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DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
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SIMULAÇÃO E MAPEAMENTO SUBAQUÁTICO POR SONARES IMAGING,

ATRAVÉS DA TEORIA DE RAIOS E HILBERT MAPS

Eduardo Elael de Melo Soares

Março/2017

Orientador: Ramon Romankevicius Costa

Programa: Engenharia Elétrica

O mapeamento, às vezes como parte de um sistema SLAM, é um tema de pesquisa

ativo e tem soluções notáveis usando scanners a laser, mas a maioria do mapeamento

subaquático é focada em mapas 2D, que tratam o ambiente como uma planta, ou

mapas 2.5D do fundo do mar.

A razão para a dificuldade do mapeamento subaquático origina-se no seu sensor,

i.e. sonares. Em contraste com lasers (LIDARs), os sonares são sensores imprecisos

e com alto ńıvel de rúıdo. Além do seu rúıdo, os sonares do tipo imaging têm um

feixe sonoro muito amplo e, com isso, efetuam uma medição volumétrica, ou seja,

sobre todo um volume.

Na primeira parte dessa dissertação se desenvolve um simulador para sonares do

tipo imaging de feixo único de alta freqüência capaz de replicar os efeitos t́ıpicos

de multicaminho, ganho direcional e rúıdo de fundo em ambientes arbitrários. O

simulador implementa um método baseado na teoria geométrica de raios, com todo

seu desenvolvimento partindo da acústica subaquática.

Na segunda parte dessa dissertação, o simulador é incorporado em um algoritmo

de reconstrução de mapas cont́ınuos baseado em Hilbert Maps. Hilbert Maps surge

como uma técnica de aprendizado de máquina sobre espaços de Hilbert, usando

mapas de caracteŕısticas, aplicadas ao contexto de mapeamento. A incorporação de

uma resposta de sonar em um tal mapa é uma contribuição desse trabalho.

Uma comparação qualitativa entre o ambiente de referência fornecido ao simu-

lador e o mapa reconstrúıdo pela técnica proposta, revela Hilbert Maps como uma

técnica promissora para mapeamento atráves de sensores ruidosos e, também, aponta

para algumas caracteŕısticas do ambiente dif́ıceis de se distinguir, e.g. cantos e

regiões não suaves.
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Mapping, sometimes as part of a SLAM system, is an active topic of research and

has remarkable solutions using laser scanners, but most of the underwater mapping

is focused on 2D maps, treating the environment as a floor plant, or on 2.5D maps

of the seafloor.

The reason for the problematic of underwater mapping originates in its sensor,

i.e. sonars. In contrast to lasers (LIDARs), sonars are unprecise high-noise sensors.

Besides its noise, imaging sonars have a wide sound beam effectuating a volumetric

measurement.

The first part of this dissertation develops an underwater simulator for high-

frequency single-beam imaging sonars capable of replicating multipath, directional

gain and typical noise effects on arbitrary environments. The simulation relies on

a ray theory based method and explanations of how this theory follows from first

principles under short-wavelegnth assumption are provided.

In the second part of this dissertation, the simulator is combined to a continous

map algorithm based on Hilbert Maps. Hilbert maps arise as a machine learning

technique over Hilbert spaces, using features maps, applied to the mapping context.

The embedding of a sonar response in such a map is a contribution.

A qualitative comparison between the simulator ground truth and the recon-

stucted map reveal Hilbert maps as a promising technique to noisy sensor mapping

and, also, indicates some hard to distinguish characteristics of the surroundings, e.g.

corners and non smooth features.
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Chapter 1

Introduction

Underwater mapping and simulation are dual processes; while the latter produce

sonar responses for a given environment, the former use these responses to infer the

surroundings. As such, simulation is a flexible way of generating data with a known

ground truth to test a mapping algorithm. However, to achieve a correct underwater

simulation algorithm, simplifying assumptions on sound physics and environmental

characteristics are necessary, as well as a definition of the sonar type being modeled.

Profilings and imaging sonars are two classes of sonars whose differences lie in

the aperture of their sound beams. Profiling sonars have a narrow sound beam

and they are considered the laser scanner analog for underwater mapping, even

though profilings still have much wider beam than lasers. The simplest approaches

to underwater 3D mapping focus on applying laser scanner techniques to profiling

sonars, e.g. point cloud reconstruction. On the other hand, imaging sonars are

usually cheaper and have a wider sound beam, covering more space at the expense

of having a more ambiguous response. Thus, the choice of using imaging sonars for

mapping comes with the challenge of overcoming their measurement uncertainties.

Besides stipulating a sonar type, the meaning of mapping ought to be narrowed

down. It is possible to generically define mapping as the process of gathering multiple

sensor data to characterize the surroundings. However, how this characterization

might be represented depends on the application.

A SLAM (Simultaneous Localization and Mapping) [2] system has no intrinsic

need for a human readable map. In such a system, it could be interesting to store the

map information only through its most representative features, but even for SLAM

that is not always the case. It is often implemented as a grid with empty/full cells

or even as a continuous map.

The mapping of underwater environments is not just a part of a SLAM system.

It has importance on its own, it can be used for humans to visualize things that

could not be seeing otherwise. If the map is to be seen by a human it should store

and merge information about the environment, so that it can be displayed as the
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usual map, 3D or 2D depending on the case. This representation also guides how

the data could be stored, e.g. if it wants to show a surface, it can be stored as an

elevation map, or if one wants to see a 3D object it can be stored as a point cloud,

a 3D grid, a continuous map, etc.

1.1 Purpose and Significance

In the ROSA (Robô para Operações de Stoplogs Alagados) project, developed by

LEAD/COPPETEC for ESBR (Energia Sustentável do Brasil), one of the goals

is to make a reconstruction of the hydroelectric power plant turbine entrance. It

should spot any underwater debris that could block the lowering of stoplogs1 and

cause delays or even accidents. Interestingly, the stoplog setup has characteristics

that make it appropriate for sonar mapping. It has a lifting beam for inserting

stoplogs into water that can act as stable fixation point for any sonar structure and

provide a good means of localization. Well placed high-end sonars could probably

scan such an environment, but they are expensive.

Mechanical imaging sonar is a more affordable type of sonar, however it suffers

from imprecise measurements caused by its wide sound beam. This works aims

to provide a method to map an environment using imaging sonars. It extends a

recent developed continuous map technique (Hilbert maps [3]) by applying it to

sonar responses. Continous maps are techniques that does not discretize the space

à priori to create a map and, among them, Hilbert maps is an easier to implement

method that possess a high noise immunity. It also implements a simulator with a

trade-off between having simplifying assumptions and being as complete as possible

for imaging sonars, justifying the choices based on first physical principles and other

advanced simulation techniques.

1.2 Objectives

The objectives of this work are the development of a simulator and a mapping system

for mechanical imaging sonars, thus being able to validate the hypothesis that these

sonars can be used for mapping. The simulator will be able to receive a description

of a general environment and calculate the expected response of a high-frequency

imaging sonar. Its output shall exhibit common sonar features as multipath effects,

noise and beamwidth uncertainty. The response will be presented as polar plot

similar to those used by real sonars.

The mapping system will receive sonar measurements, typically the simulator’s

1long rectangular timber beams stacked to block water flow.
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output, and generate a Hilbert map representation of the continuous occupancy map,

by apply a simple embedding of sonar response method envisioned by the author.

The map has to match to the simulator ground truth avoiding inconsistencies caused

by the sonar’s wide beam. The Hilbert map representation is, technically, just a

vector that encodes 3D occupancy maps, however the information of this 3D map

will be displayed as 2D cross-sections for better readability.

1.3 Methodology

This work is divided into two parts.

The sonar model definition starts with a compilation on the description of sonar,

physical properties of sound waves in water, reflection, sonar directional gain and

sources of noise. Those are used to select a simulation technique and model two

different environment, a simple and a complex structure, one to feed the mapping

algorithm and another to explore more advanced acoustic features, e.g. multipath,

directional gain. The simulation results for both environments are then analyzed for

those typical sonar features.

The second part is related to mapping. An introductory chapter presents the

mathematical concepts used, followed by another with discussions on the difficul-

ties of 3D reconstruction and its methods. The latter includes description of the

most common and standard state-of-the-art techniques, with comments on some al-

ternative works, and deeper details of Hilbert maps. Hilbert maps implementation

and results, for one of the simulated environments, are displayed at the end of the

chapter.

1.4 Work Structure

Chapter 1 Motivation and general description of the thesis.

Chapter 2 Description of sonar models and their working principle. Development

of simulation logic from acoustics. Review of simulations techniques on the litera-

ture. Implementation and results of a simulator based on a ray theory algorithm.

Chapter 3 Presentation of the mathematical structure necessary for understand-

ing Hilbert Maps.

Chapter 4 Review of mapping techniques on the literature. Detailed description

of Hilbert Maps and a proposal of sonar response embbeding. Implementation and

results for a box-like environment, from a simulation of chapter 2.

Chapter 5 Comparison between simulation ground truth and reconstructed envi-

ronment. Suggestion of next steps to improve both simulation and mapping.

3



Chapter 2

Sonar Simulation

If you cause your ship to stop, and

place the head of a long tube in the

water and place the outer extremity

in your ear, you will hear ships at a

great distance from you.

Leonardo Da Vinci, 1490

The idea behind simulation is to have a flexible environment where the system

(e.g. sonar, reconstruction model) can be tested on a variety of conditions and

the ground truth is well known. It is a mature and widespread mechanism for

development of new sonar technologies [4].

Opening this chapter, it will be presented physical foundations behind sonars, the

existing technologies, and models. Followed by a rich description of sonar simulation

techniques, especially of ray theory based ones, and ending with characterization of

the envisioned environemnt and implementation.

2.1 Sonar

Throughout this thesis one specific type of sonar will be considered, the mechanical

imaging active sonar (Section 2.1.3). Sonars have a common underlying principle of

operation, but vary greatly on application and hardware constitution.

Sonars are, in some sense, the acoustic analog of a camera. They use sound,

instead of light, to capture information about the environment. Hence, to better

understand how they operate and what they are used for, it is important to have a

clear concept of sound.

4



2.1.1 Physics of Sound

The phenomenon that humans perceive as sound is a pressure wave which amplitude

excesses the mean pressure of the medium [5]. It can be referred to as compressional

or longitudinal waves, contrasting with transversal waves. The difference between

these two kinds of waves relies on the direction of the movement of the particles,

being parallel or perpendicular to the propagation of the wave, respectively [6].

On the particular, but common, condition of low energy phenomena [7] (with

some other suitable requirements1) the pressure perturbation wave can be described

as the D’Alembert equation

∇2Φ− 1

c2
0

∂2

∂t2
Φ = 0 , (2.1)

where c0 is the local sound speed and Φ is the velocity potential, a scalar field that

helps describing the sound propagation. Its relation to sound pressure is

p = −ρ ∂
∂t

Φ ,

which can be directly described as:

∇2p− 1

c2
0

∂2

∂t2
p = 0 , (2.2)

where p is the pressure deviation from the mediums, ρ the density and ∇2 stands

for the Laplace operator. These equations are only valid in free space (no source),

however discrete variations of the medium are treated as boundary conditions, giving

origin to reflection and refraction.

Besides pressure, sound has another important derived property: intensity. Much

as the case of electromagnetic waves, sound intensity (or acoustic intensity) measures

the mean value of the sound energy flux (i.e. energy rate per area):

~I = p~v , (2.3)

where ~I represents the acoustic intensity vector, ~v the acoustic velocity (i.e. the

velocity of a particle in the medium) and overline (e.g. p~v) the mean over some time

period. The acoustic velocity can also be derived from the velocity potential Φ as:

~v = ∇Φ .

When considering a wave far from its source, solutions to the equation (2.2) give

rise to a plane wave (where the coherent wave front propagate in a plane). It makes

clear the relationship between ~v and p:

1A perfect simple fluid in an initial state of stationary homogeneous equilibrium
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~v =
p

ρc0

~n0 ,

where ~n0 is the unit normal vector to the wavefront. Plugging it back to (2.3):

~I = 1
ρc0
p2 ~n0 . (2.4)

This equation shows the proportionality between the acoustic intensity and the

mean of the square of the pressure. The inverse of the proportionality constant ρc0

is called the characteristic impedance because it measures the degree of “resistance

to propagation” of the medium.

Because the acoustic intensity (and related quantities) varies in orders of mag-

nitude while propagating, it is common to quantify it on a logarithmic scale, specif-

ically decibels (dB) [8]:

IdB = 10 log10

(
I

I0

)
. (2.5)

Here, IdB is the intensity measured in decibels, I is the intensity value and I0 a

reference intensity values, usually defined somewhere near the source. In the case of

reflected/refracted wave, I0 may also refers to the intensity of the incoming wave. A

direct relation between the magnitude of intensity and pressure is found by applying

equation (2.4) on equation (2.5):

IdB = 20 log10

(
prms

p0

)
, (2.6)

where prms is the r.m.s. value of the wave’s pressure (
√
p2) and p0 is a pressure value

of reference, for underwater acoustics this value is the micro Pascal (p0 = 1 µPa) [8].

2.1.2 Sonar Principle of Operation

The name Sonar (Sound Navigation And Ranging) was originally conceived for any

technique that uses acoustic waves on water for navigation, communication and

detection, but nowadays it is also used for the equipment that generate/receive

these sound waves.

The history of sonar is considered as having began on the year of 1490 through the

statement of Leonardo Da Vinci aforementioned on the epigraph of this chapter [9].

That was the birth of passive sonar ’s technology, where the objective is to listen

(receive and process sound waves) the noise from ships, animals and other objects

in an attempt to detect and recognize its origin.

