SIMULAÇÃO NUMÉRICA PARA ANÁLISE ESTÁTICA E DE VIBRAÇÕES LIVRES DE ESTRUTURAS DE PLACAS DE MATERIAIS COMPOSTOS

Rubens Mitri Sydenstricker

TESE SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DE RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA CIVIL.

Aprovado por:

Luiz Landau, D. Sc.

(Presidente)

Nelson F. Favilla Ebecken, D. Sc.

varotite Alor Alvaro L. G. A. Coutinho, D. Sc. Welodymir Boruszewski, D. Sc.

RIO DE JANEIRO, RJ - BRASIL

MARÇO DE 1992

SYDENSTRICKER, RUBENS MITRI

Simulação Numérica Para Análise Estática e de Vibrações Livres de Estruturas de Placas de Materiais Compostos [Rio de Janeiro] 1992.

x, 130 p. 29,7cm (COPPE/UFRJ, M.Sc., Engenharia Civil, 1992)

Tese - Universidade Federal do Rio de Janeiro, COPPE

1. Teoria de Cisalhamento de Primeira Ordem 2. Triângulo Discreto de Kirchhoff

3. Triângulo Discreto de cisalhamento 4. Placa Homogênea equivalente.

A

Gloria, Jack Iara, Thais, Thelma

e Angela.

AGRADECIMENTOS

- A CAPES
- A Monica e Gilberto
- A Roberto Oliveira pela colaboração
- A Álvaro Luiz Gayoso de Azevedo Coutinho, pelo incentivo
- A Luiz Landau pelo apoio e confiança
- A Angela Garambone Cruz Sydenstricker pela paciência e carinho

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M. Sc.).

SIMULAÇÃO NUMÉRICA PARA ANÁLISE ESTÁTICA E DE VIBRAÇÕES LIVRES DE ESTRUTURAS DE PLACAS DE MATERIAIS COMPOSTOS

Rubens Mitri Sydenstricker

Março de 1992

Orientador : Luiz Landau

Programa : Engenharia Civil

O objetivo deste trabalho é estudar as diversas propostas de elementos finitos de placas laminadas compostas, e desenvolver o núcleo de um simulador numérico para sua representação estrutural. Para isso, é feita uma revisão detalhada da Teoria de Cisalhamento de Primeira Ordem e são implementados dois elementos de placa.

As aplicações englobam estruturas de placas homogêneas isotrópicas e ortotrópicas e de placas laminadas compostas. São realizados estudos comparativos entre os resultados de um elemento baseado na Teoria Clássica de Placas e de um outro baseado na Teoria de Cisalhamento de Primeira Ordem, sendo constatada a necessidade da consideração das deformações de cisalhamento transversal na análise de placas compostas.

Summary of Thesis presented to COPPE/UFRJ as partial fulfilment of the requirements for the degree of Master in Science (M. Sc.).

STATIC AND FREE VIBRATIONS ANALYSIS OF COMPOSITE MATERIAL PLATES

Rubens Mitri Sydenstricker

March, 1992

Chairman : Luiz Landau

Program : Civil Engineering

The purpose of this work is to study different approaches for the finite element analysis of composite multilayered plates, and to develop the kernel of a numeric simulator for its structural representation. A detailed review of the First Order Shear Deformation Theory was made, and two plates elements were implented.

The applications include homogeneous isotropic and orthotropic plates and multilayered composite plates. A comparative study between a classical bending element and a shear deformation element was made, and it was verified the need to account the transverse shear effects in the analysis of multilayred plates.

ÍNDICE

CAPÍTULO I			
INTRO	INTRODUÇÃO		
CAPÍTU	JLO II		
TEORIA DE CISALHAMENTO DE PRIMEIRA ORDEM			
2.1	HIPÓTESES BÁSICAS	9	
2.2	DEFORMAÇÕES	11	
2.3	RELAÇÕES TENSÃO-DEFORMAÇÃO	12	
2.4	TENSÕES	15	
2.5	ENERGIA DE DEFORMAÇÃO	16	
	2.5.1-ENERGIA DE DEFORMAÇÃO DE FLEXÃO Ub	17	
	2.5.2-ENERGIA DE DEFORMAÇÃO DE CISALHAMENTO TRANSVERSAL U₅	19	
2.6	ESFORÇOS		
	2.6.1-MOMENTOS	23	
	2.6.2-CORTANTES	24	
CAPÍTI	JLO III		
o tri <i>i</i>	ANGULO DISCRETO DE KIRCHHOFF		
3.1	INTRODUÇÃO	25	
3.2	TEORIA DISCRETA DE KIRCHHOFF	27	
3.3	ELEMENTO TRIANGULAR COM SEIS NÓS E DOZE GRAUS DE		
	LIBERDADE	28	
3.4	O TRIÂNGULO DISCRETO DE KIRCHHOFF	31	
	3.4.1-VARIAÇÃO CÚBICA DE W NO CONTORNO DO ELEMENTO.		
	HIPÓTESES DE KIRCHHOFF	32	

3.4.2-VARIAÇÃO LINEAR DE βη	35
3.4.3-DEFORMAÇÕES 7sz NULAS NOS NÓS INTERMEDIÁRIOS	36
3.4.4-ELIMINAÇÃO DOS NÓS INTERMEDIÁRIOS	37
3.4.5-VETOR DE CURVATURA	39
3.4.6-MATRIZ DE RIGIDEZ	40
3.4.7-MOMENTOS	43

CAPÍTULO IV

O TRI	ÅNGULO DISCRETO DE CISALHAMENTO	
4.1	INTRODUÇÃO	44
4.2	A GENERALIZAÇÃO DA TEORIA DISCRETA DE KIRCHHOFF	46
4.3	A FORMULAÇÃO DO TRIÂNGULO DISCRETO DE CISALHAMENTO	47
	4.3.1-EQUAÇÕES DE EQUILÍBRIO	48
	4.3.2-VARIAÇÃO LINEAR DE βη	50
	4.3.3-DEFORMAÇÃO DE CISALHAMENTO TRANSVERSAL	50
	4.3.4-VARIAÇÃO CÚBICA DE W	53
	4.3.5-INTRODUÇÃO DAS HIPÓTESES GENERALIZADAS DE KIRCHHOFF	
	NOS NÓS DOS VÉRTICES	53
	4.3.6-APLICAÇÃO DA TÉCNICA GENERALIZADA DE KIRCHHOFF	
	NOS NÓS INTERMEDIÁRIOS	54
	4.3.7-ELIMINAÇÃO DOS NÓS INTERMEDIÁRIOS	56
	4.3.8-VETOR DE CURVATURA	59
	4.3.9-MATRIZ DE RIGIDEZ DE FLEXÃO	59
	4.3.10-MATRIZ DE RIGIDEZ DE CISALHAMENTO TRANSVERSAL	60

4.4	TRANCAMENTO POR CORTANTE (SHEAR LOCKING)		
	4.4.1-DEFINIÇÃO	61	
	4.4.2-AUSÊNCIA DO TRANCAMENTO POR CORTANTE NO DST	63	
4			
CAPI	rulo v		
REDU	IÇÃO DA PLACA LAMINADA A UMA PLACA HOMOGÊNEA EQUIVALENTE		
5.1	INTRODUÇÃO	67	
5.2	HIPÓTESE DE CAMADAS COM MATRIZES DE ELASTICIDADE		
	PROPORCIONAIS	71	
5.3	HIPÓTESE DE FLEXÃO CILÍNDRICA	75	
CAPÍ	τυίο νι		
ESTU	DOS NUMÉRICOS		
6.1	INTRODUÇÃO	79	
6.2	PLACA ISOTRÓPICA EM BALANÇO	79	
6.3	PLACA ORTOTRÓPICA EM BALANÇO	84	
6.4	PLACA COMPOSTA SUJEITA A CARREGAMENTO SENOIDAL	86	
	6.4.1-PLACA COM TRÊS CAMADAS	89	
	6.4.2-PLACA COM NOVE CAMADAS	92	
6.5	PLACA SANDUÍCHE SUJEITA A CARREGAMENTO UNIFORME	94	
CAPÍ	TULO VII		
CONC	CONCLUSÕES		

REFERÊNCIAS

102

ix

APÊNDICE A				
SISTEM	SISTEMA DE COORDENADAS TANGENTE-NORMAIS			
APÊND	ICE B			
COORD	ENADAS DE ÁREA E SUAS DERIVADAS			
B.	COORDENADAS DE ÁREA	111		
B.2	DERIVADAS PRIMEIRAS DE $\beta x \in \beta y$.VETOR DE CURVATURA	112		
B.3	DERIVADAS SEGUNDAS DE ßx E ßy	116		
APÊNDICE C				
VARIAÇ	VARIAÇÃO CÚBICA DE W			
APÊNDICE D				
INTERPOLAÇÃO DE W PARA O INTERIOR DO ELEMENTO				
D.1	PROJEÇÃO DE UMA SUPERFÍCIE CÚBICA NUMA DIREÇÃO S	122		
D.2	INTERPOLAÇÃO DE W	124		
D.3	DETERMINAÇÃO DE W EM 10 PONTOS DO TRIÂNGULO	124		

х

D.4 DETERMINAÇÃO DOS COEFICIENTES DE W(x,y) 129

CAPÍTULO I

INTRODUÇÃO

0s tecnológicos indústrias avanços das aeronáutica. naval. automobilística e aeroespacial entre outras, têm exigido cada vez mais a utilização de materiais com características especiais. O desenvolvimento dos materiais compostos, em particular os compostos à base de fibras, veio ao encontro de tal necessidade, oferecendo materiais de baixo peso específico capazes de resistir a altas tensões e temperaturas. Por outro lado, a estruturas constituídas de tais materiais requer modelos análise de de cálculo mais elaborados empregados para analisar aue os estruturas homogêneas convencionais.

Laminados compostos consistem em duas ou mais camadas de materiais diferentes ou não, perfeitamente interligadas a fim de se obter melhores propriedades do conjunto. Os compostos a base de fibra são laminados modernos constituídos de fibras de alta resistência (carbono, kevlar, vidro) convenientemente dispostas numa matriz de resina.

Tais laminados apresentam uma rigidez de cisalhamento transversal muito baixa, se comparada às do estado plano de tensão. Segundo VINSON e ZUCAS ([1]), a relação módulo de elasticidade / módulo de cisalhamento (E/G), para materiais como grafite pirolítico, oscila entre vinte e cinqüenta. Portanto, análise de estruturas constituídas desses modelo de materiais deve o considerar as deformações de cisalhamento transversal, mesmo para estruturas espessura. As tensões de cisalhamento transversal também de pequena desempenham um papel fundamental na análise das tensões interlaminares, o que, para materiais laminados, é indispensável.

Na primeira etapa deste trabalho investigaram-se as diversas propostas de elementos finitos existentes para a análise de placas compostas, a fim de

selecionar e implantar um elemento econômico e eficiente. As referências [2], [3] e [4] dão uma ampla visão das várias abordagens disponíveis e foram fontes de consulta importantes nesta etapa da pesquisa. Em particular, as referências [2] e [3] fornecem uma farta bibliografia sobre o assunto. Na breve exposição que se segue, a variável z diz respeito à direção da espessura do laminado.

De modo geral, as teorias de elementos finitos para a análise de laminados são dividas em três classes :

TEORIAS TRIDIMENSIONAIS

TEORIAS BIDIMENSIONAIS POR CAMADAS (LAYER-WISE)

TEORIAS DE CAMADA ÚNICA EQUIVALENTE

Obviamente, as teorias tridimensionais são as que melhor representam o comportamento de estruturas laminadas. Entretanto, o elevado número de incógnitas envolvidas е а difícil implantação de etapas de Dré е pós-processamento inviabilizam a utilização exclusiva desses modelos. Num processamento conhecido сото local-global, utilizam-se modelos mais elaborados (tais como os tridimensionais) em regiões de altos gradientes de tensão, e modelos menos refinados (tais como os de camada única equivalente) nas demais regiões da estrutura (referências [5], [6] e [7]).

Nos modelos tridimensionais, o ideal é que se tenha, no mínimo, um elemento por camada. Entretanto, a fim de se reduzir o volume computacional, pode-se utilizar o conceito de sublaminados que consiste em se agrupar diversas camadas em um sublaminado equivalente. As propriedades do sublaminado são obtidas integrando-se as propriedades de cada camada que o constitui, assim como se faz nas teorias de camadas equivalentes. Nas referências [2] e [3] encontram-se mais informações sobre os modelos

tridimensionais.

Na referência [8], REDDY propõe a teoria bidimensional por camadas. Nesta teoria, o campo de deslocamento num ponto (x,y,z) é expandido na forma

$$u_{i}(x,y,z) = u_{1}^{0}(x,y) + \sum_{j=1}^{N_{i}} U_{j}^{j}(x,y) \Phi_{j}(z) \qquad i = 1,2,3$$
(1.1)

onde N_i representa o número de subdivisões na direção da espessura, $\Phi_j(z)$ são funções conhecidas, contínuas por partes e definidas apenas em duas camadas adjacentes e $U_j(x,y)$ são coeficientes a determinar que serão incorporados ao sistema de equações como graus de liberdade nodais. É frequente adotar-se $N_1 = N_2$ e $N_3 = 0$. Neste caso, (1.1) toma a forma

$$u_1(x,y,z) = u(x,y) + U(x,y,z)$$

$$u_2(x,y,z) = v(x,y) + V(x,y,z)$$

$$u_3(x,y,z) = w(x,y)$$
(1.2)

onde

$$U(x,y,z) = \sum_{j=1}^{N} U_{j}(x,y) \Phi_{j}(z)$$

$$V(x,y,z) = \sum_{j=1}^{N} V_{j}(x,y) \Phi_{j}(z)$$
 (1.3)

Em (1.2), u(x,y), v(x,y) e w(x,y) representam, respectivamente, os deslocamentos u1, u2 e u3 sobre a superfície de referência. Dessa maneira,

 $U(x,y,0) \in V(x,y,0)$ são nulos.

Devido à natureza local de Φ_j , os deslocamentos são contínuos na direção da espessura, mas suas derivadas primeiras em relação a z são descontínuas. Assim, as deformações de cisalhamento transversal são descontínuas nas interfaces das camadas, permitindo que as tensões de cisalhamento transversal sejam contínuas. As deformações ε_x , ε_y e γ_{xy} são contínuas e as tensões σ_x , σ_y e τ_{xy} são descontínuas nas interfaces, devido à diferença entre as propriedades elásticas de duas camadas adjacentes.

A principal vantagem da teoria bidimensional por camadas sobre a teoria de camadas equivalentes está em se obter a continuidade das tensões de cisalhamento transversal na direção da espessura. Estas tensões desempenham um papel fundamental na determinação da carga de ruptura da estrutura. A desvantagem está no elevado número de graus de liberdade por nó. Segundo REDDY ([4]), a teoria bidimensional por camadas é uma alternativa melhor que a teoria tridimensional.

Dentre as teorias existentes para se simular o comportamento de estruturas laminadas, a teoria de camada única equivalente é a mais simples e econômica. Nesta teoria, o campo de deslocamento tridimensional é expandido na forma

$$u_{i}(x,y,z) = \sum_{j=0}^{M} u_{i}^{j}(x,y) (z)^{j}$$
 $i = 1,2,3$ (1.4)

onde M_i é o número de termos da expansão da componente de deslocamento $u_1(x,y,z)$ (normalmente $M_1 = M_2$), e $u_1^{j}(x,y)$ são funções definidas sobre a superfície de referência (normalmente a superfície média) que dependem dos deslocamentos dos nós.

Em todas as teorias de camadas equivalentes os deslocamentos e suas derivadas são contínuos na direção da espessura. Como consequência, o campo de deformações é contínuo na direção de z, e o campo de tensões é descontínuo nas interfaces das camadas, onde ocorre uma variação súbita das propriedades elásticas. Assim, as teorias de camadas equivalentes são, em geral, adequadas para simular o comportamento global de estruturas laminadas (deslocamentos e freqüências naturais), mas não são apropriadas para representar efeitos localizados oriundos da distribuição interlaminar de tensões.

Dependendo do valor de M_1 em (1.4), pode-se desenvolver teorias de camadas equivalentes de diferentes ordens. Nas referências [9] a [11] são apresentadas diversas propostas . Entre elas está a teoria de terceira ordem de REDDY, onde as tensões de cisalhamento transversal se anulam nas faces externas do laminado.

Fazendo-se $M_1 = M_2 = 1$ e $M_3 = 0$, obtem-se a teoria de cisalhamento de primeira ordem, também conhecida como teoria de Mindlin. Nesta teoria, o campo de deslocamento toma a forma

$$u_{1}(x,y,z) = u_{1}^{0}(x,y) + z u_{1}^{1}(x,y)$$

$$u_{2}(x,y,z) = u_{2}^{0}(x,y) + z u_{2}^{1}(x,y)$$

$$u_{3}(x,y) = u_{3}^{0}(x,y)$$
(1.5)

onde $u_1(x,y,z)$ e $u_2(x,y,z)$ são os deslocamentos na direção de x e y respectivamente e $u_3(x,y)$ é o deslocamento transversal. As funções $u_1^1(x,y)$ e $u_2^1(x,y)$ são as rotações em torno dos eixos y e x respectivamente, e as funções $u_1^0(x,y)$ representam o deslocamento u_1 sobre a superfície de referência.

O campo de deslocamento da teoria de cisalhamento de primeira ordem redunda em deformações de cisalhamento transversal constantes na direção da espessura. Essa hipótese não é verdadeira nem mesmo para estruturas onde as deformações de cisalhamento transversal variam homogêneas, quadraticamente na direção de z. A má distribuição das tensões fornecida pela teoria causa uma estimativa errônea da rigidez ao cisalhamento transversal da estrututra. Para corrigir este erro, utilizam-se fatores de correção de cisalhamento transversal Kx e Ky.

Segundo BURTON E NOOR ([2] e [3]), o âmbito de validade da teoria de cisalhamento transversal é fortemente influenciado pelos fatores de correção de cisalhamento transversal. Várias propostas têm sido feitas para determinar esses fatores. A maioria delas baseia-se em igualar certas grandezas fornecidas pela teoria de cisalhamento de primeira ordem às grandezas correspondentes fornecidas pela teoria da elasticidade tridimensional. Entre estas grandezas estão a energia de deformação de cisalhamento transversal (a mais freqüentemente adotada), а freqüência natural associada ao modo de vibração de cisalhamento e a velocidade de propagação de uma onda de flexão ([12] a [16]).

BURTON e NOOR ([17]) propuseram a determinação dos fatores de correção de cisalhamento transversal, considerando não apenas os parâmetros do laminado (como até então vinha sendo feito), mas também as diferenças na deformações decorrentes de diferentes condições distribuição das de carregamento. Esta abordagem foi denominada procedimento preditor-corretor e se divide em duas etapas. Na primeira (fase preditora), utiliza-se um método convencional para determinar Kx e Ky e obter o comportamento global da estrutura. Na segunda (fase corretora), utilizam-se os resultados fornecidos pela etapa anterior e as equações de equilíbrio tridimensional para se obter valores mais precisos dos fatores de correção de cisalhamento

transversal.

Na referência [3], são feitos estudos numéricos comparando os resultados de diversas teorias de cascas laminadas, incluindo a teoria de cisalhamento de primeira ordem, utilizando o procedimento preditor-corretor. Dois tipos de procedimento preditor-corretor foram utilizados, diferindo-se quanto à ajustada na fase corretora. No primeiro ajustou-se a rigidez de grandeza cisalhamento transversal ([18]) e no segundo a distribuição das tensões ([19]). bastante transversais Ambos procedimentos mostraram-se os eficientes.

Pode-se observar que as propostas de análise de estruturas laminadas são muitas, e, em cada uma delas, encontramos vantagens e desvantagens. É, portanto, dificil apontar qual o melhor caminho a seguir. Entretanto, a teoria de camada equivalente, em particular a teoria de cisalhamento de primeira ordem, parece-nos, por sua economia e simplicidade, ser a melhor opção para simular o comportamento de uma estrutura laminada, ou pelo menos o de sua maior parte.

Em 1989, BATOZ e LARDEUR ([20]] apresentaram um artigo anunciando um novo elemento para a análise de placas laminadas compostas: o DST (triângulo discreto de cisalhamento). Este elemento baseia-se na teoria de cisalhamento de primeira ordem e apresenta como principais qualidades a economia (apenas nove graus de liberdade) e a capacidade de representar satisfatoriamente tanto placas finas como espessas. Sua formulação é obtida pela generalização de um outro elemento de placa: o DKT (triângulo discreto de Kirchhoff) ([21]).

O objetivo deste trabalho é projetar e desenvolver o núcleo de um simulador numérico para analisar estruturas de materiais compostos. utilizando o Método dos Elementos Finitos. Nesta primeira etapa, será implementado o elemento DST, possibilitando tanto a análise estática linear

como a análise de vibrações livres.

Sendo assim, este trabalho está organizado da seguinte forma :

CAPÍTULO II

Expõe de forma mais detalhada a teoria de cisalhamento de primeira ordem;

CAPÍTULO III

Trata do desenvolvimento da formulação do elemento DKT;

CAPÍTULO IV

Trata do desenvolvimento da formulação do elemento DST;

CAPÍTULO V

Trata do processo de redução de uma placa laminada a uma placa homogênea equivalente, e da determinação dos fatores de correção de cisalhamento transversal para placas compostas;

CAPÍTULO VI

Expõe os estudos numéricos realizados

CAPÍTULO VII

Conclusões e atividades futuras de pesquisa

CAPÍTULO II

TEORIA DE CISALHAMENTO DE PRIMEIRA ORDEM

2.1- HIPÓTESES BÁSICAS

A teoria de cisalhamento de primeira ordem, também conhecida como teoria de Mindlin, considera a seguinte generalização da hipótese de Kirchhoff:

and the second second

"Os pontos da placa que, antes da deformação, estão alinhados segundo uma reta normal à superfície média, permanecem alinhados segundo uma reta (não necessariamente normal à superfície média) após a deformação."

A teoria considera também que as deformações sejam pequenas, de modo que os ângulos das rotações sofridas pela placa se confundam com os seus respectivos senos. Então, chamando de β_x e β_y as rotações em torno dos eixos Y e X respectivamente (figura 2.1) e considerando as hipóteses acima, podemos escrever:

$$u = uo(x,y) + z \beta_{x}(x,y)$$

$$v = vo(x,y) + z \beta_{y}(x,y)$$

$$w = wo(x,y)$$
(2.1)

onde

 u, v, w - componentes de deslocamento nas direções x, y e z respectivamente ;
 uo, vo, wo - componentes de deslocamento dos pontos sobre a superfície de referência.

