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Este trabalho apresenta uma extensa análise experimental e numérica dos movimentos 

induzidos pelas ondas e correntes no sistema multicorpo TLP-TAD. 

Estudaram-se as forças de primeira e segunda ordem devido às ondas atuantes no sistema com 

auxílio da teoria potencial. O acoplamento hidrodinâmico entre os corpos é analisado tanto no 

domínio do tempo quanto no domínio da frequência.     

Avaliou-se experimentalmente o efeito de sombra nas forças médias da corrente sobre os 

corpos. Além disso, examinaram-se numericamente os efeitos de escala e bloqueio nos 

coeficientes de força das correntes atuantes sobre o sistema.  

Por outro lado, estudaram-se, mediante técnicas experimentais em escala reduzida, os 

movimentos induzidos pela corrente VIM e Galloping no sistema TLP-TAD, analisando as 

diferenças no comportamento das plataformas entre os casos sozinho, multicorpo desconectado e 

multicorpo conectado com amarras. 

Finalmente, testaram-se vários dispositivos com o objetivo de mitigar o VIM da TLP 

analisando as influências do amortecimento, da frequência natural e das forças de arrasto.  
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This work presents an extensive experimental and numerical analysis with the aim of 

investigating wave and current induced motions of a tension leg platform – tender assisted drilling 

multibody system.  

The study includes an analysis of first and second-order wave loads on the system using the 

potential wave theory. It also analyzes the wave coupling effects by using frequency and time 

domain approaches.  

The analysis of current loads includes experimental tests to quantify shielding or interaction 

effects and numerical simulations using Computational Fluid Dynamics (CFD) to evaluate scale 

and blockage effects in the multi-body system considering several current velocities and angles of 

attack. 

Furthermore, this thesis includes an experimental study of vortex induced motions (VIM) and 

Galloping instabilities of the multi-body system when subject to currents. The motions developed 

by the TLP and the TAD in single-body cases are compared to multi-body cases when the floaters 

are disconnected and connected by a hawser system. 

Finally, with the aim of reducing the VIM response of the TLP, the work includes an analysis 

of several VIM mitigation devices investigating the influences of damping, natural frequencies, 

average current loads and the amplitude of the motions of the TLP.  
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CHAPTER I. INTRODUCTION  

This work presents experimental and numerical analyses of the dynamic behavior of a Tension 

Leg Platform (TLP) – Tender Assisted Drilling (TAD) multi-body system subject to waves and 

currents. This chapter contents the motivation, aim, and scope of the thesis below. Furthermore, 

it includes a survey of relevant previous works.  

 

1.1 MOTIVATION 

The heart of the success of the oil and gas industry lies in its continual search for 

innovative solutions and advanced technology. The constant evolution of more efficient and 

economical techniques enables us to develop safer and more profitable projects.  

In this context, the use of Tender Assisted Drilling (TAD) units is one of the most 

promising developments. The use of TADs during the drilling phase of a field development, 

in support of the main unit (Spar or TLP) provides several advantages over a traditional 

production platform with a fully functional drilling unit [13], [18], [54], and [85]. The most 

notable advantages are summarized below.  

• TADs decrease space requirements on the main production platform deck. 

Consequently, operators can significantly reduce the operating weight of the rig, which 

is particularly relevant for deep water installations.  

• TADs provide additional accommodation for the crew, power source, crane facilities, 

pumping, and helideck.    

• TADs increase the storage capacity for equipment and material operations. 

• TADs improve safety because administrators can transfer the crew to this unit in 

hazardous situations.  

• TADs are versatile, and operators can use the same unit in different projects. 

Tension Leg Platform (TLP) is expected to be the candidate that can benefit most from 

the TAD concept since it is more sensitive to the topside weight [10]. Additionally, the small 
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vertical motions of a TLP make the connection with the TAD easier. Finally, the probability 

of interference between TAD mooring lines and TLP tendons is relatively low [96]. 

Since the semi-submersible Seahawk was converted from a mobile offshore drilling unit 

(MODU) to TAD in 1992, the first in the world, researchers have faced several challenges 

in the development of this concept. Therefore, the complex scenario of two floaters moored 

in close proximity requires an extensive and careful hydrodynamic analysis to guarantee the 

successful execution of the TLP-TAD system. 

Researchers have conducted several studies focusing on the hydrodynamic interactions 

of two floating structures positioned close to each other and subject to waves, for instance, 

[14], [17], [91], and [97]. The results of these studies show that coupling effects can induce 

larger motions in the floaters of the multi-body system. However, few works [92] focus on 

the wave hydrodynamic interactions of a TLP – TAD system.  

Additionally, scholars have recognized the importance of second-order loads in the 

design of mooring systems for offshore structures due to pioneering works such as [27], [65], 

[72] and [74]. However, few studies have assessed the behavior of the second-order loads in 

multi-body systems; none were found focused on the TLP-TAD system. Consequently, it is 

not clear how the presence of a second body modifies the second-order loads and affects the 

dynamic behavior of the floaters.    

Furthermore, few works have assessed the average current loads on multi-body systems. 

Koop [48] analyzed two vessels in a side by side arrangement; the results presented showed 

significant shielding or interaction effects. In some situations, the current loads on the vessel 

in the downstream position decrease significantly and can even change their direction. 

Furthermore, the scale effects due to the differences in flow regimes between model-scale 

and full-scale predictions have generated increasing interest in the last few years.    

Finally, there are several studies of flow induced motions in offshore floating structures 

such as Spars, TLPs, and Semi-submersibles, including [51], [93], [95], and [98]. The results 

have shown that those floaters are susceptible to different types of flow-induced vibrations 

such as Vortex Induced Motions (VIM) and Galloping instabilities. However, it is not clear 

how such complex phenomena affect a multi-body system. 

  Because of the lack of experimental and numerical analysis focused on the TLP-TAD 

multi-body system, the coupling effects in waves and currents are unknown. 
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1.2  AIM AND SCOPE 

Based on the challenges described prior, the aim of this thesis is to investigate the 

hydrodynamic coupling effects due to current and waves in a TLP-TAD multi-body system 

with extensive numerical and experimental analyses. The results of this work are intended 

to pave the way for future optimization studies and provide a better understanding of how 

hydrodynamic coupling effects influence the dynamic behavior of TLP-TAD systems. 

Eight chapters compose this thesis.  

In Chapter 1, as an introduction, the motivation, aim, and scope of the work are 

presented. Furthermore, a survey of relevant previous studies is performed. 

In Chapter 2, a brief review of the theoretical background is presented. 

In Chapter 3, the main characteristics of the case study are presented; including the 

geometrical and physical aspects of both floaters. Additionally, the values of stiffness and 

natural periods are estimated using analytical and numerical approaches.  

In Chapter 4, first and second-order wave loads on the system are investigated 

numerically using the potential wave theory.  Wave coupling effects are analyzed using 

frequency domain (FD) and time domain (TD) approaches. Comparisons of the dynamic 

behavior of the floaters between single-body and multi-body cases are presented 

throughout the chapter. Moreover, in the computation of the second-order loads, the 

importance of the free surface integral (FSI) is proved, the accuracy of the Newman 

approximation (NA) is tested, and the importance of second-order loads in time simulations 

is confirmed. 

In Chapter 5, the average current forces and moments on the multi-body system are 

investigated experimentally and numerically. Shielding effects are investigated for several 

current velocities, angles of attack and different relative positions between the floaters. 

Furthermore, scale and blockage effects are studied for both floaters using Computational 

Fluid Dynamics. 

In Chapter 6, the dynamic behavior of the TLP-TAD multi-body system, when subject 

to currents, is experimentally investigated. The motions developed for the TLP and TAD 

in the single-body cases are compared with the behavior of the floaters in multi-body 

arrangements considering two cases: disconnected and connected by a hawser system. 
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In Chapter 7, several devices are tested experimentally with the aim of reducing the 

motions induced in the TLP by currents. The influence of damping, natural frequencies, 

average current loads and dynamic motions are considered.  

Finally, in Chapter 8, the main conclusions of this work are presented. Furthermore, 

suggestions for future work in this field are also provided. 

 

1.3 LITERATURE REVIEW 

The analysis of the dynamic behavior of the TLP-TAD multibody system involves 

several aspects of the offshore hydrodynamics. The most relevant studies concerning the 

topics covered in this research are included in the literature review presented below. 

 

1.3.1 Wave Loads 

Dallinga et. al. [22] discussed the methodologies for determining extreme value 

responses in the calculation of mooring lines and noted that second-order forces are 

not limited to the horizontal modes but also influence the vertical modes.  

Hauteclocque et. al. [41] tested the accuracy of several approaches to determine 

the low-frequency loads on a vertical cylinder and a floating body in shallow water. 

They concluded that the accuracy of the techniques depends on the natural frequency 

of the body. Thus, in deep water, for natural frequencies below 0.005 Hz, the Newman 

approximation (NA) is satisfactory. In shallow water, the second-order loads present 

significant variations, even for natural frequencies below 0.005 Hz. Consequently, the 

Newman approximation (NA) may not be applicable in this case. 