However, as it is not expected that all surfaces emit noise, this passive type of

sonar is not suitable for mapping. For that purpose, another type of sonar that
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Outgoing Wave

Incoming Wave

Figure 2.1: Depiction of the working principle of an active sonar. The red speaker-
like object represents the transducer, responsible for emitting and receiving the
acoustic wave.

could probe the surrounds had to be devised, those would be called active sonars.

Active Sonar

The concept of an active sonar, one that emits a sound wave and detects its return

(as in Figure 2.1), is much recent. The loss of the HMS Titanic due to a collision with

an iceberg during its first voyage on April 15 of 1912 [10] fostered the development of

a sonar to detect objects kilometers away. Also, during World War I, Allied shipping

losses to U-boat attacks further stimulated advances on techniques for uncovering

of submerged enemies.

Active sonars are ranging sensor and the way they infer distance is by measuring

the time between the emission and reception of an acoustic pulse (a time bounded

sound wave) like on (2.1). Given the mean sound speed of the medium throughout

the path traveled by the pulse, one can infer range [8]:

R =
c0∆t

2
, (2.7)

where R is the distance between the source and the target, c0 is the mean sound

speed, ∆t is the delay between pulse emission and reception, and the denominator

2 is a consequence of time measuring the two way trip of the pulse. When the

medium cannot be considered homogeneous, as in long distance travels in the ocean,

additional effects must be taken into account [4] (e.g. medium stratification).

Active sonars outputs is influenced by various factors, some considered to be

more relevant will be further explored in this section: multipaths, spatial resolution,

bearing indistinguishability and propagation loss compensation (TVG).
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Figure 2.2: Visualization of a multipath for a high frequency short pulse (much
smaller than delay times). Black vectors show the path taken by the sound wave.
Red dashed vector shows the calculated distance by equation (2.7).

Multipath

Besides sound speed variation, another common issue is multipath. The moment a

sound wave encounters an interface (e.g. an obstacle like the sea floor or the water

surface), it does not fully bounce back to the source, it also undergoes reflection

in other directions. Thus, an echo that has traveled a longer path may also arrive,

causing a naive application of equation (2.7) to predict the presence of an object

further away (Figure 2.2). For low-frequency stable signals, the contribution of all

multipaths creates an interference pattern [8], a fact that will not be further explored.

Sonar Resolution and Chirp Pulses

The minimum distance (or echo delay) that can be resolved by the sonar, depends

on the type of pulse emitted (Figure 2.3). There are two main types of pulse: single

frequency and chirp [11, 12]. Some sonars use dual frequency to overcome the trade-

off between reach and resolution, given that low-frequency has a longer range and

high-frequency a better resolution.

For single frequency sonar, the limit resolution (δR) depends directly on the

pulse length (∆L):

δR =
c0 ∆L

2
.

However, that limitation can be overcome by the use of pulse compression (a

cross-correlation filter like matched filters). In this case, a linear varying frequency

signal (chirp), or similar multifrequency systems, has its resolution related to the

bandwidth (∆BW):
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q r

Figure 2.3: Resolution as the minimum discernible distance between echos.

δR =
c0

2 ∆BW
.

Bearing

The direction where the echo comes from cannot be directly obtained using only

one hydrophone (underwater sound transducer). There are two main elements to

consider for bearing estimation: beamwidth and hydrophone arrays.

The majority of simple sonars have only one hydrophone acting as source and

receiver. They cannot distinguish the direction of the incoming wave. It is possible

to use its beamwidth to narrow down the region of the echo origin, being necessary

to rotate the transducer in order to capture other directions.

The beam shape of a hydrophone is its directional gain, i.e. the ratio between

the intensity of the emitted signal, in a given direction, and the maximum intensity.

It also acts as proportional loss of intensity when measuring the received signal

incoming from some direction. The concept of a 2-way beam shape follows directly

as the net result of transmission and reception. Mathematically, it results in squaring

the beam shape. All these concepts are meaningful only if sufficiently far from the

source, a region called far field [13].

The beamwidth, in turn, is a simplifying concept. The conventional definition is

the point where intensity reaches 70% of its peak value, or −3dB. The 2-way beam

shape reduces the beamwidth to about 72% w.r.t. the 1-way beam beamwidth. If

the diameter (D) of the transducer is large compared to the acoustic wavelength

(λ), the beamwidth (β) can be approximated as:

β ≈ sin−1

(
λ

D

)
.

On the other hand, there are hydrophone arrays that can infer the sound direction

by relating the spacing between the transducers with the signal difference received

by each of them [14, 15]. One technique is very similar to multilateration, simply

compute the distance measured by each transducer and use this information to

compute the direction of the incoming sound wave.
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Figure 2.4: Far field beam shape and its beamwidth (in blue).

Another possibility is to apply signal processing by delaying the received signal

from one hydrophone w.r.t. the other and adding them together. The construc-

tive/destructive interference effectively changes the directivity of the array and,

thus, can be used to find which direction gives the strongest echo. This is known as

beamforming.

The sequence of transducers can be made into a two dimensional array (a.k.a. a

grid), making it possible to detect a full 3D direction.

TVG - Time Varying Gain

As sound waves propagates, they lose intensity through spreading and absorption.

Spreading loss is usually considered to be and inverse quadratic law [4], as this is

the closed surface area progression for a time-like wavefront. But for cylindrical

spreading it is a simple inverse law, and for perfect plane wave there is no loss.

Absorption is conditional on the water characteristics and is modeled as a slow

exponential decay. Together with spreading, they are referred as Transmission Loss

(TL), in decibels (dB):

TL = 20 log10(r) + αr ,

where r is the wave’s total traveled distance and α a water dependent parameter

(with order of magnitude of ≈ 10−2dB/m). Sonars use this equation, with a sat-

uration around 40dB, to compensate for the echo loss [16]. And, as distance is

inferred from time measurements, this compensative gain is named Time Varying

Gain (TGV). CHEW and CHITRE [17] estimated TGV gain for a Tritech’s Micron

sonar and suggests that it agrees with the expected.
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2.1.3 Available Models

Active Sonars, besides having a common working principle, present themselves in

different models for different applications. DOBSON [18] summarized the most rel-

evant ones.

Mechanically Scanning

As seen in Subsection 2.1.2, it is possible to use the beam shape as a way to reduce

the number of possible incoming directions for an echo. This is the idea behind a

mechanically scanning sonar, where the transducer is mechanically rotated to cover

all or part of the 360o.

The angular step between different hydrophone positions is dependent on the

desired resolution, smaller steps give a better resolution, but it takes longer by

doing so.

1. Profiling - possessing a narrow conical beam shape, they are the acoustic

analog of a laser scanner (although they still have a much larger aperture than

a laser). Only a single echo is recorded for each angular position, either the

strongest or the first to return. Typically, applied for pipeline surveillance,

they can spot structural differences and objects on sea floor.

2. Imaging - its fan shaped narrow beam covers a wider area than the profiling

type, making it very useful for navigation and obstacle avoidance on ROVs2.

As its beam is wide, it usually hits the surface obliquely, receiving several

echos per acoustic pulse. Each echo is displayed at a distance determined by

equation (2.7) and with its strength mapped to a color scale.

3. Side Scan (a.k.a. towfish) - Can be either mounted on each side of a boat’s

hull or towed behind. Usually with a beam shape similar to an imaging sonar,

it can provide a sophisticated image of the sea floor.

4. Echo-sounder - mounted below a boat, it has a narrow pulse (as a profiling)

with the single purpose of measuring the depth of water. It is typically applied

to help with navigation or constructing depths charts.

Multibeam

Multibeam sonar are based on the technique of beamforming (described in Section

2.1.2). It has several hydrophones, rendering it able to scan an underwater region

with no moving parts.

2Remotely Operated underwater Vehicle.
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1. Profiling - similar in application to its mechanically scanning counterpart, it

has multiple narrow conical beam receivers that record the signal. Instead of

moving its transducer, it amplifies and processes (through beamforming) the

received signal to identify the position of the strongest returned echo, then

creating a high-speed cross-sectional profile.

2. Imaging - it is much quicker than a Mechanical Imaging Sonar, being very

similar to a Multibeam Profiling their difference lies on beamwidth. It pos-

sesses a wide angle acoustic transmitter and multiple narrow beam receivers,

applying beamforming to the received signal.

The array size of hydrophones is critical for enhancing resolution, longer arrays

have a better angular resolution. To overcome physical limitations a technique

known as SAS (Synthetic Aperture Sonar) may be applied. The transmission of

several acoustic pulses in a line is used to emulate the presence of a longer array, by

means of signal processing on the reception.

2.2 Simulation

Computational ocean acoustics explores algorithms that model the ocean as an

acoustic medium. Works on this matter are well documented by ETTER [4]. Most

of these works focus on very long range simulations, with its most important features

been the ocean floor and sub-bottom region.

This work aims to reconstruct and simulate near-range partially closed environ-

ments, as those created by humans. The motivation for such a choice comes from

the application on hydroelectric power plant water intakes, which is a corridor-like

environment with possible obstacles on the bottom. This kind of environment is

not well covered on the underwater acoustics literature, as such, some simulations

techniques are borrowed from the closely related area of room acoustics.

When constructing a simulation, one has to consider the trade-off between sim-

plicity, performance and accuracy. There are several possible techniques with dif-

ferent applications and assumptions, this chapter will cover the most classic ones

and further explore ray theory, which has been used for the simulation presented

here. For a more comprehensive view on this and other techniques, see LURTON

[8], JENSEN et al. [19].

2.2.1 Techniques Overview

The idea behind sound simulation techniques is to solve the wave equation (2.2)

considering all the physical interfaces as boundary conditions. The equation, how-
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ever, cannot be analytically solved due to common present discontinuities caused by

occlusions, specular highlights and other facts that result in large variations of field

over small regions of the domain of integration [20].

The single most important reason that differentiates the several approaches de-

scribed here is the wave frequency. For high-frequency (where sound speed do not

vary much in a wavelength scale) geometric methods (ray theory) are justifiable and

preferable (in the computational sense) [21]. In the case of low/mid - frequency or in

the presence of caustics3, other wave methods (e.g. finite elements, normal modes,

parabolic approximation) should be applied.

Instead of using the full wave equation, the methods work with a simplified time-

independent version. As it is a linear equation, it can be assumed that the equation

(2.2)

∇2p =
1

c2
0

∂2

∂t2
p ,

has a solution where time dependence is an harmonic function, as the standard

method for solving linear differential equations:

p(x, t) = Re(ψ(x)e−iωt) , (2.8)

where x is the space coordinate while t is the time and ω interpreted as angular

frequency. The exponential function considered is the complex exponential with i

being the imaginary unit. The real part Re(•) is taken as p is real-valued, but ψ(x)

is a complex-valued function over space.

Substituting it back into (2.2), gives (dropping explicit parameters again):

Re(∇2ψe−iωt) = Re(−( ω
c0

)2ψe−iωt)

Defining k ≡ ω
c0

(a.k.a. the wave number) and rearranging terms:

Re((∇2ψ − k2ψ)e−iωt) = 0

As the harmonic e−iωt is equivalent to a rotation in the complex plane, the

equation will be satisfied for all t if:

(∇2 − k2)ψ = 0 (2.9)

Equation (2.9) is known as the (homogeneous) Helmholtz equation and describe

the time-independent part of the wave propagation. The values of k and ω can be

physically interpreted as the spatial and temporal angular frequency of the wave.

3A region of high constructive interference that geometrically gives a point of infinity rays
convergence.
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As the wave equation is linear, superposition applies, being reasonable to take into

consideration one wave frequency at a time and superpose all these harmonics by

Fourier synthesis [7].

Fourier synthesis is the calculation by Helmholtz equation of each independent

frequency:

ψω(x) =

∫ ∞
−∞

p(x, t)eiωtdt ,

and reconstruct the wave equation back by:

p(x, t) =

∫ ∞
−∞

ψω(x)e−iωtdω .

These equations are the inverse and forward Fourier transform, respectively.

FEM - Finite Element Method

Finite Element Methods try to numerically find a solution to the wave equation by

discretizing space, and time in some cases. It considers the equation (2.2) for inside

the environment and the boundary conditions:

∂

∂n
p = −ρ0

∂2xn
∂t2

on the source ,

c0
∂

∂n
p = −1−Rc

1 +Rc

∂

∂t
p on other interfaces ,

where n is the normal direction of the surface, ρ0 is the medium density and xn

is the displacement of the acoustic membrane. The reflection coefficient Rc might

depend on the interface, but as FEM are used for small frequency bands, it is a

minor problem [22].

To create a linear system, the pressure function is approximated by a superposi-

tion of functions, e.g. sum of piecewise quadratic functions p(x, t) =
∑N

i=0 pi(t)ϕi(x),

applied to the wave and boundary equation and integrated w.r.t. ϕi. Giving a large

set of ordinary differential equations:

Mp̈+Dṗ+Kp = Fu

y = Pp

with M,D,K being N ×N matrices, p being the vector with coefficients pi, Fu the

input converted into a force and P some selection matrix to output the pressure on

the desired points. This model can be written and solved as generalized state-space

model:
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E ˙̂x = Ax̂+Bu

y = Cx̂

x̂ =

[
p

ṗ

]
, E =

[
I 0

0 M

]
, A =

[
0 I

−K −D

]
, B =

[
0

F

]
and C =

[
P 0

]
,

There can be made more simplifications, but it is enough to highlight the limita-

tions of the method (for more details, refer to DEINES et al. [22]). The dimension

of the state is twice the number N of functions used in the approximation and that

depends on the frequency:

N =

(
nLf

c0

)3

,

where L is a typical dimension in the environment, f = ω
2π

the frequency and n the

number of elements per wave, that should be 3 ou 4 for a good approximation [22].

