

outcomes’ correctness, the system can adaptively optimize the used strategies.

• Considering a real time processing environment, in order to decrease the event

detection delay, the system can adaptively control the measurement frequency.

Increasing the amount of data related to potentially problematic regions, can

improve the system’s output confidence in a short time period. Also, it is

possible to reduce the measurement frequency in well behaved localities, which

can lower the traffic overhead generated by measurements, and increase the

data analytics computational performance.

• Instead of centrally process the time series, it is possible to instrument the

home gateways to detect changes in an online fashion. Then, as with CEM,

the home routers could push this information to a central database for further

analysis.

• Extend the mechanism to deal with other types of network infrastructures.

44

Bibliography

[1] YAN, H., FLAVEL, A., GE, Z., et al. “Argus: End-to-end service anomaly de-

tection and localization from an ISP’s point of view”. In: 2012 Proceedings

IEEE INFOCOM, pp. 2756–2760, March 2012. doi: 10.1109/INFCOM.

2012.6195694.

[2] ADAMS, A., LAPUKHOV, P., ZENG, J. H. “NetNORAD:

Troubleshooting networks via end-to-end probing”. 2016.

https://code.facebook.com/posts/1534350660228025/

netnorad-troubleshooting-networks-via-end-to-end-probing/.

[3] CHOFFNES, D. R., BUSTAMANTE, F. E., GE, Z. “Crowdsourcing Service-

level Network Event Monitoring”, SIGCOMM Comput. Commun. Rev.,

v. 40, n. 4, pp. 387–398, ago. 2010. ISSN: 0146-4833. doi: 10.1145/

1851275.1851228.

[4] GERBER, A., PANG, J., SPATSCHECK, O., et al. “Speed Testing Without

Speed Tests: Estimating Achievable Download Speed from Passive Mea-

surements”. In: Proceedings of the 10th ACM SIGCOMM Conference on

Internet Measurement, IMC ’10, pp. 424–430, New York, NY, USA, 2010.

ACM. ISBN: 978-1-4503-0483-2. doi: 10.1145/1879141.1879196.

[5] CHATFIELD, C., YAR, M. “Holt-Winters forecasting: some practical issues”,

The Statistician, pp. 129–140, 1988.

[6] AMINIKHANGHAHI, S., COOK, D. J. “A survey of methods for time series

change point detection”, Knowledge and Information Systems, pp. 1–29,

2016.

[7] MENDES, D. X., SENGES, G. D. S., SANTOS, G. H. A. D., et al. “A Prelimi-

nary Performance Measurement Study of Residential Broadband Services

in Brazil”. In: Proceedings of the 2016 Workshop on Fostering Latin-

American Research in Data Communication Networks, LANCOMM ’16,

pp. 16–18, New York, NY, USA, 2016. ACM. ISBN: 978-1-4503-4426-5.

doi: 2940116.2940135.

45

https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-probing/

[8] GRAPS, A. “An introduction to wavelets”, IEEE computational science and

engineering, v. 2, n. 2, pp. 50–61, 1995.

[9] WANG, H., SONG, M. “Ckmeans. 1d. dp: optimal k-means clustering in one

dimension by dynamic programming”, The R Journal, v. 3, n. 2, pp. 29–

33, 2011.

[10] WIKIPEDIA. “SavitzkyGolay filter”. 2016. https://en.wikipedia.org/

wiki/Savitzky-Golay_filter.

[11] CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, J. E., et al. “STL:

A seasonal-trend decomposition procedure based on loess”, Journal of

Official Statistics, v. 6, n. 1, pp. 3–73, 1990.

[12] KIFER, D., BEN-DAVID, S., GEHRKE, J. “Detecting Change in Data

Streams”. In: Proceedings of the Thirtieth International Conference on

Very Large Data Bases - Volume 30, VLDB ’04, pp. 180–191. VLDB En-

dowment, 2004. ISBN: 0-12-088469-0.

[13] WIKIPEDIA. “Hellinger distance”. 2016. https://en.wikipedia.org/wiki/

Hellinger_distance/.

[14] RUBNER, Y., TOMASI, C., GUIBAS, L. J. “The earth mover’s distance as

a metric for image retrieval”, International journal of computer vision,

v. 40, n. 2, pp. 99–121, 2000.

[15] MAIDSTONE, R., HOCKING, T., RIGAILL, G., et al. “On optimal multiple

changepoint algorithms for large data”, Statistics and Computing, pp. 1–

15, 2016.

[16] KILLICK, R., FEARNHEAD, P., ECKLEY, I. “Optimal detection of change-

points with a linear computational cost”, Journal of the American Statis-

tical Association, v. 107, n. 500, pp. 1590–1598, 2012.

[17] HAYNES, K., ECKLEY, I. A., FEARNHEAD, P. “Computationally Ef-

ficient Changepoint Detection for a Range of Penalties”, Journal of

Computational and Graphical Statistics, v. 0, n. ja, pp. 1–28, 0. doi:

10.1080/10618600.2015.1116445.