Maruo [53] proposed the far-field method to estimate the horizontal mean drift 

loads in a stationary body subject to regular waves. Momentum and energy 

conservation principle constitute the basis of this theory.  

Ogilvie [68] developed analytic expressions to estimate the second-order forces 

based on potential theory in two-dimensions. Ogilvie also calculated the vertical 

forces of the first and second-order on a fixed cylinder. 

Ogilvie [69] presented a review of the most important methodologies for the 

computation of second-order loads and noted that in vertical motions, the Newman 
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approximation (NA) is not valid because these modes normally have natural periods 

in the range of 30 to 60 seconds.  

Pinkster [71] proposed the near-field approach to estimate the mean drift forces 

in six degrees of freedom using pressure integration. The near-field method presents 

better convergence than previous approaches and considers both horizontal and 

vertical loads on the bodies. 

Pinkster [72] described the hydrodynamic theory of 3D bodies in waves and 

proposed expressions for the estimation of mean drift forces and slow drift forces in 

six degrees of freedom through pressure integration on the body surface. This 

approach divides the second-order force into five components corresponding to (1) the 

relative wave elevation (2) the first-order fluid velocities (the quadratic velocity term 

in Bernoulli’s equation) (3) the product of the gradient of first-order pressure and body 

motions (4) the product of first-order angular movements of the body and inertia forces 

(5) and the contribution from the second-order potential. Additionally, Pinkster 

suggested an approximation to the second-order potential based on the hypothesis that 

the greatest contribution to the slow drift forces is the undisturbed incident wave 

potential; consequently, the radiation and diffraction second-order potentials are 

negligible. 

 

1.3.2 Semi-Submersible Hydrodynamics  

Ahilan and Harrison [1] investigated the influence of the current speed on slowly 

varying responses and found that these responses increase with decreasing current 

speeds. Moreover, they showed that the effect of slowly varying forces on mooring 

line tensions was approximately 15-20%. Although these forces are not significant in 

terms of the overall integrity of the mooring system, they magnify the dynamic offset 

of the unit and can be a critical issue in cases in which the semi-submersible unit is 

operating in close proximity to other installations. 

Gueydon et. al. [38] analyzed second-order loads in a semi-submersible. They 

concluded that the difference-frequency term dominates the motion response because 

it excites the underdamped Surge mode at its natural period. Additionally, because 

semi-submersibles have natural periods for Pitch that are slightly higher than the 
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typical wave periods in random sea, vertical motions are susceptible to slow-drift loads 

as well.   

Matos et. al. [56] presented a comparison between five approaches to the 

determination of second-order loads on semi-submersible platforms, focusing on 

vertical motions. They used experimental data to validate their numerical predictions. 

They concluded that the Newman approximation (NA) and methods that neglected the 

second-order potential effects on the second-order loads do not provide accurate 

estimations of the vertical modes. However, a solution that neglects the quadratic free 

surface forcing terms is suitable and efficient when computation time is critical. The 

white-noise approximation provides an excellent agreement for Heave and Pitch 

motions.  

Takagi et. al. [86] presented a comparison between several computational 

algorithms to calculate the motions of semi-submersibles in waves. They showed that 

the majority of the programs provide accurate results for the calculations of Surge and 

Sway motions. Moreover, the predictions of these codes agree well with experimental 

tests. However, Heave, Roll, Pitch, and Yaw present significant differences. Programs 

based on the Morison equation present accurate results, implying that viscous effects 

are relevant for these modes.     

 

1.3.3 Tension Leg Platform Hydrodynamics  

Chen et. al. [15] analyzed second-order wave loads on TLPs using a numerical 

code combined with semi-analytical solutions. Their results show that there is no 

simple way to predict the second-order diffraction loads acting on TLPs. Additionally, 

they reported that the contribution of the second-order diffraction potential is not 

negligible and that approximations that use the results of simple bodies such as vertical 

cylinders may provide incorrect results. Furthermore, interactions between TLP 

columns lead to rapid variations of second-order loads with wave frequencies and 

wave headings. 

Faltinsen et.al. [29] proposed a regular long wave method to compute the forces 

on a vertical cylinder caused by the third order potential. They based this method on 

the asymptotic expansion of a small parameter that they defined as a product of the 
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wavenumber and the column radius. However, this model is limited to small 

wavenumber values. 

Gurley and Kareem [39] demonstrated that marine structures with natural 

frequencies in the range of 1 to 5 seconds might experience two types of resonant 

response: Springing responses due to sum-frequency wave effects and transient 

ringing responses. Additionally, they showed that variations in the draft and the 

vertical position of the center of rotation could mitigate the ringing. The addition of 

damping causes a quicker decay in ringing but does not prevent its occurrence. 

Kim [45] numerically analyzed the sum-frequency wave loads on the stationary 

International Ship Structures Committee (ISSC) Tension-Leg Platform (TLP) and 

compared the numerical predictions for the full TLP with approximate estimation 

based on the results for a single column and four columns floater. Both estimation 

approaches neglected the effects of wave interaction between the four columns and 

the influence of the pontoons. Kim concluded that, despite a substantial savings of 

computing time, approximations of sum-frequency forces based on the numerical 

results for the single column or four columns could lead to a gross error for both 

regular and bi-chromatic incident waves. Therefore, the wave interaction between 

columns and the influence of pontoons are relevant for the computation of high-

frequency excitations and motions of TLPs. 

Molin et.al. [61] solved the third order diffraction theory to calculate the third 

order forces in a consistent way. Unfortunately, this model is limited to the triple 

frequency of third order forces in regular waves and is incompatible with the analysis 

in irregular sea states. 

Morgan and Malaeb [64] analyzed the dynamic response of a TLP subject to 

waves and demonstrated that coupling between Surge and Heave motions (set-down) 

could introduce asymmetric terms into the stiffness matrix for symmetric platforms. 

 

1.3.4 Multi-Body Hydrodynamics  

Chen and Mahrenholtz [14] studied the dynamic responses of twin bodies with 

and without connections under the action of beam waves. Additionally, they studied 

the influence of stiffness, relative distance, and water depth and validated their results 
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with experimental tests. They found that when the distance between the bodies 

increases, the maximum response corresponds to longer waves. However, Sway 

motions increase significantly when the water depth decreases. Finally, they found a 

weak relation between the stiffness and body response.      

Choi and Hong [17] analyzed numerically hydrodynamic interactions of two 

bodies in close proximity for three cases: two rectangular barges, two VLCC arranged 

in tandem and, two VLCCs arranged side by side. Their results showed weak coupling 

effects for Surge in head seas. In the case of rectangular barges, coupling effects for 

Roll and Sway were strong in beam seas. Additionally, they observed strong coupling 

effects in the mean drift forces for beam seas. For the tandem arrangement, they 

observed weak coupling effects. For side-by-side moored vessels, they found intensive 

interactions, particularly for Roll motions and mean drift forces.     

Cruz [21] developed a numerical model to represent the dynamic behavior of a 

multibody system composed of a TLWP and a FPSO subjected to regular waves. The 

numerical predictions were validated with experimental tests. The numerical model 

provides a reasonable accuracy for some wave conditions, however, fails to represent 

the Yaw motion of the TLWP and the Sway-Yaw coupled motions of the multibody 

system. 

Eatock-Taylor and Hung [26] performed a theoretical assessment of the mean 

wave drift forces on groups of vertical circular cylinders. They found that interaction 

effects between the cylinders have a strong influence on the total horizontal drift force. 

Moreover, at low frequencies, the drift force tends to equal the force on an isolated 

cylinder multiplied by the square of the number of cylinders in the group. In addition, 

they concluded that wave diffraction is primarily responsible for mean drift forces and 

that, in principle, hydrodynamic interactions can lead to substantial increases in drift 

forces. 

Menezes [58] presented a review of the numerical methods applied to analyze 

multibody systems subject to waves, currents and wind using the frequency and time 

domain approaches. Additionally, numerically investigated the hydrodynamic and 

structural coupling effects in two multibody systems. Menezes concluded that a FPSO 
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could influence the hydrodynamic behavior of a TLP, even for large distances, in the 

order of 400 m. 

Rivera [78] analyzed a multibody system composed of a TLWP coupled to a 

FPSO in regular waves. Previous experiments revelated, at a given range of wave 

periods. Rivera developed a mathematical model with nonlinearities in damping and 

restoring actions to represent the parametric resonance observed in the experiments, 

and concluded that the mooring lines of the TLP play a relevant role in the coupling 

of the Surge and Yaw motions. In addition, the coupled motions for Sway and Yaw is 

caused by the connection with the FPSO. 

Teigen and Sclavounos [91] numerically investigated coupled slow drift motions 

of a floating system comprising a mini-TLP and a tender barge in close proximity for 

long-crest and short-crest seas. They considered second-order loads in time domain 

(TD) simulations. Their results show a slight sensitivity to the grid sizes used for the 

multi-body diffraction analysis. However, the presence of a barge significantly 

disturbs the exciting forces on the TLP. The researchers found a moderate reduction 

in the total Surge motion for short-crest waves relative to long-crest waves. However, 

Sway motions present the opposite behavior. Thus, the assumption of a short-crest sea 

is not conservative. Finally, Yaw motion of the TLP is relatively strong for a wave 

heading of 135°.  