Figura 2.1 - Sentidos Positivos de u,v,w, ^Bx e ^By

Supondo que as retas originalmente normais ao plano da placa girem centradas na superfície média, e adotando-se esta superfície como referência, temos que:

$$uo(x,y) = 0$$

 $vo(x,y) = 0$ (2.2)

Para que (2.2) seja válido, a placa não deve ser solicitada por esforços normais às suas seções transversais. Devemos considerar também que haja uma simetria das propriedades elásticas em relação à superfície média.

Considerando (2.2), as expressões (2.1) tomam a forma simplificada

$$w = wo(x,y)$$

$$u = z \beta x$$

$$v = z \beta y$$
(2.3)

A teoria considera ainda que a componente de tensão normal à superfície média é nula. As demais componentes de tensão são obtidas através das relações constitutivas e das deformações, que por sua vez são obtidas pela derivação das expressões (2.3).

2.2- DEFORMAÇÕES

Das relações entre deslocamentos e deformações temos

$$\varepsilon_{x} = \partial u / \partial x$$

$$\varepsilon_{y} = \partial v / \partial y$$

$$\gamma_{xy} = \partial u / \partial y + \partial v / \partial x$$
(2.4)
$$\gamma_{xz} = \partial w / \partial x + \partial u / \partial z$$

$$\gamma_{yz} = \partial w / \partial y + \partial v / \partial z$$
 (2.5)

que podem ser escritas como

$$\langle \varepsilon_{b} \rangle = z \langle \chi \rangle$$
 (2.6)

onde

$$\{\chi\} = \begin{bmatrix} \partial\beta x/\partial x \\ \partial\beta y/\partial y \\ \partial\beta x/\partial y + \partial\beta y/\partial x \end{bmatrix}$$
(2.7)

$$\left\{ \begin{array}{c} \varepsilon_{b} \end{array} \right\} = \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{bmatrix}$$
(2.8)

е

$$(\gamma) = \begin{bmatrix} \gamma_{xz} \\ \gamma_{yz} \end{bmatrix} = \begin{bmatrix} \partial W / \partial x + \beta x \\ \partial W / \partial y + \beta y \end{bmatrix}$$
 (2.9)

Devido à hipótese de $\sigma_z = 0$, a deformação ε_z relaciona-se diretamente com as demais componentes de deformação através das relações constitutivas. Vale ressaltar que w em (2.1) e (2.3) representa o deslocamento transversal somente dos pontos sobre a superfície de referência e, portanto, não podemos obter ε_z pela sua derivação.

É também interessante observar que, como as funções Wo, β_x e β_y são independentes de z, (2.9) fornece as deformações de cisalhamento transversal γ_{xz} e γ_{yz} constantes ao longo da espessura da placa.

2.3- RELAÇÕES TENSÃO-DEFORMAÇÃO

Sejam { σ_{T} } e { ε_{T} } os vetores de tensão e deformação da teoria da elasticidade tridimensional respectivamente, dados por

$$\left\{ \begin{array}{c} \sigma_{T} \end{array} \right\} = \begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{xy} \\ \tau_{xz} \\ \tau_{yz} \end{bmatrix} \qquad e \quad \left\{ \begin{array}{c} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$
 (2.10)

Seja $[E_{T}]$ a matriz constitutiva tridimensional, de modo que

$$\{\sigma_{T}\} = [E_{T}] \{\varepsilon_{T}\}$$
 (2.11)

Então, como σ_z é suposto nulo, de (2.11) podemos obter

$$\varepsilon_{z} = - \left(E_{31}^{T} \varepsilon_{x} + E_{32}^{T} \varepsilon_{y} + E_{34}^{T} \gamma_{xy} + E_{35}^{T} \gamma_{xz} + E_{36}^{T} \gamma_{yz} \right) / E_{33}^{T}$$
(2.12)

Aplicando (2.12) em (2.11) e considerando a simetria da matriz $[E_T]$, chegamos às relações tensão-deformação bidimensionais

$$\langle \sigma \rangle = [E] \langle \varepsilon \rangle$$
 (2.13)

onde

são os vetores de tensão e deformação bidimensionais respectivamente, e

$$[E] = \begin{bmatrix} E_{11} - E_{13}^{2} \\ E_{33} \\ E_{33} \\ E_{33} \\ E_{22} - E_{23}^{2} \\ E_{33} \\ E_{33} \\ E_{33} \\ E_{24} - E_{34} \\ E_{33} \\ E_{33} \\ E_{33} \\ E_{25} - E_{35} \\ E_{33} \\ E_{33} \\ E_{33} \\ E_{25} - E_{35} \\ E_{33} \\ E_{$$

(2.15)

é a matriz de elasticidade bidimensional.

No caso de materiais isotrópicos, (2.15) toma a forma

$$[E] = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \\ \hline \begin{bmatrix} 0 \end{bmatrix} \\ \hline \\ \begin{bmatrix} 0 \end{bmatrix} \\ \frac{1-\nu}{2} & 0 \\ 0 & \frac{1-\nu}{2} \end{bmatrix}$$

(2.16)

onde E e ν são o módulo de Young e o coeficiente de Poisson respectivamente.

Para materiais ortotrópicos, (2.15) fica

onde

Ex e Ey são os módulos de Young nas direções principais x e y, são os coeficientes de Poisson que caracterizam a deformação na direção j causada por uma tensão na direção i, G_{xy},G_{xz},G_{yz} são os modulos de cisalhamento.

2.4- TENSÕES

Como vimos, os materiais isotrópicos e ortotrópicos têm a matriz de elasticidade bidimensional da forma

$$[E] = \begin{bmatrix} \begin{bmatrix} D \end{bmatrix}_{3x3} \\ \hline \begin{bmatrix} 0 \end{bmatrix} \\ \hline \begin{bmatrix} G \end{bmatrix}_{2x2} \end{bmatrix}$$
(2.18)

Então, para estes materiais, podemos colocar (2.13) na forma

$$\{\sigma_{b}\} = [D] \{\varepsilon_{b}\} = z[D] \{\chi\}$$

$$\{\tau\} = [G] \{\gamma\}$$
(2.19)

onde

$$\{\sigma_{b}\} = \begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \gamma_{xy} \end{bmatrix}$$

$$\{\tau\} = \begin{bmatrix} \tau_{xz} \\ \tau_{yz} \end{bmatrix}$$

$$(2.20)$$

e os vetores { ε_b }, { χ } e { γ } são dados por (2.6), (2.7) e (2.9) respectivamente.

Comparando (2.16) e (2.17) com (2.18), podemos facilmente obter as matrizes [D] e [G] para materiais isotrópicos e ortotrópicos.

2.5- ENERGIA DE DEFORMAÇÃO

Como supomos que $\sigma z = 0$, não há acréscimo na energia de deformação devido a εz . Neste caso, a energia de deformação é dada pela soma das

parcelas U_b (relativa aos vetores $\{\sigma_b\}$ e $\{\epsilon_b\}$) e Us (relativa aos vetores $\{\tau\}$ e $\{\gamma\}$). Assim, a energia de deformação total é dada por

$$U = U_{s} + U_{b}$$
(2.21)

2.5.1- ENERGIA DE DEFORMAÇÃO DE FLEXÃO U

Da teoria da elasticidade temos que

$$U_{b} = 1/2 \int_{VOL} \{\varepsilon_{b}\}^{T} \{\sigma_{b}\} dz dy dx$$
 (2.22)

De (2.6) e (2.19) temos que:

$$\langle \varepsilon_{b} \rangle^{T} \langle \sigma_{b} \rangle = z^{2} \langle \chi \rangle^{T} [D] \langle \chi \rangle$$
 (2.23)

Aplicando (2.23) em (2.22), e lembrando que $\{\chi\}$ é constante na direção de z, chegamos a

$$U_{b} = 1/2 \int_{A} \{ \chi \}^{T} [D_{b}] \{ \chi \} dy dx$$
 (2.24)

onde A é a area da superfície média da placa ,h é a espessura (figura 2.1) e

$$[D_{b}] = \int_{-h/2}^{+h/2} z^{2} [D] dz$$
 (2.25)

No caso de material homogêneo temos:

$$[D_{b}] = \frac{h^{3}}{12} [D]$$
 (2.26)

Então, no caso de material homogêneo e isotrópico, temos

$$[D_{b}] = \frac{E h^{3}}{12 (1-\nu^{2})} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix}$$
(2.27)

.

Para material homogênep ortotrópico temos.

$$[D_{b}] = \frac{h^{3}}{12} \begin{bmatrix} \frac{E_{x}}{1-\nu} & \frac{E_{y}\nu}{y_{xy}} & 0\\ \frac{E_{x}\nu}{y_{xy}} & \frac{E_{y}\nu}{y_{yx}} & 0\\ \frac{E_{x}\nu}{y_{xy}} & \frac{E_{y}}{1-\nu} & 0\\ \frac{1-\nu}{x_{y}\nu}\frac{v_{yx}}{y_{yx}} & \frac{1-\nu}{x_{y}\nu}\frac{v_{yx}}{y_{yx}} \end{bmatrix}$$

(2.28)

2.5.2- ENERGIA DE DEFORMAÇÃO DE CISALHAMENTO TRANSVERSAL U

A energia de deformação de cisalhamento transversal é dada por

$$Us = Us + Us$$
(2.29)

onde

$$Us_{x} = 1/2 \int_{VOL.} \mathfrak{P}_{xz} \tau_{xz} dz dy dx$$

$$Us_{y} = 1/2 \int_{VOL} \gamma yz \tau yz \, dz \, dy \, dx \qquad (2.30)$$

Para materiais homogêneos, a teoria da elasticidade fornece

$$\tau_{xz} = 6 \frac{TX}{h^3} \left(\frac{h^2}{4} - z^2 \right)$$

$$\tau_{yz} = 6 \frac{TY}{h^3} \left(\frac{h^2}{4} - z^2 \right)$$
 (2.31)

Considerando-se que

$$\gamma_{xz} = \frac{\tau_{xz}}{G_{xz}}$$
 e $\gamma_{yz} = \frac{\tau_{yz}}{G_{yz}}$ (2.32)

podemos escrever (2.30) na forma

$$Us_{x} = 1/2 \int_{VoL} \frac{\tau_{xz}^{2}}{Gxz} dz dy dx$$

$$Us_{y} = 1/2 \int_{VoL} \frac{\tau_{yz}^{2}}{Gyz} dz dy dx$$
(2.33)

Substituindo (2.31) em (2.33) e integrando de -h/2 a +h/2, obtemos :

$$Us_{x} = \frac{1}{2} \frac{6}{5} \int_{AREA} \frac{TX^{2}}{h \ Gxz} \ dy \ dx$$

$$U_{s_{y}} = \frac{1}{2} \frac{6}{5} \int_{AREA} \frac{TY^{2}}{h \ Gyz} dy dx$$
 (2.34)

Como vimos na teoria de Mindlin, as deformações $\gamma_{xz} e \gamma_{yz} e$, conseqüentemente, as tensões $\tau_{xz} e \tau_{yz}$ são supostas constantes ao longo da espessura. Para corrigir o erro no cálculo da energia de deformação de cisalhamento transversal causado por esta hipótese, utilizamos fatores de correção de cisalhamento transversal.

Estes fatores são tais que nos permitem considerar as tensões de cisalhamento transversal dadas por uma correção das tensões de cisalhamento transversal médias, ou seja

$$\tau_{xz} = \frac{TX}{K_x h}$$
 e $\tau_{yz} = \frac{TY}{K_y h}$ (2.35)

onde Kx e Ky são os fatores de correção de cisalhamento transversal.

Sejam \overline{Us}_x e \overline{Us}_y as parcelas da energia de deformação de cisalhamento transversal calculada considerando-se as tensões τ_{xz} e τ_{yz} constantes conforme (2.35). Então, por definição, temos que

$$K_{x} = \frac{Us_{x}}{\overline{U}s_{x}} \qquad e \qquad K_{y} = \frac{Us_{y}}{\overline{U}s_{y}} \qquad (2.36)$$

onde, para materiais homogêneos, Us e Us são dadas por (2.34).

Substituindo (2.35) e (2.32) em (2.30) e integrando de -h/2 a +h/2, obtemos :

$$\overline{U}s_{x} = \frac{1}{2} \int_{AREA} \frac{TX^{2}}{K_{x}^{2} G_{xz}h} dy dx$$
$$\overline{U}s_{y} = \frac{1}{2} \int_{AREA} \frac{TY^{2}}{K_{y}^{2} G_{yz}h} dy dx$$

(2.37)

Substituindo (2.37) e (2.34) em (2.36), e operando, obtemos o fator de correção de cisalhamento para materiais homogêneos

$$K_x = K_y = K = \frac{5}{6}$$
 (2.38)

Considerando (2.35) e (2.32), podemos escrever

$$\{T\} = \begin{bmatrix} TX \\ TY \end{bmatrix} = [Ds] \{\gamma\}$$
(2.39)

onde, para materiais homogêneos

$$[Ds] = K \int_{-h/2}^{h/2} [G] dz = h K \begin{bmatrix} G & 0 \\ xz & 0 \\ 0 & Gyz \end{bmatrix}$$
(2.40)

Substituindo (2.39) em (2.35), obtemos

$$\{\tau\} = \frac{1}{K h} [Ds] \{\gamma\}$$
(2.41)

Considerando (2.41) e (2.30), podemos escrever

$$\overline{U}_{S} = \overline{U}_{S} + \overline{U}_{S} = \frac{1}{2} \int_{VOL.} \langle \gamma \rangle^{T} \frac{1}{K h} [D_{S}] \langle \gamma \rangle dz dy dx$$

(2.42)

Integrando (2.42) na direção de z e considerando (2.36), obtemos a energia de deformação de cisalhamento transversal corrigida

Us = Us_x + Us_y =
$$\frac{1}{2} \int_{AREA} \langle \gamma \rangle^{T}$$
 [Ds] $\langle \gamma \rangle$ dy dx

(2.43)

2.6- ESFORÇOS

2.6.1- MOMENTOS

Por definição, temos

$$\{M\} = \begin{bmatrix} Mx \\ My \\ Mxy \end{bmatrix} = \int_{-h/2}^{h/2} \langle \sigma_b \rangle dz$$
 (2.44)

Substituindo $\langle \sigma_b \rangle$, dado por (2.19), em (2.44) e considerando que $\{\chi\}$ é constante na direção de z, obtemos

$$\{M\} = [D_b] \{\chi\}$$
 (2.45)

onde [D] esta definida em (2.26).

2.6.2- CORTANTES

Os cortantes TX e TY estão definidos no item 2.5.2. Repetimos a seguir a expressão dos cortantes para materiais homogêneos.

$$\{T\} = \begin{bmatrix} TX \\ TY \end{bmatrix} = [Ds] \{\gamma\}$$
(2.46)

Para materiais ortotrópicos, temos

$$\{T\} = h \begin{bmatrix} K_x & 0 \\ 0 & K_y \end{bmatrix} \begin{bmatrix} G & 0 \\ xz & 0 \\ 0 & G_{yz} \end{bmatrix} \begin{bmatrix} \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$
(2.47)

CAPÍTULO III

O TRIÅNGULO DISCRETO DE KIRCHHOFF

3.1- INTRODUÇÃO

A formulação do Triângulo Discreto de Kirchhoff (DKT) foi apresentada em 1969 sob o nome de QQ3 [22]. Embora ele fosse um dos mais eficientes elementos de placas da época, sua apresentação não era simples nem atrativa. Seguiram-se então publicações concluindo que sua implementação era complexa ([23] e [24]), e que o elemento fornecia tensões relativamente pouco precisas ([25]).

Cerca de dez anos mais tarde, uma nova publicação ([21]) mencionando estudos teóricos mais recentes ([26] a [29]), demonstrava a eficiência do elemento. Ficava provado que os deslocamentos e autovalores fornecidos pelo elemento convergiam quadraticamente para a solução clássica de Kirchhoff.

O DKT é um elemento triângular de lados retos, contendo nove graus de liberdade e utiliza a Teoria Discreta de Kirchhoff. O modelo não está associado a nenhum princípio variacional específico e apresenta um campo de deslocamento de continuidade C^0 .

Apesar de convergir para a teoria clássica de Kirchhoff, o DKT utiliza uma teoria que inclui as deformações de cisalhamento transversal. Entretanto, como a energia de deformação de cisalhamento transversal é desprezada e as hipóteses de Kirchhoff são impostas em pontos discretos, o elemento não é adequado para representar placas constituídas de materiais compostos modernos. O elemento que realmente nos interessa é o Triângulo Discreto de Cisalhamento (DST), que é derivado do DKT e que considera a rigidez de cisalhamento transversal. É este, pois, o motivo do estudo que faremos neste capítulo.

O DKT é obtido a partir de um elemento de seis nós e doze graus de

liberdade. O elemento original tem como graus de liberdade apenas as rotações e, portanto, a energia de deformação de flexão Us por ele fornecida não inclui os deslocamentos tranversais w .

Figura 3.1 - Geometria do DKT

A formulação do DKT consiste em relacionar as rotações dos nós intermediários com os graus de liberdade dos nós dos vértices (incluindo w). Para tal, adotamos a seguinte estratégia :

~Obtemos uma expressão que defina w no contorno do elemento de modo que

w = w (wi, $\partial w / \partial x |_1$, $\partial w / \partial y |_1$); i=1, 2, 3

-Impomos a hipóteses de Kirchhoff nos nós dos vértices obtendo

$$w = w$$
 (wi, βxi , βyi) ; i=1, 2, 3

-Consideramos sistemas de eixos S- η tangente-normais aos lados do elemento. As rotações dos nós intermediários são relacionadas com os graus de liberdade dos nós dos vértices impondo uma variação linear de $\beta\eta$ ao longo do lado, e aplicando a técnica de Kirchhoff na direção S
3.2- TEORIA DISCRETA DE KIRCHHOFF

A teoria discreta de Kirchhoff é constituida de três etapas básicas:

- 1-Considera-se uma teoria que inclua as deformações de cisalhamento transversais. Neste caso, as grandezas w, βx e βy são independentes.
- 2-A energia de deformação de cisalhamento transversal é desprezada. Então, a energia de deformação do elemento é do tipo

$$U = Ub(\beta_x, \beta_y)$$
(3.1)

3-No caso de pequenas rotações podemos incluir w em (3.1) impondo que numa certa direção S:

$$\beta s = \frac{-\partial w}{\partial S}$$
(3.2)

Fisicamente, (3.2) garante que os pontos inicialmente alinhados segundo uma reta normal a um eixo de direção S, permanecem alinhados segundo uma reta normal a este eixo após a deformação. Na teoria discreta de Kirchhoff, impomos tal condição em pontos discretos do elemento nas direções X e Y, ou seja, impomos que

$$\beta \mathbf{x} = \frac{-\partial \mathbf{w}}{\partial \mathbf{X}}$$
 e $\beta \mathbf{y} = \frac{-\partial \mathbf{w}}{\partial \mathbf{Y}}$ (3.3)

A expressão (3.3) implica que, nos pontos considerados, as retas originalmente normais à superfície média da placa, permanecem normais à superficie média após a deformação. 3.3- ELEMENTO TRIANGULAR COM SEIS NÓS E DOZE GRAUS DE LIBERDADE

Seja o elemento da figura 3.2 cujas rotações são dadas por

$$\beta_{\mathbf{x}} = \sum_{i=1}^{6} N_{i} \beta_{\mathbf{x}i}$$

$$\beta_{\mathbf{y}} = \sum_{i=1}^{6} N_{i} \beta_{\mathbf{y}i}$$
(3.4)

onde

Figura 3.2 - Sistema de Coordenadas Tangente Normais

As funções de interpolação são polinômios completos do segundo grau sem termos parasitas,ou seja, são do tipo

$$N_{1} = \alpha_{11} + \alpha_{21} L_{2} + \alpha_{31} L_{3} + \alpha_{41} L_{2} L_{3} + \alpha_{51} L_{2}^{2} + \alpha_{61} L_{3}^{2}$$

onde:

 α_{1j} - coeficientes a determinar $L_2 e L_3$ -coordenadas de área (APÉNDICE B)

Seja a matriz de coordenadas de área :

$$[L] = [1 \ L_2 \ L_3 \ L_2 \ L_3 \ L_2^2 \ L_3^2]$$
(3.6)

(3.5)

(3.7)

Então, podemos escrever (3.4) na forma :

 $\beta_{\mathbf{x}} = \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} C \end{bmatrix} \{\beta_{\mathbf{x}}\}$ $\beta_{\mathbf{y}} = \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} C \end{bmatrix} \{\beta_{\mathbf{y}}\}$

onde $\{\beta_x\}$ e $\{\beta_y\}$ são os vetores das rotações nodais dados por

$$\{\beta_{\mathbf{X}}\}= \begin{cases} \{\beta_{\mathbf{X}}1\}\\ \{\beta_{\mathbf{X}}2\} \end{cases}; \qquad \{\beta_{\mathbf{Y}}\}= \begin{cases} \{\beta_{\mathbf{Y}}1\}\\ \{\beta_{\mathbf{Y}}2\} \end{cases}$$
(3.8)

$$\{\beta \mathbf{x} \mathbf{l}\} = \begin{bmatrix} \beta_{\mathbf{x} \mathbf{1}} \\ \beta_{\mathbf{x} \mathbf{2}} \\ \beta_{\mathbf{x} \mathbf{3}} \end{bmatrix} ; \qquad \{\beta \mathbf{y} \mathbf{l}\} = \begin{bmatrix} \beta_{\mathbf{y} \mathbf{1}} \\ \beta_{\mathbf{y} \mathbf{2}} \\ \beta_{\mathbf{y} \mathbf{3}} \end{bmatrix}$$

$$\{\beta \mathbf{x} \mathbf{2}\} = \begin{bmatrix} \beta \mathbf{x} \mathbf{4} \\ \beta \mathbf{x} \mathbf{5} \\ \beta \mathbf{x} \mathbf{6} \end{bmatrix} ; \qquad \{\beta \mathbf{y} \mathbf{2}\} = \begin{bmatrix} \beta \mathbf{y} \mathbf{4} \\ \beta \mathbf{y} \mathbf{5} \\ \beta \mathbf{y} \mathbf{6} \end{bmatrix}$$

e [C] é a matriz dos coeficientes α_{ij} ($C_{ij} = \alpha_{ij}$) Impondo que $N_i = 1$ no nó i e $N_i = 0$ nos demais nós obtemos

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} C1 \\ 6x3 & 6x3 \end{bmatrix} \begin{bmatrix} C2 \\ 6x3 & 6x3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -3 & -1 & 0 & 0 & 0 & 4 \\ -3 & 0 & -1 & 0 & 4 & 0 \\ 4 & 0 & 0 & 4 & -4 & -4 \\ 2 & 2 & 0 & 0 & 0 & -4 \\ 2 & 0 & 2 & 0 & -4 & 0 \end{bmatrix} 6$$
(3.10)

Considerando (3.8) e (3.10), podemos escrever (3.7) na forma :

$$\beta_{x} = [L] ([C1] (\beta_{x1}) + [C2] (\beta_{x2}))$$

(3.11)

(3.9)

$$\beta y = [L] ([C1] (\beta y1) + [C2] (\beta y2))$$

30

As expressões (3.7) e (3.11) são equivalentes e é possível utilizá-las para obter o vetor de curvatura $\{\chi\}$ (expressão 2.7) e, conseqüentemente, a energia de deformação de flexão Ub (expressão 2.20). Então, poderíamos obter uma matriz [K'] tal que

$$Ub = \frac{1}{2} \langle \beta \rangle^{T} [K'] \langle \beta \rangle$$
$$\langle \beta \rangle = \begin{bmatrix} \langle \beta x \rangle \\ \langle \beta y \rangle \end{bmatrix}$$
(3.12)

Portanto, se desprezarmos a energia de deformação de cisalhamento transversal, é possível utilizar [K'] para relacionar os deslocamentos nodais com as cargas a eles correspondentes. Entretanto, como em (3.12) não contemos deslocamentos transversais w, o sistema de equações obtido não nos permitiria considerar forças transversais à superfície da placa.