Given that the size of the state increases as the cube of the frequency, the tech-

nique can only be applied to low-frequency signals, which is not applicable to high-

frequency sonar as envisioned by this work.

There is also a boundary method that uses surface integral form of the wave

equation, but suffers from similar restrictions. FUNKHOUSER et al. [20] gives a

brief introduction of the subject.

Ray theory

Geometric approaches like ray theory dates back to Newton and the corpuscular

theory of light. Later found to be better described as a wave, the geometric theory

of light is still a very important and useful tool. The sound ray theory follows a

similar path, they both apply to short-wavelength waves, but typical sound waves

have mid-wavelength (10–10−3m) while visible light has a much shorter wavelength

(≈ 10−6m).

To describe the ray from the wave theory, one starts by solving the Helmholtz

equation (2.9) with a generic complex function of space through a polar decomposi-

tion [23, 24]:

ψ(x) = A(x)eiωτ(x) . (2.10)

Here, τ(x) can be interpreted as the time it takes the sound to reach the location
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x and A(x) the amplitude of the signal at that point. Substituting it back to (2.9)

and separating real and imaginary parts, two equations can be obtained (omitting

arguments):

∇2A
A
− (ω∇τ)2 + k2 = 0 , (2.11a)

2(∇A · ∇τ) +A∇2τ = 0 . (2.11b)

The geometric approximation is the assumption that the amplitude does not

change much on the wavelength scale, mathematically expressed as:

∇2A
A
� k2 . (2.12)

Applying this approximation to (2.11a) and using the fact that ω = kc0:

‖∇τ‖ =
1

c0

. (2.13)

The equation (2.13) is known as the Eikonal equation and defines the surfaces of

constant phase. Equation (2.11b), called the transport equation, can then be used

to find the pressure amplitude of the wave. However, when considering intensity,

conservation of energy can be used as will be seen later in Subsection 2.2.2.

The rays are, by definition, the perpendicular lines to the wavefronts defined by

equation (2.13) which, with length parametrization, is:

dr

ds
= c0∇τ , (2.14)

where r(s) is the path follow by the ray, and s the ray length. To verify that it is a

length parametrization, one has to square (2.14) and use (2.13) to find:∥∥∥∥dr

ds

∥∥∥∥ = 1 ,

showing that it is a unit norm tangent vector. To find the ray path, first take the

gradient of (2.13) squared:

∇(‖∇τ‖2) = ∇
(

1

c2
0

)
, (2.15a)

2H(τ)∇τ = 2
1

c0

∇
(

1

c0

)
, (2.15b)

c0H(τ)∇τ = ∇
(

1

c0

)
. (2.15c)
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H(•) is the Hessian. The derivative of (2.14) (divided by c0) w.r.t. s is:

d

ds

(
1

c0

dr

ds

)
=

d

ds
(∇τ) , (2.16a)

d

ds

(
1

c0

dr

ds

)
= H(τ)

dr

ds
. (2.16b)

Using (2.14) and (2.15c) in the r.h.s. of (2.16b):

d

ds

(
1

c0

dr

ds

)
= H(τ)(c0∇τ) , (2.17a)

d

ds

(
1

c0

dr

ds

)
= ∇

(
1

c0

)
. (2.17b)

The equation (2.17b) can now be integrated to give the ray path. Considering

the important case of constant sound velocity c0 (as assumed elsewhere in this work):

∇
(

1

c0

)
= 0 .

So, (2.17b) (with (2.14)) can be easily solved to:

r(s) = r0 + (c0∇τ0)s , (2.18)

where r0 is the ray origin, ∇τ0 is the gradient of τ anywhere along the ray. This

is the equation of a line, which show that acoustic rays travel as a straight line on

constant velocity mediums for a high-frequency approximation.

Further considerations on reflection and refraction may rely on the Snell law

similar to the electromagnetic case, because the eikonal equation is equivalent to

the Fermat’s principle of least time. If the first variation of the time functional is

zero:

δT [C] = δ

∫
1

c0(x)
‖x′‖ ds = 0 .

Here, x(s) is a parametrization of the path C, x′(s) the tangent vector at s and

the integral T [•] is the time to traverse C. The Euler-Lagrange equations give

∇
(

1

c0

‖x′‖
)
− d

ds
∇′
(

1

c0

‖x′‖
)

= 0 ,

where ∇′ is the gradient taken on the tangent space containing x′, which becomes:

‖x′‖∇
(

1

c0

)
=

d

ds

(
1

c0

x′

‖x′‖

)
.

By considering a length parametrization r such that ‖r′‖ = 1, the result is the
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same as (2.17b), so all the results follow.

It is important to highlight that this simplification relies only on the high-

frequency assumption [25], given at equation (2.12). A more complete mathematical

description of the physics behind ray theory can be found at FILIPPI et al. [7].

An important result, commonly applied on algorithms derived from ray theory, is

the summation of energy/intensity of incoherent rays at a point. It starts by taking

the norm of the intensity (2.4) and applying the pressure definition to it (2.8) to

get4

I = g0 E[|ψ|2] , (2.19)

where g0 = 1
ρc0

(the inverse of the characteristic impedance), I the intensity and φ

the wave. For a single ray, (2.10) becomes:

I = g0 E[|A|2] .

To consider the contribution of a set of incoherent rays ψi (i.e. uncorrelated),

the total ψ becomes:

ψ =
∑
i

ψi , (2.20)

with the established fact that the expected value of a wave is zero (i.e. the mean

pressure variation is zero), the condition becomes5:

cov(ψi, ψj) = E[ψiψ
∗
j ] = 0 . (2.21)

The resulting equation of the intensity (2.19) for a full wave (2.20) is:

I = g0 E

∣∣∣∣∣∑
i

ψi

∣∣∣∣∣
2
 = g0 E

[
(
∑
i

ψi)(
∑
j

ψj)
∗

]

= g0 E

[∑
i

|ψi|2 +
∑
i 6=j

ψiψ
∗
j

]

= g0 E

[∑
i

|ψi|2
]

+ g0 E

[∑
i 6=j

ψiψ
∗
j

]
= g0

∑
i

E
[
|ψi|2

]
+ g0

∑
i 6=j

E[ψiψ
∗
j ]

=
∑
i

g0E
[
|ψi|2

]
,

4Here, E[•] means the expectation for clarity.
5Here, ψ∗i is the complex conjugate of ψi for better reading.
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Which implies:

I =
∑
i

Ii . (2.22)

This assumption of incoherent rays will be a common point among ray tracing

algorithm, mainly because it implies the summation of ray intensities Ii to a single

intensity. It is a reasonable assumption on mildly complex environments with diffuse

(scattering) surfaces, which is explained by Ray Theory in Subsection 2.2.2.

Normal modes

When there is a preferred direction, or a general axis symmetric medium, like the

ocean (which is generally treated as a horizontally stratified medium), a cylindrical

parametrization becomes a useful coordinate system. The principal axis, in our case

depth, contains the superposition of normal modes while the other dimensions carry

the traveling wave.

There are slightly different mathematical approaches to Normal Modes Theory

in the literature [4, 21, 23]. The following brief description rely on the techniques

of ETTER [4]. Writing the solution of (2.9) as a product of a “depth” (principal

axis) function N(z) and a horizontal range function H(r):

ψ = N(z)H(r) ,

leads to a separation of variables on the ODE, with k0 as separation constant:

d

dz
N + (k2 − k2

0)N = 0 , (2.23a)

d2

dr2
H +

1

r

d

dr
H + k2

0H = 0 . (2.23b)

The normal mode equation (2.23a) describes the pressure field along the depth.

Equation (2.23b), on the other hand, describes the traveling portion of the wave,

that happens in the horizontal plane. The full solution for ψ is found by solving both

equations. The equation (2.23a) is a classic eigenvalue problem for the differential

operator, whose solutions, including boundary conditions, are known as Green’s

function G [26]. The horizontal equation (2.23b) is a zero-order Bessel equation, so

it may have its solution written in terms of the zero order Henkel function of the first

kind (H
(1)
0 )6. Putting these solutions together, for a monochromatic point source:

ψ(z, r) =

∫ ∞
−∞

G(z, zs; k0)H
(1)
0 (k0r)k0dk0 , (2.24)

6H
(1)
0 (x) = J0(x) + iY (x), where J0 and Y0 are the zero-order Bessel functions of first and

second order, respectively. More details on these functions, see ABRAMOWITZ and STEGUN
[27].
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where zs is the source position on the principal axis. The evaluation of the integral

as it appears is impractical, thus some simplifications are required.

The Green’s function G can be expanded as a bilinear summation of orthonormal

functions (un), the normal modes [28], weighted by using their respective eigenvalues

(kn), the natural frequencies. The real integral of (2.24) can be evaluated through

contour integration to exploit the residue of the poles present on the natural fre-

quencies. But this requires choosing a Riemann sheet for the integral and evaluate

the branch line integral separately [19, 29]:

ψ =

∮ ∑
n

un(z)un(zs)

k2 − k2
n

H
(1)
0 (k0r)k0dk0 + Ibranch-cut . (2.25)

The branch line integral Ibranch-cut can be physically interpreted as the contribu-

tion of all other modes spectrum (those that are not normal modes), representing

modes that propagates through the ocean floor (being strongly attenuated) and

near-field, that decays exponentially with distance. Assuming that the horizontal

distance is several times the water depth, the branch line term is ignored in most

theoretical developments.

Therefore, by assuming a far-field approximation (k0r � 1), besides disregard

the branch line integral, it is possible to consider an asymptotic expansion for the

Hankel function and evaluate the contour integral, obtaining [4]:

ψ = g(r)
∑
n

un(z)un(zs)√
kn

ei(knr−
π
4

)−δnr . (2.26)

Here, g(r) is a general function of the range and δn the attenuation coefficient.

In practice, the summation ranges over only a bounded number of modes, but this

number increases with frequency, which leaves it as undesirable for high-frequency

waves.

One of the advantages of normal modes over ray theory lies on the fact that, for

each source/receiver position, the ray approach have to run a full simulation of the

rays, while the normal modes have a closed form (like (2.26)) that easily adapts to

new combinations of these parameters. In contrast, normal modes are constrained

by the source frequency, in fact by the number of modes to be computed, and

generally requires deeper knowledge of the environment. The attenuation coefficient

(δn) in the ocean, for example, depends on water absorption, ocean sediment layer

absorptions, compressional and shear attenuation on the basement, measures of

the modes interactions with both sediment and basement (compressional and shear

mechanisms) and statistics on the water-sediment boundary and sea surface as well.
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Parabolic approximation

The parabolic approximation replaces the Helmholtz equation (2.9), which is an

elliptic partial differential equation, by a simplified parabolic version. This approxi-

mation dates back to the middle of the XXI century, in the context of tropospheric

radio wave propagation.

The normal mode solution do not handle well non-stratified mediums. To over-

come this limitation parabolic approximation is constructed to handle slow varying

mediums. The variation is made explicit by k = k0n(r, z), where n(r, z) is a sound

refractive index [8]. The Helmholtz equation becomes:

(∇2 − k2
0n

2(r, z))ψ = 0 . (2.27)

The solutions are assumed to have a fast varying horizontal field H
(1)
0 (k0r) and

overall slow fluctuations F (r, z):

ψ(r, z) = F (r, z)H
(1)
0 (k0r) .

Assuming asymptotic behavior to the Hankel function (similar to normal modes

development) and applying it to (2.27):

d2

dr2
F + 2ik0

d

dr
F +

d2

dz2
F + k2

0(n2 − 1)F = 0 . (2.28)

By the assumption that F (r, z) is a slow varying field, the d2

dr2
F term is ne-

glected and (2.28) gives rise to the parabolic equation. LURTON [8] proceeds fur-

ther by discretizing the horizontal directions, without defining explicit dependence

on the Hankel function, and using an approximation for the differentials on z through

pseudo-differential operator.

The parabolic equation can then be solved numerically, but the grid size vary with

frequency, becoming costly for high-frequency waves. For more details, see JENSEN

et al. [19].

2.2.2 Ray Theory

Ray Theory provides a good way to treat high-frequency sound propagation, far

from caustics, that retain an intuitive meaning. Introduced in Subsection 2.2.1, it is

very similar to its electromagnetic counterpart. Each ray carries an energy density

from the source that decays as it travels through the medium (Transmission loss).

When it encounters an obstacle (e.g. sea floor, sea surface, man made surfaces), it

(back)scatter to the source (2.11b). That is the classical (non-multipath) description

[1, 4, 8, 30], summarized by a sonar equation as:
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RL = SL−DI− TL + TS (2.29)

Each of these acronyms corresponds to energy (intensity), or energy variation,

written in decibels (2.5):

1. RL is the Received Level - 10 log10([Received intensity]/[reference intensity7])

2. SL is the Source Level - 10 log10([Intensity at 1m8]/[reference intensity])

3. DI is the Directivity Index - 10 log10([Directional loss9])

4. TL is the Transmission loss - Intensity loss through absorption and spreading

while propagating (in dB).

5. TS is the Target Strength - ratio between the intensity of outgoing and incom-

ing rays on a target hit (in dB).

Equation (2.29) does not fully describes how the simulation using ray theory

should work, but gives a good insight on the elements that must be considered. SL

can be inferred by the sonar power and efficiency, DI comes from the sonar beam

pattern, TL is dependent on the medium, but is compensated by the sonar TVG (see

Subsection 2.1.2) and TS is defined by a material dependent BRDF (Bidirectional

Reflectance Distribution Function), described further ahead.