Xu et. al. [97] examined the motion responses and wave drift forces in the 

frequency domain (FD) on three barges positioned in a side-by-side arrangement. 

They used the middle-field and the near-field methods to calculate wave drift forces. 

Their results present reasonable agreement with experimental tests, and the middle-

field method offers higher accuracy and better convergence. The near-field method 

overestimates the drift forces at most of the frequencies. Comparisons between multi-

body and single-body cases show that hydrodynamic interactions are significant. In 

head sea conditions, the motions of the multi-body cases are larger than that of the 

single-body cases. The lateral drift forces are relevant in the multi-body cases but are 

nearly zero in the single-body cases. In beam sea conditions, each barge in the multi-

body cases undergoes larger drift forces at low frequencies and smaller forces at high 

frequencies. 
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1.3.5 Current and Wind Loads  

Croonenborghs et al. [20] performed a comparison of experimental and numerical 

methods for the assessment of wind and current loads on a semi-submersible. They 

compared results from two different wind tunnels, full-scale CFD, and towing tests. 

For current loads, they found reasonable agreement between the first wind tunnel and 

the towing tests. CFD calculations were in excellent agreement despite some 

discrepancies at the peak values. The second wind tunnel captured the same trends as 

the first one but fell systematically below the other results in absolute values. For wind 

loads, they found the same pattern for the two wind tunnels and CFD but observed 

only small differences at the peak values. They analyzed several factors to explain the 

differences, among which the more relevant are the transducers calibration, modeling 

of the uniform flow and modeling of the vertical wind profile.      

Koop and Bereznitski [47] investigated the applicability, cost, and accuracy of 

CFD to obtain the current coefficients in semi-submersibles. Furthermore, they 

studied scale effects on the current coefficients using experimental data from wind 

tunnels and an offshore basin. The results show that CFD can provide reliable and 

accurate solutions. The model-scale force coefficients were not strongly dependent on 

the grid resolution. However, full-scale studies require deeper investigations into the 

effects of grid refinement. The full-scale values were approximately 15-20% lower 

than the model-scale values.  

Silva [82] investigated the flow around a supply boat considering current, wind 

loads and ship resistance. Silva validated the numerical predictions with experimental 

data provided by a towing tank and a wind tunnel. CFD accurately predicted the winds 

loads. Small discrepancies were found for near-lateral winds in the longitudinal force 

and moment. For current loads, in general, excellent agreement was found, except for 

the range of near beam currents. A deep analysis demonstrated that it is worthwhile to 

apply transient simulations for near beam current conditions. In addition, the use of 

different turbulence models does not significant modify the force coefficient. Finally, 

for ship resistance, excellent agreement was achieved, and results demonstrate that the 

free-surface can introduces variations in the order of 8% of the resistance value.             
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Teigen et al. [90] conducted numerical investigations into the effects of current 

headings on TLPs. Their results showed shielding effects between the TLP columns, 

and they determined that the critical angle of the incident current occurs in the range 

of 20° to 30°.   

Vaz et al. [94] studied current loads on a semi-submersible unit using 

experimental tests, semi-empirical models and numerical methods. The results of the 

experimental tests showed that downstream columns spontaneously moved forward 

into the wake of the upstream column. Additionally, downstream columns underwent 

larger fluctuations in the drag force than upstream columns. The semi-empirical 

results were in reasonable agreement with experimental data. However, the model 

requires the calibration of parameters such as turbulence intensity and roughness. For 

CFD, the authors used three different viscous-flow codes: CFX, STAR-CCM+, and 

ReFreSCo. All of the results underestimated the average current coefficient relative to 

the experimental results. The differences between the CFD results were smaller than 

the differences between the best CFD result and the average experimental result. 

Furthermore, the  unsteady behavior of the drag coefficient is underestimated by all 

CFD computations.       

 

1.3.6 Vortex Induced Motion 

Gonçalves et al. [35] conducted experimental investigations on VIM with a semi-

submersible platform with square columns, focusing on the effects of angle of attack 

and hull appendages. Their results show a typical bell VIV curve. However, the 

maximum response and the corresponding reduced velocity are dependent on the 

incident angle. Additionally, they showed hull appendages to have a decisive influence 

on the VIM response. 

Gonçalves et al. [36] conducted an experimental investigation on VIM of a semi-

submersible platform with square columns, focusing on the effects of surfaces waves, 

external damping, and draft conditions. This work is particularly notable because the 

analysis includes waves interacting with currents. Their results show that regular 

waves are associated with VIM suppression. In addition, current with irregular waves 

showed lower VIM responses than in the case without waves. Furthermore, external 
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damping reduced the VIM response considerably, and the low draft condition 

attenuated the VIM completely.         

Gonçalves et al. [37] investigated the effects of column shapes on the VIM 

response of deep-draft semi-submersibles, considering square and circular column 

sections. They observed that the Sway responses were of the same order of magnitude 

regardless of the columns shape; however, the responses occurred at different incident 

angles. In contrast, Yaw motion of the circular column section was slightly higher than 

that of the square column section. 

Leverette et al. [51] demonstrated that VIV could affect not only tendons and 

risers but also entire single column or multi-column TLPs. Subsequently, they 

analyzed the impact of the VIM response on the complete structural system using the 

Finite Element Method (FEM) and validated their results with full-scale data. Finally, 

they concluded that VIM could excite structural resonant modes within the platform 

with frequencies above those traditionally analyzed during the design stages. 

Tan et al. [88] investigated the effects of hull appurtenances on a multi-column 

TLP designed for the Southeast Asian environment. Numerical and experimental 

results show that the response amplitudes for the hull without appurtenances are higher 

than those for the hull with appurtenances for the same reduced velocities. Moreover, 

the responses for the hull with appurtenances for most current headings increase with 

reduced speed, indicating galloping behavior in the TLP  

Walls et al. [95] analyzed the dynamic behavior of multicolumn floaters in 

currents and demonstrated that the lower mass ratios of conventional TLPs cause a 

wider range of response that is slightly higher than that of deep draft semi-

submersibles. Additionally, they show that the flow induced motions can involve a 

combination between VIM and galloping instabilities. Finally, they concluded that 

small differences in the floater geometry might vary the VIM responses and that the 

column length determines the order of magnitude of the motions. Thus, when they 

reduced the column height by 50% almost, they observed almost no flow induced 

motions. 
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CHAPTER II. THEORETICAL BACKGROUND  

In this chapter, the theoretical background of this work is presented including a brief review 

of first and second-order wave potential theory, the linear and second-order loads on offshore 

structures and the Newman Approximation for low-frequency second-order loads. In additional, 

a brief review of the coupled analysis of a floating body with mooring lines is presented. Finally, 

select aspects of current induced motions by current are discussed.  

 

2.1. HYDROSTATIC EQUILIBRIUM 

Archimedes’ principle establishes that the buoyant force on a body submerged in a fluid 

is equal to the displaced weight of the fluid in which the body moves. Thus, a free-floating 

ship in equilibrium as shown in Fig. 2.1 has a static equilibrium given by Eqn. (2.1).  

ρ ∙ g ∙ ∇𝑆𝐻𝐼𝑃= M𝑆𝐻𝐼𝑃 ∙ g 2.1 

where M𝑆𝐻𝐼𝑃 is the mass of the ship, g is the acceleration of gravity, ρ is the sea water density, 

and ∇𝑆𝐻𝐼𝑃 is the volume of the submerged part of the ship. In the case of moored floating 

structures, the mooring line forces on the body must be considered. Thus, for a TLP, Eqn. 

(2.1) becomes Eqn. (2.2). 

ρ ∙ g ∙ ∇𝑇𝐿𝑃= M𝑇𝐿𝑃 ∙ g + ∑ 𝑇𝑡𝑛

𝑛

𝑖=1
 2.2 

where ∇𝑇𝐿𝑃 is the TLP displacement, M𝑇𝐿𝑃 is the TLP mass, and 𝑇𝑡𝑛 is the pre-tension load 

on the n-th tendon of the TLP. Similarly, for TAD Eqn. (2.3) is obtained.  

ρ ∙ g ∙ ∇𝑇𝐴𝐷= M𝑇𝐴𝐷 ∙ g + ∑ 𝑇𝑉𝑛

𝑛

𝑖=1
 2.3 

where ∇𝑇𝐴𝐷 is the TAD displacement, M𝑇𝐴𝐷 is the TAD mass and 𝑇𝑉𝑛
 is the vertical 

component of the pre-tension load 𝑇𝑂𝑛
 on the n-th mooring line of TAD. 

In addition, the hydrostatic force acting on the small layer over the water-plane area gives 

the restoring forces and moment for small vertical displacement and inclinations [44]. 
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Thereby, Eqns. (2.4) to (2.6) describe Heave, Roll, and Pitch restoring coefficients, 

respectively.       

    

 

Figure 2.1 Archimedes’ principle for floating bodies. 