3.4- O TRIÂNGULO DISCRETO DE KIRCHHOFF

O DKT é obtido relacionando-se as rotações dos nós intermediários com os graus de liberdade dos nós dos vértices (inclusive w). Substituindo { β x2} e { β y2} em (3.11), obtemos interpolações de β x e β y que incluem os deslocamentos w. Para isso, utilizamos sistemas de eixos S- η descritos no APÊNDICE A. A expressão (A.4) permite-nos escrever

$$\langle \beta x 2 \rangle = [Ck] \langle \beta \eta \rangle - [Sk] \langle \beta s \rangle$$

 $\{\beta y2\} = [Sk] \{\beta\eta\} + [Ck] \{\beta s\}$

(3.13)

onde

$$\langle \beta_{\rm S} \rangle = \begin{bmatrix} \beta_{\rm S4} \\ \beta_{\rm S5} \\ \beta_{\rm S6} \end{bmatrix} \qquad \langle \beta_{\eta} \rangle = \begin{bmatrix} \beta_{\eta4} \\ \beta_{\eta5} \\ \beta_{\eta6} \end{bmatrix}$$
 (3.14)

$$[Ck] = \begin{bmatrix} C4 & 0 & 0 \\ 0 & C5 & 0 \\ 0 & 0 & C6 \end{bmatrix}$$

$$[Sk] = \begin{bmatrix} S4 & 0 & 0 \\ 0 & S5 & 0 \\ 0 & 0 & S6 \end{bmatrix}$$
 (3.15)

e Sk e Ck são os senos e cossenos diretores dos sistemas tangente-normais conforme a expressão (A.2)

3.4.1- VARIAÇÃO CÚBICA DE W NO CONTORNO DO ELEMENTO. HIPÓTESES DE KIRCHHOFF.

Seja $\boldsymbol{\ell}_{ij}$ o lado do triângulo da figura 3.2, cujo nós inicial e final são os nós i e j respectivamente, e cujo nó intermediário é o nó k. Então, adotando o sentido anti-horário como positivo, temos que :

ij = 23,31,12 para k = 4,5,6 respectivamente

Seja S o eixo coordenado que passa por i, k e j de modo que S = 0 em i, S = ℓ_{ij} / 2 em k e S = ℓ_{ij} em j. Impomos uma variação cúbica de W ao longo do lado, ou seja,

$$w = \alpha_1 + \alpha_2 S + \alpha_3 S^2 + \alpha_3 S^3$$
 (3.16)

Os coeficientes α_i são obtidos aplicando as seguintes condições de contorno

$$w = w_{i} \qquad e \qquad \partial w/\partial S = \partial w/\partial S|_{i} \qquad em \quad S = 0$$
$$w = w_{j} \qquad e \qquad \partial w/\partial S = \partial w/\partial S|_{j} \qquad em \quad S = \ell_{ij}$$

No APÉNDICE C desenvolvemos a expressão (3.16) e calculamos os coeficentes α_1 , obtendo a seguinte relação (expressão C.9).

$$\begin{bmatrix} - \partial W/\partial s |_{4} \\ - \partial W/\partial s |_{5} \\ - \partial W/\partial s |_{6} \end{bmatrix} = [HS] \langle W \rangle$$
(3.17)

onde [HS] depende apenas das coordenadas dos nós e {W} é constituido dos deslocametos transversais e suas derivadas nos nós dos vértices (expressões C.10 e C.11), ou seja ,

.

$$\{W\} = \begin{bmatrix} w_{1} \\ -\partial w / \partial x |_{1} \\ -\partial w / \partial y |_{1} \\ w_{2} \\ -\partial w / \partial x |_{2} \\ -\partial w / \partial y |_{2} \\ w_{3} \\ -\partial w / \partial x |_{3} \\ -\partial w / \partial y |_{3} \end{bmatrix}$$
(3.18)

$$[HS] = \begin{bmatrix} 0 & 0 & 0 & \frac{3}{2 \ell_{23}} & \frac{S4}{4} & \frac{-C4}{4} & \frac{-3}{2 \ell_{23}} & \frac{S4}{4} & \frac{-C4}{4} \\ \frac{-3}{2 \ell_{31}} & \frac{S5}{4} & \frac{-C5}{4} & 0 & 0 & 0 & \frac{3}{2 \ell_{31}} & \frac{S5}{4} & \frac{-C5}{4} \\ \frac{3}{2 \ell_{12}} & \frac{S6}{4} & \frac{-C6}{4} & \frac{-3}{2 \ell_{12}} & \frac{S6}{4} & \frac{C6}{4} & 0 & 0 & 0 \\ & & & & & & & & & & & & \\ \end{bmatrix}$$
(3.19)

Aplicando as hipóteses de Kirchhoff nos nós dos vértices, temos que

$$\beta x_{1} = -\partial w / \partial x \Big|_{1}$$

$$\beta y_{1} = -\partial w / dy \Big|_{1} \quad ; \quad i = 1, 2, 3 \qquad (3.20)$$

Substituindo (3.20) em (3.18), obtemos

$$\{W\} = \{u\} \tag{3.21}$$

onde $\{u\}$ é o vetor de deslocamento do elemento dado por

$$\begin{cases} w_1 \\ \beta x_1 \\ \beta y_1 \\ w_2 \\ w_2 \\ \beta x_2 \\ \beta y_2 \\ w_3 \\ \beta x_3 \\ \beta y_3 \\ \end{cases}$$
 (3.22)

3.4.2- VARIAÇÃO LINEAR DE βη

A fim de relacionar as rotações $\beta\eta$ dos nós intermediários com as rotações β_x e β_y dos nós dos vértices, impomos uma variação linear de $\beta\eta$ ao longo dos lados. Então,

$$\beta \eta_{k} = \frac{1}{2} \left(\beta \eta_{l} + \beta \eta_{j} \right)$$
(3.23)

 $i_j = 23,31,12$ para k = 4,5,6 respectivamente.

A expressão (A.5) (APÉNDICE A) fornece as rotações $\beta\eta$ em função de βx e βy . Aplicando estas transformações às rotações $\beta\eta_1$ e $\beta\eta_j$ e substituindo convenientemente os índices 1, j e k, escrevemos (3.23) na forma :

$$\{\beta\eta\} = [HN] \{U\}$$
 (3.24)

onde

$$[HN] = \begin{bmatrix} 0 & 0 & 0 & 0 & \frac{C4}{2} & \frac{S4}{2} & 0 & \frac{C4}{2} & \frac{S4}{2} \\ 0 & \frac{C5}{2} & \frac{S5}{2} & 0 & 0 & 0 & 0 & \frac{C5}{2} & \frac{S5}{2} \\ 0 & \frac{C6}{2} & \frac{S6}{2} & 0 & \frac{C6}{2} & \frac{S6}{2} & 0 & 0 \end{bmatrix}$$
(3.25)

Devemos notar que, como as colunas 1, 3 e 7 da matriz [HN] são nulas, a expressão (3.24) não relaciona as rotações com os deslocamentos w.

3.4.3 – DEFORMAÇÕES γ_{sz} NULAS NOS NÓS INTERMEDIÁRIOS

A expressão (A.7) (APÊNDICE A) fornece:

$$\gamma_{sz} = -Sk \gamma_{xz} + Ck \gamma_{yz}$$
(3.26)

Substituindo $\gamma_{xz} e \gamma_{yz}$ dados pela expressão (2.9) e considerando as transformações dadas por (A.5) e (A.6), concluímos que

$$\gamma_{sz} = \frac{\partial W}{\partial S} + \beta s$$
 (3.27)

Afim de relacionar as rotações β s dos nós intermediários com o vetor {u}, nestes nós impomos que γ sz = 0, ou seja, impomos que

$$\{\beta_{S}\} = \begin{bmatrix} \beta_{S_{4}} \\ \beta_{S_{5}} \\ \beta_{S_{6}} \end{bmatrix} = \begin{bmatrix} -\partial w/\partial S |_{4} \\ -\partial w/\partial S |_{5} \\ -\partial w/\partial S |_{6} \end{bmatrix}$$
(3.28)

Considerando (3.17) e (3.21), podemos escrever

$$\{\beta_{S}\} = [HS] \{U\}$$
 (3.29)

Como as colunas l, 4 e 7 da matriz [HS], definida em (3.19), não são nulas, a expressão (3.29) relaciona finalmente as rotações com os deslocamentos transversais.

3.4.4- ELIMINAÇÃO DOS NÓS INTERMEDIÁRIOS.

Substituindo (3.24) e (3.29) em (3.13) obtemos :

$$\{\beta_{x2}\} = \left([Ck] [HN] - [Sk] [HS] \right) \{u\}$$

(3.30)

 $\{\beta_{x2}\} = \left([Ck] [HN] + [Sk] [HS] \right) \{u\}$

Sejam as matrizes :

Podemos notar que

$$\{\beta_{XI}\} = [IX] \{u\}$$

 $\{\beta_{YI}\} = [IY] \{u\}$ (3.32)

Substituindo (3.30) e (3.32) em (3.11) obtemos :

$$\beta x = [L] [HX] \{u\}$$

 $\beta y = [L] [HY] \{u\}$ (3.33)

onde

[HX] = [C1] [IX] + [C2] ([Ck] [HN]- [Sk] [HS])[HY] = [C1] [IY] + [C2] ([Sk] [HN]+ [Ck] [HS])

(3.34)

As expressões (3.33) fornecem as rotações β_x e β_y em qualquer ponto do elemento apenas em função dos graus de liberdade dos nós dos vértices, incluindo os deslocamentos transversais. São, portanto, as expressões que buscávamos para obter a energia de deformação do elemento. Entretanto, antes de partirmos para a determinação da matriz de rigidez, vale fazer as seguintes observações :

- a) A energia de deformação do elemento é função apenas das rotações βx e βy dadas por (3.33). Portanto, para determinar a matriz de rigidez, não é necessário definir as funções de interpolação de w no interior do elemento. De qualquer maneira, a variação de w imposta ao longo dos lados é propriedade de um polinômio cúbico;
- b) Tanto β s como $\partial w/\partial S$ variam quadraticamente ao longo dos lados. Então, como impomos que β s = $-\partial w/\partial S$ em três pontos de cada lado, temos que γ s = β s + $\partial w/\partial S$ é nulo ao longo de todo contorno do elemento;
- c) Devido à variação linear ao longo dos lados imposta à rotação $\beta\eta$, as rotações βx e βy deixam de ser dadas por polinômios completos do segundo grau. Os polinômios completos de maior grau contidos nas expressões de βx e βy passam a ser de primeiro grau ;

- d) Na expressão de w dada por (3.16), impomos quatro restrições para determinar os coeficientes α_1 , i = 1,2,3,4. Como w satisfaz estas mesmas restrições para dois elementos contendo um mesmo lado e nos vértices $\partial w/\partial s = -\beta s$, segue-se que w e $\partial w/\partial S$ são contínuos entre elementos;
- e) Como $\beta s = -\partial w / \partial S$ ao longo de todo o contorno, βs também é continuo entre elementos;
- f) Como $\beta\eta$ varia linearmente ao longo dos lados e atinge os valores $\beta\eta_{i}$ e $\beta\eta_{i}$ nos nós dos vértices, sua continuidade fica garantida;
- g) Das observações (e) e (f) acima, segue-se que βx e βy tambén são contínuos

3.4.5- VETOR DE CURVATURA

Como vimos no item 2.2, o vetor de curvatura fornecido pela teoria de cisalhamento de primeira ordem é dado por:

$$\{\chi\} = \begin{vmatrix} \partial\beta x/\partial x \\ \partial\beta y/\partial y \\ \frac{\partial\beta x}{\partial y} + \frac{\partial\beta y}{\partial x} \end{vmatrix}$$
(3.35)

No APÉNDICE B, derivamos as expressões (3.33) e obtemos o vetor $\{\chi\}$. A expressão (B.10) fornece :

$$\langle \chi \rangle = -\frac{1}{2A} [V] [QQ] \langle u \rangle$$
 (3.36)

onde

$$\begin{bmatrix} \mathbf{V} \end{bmatrix} = \begin{bmatrix} 1 & L_2 & L_3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & L_2 & L_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & L_2 & L_3 \end{bmatrix}$$
(3.37)

$$\begin{bmatrix} y_{31} (HX2) + y_{12} (HX3) \\ 2y_{31} (HX5) + y_{12} (HX4) \\ y_{31} (HX4) + 2y_{12} (HX6) \\ x_{13} (HY2) + x_{21} (HY3) \\ 2x_{13} (HY5) + x_{21} (HY4) \\ x_{13} (HY4) + 2x_{21} (HY6) \\ x_{31} (HX2) + x_{21} (HX2) + y_{31} (HY2) + y_{12} (HY2) \\ 2x_{13} (HX5) + x_{21} (HX4) + 2y_{31} (HY5) + y_{12} (HY4) \\ x_{13} (HX4) + 2x_{21} (HX6) + y_{31} (HY4) + 2y_{12} (HY6) \end{bmatrix} 9x9$$

(3.38)

e Li em (3.37) representa uma componente de coordenadas de área.

3.4.6- MATRIZ DE RIGIDEZ

Conforme o item 2.5.1, a energia de deformação de flexão fornecida pela teoria de cisalhamento de primeira ordem é dada por :

$$U_{b} = \frac{1}{2} \int_{A} \langle \chi \rangle^{T} [D_{b}] \langle \chi \rangle dx dy \qquad (3.39)$$

onde :

A é a área do elemento; $\{\chi\}$ é o vetor de curvatura; $[D_{b}]$ é a matriz de elasticidade de flexão definida em (2.25).

Aplicando (3.36) em (3.39) e observando que [QQ] e {U} são constantes, obtemos :

$$U_{b} = \frac{1}{8A^{2}} \{u\}^{T} [QQ]^{T} \int_{A} [V]^{T} [D_{b}] [V] dx dy [QQ] \{u\}$$
(3.40)

Considerando a matriz das variáveis [V] definida em (3.37) temos :

$$[V]^{T} [D] [V] = \begin{bmatrix} Db_{11}[LL] & Db_{12}[LL] & Db_{13}[LL] \\ Db_{21}[LL] & Db_{22}[LL] & Db_{23}[LL] \\ Db_{31}[LL] & Db_{32}[LL] & db_{31}[LL] \end{bmatrix}$$
(3.41)

onde :

$$[LL] = \begin{bmatrix} 1 & L_2 & L_3 \\ L_2 & L_2^2 & L_2 L_3 \\ L_3 & L_2 L_3 & L_3^2 \end{bmatrix}$$
(3.42)

Considerando as regras de integração das coordenadas de área ([30]) e definindo

$$[PP] = -\frac{12}{A} \int_{A} [LL] \, dx \, dy$$
 (3.43)

obtemos

$$[PP] = \begin{bmatrix} 12 & 4 & 4 \\ 4 & 2 & 1 \\ 4 & 1 & 2 \end{bmatrix}$$
(3.44)

Aplicando (3.41) e (3.43) em (3.40), escrevemos

$$Ub = \frac{1}{2} \{u\}^{T} [QQ]^{T} [DD] [QQ] \{u\}$$
 (3.45)

onde

$$\begin{bmatrix} DD \end{bmatrix} = \frac{1}{48A} \begin{bmatrix} Db_{11}(PP) & Db_{12}(PP) & Db_{13}(PP) \\ Db_{21}(PP) & Db_{22}(PP) & Db_{23}(PP) \\ Db_{31}(PP) & Db_{32}(PP) & Db_{33}(PP) \end{bmatrix}$$
(3.46)
(3.46)

A matriz de rigidez [K] é tal que

$$U = \frac{1}{2} \{U\}^{T} [K] \{u\}$$
 (3.47)

Então, como só estamos considerando a energia de deformação de flexão, a matriz de rigidez que procuramos é dada por :

$$[K] = [QQ]^{T} [DD] [QQ]$$
 (3.48)

3.4.7- MOMENTOS

No CAPÍTULO II, a expressão (2.45) fornece o vetor de momentos

$$(M) = [Db] (\chi)$$
 (3.49)

que, substituindo-se (3.36) em (3.49), pode ser escrita como :

$$\langle \mathbf{M} \rangle = \frac{1}{2\mathbf{A}} [Db] [\mathbf{V}] [QQ] \langle \mathbf{u} \rangle$$
 (3.50)

CAPITULO IV

O TRIÀNGULO DISCRETO DE CISALHAMENTO

4.1- INTRODUÇÃO

O Triângulo Discreto de Cisalhamento (DST) foi publicado em 1989 [31]. Sua formulação utiliza uma generalização da Teoria Discreta de Kirchhoff com a consideração das deformações de cisalhamento transversal. Se os efeitos de tais deformações não forem significativos, o DST converge para o DKT.

Embora a formulação do DST seja semelhante à do DKT, ressaltamos duas diferenças básicas: a primeira é que no DST considera-se a energia de deformação de cisalhamento transversal Us, e no DKT não; a segunda é que no DST as deformações de cisalhamento transversal são sempre consideradas enquanto que no DKT essas deformações são anuladas nos nós dos vértices e γ_{ex} é anulada em todo contorno.

Tanto para obter a energia de deformação de cisalhamento transversal como para aplicar a generalização da Teoria Discreta de Kirchhoff, é preciso determinar as deformações de cisalhamento transversal. Tais deformações são obtidas através de equações de equilíbrio que relacionam as forças cortantes (T) com os momentos (M). As equações de equilíbrio envolvem derivadas de segunda ordem de βx e βy . Como estas rotações são escritas como interpolações de segundo grau, as forças cortantes que resultam do equilíbrio são constantes em todo elemento. As deformações de cisalhamento transversal são obtidas pelo produto da inversa da matriz [Ds] pelo vetor de forças cortantes (T) que, consequentemente, também são constantes. Portanto, as deformações γ_{xz} e γ_{yz} são descontínuas entre elementos.

Assim como o DKT, o DST é um elemento triangular de lados retos contendo três nós e nove graus de liberdade, e se origina do elemento de seis nós descrito no item 3.3 . Então, as expressões (3.4) a (3.12) permanecem válidas. Repetimos a seguir a expressão (3.11) .

$$\beta x = [L] ([C1] (\beta x 1) + [C2] (\beta x 2))$$

$$\beta_{y} = \begin{bmatrix} L \end{bmatrix} \left(\begin{bmatrix} Cl \end{bmatrix} \langle \beta_{y1} \rangle + \begin{bmatrix} C2 \end{bmatrix} \langle \beta_{y2} \rangle \right)$$

onde

$$\{\beta \mathbf{x} \mathbf{l}\} = \begin{bmatrix} \beta \mathbf{x} \mathbf{1} \\ \beta \mathbf{x} \mathbf{2} \\ \beta \mathbf{x} \mathbf{3} \end{bmatrix} -\{\beta \mathbf{y} \mathbf{l}\} = \begin{bmatrix} \beta \mathbf{y} \mathbf{1} \\ \beta \mathbf{y} \mathbf{2} \\ \beta \mathbf{y} \mathbf{3} \end{bmatrix}$$

$$\langle \beta x2 \rangle = \begin{bmatrix} \beta x4 \\ \beta x5 \\ \beta x6 \end{bmatrix} - \langle \beta y2 \rangle = \begin{bmatrix} \beta y4 \\ \beta y5 \\ \beta y6 \end{bmatrix}$$

(4.2)	(4	•	2)
-------	---	---	---	---	---

(4.1)

[L] é a matriz de coordenadas de área definida em (3.6) e (Cl) e (C2) são as matrizes de coeficientes definidas em (3.10)

O vetor de deslocamentos é o mesmo do DKT

$$\{u\}^{1} = [w_{1} \ \beta x_{1} \ By_{1} \ w_{2} \ \beta x_{2} \ By_{2} \ w_{3} \ \beta x_{3} \ By_{3}]$$
(4.3)

Para relacionar os vetores $(\beta x2)$ e $(\beta y2)$ com (u), utilizamos os sistemas de coordenadas S- η descritos no APÊNDICE A, que nos permitem escrever

$$\langle \beta x 2 \rangle = [CK] \langle \beta \eta \rangle - [SK] \langle \beta s \rangle$$

 $\langle \beta y 2 \rangle = [SK] \langle \beta \eta \rangle + [CK] \langle \beta s \rangle$ (4.4)

onde

$$\{\beta_{S}\} = \begin{bmatrix} \beta_{S4} \\ \beta_{S5} \\ \beta_{S6} \end{bmatrix} \qquad \{\beta_{\eta}\} = \begin{bmatrix} \beta_{\eta4} \\ \beta_{\eta5} \\ \beta_{\eta6} \end{bmatrix} \qquad (4.5)$$

e [CK] e [SK] estão definidas em (3.15) e dependem apenas das coordenadas dos nós.