Ray Interaction

For a more faithful sonar response, advanced simulation techniques based on ray

theory can be applied. And, thus, requires careful consideration on the most im-

portant interactions of the rays with the interfaces, namely: transmitted rays,

reflected rays and scattered rays, see Figure 2.7.

Transmitted Rays

When a radiant energy, in this setup represented by a ray, hits a point on a surface

(or a general interface) part of the energy is absorbed, part is transmitted and, yet,

another part bounces back Transmitted rays represent the energy that goes through

the interface, their intensity for each direction is mathematically defined by the

BTDF (Transmitted Scatter Distribution Function) [31] (see RÖBER et al. [32] for

an acoustic approach).

7Intensity of plane wave with pressure amplitude of 1 µPa.
8for an equivalent omnidirectional source.
9with respect to an omnidirectional source.
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Ir
θi

θr

Ii

Figure 2.5: Incident and reflected rays with respective angles.

Scattered and Reflected rays

The treatment for reflected and scattered rays starts together by means of the BRDF

(Bidirectional Reflectance Distribution Function) [1, 33, 34], which works similar

to BTDF. On perfect smooth surfaces, its BRDF exhibits a single direction, the

specular reflection, where the ray intensity is non-zero at the same plane of incident

ray and the same angle with the surface normal vector. This kind of reflection is

responsible for mirror like effects, e.g. sound that hits the still water surface from

within [4, 8].

The other extreme case is the perfect diffuse reflection (usually called scatter in

acoustics), where a rough surface reflects same perceived energy (radiance) in all

directions, thus following a cosine law (Lambert’s Cosine Law) with respect to the

incident and reflected(scattered) angles [35, 36]:

Ir ∝ Ii cos(θi) cos(θr) , (2.30)

where Ii, Ir and θi, θr are the intensity and angle with the surface normal for the

incident and reflected rays, respectively (Figure 2.5). The proportionality constant

is material dependent and should not exceed 1/π, because that would violate energy

conservation.

If incoming and reflected rays have the same direction, the angle is the same and

the situation is called a backscatter :

Ir ∝ Ii cos2(θi) .

There is some confusion in the literature about the cosine being or not squared [4,

8, 34, 36–38]. Possible explanations are mixing intensity information with pressure

or related quantities, as intensity and radiance. This cosine law, for a single scatter,
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describes the Target Strength, in dB:

TS = A+ 20 log10(cos(θi)) .

Here, A is the equivalent of the proportionality constant. Under the assumption

of no energy loss through transmission or absorption, A = −10 log10(π)dB ≈ −5dB.

More realistic values vary from −17dB for basalt ridge cliffs to −27dB for sediment

pond [39]. Transmission and reflection between multiple sediment layers at the

bottom of the ocean can be treated as a single entity, subbottom scattering, that

introduces a delay and a displacement of the reflection [4], that case will not be

covered by the simulation procedure proposed in this thesis. A remarkable property

of the scattered rays is the incoherence which makes possible to add the energy

(intensity) contributions for each ray directly, according to equation (2.22).

Rough ocean surface, in the presence of wind, also backscatters, but not as a

perfect scatter. Its scattering properties have been modeled in a variety of ways [38],

like Kirchhoff model [39]:

TS = −10 Γ2 log10(e) ≈ −4.34 Γ2 ,

where Γ = 2kh cos(θi), k is the acoustic wavenumber (2.9), h is the r.m.s. height of

the surface.

A general surface does not follow neither a perfect cosine law nor is a perfect

reflector, but is useful to model as a compromise of both [37, 40], even some standards

for acoustic measurement (e.g. ISO) split between these two types of reflection [41].

An absorption/transmission factor α defines the fraction of the energy that does

not reflect back, and a scattering factor δ the fraction of the reflected energy that is

scattered (figure 2.6).

Incident
1

Scattered
(1 − α)δ

Specular
(1 − α)(1 − δ)

Rough Surface

Figure 2.6: Scattering reflection weighted.

This weighting concept is explored to create a full BRDF function as ρ(~i, ~r) =

(1− α)(δρscat(~i, ~r) + (1− δ)ρspec(~i, ~r)). For a numerical treatment, one option is to
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discretize the solid angles as SILTANEN et al. [42] describes; another is to model as

computer graphics, where, instead of a single direction for the specular reflection,

the specular reflection is a smooth function of the reflected direction with a peak at

the actual specular direction. This smooth function creates a better transition from

specular to scatter reflection. A standard model is Phong reflection [43]:

Ir ∝ Ii cos(θs)
ν . (2.31)

Here, θs is the angle between the reflected direction and the specular direction.

And ν a shininess constant describing how concetrated the specular reflection is. In

the limit of ν →∞ it becomes a perfect mirror.

Ray Tracing

Ray Tracing was originally an algorithm that used ray theory (described earlier

in Section 2.2.1) for computer graphics with a rationale very similar to the sonar

equation (2.29). It traced a ray to every point on the scene from the source and the

receiver, then computed the intensity of each color, ignoring multiple reflections.

A variety of derivations from the original algorithm have being concieved. Most of

the methods applied to audio were developed for computer graphics rendering, but,

considering sound waves with similar constrains to those applied to light (i.e. high

frequency limit), it is reasonable to apply them to aurelization (sound renderization)

as well.

Among the most common techniques are Image Source, Beam Tracing,

Metropolis Transport and Path Tracing. Their standard implementation as-

sume homogeneous medium, effectively propagating rays as straight lines. An impor-

tant alternative, which also overcomes sharp shadows and caustics issues, is Gaus-

sian Beam, that evaluates the acoustic field at every point by adding contributions of

each ray. The name comes from the fact that weight of a ray decays in the paraxial

direction as a gaussian. It is typically computationally more costly than other ray

tracing, but have applications for inhomogeneous open environments as described

by TRACER et al. [44].

Image Source

This method focus on environments composed by segments on the 2D case or polyg-

onal slices of planes on the 3D case. It works best on box like environments, for this

creates a perfect tiling of space [20] (see Figure 2.9).

For each reflective surface, a virtual source is created on the reflected position of

the source, these are the primary virtual sources. A virtual source will act just like a

source, although its intensity is lessened by the absorption factor of the wall. When
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Figure 2.7: BRDF and BTDF for transmitted, reflected and scattered rays.
(©User:Jurohi / Wikimedia Commons / CC-BY-SA-3.0)

26

http://commons.wikimedia.org/wiki/User:Jurohi
http://commons.wikimedia.org/
http://creativecommons.org/licenses/by-sa/3.0/


computing the sound at point, the contribution of each source (including virtual

ones) are added together, the reflections are automatically taken into account by

the virtual sources.

E

E′

E′1

E′2

E′3

R

Figure 2.8: The source E and the virtual sources E’,E’1,E’2,E’3. In this case, E’3 is
not a visible virtual source.

The procedure of creating the virtual sources may be repeated many times for

each new virtual sources, thus more reflection are effectively calculated. The visibil-

ity of a virtual source must be validated before adding its contribution.

E

Figure 2.9: Source on a perfect tilling. The simple pattern facilitates computation.

The method does not direct implement the ideia of sound scattering, but there

are some possible extensions [45]. In practice, for more complex environments, only

a few early reflection are generated. The number O(nr) of sources, where n is the

number of surface planes and r the number of reflections, that must be created and

validated grows exponentially fast.
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Beam Tracing

Beam Trancing uses pyramidals beams, a collection of rays, instead of single in-

finitesimal rays to calculate reflections [20]. The solid angle on the source that

describes available sound directions can be subdivided in pyramidal beams with-

out overlap, avoiding sampling issues. These pyramidal beams exploit the spacial

relation between nearby rays, being able to consider the propagation path without

skipping any ray.

S

S′

Figure 2.10: A 2D view of a pyramidal beam tracing.

The algorithm starts by subdividing the sounce sound directions into pyramidal

regions. For each pyramidal beam, intersections with environment walls are calcu-

lated from the first encounter to the last, clipping the beam so no shadowed regions

are considered. The resulting polygons of each intersection act as a new virtual

source, constructed by mirroring the source as in the Image Source method. Beam

Tracing, then, progresses by repeating this procedure on each virtual source, until

the desired precision (number of reflections) is achieved.

It does no suffer from visibility computation issued as Image Source, but is less

efficient for highly structured box-like environments. Despite working well on simple

scenes (with or without occlusions), it still not handling well curved surfaces.

Path Tracing

Path Tracing is a recursive solution to the wave equation simplification used in ray

theory. That can be written, in terms of the radiance ` (the ray energy - acoustic

energy per unit of surface area per unit of solid angle), as an integral equation, the

room acoustics rendering equation [42]:

`(p,Ω) = `0(p,Ω) +

∫
G
R(x,p,Ω)`(x,−→xp)dµ(x) , (2.32)
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where G is the two dimensional subset of R3 comprising all surfaces, p is a point

over a surface, dµ(x) is the surface area differential at point x, Ω is the outgoing

energy direction, `0 the intrinsic surface radiance (in case the surface is an emitter),
−→xp the unit vector in the direction to p from point x. The function R(•, •, •) is

the reflection kernel, an enhanced version of a BDRF. For a non-obstructed path

between p and x:

R(x,p,Ω) = a(‖p− x‖)ρp(−→xp,Ω) cos(θi) cos(θr) . (2.33)

When there is no visibility from x to p, R(p,x,Ω) = 0. Here, ρp(−→xp,Ω) is the

BDRF at the point p with incoming direction −→xp and outgoing energy direction Ω,

θi and θr are the incoming and reflected angles with surface’s normal at point p

for directions −→xp and Ω, respectively. Factor a(‖p− x‖) is the decay dependent on

the distance ‖p− x‖ caused by spreading and absoption, usually an inverse squared

times an exponential factor (commented in Subsection 2.1.2).

The solution to equation (2.32) is a Neumann series:

`n+1(p,Ω) =

∫
G
R(x,p,Ω)`n(x,−→xp)dµ(x) , (2.34a)

`(p,Ω) =
∞∑
n=0

`n(p,Ω) . (2.34b)

For the actual computation, the summation on equation (2.34b) is truncated at

some reasonable value of n, which is the number of reflections being considered,

and the integral on equation (2.34a) can be approximated using, for example, a

Monte Carlo method applying importance sampling w.r.t. the function R(•, •, •)
( MUNJAL et al. [46] describe briefly such an algorithm). When scattering is not

strong enough, it is a common practice to consider only specular directions.

Besides the success of computer graphics using the same technique, in the end

of the last century there were still some concerns regarding the theoretical validity,

manly because it was shown to be uncomputable [47]. That is, it was impossible to

say if a ray would ever reach a certain point. Later, this decade, it was shown by

BLAKEY [48] that, if one considers computational finite precision, it can be proven

to be computable.

In the case of sonar, the only important point to measure the sound intensity is

on the sonar itself. A simplified approach for the integral on equation (2.34a) is to

consider only the specular direction (where it is supposed to have greater radiance)

and the scattered direction into the sonar, assuming the other scattered directions

will die out without much affecting the sonar response.
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Metropolis Transport

Metropolis Light Transport (MLT) is an incremental development over Path Tracing.

It records the path taken by a ray as a tree where each reflection point is a node. By

adding, removing or changing nodes, it is able to better explore the space without

ruling out the work done to produce a path from source to detector.

The name comes from the use of Metropolis sampling method to explore the

space, which degenerate paths that are small variations of the original one. A change

in the path may be accepted or rejected (as in the original Metropolis method) and

the decision strategy ensures an ergotic, unbiased and generally applicable result.

At the cost of added complexity, MLT gives better results specially around caus-

tics and difficult to reach regions (e.g. through a narrow aperture) without degrading

performance. The original paper by VEACH and GUIBAS [49] explains with great

clarity the math behind as well as the results and interpretations.

2.3 Environment

Extensive literature have been written on ocean environment, from modeling its

behavior to measuring its properties. Different simulation techniques have also been

explored [4]. The modeling presented here, although simple, completely suits the

needs of a ray tracing technique, presented in Section 2.2.2.

2.3.1 Modeling

Borrowed from computer graphics, the modeling properties of a scene objects are

the same for light and sound (given the high frequency limit for which ray theory

is applicable). Two distinct factors are modeled, one is geometric, which defines

the shape of the object, the other is acoustic, expressing how does it interact with

sound.

For the geometric part, two basic functions have to be provided: intersection

and normal. Intersection takes a ray, defined by an origin point and a direction,

and outputs the distance to the first intersection point with the object. If no inter-

section point is found, the distance is defined to be infinity. Normal receives a point

on the surface of the object and return the normal vector at such a point. Algorithm

1 exemplifies the intersection for a rectangle, the ray’s origin O and direction D

are matrix with the concatenated information of all those whose intersection ought

to be calculated.

Any surface can be approximated by triangulation and have these functions

standardized, but it is easy to directly define for some geometric primitives. Plane,

rectangle, sphere and cylinder were developed for this work.
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Algorithm 1 Intersection for Rectangle

function Intersection(O,D) . O is ray origin, D is direction
∆← center −O . center is the rectangle center
n← ~s1× ~s1/‖ ~s1× ~s1‖ . ~s1 and ~s1 are the rectangle’s half-sides
T ← [~s0 ~s1]† . † is pseudoinverse
d← ∆·n/D·n . distance to intersection point
P ← Dd−∆ . P are the intersection with the rectangle’s plane
R← T · P . R are the intersection described on [~s0 ~s1] basis
for all i ∈ [0, . . . , size(d)) do

if di < 0 or |Ri,0| > 1 or |Ri,1| > 1 then
di ←∞ . Check ray direction and if hit within rectangle

end if
end for
return d

end function

Two environments were constructed using these four geometric primitives. One

box-like for the reconstruction part of this thesis, which is simple enough to study

the properties of the mapping. Another, more complex and inspired by a water

entrance of a hydroelectric power plant, that exhibits a richer sonar response with

sound multipath and directional gain playing a more important role.