 

𝐶33 = 𝜌𝑔𝐴𝑊𝑃 2.4 

𝐶44 = 𝜌𝑔∇𝐾𝑀̅̅ ̅̅ ̅
𝑇 − 𝑔𝑀𝐾𝐺̅̅ ̅̅  2.5 

𝐶55 = 𝜌𝑔∇𝐾𝑀̅̅ ̅̅
𝐿̅ − 𝑔𝑀𝐾𝐺̅̅ ̅̅  2.6 

where 𝐴𝑊𝑃 is the water plane, ∇ is the submersed volume, 𝐾𝐺 is the vertical position of the 

center of gravity, and M is the mass of the floater. Note that, 𝐶44 and 𝐶55 were modified from 

[28] to include the mooring line forces. 𝐾𝑀̅̅ ̅̅ ̅
𝑇 and 𝐾𝑀̅̅ ̅̅

𝐿̅ are hydrostatic characteristics of the 

floaters and are given by Eqns. (2.7) and (2.8) 

𝐾𝑀̅̅ ̅̅ ̅
𝑇 = 𝐾𝐵̅̅ ̅̅ + 𝐵𝑀̅̅ ̅̅̅

𝑇 = 𝐾𝐵̅̅ ̅̅ +
𝐼𝑇

∇
 2.7 

𝐾𝑀̅̅ ̅̅
𝐿̅ = 𝐾𝐵̅̅ ̅̅ + 𝐵𝑀̅̅ ̅̅̅

𝑇 = 𝐾𝐵̅̅ ̅̅ +
𝐼𝐿

∇
 2.8 

where 𝐾𝐵̅̅ ̅̅  is the position of the center of buoyancy and 𝐼𝑇 and 𝐼𝐿 are the area moments of 

inertia of the water plane in relation to the x-axis and y-axis, respectively. As noted above, 

these restoring coefficients are valid only for infinitesimal motions. However, these 

expressions give reasonable approximations of dynamic motions [44]. 

The mooring systems also provide restoring forces in six degrees of freedom. These 

coefficients are computed analytically or numerically. [80] deduced in a simple manner the 

analytic expression for the stiffness of TLP tendons presented below. Note that, 

nonsymmetrical terms of the stiffness matrix were not included here.    
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𝐾11 = 𝐾22 = ∑
𝑇𝑡𝑛

𝐿𝑛

𝑛

𝑖=1
 2.9 

𝐾33 = ∑
(𝐸𝐴)𝑛

𝐿𝑛

𝑛

𝑖=1
⇒ 𝐾33

𝐺 = 𝐾33 + 𝐶33 2.10 

𝐾44 = ∑
(𝐸𝐴)𝑛

𝐿𝑛

𝑛

𝑖=1
𝑦𝑛

2 ⇒ 𝐾44
𝐺 = 𝐾44 + 𝐶44 2.11 

𝐾55 = ∑
(𝐸𝐴)𝑛

𝐿𝑛

𝑛

𝑖=1
𝑥𝑛

2 ⇒ 𝐾55
𝐺 = 𝐾55 + 𝐶55 2.12 

𝐾66 = ∑
𝑇𝑡𝑛

𝐿𝑛

𝑛

𝑖=1
(𝑥𝑛

2 + 𝑦𝑛
2) 2.13 

where 𝐿𝑛 is the tendon length, (𝐸𝐴)𝑛  is the axial stiffness, and 𝑥𝑛 and 𝑦𝑛 are the coordinates 

of connection of the n-th tendon of the TLP. Note that, for Heave, Roll and Pitch, the global 

stiffness is obtained by a linear superposition of both hydrostatic and tendon stiffness. 

      

2.2 WAVE BODY INTERACTION 

2.2.1 Wave Theory  

In the development of this theory, the fluid is considered incompressible and 

inviscid. Moreover, wave flow is assumed to be irrotational. Thus, a velocity potential 

Φ is used to describe the fluid velocity at each point; the velocity potential Φ must 

satisfy the Laplace equation (2.14) [28].   

∇2Φ =
𝜕2Φ

𝜕𝑥2
+

𝜕2Φ

𝜕𝑦2
+

𝜕2Φ

𝜕𝑧2
= 0 2.14 

Additionally, the fluid must satisfy the kinematic boundary condition, which 

establishes that any particle in contact with the free surface remains on it. The 

dynamical boundary condition defines the pressure on the free surface boundary 

between air and water to be continuous. Finally, the nonpenetration boundary 

condition applies on the bottom. These conditions are expressed as follows: 

𝜕𝜂

𝜕𝑡
+

𝜕Φ

𝜕𝑥
∙

𝜕𝜂

𝜕𝑡
+

𝜕Φ

𝜕𝑦
∙

𝜕𝜂

𝜕𝑦
−

𝜕Φ

𝜕𝑧
= 0 𝑜𝑛 𝑧 = −𝜂 2.15 

𝜕Φ

𝜕𝑡
+

1

2
∇Φ ∙ ∇Φ + 𝑔 ∙ 𝑧 = 0 𝑜𝑛 𝑧 = −𝜂 2.16 

𝜕Φ

𝜕𝑧
= 0 𝑜𝑛 𝑧 = −𝑑 2.17 
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where 𝜂 is the free surface, 𝑔 is the gravitational acceleration, and 𝑑 is the water depth. 

This set of equations constitute the boundary value problem (BVP) [44].  

With the assumption of a perturbation solution in terms of a small wave slope of 

the incident waves, the velocity potential Φ and associated variables, such as wave 

elevation, dynamic pressure, and particle velocities are expanded in the following 

form: 

Φ = ϵ ∙ Φ(1) + ϵ2 ∙ Φ(2) + ϵ3 ∙ Φ(3) + 𝑂(ϵ4) 2.18 

𝜂 = ϵ ∙ 𝜂(1) + ϵ2 ∙ 𝜂(2) + ϵ3 ∙ 𝜂(3) + 𝑂(ϵ4) 2.19 

where ϵ is the so-called perturbation parameter. Thus, by substituting Eqns. (2.18) and 

(2.19) into Eqns. (2.15) to (2.17), and grouping the equations into sets with the same 

order ϵ, ϵ2 and so on. The problem is solved easily. Equations. (2.20) and (2.21) 

present the first-order potential and wave elevation.  

Φ(1) =
𝑔𝐴

𝜔

𝑐𝑜𝑠ℎ 𝑘(𝑧 + 𝑑)

cosh(𝑘𝑑)
sin (𝑘𝑥 − 𝜔𝑡) 2.20 

𝜂(1) = A ∙ cos (𝑘𝑥 − 𝜔𝑡) 2.21 

where A is the wave amplitude, 𝜔 is the wave frequency and 𝑘 is the wave number. 𝜔 

and 𝑘 are related by the dispersion equation as follows: 

𝜔2 = 𝑔𝑘 tanh (𝑘ℎ) 2.22 

Equations (2.23) and (2.24) present the second-order potential and wave 

elevation.  

Φ(2) = 𝐴2
3𝜔

8

𝑐𝑜𝑠ℎ 2𝑘(𝑧 + 𝑑)

sinh4(𝑘𝑑)
sin 2(𝑘𝑥 − 𝜔𝑡) 2.23 

𝜂(2) =
𝐴2𝑘

4

𝑐𝑜𝑠ℎ (𝑘𝑑)(2 + 𝑐𝑜𝑠ℎ2𝑘𝑑)

sinh3(𝑘𝑑)
cos 2(𝑘𝑥 − 𝜔𝑡) 

2.24 

 

2.2.2 Linear wave loads  

The hydrodynamic wave pressure creates hydrodynamic forces consisting of 

motion-induced hydrodynamic inertia and hydrodynamic damping forces that are 

proportional to the acceleration and velocity of the body, respectively, and the exciting 

wave force on the structure assumed to be fixed in waves [44]. The exciting wave 

force consists of the Froude-Krylov and diffraction forces. The hydrodynamic wave 
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pressure is computed assuming a linear superposition among incident, diffracted and 

radiated velocity potential functions as follows:  

Φ(1) = Φ𝐼
(1)

+ Φ𝐷
(1)

+ Φ𝑅
(1)

 2.25 

This linear superposition divides the potential into two parts. The first is the 

radiation potential, which assumes that the body oscillates harmonically at frequency 

𝜔 in calm water in six degrees of freedom. The second is the sum of the incident and 

the diffraction velocity potentials, which satisfies the kinematical boundary condition 

at the mean body position as shown in Eqn. (2.26) [28]. 