4.2- A GENERALIZAÇÃO DA TEORIA DISCRETA DE KIRCHHOFF

No item 3.2 vimos que é possível relacionar as rotações com os deslocamentos transversais impondo que, numa direção S,

$$\beta s = \frac{-\partial w}{\partial S}$$
(4.6)

e que a Teoria Discreta de Kirchhoff consiste em impor que

$$\beta x = \frac{-\partial w}{\partial x}$$
 e $\beta y = \frac{-\partial w}{\partial y}$ (4.7)

Vimos também que (4.6) implica deformações γ_{sz} nulas e que (4.7) implica deformações de cisalhamento transversal nulas nos pontos considerados.

Se quisermos manter $\gamma_{\rm sz}$, devemos substitur (4.6) por

$$\beta s = \frac{-\partial w}{\partial S} + \gamma_{sz}$$
(4.8)

A generalização da Teoria Discreta de Kirchhoff a que nos referimos consiste em impor que

$$\beta x = \frac{-\partial w}{\partial x} + \gamma_{xz}$$
 e $\beta y = \frac{-\partial w}{\partial y} + \gamma_{yz}$
(4.9)

em pontos discretos do elemento.

4.3- FORMULAÇÃO DO TRIÂNGULO DISCRETO DE CISALHAMENTO

Para relacionar os vetores ($\beta x2$) e ($\beta y2$) com o vetor (u), o DST segue uma estratégia muito semelhante à adotada no DKT. Se, no DKT, substituimos a técnica de Kirchhoff por esta técnica generalizada, obtemos a matriz de rigidez de flexão do DST. O DST é obtido determinando-se ainda a matriz de rigidez de cisalhamento, o que, em si só, não representa um acréscimo significativo no volume da formulação, visto que a aplicação da técnica generalizada de Kirchhoff já exige a determinação de $\gamma_{xz} e \gamma_{yz}$.

As deformações de cisalhamento transversal são obtidas invocando-se o equilíbrio entre cortantes e momentos, que nos permite relacionar as

componentes de {T} com o vetor de curvatura $\{\chi\}$, e, por conseguinte, com o vetor $\{u\}$.

4.3.1- EQUAÇÕES DE EQUILÍBRIO

As equações que resultam do equlíbrio entre momentos e cortantes são

$$TX = \frac{\partial Mx}{\partial x} + \frac{\partial Mxy}{\partial y}$$
$$TX = \frac{\partial My}{\partial y} + \frac{\partial Mxy}{\partial x}$$
(4.10)

Os momentos são dados por

...

$$\{M\} = \begin{vmatrix} Mx \\ My \\ Mxy \end{vmatrix} = [D_b] \begin{vmatrix} \partial\beta x/\partial x \\ \partial\beta y/\partial y \\ \frac{\partial\beta x}{\partial y} + \frac{\partial\beta y}{\partial x} \end{vmatrix}$$
(4.11)

As derivadas dos momentos contidas em (4.10) são obtidas pela derivação de (4.11). No item B.3 do APÊNDICE B determinamos as derivadas segundas de βx e βy . Substituindo (B.16) em (4.11), obtemos as derivadas dos momentos. Aplicando estas derivadas em (4.10) e reorganizando, obtemos

...

$$TX = [VX] \left([C12] \langle \beta x 1 \rangle + [C22] \langle \beta x 2 \rangle \right) + \\ + [VXY] \left([C12] \langle \beta y 1 \rangle + [C22] \langle \beta y 2 \rangle \right)$$

$$TY = [VY] \left([C12] \langle \beta y1 \rangle + [C22] \langle \beta y2 \rangle \right) + \\ + [VXY] \left([C12] \langle \beta x1 \rangle + [C22] \langle \beta x2 \rangle \right)$$

onde

$$[VX] = [Db_{11} \ 2Db_{13} \ Db_{33}] [DL]$$

$$[VY] = [Db_{33} \ 2Db_{23} \ Db_{22}] [DL]$$

$$[VXY] = [Db_{13} (Db_{12} + Db_{33}) Db_{23}] [DL]$$
(4.13)

$$\{DL\} = \begin{bmatrix} [LXX] \\ [LXY] \\ [LYY] \end{bmatrix}$$
(4.14)

e

$$\begin{bmatrix} C12 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} C22 \end{bmatrix} = \begin{bmatrix} 4 & -4 & -4 \\ 0 & 0 & -4 \\ 0 & -4 & 0 \end{bmatrix}$$

(4.15)

As matrizes [LXX], [LYY] e [LXY] estão definidas em (B.18) e resultam da partição das derivadas segundas da matriz de coordenadas de área [L]. Como os termos de [L] são de grau igual ou inferior a dois, [DL] é constante. Portanto, os cortantes dados por (4.12), são constantes ao longo do elemento.

4.3.2- VARIAÇÃO LINEAR DE Bŋ

Assim como no DKT, impomos uma variação linear de $\beta\eta$ ao longo dos lados. Podemos então escrever

$$\langle \beta \eta \rangle = [HN] \langle u \rangle$$
 (4.16)

onde [HN] depende apenas das coordenadas dos nós e está definida em (3.25).

4.3.3- DEFORMAÇÃO DE CISALHAMENTO TRANSVERSAL

Considerando as matrizes [IX] e [IY] definidas em (3.31), temos que

$$(\beta x1) = [IX] \{u\}$$

 $(\beta y1) = [IY] \{u\}$ (4.17)

Substituindo (4.4), (4.16) e (4.17) em (4.12), obtemos

$$TX = [TXU] \langle u \rangle + [TXS] \langle \beta_S \rangle$$

$$TY = [TYU] \langle u \rangle + [TYS] \langle \beta_S \rangle$$
 (4.18)

onde

$$[TXU] = [VX] \left([C12] [IX] + [C22] [CK] [HN] \right) + \\ + [VXY] \left([C12] [IY] + [C22] [SK] [HN] \right)$$
$$[TYU] = [VY] \left([C12] [IY] + [C22] [SK] [HN] \right) + \\ + [VXY] \left([C12] [IX] + [C22] [CK] [HN] \right)$$
(4.19)

$$[TXS] = [VXY] [C22] [CK] - [VX] [C22] [SK]$$

$$[TYS] = [VY] [C22] [CK] - [VXY] [C22] [SK]$$
 (4.20)

As deformações de cisalhamento transversal se relacionam com os cortantes através da matriz [Ds]. Podemos então escrever

$$\gamma_{xz} = \frac{Ds22 TX - Ds12 TY}{FS}$$

$$\gamma_{yz} = \frac{Ds11 TY - Ds12 TX}{FS}$$
(4.21)

onde

FS =
$$Ds_{11} Ds_{22} - Ds_{12}^2$$
 (4.22)

Substituindo (4.18) em (4.21), obtemos

$$\langle \gamma \rangle = [GU] \langle u \rangle + [GS] \langle \beta s \rangle$$
 (4.23)

onde

$$\begin{bmatrix} GU \end{bmatrix} = \begin{bmatrix} GXU \\ GYU \end{bmatrix}$$
$$\begin{bmatrix} GS \end{bmatrix} = \begin{bmatrix} GXS \\ GYS \end{bmatrix}$$
(4.24)

$$[GXU] = \frac{Ds22}{FS} [TXU] - Ds12}{FS}$$

$$[GYU] = \frac{D_{S11} [TYU] - D_{S12} [TXU]}{FS}$$
(4.25)

$$[GXS] = \frac{D_{S22} [TXS] - D_{S12} [TYS]}{FS}$$

$$[GYS] = \frac{D_{S11} [TYS] - D_{S12} [TXS]}{FS}$$
(4.26)

Como TX e TY são constantes, (4.23) fornece (γ) também constante.

4.3.4- VARIAÇÃO CÚBICA DE W

Assim como no DKT, impomos uma variação cúbica de W ao longo dos lados. A expressão (C.9) do APÊNDICE C fornece

$$\begin{array}{c|c} - \partial W/\partial s \Big|_{4} \\ - \partial W/\partial s \Big|_{5} \\ - \partial W/\partial s \Big|_{6} \end{array} = [HS] \langle W \rangle$$

(4.27)

onde

$$\{\mathbf{W}\}^{\mathrm{T}} = \left(\mathbf{W}_{1} \left. \frac{-\partial \mathbf{W}}{\partial \mathbf{x}} \right|_{1} \left. \frac{-\partial \mathbf{W}}{\partial \mathbf{y}} \right|_{1} \left. \mathbf{W}_{2} \left. \frac{-\partial \mathbf{W}}{\partial \mathbf{x}} \right|_{2} \left. \frac{-\partial \mathbf{W}}{\partial \mathbf{y}} \right|_{2} \left. \mathbf{W}_{3} \left. \frac{-\partial \mathbf{W}}{\partial \mathbf{x}} \right|_{3} \left. \frac{-\partial \mathbf{W}}{\partial \mathbf{y}} \right|_{3} \right)$$

$$(4.28)$$

e [HS] depende apenas das coordenadas dos nós e está definida em (C.11) e (3.19).

4.3.5- INTRODUÇÃO DAS HIPÓTESES GENERALIZADAS DE KIRCHHOFF NOS NÓS DOS VÉRTICES.

Para introduzir as rotações na expressão do deslocamento transversal, impomos que

$$\frac{-\partial W}{\partial x}\Big|_{i} = \beta_{x1} - \gamma_{xz} \qquad e \qquad \frac{-\partial W}{\partial y}\Big|_{i} = \beta_{y1} - \gamma_{yz}$$

$$i=1,2,3 \qquad (4.29)$$

Podemos então escrever

$$\{W\} = \{u\} - [IG] \{\gamma\}$$
(4.30)

onde

$$[IG] = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
(4.31)

Substituindo (4.30) em (4.27), obtemos

$$\begin{bmatrix} -\partial w/\partial s |_{4} \\ -\partial w/\partial s |_{5} \\ -\partial w/\partial s |_{6} \end{bmatrix} = [HS] \left(\{u\} - [IG] \{\gamma\} \right)$$
(4.32)

4.3.6- APLICAÇÃO DA TÉCNICA GENERALIZADA DE KIRCHHOFF NOS NÓS INTERMEDIÁRIOS

Para relacionar as rotações com o deslocamento transversal, impomos que

$$\beta s_{k} = \frac{-\partial w}{\partial s} \bigg|_{k} + \gamma_{sz} \qquad k = 4, 5, 6$$

(4.33)

No APÊNDICE A, a expressão (A.7) fornece

$$\gamma_{gz} = -Sk \gamma_{xz} + Ck \gamma_{yz}$$
(4.34)

Considerando (4.32), (4.33) e (4.34), escrevemos

$$\{\beta_S\} = [HS] \{u\} + [HSG] \{\gamma\}$$
 (4.35)

onde

$$[HSG] = \begin{bmatrix} -S4 & C4 \\ -S5 & C5 \\ -S6 & C6 \end{bmatrix} - [HS] [IG]$$
(4.36)

Substituindo (4.23) em (4.35) obtemos

$$\{\beta_{S}\} = [HBS] \{u\}$$
 (4.37)

onde

$$[HBS] = [A]^{-1} \left([HS] + [HSG] [GU] \right)$$
(4.38)

$$[A] = [I] - [HSG] [GS]$$
 (4.39)

Vale observar que, devido à presença de [HS] em (4.38), a expressão (4.37) relaciona finalmente as rotações com os deslocamentos transversais.

4.3.7- ELIMINAÇÃO DOS NÓS INTERMEDIÁRIOS

Substituindo (4.16) e (4.37) em (4.4), obtemos

$$\{\beta_{X2}\} = \left([CK] [HN] - [SK] [HBS] \right) \{u\}$$

 $\{\beta_{Y2}\} = \left([SK] [HN] + [CK] [HBS] \right) \{u\}$ (4.40)

Substituindo (4.40) e (4.17) em (4.1), obtemos

$$\beta x = [L] [HX] \langle u \rangle$$

$$\beta y = [L] [HY] \{u\}$$
 (4.41)

onde

$$[HX] = [CI] [IX] + [C2] \left([CK] [HN] - [SK] [HBS] \right)$$
$$[HY] = [CI] [IY] + [C2] \left([SK] [HN] + [CK] [HBS] \right)$$
(4.42)

Substituindo (4.37) em (4.23), obtemos

$$\{\gamma\} = [HG] \{u\}$$
(4.43)

onde

$$[HG] = [GU] + [GS] [HBS]$$
 (4.44)

As expressões (4.41) e (4.43) são suficientes para determinarmos a energia de deformação do elemento. Entretanto, antes de partirmos para avaliação da matriz de rigidez de elemento, vale fazer as seguintes observações :

- a) O elemento apresenta apenas três modos de corpo rígido;
- b) Como $\beta\eta$ varia linearmente ao longo dos lados, e atinge os valores $\beta\eta\eta$ e $\beta\eta\eta$ nas extremidades, temos que $\beta\eta$ é compatível (contínuo entre elementos);
- c) Como as rotações βxi e βyi, i=1,2,3, fazem parte do vetor de deslocamento, βsi tem o mesmo valor para todo elemento que incida no nó i. Como a generalização das hipóteses de Kirchhoff introduzida nos vértices implica que

$$\frac{\partial w}{\partial S}\Big|_{i} = \gamma_{sz} - \beta_{s_{1}}$$
 $i = 1,2,3$

e γ_{sz} é descontínuo, temos que $\partial w/\partial S|_1$ assume valores diferentes para diferentes elementos que contenham o nó 1;

- d) Nos lados, w varia segundo um polinômio cúbico de variável S. Uma das condições impostas, é que, nas extremidades, a derivada de w atinja o valor ∂w/∂s|₁, i =1,2,3. Então, da observação (c), temos que w não é contínuo entre elementos. Entretanto, o polinômio é tal que wi, i=1,2,3, é comum a todo elemento que contenha o nó i;
- e) Tanto β s como $\partial w/\partial S$ variam quadraticamente ao longo do contorno. Então, como γ_{eq} é constante e impomos que

$$\beta s = \frac{-\partial w}{\partial S} + \gamma_{sz}$$

em três pontos de cada lado, temos que essa condição é satisfeita em todo contorno. Como $\partial w/\partial S$ e γ_{sz} são descontínuos, β s é incompatível. À medida que a importância dos efeitos de cisalhamento diminui , a incompatibilidade de β s diminui. A influência desta incompatibilidade na convergêcia do elemento ainda não foi estudada detalhadamente. Entretanto, os testes de convergência realizados por Batoz e Lardeur ([31]) revelaram um ótimo desempenho do elemento;

f) Tanto no DKT como no DST, as rotações são dadas por expressões do tipo

> $\beta x = [HX] \{u\}$ $\beta y = [HY] \{u\}$

As matrizes [HX] e [HY] do DKT são dadas pelas expressões (3.34) e as do DST por (4.42). Se, em (4.42), substituirmos [HBS] por [HS], encontramos (3.34). Daí resultam duas observações. A primeira é que para obter a matriz [HBS], utilizamos a matriz [HS] (expressões 4.36, 4.38 e 4.39) e acrescentamos ainda as expressões (4.18) a (4.26). Portanto, a formulação do DST é consideravelmente mais volumosa. A segunda, é que demonstrar que o DST converge para o DKT quando os efeitos de cisalhamento transvesal não forem importantes, significa demonstrar que à medida que a espessura diminui, a matriz [HBS] tende para [HS], e a relação Us/Ub tende a zero. Tal demonstração será feita no item 4.4.

4.3.8- VETOR DE CURVATURA

No APÉNDICE B derivamos as expressões (4.41) e determinamos o vetor de curvatura $\{\chi\}$. A expressão (B.10) fornece

$$\{\chi\} = \frac{1}{2.A} [V] [QQ] \{u\}$$
 (4.45)

onde A é a área do elemento, [V] é a matriz de variáveis definida em (B.11) e [QQ] está definida em (B.12) e depende apenas das matrizes [HX] e [HY] dadas por (4.42)

4.3.9- MATRIZ DE RIGIDEZ DE FLEXÃO

O procedimento para se obter a matriz de rigidez de flexão $[K_b]$ é o mesmo adotado no item 3.4.6. Devemos apenas considerar as matrizes [HX] e [HY] dadas por (4.42) para montar a matriz [QQ].Repetimos a seguir a

expressão (3.48) :

$$[K_{b}] = [QQ]^{T} [DD] [QQ]$$
 (4.46)

onde

$$[DD] = \frac{1}{-48A} \begin{bmatrix} Db_{1}(PP) & Db_{12}(PP) & Db_{13}(PP) \\ Db_{21}(PP) & Db_{22}(PP) & Db_{23}(PP) \\ Db_{31}(PP) & Db_{32}(PP) & Db_{33}(PP) \end{bmatrix}$$
(4.47)

$$[PP] = \begin{bmatrix} 12 & 4 & 4 \\ 4 & 2 & 1 \\ 4 & 1 & 2 \end{bmatrix}$$
(4.48)

4.3.10- MATRIZ DE RIGIDEZ DE CISALHAMENTO TRANSVERSAL

A expressão (2.43) do CAPÍTULO II fornece

$$U_{s} = \frac{1}{2} \int_{A} \langle \gamma \rangle^{T} [Ds] \langle \gamma \rangle dy dx$$
 (4.49)

Substituindo (4.43), obtemos

$$U_{s} = \frac{1}{2} \{u\}^{T} \int_{A} [HG]^{T} [Ds] [HG] dy dx \{u\}$$
(4.50)

Como {u}, [HG] e [Ds] são constantes, temos que

$$U_{s} = \frac{1}{2} \{u\}^{T} [K_{s}] \{u\}$$
(4.51)

onde

$$[K_{S}] = A [H_{G}]^{T} [D_{S}] [H_{G}]$$
 (4.52)

é a matriz de rigidez de cisalhamento e A é a área do elemento.

4.4- TRANCAMENTO POR CORTANTE (SHEAR LOCKING)

4.4.1- DEFINIÇÃO

No CAPÍTULO II, vimos que materiais isotrópicos e ortotrópicos têm matrizes de elasticidade do tipo

$$[E] = \begin{bmatrix} [D] & [0] \\ \hline [0] & [G] \end{bmatrix}$$
(4.53)

que nos permitem escrever

$$\langle \sigma \cdot b \rangle = [D] \langle \varepsilon b \rangle = Z [D] \langle \chi \rangle$$

$$\{\tau\} = [G] \{\gamma\} \tag{4.54}$$

onde o vetor de curvatura $\{\chi\}$ é constante na direção da espessura.

Então, as parcelas da energia de deformação devido à flexão e ao cisalhamento, podem ser escritas na forma

$$U_{b} = \frac{1}{2} \frac{h^{3}}{12} \int_{AREA} \{\chi\}^{T} [D] \{\chi\} dy dx$$
$$U_{s} = \frac{1}{2} kh \int_{AREA} \{\gamma\}^{T} [G] \{\gamma\} dy dx$$
(4.55)

onde h é a espessura e k é o fator de correção de cisalhamento transversal que independe de h.

Então,

$$\frac{U_{s}}{U_{b}} = \frac{12 \text{ k}}{\text{h}^{2}} \frac{\int_{\text{AREA}} \{\gamma\}^{T} [G] \{\gamma\} \text{ dy dx}}{\int_{\text{AREA}} \{\chi\}^{T} [D] \{\chi\} \text{ dy dx}}$$

(4.56)

Quando, para uma mesma geometria da superfície média, a espessura da placa diminui, a importância dos efeitos de cisalhamento transversal diminui. Neste caso, a relação U_{g}/U_{b} deve diminuir. Como em (4.56) temos o quadrado da espessura no denominador, o quociente das integrais deve ser proporcional, no mínimo, ao cubo de h. Quando isso não ocorre, a rigidez da placa é superestimada. Este fenômeno é conhecido como trancamento por
cortante ou shear locking.

4.4.2- AUSÊNCIA DO TRANCAMENTO POR CORTANTE NO DST

Substituindo (4.43) e (4.45) em (4.56), obtemos

$$\frac{Us}{Ub} = \frac{48A^2 k}{h^2} \frac{\{u\}^T \int_A [HG]^T [G] [HG] dA \{u\}}{\{u\}^T \int_A [QQ]^T [V]^T [D] [V] [QQ] dA \{u\}}$$
(4.57)

onde [V] é a matriz de coordenadas de área definida em (B.11) e [QQ] depende apenas das matrizes [HX] e [HY] conforme (B.12).

Por outro lado temos que

$$Db_{ij} = h^{3} Db_{ij}^{\bullet} e \qquad Ds_{ij} = h Ds_{ij}^{\bullet}$$
(4.58)

onde Db_{11}^{\bullet} e Ds_{11}^{\bullet} independem de h.

Nas expressões (4.1) a (4.44), as matrizes [C1], [C2], [C12], [C22], [Ck], [Sk], [IX], [IY], [IG], [DL], [HN], [HS] e [HSG] independem de h. Então, considerando (4.58), temos que as matrizes [VX], [VY] e [VXY], definidas em (4.13), são proporcionais ao cubo da espessura.

Sejam as matrizes [TXU] e [TYU] definidas em (4.19) e [TXS] e [TYS] definidas em (4.20). Tendo em vista as observações anteriores, notamos que

essas matrizes podem ser escritas na forma

$$[TXU] = h^{3} [TXU^{*}]$$

$$[TYU] = h^{3} [TYU^{*}]$$

$$[TXS] = h^{3} [TXS^{*}]$$

$$[TYS] = h^{3} [TYS^{*}]$$

(4.59)

onde as matrizes [TXU^{*}], [TYU^{*}], [TXS^{*}] e [TYS^{*}] independem de h.

Podemos notar também que as matrizes [GU] e [GS] definidas em (4.24) são do tipo

$$[GU] = h^{2} [GU^{*}]$$

[GS] = h² [GS^{*}] (4.60)

onde [GU^{*}] e [GS^{*}] não dependem de h.

Substituindo [GU] acima em (4.38), obtemos

$$[HBS] = [A]^{-1} \left([HS] + h^{2} [HSG] [GU^{*}] \right)$$
(4.61)

Substituindo [GS] dado por (4.60) em (4.39), notamos que [A] tende a matriz identidade quando h tende a zero. Então, para pequenos valores de h, a matriz [HBS] tende para [HS], e as matrizes [HX] e [HY] dadas em (4.42) tendem para as matrizes dadas por (3.34).Isso significa que a matriz de rigidez de flexão do DST converge para a matriz de rigidez do DKT à medida que h diminui (vide observação f do item 4.3.7).