Box-like Environment

For the box-like structure, five planes were used thus determining a semi-infinite

box with 8 meters width, 10 meters length and the bottom 3 meters from the origin.

All planes are defined by a point and its normal vector.

Plane no Point Normal Vector
0 (0, 4, 0) (0,−1, 0)
1 (0,−4, 0) (0, 1, 0)
2 (5, 0, 0) (−1, 0, 0)
3 (−5, 0, 0) (1, 0, 0)
4 (0, 0,−3) (0, 0, 1)

Table 2.1: Five planes defining box-like environment walls.

Complex Environment

The more complex scene is composed of 5 rectangles, 2 planes and a sphere rep-

resenting, respectively, 5 concrete walls, river floor and still surface water and a

half-spherical mountain of sediments. Rectangles are defined by a central point and

two perpendicular vectors, the half sides, and spheres by a center and radius.

31



2.3.2 Characterization

Instead of defining a full BRDF (explained in Section 2.2.2), three parameters are

considered: diffusion coefficient, specular coefficient and shininess. All three

parameters may change at every point on the surface of an object, thus defining a

texture, but for the sake of simplicity only constant values over the surface were

considered.

The diffusion coefficient and specular coefficient are, respectively, fractions

of incident energy over a surface patch that reflects diffusely (as a lambertian reflec-

tor) and specularly. Reflections near specularity are weighed as Phong reflection for

a less unrealiscaly abrupt change in reflection intensity. The shininess is the Phong

parameter. These concepts are described in Section 2.2.2.

The actual values used came from a collection of sources in addition to exper-

imentation and tacit knowledge (from previous sonar use), as these are difficult

information to find in the literature.

For concrete, CHAUDHARI [11] studies the reflection coefficient, sum of dif-

fusion coefficient and specular coefficient, to characterize the concrete’s quality

following earlier measurements of LESLIE and CHEESMAN [50]. The table pro-

vided on the article (Table 2.2) can be used in the other direction, to simulate such

a concrete quality. The individual values of diffusion coefficient and specular

coefficient still have to be determined and come from an educated guess based on

considerations on smoothness by ETTER [4], which claims that most of the energy

goes as specular reflection for smooth surfaces. For simulation purposes it has been

assumed values between 80% to 95% of the reflected energy to be specular.

Quality Of Concrete Reflection Coefficient
Very good 0.76 or above

Good 0.69-0.74
Questionable 0.62-0.69

Poor 0.48-0.62
Very Poor 0.48 or less

Table 2.2: Quality of Concrete and Reflection Coefficient. ( CHAUDHARI [11],
LESLIE and CHEESMAN [50])

ETTER [4], also, provides equations relating wind speed with water surface

reflection coefficient, which varies according to its roughness caused by the wind.

For calm waters, there is almost no transmitted energy and all reflected energy

is specular. For other materials, estimated values come from models as the one

provided by MILLER [1] on Figure 2.11.
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Figure 2.11: Materials reflective characteristics from MILLER [1].

2.4 Implementation

2.4.1 Algorithm

The simulation follows the ray tracing technique outlined by BELL and LINNETT

[51] for side scan sonar, but applies it to a forward looking sonar imaging sonar

(Section 2.1.3). It also uses a noising adding step as suggested by COIRAS et al.

[52] with statistics provided by MAUSSANG et al. [53]. No movement induced

distortion was considered, some approaches to add this feature is available in BELL

et al. [54], BORAWSKI and FORCZMAŃSKI [55]. Also, spreading and absorption

losses are ignored, assuming they are compensated by TVG (see Section 2.1.2).

Sonar parameters follow a Tritech’s Micron sonar [56] information as output

power, dynamic gain, beam step and sensibility were found on official Tritech’s

documentation [56, 57]. The directional gain was measured by the National Physical

Laboratory, UK.

Simulation’s output is, just as on the sonar, a sequence of arrays with values

between 0 and 255. Each element of the sequence is a bearing, direction of the

emitted sound pulse, and the array’s components are the bins’ values, sound intensity

received at some range of distances (calculated from echo delay).

The algorithm implementation uses the programming language Python with the

mathematical library NumPy, specially for efficient linear algebra. Most of the

treatment uses linear algebra to treat batch of rays at once.
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Figure 2.12: Example of an array for a bearing direction. Actual arrays are longer,
depending on resolution.

Flowchart of Figure 2.13 describes the simulator logic. It starts by computing ray

directions spread over a sphere centered at the sonar with uniform density, otherwise

it would bias the ray trace. Not all directions are actually computed because some

directions have very low gain, so rays in these directions have almost no energy,

they can be discarded. To compute such a uniformly distributed directions apply

transformation described by algorithm 2 for [−α, α] and [−β, β] the vertical and

horizontal angular span, respectively, and N the desired number of rays. Results in

Section 2.4.2 use α = 30o and β = 3o, approximatly the values for which Micron

cannot detect the echo.

Algorithm 2 Rays Uniform Direction

procedure Uniform Direction(α, β,N)
dθ ← 2 cos(π/2− α)
dφ← 2β

ρ←
√

N
dφ·dθ . Estimated density

Nθ ← dρ · dθe
Nφ ← dρ · dφe . U(x) generates x uniform samples over [0, 1]
θ ← arccos(dθ · (2U(Nθ)− 1))
φ← dφ · (2U(Nφ)− 1)
for all (θi, φi) ∈ θ × φ do

xi ← sin(θi) cos(φi)
yi ← sin(θi) sin(φi)
zi ← cos(θi)
vi ← (xi, yi, zi)

end for
return v

end procedure

The sonar bearing pace is adjustable and, following Tritech’s Micron configura-

34



Get new bearing

Initialize uniformily 
spread rays

Next bearing

No next

Ajust rays and 
receiver gain  

direction

Noise 
addition

(a) Sonar Loop

Compute ray 
collisions with every 
object in the scene

Select new object

Select rays that hit 
this object first

Compute sonar 
backscattering

Increase rays bounce 
by 1

ray bounce < max
Compute reflected 

directions

Apply reflection 
energy loss

Next Object

All Objects done

Call Intersection for 
every object.

(b) RayTracer

Figure 2.13: Overview of the simulation algorithm.

tion, it was set to 1.8o, thus, doing a complete scan on 200 steps. For each step,

ray directions are changed (by a rotation) to match new bearing. Received gain

is calculated w.r.t. the front direction (bearing), as the bearing changes the gain

is automatically updated. Rays always carry 2 information: its actual intensity

(disregarding distance traveled decay) and its total traveled length.

A new bearing position invoke ray tracer algorithm. It begins by calling the

intersection function (described in Section 2.3.1) for each object in the scene,

passing all rays as argument. Then it loops again on every object, but now only

focus on the rays that have the object as first hit, and compute the backscattering to

the sonar. Backscattering strength calculation use Lambert and Phong scatterings

as described in Section 2.2.2 and material parameters listed in Section 2.3.2. This

strength is addad to a bin (see Figure 2.12) whose position is calculated as half the

full distance traveled by the ray (including previous reflections) plus a small gaussian

noise. It proceeds to calculate reflection if the number of computed reflection for

35



Figure 2.14: Ray Tracing: Red lines are specular reflections, green lines are diffuse
backscattering.

the ray does not exceed a maximum value (set to 5). Reflections are simple linear

transformations that depends on the surface’s normal, obtained via normal function

(Section 2.3.1). The algorithm, then, calls itself for the reflected rays, recursively.

After the whole scan is computed, bin values are normalized to [0, . . . , 255] (again

according to Tritech’s Micron configuration ). Upon these values, an additional

Weibull’s distributed noise is applied [53].

2.4.2 Results

For both environments described in Section 2.3.1, several sonar positions were sim-

ulated. The absolute position and orientation were chosen, but the bearing w.r.t.

the environment was a random value.

Polar plots displayed here is the expected visualization, without noise filtering,

when the sonar uses 500 bins of resolution with a 12 meters range. Each polar

pixel has a 3o arc length, but, as the bearing step is 1.8o, they overlap while being

rendered.

Box-like Environment

The half-infinity box-like structure is depicted on figure 2.15. Axis aligned sonar

orientation on figures 2.15c and 2.15d make clear its rectangular cross section, while

its half-infinity characteristic is visible on perpendicular oriented scans, figures 2.15a

and 2.15b.
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(a) Position (0, 0, 0) | Orientation (1, 0, 0) (b) Position (4, 1, 0) | Orientation (0, 1, 0)

(c) Position (0, 0, 0) | Orientation (0, 0, 1) (d) Position (0, 3, 0) | Orientation (0, 0, 1)

Figure 2.15: Sonar simulation for the box-like scene.

Complex Environment

Figure 2.16 shows the more complex structure from four view points. Images 2.16a

and 2.16b are scans from between walls of the indent. Figure 2.16d is cross sectional

view of the indent and figure 2.16c is a scan from the same position, but with

different orientation, making the hemisphere at the bottom more noticeable.

Both environemnts reveal interesting features of a sonar scan, but they tend to

be more pronounced on the complex environmnt. Figures 2.16b, 2.16d and 2.15b

present clear signal of multipath. Another interesting feature is the halo on the back-

ground of figures 2.16a and 2.16b caused by a trade-off between the sonar directional

gain and the low backscattering at shallow angles.
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(a) Position (0, 0, 0) | Orientation (1, 0, 0) (b) Position (0, 0, 6) | Orientation (1, 0, 0)

(c) Position (−5, 0, 12) | Orientation (0, 1, 0) (d) Position (−5, 0, 12) | Orientation (0, 0, 1)

Figure 2.16: Sonar simulation for the complex scene.
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Chapter 3

Mathematical Preliminaries

”Obvious” is the most dangerous

word in mathematics.

Eric Temple Bell, 1938

Some more advanced mathematical tools1 used on the development of this thesis

are presented here. Other knowledge, as basic linear algebra, statistics and analysis,

are taken as granted.

3.1 Hilbert Space

A Hilbert Space is a complete inner product space [58]. It is a complete metric

space with respect to the metric induced by its inner product (which in turn can be

thought indirectly by its induced norm). A nice picture is as a generalization of the

Euclidean space. Which means intuition works well, in contrast with the broader

concept of Banach Spaces, a complete normed space, where the infinite dimensional

case can be quite different from what one would expect2.

An inner product space [59] is a (possibly infinite dimensional) vector space V

over C (or R by restriction ), together with a map (called the inner product):

〈·, ·〉V : V × V → C

Satisfying the following properties, for all x, y, z ∈ V and all µ, λ ∈ C:

I 〈x, λy + µz〉V = λ〈x, y〉V + µ〈x, z〉V (linear in the second argument)

II 〈x, y〉V = 〈y, x〉V (Hermitian symmetric)

1As judged by the autor from the perspective of a graduated student.
2Banach Space are complete metric spaces where the metric does not come necessarily from an

inner product. (See HUNTER and NACHTERGAELE [59])
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III 〈x, x〉V ≥ 0 and 〈x, x〉V = 0⇔ x = 0 (positive definite)

A classical example of an inner product is the Euclidean dot product.

Another important example is the inner product defined on the space C[a, b] of

complex (or real) valued continuous functions on the interval [a, b], defined, for every

f and g in C[a, b] as:

〈f, g〉C[a,b] =

∫ b

a

f(x)g(x)dx . (3.1)

On any Hilbert Space H the norm induced by the inner product is:

‖x‖
H

=
√
〈x, x〉H , (3.2)

where x ∈ H. And the subsequent metric is defined as:

dH(x, y) = ‖x− y‖
H
, (3.3)

for any x, y ∈ H.

A vector space endowed with an inner product is a inner product space (a.k.a.

pre-Hilbert space). For it to be a Hilbert Space it also has to be complete with respect

to the above metric. Completeness means that any Cauchy sequence converges in

this space (which provides a suitable framework to apply the tools of calculus). A

Cauchy sequence is a sequence where every term becomes arbitrarily close to each

other as the sequence progress (not only to term right next to it). It can be formalized

as the sequence x1,x2,x3,. . . on a metric space (with a metric d(·, ·)) where:

∀ε ∈ R+, ∃N ∈ Z+, ∀n,m > N =⇒ d(xn, xm) < ε .

On a pre-Hilbert space, the metric is given by equation 3.3. If a metric space M

is complete, then every Cauchy sequence (x1,x2,x3,. . .) converges in that space, that

is:

∃x ∈M, ∀ε ∈ R+, ∃N ∈ Z+, ∀n > N =⇒ d(xn, x) < ε ,

which is equivalent to write:

x = lim
n→∞

xn .

A complete metric space can be obtained from a pre-Hilbert space, by completion,

in the same way that Q is “completed” to make R. Although completeness is a

technicality, it is easy to find examples of pre-Hilbert spaces that lacks this property.

The space of continuous functions C[a, b] with the inner product defined on 3.1 gives

an example of pre-Hilbert space that is not complete. For it to be a Hilbert space,

the space have to be extend to include some discontinuous functions, as in the larger
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set of Lebesgue mensurable3 functions that are square integrable (with the Lebesgue

integral).

Some examples of Hilbert space are:

� Any finite dimensional vector space over the field R or C with the standard

dot product.