𝜕Φ𝐷
(1)

𝜕𝑛
= −

𝜕Φ𝐼
(1)

𝜕𝑛
 2.26 

To solve the radiation problem, the body oscillates harmonically in calm water in 

its six degrees of freedom with a particular frequency 𝜔 is assumed. It is possible to 

demonstrate that the velocity potential per unit velocity amplitude corresponds to: 

Φ𝑅
(1)

= ∑ 𝑅𝑒[φ𝑗(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑡]
6

𝑗=1
 2.27 

The radiation potential φ𝑗 satisfies the Laplace equation, the boundary conditions 

of Eqns. (2.15) to (2.17), and two additional boundary conditions. The first is in terms 

of the surface body, as shown in Eqn. (2.28), and the second is in the form of the 

radiation condition, which establishes that the radiation and diffraction potentials must 

vanish at a great distance from the structure [20] as shown in Eqn. (2.29) 

𝜕φ𝑗
(1)

𝜕𝑛
= 𝑛𝑗  , 𝑗 = 1,2, … ,6 𝑜𝑛 𝑏𝑜𝑑𝑦 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 2.28 

lim
𝑅→∞

√𝑅 (
𝜕𝑅𝑒[φ𝑅,𝐷

(1)
]

𝜕𝑅
+

𝜔2

𝑔
𝐼𝑚[φ𝑅,𝐷

(1)
]) = 0 , 𝑜𝑛 𝑅 2.29 

where R is the radial distance from the center of the body in all directions. The 

hydrodynamic force 𝐹𝑗𝑘 is obtained solving this set of equations and it consists of two 

forces: one proportional to the acceleration and one to the velocity. Thus, 

𝐹𝑗𝑘 = −𝜔2 ∙ 𝑢𝑘 ∙ 𝐴𝑗𝑘 − 𝑖𝜔 ∙ 𝑢𝑘 ∙ 𝐵𝑗𝑘 2.30 

where 𝐹𝑗𝑘 represents the j-th mode force due to the k-th mode motion, 𝑢𝑘 is the 

generalized displacement amplitude of the k-th mode, 𝐴𝑗𝑘 are the constants called 
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added mass proportional to the acceleration 𝐴𝑘 = −𝜔2 ∙ 𝑢𝑘, and 𝐵𝑗𝑘 are the constants 

called potential damping proportional to the velocity 𝑉𝑘 = −𝑖𝜔 ∙ 𝑢𝑘. As in the case of 

the force, the suffix jk indicates the j-th mode of added mass or damping due to the k-

th mode motion. Similarly, the diffraction wave potential must satisfy the Laplace 

equation, the boundary conditions of Eqns. (2.15) to (2.17). The far field condition of 

Eqn. (2.29) and the body surface of Eqn. (2.26). Once the potential function and the 

hydrodynamic pressure are calculated, the wave exciting force is given by Eqn. (2.31)  

𝐹 = ∫ 𝑝 ∙ 𝑛
𝜎

∙ 𝑑𝜎 ∙ 𝑒𝑖𝜔𝑡 = −𝑖𝜌𝜔 ∫ (φ𝐼
(1)

+ φ𝐷
(1)

)
𝜎

𝑛 ∙ 𝑑𝜎 ∙ 𝑒𝑖𝜔𝑡 2.31 

where 𝑝 is the hydrodynamic pressure, 𝜎 is the body surface, and 𝑛 is the unit outward 

normal on the body surface. Substituting Eqn. (2.28) into Eqn. (2.31), Eqn. (2.32) is 

obtained. 

𝐹𝑗 = −𝑖𝜌𝜔 ∫ (φ𝐼
(1)

+ φ𝐷
(1)

)
𝜎

𝜕φ𝑗
(1)

𝜕𝑛
∙ 𝑑𝜎 ∙ 𝑒𝑖𝜔𝑡, 𝑗 = 1, … ,6 2.32 

The exciting wave force includes the contributions of the incident wave potential 

and the diffraction wave potential, which are the Froude-Krylov force of Eqn. (2.33) 

and the diffraction force in Eqn. (2.34), respectively. 

𝐹𝐹𝐾𝑗
= −𝑖𝜌𝜔 ∫ φ𝐼

(1)

𝜎

∙
𝜕φ𝑗

(1)

𝜕𝑛
∙ 𝑑𝜎 ∙ 𝑒𝑖𝜔𝑡, 𝑗 = 1, … ,6 2.33 

𝐹𝐷𝑗
= −𝑖𝜌𝜔 ∫ φ𝐷

(1)

𝜎

∙
𝜕φ𝑗

(1)

𝜕𝑛
∙ 𝑑𝜎 ∙ 𝑒𝑖𝜔𝑡, 𝑗 = 1, … ,6 2.34 

Φ𝐼,𝐷
(1)

= φ𝐼,𝐷
(1)

𝑒𝑖𝜔𝑡 2.35 

2.2.3 Haskind Relation  

By considering the vector function 𝐴 = (X, Y, Z) to be continuously 

differentiable, defined in the volume 𝑣 and enclosed by the surface τ. Gauss’ theorem 

establishes the following: 

∫ ∇ ∙ 𝐴 ∙ 𝑑𝑣
𝑣

= ∫ n ∙ 𝐴 ∙ 𝑑τ
τ

 2.36 

where ∇ is the vector differential operator, and n is the unit outward normal on the 

surface τ. Now, consider two scalar functions, φ1 and φ2, defined in the domain 𝑣 and 
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on surface τ, both differentiable up to second-order with continuous derivate 

functions. Replacing 𝐴 by φ1∇φ2 in Eqn. (2.36), The first form of Green’s theorem is 

obtained.  

∫ (∇φ1 ∙ ∇φ2 + φ1∇2φ2)𝑑𝑣
𝑣

= ∫ n ∙ φ1∇φ2 ∙ 𝑑τ
τ

= ∫ φ1

𝜕φ2

𝜕𝑛
𝑑τ

τ

 2.37 

Interchanging φ1 and φ2 in Eqn. (2.37), Eqn. (2.38) is obtained. Thus, subtracting 

Eqn. (2.37) from Eqn. (2.38), Eqn. (2.39) is obtained, the second form of Green’s 

theorem. 

∫ (∇φ2 ∙ ∇φ1 + φ2∇2φ1)𝑑𝑣
𝑣

= ∫ φ2

𝜕φ1

𝜕𝑛
𝑑τ

τ

 2.38 

∫ (φ2∇2φ1 − φ1∇2φ2)𝑑𝑣
𝑣

= ∫ (φ2

𝜕φ1

𝜕𝑛
− φ1

𝜕φ2

𝜕𝑛
) 𝑑τ

τ

 2.39 

If φ1 and φ2 are harmonic or regular, then ∇2φ1,2 = 0 and Eqn. (2.40), known 

as Green’s second identity is obtained. 

∫ (φ2

𝜕φ1

𝜕𝑛
− φ1

𝜕φ2

𝜕𝑛
) 𝑑τ

τ

= 0 2.40 

By replacing φ1 and φ2 with the diffraction φ𝐷
(1)

 and radiation φ𝑅
(1)

velocity 

potentials in the fluid domain 𝑣 enclosed by the surface τ, Eqn. (2.41) is obtained. 

Since the integral vanishes except on the body boundary surface, the integrals can be 

considered on the body surface 𝜎. Additionally, substituting the diffraction boundary 

condition Eqn. (2.26) into Eqn. (2.41), Eqn. (2.42) is obtained.  

∫ φ𝑅
(1) 𝜕φ𝐷

(1)

𝜕𝑛
𝑑τ

τ

= ∫ Φ𝐷
(1) 𝜕φ𝑅

(1)

𝜕𝑛
𝑑τ

τ

 2.41 

− ∫ φ𝑅
(1) 𝜕φ𝐼

(1)

𝜕𝑛
𝑑τ

𝜎

= ∫ φ𝐷
(1) 𝜕φ𝑅

(1)

𝜕𝑛
𝑑τ

𝜎

 2.42 

Using Eqn. (2.42) in Eqn. (2.32), Eqn. (2.43) is obtained, known as the Haskind 

relation. It establishes that, given the incident and radiation potential, it is possible to 

determine the exciting wave forces without computing the diffraction potential. 

𝐹𝑗 = −𝑖𝜌𝜔 ∫ (φ𝐼
(1) 𝜕φ𝑗

(1)

𝜕𝑛
− φ𝑅

(1) 𝜕φ𝑗
(1)

𝜕𝑛
)

𝜎

∙ 𝑑𝜎 ∙ 𝑒𝑖𝜔𝑡, 𝑗 = 1, … ,6 2.43 
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2.3 MEAN DRIFT FORCES  

Three different formulations have developed to estimate the mean drift forces. The first 

is the far-field approach, which once can derive by applying the momentum theorem to the 

fluid domain. Although efficient and offering satisfactory convergence, it is restricted to 

providing only three components of the horizontal modes and cannot be used to estimate the 

forces on individual bodies when they are part of a multi-body system. The second is the 

near-field approach based on direct pressure integration on the body surface. This approach 

provides the mean drift forces in all six degrees of freedom and is compatible with one single-

body or multi-body systems. The third is the middle-field approach, which represents the 

application of Gauss’ theorem in limited domains by control surfaces.  