Outra consequência do que está exposto no parágrafo anterior é que, quando h tende a zero, a matriz [QQ] não tende para uma matriz nula, mas sim para a matriz [QQ] que encontramos na formulação do DKT.

Seja a matriz

$$[Cb] = \int_{A} [QQ]^{T} [V]^{T} [D] [V] [QQ] dA$$
(4.62)

Podemos então afirmar que, quando h tende a zero, a matriz [Cb] tende a uma matriz não nula.

Substituindo (4.60) e (4.61) em (4.44), obtemos

$$[HG] = h^{2} \left[[GU^{*}] + [GS^{*}] [A]^{-1} \left([HS] + h^{2} [HSG] [GU^{*}] \right) \right]$$
(4.63)

Seja matriz

$$[C_{S}] = \int_{A} \left([GU^{*}] + [GS^{*}] [HS] \right)^{T} [G] \left([GU^{*}] + [GS^{*}] [HS] \right) dA$$
(4.64)

Notamos que [Cs] independe de h. Considerando (4.63), (4.64) e (4.39),

notamos também que

$$\int_{A} [HG]^{T} [G] [HG] dA = h^{4} [Cs]$$

$$h \rightarrow 0$$
(4.65)

Então, de (4.57), (4.62) e (4.65), temos que

$$\frac{Us}{Ub}\Big|_{h\to 0} = 48 \ A^2 \ k \ \frac{h^4}{h^2} \ \frac{(u)^T \ [Cs] \ (u)}{(u)^T \ [Cb] \ (u)} = 0$$
(4.66)

Fica, portanto, demonstrado que para placas esbeltas, o DST converge para o DKT, e, portanto, não apresenta trancamento por cortante.

CAPÍTULO V

REDUÇÃO DA PLACA LAMINADA A PLACA HOMOGÊNEA EQUIVALENTE

5.1- INTRODUÇÃO

O modelo de análise de placas laminadas compostas que adotamos neste trabalho divide-se em duas etapas. A primeira etapa consiste em obter um elemento que inclua as deformações de cisalhamento transversal. Desta etapa tratamos no CAPÍTULO IV, onde desenvolvemos a formulação do DST. A segunda etapa consiste em se reduzir uma placa laminada, composta de camadas de materiais diversos, a uma placa de camada única equivalente.

Como vimos, na teoria de cisalhamento de primeira ordem o vetor de deformações de estado plano de tensões é dado por

$$\{\varepsilon_{\mathbf{k}}\} = \mathbf{z} \{\chi\}$$
(5.1)

onde $\{\chi\}$ é o vetor de curvatura, constante na direção de z e o vetor de tensões de estado plano de deformação por

onde $[D_k]$ é a matriz de elasticidade de estado plano de tensão da camada k. Finalmente, para o vetor de momentos temos

$$\{M\} = [DB] \langle \chi \rangle \tag{5.3}$$

onde, para placas laminadas,

$$[DB] = \int_{-h/2}^{h/2} z^2 [D_k] dz$$
 (5.4)

Utilizando (5.3) para obter $\{\chi\}$ e substituindo em (5.2), obtemos

$$\{\sigma_{b}\} = z [D_{k}] [DB]^{-1} \{M\}$$
 (5.5)

O vetor de forças cortantes é definido como

$$\begin{bmatrix} TX \\ TY \end{bmatrix} = \int_{-h/2}^{h/2} \begin{bmatrix} Kx \tau_{xz} \\ Ky \tau_{yz} \end{bmatrix} dz$$
 (5.6)

onde Kx e Ky são os fatores de correção de cisalhamento transversal, que independem de z.

Seja [Gk] a matriz de elasticidade de cisalhamento transversal da camada k. Supondo que, em relação ao sistema x-y, as matrizes [Gk] sejam diagonais, podemos escrever

$$\begin{bmatrix} TX \\ TY \end{bmatrix} = [DS] \langle \gamma \rangle$$
 (5.7)

onde

$$[DS] = \int_{-h/2}^{h/2} \begin{bmatrix} Kx \ Gxz \ 0 \\ 0 \ Ky \ Gyz \end{bmatrix} dz$$
 (5.8)

A dificuldade maior em se reduzir uma placa laminada composta a uma placa homogênea equivalente está em obter os fatores de correção de cisalhamento transversal. Para tal, é necessário estabelecer equações que forneçam a distribuição de τ_{xz} e τ_{yz} ao longo da espessura, o que, para placas laminadas, requer a introdução de hipóteses simplificadoras. Como vimos no CAPÍTULO I, existem diversas abordagens para a determinação dos fatores de correção de cisalhamento transversal. Neste capítulo, vamos expor duas propostas que sugerem a determinação dos fatores Kx e Ky, igualando-se a energia de deformação de cisalhamento transversal fornecida pela teoria de cisalhamento de primeira ordem, à fornecida pela teoria da elasticidade tridimensional.

Sejam $\overline{Us}_x \in \overline{Us}_y$ as parcelas da energia de deformação de cisalhamento transversal por unidade de área, calculadas considerando-se as deformações γ_{xz} e γ_{yz} fornecidas pela teoria de cisalhameto de primeira ordem (constantes na direção de z). Então :

$$\overline{U}s_{x} = \frac{1}{2} \int_{-h/2}^{h/2} \tau_{xz} \gamma_{xz} dz = \frac{1}{2} \gamma_{xz}^{2} \int_{-h/2}^{h/2} G_{xz} dz$$
$$\overline{U}s_{y} = \frac{1}{2} \int_{-h/2}^{h/2} \tau_{yz} \gamma_{yz} dz = \frac{1}{2} \gamma_{yz}^{2} \int_{-h/2}^{h/2} G_{yz} dz$$

69

Utilizando (5.7) para obter $\gamma_{xz} e \gamma_{yz} e$ substituindo em (5.9), obtemos

$$\overline{U}s_{x} = \frac{1}{2} \frac{TX^{2}}{K_{x}^{2} \int_{-h/2}^{h/2} G_{xz} dz}$$

$$\overline{Us}_{y} = \frac{1}{2} \frac{TY^{2}}{K_{y}^{2} \int_{-h/2}^{h/2} G_{yz} dz}$$

(5	.1	10)]
•	-		_	

Os fatores de correção de cisalhamento transversal são dados por

$$Kx = \frac{Us}{\overline{Us}}_{x} ; \quad Ky = \frac{Us}{\overline{Us}}_{y}$$
(5.11)

onde Us e Us são as parcelas da energia de cisalhamento transversal calculadas considerando-se a correta distribuição das deformações (e tensões) de cisalhamento transversal na direção da espessura, dadas por

$$U_{x} = \frac{1}{2} \int_{-h/2}^{h/2} \tau_{xz} \gamma_{xz} dz = \frac{1}{2} \int_{-h/2}^{h/2} \frac{\tau_{xz}^{2}}{G_{xz}^{2}} dz$$

$$U_{s_{y}} = \frac{1}{2} \int_{-h/2}^{h/2} \tau_{yz} \, \gamma_{yz} \, dz = \frac{1}{2} \int_{-h/2}^{h/2} \frac{\tau_{yz}^{2}}{Gyz} \, dz$$

5.2- HIPÓTESE DE CAMADAS COM MATRIZES DE ELASTICIDADE PROPORCIONAIS

Na REFERÊNCIA [20], LARDEUR E BATOZ propõem a determinação de Kx e Ky considerando que as matrizes de elasticidade de estado plano de tensão das camadas são proporcionais entre si, ou seja, considerando que

$$[\mathbf{E}_{\mathbf{k}}] = \Phi_{\mathbf{k}} [\mathbf{E}] \tag{5.13}$$

onde a matriz $[E_k]$ e o fator Φ_k são peculiares à camada k e [E] é comum a todas as camadas.

Vale observar que (5.13) inclui os casos de placas homogêneas, placas laminadas com camadas isotrópicas com mesmo coeficiente de Poisson e placas laminadas com camadas ortotrópicas, dispostas na mesma direção principal e com matrizes de elasticidade de estado plano de tensão proporcionais.

Considerando (5.13), podemos escrever (5.4) na forma

$$[DB] = C_{L}[D]$$
 (5.14)

onde

$$C_{b} = \int_{-h/2}^{h/2} z^{2} \Phi_{k} dz$$
 (5.15)

Substituindo (5.13) e (5.14) em (5.5), obtemos

$$\langle \sigma_{\rm p} \rangle_{\rm p} = z \alpha_{\rm p} \langle M \rangle$$
 (5.16)

onde

$$\alpha_{k} = \Phi_{k} / C_{(5.17)}$$

É importante observar que α_k pode ser obtido por

$$\alpha_{k} = \frac{\begin{pmatrix} D_{k} \\ DB \end{pmatrix}_{11}}{\begin{pmatrix} DB \\ DB \end{pmatrix}_{11}}$$
(5.18)

onde (D) e (DB) são elementos não nulos das matrizes [D] e [DB] k ij ij respectivamente, que ocupam a mesma posição ij.

A expressão (5.18) é importante, pois permite que se obtenha α_k mesmo quando a hipótese (5.13) não for verdadeira. Neste caso, deve-se adotar i=j=l para determinar Kx e i=j=2 para Ky. Na referência [20] encontram-se resultados numéricos satisfatórios ,para placas laminadas cujas camadas não possuem matrizes $\{D_k\}$ proporcionais. Tais resultados foram obtidos considerando-se (5.18).

Para obter a distribuição de τ e τ na direção da espessura, utilizamos as equações diferenciais de equilíbrio

$$\frac{\partial \sigma_{\mathbf{x}}}{\partial \mathbf{x}} + \frac{\partial \tau_{\mathbf{x}\mathbf{y}}}{\partial \mathbf{y}} + \frac{\partial \tau_{\mathbf{x}\mathbf{z}}}{\partial \mathbf{z}} = 0$$

$$\frac{\partial \sigma_{\mathbf{y}}}{\partial \mathbf{y}} + \frac{\partial \tau_{\mathbf{x}\mathbf{y}}}{\partial \mathbf{x}} + \frac{\partial \tau_{\mathbf{y}\mathbf{z}}}{\partial \mathbf{z}} = 0$$
(5.19)

Deve-se observar que em (5.19) foram desprezadas as forças de volume nas direções x e y.

De (5.19) temos que

$$\tau_{xz} = -\int_{-h/2}^{z} \frac{\partial \sigma_{x}}{\partial x} \quad dZ - \int_{-h/2}^{z} \frac{\partial \tau_{xy}}{\partial y} \quad dZ$$

$$\tau_{yz} = -\int_{-h/2}^{z} \frac{\partial \sigma_{y}}{\partial y} \quad dZ - \int_{-h/2}^{z} \frac{\partial \tau_{xy}}{\partial x} \quad dZ$$

(5.20)

As derivadas de tensões contidas em (5.20) podem ser obtidas pela derivação de (5.16). Podemos então escrever

$$\tau_{xz} = C(z) \left(\frac{\partial Mx}{\partial x} + \frac{\partial Mxy}{\partial y} \right)$$

$$\tau_{yz} = C(z) \left(\frac{\partial My}{\partial y} + \frac{\partial Mxy}{\partial x} \right)$$
(5.21)

onde

$$C(z) = \int_{-h/2}^{z} \alpha_{k} dZ$$
 (5.22)

Do equilíbrio entre momentos e cortantes temos

$$TX = \frac{\partial Mx}{\partial x} + \frac{\partial Mxy}{\partial y}$$
$$TY = \frac{\partial My}{\partial y} + \frac{\partial Mxy}{\partial x}$$
(5.23)

Substituindo (5.23) em (5.21), obtemos

$$\tau_{xz} = C(z) TX$$

$$\tau_{yz} = C(z) TY$$
 (5.24)

ï

. . .

İ

ł

A expresão (5.24) fornece a distribuição das tensões que procurávamos. No caso de placas homogêneas, (5.24) fornece a variação quadrática de τ_{xz} e τ_{yz} dada pela expressão (2.31).

Substituindo (5.24) em (5.12), encontramos

.

.

$$Us_{x} = \frac{1}{2} TX^{2} \int_{-h/2}^{h/2} \frac{C(z)^{2}}{Gxz} dz$$

$$Us_{y} = \frac{1}{2} TY^{2} \int_{-h/2}^{h/2} \frac{C(z)^{2}}{Gyz} dz$$
 (5.25)

Então, substituindo (5.25) e (5.10) em (5.11), obtemos

$$Kx = \frac{1}{\int_{-h/2}^{h/2} Gxz \, dz \, \int_{-h/2}^{h/2} \frac{C(z)^2}{Gxz} \, dz}$$

$$Ky = \frac{1}{\int_{-h/2}^{h/2} Gyz \, dz \, \int_{-h/2}^{h/2} \frac{C(z)^2}{Gyz} \, dz}$$
(5.26)

5.3- HIPÓTESE DE FLEXÃO CILÍNDRICA

Na referência [32], OWEN E FIGUEIRAS determinam Kx e Ky supondo flexão cilíndrica nas direções x e y respectivamente. Segue-se o procedimento adotado.

No caso de flexão cilíndrica na direção x (figura 5.1), temos que

$$\beta \mathbf{y} = 0$$
 ; $-\frac{\partial \beta \mathbf{x}}{\partial \mathbf{y}} = 0$; $\tau_{\mathbf{x}\mathbf{y}} = 0$ (5.27)

Figura 5.1 - Flexão Cilindrica na Direção de X

Então, (5.2) e (5.3) fornecem

$$\sigma_{\mathbf{x}} = \mathbf{z} \left(\mathbf{D}_{\mathbf{k}} \right)_{11} \frac{\partial \beta \mathbf{x}}{\partial \mathbf{x}}$$
(5.28)

$$Mx = (DB)_{11} \frac{\partial \beta x}{\partial x}$$
(5.29)

Utilizando (5.29) para obter $\frac{\partial \beta x}{\partial x}$ e substituindo em (5.28), encontramos

$$\sigma_{\rm X} = z \frac{{\binom{\rm D}{\rm k}}_{11}^{11}}{{\binom{\rm DB}{\rm m}}_{11}^{11}} M x$$
 (5.30)

Para flexão cilíndrica, (5.20) e (5.23) fornecem

$$\tau_{xz} = -\int_{-h/2}^{h/2} \frac{\partial \sigma_x}{\partial x} dz$$
 (5.31)

$$TX = \frac{\partial Mx}{\partial x}$$
(5.32)

Considerando (5.32) e (5.30), escrevemos

$$\frac{\partial \sigma_{\mathbf{x}}}{\partial \mathbf{x}} = \mathbf{z} \quad \frac{(\mathbf{D}_{\mathbf{k}})_{11}}{(\mathbf{D}\mathbf{B})_{11}} \quad \mathbf{TX}$$
(5.33)

Substituindo então (5.33) em (5.31) obtemos

$$\tau_{xz} = \frac{TX}{(DB)_{11}} g(z)$$
(5.34)

onde

$$g(z) = -\int_{-h/2}^{z} \chi(D_{k})_{11} dZ$$
 (5.35)

Finalmente, substituindo (5.34) em (5.12), obtemos

$$U_{s_{x}} = \frac{1}{2} - \frac{TX^{2}}{(DB)_{11}^{2}} \int_{-h/2}^{h/2} \frac{g(z)^{2}}{Gxz} dz$$
 (5.36)

Substituindo (5.10) e (5.36) em (5.11) determinamos Kx.

$$Kx = \frac{1}{\int_{-h/2}^{h/2} \frac{g(z)^2}{Gxz} dz} \int_{-h/2}^{h/2} \frac{g(z)}{Gxz} dz$$

(5.37)

Considerando flexão cilíndrica na direção de y, determinamos Ky de forma absolutamente análoga

$$Ky = \frac{1}{\int_{-h/2}^{h/2} \frac{f(z)^2}{Gyz} dz} \int_{-h/2}^{h/2} \frac{f(z)}{Gyz} dz$$

(5.38)

onde

$$f(z) = -\int_{-h/2}^{z} \chi(D_{k 22}) d\chi$$
(5.39)

Para materiais homogêneos, (5.37) e (5.38) fornecem

$$Kx = Ky = \frac{5}{6}$$

CAPÍTULO VI

ESTUDOS NUMÉRICOS

6.1- INTRODUÇÃO

Neste capítulo, utilizamos o Método dos Elementos Finitos a fim de analisar o comportamento dos elementos DKT e DST na análise linear estática e de vibrações livres de placas compostas e homogêneas. Os exemplos foram selecionados de modo a englobar dois aspectos: validação das sub-rotinas implementadas e comparação entre o comportamento dos elementos entre si.

O programa utilizado no presente estudo foi desenvolvido em linguagem BASIC (QuickBasic 4.0) com o intuito de facilitar a depuração de erros. Posteriormente, as sub-rotinas de elemento foram transcritas para linguagem FORTRAN, possibilitando a sua implementação nos programas de análise estática e de vibrações livres disponíveis no Laboratório de Métodos Computacionais em Engenharia da COPPE-UFRJ ([33] e [34]).

Nos exemplos aqui apresentados, os fatores de correção de cisalhamento transversal foram calculados considerando-se a hipótese de matrizes de elastidade proporcionais, conforme exposto no item 5.2.

6.2- PLACA ISOTRÓPICA EM BALANÇO

LARDEUR ([20]). A placa é submetida a duas forças transversais aplicadas nos cantos de sua extremidade livre . Foram consideradas as três malhas da figura 6.2. O comprimento foi mantido constante (L = 10) e foram consideradas três espessuras diferentes (h= 0,1; 1,0 e 4,0).

$$E = 2\ 000\ 000,00$$
 $\nu = 0,0$

Figura 6.1-Placa em Balanco

Figura 6.2- Orientação das Malhas

ا المار المار المار المار المار المار الماري الماري الماري المار المار المار المار المار الماري الماري الماري ا

A fim de manter as deflexões para as diversas espessuras na mesma ordem de grandeza, variamos o valor das cargas conforme a tabela I.

L/h	100	10	2,5
F	1,0	1000,0	100000,0

TAB.I-FORÇAS APLICADAS NOS CANTOS DA EXTREMIDADE LIVRE

A flecha máxima fornecida pela solução analítica, que inclui as deformações de cisalhamento transversal é

$$W = \frac{P L^{3}}{3 D} (1 + \frac{\Phi}{4}) ; P = 2 F$$

$$\Phi = \frac{2}{K} (\frac{h}{L}) ; K = 5/6 ; D = -\frac{E h^{3} B}{12} - (6.1)$$

ι.

Nas tabelas II, III e IV, temos as deflexões obtidas pelos modelos.

L/h	WDKT	Wdst	WDKT/WANAL	WDST/WANAL
100	3,909773	3,910073	0,9769	0,9769
10	3,909773	3,946545	0,9716	0,9808
2,5	6,109021	6,791884	0,8918	0,9809

TAB II-DEFLEXÕES OBTIDAS COM A MALHA A

L/h	WDKT	WDST	WDIK T/WANAL	WDST/WANAL
100	3, 983009	3, 983286	0,9952	0,9952
10	3,983009	4,012638	0,9898	0,9972
2,5	6,223452	6,837504	0,9085	0,9982

TAB III-DEFLEXÕES OBTIDAS COM A MALHA B

L/h	Wdĸt	WDST	WDKT/WANAL	WDST/WANAL
100	4,000086	4,000311	0,9994	0,9995
10	4,000086	4,023810	0,9941	1,0000
2,5	6,250134	6,849054	0,9124	1,0000

TAB IV-DEFLEXÕES OBTIDAS COM A MALHA C

Os resultados demonstram o bom comportamento do DST tanto para placas delgadas como espessas. Pode-se também observar que o DKT apresentou bons resultados mesmo para placas medianamente espessas (L/h = 10). Para L/h = 2,5 o erro foi de cerca de 10%.

É interessante observar que, para todas as malhas consideradas, as deflexões fornecidas pelo DKT foram diretamente proporcionais à carga aplicada e inversamente proporcionais ao cubo da espessura (W h^3/P = constante). Este comportamento demonstra a insensibilidade do elemento aos efeitos do cisalhamento transversal. Para o DST, essa relação varia de forma crescente com o aumento de h.

As flecha máxima fornecida pela teoria clássica de placas é

$$W = -\frac{P L^3}{3 D}$$
(6.2)

Na tabela V, temos a convergêcia do DKT para esta teoria.

L/h	MALHA A	MALHA B	MALHA C
100-10-2,5	0,977	0,995	1,000

TAB.V- VALORES DE WDKT / WCLAS.

Nas tabelas VI e VII, mostramos os resultados comparativos entre os esforços médios (momentos e cortantes por unidade de comprimento) na seção transversal e aqueles fornecidos pelos elementos. Esses esforços foram calculados no meio do lado engastado.

L/h	ESFORÇO	MALHA A	MALHA B	MALHA C
100	Myds t /My med	0,947	0,967	0.981
100	Тур зт/Тум ер	1,082	0,955	0,730
10	Myds t/Mymed	0,943	0,968	0,989
10	Tydst/Tymed	1,024	0,884	0,872
25	Му р ѕт∕Мумер	0,953	0,985	0,995
2,5	Tyds t/Tymed	0.909	0,952	0,986

TAB. VI-ANÁLISE DOS ESFORÇOS PARA O DST

L/h	ESFORÇO	MALHA A	MALHA B	MALHA C
100-10-2,5	Му ркт∕М умер	0,977	0,995	1,000

TAB. VII- ANÁLISE DOS MOMENTOS PARA O DKT

Na tabela VI, verificamos os bons reultados dos momentos fornecidos pelo DST. Entretanto, o elemento não apresentou o mesmo desempenho para os esforços cortantes. Para pequenas espessuras, a precisão diminui à medida que a malha foi refinada. Nos elementos adjacentes aos lados maiores, os cortantes apresentaram sentido oposto ao esperado. Tal efeito diminuiu à medida que a malha foi refinada, quando esses esforços tenderam a zero. Atribuímos este comportamento ao fato das tensões de cisalhamento transversal serem constantes ao longo da área, o que acarreta a não conformidade do elemento.

Na tabela VII, notamos que a precisão dos momentos fornecidos pelo DKT foi insensível à variação de h e igual à precisão do DST para L/h = 100. O DKT não fornece esforços cortantes.