� The space `2 of square-summable sequences of complex numbers, i.e.

(c1, c2, c3, . . .) with ci ∈ C and
∑∞

i=1 |ci|2 < ∞, is a Hilbert space with

the inner product defined as: Given two sequences x = (x1, x2, x3, . . .) and

y = (y1, y2, y3, . . .), define 〈x, y〉`2 =
∑∞

i=1 xiȳi.

� Fourier series can be seen as the representation of a square-integrable function

on the interval [0, 1] (member of L2[0, 1]) on the orthogonal basis {e2πinθ : n ∈
Z} with the inner product given by 3.1.

3.2 RKHS - Reproducing Kernel Hilbert Space

3.2.1 The Evaluation Functional

A Reproducing Kernel Hilbert Space, RKHS for short, is a special kind of Hilbert

Space of functions. In a RKHS, closeness in the sense of the metric is actual pointwise

proximity. That is to say, if two real-valued functions f and g on a (non-empty) set

X belong to a RKHS H (f, g ∈ H ⊂ RX ), then whenever ‖f − g‖
H

is small so is

|f(x)− g(x)| for all x ∈ X [60].

A more formal and useful characterization of a RKHS is consequence of studying

linear operators on Hilbert Spaces. The evaluation functional δx : H → R, δx : f →
f(x) is easily seen as such: given f, g ∈ H and a, b ∈ R, δx(af+ag) = (af+ag)(x) =

af(x) + ag(x) = aδx(f) + bδx(g). When the evaluation functional is continuous on

H, H is said to be a RKHS.

Although L2[a, b] is not a RKHS (it is not even a proper space of functions, but

instead a space of classes of equivalences of functions), its bandlimited (L2 ∩ L1)

version PWπ := {f ∈ L2(R)| supp F(f) ⊆ [−π, π]}, for example, has a continuous

evaluation functional. Here, F : L2(R)→ L2[−π, π] is the fourier transform [61]:

F(f) =
1√
2π

∫
f(t)e−iωtdt f ∈ L2(R) , (3.4a)

3The Lebesgue measurability of a, bounded with compact support, function is a highly technical
exigence and the existence of a bounded non-Lebesgue mensurable set (which allow the construction
of such a function) is dependent on the axiomatic choice of the underlying set theory - it can only
be proven with the adition of the choice axiom to the ZF (Zermelo-Fraenkel) set of axioms (ZFC).
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F−1(f̂) =
1√
2π

∫ π

−π
f̂(ω)eiωtdω f̂ ∈ L2[−π, π] . (3.4b)

The proof of continuity for the evaluation functional on PWπ relies on the in-

verse Fourier transform (3.4b), Cauchy-Schwarz’s and Parseval’s theorems, used on

equations (3.5c), (3.5d) and (3.5e) respectively. For f, g ∈ PWπ it goes as follows:

|δxf − δxg| = |f(x)− g(x)| (3.5a)

=
∣∣F−1(F(f − g))

∣∣ (3.5b)

=

∣∣∣∣〈F(f − g),
e−iωt√

2π
〉L2[−π,π]

∣∣∣∣ (3.5c)

≤ ‖f − g‖
L2[−π,π]

∥∥∥∥e−iωx√
2π

∥∥∥∥
L2[−π,π]

(3.5d)

= ‖f − g‖
L2(R) (3.5e)

Other examples of RKHSs will be further explore as its relation to kernels are

developed.

3.2.2 Reproducing Kernels

Riesz representation theorem is an extension, for Hilbert Spaces, of the classical

isomorphism between a finite vector space V and its dual V∗, the space of linear

functions on V . It states that for every element φ ∈ H∗, where H∗ is the space

continuous linear functionals from H into R (dual space), there exist a unique fφ ∈
H, defined by:

φ(g) = 〈g, fφ〉H ∀g ∈ H

As consequence, the evaluation functional δx has a representation on H as kx,

the reproducing property:

f(x) = δx(f) = 〈f, kx〉H ∀f ∈ H

The important idea of pointwise convergence can be recovered:

|f(x)− g(x)| = |δx(f − g)| (3.6a)

= |〈f − g, kx〉H | (3.6b)

≤ ‖f − g‖
H
‖kx‖H , (3.6c)

where Cauchy-Schwarz inequality was used on line (3.6c) and ‖kx‖H acts as a scaling

factor the closeness at each specific x.
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The evaluation functional represented in H as kx can be seen as a function itself.

As such, its evaluation at every point y of X point contruct a two-variable function,

the kernel:

kx(y) = K(x, y) = 〈kx, ky〉H (3.7)

The kernel function K : X × X → R is symmetric (because this is the real

case) and positive definite as direct consequence of inner product definition. The

converse, however, is a result of the Moore-Aronszajn theorem which says that for

every symmetric positive definite function K(•, •) (kernel) on X × X there is a

unique Hilbert space H of functions (RKHS) on X for which K is a reproducing

kernel. The reproducing property of the kernel is:

f(x) = 〈K(x, •), f〉H f ∈ H (3.8)

Examples of common used kernels:

� Gaussian Kernel/Radial Basis Fucntion Kernel (RBF)

K(x, y) = e−γ‖x−y‖
2

γ ∈ R+ (3.9)

� Laplacian Kernel

K(x, y) = e−λ‖x−y‖ λ ∈ R+

� PWπ Kernel (the bandlimited L2(R) space, see 3.2.1)

K(x, y) =
sin π(x− y)

π(x− y)

� Linear Kernel

K(x, y) = 〈x, y〉

� Polynomial Kernel

K(x, y) = (γ〈x, y〉+ 1)n γ ∈ R, n ∈ N+

It is possible to operate with kernels and generate new valid kernels. If K1, K2 are

kernels forH1 andH2, respectively, then for any α, β ∈ R≥0 it is possible to construct

K = αK1 + βK2 as a kernel for the RKHS H = αH1 + βH2 = {αf1 + βf2|f1 ∈
H1, f2 ∈ H2}. Kernel products are valid even for functions acting on different sets,

that is, K1 : X ×X → R and K1 : Y ×Y → R define K : (X ×Y)× (X ×Y)→ R as
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K((x, y), (x′, y′)) = K1(x, x′)K2(y, y′) with the RKHS H ∼= H1⊗H2, having X = Y
as a special case.

3.2.3 Feature Maps

A feature map is a map ϕ from a set X 6= ∅ to a Hilbert space H, the feature space.

Any feature map can define a RKHS through the kernel:

K(x, y) = 〈ϕ(x), ϕ(y)〉H x, y ∈ X (3.10)

For example, if X is already a RKHS by itself, then feature map ϕ(x) = x

reconstruct the Linear Kernel. Also, a sequence of functions fi ∈ RX ,∀i ∈ N that

{fi(x)} ∈ `2,∀x ∈ X are themselves a feature map ϕ(x) = {fi(x)} with kernel:

K(x, y) =
∞∑
i=1

fi(x)fi(y)

The converse, however, is not unique. Given a kernel there are multiple feature

maps that can generate it. A simple example is K(x, y) = 2xy with X = R, this

kernel can also be generated by:

K(x, y) =

[
x

x

]
·

[
y

y

]

In the first case ϕ1(x) = x
√

2 ∈ R, while in the second ϕ2(x) =
[
x
x

]
∈ R2.

Standard ways of finding and approximating feature maps will be discussed in the

next sections.

3.3 Probabilistic Regression

Probabilistic regression is similar to classification, both infer properties of a sample

based on previous information. However, instead of giving a definite answer for

which class an element belongs, probabilistic regression gives the probability for

such a classification [62]. More formally, a training set is a sequence of n pairs

{(xi, yi)| i = 1, . . . , n}, where xi and yi are samples drawn from random variables

X and Y , respectively, with joint probability distribution Pr(X, Y ) [63]. From this

training set, a conditioning probability Pr(Y |X = x) has to be estimated.

The special case where Y is a Bernoulli random variable, i.e. a binary variable,

is called binary regression. It is the single most important regression for mapping,

as such, no other kind is explored in this thesis.
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3.3.1 Binary Logistic Regression

A binary regression dependent variable Y ∈ {−1, 1} (or some set of equal cardinality

like {0, 1}) has two possible estimations that are related by Pr(Y = 1|X = x) +

Pr(Y = −1|X = x) = 1. As such, the conditional probability can be denoted

p(x) = Pr(Y = 1|X = x)

The probability for Y = −1 can be recovered from P (Y = −1|X = x) = 1−p(x).

The linear logistic model [3] p(x; w) for x ∈ Rd, with w ∈ Rd as explicit parameter:

p(x; w) =
1

1 + exp(−w · x)
(3.11)

The rationale behind the model is that the function (1+exp(−α))−1 is a bijection

R→ (0, 1) [63]. Ensuring that the model is a probabilistic distribution.

The classical regression theory requires a loss function C and minimizes an em-

pirical risk over some space of functions R[f ] = E(C (X, Y, f(X))) [62], where E(•)
is the expected value. The estimation of f from samples (xi, yi) uses a regularized

version:

Rreg[f ] =
1

n

n∑
i=1

C (xi, yi, f(xi)) + λS[f ] , (3.12)

where λ > 0 and S[•] stabilization (regularization) term, as the minimization prob-

lem is typically ill-posed [62]. On normed spaces usually S[f ] = g(‖f‖), where g(•)
is a monotonically increasing function. With proper adjustment of λ, the 1/n factor

might be ignored without changing the minimizing function. The loss function C is

problem dependent and for binary regression a typical negative log likehood (NLL)

is used

C (x, y, p(x)) = − log Pr(Y = y|X = x) =

− log p(x) y = 1

− log(1− p(x)) y = −1
(3.13)

For a linear logistic model, one uses (3.11) on (3.13) and substitutes back into

(3.12). Thus the regularized negative log likehood empirical risk simplifies to a d

dimensional minimization:

NLLreg(w) =
n∑
i=1

log(1 + exp(−yiw · xi)) + λS(w) . (3.14)

Reasonable choices for S(•) are the `1 norm (LASSO) S(w) = ‖w‖1 or elastic

net, a combination of `1 (LASSO) and squared `2 norms (ridge), S(w) = α1 ‖w‖1 +

α2 ‖w‖2
2, where α1 + α2 = 1, α1, α2 ∈ [0, 1] [64].
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Although it is an applicable setting for simple situations, it is not expected to

perform well for classification/regression of point on a 3D environment as x ∈ R3

and w ∈ R3. The three real parameters, encoded by w, is not enough to capture all

the complexities of the environment. To keep the simplicity provided by the linear

model and still be suitable for a three dimensional map, an alternative is to increase

dimensionality using Hilbert Spaces.

3.3.2 Regression on Hilbert Spaces

Samples defined on a low dimensional space X , e.g. R3, can be raised to a high

(possible infinite) dimensional space using a feature map ϕ : X → H, where H is

hilbert space. This allow linear models to express more generic functions f(x) =

〈w, ϕ(x)〉H with w ∈ H, such a space of functions f(x) is the actual RKHS with

kernel define as in equation (3.10).

The linear logistic model from equation (3.11) lifted to the Hilbert Space H is

p(x; w) =
1

1 + exp(−〈w, ϕ(x)〉H)
(3.15)

Thus, equation (3.14) for log likehood empirical risk becomes4

NLLreg(w) =
n∑
i=1

log(1 + exp(−yi〈w, ϕ(xi)〉H)) + λS(w) (3.16)

In practice, one chooses a kernel K(x, y) with desired properties and find finite

dimensional approximate features ϕ̂(x), such that K(x, y) = 〈ϕ(x), ϕ(y)〉H ≈ ϕ̂(x) ·
ϕ̂(y). Non kernel specific methods for finding approximate features include sampling

the Fourier transform of shift invariant kernels [65], i.e. K(x, y) = k(x− y) = k(δ),

and Nyström method that projects the Gram matrix Gij = K(xi, xj) of the sample

points {xi} into some subset of these points and use this projection to approximate

the feature maps [66].

4With appropriate adjustment of λ’s value,i.e. λ = nλ0, the usual average 1/n for the summation
can be dropped, as it keeps the same minimizer value of w.
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Chapter 4

Mapping

‘Would you tell me, please, which way

I ought to go from here?’

‘That depends a good deal on where

you want to get to,’ said the Cat.

‘I don’t much care where–’ said Alice.

‘Then it doesn’t matter which way you

go,’ said the Cat.

Alice’s Adventures in Wonderland

by Lewis Carroll

Mapping is not a predefined concept, there are different ways to think about map-

ping, it might depend on application and specific requirements. The unifying idea is

a method to fuse and represent geometric information about a given environment.

Nevertheless, the meaning of how to represent which information is a consequence of

the application. Here, in this thesis, the objective is to have human-understandable

map yet with a probabilistic interpretation of a 3D environment.

4.1 Map Representation

Classically maps are binary functions over the space. The binary choices of function’s

range stand for fullness or emptiness of a point. Mapping (occupancy maps) is

to construct a probability distribution over the set Md of all maps [2] on a given

dimension d, i.e. Md = {m |m : Rd → {0, 1}}. The cardinality of such a set |Md| is
too big1 to be tractable by exhaustion even considering computational discretization

(finite precision),i.e. by individually assigning probabilities to each map.

Three approaches to this problem are presented here. One option is to consider

conditional independence of spatial points and discretize the space even further, until

1Side note: the actual mathematical cardinality is i2 = 2c the cardinality the power set of the
continuum, where c is the cardinality of the continuum
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it becomes tractable. Another is to renounce the idea of binary maps and consider

maps to be a collection of predefined objects. And lastly, keep the concept of binary

maps, but to consider some restriction on the space of functions from which the map

m is drawn.