2.3.1 Far-Field Formulation  

By applying the conservative principle of linear and angular momentum to the 

fluid domain bounded by a body surface 𝜎, water free surface 𝑛 and limiting surface 

at the far-end S∞, Maruo [53] presented a formulation to calculate the mean drift forces 

on the horizontal modes (i.e., Surge, Sway and Yaw). Subsequently, Newman [65] 

extended the formulation presented by Maruo as follows: 

 

MDF𝑥 =
ρg

2
∫ 𝜂(1)2

𝑛1𝑑𝑙
𝐹∞

+ ∫ (𝜌𝜙𝑛
(1)

𝜙𝑥
(1)

+ 𝑃𝑛1) 𝑑𝑠
S∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 2.44 

MDF𝑦 =
ρg

2
∫ 𝜂(1)2

𝑛2𝑑𝑙
F∞

+ ∫ (𝜌𝜙𝑛
(1)

𝜙𝑦
(1)

+ 𝑃𝑛2) 𝑑𝑠
S∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 2.45 

MDM𝑧 =
ρg

2
∫ 𝜂(1)2

𝑛6𝑑𝑙
F∞

+ ∫ (𝜌𝜙𝑛
(1)

((𝑥 − 𝑥0)𝜙𝑦
(1)

− (𝑦 − 𝑦0)𝜙𝑥
(1)

) + 𝑃𝑛6) 𝑑𝑠
S∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 2.46 

where 𝑛𝑗  with (j=1,2,6) are the normal vectors for each mode, F∞ is the upper 

boundary that vertically touches the mean free surface of the water, 𝜙𝑛
(1)

= 𝜕𝜙(1)/𝜕𝑛, 

𝜙𝑥
(1)

= 𝜕𝜙(1)/𝜕𝑥, 𝜙𝑦
(1)

= 𝜕𝜙(1)/𝜕𝑦, 𝑥0 and 𝑦0 are the coordinates of the reference 

point of rotation, and 𝑃 is given by Eqn. (2.47). Note that the mean drift forces 

represent the average value during one wave period.    

𝑝 = 𝜌
𝜕Φ(1)

𝜕𝑡
+

1

2
𝜌(∇Φ(1))

2
 2.47 
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2.3.2 Near-Field Formulation  

With the near-field formulation, the mean drift forces can be calculated by direct 

integration of the pressure on the body surface at its mean position. The hydrodynamic 

pressure is modeled by Eqn. (2.47). Thus, the forces and moments on the body surface 

are given by Eqn. (2.48) and (2.49), respectively. 

𝑀𝐷𝐹 = 𝜌 ∫ [
(∇Φ(1))

2

2
+ 𝑋 ∙ ∇Φ𝑡

(1)
+ Φ𝑡

(1)
𝑅 ∗] 𝑛𝑑𝜎

𝜎

+
𝜌𝑔

2
∮ 𝜂(1)(2𝜚3 − 𝜂(1))𝑛𝑑Γ

Γ

 

2.48 

𝑀𝐷𝑀 = 𝜌 ∫ [(
(∇Φ(1))

2

2
+ 𝑋 ∙ ∇Φ𝑡

(1)
+ Φ𝑡

(1)
𝑅 ∗) (𝑟 ∗ 𝑛) + Φ𝑡

(1)
𝑇 ∗ 𝑛] 𝑑𝜎

𝜎

+
𝜌𝑔

2
∮ 𝜂(1)(2𝜚3 − 𝜂(1))(𝑟 ∗ 𝑛)𝑑Γ

Γ

 

2.49 

where Φ𝑡
(1)

= 𝜕Φ(1)/𝜕t; 𝑇 = (𝜉1, 𝜉2, 𝜉3) and 𝑅 = (𝜃1, 𝜃2, 𝜃3) are the translational and 

rotational movements of the body, respectively; 𝑛 is the normal vector to the body 

surface; Γ is the waterline of the body; 𝜂(1) is the wave elevation; 𝑟 = (𝑥 − 𝑥0, 𝑦 −

𝑦0, 𝑧 − 𝑧0) is the position vector with respect to the reference point 𝑟 = (𝑥0, 𝑦0, 𝑧0) 

for rotation and; and finally 

𝑋 = 𝑇 + 𝑅 ∗ 𝑟 = (𝜚1, 𝜚2, 𝜚3). 2.50 

Note that the first term in Eqns. (2.48) and (2.49) corresponds to the convective 

term of Bernoulli’s equation, while the second term is the correction of the first-order 

dynamic pressure on the displacement. As in the previous case, the mean drift loads 

in regular waves are obtained by taking the mean value during one wave period. 

 

2.3.3 Middle-Field Formulation   

Introduced by Chen [16], the middle-field formulation defines a reduced domain 

𝐷 enclosed by the body surface 𝜎, a fictitious surface 𝐶 surrounding the body and the 

mean free surface 𝐹 limited by the curves Γ𝐶  and Γ which are the intersection of 𝐷 

and 𝜎 with the plane 𝑧 = 0. Thus, by applying Gauss’ theorem to Eqns. (2.48) and 

(2.49), it is possible to demonstrate that the mean drift loads correspond to  
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𝑀𝐷𝐹 = −
𝜌𝑔

2
∮ Ξ𝑘𝑑Γ

Γ

+  𝜌 ∫ [(η(1)Φ𝑧𝑡
(1)

+
∇Φ(1)2

2
) 𝑘] 𝑑𝐹

𝐹

 

+
𝜌𝑔

2
∮ η(1)2

𝑛𝑑Γ
Γ𝐶

+
𝜌

2
∫ [2Φ𝑛

(1)
∇Φ(1) − ∇Φ(1)2

𝑛] 𝑑𝐶
𝐶

 

2.51 

𝑀𝐷𝑀 = −
𝜌𝑔

2
∮ Ξ(r ∗ 𝑘)𝑑Γ

Γ

+  𝜌 ∫ [(η(1)Φ𝑧𝑡
(1)

+
∇Φ(1)2

2
) (𝑟 ∗ 𝑘)] 𝑑𝐹

𝐹

 

+
𝜌𝑔

2
∮ η(1)2

(𝑟 ∗ 𝑛)𝑑Γ
Γ𝐶

+
𝜌

2
∫ [2Φ𝑛

(1)
(r ∗ ∇Φ(1)) − ∇Φ(1)2

(𝑟 ∗ 𝑛)] 𝑑𝐶
𝐶

 

2.52 

Ξ = (η(1)2
− 2η(1) ∙ 𝜉3) 𝑛3 − 2η(1)(𝑋 ∙ 𝑛) 2.53 

Therefore, Eqns. (2.52) and (2.53) are used to calculate the mean drift loads in 

six degrees of freedom. As in the previous cases, the mean drift loads in regular waves 

are obtained by taking the mean value during one wave period. Note that, the shape of 

the control surface was not defined. Thus it can be defined arbitrarily. Moreover, in 

the case of multi-body analysis, each control surface can be defined by each body 

individually. 

Another important consequence of these formulations is that if the fictitious 

surface 𝐶 is extended to infinity, the formulation obtained is equivalent to the far-field 

method of section 2.3.1, while if the surface 𝐶 is shifted back to the body surface, the 

near-field method of section 2.3.2 is obtained. Consequently, with the middle-field 

formulation it is possible to state that the near-field and far-field approaches are also 

equivalent.  

 

2.4 SECOND-ORDER LOADS  

The second-order loads are proportional to the wave amplitude and are associated with 

wave-wave and wave-body interactions [11]. Thus, these forces contain terms corresponding 

to frequencies that are equal to sums and differences of the elementary wave frequencies, 

i.e., wave drift loads (low-frequency effects) and sum frequency loads (high-frequency 

effects) [57]. 

Second-order wave loads are usually represented by the quadratic transfer function 

(QTF) [41]. The QTF can be decomposed into the contributions of two parts, as shown in 

Eqn. (2.54). The first part 𝐹1 contains quadratic terms due to the products of first-order 
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quantities; consequently, it depends only on the first-order wave potential. The second part 

𝐹2 is a consequence of the solutions of the second-order wave potential [60]. 

𝐹(𝑓1, 𝑓2) = 𝐹1(𝑓1, 𝑓2) + 𝐹2(𝑓1, 𝑓2) 2.54 

where F is the second-order load and 𝑓1 and 𝑓2 are two elementary wave frequencies of an 

irregular sea. 

The first term 𝐹1 is equivalent to the mean drift force, and there are three formulations to 

calculate this term, as mentioned in Section 2.3. The second term can be formulated as shown 

in Eqn. (2.55) [60]. 

𝐹2(𝑓1, 𝑓2) =
−𝑖𝜌

𝑔
(𝜔2 − 𝜔1) ∫ (𝜙𝐼

(2)
+ 𝜙𝐷

(2)
) 𝜂̅𝑑𝑆

𝑆

 2.55 

where 𝜔1=2π𝑓1, ρ is the water density, g is gravitational acceleration, S is the body surface, 

𝜙𝐼
(2)

 is the second-order wave incident potential, 𝜙𝐷
(2)

 is the second-order wave diffracted 

potential, and 𝜂̅ is the normal vector to the body surface. Since 𝜙𝐼
(2)

 is well described by an 

analytical expression [72], the next step is to calculate the second-order wave diffracted 

potential. The following approaches have been proposed to determine this integral. 

 

2.4.1 Direct Method  

In this method, proposed by [46] and [67] the full second-order problem is solved 

directly from Eqn. (2.55). Thus, the second-order wave loads are obtained by direct 

pressure integration over the body surface. 