6.3- PLACA ORTOTRÓPICA EM BALANÇO

Este problema é o mesmo definido no item 6.2, sendo que o material é fortemente ortotrópico. Suas propriedades elásticas são

 $E_{x} = 100 \ 000,00 \qquad ; \qquad E_{y} = 2 \ 500 \ 000,00 \qquad ; \qquad G_{xz} = 50 \ 000,00 \qquad ; \qquad G_{xz} = 20 \ 000,00 \qquad ; \qquad \nu_{xy} = 0,00 \qquad ; \qquad \nu_{xy} = 0,0$

Assim como no problema do item 6.1, as cargas são aplicadas nos cantos da extremidade livre e estão definidas na tabela I.

Não dispomos da solução analítica para este problema. A nossa intenção é apenas verificar a divergência entre o comportamento do DST e do DKT quando a estrutura é constituída de materiais com propriedades semelhantes aos utilizados nos laminados modernos. Sendo assim, consideramos apenas a malha C. Mais uma vez, os esforços foram comparados com os esforços médios

Na tabela VIII, temos os resultados das flechas máximas obtidas pelas duas formulações. Podemos notar que, para a relação L/h = 100 a diferença dos resultados não é significativa. Entretanto, para L/h igual a 10 e 2,5 , as deflexões fornecidas pelo DKT corresponde a cerca de 84% e 29% daquelas fornecidas pelo DST respectivamente. Para a placa isotrópica do item 6.2, estas proporções foram de cerca de 99% e 91% respectivamente. Tal diferença se deve à elevada relação modulo de elasticidade/modulo de cisalhamento apresentada pelo material.

L/h	WDKT	WDST	WDKT/WDST
100	3,206	3,227	0,993
10	3,206	3,816	0,840
2,5	5,010	17,024	0,294

TAB VIII-DEFLEXÕES OBTIDAS COM A MALHA C. ELEMENTOS DKTÉDST

Na tabela IX, analisamos os esforços fornecidos pelos dois elementos.

L/h	Муркт/Мумер	Мурsт∕Мумер	Тудsт/Тумеd
100	0.982	1,101	2,376
10	0,982	1,069	1,635
2,5	0,982	0.998	1,046

TAB IX-ANÁLISE DOS ESFORÇOS.ELEMENTOS DKT E DST

Podemos observar que os elementos fornecem momentos com boa precisão. Entretanto, o cortante obtido pelo DST mais uma vez não é satisfatório especialmente para valores elevados de L/h. De qualquer maneira, vale observar que no elemento adjacente à extremidade livre a relação Typst/Tymedio foi de 1,110. No problema do item 6.2 os cortantes neste ponto da estrutura também apresentaram uma pequena melhora. 6.4-PLACA COMPOSTA SUJEITA A CARREGAMENTO SENOIDAL

Este problema foi proposto por PAGANO e HATFIELD ([35]) e também foi considerado por BATOZ e LARDEUR ([20]). Estudamos duas placas quadradas : uma de três e outra de nove camadas. Em ambos os casos, o contorno é simplesmente apoiado e foi utilizada uma malha 6x6 em um quarto da placa conforme a figura 6.3. Todas as camadas são constituídas do mesmo material disposto alternadamente a zero e a noventa graus em relação ao eixo x. As camadas externas estão sempre dispostas a zero graus. O somatório das espessuras das camadas dispostas a zero graus é igual ao das camadas dispostas a noventa graus, e todas camadas dispostas numa mesma direção têm a mesma espessura.

O carregamento transversal é do tipo

$$q = qo \operatorname{sen} (\pi x/L) \operatorname{sen} (\pi y/L)$$
(6.3)

Para determinar as forças nodais, utilizamos o seguinte critério :

Em cada elemento, substituímos o carregamento senoidal por um uniformemente distribuído. Este carregamento foi obtido pela média do valor de q dado por (6.3) em quatro pontos do elemento : os nós dos vértices e o centroide. A força aplicada em cada nó foi obtida pelo produto do carregamento médio pela área do elemento dividida por três.

O lado da placa foi mantido constante (L = 1000) e foram considerados três valores de espessura (h=20, 100 e 250). A fim de manter as deflexões para os diversos casos na mesma ordem de grandeza, o valor de qo em (6.3)

foi variado conforme a tabela X.

L/h	50	10	4	
٩٥	0,10	1,00	10,00	
TABELA X-VALORES DE qO				

LADO AC: W = $\Theta_y = 0$; LADO BD: $\Theta_x = 0$

Figura 6.3 - Orientação da Malha e Condições de Contorno, Um Quarto de Placa As propriedades elásticas do material são:

$$E_x = 25\ 000,00$$
 ; $E_y = 1\ 000,00$; $\nu_{xy} = \nu_{yz} = 0,25$

$$G_{xy} = 500,00$$
 ; $G_{xz} = 500,00$; $G_{yz} = 200,00$

A referência [35] fornece os valores analíticos máximos normalizados para as seguintes grandezas

$$\overline{w} = \frac{w \pi^4 Q}{12 S^4 h qo} ; \quad (\overline{\sigma}x, \overline{\sigma}y, \overline{\tau}_{xy}) = \frac{(\sigma_x, \sigma_y, \tau_{xy})}{qo S^2}$$

$$(\overline{\tau}_{xz}, \overline{\tau}_{yz}) = \frac{(\tau_{xz}, \tau_{yz})}{q_0 S}$$
(6.4)

onde

Q = 4 Gxy +
$$\frac{(E_x + E_y(1 + 2\nu_{23}))}{(1 - \nu_{xy} \nu_{yx})}$$
; S = $-\frac{L}{h}$ (6.5)

Também são fornecidas as grandezas anteriores para a teoria clássica dos laminados (CPT).

6.4.1- PLACA COM TRÊS CAMADAS

A figura 6.4 define a disposição das camadas.

Figura 6.4 - Distribuição das Camadas (0/90/0)

Para esta placa os fatores de correção de cisalhamento transversal foram

$$Kx = 0,595$$
 e $Ky = 0,720$

que coincidem com os encontrados na referência [20].

Na tabela XI, temos as deflexões máximas fornecidas pelo DST e pelo DKT. Os valores normalizados dessas deflexões são comparados aos fornecidos pela solução analítica e pela CPT respectivamente.

L/h	WDST	W d k t	Wdst/Wanal	Wdkt/Wcpt
50	57,300	52,858	1,031	0,980
10	8,091	4,229	1,098	0,980
4	12,755	2,706	1,029	0,980

TAB XI-ANÁLISE DAS DEFLEXÕES MÁXIMAS PARA O DKT E O DST PLACA COM 3 CAMADAS Podemos notar que para L/h igual a 50 e a 4, o DST fornece uma boa aproximação dos deslocamentos transversais. Entretanto, para L/h igual a 10, o erro foi de cerca de 10%. Notamos também que valores de W fornecidos pelo DKT para L/h igual a 10 e 4 são inaceitáveis, embora estejam de acordo com a teoria clássica dos laminados. Os deslocamentos do DST apresentados na referência [20] foram melhores que os apresentados na tabela XI. Também há divergências quanto às tensões. Na tabela XII analisamos as tensões do DST obtidas neste trabalho e na tabela XIII temos os resultados obtidos na referência [20] (não dispomos dos valores de $\overline{\tau}_{xy}_{r_{201}}$).

- <u>L</u> h	σxdst σxanal	σydst σyanal	τxydst τxyanal	τx2DST τx2ANAL	τyzDST τyzANAL
50	1,004	1,054	1,019	1,018	0,837
10	0,682	1,456	1,105	0,744	0,964
4	0,488	1,012	0,626	1,570	0,578

TAB.XII- ANÁLISE DAS TENSÕES PARA O DST. PLACA COM 3 CAMADAS

- <u>L</u> h	W[20] Wanal	σx [20] σx ANAL	σy[20] σyanal	$\frac{\tau x z[20]}{\tau x z ANAL}$	$\frac{\tau_{yz}^{-}[20]}{\tau_{yzA}^{-}NAL}$
50	1,011	0,917	1,254	0,472	2,504
10	0,994	0,855	0,845	0,674	2,071
4	0,996	0,624	0,561	0,900	1,421

TAB.XIII- RESULTADOS DO DST OBTIDOS NA REFERÊNCIA [20] PLACA COM 3 CAMADAS

Na tabela XIV, comparamos as tensões fornecidas pelo DKT com as da teoria clássica dos laminados.

L h	σxDKT σxCPT	σу D K T σу C P T	τxyDKT τxyCPT
50	1,025	1,015	0,953
10	0,976	1,015	0,953
4	0,976	1,015	0,951

B.XIV- ANÁLISE DAS TENSÕES PARA O DKT. Placa com 3 camadas

Na referência [36] REDDY e KUPPUSAMY apresentam resultados analíticos para a análise de vibrações livres deste problema. Estes resultados são normalizados na forma

$$\lambda = \omega \frac{L^2}{h} \sqrt{\rho/E_2}$$
 (6.6)

onde ω é a freqüência natural e ρ é a massa específica. Na referência [20], os resultados de λ são apresentados em gráficos e estão de acordo com os obtidos em nosso estudo. Na tabela XV, comparamos os valores analíticos de λ e os obtidos neste trabalho. De modo geral, o elemento apresentou bons resultados. O maior erro foi de cerca de 6,3% para L/h = 5.

L h	λ	λ [36]
100	15,105	15,473
50	14,699	-
5	11,066	11,805
4	8,060	8,317

TAB.XV-PLACA COM 3 CAMADAS ANÁLISE DE VIBRAÇÕES LIVRES

6.4.2- PLACA COM NOVE CAMADAS

Ĵ.

è

Este problema é o mesmo estudado no item 6.4.1, sendo que a placa é constituda de nove camadas (figura 6.5). Os fatores de correção de cisalhamento tranversal foram os mesmos obtidos na referência [20] :

$$Kx = 0,689$$
 e $Ky = 0,611$

Figura 6.5 — Distribuição das Camadas (0/90/0/90/0/90/0/90/0)

Na tabela XVI temos as deflexões máximas fornecidas pelos elementos, na tabela XVII analisamos as tensões fornecidas pelo DST e na tabela XVIII apresentamos os resultados da referência [20].

L/h	WDST	WDKT	Wdst/Wanal	
50	53 , 899	52,687	0,979	0,977
10	6,427	4,215	0,986	0,977
4	11,323	2,697	1,005	0,977

AB XVI-ANÁLISE DAS DEFLEXÕES MÁXIMAS PARA O DKT E O DST PLACA COM 9 CAMADAS

L h	σxdst σxanal	σydst σyanal	τxyDST τxyANAL	τx2DS T τx2AN AL	τyzdst τyzanal
50	0,972	1,026	0,962	1,815	0,534
10	0,833	1,040	0,889	1,526	0,549
4	0,658	0,812	0,643	1,600	0,573

TAB.XVII - ANÁLISE DAS TENSÕES PARA O DST. PLACA COM 9 CAMADAS

L h	<u>W[20]</u> Wanal	σ.x[20] σxanal	σy[20] σyanal	$\frac{\tau x z \{20\}}{\tau x z ANAL}$	τyz[20] τyzanal
50	0,986	0,968	1,055	0,717	1,137
10	1,001	0,956	0,939	0,862	1,119
4	1,036	0,776	0,709	0,991	1,117

TAB.XVIII- RESULTADOS DO DST OBTIDOS NA REFÊRENCIA [20] PLACA COM 9 CAMADAS

Na tabela XIX comparamos as tensões fornecidas pelo DKT com as da teoria clássica dos laminados.

L h	σxDKT σxCPT	σydkt σycpt	τxyDKT τxyCPT
50	0,981	0,991	0,958
10	0,981	0,990	0,956
4	0.993	0,907	0,958

B.XIX- ANÁLISE DAS TENSÕES PARA O DKT. Placa com 9 camadas

Não dispomos de valores analíticos para a análise de vibracões livres deste problema. Na referência [20] são apresentados resultados de λ (conforme (6.6)) em forma de gráficos e estão de acordo com os obtidos neste

trabalho, que apresentamos na tabela XX.

L/h	50	10	4
λ	15,082	12,320	7,350

TAB.XX- PLACA COM 9 CAMADAS ANÁLISE DE VIBRACÕES LIVRES

6.5-PLACA SANDUÍCHE SUBMETIDA A CARREGAMENTO UNIFORME

Este problema foi resolvido por OWEN e FIGUEIRAS ([32]) usando o elemento Heterosis (9 nós e 26 graus de liberdade) e uma malha 4 x 4 , por LARDEUR e BATOZ ([20]) usando o DST e uma malha 6 x 6 e a solução analítica foi dada por SRINIVAS ([37]). Neste trabalho, consideramos a malha da figura 6.3 (6 x 6) e o DST. O carregamento é uniforme e a espessura total da placa é de 100 (portanto L/H=10), dividida em três camadas. Uma intermediária com altura de 80 e as das faces com altura de 10. As camadas externas são do mesmo material com as seguintes propriedades elásticas :

 $Ex = 34 \ 156,00$ $Ey = 17 \ 931,00$ $G_{xy} = 10 \ 000,00$

 $G_{xz} = 6\ 080,00$ $G_{yz} = 1\ 015,00$ $\nu_{xy} = 0.44$

As propriedades do material da camada intermadiária são proporcionais às do material das faces, ou seja

$$[D]_{MEIO} = \frac{1}{C} [D]_{FACES} [G]_{MEIO} = \frac{1}{C} [G]_{FACES}$$

Na tabela XXI temos os valores de C considerados e os fatores de correção de cisalhamento transversal correspondentes obtidos neste trabalho e na referência [20].

	C = 1	C = 10	C = 50
Kx = Ky	0,8333	0,35250	0,09385
Kx = Ky[20]	0,8333	0,3521	0,0938

TAB.XXI - FATORES DE CORRECÃO DE CISALHAMENTO Placa sanduíche

Os resultados considerados são o deslocamento transversal W e a tensão normal σ_X calculados no centro da placa, que podem ser normalizadas na forma

$$\overline{\mathbf{W}} = \mathbf{W} - \frac{\mathbf{G}_{\mathbf{x}\mathbf{y}}(2)}{\mathbf{H} \mathbf{q}_{0}} \qquad \overline{\mathbf{\sigma}}_{\mathbf{x}} = \frac{\mathbf{\sigma}_{\mathbf{x}}}{\mathbf{q}_{0}}$$

onde G (2) diz respeito à camada intermediària e q $_{\circ}$ é o carregamento transversal. As forças nodais foram obtidas por :

$$P = \frac{1}{3}$$
 qo ÁREA

Nas tabelas XXII a XXIV apresentamos os resultados obtidos neste trabalho e nas referências [20], [32] e [37]. As tensões foram calculadas na face inferior e na interface das camadas ($\frac{-4h+}{10}$ e $\frac{-4h-}{10}$).

MODELO	₩	$\overline{\sigma}_{x}(\frac{-4H-}{10})$	$\overline{\sigma}_{\mathbf{x}}(\frac{-4H+}{10})$	$\overline{\sigma}_{\mathbf{x}}(\frac{-\mathrm{H}}{2})$
DST 6x6	180,876	-27,476	-27,476	-34,345
DST 6x6 [20]	180,88	-27,48	-27,48	-34,34
HETEROSIS [32] 4 x 4	183,99	-28,98	-29,98	-36,22
ANALÍTICO [37]	181,05	-28,45	-28,45	-35,94

TAB.XXII - ANÁLISE DE RESULTADOS PARA C = 1 Placa sanduíche

MODELO	W	$\overline{\sigma}_{\mathbf{x}}(\frac{-4h-}{10})$	$\overline{\sigma}_{\mathbf{x}}(\frac{-4h+}{10})$	$\overline{\sigma}_{\mathbf{x}}(\frac{-\mathbf{h}}{2})$
DST 6x6	41,924	-4,706	-47,058	-58,823
DST 6x6 [20]	41,92	-4,71	-47,06	-58,82
HETEROSIS [32] 4 x 4	41,92	-4,87	-48,73	-65,23
ANALÍTICO [37]	41, 91	-4,86	-48,61	-65,08

TAB.XXIII- ANÁLISE DE RESULTADOS PARA C = 10 Placa sanduíche

MODELO	W	$\overline{\sigma}_{x}(\frac{-4h}{10})$	$\overline{\sigma}_{x}(\frac{-4h+}{10})$	$\overline{\sigma}_{\mathbf{x}}(\frac{-\mathbf{h}}{2})$
DST 6x6	16.411	-0,938	-46, 963	-58,704
DST 6x6 [20]	16,65	-1,06	-53,05	-66,32
HETEROSIS [32] 4 x 4	16,85	-0,93	-46,65	-58,31
ANALÍTICO [37]	16, 75	-0,74	-37, 15	-66,90

TAB.XXIV- ANÁLISE DE RESULTADOS PARA C = 50 placa sanduíche De modo geral os elementos apresentaram um bom comportamento. Para C = 1e C = 10 os nossos resultados estão em pleno acordo com os da referência [20]. Entretanto, para C = 50, notamos uma pequena divergência quanto ao deslocamento tranversal e uma diferença significativa quanto às tensões. Inesperadamente, o módulo das tensões σ_x da camada da face para C = 50obtidas neste trabalho e na referência [32], foram inferiores aos obtidos para C = 10. Na referência [20] isso não se verificou.

As referências [20] e [37] também fornecem resultados de análise de vibrações livres, que são normalizados na forma

$$\lambda = \omega h \sqrt{\rho/D_{33}(2)}$$

onde ω é a freqüência natural, ρ é a massa específica e D33 diz respeito à camada do meio. Na tabela XXV, apresentamos os nossos resultados e os das referências [20] e [37]. Podemos observar o bom desempenho do elemento.

С	λ	λ[20]	λanal.
1	0,09299	0,0929	0,0925
10	0,19164	0,1920	0,1913
50	0.30099	0,3029	0,2995

TAB.XXV- ANÁLISE DE VIBRACÕES LIVRES Placa sunduíche

CAPÍTULO VII

CONCLUSÕES

A utilização crescente de materiais compostos tem conduzido a uma intensificação das atividades de pesquisas para a caracterização mecânica, representação estrutural e determinação de critérios de falha desses proposta deste trabalho foi de investigar materiais. A as diferentes abordagens de elementos finitos disponíveis para a representação numérica do comportamento de estruturas desses materiais, e desenvolver o núcleo de um simulador numérico para esta representação.

O principal fator que torna a análise dessas estruturas mais complexa é influência decisiva que as tensões de cisalhamento transversal exercem а à comportamento. Devido elevada relação módulo sobre ο seu de elasticidade/módulo de cisalhamento, essas deformações diminuem significativamente a rigidez da estrutura, alterando o seu comportamento global. Entre as respostas afetadas, temos os deslocamentos e os modos de vibração. Além disso, descontinuidade das propriedades elásticas na direção espessura exige que se utilizem modelos refinados para representar da adequadamente a distribuição interlaminar de tensões, o que é fundamental para a determinação do critério de ruptura da estrutura.

Os modelos tridimensionais e bidimensionais por camadas se propõem a estrutura de forma refinada, de modo a fornecer representar а uma interlaminares. tensões distribuição realística das 0s modelos tridimensionais são os mais dispendiosos e sua utilização exclusiva é descartada pela maioria dos autores. Os modelos bidimensionais por camadas utilizam funções contínuas por partes, definidas apenas em duas camadas adjacentes, para interpolar os deslocamentos na direção da espessura. O caráter local dessas funções permite que a distribuição das tensões cisalhantes interlaminares seja contínua. Como resultado, temos um elemento
bidimensional com muitos graus de liberdade por nó.

Por outro lado, os modelos de camadas equivalentes se propõem a representar o comportamento global da estrutura, oferecendo elementos econômicos mas que não proporcionam uma boa distribuição das tensões interlaminares. Nestes modelos o campo de deformações é contínuo ao longo da espessura, e a descontinuidade das propriedades elásticas nas interfaces das camadas conduz a uma inevitável descontinuidade das tensões de cisalhameto transversal.

Como resultado da pesquisa bibliográfica inicial, concluímos que a estratégia mais eficiente é a utilização de elementos simplificados para representar a estrutura como um todo e introduzir elementos mais refinados em pontos críticos. Assim, decidimos nesta primeira etapa implementar o DST (Triâgulo Discreto de Cisalhamento).

O DST é um elemento de placa baseado na mais simples das teorias de camadas equivalentes - a teoria de cisalhamento de primeira ordem. Nesta teoria, as deformações de cisalhamento transversal são constantes na direção da espessura e, conseqüentemente, as tensões cisalhantes interlaminares são descontínuas. No DST em particular, as deformações de cisalhamento transversal são constantes também ao longo da superfície de referência, acarretando uma descontinuidade dos cortantes e a não conformidade do elemento. Por outro lado, o DST é econômico (apenas nove graus de liberdade por nó) e não apresenta trancamento por cortante.

O DST advém do elemento DKT (Triângulo Discreto de Kirchhoff) que não considera as deformações de cisalhamento transversal e que também foi implementado. Podemos assim comparar o comportamento dos dois elementos, e verificamos que, para materiais isotrópicos, as respostas só divergem significativamente placas muito espessas. Para relação para comprimento/espessura (L/h) igual a 2,5 ,a diferença entre os deslocamentos transversais foi da ordem de 10%. Entretanto, para placas laminadas ou

homogêneas fortemente ortotrópicas, a divergência entre os resultados foi considerável. Para uma placa composta de três camadas de material com características dos utilizados em laminadas e L/h igual a 10, o DST apresentou um deslocamento transversal máximo 90% superior ao fornecido pelo DKT. Para L/h igual a 4, essa porcentagem foi de 370%. Neste ultimo caso, o erro do DST em relação à solução exata foi de 37, e o erro do DKT em relação à teoria clássica dos laminados (que não inclui as deformações de cisalhamento tranversal) foi de 27.

Apesar de representar satisfatoriamente os deslocamentos, o DST não fornece tensões adequadamente. Como opção para melhorar a precisão das tensões, e do elemento como um todo, temos os procedimentos preditores corretores propostos por BURTON e NOOR ([17]). A técnica consiste em se utilizar, num primeiro processamento, um método convencional para se determinar os fatores de correção de cisalhamento tranversal, para obter o comportamento global da estrutura. Com base nesse resultado, os fatores de correção de cisalhamento são refinados e, num segundo processamento, obtém-se uma resposta mais apurada. Embora qualquer elemento bidimensional possa ser utilizado na primeira etapa do procedimento, os autores recomendam que se utilizem elementos baseados na teoria de cisalhamento de primeira ordem (tal como o DST) tanto na fase preditora como na fase corretora.