[18] KEHAGIAS, A. “A hidden Markov model segmentation procedure for hydro-

logical and environmental time series”, Stochastic Environmental Research

and Risk Assessment, v. 18, n. 2, pp. 117–130, 2004. ISSN: 1436-3259.

doi: 10.1007/s00477-003-0145-5.

46

https://en.wikipedia.org/wiki/Savitzky-Golay_filter
https://en.wikipedia.org/wiki/Savitzky-Golay_filter
https://en.wikipedia.org/wiki/Hellinger_distance/
https://en.wikipedia.org/wiki/Hellinger_distance/

[19] LUONG, T. M., ROZENHOLC, Y., NUEL, G. “Fast estimation of poste-

rior probabilities in change-point analysis through a constrained hidden

Markov model”, Computational Statistics and Data Analysis, v. 68,

pp. 129 – 140, 2013. ISSN: 0167-9473. doi: http://dx.doi.org/10.1016/j.

csda.2013.06.020.

[20] MONTAÑEZ, G. D., AMIZADEH, S., LAPTEV, N. “Inertial Hidden Markov

Models: Modeling Change in Multivariate Time Series”. In: Proceed-

ings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,

AAAI’15, pp. 1819–1825. AAAI Press, 2015. ISBN: 0-262-51129-0.

[21] FEARNHEAD, P. “Exact and efficient Bayesian inference for multiple change-

point problems”, Statistics and Computing, v. 16, n. 2, pp. 203–213, 2006.

doi: 10.1007/s11222-006-8450-8.

[22] ADAMS, R. P., MACKAY, D. J. “Bayesian online changepoint detection”,

arXiv preprint arXiv:0710.3742, 2007.

[23] AUGUSTIN, B., CUVELLIER, X., ORGOGOZO, B., et al. “Avoiding tracer-

oute anomalies with Paris traceroute”. In: Proceedings of the 6th ACM

SIGCOMM conference on Internet measurement, pp. 153–158. ACM,

2006.

[24] PARHAMI, B. “Voting algorithms”, IEEE transactions on reliability, v. 43,

n. 4, pp. 617–629, 1994.

[25] LIU, S., YAMADA, M., COLLIER, N., et al. “Change-point detection in time-

series data by relative density-ratio estimation”, Neural Networks, v. 43,

pp. 72 – 83, 2013. ISSN: 0893-6080. doi: http://dx.doi.org/10.1016/j.

neunet.2013.01.012.

[26] HOCKING, T., RIGAILL, G., PHILIPPE VERT, J., et al. “Learning Sparse

Penalties for Change-point Detection using Max Margin Interval Regres-

sion”. In: Dasgupta, S., Mcallester, D. (Eds.), Proceedings of the 30th

International Conference on Machine Learning (ICML-13), v. 28, pp.

172–180. JMLR Workshop and Conference Proceedings, maio 2013.

[27] RINGBERG, H., SOULE, A., REXFORD, J. “Webclass: adding rigor to man-

ual labeling of traffic anomalies”, ACM SIGCOMM Computer Communi-

cation Review, v. 38, n. 1, pp. 35–38, 2008.

[28] JAMES, N. A., KEJARIWAL, A., MATTESON, D. S. “Leveraging Cloud

Data to Mitigate User Experience from” Breaking Bad””, arXiv preprint

arXiv:1411.7955, 2014.

47

[29] MAHIMKAR, A., YATES, J., ZHANG, Y., et al. “Troubleshooting Chronic

Conditions in Large IP Networks”. In: Proceedings of the 2008 ACM

CoNEXT Conference, CoNEXT ’08, pp. 2:1–2:12, New York, NY, USA,

2008. ACM. ISBN: 978-1-60558-210-8. doi: 10.1145/1544012.1544014.

[30] AUGER, I. E., LAWRENCE, C. E. “Algorithms for the optimal identification

of segment neighborhoods”, Bulletin of Mathematical Biology, v. 51, n. 1,

pp. 39–54, 1989. ISSN: 1522-9602. doi: 10.1007/BF02458835.

48

	List of Figures
	List of Tables
	Introduction
	Contributions
	Dissertation Outline

	Literature Review
	Argus
	NetNorad
	CEM

	Change Point Detection
	Problem Definition
	Notation
	Preprocessing
	Sliding Windows
	Optimization Model
	HMM
	Bayesian Inference
	Final Remarks

	Methodology
	Measurement Environment
	Proposed Workflow
	Spatial Correlation
	Time Correlation
	Spatial-Time Correlation
	Change Point Detection Issues
	Differences from Previous Work

	Results
	Possible Correct Outcomes
	Possible Incorrect Outcomes
	Final Remarks

	Conclusions
	Contributions
	Future Work

	Bibliography