Despite their differences, all approaches describe marginal probabilities, which

are functions over Rd, instead of the probability for an actual map m, whose domain

is Md. Thus, for binary maps, the important quantity is Pr(m(x∗) = 1)2, where

x∗ ∈ Rd, and not Pr(m∗ = mi), where mi ∈ Md. When considering maps as

collection of objects, the conditional probability is Pr(s(ln) = si), where s(•) is the

defining properties of an object ln, e.g. ln belongs to the set of segments and s(ln)

gives its pair of endpoints.

4.1.1 Discrete Map

Discrete maps are also denominated grid maps because when discretizing each axis

of a Rd space the result is necessarily a grid. Originally developed for 2D maps [2],

they were later extended to 3D maps in different ways.

3D grids

The first obvious extension was a 3D grid of cubes by discretizing a range of each

direction on N elements. Reasoning that each cube still full or empty, the set of

possible maps on a N1 × N2 × N3 grid D is M̄d = {m | m : D → {0, 1}}. The

cardinality of |M̄d| = 2N1·N2·N3 is too big to store the probability of every element.

The simplifying assumption for 3D grid is the conditional independence of grid

elements m(di) and m(dj) on the sensors measurements zn, for di 6= dj where

di, dj ∈ D. Therefore, the probability of a map become the product of the marginals:

Pr(m = mi | zn) =
∏
d∈D

Pr(m(d) = mi(d) | zn) .

Writing marginals as pn(d) = Pr(m(d) = 1 | zn) keeps same information because

Pr(m(d) = mi(d) | zn) equals pn(d) if mi(d) = 1 and 1 − pn(d) otherwise. The ad-

vantage is that it makes clearer that they can be stored and updated independently,

and also that the number of stored elements is |D| = N1 · N2 · N3
3. That might

still be a lot, but with clever memory implementations like Octomaps [67], it can be

manageable.

2The 1 here is completely arbitrary, it might as well be 0, as both probabilities are complemen-
tary.

3e.g. if N1 = N2 = N3 = 200 for a 5cm resolution on cube with 10m edge, |D| = 8, 000, 000
already.
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Marginal probability computation on each cube is a direct application of Bayes

rule4 (a Bayes filter) with a log-odds representation for better faster computation,

known as occupancy in this context [2]:

ln(d) = ln−1(d) + inverse sensor(d, zn)− l0(d) , (4.1)

where ln(d) is the log-odds representation of pn(d), the nth estimate after all previous

n sensor measurements zn, including the last one zn.

ln(d) = log
pn(d)

1− pn(d)
.

The prior of the occupancy is l0(d), log-odds of the prior probability p0(d).

Defining inverse sensor(d, zn) = Pr(m(d) = 1 | zn), it is the probability of fullness

for a grid element d given only the last measuremnt zn, it can be interpreted as

inference from the sensor response, justifying the name.

THRUN et al. [2] suggests to abandon independecy between grid elements. To

archive that, Thrun employs a forward sensor model, instead of an inverse sensor,

and uses optimization algorithm Expectation Maximization (EM) on the marginal

to find the best fit. It is successful on solving “conflicts” between sonar responses

when, because of a wide beamwidth, the same region appears to be full and empty

depending on viewpoint.

Another, not so well explored, approach for calculating the marginal probability

for grid elements comes from Evidential Theory. Evidential Theory, a.k.a. Demp-

ster–Shafer theory (DST), is a mathematical theory of evidence, assigning “proba-

bilities” (belief mass) to all non-empty elements of the power set of events. On the

binary {0, 1} case, the three non-empty subsets are 0,1,0, 1 standing for evidence of

emptiness, fullness or both, which “probabilities” add to one. Consequently yielding

to two maps, one for fullness other for emptiness. In DTS the actual probability

(in the classical sense) appears as lower and upper bounds (Plausability and Belief),

allowing ignorance to be modeled adequately. The 2D case was explored by PAGAC

et al. [68], their article also further describes DTS.

Grid based algorithms on 3D environments suffer from their high number of grid

elements, the next model try to avoid this problem.

Elevation Maps

In an attempt to keep the grid to a reasonable size, elevation maps, or 2.5D maps,

keep the discretization only on the 2 horizontal dimensions. The third dimension is

represented as a height value assigned to each 2D discretization.

4Pr(A | B) = Pr(B | A) Pr(A)
Pr(B) .
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Some work on seabed reconstruction using sonars has been done by COIRAS

et al. [69], COIRAS and GROEN [70]. They attempt to map by reconstructing a

2.5D surface through optimization on the height value of each grid element. That

leads to information gain on local surface’s reflectivity, an indication of its com-

position. However, the expectation-maximization method does not leave a direct

probabilistic interpretation for the values.

Although elevation maps reduce memory requirements by not discretizing on the

vertical axis, its elevation value is unique for each grid element. As such, it is not

able to represent objects above the floor level,e.g. ceil, trees, caves, etc. That is

adressed in the next option.

Multi Layer Surface - MLS

As a compromise between the last two solution, grid and elevation maps, Multi

Layer Surface (MLS) was developed. It originates as elevation maps, but instead of

having only one height per grid element, it splits into many layers of varying height,

called surface patches.

When MLS was first proposed by TRIEBEL et al. [71], each surface patch of

each grid element stored statistics as mean height and standard deviation. It was

soon realized that a flat horizontal plane for a grid and a preferential vertical direc-

tion could be an issue for well describing statistical knowledge of the environment.

Some extensions have already been suggested to address this matter, e.g. works

of RIVADENEYRA and CAMPBELL [72] and SCHWENDNER [73].

4.1.2 Map of Features

A map can, in certain situations, be approximated by a collection of geometric

objects, viz. line segments, circles, etc. This is specially true for structured environ-

ments [74] where walls and flat surfaces are easily found.

The 2D simplification, only considering the horizontal plan, was explored for

underwater SLAM with Imagins Sonars by RIBAS et al. [75]. They used lines to

represent an environment, with endpoints only for display purpose. Line extraction

relied on polar the parametric space of lines (angle and distance to the origin) as on

Hough Voting and extensions.

Besides only applied to 2D, a particular downside of the approach is its little

generality. Generic, unstructured or complex environments are unhandleable.
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4.1.3 Continuous Map

There is no need for discretization on space if some restrictions are applied to the

space of function of maps. Formally that means M̃d ⊆ V ∩Md, where V is some

restricted space of functions, e.g. continuous compact supported, andMd as defined

in Section 4.1. In practice the restriction is not directly applied to the space of

functions, instead it is enforced on the probability distribution, such that functions

outside M̃d have zero probability.

A marginal probability for continuous map evaluates at every point in Rd, not

in some discretized space as for 3D grids presented in Section 4.1.1. The marginals

shall then be written as p(x) = Pr(m(x) = 1) for x ∈ Rd.

Gaussian Process Occupancy Maps - GPOM

Possibly the first succesful attempt to have a continuous map was the Gaussian

Process Occupancy Maps (GPOM) by O’CALLAGHAN and RAMOS [76], as noted

by the author there were previous attemps, but they lacked computability or did not

truly represent occupancy. GPOM’s method apply learning techniques, Gaussian

Process, to estimate the best marginal for a family of functions p(x) = Φ(•), where

Φ is the cumulative unit Gaussian. Details of the learning process are numerous

and complex, for the interested reader it is suggested to check the original paper.

GPOM was already applied to 3D environments for path planning of a 6DOF Rotary

Unmanned Aerial Vehicle (RUAV) using laser sensors5 [77].

Following ideas from GPOM, Hilbert Maps were proposed as a less computation-

ally expensive alternative for continuous maps. It is also able to naturally account

for spatial correlations and handle noise, but while GPOM scales cubically with

data size, Hilbert Maps can be updated in linear time. Hilbert Maps is yet much

simpler to implement and it was the chosen alternative for sonar reconstruction on

this work. It suits well the task, as most of imaging sonar drawbacks are its noise

and wide beamwidth.

Hilbert Maps

Hilbert Maps is a recent development by RAMOS and OTT [3], from 2016. It was

implemented on the 2D case, on a laser sensor setting. This thesis applies the method

to 3D environment with sonar, imaging sonar especially. Most of the mathematical

machinery necessary was described in Chapter 3, however some details still to be

presented.

5Φ(x) = 1√
2π

∫ x

−∞
e−

t2/2dt.
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Marginal probabilities are assumed to be linear logistic as in equation (3.15):

p(x; w) =
1

1 + exp(−〈w, ϕ(x)〉H)
,

where w, ϕ(x) ∈ H, H a Hilbert space that generates a RKHS with kernel K(x, y) =

〈ϕ(x), ϕ(y)〉H . As long range correlations are not expected, a suitable kernel choice

is the RBF defined on equation (3.9):

K(x, y) = e−γ‖x−y‖
2

γ ∈ R+

The features ϕ(x) are approximated as Nyström features, other methods did not

show results as good [3]. Approximations were discussed in Section 3.3.2. Nyström

features are sample dependent, given set of n “inducing” points νi ∈ Rd, i = 1 . . . n

chosen (possibly random) on the region being mapped, it is calculated as:

ϕ̂(x) =
√

1/ΛQT K̂(x) , (4.2)

where G = QΛQT is the spectral decomposition of the Gram matrix of the “induc-

ing” points, Gij = K(νi, νj), and K̂i(x) = K(x, νi) is a column vector. After this

finite approximations, w ∈ Rn and equation (3.15) becomes:

p(x; w) =
1

1 + exp(−w · ϕ̂(x))
, (4.3)

and the negative log likehood - NLL - regression, from equation (3.16) becomes:

NLLreg(w) =
n∑
i=1

log(1 + exp(−yi w · ϕ̂(xi))) + λS(w) , (4.4)

where (yi, xi) are the sample points and S(•) an elastic-net regularizer, described

on the context of logistic regression of Section 3.3.1:

S(w) = α1 ‖w‖1 + α2 ‖w‖2
2 , (4.5)

with α1 + α2 = 1, α1, α2 ∈ [0, 1].

Minimization of NLLreg(w) gives a representation of the map as a n parameter

vector w. It can then be evaluated at any point with equation (4.3). The mini-

mization step is solved iteractively as a learning processed, discussed further ahead,

which is naturally an online process.
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4.2 Inverse Sonar Model

Methods that do not use Expectation-Maximization (EM), as some of those de-

scribed in Sections 4.1.1, usually require some form of inversion of the sensor model.

This is a way to characterize the environemnt from a sensor response.

In the context of grid maps, it appears as a conditional probability on the mea-

surement, i.e. inverse sensor(d, zn) = Pr(m(d) = 1 | zn) in equation (4.1). For

sonars, it is generally considered as a constant value for grid elements inside an oc-

cupied bin (see Figure 2.12) and another for those outside [2]. THRUN et al. [2] also

create an inverse model by training a machine learning algorithm with generated

responses.

The difference between an occupied bin and an empty one can be a simplistic

bin-value threshold [2, 75, 78] or some more complex procedure, e.g. histograms.

4.2.1 Sonar on Feature Maps

For Hilbert Maps, only procedures for laser are already described, thus here a strat-

egy is proposed for sonar responses. After defining the empty and full bins, there are

three main differences between sonars and lasers: Sonars bins are volumetric; Lasers

have a definite hit point, a full bin only means that there is something somewhere

inside the bin; Sonars may have multiple full bins, on a beam, while lasers have only

on hit.

Given the sonar/laser differences, it is suggested:

I Sample the empty beam volume between the sonar and the first full bin.

II Sample all full bin volumes, with a possible different sample density.

A beam volume is a frustum of a sphere, a region between the simple concept of

aperture angles (see Section 2.1.2) and within a range of distances given by the bin.

The sample density used was uniform on the volume, because it is a guide for the

expected echo point within the bin and there is no obvious privileged point.

The rationale behind ignoring all empty bins after the first full bin is to avoid

considering shadow zones as empty regions, i.e. acoustic shadows of the first echo.

As empty regions means no echo anywhere inside the bin, they are actually the most

important information provided by the sonar. Each sample from the empty beam

volume is evaluated to the feature map and passed to the learning algorithm. How-

ever, full bins indicate an echo somewhere within the bin. Thus a whole collection of

samples from a full bin are embedded to the Hilbert Space as a distribution [3, 79]:

ϕ̂(P) =
1

n

n∑
i=1

ϕ̂(xi) , (4.6)
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where P is the original distribution from where n samples xi are drawn. In the

machine learning setting, this ϕ̂(P) can be considered more than once, if the certainty

is higher, as it will be commented in the next section.

4.3 Map Learning

Map learning is an iterative optimization process to find the w that minimizes

NLLreg(w), equation (4.4). As it is a convex function, gradient descent method

would find it global minimum. The gradient of the objective function is:

∇NLLreg(w) =
n∑
i=1

−yiϕ̂(xi)(1 + exp(yi w · ϕ̂(xi)))
−1 + λ∇S(w) . (4.7)

The gradient ∇S(w) is calculated using sub-differentials, as the `1 part of an

elastic-net S(w), equation (4.5), is non-differentiable at w = 0.

The gradient descent method generates a sequence of approximated values for w

by descending on the gradient direction:

wt+1 = wt − η∇NLLreg(wt) , (4.8)

where η ∈ R+ is a step value and wt is a sequence of approximations. The issue

with this approach is the cost of computing ∇NLLreg(w) for a whole map, the

summation of equation (4.7) ranges over all sampled points from all beams from all

measurements, with sampling as in Section 4.2, and it is computed at every step of

wt.