Tanto no DST como no DKT, o deslocamento tranversal é definido apenas no contorno do elemento. Assim, não é possível calcular um vetor de carga e uma matriz de massa consistentes. No APÊNDICE D propomos um polinômio definido em todo o triângulo e que coincide com w dos elementos ao longo do contorno. Tal polinômio é obtido obrigando-se que um polinômio completo do terceiro grau em x e y passe por dez pontos. Nove desses pontos são obtidos pela função de interpolação de w (pontos do contorno) e o décimo ponto é obtido supondo-se que no centroide do elemento o deslocamento transversal é igual à média dos deslocamentos transversais dos nós dos vértices. Portanto,

o vetor de cargas e a matriz de massa calculadas utilizando-se este polinômio não são de fato consistentes.

Na teoria de cisalhamento transversal, as parcelas de energia de deformção Ub e Us são desacopladas. Tal hipótese é verdadeira para placas cuja matriz de elasticidade tem a forma dada em (2.18), ou seja, $E_{ij} = 0$ para :

$$i = 1, 2, 3$$
 e $j = 4, 5$
e $i = 4, 5$ e $j = 1, 2, 3$ (7.1)

Para placas constituídas de camadas ortotrópicas orientadas a zero e a noventa graus, a expressão (7.1) é verdadeira. Entretanto, se as camadas tiverem orientações diversas, a matriz de elasticidade resultante terá todos elementos não nulos e a hipótese de Ub e Us desacoplados passa a não ser verdadeira. Na bibliografia consultada, não encontramos nenhuma referência quanto à aplicabilidade dessa teoria a placas com camadas orientadas de forma qualquer. Deixamos a questão em aberto para futuras atividades de pesquisa.

Para a introdução do processamento global-local, temos duas alternativas implementar : bidimensional modelo a por camadas quanto ao ou tridimensional. Segundo REDDY ([4]), o modelo bidimensional por camadas proporciona uma relação custo/qualidade mais favorável. Entretanto, a de um modelo tridimensional pode ser importante para implementação representar regiões em que a hipótese de σ_z = 0 seja fortemente violada, e para fornecer parâmetros de comparação que nos auxiliem no desenvolvimento da pesquisa.

REFERÊNCIAS BIBLIOGRÁFICAS

- ZUCAS, J. A. e VINSON, J. R., "Lamimanated Transversely Isotropic Cylindrical Shells", Transactions of the ASME, <u>Journal of Appleid</u> Mechanics, vol. 38, pp. 400-407, 1971.
- [2] NOOR, A. K. e BURTON, W. S., "Assessment of Shear Deformatian for Multilayered Composite Plates", <u>Applied Mechanics Reviews</u>, vol. 42, pp. 1-13, 1989.
- [3] NOOR, A. K. e BURTON, W. S., "Assessment of Computational Models for Multilayered Composite Shells", <u>Applied Mechanics Reviews</u>, vol, 43, pp. 67-96, 1990.
- [4] REDDY, J. N., "On Refined Computational Models of Composite Laminates", <u>International Journal for Numerical Methods in Engineering</u>, vol. 27, pp.361-382, 1989.
- [5] REDDY, J. L., "On Computational Schemes for Global-Local Stress Analysis", Workshop on Computational Methods for Structural Mechanics and Dynamics, NASA Langley Research Center, Hampton, VA, 1985.
- [6] Nelson, R. B., "A Review of Some Problems in Global-Local Stress Analysis", <u>Workshop on Computational Methods for Structural Mechanics</u> and Dynamics, NASA Langley Research Center, Hampton, VA, 1985.

- KNIGHT, N., GREEN W. H. e STROUD W. J., "Nonlinear Response of a Blade-Stiffened Graphite-Epoxy Panel With a Discontinuos Stiffener : Work-in-Progress", Workshop on Computational Methods for Structural Mechanics and Dynamics, NASA Langley Research Center, Hampton, VA, 1985.
- [8] REDDY, J. L., "A Generalization of Two-dimensional Theories of Laminated Composite Plates", <u>Communications in Applied Numerical Methods</u>, vol. 3, pp. 173-180, 1987.
- [9] Lo, K. H., CHRISTENSEN, R. M. e WU, E. M., "A Higher-Order Theory of Plates Deformation : Part 1, Homogenous Plates ; Part 2, Laminated Plates", Transactions of the ASME, Journal of Applied Mechanics, vol. 44 , pp. 663-676, 1977.
- [10] REDDY, J. N., "A Simple Higher-Order Theory for Laminated Composite Plates", Transactions of the ASME, <u>Journal of Applied Mechanics</u>, vol. 51, pp. 745-752, 1984
- [11] REDDY, J. N., "Energy and Variational Methods in Applied Mechanics",
 Wiley, New York, 1984.
- [12] BERT, C. W., "Simplified Analysis of Static Shear Factors for Beams of Nonhomogenous Cross Section", <u>Journal of Composite Materials</u>, vol. 7, pp. 525-529, 1973.
- [13] CHATTERJEE, S. N. e KULKARNI, S. V., "Shear Correction Factors for Laminated Plates", <u>American Institute of Aeronautics an Astronautics</u> Journal, vol. 7, pp. 498-499, 1979.

- [14] CHOW, T. S., "On the Propagation of Flexural Waves in an Orthotropic Laminated Plate and Its Response to a Impulsive Load, <u>Journal of</u> Composite Materials, vol. 5, pp. 306-319, 1971.
- [15] CHOW, T. S., "Theory of Unsymmetric Laminated Plates, <u>Journal of</u> Applied Physics, vol. 46, pp. 219-221, 1975
- [16] WHITNEY, J. M., "Shear Correction Factors for Orthotropic Laminated Under Static Load", Transactions of the ASME, <u>Journal of Applied</u> Mechanics, vol. 40, pp. 302-304, 1973.
- [17] NOOR, A. K. e BURTON, W. S., "Stress and Free Vibrations Analyses of Multilayred Composite Plates", Composite Structures, vol. 11, 1989.
- [18] NOOR, A. K. e PETERS J. M., "A Posteriori Estimate for Shear Correction Factors in Multilayred Composite Cylinders", ASCE, <u>Journal of</u> Engineering Mechanics, vol. 115, pp. 1225-1244, 1989.
- [19] NOOR, A. K., BURTON, W. S. e PETERS, J. M.," Predictor-Corrector Procedures for Stress and Free Vibration Analyses of Multilayred Composite Plates and Shells", <u>Composites Methods Applied Mechanics &</u> Engineering, a ser publicado.
- [20] LARDEUR, P. e BATOZ, J. L., "Composite Plate Analysis Using a New Discrete Shear Triangular Finite Element", <u>International Journal for</u> Numerical Methods in Engineering, vol. 27, pp. 343-359, 1989.

- [21] BATOZ, J. L., BATHE, K. J. e HO, L. W., "A Study of Three-Node Triangular Plate Bending Element", <u>International Journal for Numerical</u> Methods in Engineering, vol. 15, pp. 1771-1812, 1980.
- [22] STRICKLIN, J. A., HAISLER, W., TISDALE P. e GUNDERSON R., "A Rapidly Converging Triangular Plate Element", <u>American Institute of Aeronautics</u> and Astronautics Journal, vol. 7, pp. 180-181, 1969.
- [23] ZIENKIEWICZ, O. C., TAYLOR, R. L. e TOO J. M., "Reduced Integration Technique in General Analysis of Plates and Shells", <u>International Journal for Numerical Methods in Engineering</u>, vol. 3, pp. 575-586, 1971
- [24] HUGHES, T., TAYLOR, R. e KANOKNUKULCHAI, W., "A Simple and Efficient Finite for Plate Bending", <u>International Journal for Numerical Methods</u> in Engineering, vol. 11, pp. 1529-1543, 1977
- [25] OLSON M. D., "Compatibility", <u>Proceedings of the World Congress on</u> <u>Finite Element Methods in Structural Mechanics</u>, Bournemouth, England, <u>1975</u>
- [26] KIKUCHI, "On a Finite Element Scheme Based on the Discrete Kirchhoff Assumption", Numerische Mathematik, vol. 24, pp. 211-231, 1975.
- [27] FRIED, I., "Residual Energy Balancing Technique in the Generation of Plate Bending Finite Elements", <u>Composite Structures</u>, vol. 4, pp. 771-778, 1974.

- [28] FRIED, I. e YANG, K., "Triangular Nine-Degree of Freedom, C⁰ Plate Bending Element of Quadratic Accuracy", <u>Quarterly of Applied</u> Mathematics, vol. 30, pp. 303-312, 1973.
- [29] FRIED I., "Shear in C⁰ and C¹ Bending Finite Elements", <u>International</u> Journal of Solids & Structures, vol. 9, pp. 449-468, 1973.
- [30] COOK R. D., MALKUS D. S., PLESHA M. E., <u>Concepts and Applications of</u> Finite Element Analysis, terceira edição, John Wiley & Sons, USA, 1988
- [31] BATOZ, J. L. e LARDEUR, P., "A Discrete Shear Triangular Nine D.O.F. Element for the Analysis of Thick to Very Thin Plates", <u>International</u> <u>Journal for Numerical Methods in Engineering</u>, vol. 28, pp 533-560, 1989.
- [32] OWEN, D. R. J. e FIGUEIRAS J. A., "Anisotropic Elasto-Plastic Finite Element Analysis of Thick to Very Thin Plates and <u>Shells</u>", International <u>Journal for Numerical Methods in Engineering</u>, vol. 19, pp. 541-566, 1983.
- [33] MARQUES, O. A., <u>"Utilização do Algorítmo de Lanczos em Blocos na</u> <u>Análise Dinâmica de Estruturas</u>, Tese D. Sc., COPPE/UFRJ, Programa de Engenharia Civil, 1991.
- [34] MARQUES, O. A., "ANÁLISE ESTÁTICA E DINÂMICA DE ESTRUTURAS PELO MÉTODO DOS ELEMENTOS FINITOS", <u>Manual do Usuário e Teórico</u>, LAMCE-COPPE/UFRJ, 1991.

- [35] PAGANO, N. J. e HATFIELD S. J., "Elastic Behavior of Multilayred Bidirectional Composites", <u>American Institute of Aeronautics and</u> Astronautics Journal, vol. 10, pp. 931-933, 1972.
- [36] REDDY, J. N. E KUPPUSAMY, T. ,"Natural Vibrations of Laminated Anosotropic Plates", <u>Journal of Sound and Vibrations</u>, vol. 94, pp. 63-69, 1984.
- [37] SRINIVAS, S., "A Refined Analysis of Composite Laminates, Journal of Sound and Vibrations, vol. 30, pp. 495-507, 1973.

APÉNDICE A

SISTEMA DE COORDENADA TANGENTE-NORMAL

Seja o elemento triangular de seis nós da figura A.1 . Considerando o sentido anti-horário como positivo, estabelecemos um nó inicial e um nó final para cada lado. Assim, o nó intermediário k servirá de identificador do lado.

Figura A.I - Sistema de Coordenadas Tangente-Normais

Temos então :

ij = 23,31,12 para k = 4,5,6 respectivamente

Sobre cada lado estabelecemos um sistema de eixos tangente-normal S_k , η_k (figura A.1). A coordenada S_k varia linearmente ao longo de cada lado tal que:

$$S_k = 0$$
 em (X_i, Y_i)
 $S = \ell_{ij}$ em (X_j, Y_j) (A.1)

Seja $\Phi_{\mathbf{k}}$ o ângulo formado pelos eixos X e $\eta_{\mathbf{k}}$ (figura A.1-b). Podemos escrever:

$$Ck = \cos \Phi_{k} = \frac{Y_{j} - Y_{i}}{\ell_{ij}}$$
(A.2)

$$Sk = \operatorname{sen} \Phi_{k} = \frac{X_{i} - X_{j}}{\ell_{ij}}$$

onde :

$$\ell_{ij} = [(X_i - X_j)^2 + (Y_i - Y_j)^2]^{1/2}$$
(A.3)

Sejam as rotações β_x , β_y , β_s , β_η , $\partial_w/\partial X$, $\partial_w/\partial Y$, $\partial_w/\partial S$ e $\partial_w/\partial \eta$ (w conforme a figura A.1) cujos sentidos positivos são dados por :

Figura A.2 - Sentido Positivo das Rotações

São válidas as seguintes transformações :

$$\begin{bmatrix} \beta x \\ \beta y \end{bmatrix} = \begin{bmatrix} Ck & -Sk \\ Sk & Ck \end{bmatrix} \begin{bmatrix} \beta \eta \\ \beta s \end{bmatrix}$$
(A.4)

$$\begin{bmatrix} \beta \eta \\ \beta s \end{bmatrix} = \begin{bmatrix} Ck & Sk \\ -Sk & Ck \end{bmatrix} \begin{bmatrix} \beta x \\ \beta y \end{bmatrix}$$
(A.5)

D

•

с С

$$\begin{bmatrix} \partial W/\partial \eta \\ \partial W/\partial S \end{bmatrix} = \begin{bmatrix} Ck & Sk \\ -Sk & Ck \end{bmatrix} \begin{bmatrix} \partial W/\partial x \\ \partial W/\partial y \end{bmatrix}$$
(A.6)

$$\begin{bmatrix} \gamma \eta_z \\ \gamma s_z \end{bmatrix} = \begin{bmatrix} Ck & Sk \\ -Sk & Ck \end{bmatrix} \begin{bmatrix} \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$
(A.7)

APÉNDICE B

COORDENADAS DE ÁREA E SUAS DERIVADAS

B.1- COORDENADAS DE ÁREA

Seja o triângulo da figura B.1, e seja P um ponto contido em seu interior. As coordenadas de área do ponto P são definidas por :

$$L_1 = \frac{A1}{A}$$
; $L_2 = \frac{A2}{A}$; $L_3 = \frac{A3}{A}$ (B.1)

onde :

A – área total do triângulo

L₁, L₂, L₃ - componentes das coordenadas de área AI ,A2, A3 - parcelas de área do triângulo definidas pela posição de P (figura B.1)

Figura B.1- Coordenadas de Área

Como a area A é igual à soma das parcelas Ai, temos que

$$L_1 + L_2 + L_3 = 1$$

Então, a posição de P no interior do triângulo pode ser determinada por duas das componentes das coordenadas de área. Neste trabalho utilizamos as componentes L_2 e L_3 .

B.2- DERIVADAS PRIMEIRAS DE \$\$ E \$\$. VETOR DE CURVATURA

Considere-se a expressão

$$\beta x = [L] [HX] {u}$$

 $\beta y = [L] [HY] {u}$
(B.2)

onde as matrizes [HX], [HY] e o vetor {u} são constantes e a matriz [L] é a matriz de coordenadas de área dada por

$$[L] = [1 \quad L_2 \quad L_3 \quad L_2 \quad L_3 \quad L_2^2 \quad L_3^2]$$
(B.3)

Então, podemos escrever

$$\partial \beta x / \partial x = \frac{\partial [L]}{\partial x}$$
 [HX] {u}
 $\partial \beta y / \partial y = \frac{\partial [L]}{\partial y}$ [HX] {u}

$$\frac{\partial \beta x}{\partial y} + \frac{\partial \beta y}{\partial x} = \left(\frac{\partial [L]}{\partial y} [HX] + \frac{\partial [L]}{\partial x} [HY] \right) \{u\}$$
(B.4)

onde

$$\frac{\partial [L]}{\partial x} = \frac{1}{2A} \left(\begin{array}{c} y_{31} \frac{\partial [L]}{\partial L_2} + y_{12} \frac{\partial [L]}{\partial L_3} \right)$$

$$\frac{\partial [L]}{\partial y} = \frac{1}{2A} \left(\begin{array}{c} x_{13} \frac{\partial [L]}{\partial L_2} + x_{21} \frac{\partial [L]}{\partial L_3} \right)$$

$$y_{1j} = y_j - y_j \quad e \quad x_{1j} = x_1 - x_j$$
(B.5)

com

$$e \qquad x_{1j} = x_1 - x_j$$

Considerando (B.3), temos que:

$$\frac{\partial \left[L\right]}{\partial L_{2}} = \begin{bmatrix} 0 & 1 & 0 & L_{3} & 2L_{2} & 0 \end{bmatrix}$$

$$\frac{\partial \left[L\right]}{\partial L_{3}} = \begin{bmatrix} 0 & 0 & 1 & L_{2} & 0 & 2L_{3} \end{bmatrix}$$
(B.6)

De (B.6), podemos notar que:

$$\frac{\partial \left[L\right]}{\partial L_{2}} - \left[HX\right] = \frac{1}{2A} \left[1 \quad L_{2} \quad L_{3}\right] \begin{bmatrix} \langle HX2 \rangle \\ 2\langle HX5 \rangle \\ \langle HX4 \rangle \end{bmatrix}$$

$$\frac{\partial \left[L\right]}{\partial L_{2}} \left[HY\right] = \frac{1}{2A} \left[1 \quad L_{2} \quad L_{3}\right] \begin{bmatrix} \langle HY2 \rangle \\ 2\langle HY5 \rangle \\ \langle HY4 \rangle \end{bmatrix}$$

$$\frac{\partial \left[L\right]}{\partial L_{3}} \left[HX\right] = \frac{1}{2A} \left[1 \quad L_{2} \quad L_{3}\right] \begin{bmatrix} \langle HX3 \rangle \\ \langle HX4 \rangle \\ 2\langle HX4 \rangle \end{bmatrix}$$

$$\frac{\partial \left[L\right]}{\partial L_{3}} \left[HY\right] = \frac{1}{2A} \left[1 \quad L_{2} \quad L_{3}\right] \begin{bmatrix} \langle HX3 \rangle \\ \langle HX4 \rangle \\ 2\langle HX6 \rangle \end{bmatrix}$$

$$\frac{\partial \left[L\right]}{\partial L_{3}} \left[HY\right] = \frac{1}{2A} \left[1 \quad L_{2} \quad L_{3}\right] \begin{bmatrix} \langle HY3 \rangle \\ \langle HY4 \rangle \\ 2\langle HY6 \rangle \end{bmatrix}$$

(B.7)

onde < HXi > e < HYi > representam as iésimas linhas das matrizes [HX] e [HY] respectivamente.

Substituindo (B.5) e (B.6) em (B.4), e considerando (B.7), podemos escrever :

$$\frac{\partial \beta \mathbf{x}_{1}}{\partial \mathbf{x}_{2} \mathbf{A}} \begin{bmatrix} 1 & L_{2} & L_{3} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{31} \begin{bmatrix} \mathbf{x} + \mathbf{H}\mathbf{X}\mathbf{2} \\ \mathbf{x} + \mathbf{H}\mathbf{X}\mathbf{5} \\ \mathbf{x} + \mathbf{H}\mathbf{X}\mathbf{4} \end{bmatrix} + \mathbf{y}_{12} \begin{bmatrix} \mathbf{x} + \mathbf{H}\mathbf{X}\mathbf{3} \\ \mathbf{x} + \mathbf{H}\mathbf{X}\mathbf{4} \\ \mathbf{x} + \mathbf{H}\mathbf{X}\mathbf{4} \end{bmatrix}$$
(u)

$$\frac{\partial\beta y}{\partial y} = \frac{1}{2A} \begin{bmatrix} 1 & L_2 & L_3 \end{bmatrix} \begin{bmatrix} < HY2 > \\ 2 < HY5 > \\ < HY4 > \end{bmatrix} + \mathbf{x}_{21} \begin{bmatrix} < HY3 > \\ < HY4 > \\ 2 < HY6 > \end{bmatrix} \end{bmatrix} \langle \mathbf{u} \rangle$$

$$\frac{\partial \beta \mathbf{x}}{\partial \mathbf{y}} + \frac{\partial \beta \mathbf{y}}{\partial \beta \mathbf{x}} = \frac{1}{2\mathbf{A}} \begin{bmatrix} 1 & \mathbf{L}_2 & \mathbf{L}_3 \end{bmatrix} \begin{bmatrix} \langle \mathbf{H} \mathbf{X} \mathbf{2} \rangle \\ \mathbf{x}_{13} \begin{bmatrix} \langle \mathbf{H} \mathbf{X} \mathbf{2} \rangle \\ \mathbf{2} \langle \mathbf{H} \mathbf{X} \mathbf{5} \rangle \\ \langle \mathbf{H} \mathbf{X} \mathbf{4} \rangle \end{bmatrix} +$$

$$+ x_{21} \begin{bmatrix} < HX3 > \\ < HX4 > \\ 2 < HX6 > \end{bmatrix} + y_{31} \begin{bmatrix} < HY2 > \\ 2 < HY5 > \\ < HY4 > \end{bmatrix} + y_{12} \begin{bmatrix} < HY3 > \\ < HY4 > \\ 2 < HY6 > \end{bmatrix} \end{bmatrix} (u)$$

(B.8)

Seja o vetor $\{\chi\}$ dado por

$$\{\chi\} = \begin{bmatrix} \frac{\partial \beta x}{\partial x} \\ \frac{\partial \beta y}{\partial y} \\ \frac{\partial \beta x}{\partial y} + \frac{\partial \beta y}{\partial x} \end{bmatrix}$$
(B.9)

Então, considerando (B.8), podemos escrever

$$\langle \chi \rangle = \frac{1}{2A} [V] [QQ] \langle U \rangle$$
 (B.10)

onde

$$\begin{bmatrix} \mathbf{V} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{L}_2 & \mathbf{L}_3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \mathbf{L}_2 & \mathbf{L}_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & \mathbf{L}_2 & \mathbf{L}_3 \end{bmatrix}_{3\mathbf{x}9}$$
(B.11)

е

$$\begin{bmatrix} y_{31} < HX2 > + y_{12} < HX3 > \\ 2y_{31} < HX5 > + y_{12} < HX4 > \\ y_{31} < HX4 > + 2y_{12} < HX6 > \\ x_{13} < HY2 > + x_{21} < HY3 > \\ 2x_{13} < HY5 > + x_{21} < HY4 > \\ x_{13} < HY4 > + 2x_{21} < HY6 > \\ x_{13} < HX2 > + x_{21} < HX6 > \\ x_{13} < HX2 > + x_{21} < HX3 > + y_{31} < HY2 > + y_{12} < HY3 > \\ 2x_{13} < HX5 > + x_{21} < HX3 > + y_{31} < HY2 > + y_{12} < HY3 > \\ 2x_{13} < HX5 > + x_{21} < HX4 > + 2y_{31} < HY5 > + y_{12} < HY4 > \\ x_{13} < HX4 > + 2x_{21} < HX6 > + y_{31} < HY4 > + 2y_{12} < HY6 > \end{bmatrix}$$

(B.12)

Devemos notar que ,para obter o vetor $\{\chi\}$, não é necessário definir as primeiras linhas das matrizes [HX] e [HY].