 

2.4.2 Indirect Method  

In this method, proposed by [60], the second-order wave diffracted potential is 

calculated in an indirect manner using first-order quantities by introducing an assisting 

velocity potential 𝜓 which is the solution of the first-order radiation problem at the 

sum or difference frequency as shown in Eqn. (2.56). This approach is similar to the 

Haskind relation used to determine the first-order wave diffracted potential. 

∫ 𝜙𝐷
(2)

𝜂𝑑𝑆
𝐻

= − ∫ (
𝜕𝜙𝐼

𝜕𝑛
− ℵ𝐻) 𝜓

𝐻

𝑑𝑆 −
1

𝑔
∫ ℵ𝐹𝜓𝑑𝑆

𝐹𝑆

 2.56 

where ℵ𝐻 represents the linear and rotational body motions and ℵ𝐹 is an integrand 

over the free surface, as shown in Eqns. (2.57) and (2.58). The first term of Eqn. (2.56) 
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is an integral over the body surface, and the second term involves an integration over 

the free surface.  

ℵ𝐻 =
1

2
[(𝑖𝜔2𝑋2

∗ − ∇∅2
∗ )(𝑅1×𝑛) − (𝑖𝜔1𝑋1 − ∇∅1 )(𝑅2

∗×𝑛) − (𝑋1 ∇)∇∅2
∗ 𝑛

− (𝑋2
∗∇)∇∅1 𝑛] 

2.57 

ℵ𝐹 = 𝑖(𝜔1 − 𝜔2)[∇∅𝐼1∇∅𝐷2
∗ + ∇∅𝐷1∇∅𝐼2

∗ + ∇∅𝐷1∇∅𝐷2
∗ ] 

−
𝑖𝜔1

2𝑔
[(∅𝐼1 + ∅𝐷1) (−𝜔2

2
𝜕

𝜕𝑧
+ 𝑔

𝜕2

𝜕𝑧2) ∅𝐷2
∗ + ∅𝐷1 (−𝜔2

2
𝜕

𝜕𝑧
+ 𝑔

𝜕2

𝜕𝑧2) ∅𝐼2
∗ ] 

−
𝑖𝜔2

2𝑔
[(∅𝐼2 + ∅𝐷2

∗ ) (−𝜔1
2

𝜕

𝜕𝑧
+ 𝑔

𝜕2

𝜕𝑧2) ∅𝐷1 + ∅𝐷2
∗ (−𝜔1

2
𝜕

𝜕𝑧
+ 𝑔

𝜕2

𝜕𝑧2) ∅𝐼1] 

2.58 

where 𝑋 and 𝑅 are the linear and rotational motions of the floating body, respectively. 

The convergence of the free surface integral (FSI) is slow and requires a relatively 

long processing time [75]. The contribution of the FSI to the wave drift loads on large 

volumes is not significant and can be neglected [63]. In contrast, this integral is 

predominant in the sum-frequency component and is unavoidable [63]. Thus, this term 

requires careful evaluation. 

 

2.4.3 Newman Approximation 

The calculation of QTFs involves many numerical challenges and a large number 

of numerical unknowns; consequently, it is expensive in terms of processing time [75]. 

Thus, several approximate methods have been developed with the aim of simplifying 

the associated computational effort. The most widely used is the Newman 

approximation (NA) [66]. With this approach, the term 𝐹2 of Eqn. (2.54) is estimated 

using the term 𝐹1 as shown in Eqn. (2.59). 

 

𝐹2(𝑓1, 𝑓2) = 𝑠𝑔𝑛(𝐹1(𝑓1, 𝑓1))√(𝐹1(𝑓1, 𝑓1)×𝐹1(𝑓2, 𝑓2)) 2.59 

Note that, this method was developed for the estimation of wave drift loads on 

large structures such as barges or FPSOs operating in deep water with low natural 

frequencies [62]. Several works [41], [63], and [75] have discussed the limitations of 

this method. Consequently, its accuracy needs to be evaluated for each situation. 

Finally, note that there is no approximation to the QTF sum-frequency term. 
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2.5 COUPLED ANALYSIS OF MOORED STRUCTURES  

This section presents a brief review of the equations that characterize the time domain 

(TD) simulations performed in Orcaflex software [70]. The interaction between mooring 

lines and floating bodies is addressed with a so-called coupled analysis. This method consists 

of the solution of two groups of equations. 

For the first equation, the floating body is considered to be a rigid body subject to the 

action of external loads such as waves and currents; the mooring line forces are applied to 

the connection points (fairlead) as shown in Eqn. (2.60).  

[𝐴 + 𝑀]𝑥̈ + 𝐵𝑥̇ + 𝐶𝑥 = 𝐹𝑊𝐴𝑉𝐸 + 𝐹𝐶𝑈𝑅𝑅𝐸𝑁𝑇 + 𝐹𝑀𝐿 2.60 

where 𝐴 is the added mass; 𝑀 is the mass of the system; 𝐵 is the damping; 𝐶 is the hydrostatic 

restoration, 𝐹𝑊𝐴𝑉𝐸 includes the linear diffraction forces, mean drift forces and second-order 

forces on the floating body; 𝐹𝐶𝑈𝑅𝑅𝐸𝑁𝑇 is the average current force on the structure; and 𝐹𝑀𝐿 

is the forces exerted by the mooring lines on the floating body. Note that Eqn. (2.60) 

represents only one degree of freedom; and the complete formulations involve similar 

equations for the other degrees of freedom. 

Thus, after defining the initial conditions of the system (position, velocities, and 

acceleration), Eqn. (2.60) is solved for each time step, and the new position of the body is 

obtained. Consequently, the new positions of the fairleads are obtained as well. 

The second group of equations consists of a FEM model for the mooring lines. This group 

of equations includes the effects of the weight and buoyancy of the lines, added mass and 

drag forces. The forces applied by the floating body on the lines and the information provided 

by the solution of Eqn. (2.61), i.e., the new position of the far end of the lines as shown in 

Eqn. (2.61) are considered at each time step of the simulation.         

𝑀𝑀𝐿𝑥̈𝑀𝐿 + 𝐵𝑀𝐿𝑥̇𝑀𝐿 + 𝐶𝑀𝐿𝑥𝑀𝐿 = 𝐹𝐸𝑋𝑇 + 𝐹𝑀𝐿 2.61 

where 𝑀𝑀𝐿 is the mass matrix of the mooring lines, 𝐵𝑀𝐿 is the structural damping, 𝐶𝑀𝐿 is the 

restoring forces on the lines, 𝐹𝐸𝑋𝑇 is a group of forces which includes drag forces and added 

mass and 𝐹𝑀𝐿 are the forces applied by the floating body on the mooring line. The force that 

the lines apply to the floating body is obtained from Eqn. (2.60).  

The interaction between both groups of equations occurs at each time step, transmitting 

the motions of the floating body to the mooring lines; subsequently, the forces exerted on the 

mooring lines are applied to the floating body, as shown in Fig. 2.2   
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Figure 2.2 Coupled model of the floating body – mooring line interaction.  

 

2.6 VORTEX INDUCED MOTIONS 

Vortex induced motions (VIM) refers to resonant movements as a consequence of fluid-

structure interaction [33]. Due to the characteristics of the vortex shedding, the pressure 

distribution around the body varies at a defined frequency, the so-called vortex shedding 

frequency 𝑓𝑠 [9]. Thus, when 𝑓𝑠 is approximately equal to the natural frequency of the 

structure 𝑓𝑛, the structure undergoes oscillatory movements with an amplitude of the same 

order of magnitude as the characteristic length 𝐿𝐶  of its transversal section [52]. Note that, 

the “equality” between 𝑓𝑠 and 𝑓𝑛 occurs for a fixed range of current velocities, i.e., far from 

this range of velocities, there are no resonant motions [6].    

In addition, experimental tests have shown that cylinders in a tandem arrangement, as in 

the case of multi-column floaters, can suffer from the phenomenon known as Galloping [89]. 

Fluid forces generated by relative motions between a structure and fluid cause that the body 

motion descends, and body remains stable, or ascends and motion becomes unstable. Both 

scenarios depend on the current speed. When the current speed exceeds a specific threshold, 

known as critical velocity, the structure becomes unstable, and galloping occurs [4]. In other 

words, the structure can be seen a dynamical system that undergoes a super-critical Hopf 

Bifurcation, as the current speed exceeds the critical velocity [5].  
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Galloping is known as dynamic instability that is induced due to the internal turbulence 

of the fluid. Thus, Galloping enhances any initial small motion of the structure and turns it 

to an oscillation [8]. Dynamically speaking, Galloping is damping-controlled phenomena, 

since its occurrence involves zero damping. Thus, the amplitude of oscillation is preserved, 

and an isolated limit cycle is formed. This limit cycle follows nonlinear chaotic equations 

such as the van der Pol-Duffing equation [30], and [31]. 

Therefore, Galloping is physically different from VIM. While VIM is a resonance 

motion, i.e., the frequency of the exciting forces coincides with the natural frequency of the 

body, Galloping is a low-frequency motion, i.e., the vortex shedding frequency 𝑓𝑠 is larger 

than the natural frequency of the structure. Furthermore, drag forces do not limit the 

Galloping; thus, the amplitude of motions increases steadily with the current velocity [95].  