4.3.1 Stochastic Gradient Descent - SGD

To overcame the sampling size issue of gradient descent, stochastic gradient descent

proposes the use of a single, or small batch, of samples at a time. One first shuffle

the training samples [80] then directly update wt as:

wt+1 = wt − ηt∇NLLreg(wt; (yt, xt)) , (4.9a)

∇NLLreg(wt; (yt, xt)) = −ytϕ̂(xt)(1 + exp(yt w · ϕ̂(xt)))
−1 + λ∇S(w) , (4.9b)

where (yt, xt) are the shuffled version of (yi, xi). The mini-batch variation [81] of

this method takes partition the set of samples t
k
Ik = {(yi, xi)|i = 1 . . . n} and suffle,

then the update equation becomes:

wt+1 = wt − ηt∇NLLreg(wt; It) (4.10a)
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∇NLLreg(wt; It) =
∑

(yi,xi)∈It

−ytϕ̂(xi)(1 + exp(yi w · ϕ̂(xi)))
−1 + λ∇S(w) (4.10b)

The algorithm is guaranteed to converge (under mild conditions BOTTOU [80]),

given that
∑

t η
2
t <∞ and

∑
t ηt =∞. A classic choice for ηt is

ηt =
η0

1 + t/n
. (4.11)

Where η0 is an initial step determined from a small sample and n is the number

of samples. Variations of this form also are commum, RAMOS and OTT [3] provides

another choice:

ηt =
1

λα2(t0 + t)
.

Where λ is the regulator gain, equation (4.10a), α2 is the `2 elastic-net gain,

equation (4.5), and t0 is chosen form a small sample test. However, TSURUOKA

et al. [82] adopts an exponential decay for ηt, which is not compliant with theoretical

requirements, and they had a better result than using equation (4.11). The reason

provided was that an harmonic progression decays too fast at the beginning and too

slowly at the end. As a trade-off, this work employs a theoretically valid step that

do not suffer from the aforementioned limitations:

ηt =
η0

2

(
1

(1 + t/n) logn(n+ t)
+ k1e−

t/n

)
, (4.12)

where η0, similarly to the classical case, is an initial step. The rationale is to accom-

modate a slower decay at the beginning, dictated by the exponential component,

and faster at the end without losing the divergence, as
∑

x x log x still divergent.

Faster decaying end rates can always be found, if needed.

4.4 Implementation

4.4.1 Algorithm

The implemented algorithm receives as input a sequence of sonar positions Pk and

its respective sonar responses, that is a sequence of beams b
(k)
j containing bearing

and bins values. The procedure goes as illustrated in Algorithm 3.

In the description of the algorithm ∇NLLreg(wt; feats) has a slightly different

meaning:

∇NLLreg(wt; feats) =
∑

ϕ̂∈feats

−ytϕ̂(1 + exp(yi w · ϕ̂))−1 + λ∇S(w)
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Algorithm 3 Mapping

procedure Mapping(Pk,b
(k)
j )

Ik = {b(k)
j |j ∈ µN} . Partitioning at every µ beam

w0 = 0
for all Pk do

for all b ∈ Ik do
b = threshold(b) . Classify empty/full, Section 4.2
ei = empty samples(b) . Sample first empty bins, Section 4.2.1

f
(z)
i = full samples(b) . Sample from every z full bin, Section 4.2.1

feats = {} . Empty set initialization
for all ei do

feats = feats ∪ {ϕ̂(ei)} . equation (4.2)
end for
for all f (z) do

feats = feats ∪ {Ei[ϕ̂(f
(z)
i )]} . equation (4.6)

end for
end for
w− =ηk∇NLLreg(wt; feats) . equation (4.12) on a variant of (4.10a)

end for
return w

end procedure

The plataform used for carrying out numerical simulation was develloped us-

ing Python programing language (https://www.python.org/). NumPy scientific

library (http://www.numpy.org/) was employed for linear algebra manipulation.

And Matplotlib library (https://matplotlib.org/) was used for the cross sec-

tional plots.

4.4.2 Results

Although the algorithm generates a 3D representation of an environment, results

displayed here are plane cuts of this reconstruction only for better appreciation.

The environment considered here is the 4x5 semi-infinity box of section (2.3.1).

There were used 3000 inducing points (dimension of the feature map approxima-

tion - Section 4.1.3) and 21 measurements from 7 different positions in 3 ortogonal

orientations each from the sonar simulation. Different fractions of the number of

beams were explored on three figures 4.1, 4.2 and 4.3, their axis obey the standard

orientation. Colors represent the value of the occupancy p(x; w).

Figure 4.4 shows a different setup, it used only one sonar position oriented in 3

different ways. The figure is divided into two pairs of images, each using a distinct

fraction of the total number of beams.
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(a) Plane x = −1 (b) Plane z = −2

(c) Plane x = 0 (d) Plane z = −1

(e) Plane x = 1 (f) Plane z = 0

Figure 4.1: Mapping with 10% of available beams.
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(a) Plane x = −1 (b) Plane z = −2

(c) Plane x = 0 (d) Plane z = −1

(e) Plane x = 1 (f) Plane z = 0

Figure 4.2: Mapping with 30% of available beams.
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(a) Plane x = −1 (b) Plane z = −2

(c) Plane x = 0 (d) Plane z = −1

(e) Plane x = 1 (f) Plane z = 0

Figure 4.3: Mapping with 100% of available beams, with double pass over samples.
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(a) 10% beams | Plane x = 0 (b) 10% beams | Plane z = −1

(c) 100% beams | Plane x = 0 (d) 100% beams | Plane z = −1

Figure 4.4: Mapping using only 1 position and 3 sonar orientations, with different
number of used beams.
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Chapter 5

Conclusion

All models are wrong, but some are useful.

George E. P. Box

The mapping for a single position using all beams is displayed in figure 5.1. This

figure also contains a thin green line representing the ground truth for the box-like

environment used as input to the simulator.

(a) Plane x = 0 (b) Plane z = −1

Figure 5.1: Mapping using only 1 position and 3 sonar orientations with ground
truth as green lines.

Qualitatively, the empty region is almost perfectly reconstructed, with corners

smoothed out. However the walls themselves are over a region of probability ≈ 35%.

This low probability value can be explained as consequence of having a highly reliable

information about emptyness in contrast with a diffuse measurement of occupied

regions. Such a difference, together with a smooth kernel space may create a slow

change between the regions, biased towards empty space. The smoothed corners

may also be partially caused by the choice of kernel and its approximation.

Nevertheless, the Hibert Maps applied to the underwater problem manifest a de-

piction of the environment clear enough for humans to read and still have a promising
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result for localization. The maximum error between the ground truth and the half

probability region was about 45cm (Fig.5.2)

Figure 5.2: Blue region is the half probability region and green lines represent ground
truth.

5.1 Future Works

On the simulation side, resonable next steps include implementing a more complex

BDRF to emulate more realistic materials, although that depends on measurements

which creates an extra difficulty. Also experimentation with Metropolis Transport

similar methods that could improve less sharp shadows and caustics depiction.

The mapping with Hilbert maps is a parametric method, thus automatic selection

is a simple incremental change, which may also include other feature approximations.

A post processing step could be also envisioned, an optimization step, with a forward

sonar model (simulation), to generate sharper corners and retrieve information about

the surroundings, similar to elevation maps optimization (section 4.1.2).

62



Bibliography

[1] MILLER, T. E. Real time bottom reverberation simulation in deep and shallow

ocean environments. Ph.D. Thesis, Massachusetts Institute of Technology

and Woods Hole Oceanographic Institution, 2015.

[2] THRUN, S., BURGARD, W., FOX, D. Probabilistic Robotics. Intel-

ligent robotics and autonomous agents. MIT Press, 2005. ISBN:

9780262201629. Available at: <https://books.google.com.br/books?

id=2Zn6AQAAQBAJ>.

[3] RAMOS, F., OTT, L. “Hilbert maps: scalable continuous occupancy mapping

with stochastic gradient descent”, The International Journal of Robotics

Research, v. 35, n. 14, pp. 1717–1730, 2016.

[4] ETTER, P. C. Underwater Acoustic Modeling and Simulation, Fourth Edi-

tion. CRC Press, feb 2013. ISBN: 978-1-4665-6493-0. doi: 10.1201/

b13906. Available at: <http://www.crcnetbase.com/doi/book/10.

1201/b13906>.

[5] FEYNMAN, R. P., LEIGHTON, R. B., SANDS, M. The Feynman lectures on

physics, Vol. I: The new millennium edition: mainly mechanics, radiation,

and heat, v. 1. Basic Books, 2015.

[6] BRUNEAU, M. Fundamentals of Acoustics. ISTE, 2006.

[7] FILIPPI, P., BERGASSOLI, A., HABAULT, D., et al. Acoustics: basic physics,

theory, and methods. Academic Press, 1998.

[8] LURTON, X. An Introduction to Underwater Acoustics: Principles and Appli-

cations. Springer Praxis Publishing, London, UK, 2010.

[9] FAHY, F., WALKER, J. Fundamentals of Noise and Vibration. Taylor & Francis,

1998. ISBN: 9780419241805. Available at: <https://books.google.

com.br/books?id=lo4wUkHm9j0C>.

[10] D’AMICO, A., PITTENGER, R. A brief history of active sonar. Technical

report, DTIC Document, 2009.

63

https://books.google.com.br/books?id=2Zn6AQAAQBAJ
https://books.google.com.br/books?id=2Zn6AQAAQBAJ
http://www.crcnetbase.com/doi/book/10.1201/b13906
http://www.crcnetbase.com/doi/book/10.1201/b13906
https://books.google.com.br/books?id=lo4wUkHm9j0C
https://books.google.com.br/books?id=lo4wUkHm9j0C


[11] CHAUDHARI, M. “Chirp Sonar and Electrical Resistivity Imaging survey for

integrity of concrete lining in a Hydel Channel”, JOURNAL OF INDIAN

GEOPHYSICAL UNION, v. 19, n. 2, pp. 167–174, 2015.

[12] B.I.LEMBRIKOV, D. Chirped Gaussian Pulses. Technical report, Holon Aca-

demic Institute of Technology, 2005.

[13] “Sidescan Sonar Beamwidth”. 2005. Application Note.

[14] CLAPP, M. A., ETIENNE-CUMMINGS, R. “Single ping-multiple measure-

ments: Sonar bearing angle estimation using spatiotemporal frequency

filters”, IEEE Transactions on Circuits and Systems I: Regular Papers,

v. 53, n. 4, pp. 769–783, 2006.

[15] KNEIPFER, R. R. Sonar Beamforming-An Overview Of Its History and Status.

Technical report, DTIC Document, 1992.

[16] CHU, D., HUFNAGLE, L. C. “Time varying gain (TVG) measurements of a

multibeam echo sounder for applications to quantitative acoustics”. In:

OCEANS 2006, pp. 1–5. IEEE, 2006.

[17] CHEW, J. L., CHITRE, M. “Object detection with sector scanning sonar”. In:

Oceans-San Diego, 2013, pp. 1–8. IEEE, 2013.

[18] DOBSON, C. “Introducing Sonar Technology as a Tool for Underwater Cave

Surveying”, BCRA Cave Radio & Eletronics Group, v. 94, pp. 20–23, 2016.

[19] JENSEN, F., KUPERMAN, W., PORTER, M., et al. Computational Ocean

Acoustics. Modern Acoustics and Signal Processing. Springer New York,

2011. ISBN: 9781441986788.

[20] FUNKHOUSER, T., TSINGOS, N., JOT, J.-M. “Survey of methods for model-

ing sound propagation in interactive virtual environment systems”. 2003.

[21] URICK, R. J. Sound propagation in the sea. Technical report, DARPA, 1979.

[22] DEINES, E., BERTRAM, M., MOHRING, J., et al. “Comparative visual-

ization for wave-based and geometric acoustics”, IEEE Transactions on

Visualization and Computer Graphics, v. 12, n. 5, pp. 1173–1180, 2006.

[23] BUCKINGHAM, M. J. Ocean-acoustic propagation models. EUR-OP, 1992.

[24] TORRES, J. C. Modeling of high-frequency acoustic propagation in shallow

water. Ph.D. Thesis, Monterey California. Naval Postgraduate School,

2007.

64



[25] STATES, N. D. R. C. U. Physics of Sound in the Sea. Department of the Navy,

Headquarters Naval Material Command, 1969.

[26] DESANTO, J. Scalar Wave Theory: Green’s Functions and Applications.

Springer Series on Wave Phenomena. Springer Berlin Heidelberg, 2012.

ISBN: 9783642847387.

[27] ABRAMOWITZ, M., STEGUN, I. A. Handbook of mathematical functions:

with formulas, graphs, and mathematical tables, v. 55. Courier Corpora-

tion, 1964.

[28] BAKER, M., SUTLIEF, S. “Green’s Functions in Physics Version”. 2003.

[29] WORZEL, J., EWING, M., PEKERIS, C. Propagation of Sound in the Ocean.

Geological Society of America Memoir. Geological Society of America,

1948. ISBN: 9780813710273. Available at: <https://books.google.

com.br/books?id=UWaGs872ODcC>.

[30] BELL, J. M. “Application of optical ray tracing techniques to the simulation

of sonar images”, Optical Engineering, v. 36, n. 6, pp. 1806–1813, 1997.

[31] BARTELL, F. O., DERENIAK, E., WOLFE, W. “The theory and measurement

of bidirectional reflectance distribution function (BRDF) and bidirectional

transmittance distribution function (BTDF)”. In: 1980 Huntsville Tech-

nical Symposium, pp. 154–160. International Society for Optics and Pho-

tonics, 1981.
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