B.3- DERIVADAS SEGUNDAS DE $\beta_x \in \beta_y$

Considerando (B.3) temos que

$$\frac{\partial^{2}[L]}{\partial x^{2}} = \frac{1}{4A^{2}} \begin{bmatrix} 0 & 0 & 0 & 2y_{12}y_{31} & 2y_{31}^{2} & 2y_{12}^{2} \end{bmatrix}$$

$$\frac{\partial^{2}[L]}{\partial y^{2}} = \frac{1}{4A^{2}} \begin{bmatrix} 0 & 0 & 0 & 2x_{21}x_{13} & 2x_{13}^{2} & 2x_{21}^{2} \end{bmatrix}$$

$$\frac{\partial^{2}[L]}{\partial x \partial y} = \frac{1}{4A^{2}} \begin{bmatrix} 0 & 0 & 0 & x_{13}y_{12} + x_{21}y_{31} & 2x_{13}y_{31} & 2x_{21}y_{12} \end{bmatrix}$$
(B.13)

Sejam as expressões

$$\beta_{x} = [L] ([C1] { \beta_{x1} } + [C2] { \beta_{x2} })$$

$$\beta_{y} = [L] ([C1] { \beta_{y1} } + [C2] { \beta_{y2} })$$

(B.14)

onde [C1] e [C2] são matrizes constantes de ordem 6x3 definidas como :

$$\begin{bmatrix} C1 \end{bmatrix} = \begin{bmatrix} C11 \\ 3x3 \\ C12 \end{bmatrix} x_3 e \begin{bmatrix} C2 \end{bmatrix} = \begin{bmatrix} C21 \\ 3x3 \\ C22 \end{bmatrix} x_3 e \begin{bmatrix} C21 \\ 2x3 \\ C22 \end{bmatrix} x_3 e \begin{bmatrix} C21 \\ 2x3 \\ C22 \end{bmatrix} x_3 E \begin{bmatrix} C21 \\ 2x3 \\ C22 \end{bmatrix} x_3 E \begin{bmatrix} C21 \\ 2x3 \\ C22 \end{bmatrix} x_3 E \begin{bmatrix} C21 \\ 2x3 \\ C22 \end{bmatrix} x_3 E \begin{bmatrix} C21 \\ 2x3 \\ C22 \end{bmatrix} x_3$$

As derivadas de βx e βy são obtidas substituindo-se [L] em (B.14) pelas

expressões (B.13). Considerando (B.15) temos que

$$\frac{\partial^{2}\beta x}{\partial x^{2}} = [LXX] \left([C12] \langle \beta x 1 \rangle + [C22] \langle \beta x 2 \rangle \right)$$

$$\frac{\partial^{2}\beta x}{\partial x \partial y} = [LXY] \left([C12] \langle \beta x 1 \rangle + [C22] \langle \beta x 2 \rangle \right)$$

$$\frac{\partial^{2}\beta x}{\partial y^{2}} = [LYY] \left([C12] \langle \beta x 1 \rangle + [C22] \langle \beta x 2 \rangle \right)$$

$$\frac{\partial^{2}\beta y}{\partial x^{2}} = [LXX] \left([C12] \langle \beta y 1 \rangle + [C22] \langle \beta y 2 \rangle \right)$$

$$\frac{\partial^{2}\beta y}{\partial x \partial y} = [LXY] \left([C12] \langle \beta y 1 \rangle + [C22] \langle \beta y 2 \rangle \right)$$

$$\frac{\partial^{2}\beta y}{\partial x^{2}} = [LYY] \left([C12] \langle \beta y 1 \rangle + [C22] \langle \beta y 2 \rangle \right)$$

(B.10)	(B	.1	6)
--------	---	---	----	----

onde

$$[LXX] = \frac{1}{4A^{2}} \begin{bmatrix} 2y_{12}y_{31} & 2y_{31}^{2} & 2y_{12}^{2} \end{bmatrix}$$
$$[LYY] = \frac{1}{4A^{2}} \begin{bmatrix} 2x_{21}x_{13} & 2x_{13}^{2} & 2x_{21}^{2} \end{bmatrix}$$
$$[LXY] = \frac{1}{4A^{2}} \begin{bmatrix} x_{13}y_{12} + x_{21}y_{31} & 2x_{13}y_{31} & 2x_{21}y_{12} \end{bmatrix}$$

(B.17)

APÉNDICE C

VARIAÇÃO CÚBICA DE W

Seja w uma função que varie cubicamente ao longo do lado de um triãngulo. Então, se S é a coordenada tangente a este lado, w é do tipo :

$$w = \alpha_1 + \alpha_2 S + \alpha_3 S^2 + \alpha_4 S^3$$
 (C.1)

A derivada de w em relação a S é dada por :

$$\partial w/\partial S = \alpha_2 + 2 \alpha_3 S + 3 \alpha_4 S^2$$
 (C.2)

Seja 1 o nó inicial do lado em questão (origem do sistema S- η) e j o nó final. Os coeficientes α_1 podem ser obtidos fazendo-se as restrições:

w = wi e
$$\partial w/\partial S = \partial w/\partial S|_i$$
 em S = 0

е

w = w_j e
$$\partial w/\partial S = \partial w/\partial S|_{j}$$
 em S = ℓ_{ij} (C.3)

Desse modo obtemos :

$$\alpha_1 = w_1$$
; $\alpha_2 = \frac{\partial w}{\partial S} \Big|_1$

$$\alpha_{3} = \frac{3}{\ell_{1j}^{2}} \left(w_{j} - w_{j} \right) - \frac{1}{\ell_{1j}} \left(2 \left. \frac{\partial w}{\partial S} \right|_{1} + \left. \frac{\partial w}{\partial S} \right|_{j} \right)$$

$$\alpha_{4} = \frac{2}{\ell_{1j}^{3}} \left(w_{i} - w_{j} \right) + \frac{1}{\ell_{1j}} \left(\left. \frac{\partial w}{\partial S} \right|_{1} + \left. \frac{\partial w}{\partial S} \right|_{j} \right)$$
(C.4)

Substituindo (C.4) em (C.1) e (C.2) obtemos :

$$w = w_{1} \left(1 - \frac{3S^{2}}{\ell_{1j}^{2}} + \frac{2S^{3}}{\ell_{1j}^{3}} \right) + w_{1} \left(\frac{3S^{2}}{\ell_{1j}^{2}} - \frac{2S^{3}}{\ell_{1j}^{3}} \right) + \frac{3W}{\ell_{1j}^{2}} \right)$$
(C.5)

$$\frac{\partial w}{\partial S} = w_{1} \left(\frac{-6S}{\ell_{1j}^{2}} + \frac{6S^{2}}{\ell_{1j}^{3}} \right) + w_{1} \left(\frac{6S}{\ell_{1j}^{2}} - \frac{6S^{2}}{\ell_{1j}^{3}} \right) + \frac{\partial w}{\partial S} \left|_{1} \left(1 - \frac{4S}{\ell_{1j}} + \frac{3S^{2}}{\ell_{1j}^{2}} \right) + \frac{\partial w}{\partial S} \right|_{1} \left(\frac{-2S}{\ell_{1j}} + \frac{3S^{2}}{\ell_{1j}^{2}} \right) \right|_{1}$$
(C.6)

Utilizando (A.6), podemos substitur $\partial w/\partial S$ em (C.5) e em (C.6) obtendo

$$w = w_{i} \left(1 - \frac{3S^{2}}{\ell_{ij}^{2}} + \frac{2S^{3}}{\ell_{ij}^{3}}\right) + w_{j} \left(\frac{3S^{2}}{\ell_{ij}^{2}} - \frac{2S^{3}}{\ell_{ij}^{3}}\right) + \left(-Sk \left.\frac{\partial w}{\partial X}\right|_{i} + Ck \left.\frac{\partial w}{\partial Y}\right|_{i}\right) \left(S - \frac{2S^{2}}{\ell_{ij}} + \frac{S^{3}}{\ell_{ij}^{2}}\right) + \left(-Sk \left.\frac{\partial w}{\partial X}\right|_{i} + Ck \left.\frac{\partial w}{\partial Y}\right|_{i}\right) \left(\frac{S - \frac{2S^{2}}{\ell_{ij}} + \frac{S^{3}}{\ell_{ij}^{2}}\right) + \left(-Sk \left.\frac{\partial w}{\partial X}\right|_{j} + Ck \left.\frac{\partial w}{\partial Y}\right|_{j}\right) \left(\frac{-S^{2}}{\ell_{ij}} + \frac{S^{3}}{\ell_{ij}^{2}}\right)$$

е

(C.7)

$$\frac{\partial W}{\partial S} = W_{1} \left(-\frac{-6S}{\ell_{1j}^{2}} + \frac{6S^{2}}{\ell_{1j}^{3}} \right) + W_{1} \left(-\frac{6S}{\ell_{1j}^{2}} - \frac{6S^{2}}{\ell_{1j}^{3}} \right) + \left(-Sk \left. \frac{\partial W}{\partial X} \right|_{1} + Ck \left. \frac{\partial W}{\partial Y} \right|_{1} \right) \left(1 - \frac{4S}{\ell_{1j}} + \frac{3S^{2}}{\ell_{1j}^{2}} \right) + \left(-Sk \left. \frac{\partial W}{\partial X} \right|_{1} + Ck \left. \frac{\partial W}{\partial Y} \right|_{1} \right) \left(-\frac{2S}{\ell_{1j}} + \frac{3S^{2}}{\ell_{1j}^{2}} \right) \right)$$

$$(C.8)$$

Fazendo S = ℓ_{ij} em (C.8) e substituindo adequadamente os índices i, j e k , podemos escrever

$$\left. \begin{array}{c} -\partial w/\partial S \right|_{4} \\ -\partial w/\partial S \right|_{5} \\ -\partial w/\partial S \right|_{6} \end{array} = [HS] \left\{ W \right\}$$
 (C.9)

onde

$$\{W\} = \begin{bmatrix} W_1 \\ -\partial W / \partial X |_1 \\ -\partial W / \partial y |_1 \\ W_2 \\ -\partial W / \partial X |_2 \\ -\partial W / \partial y |_2 \\ W_3 \\ -\partial W / \partial X |_3 \\ -\partial W / \partial y |_3 \end{bmatrix}$$

(C.10)

$$[HS] = \begin{bmatrix} 0 & 0 & 0 & \frac{3}{2 l_{23}} & \frac{54}{4} & \frac{-C4}{4} & \frac{-3}{2 l_{23}} & \frac{54}{4} & \frac{-C4}{4} \\ \frac{-3}{2 l_{31}} & \frac{55}{4} & \frac{-C5}{4} & 0 & 0 & 0 & \frac{3}{2 l_{31}} & \frac{55}{4} & \frac{-C5}{4} \\ \frac{3}{2 l_{12}} & \frac{56}{4} & \frac{-C6}{4} & \frac{-3}{2 l_{12}} & \frac{56}{4} & \frac{-C6}{4} & 0 & 0 & 0 \end{bmatrix}_{3x9}$$

$$(C.11)$$

APÊNDICE D

INTERPOLAÇÃO DE W PARA O INTERIOR DO ELEMENTO

D.1- PROJEÇÃO DE UMA SUPERFÍCIE CÚBICA NUMA DIREÇÃO S

Seja $\overline{W}(x,y)$ um polinômio do tipo

$$\overline{W}(x,y) = a_1 + a_2 x + a_3 y + a_4 x y + a_5 x^2 + a_6 y^2 + a_7 x^2 y + a_8 x y^2 + a_9 x^3 + a_{10} y^3$$
(D.1)

e seja S^{\bullet} uma direção definida pelos pontos ı e j .Então, nesta direção, x e y se relacionam pela equação da reta que passa pelos pontos ı e j que é do tipo

$$y = \alpha x + b \tag{D.2}$$

Se elevarmos (D.2) a uma potência N, obtemos um monômio de ordem N em y à esquerda da igualdade, e um polinômio de ordem N em x à direita. Como a ordem dos dois lados da igualdade é a mesma, se substituimos (D.2) em (D.1), não alteramos a ordem de \overline{W} . Neste caso teremos obtido a variação de $\overline{W}(x,y)$ na direção de S^{*}, que é do tipo

$$W(x) = b_1 + b_2 x + b_3 x^2 + b_4 x^3$$
 (D.3)

Seja S uma coordenada tangente à reta que passa por 1 e por 3, de modo que

$$S = 0$$
 em i
 $S = \ell_{ij}$ em j (D.4)

onde l_{ij} é a norma do segmento ij. Então, S pode ser escrito como

$$S = \frac{l_{ij}}{x_{ij}} (x_{i} - x)$$
 (D.5)

ou seja,

$$x = x_1 - \frac{x_{1j}}{\ell_{1j}} - S$$
 (D.6)

com

$$\mathbf{x}_{\mathbf{ij}} = \mathbf{x}_{\mathbf{i}} - \mathbf{x}_{\mathbf{j}} \, .$$

Como x e S se relacionam linearmente, a substituição de (D.6) em (D.3) resulta em um outro polinômio cúbico do tipo

$$\overline{W}(S) = b_1 + b_2 S + b_3 S^2 + b_4 S^3$$
 (D.7)

Fica portanto demostrado que a projeção de $\overline{W}(x,y)$ numa direção S[•]

qualquer é uma curva cúbica.

D.2- INTERPOLAÇÃO DE W

Como vimos nos CAPÍTULOS III e IV, para os elementos DKT e DST o deslocamento transversal w é definido apenas no contorno. Em cada lado do triângulo, w é dado por (expressão C.1)

$$W(S) = \alpha_1 + \alpha_2 S + \alpha_2 S^2 + \alpha_4 S^3$$
 (D.8)

com S definido conforme (D.4).

Por quatro pontos passa apenas uma curva do terceiro grau. Então, se com (D.8) definirmos w em quatro pontos de um dos lados do elemento e impusermos estes valores à $\overline{W}(x,y)$, teremos que $\overline{W}(x,y)$ e W(S) coincidirão ao longo de todo o lado. Se tomarmos este procedimento para todos os lados do triângulo, $\overline{W}(x,y)$ e W(S) coincidirão em todo contorno. É essa a estratêgia que adotaremos para definir os coeficientes a, em (D.1).

D.3- DETERMINAÇÃO DE W EM 10 PONTOS DO TRIÂNGULO

Os coeficientes a em (D.1) podem ser definidos impondo-se que $\overline{W}(x,y)$ passe por dez pontos pré- estabelecidos. Sobre o plano xy, os pontos selecionados são os da figura D.1. Nos pontos 1 a 3 e 5 a 10, w é definido pela função de interpolação dos elementos. Para o ponto 4, vamos supor que

$$w_4 = -\frac{1}{3} (w_1 + w_2 + w_3)$$
 (D.9)

Os coeficientes α_i de (D.8) estão definidos em (C.4). Substituindo estes coeficientes obtemos

$$W(S) = w_{i} \left(1 - \frac{3}{\ell_{ij}^{2}}S^{2} + \frac{2}{\ell_{ij}^{3}}S^{3}\right) + w_{j} \left(\frac{3}{\ell_{ij}^{2}}S^{2} + \frac{2}{\ell_{ij}^{3}}S^{3}\right) + \frac{3}{\ell_{ij}^{2}} + \frac{3}{\ell_{ij}^{2}}S^{2} + \frac{1}{\ell_{ij}^{2}}S^{3}\right) + \frac{3}{\ell_{ij}^{2}} + \frac{3}{\ell_{ij}^{2}}S^{2} + \frac{1}{\ell_{ij}^{2}}S^{3}\right) + \frac{3}{\ell_{ij}^{2}} + \frac{3}{\ell_{ij}^{2}}S^{2} + \frac{1}{\ell_{ij}^{2}}S^{3}\right) + \frac{3}{\ell_{ij}^{2}} + \frac{3}{\ell_{ij}^{2}}S^{3}\right)$$
(D.10)

A expressão (A.6) fornece $\partial w/\partial S$ em função de $\partial w/\partial x$ e $\partial w/\partial y$. Substituindo estas derivadas e as coordenadas S dos pontos m e n da figura D.1 em (D.10), podemos escrever

$$w_{m} = \frac{20}{27} w_{i} + \frac{7}{27} w_{j} + A_{k} \left(-2 \frac{\partial w}{\partial x} \Big|_{i} + \frac{\partial w}{\partial x} \Big|_{j} \right) + B_{k} \left(\frac{\partial w}{\partial y} \Big|_{i} - 2 \frac{\partial w}{\partial y} \Big|_{j} \right)$$
(D.11)

$$\mathbf{w}_{n} = \frac{7}{27} \mathbf{w}_{i} + \frac{20}{27} \mathbf{w}_{j} + \mathbf{A}_{k} \left(-\frac{\partial \mathbf{w}}{\partial \mathbf{x}} \right|_{i} + 2 \frac{\partial \mathbf{w}}{\partial \mathbf{x}} \right|_{j} + \mathbf{B}_{k} \left(\frac{\partial \mathbf{w}}{\partial \mathbf{y}} \right|_{i} - 2 \frac{\partial \mathbf{w}}{\partial \mathbf{y}} \right|_{j}$$
(D.12)

onde ij = 23,31,12 para m = 5,7,9 e n = 6,8,10 respectivamente, e

$$A_{k} = \frac{2}{27} \ell_{ij} Sk$$
 $e B_{k} = \frac{2}{27} \ell_{ij} Ck$ (D.13)

onde Sk e Ck são os cossenos diretores dos lados do triângulos (ij=23,31,12 para k = 4,5,6 respectivamente) conforme (A.2).

Para o DST temos que

$$\frac{\partial w}{\partial x}\Big|_{1}^{2} - \beta x_{1} + \gamma xz$$

$$\frac{\partial w}{\partial y}\Big|_{1}^{2} - \beta y_{1} + \gamma yz \qquad i = 1,2,3 \qquad (D.14)$$

е

$$y_{xz} = \langle HG1 \rangle \langle u \rangle$$

$$y_{yz} = \langle HG2 \rangle \langle u \rangle$$
(D.15)

onde <HG1> e <HG2> são a primeira e segunda linhas da matriz [HG] definida em (4.44) respectivamente, e {u} é o vetor de deslocamento dos elementos.

Substituindo (D.14) e (D.15) em (D.11) e (D.12) definimos w nos pontos 5 a 10, e com (D.9) definimos w no ponto 4. Seja $\langle \overline{W} \rangle$ o vetor dos deslocamentos transversais do pontos 1 a 10 definido como :

$$\{\overline{W}\}^{T} = [w_{1} \ w_{2} \ w_{3} \ w_{4} \ w_{5} \ w_{6} \ w_{7} \ w_{8} \ w_{9} \ w_{10}]$$
 (D.16)

Podemos então estabelecer uma matriz [H] tal que

$$(\overline{W}) = [H] \langle u \rangle \tag{D.17}$$

com

[H1] =	1	0	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	0	0	
	0	0	0	0	0	0	1	0	0	
	1/3	0	0	1/3	0	0	1/3	0	0	
	0	0	0	20/27	2A_4	-2B ₄	7/27	-A ₄	B4	
	0	0	0	7/27	A4	-B ₄	20/27	-2A4	2B_4	
	7/27	-A ₅	B ₅	0	0	0	20/27	2A ₅	-2B ₅	
	20/27	-2A ₅	28 ₅	0	0	0	7/27	A_5	-B ₅	
	20/27	2A_6	-2B ₆	7/27	-A ₆	B ₆	0	0	0	
	7/27	A ₆	-B ₆	20/27	-2A ₆	2B ₆	0	0	0	
		•	-		-	-				10x9

(D.19)

$$[H1] = \begin{bmatrix} -A_{4} & \langle HG1 \rangle + B_{4} & \langle HG2 \rangle \\ -A_{4} & \langle HG1 \rangle + B_{4} & \langle HG2 \rangle \\ A_{4} & \langle HG1 \rangle + B_{5} & \langle HG2 \rangle \\ -A_{5} & \langle HG1 \rangle + B_{5} & \langle HG2 \rangle \\ A_{5} & \langle HG1 \rangle - B_{5} & \langle HG2 \rangle \\ -A_{6} & \langle HG1 \rangle - B_{6} & \langle HG2 \rangle \\ A_{6} & \langle HG1 \rangle - B_{6} & \langle HG2 \rangle \end{bmatrix}_{10x9}$$

(D.20)

Como no DKT impomos que

$$\frac{\partial w}{\partial x}\Big|_{1} = -\beta x_{1}$$

$$\frac{\partial w}{\partial y}\Big|_{1} = -\beta y_{1} \qquad i=1,2,3 \qquad (D.21)$$

a matriz [H] fica :

$$[H]_{DKT} = [H1]$$
 (D.22)

D.4- DETERMINAÇÃO DOS COEFICIENTES DE W(x,y)

A expressão (D.1) pode ser escrita na forma

$$W(x,y) = [XY] \{a\}$$
 (D.23)

onde

e

$$[XY] [1 x y xy x^{2} y^{2} x^{2} y xy^{2} x^{3} y^{3}]$$
(D.24)
$$(a)^{T} = [a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8} a_{9} a_{10}]$$
(D.25)

Podemos então determinar uma matriz [G] tal que

$$\{\overline{W}\} = [G] \{a\}$$
 (D.26)

onde a linha i de [G] é obtida pela substituição das coordenadas x-y do ponto i em [XY].

Igualando (D.17) a (D.26) escrevemos

$$\{a\} = [G]^{-1} [H] \{u\}$$
 (D.27)

Substituindo (D.27) em (D.23) obtemos finalmente

$$\overline{W}(x,y) = [XY] [G]^{-1} [H] \{u\}$$
 (D.28)

que define w em toda área do elemento. Para o DST, a matriz [H] esta definida em (D.18) e para o DKT em (D.22). Vale observar que $\overline{W}(x,y)$ dado por (D.28) satisfaz a interpolação do deslocamento transversal dos elementos ao longo de todo contorno.