Figure 2.3 presents the dynamic behavior of different arrangements of cylinders subject 

to currents. Depending on the distribution of the cylinders, flow induced vibration regimes 

caused by both VIM and galloping were observed. VIM and galloping can occur singly, in 

combination or separately. 

  

 

Figure 2.3 Flow-induced motions on cylinders in tandem configuration (a) VIM alone,  

(b) VIM and Galloping combined, (c) Galloping Alone and (d) VIM and Galloping 

separated [89]. 

In the offshore industry, this phenomenon has been observed and studied mainly in the 

context of one-column structures, such as Spar platforms [79], [93], and [98]; and mono-

columns [34]. However, recent studies have demonstrated that deep draft TLPs and Semi-

submersibles are also susceptible to these motions [95]. Figure 2.4 presents experimental 
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results for a deep draft semi-submersible with VIM behavior for transversal movements. 

Moreover, Figure 2.5 shows Yaw motions of four floaters, all of them exhibiting galloping 

instabilities. 

To aid in understanding such a complex phenomenon several nondimensional parameters 

have been defined. For instance, reduced velocity 𝑉𝑅 establish a relationship between the 

flow velocity 𝑉𝐶 and the natural frequency of the structure f𝑛 as shown in Eqn. (2.62).  

V𝑅 =
𝑉𝐶

𝐿𝑐 ∙ f𝑛
 2.62 

where 𝐿𝑐 is a characteristic length of the body. The Strouhal number St is defined as the ratio 

of inertial forces due to the unsteadiness of the flow to inertial forces due to changes in 

velocity from one point to another in the flow field [25], it is formulated in Eqn. (2.63). 

St =
𝐿𝑐 ∙ f𝑆

𝑉𝐶
 2.63 

 

Figure 2.4 VIM of a semi-submersible in transversal motion [35]. 

 

The Strouhal number for circular cylinders is approximately constant and equal to 0.2 for 

the transitional Reynolds number regime in cylinders with high aspect ratio (L/D), as shown 

in Fig. 2.6 [9]. This observation implies that the frequency of vortex shedding f𝑆 is 

approximately linearly dependent on the current velocity.   
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Figure 2.5 Galloping instabilities for Yaw motion of four floaters [95]. 

 

The Reynolds number is defined as the ratio of inertial forces to viscous forces, as shown 

in Eqn. (2.64).  

Re =
𝑉𝐶𝐿𝑐

𝜈
 2.64 

where ν is the kinematic viscosity of the fluid. Typically, on offshore platforms, the Reynolds 

number takes values on the order of 1.0E7 corresponding to the transcritical flow regime. 

Consequently, the boundary layer is turbulent upstream of the separation point [28], which 

represents an enormous technical challenge for the experimental tests using reduced or even 

ultra-reduced scale modes.   

 

 

Figure 2.6 Strouhal number vs. Reynolds number relationship [9]. 

Hydrodynamic scaling laws require geometric, kinematic and dynamic similarity 

between the model and prototype [84]. However, due to technical and physical limitations, 
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it is impossible to satisfy all of these laws simultaneously [12]. [93] shows that experiments 

that satisfy only the Froude model law have lower Reynolds numbers as shown in Eqn. (2.65) 

Re𝑀𝑂𝐷𝐸𝐿 =
Re𝑃𝑅𝑂𝑇𝑂𝑇𝑌𝑃𝐸

√𝜆3
 2.65 

where λ is the scale factor. Thus, when using scale factors between 50 and 200, the model 

Reynolds numbers are in the range of 1.0E3 to 1.0E5 which correspond to the subcritical 

flow regime in which the boundary layer is always laminar [28].  

Recent studies on this issue [23], [79], and [98] have considered different flow regimes. 

The authors have concluded that VIM results in the subcritical flow regime are acceptable 

and slightly conservative.  

Full-scale data presented in [77] showed that the amplitude of induced movements was 

significantly higher than that predicted in experimental tests. Although these differences can 

be attributed to Reynolds number differences, [77] also considered interactions between 

waves, current, and wind to be a possible reason for such differences. Therefore, it is still too 

early to reach a conclusion on this point. Furthermore, the experimental tests with reduced 

scale models involve other relevant aspects such as the following:  

• Blockage effects in the current channel 

Although [99], states that blockage effects from walls are negligible when the ratio 

between characteristic length 𝐿𝐶 and the width of current channel is less than 0.1, it 

is not clear if this ratio applies to a complex geometry such as a multi-floater column. 

Note that, [3] establishes that VIM response in deep water is not a function of the 

water depth; however, it is not clear what effect the bottom has in terms of the 

amplitude of the current induced motions.  

• Faithful representation of the floaters 

Several works, [35] and [88], have demonstrated that the amplitude of the motions 

developed by the unit depends on the details of the geometry of the hull. 

Consequently, details such as fairlead and cathodic anodes could play a major role in 

experimental tests. Based on this fact, it is possible to develop mitigation devices 

with the correct dimensions to introduce modifications in the motion pattern 

developed by the floater and reduce the order of magnitude of the VIM. 
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• Surface tension and rugosity of the floater hull 

Scale effects include not only Reynolds effects but also the correct representation of 

the floater geometry in terms of rugosity; moreover, due to the reduced scale, the 

effects of the surface tension could play a major role.  

No references were found on this topic. Consequently, it is not clear if these effects 

play a relevant role in VIM and Galloping phenomena, particularly in ultra-reduced 

scale models.      

• Mooring lines and risers  

Typically mooring lines, risers and even tendons of a TLP are not considered in 

experimental tests. Equivalent systems normally consider the contribution of the 

mooring lines in the restoration of the motions of the floater. However, it is not clear 

how the damping associated with these elements could modify the motions of the 

offshore unit. Recent studies [36] and [49] have demonstrated that damping plays a 

major role in the mitigation of the motions developed by the units. 

In addition, these elements are susceptible to resonance motions as well. As shown 

in Appendix A, TLP tendons are vulnerable to VIV resonance motions. Therefore, it 

is not clear if these vibrations could induce higher movements of the unit. 

• Combined effects of waves and currents    

Recent works [89] have presented experimental evidence that the effects of waves 

and currents combined induce larger motions on the floater. However, the 

experimental results presented in [36] suggest the opposite trend. Consequently, it is 

not clear if it is possible to determine a general rule regarding the combined effects 

of current and waves.  

• Column Length 

Several works, for instance [36] and [95], have demonstrated that the primary 

geometrical parameter of the floaters in the development of VIM is the length of the 

columns; as a general rule, it is clear that longer columns are susceptible to larger 

induced movements.    
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CHAPTER III. TLP-TAD SYSTEM CASE STUDY 

In this chapter, the main properties of the TLP-TAD system are presented. Geometrical and 

physical properties of the floaters considered in this work are reported. Moreover, the mooring 

systems of the TLP, the TAD and the mechanical connection between both floaters are described. 

Finally, important properties such as natural periods and the linear stiffness matrix are calculated 

and presented.  

 

3.1 TENSION LEG PLATFORM 

The Tension Leg Platform (TLP) is one of the most important floating production 

systems for deepwater operations in the oil and gas industry. TLPs units are particularly 

suitable for water depths between 300 and 1600 meters, the industry has used them since the 

1980s in diverse scenarios such as the North Sea (Hutton, Snorre and Heidrun), Gulf of 

Mexico (Jolliet, Typhoon, Neptune and Bigfoot), Africa (Kizomba A, Kizomba B, Oveng), 

Southeast Asia (West Seno and Malakai) and Brazil Offshore (Papaterra). 

Fundamentally, the TLP consists of a hull moored by rigid tendons to the seabed. These 

tendons are designed to restrain the vertical motions of the TLP due to waves. The hull of 

the TLP has an excess of buoyancy to provide adequate pre-tension in the tendons. For the 

TLP hull, several configurations can be found; the conventional TLP presented in Fig. 3.1, 

comprises a pontoon in a closed configuration with four columns; and tendon porches attach 

to the column base. In contrast, the concept of the extended TLP or ETLP has the tendon 

porches attached to the ends of extended pontoons, as shown in Fig. 3.1. 

The hull considered in the present work corresponds to the ETLP concept and consists 

of four rectangular pontoons in a closed configuration and four columns with square sections. 

Note that the columns are rotated 45° about the vertical axis. Figure 3.2 presents a 3D view 

of the TLP and the main dimensions of the hull. The main particulars of the TLP are listed 

in Table 3.1.  
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Figure 3.1 TLP hull configuration (a) E-TLP and (b) conventional TLP. 

 

  
(A) (B) 

Figure 3.2 Extended Tension Leg Platform (E-TLP) hull. 

 

Table 3.1 Main characteristics of the TLP. 

Description Value  Units 

Water depth 1200 [m] 

TLP overall breadth  80.0 [m] 

Draft 31.0 [m] 

Mass 32897 [mT] 

Vertical position of center of gravity 31.1 [m] 

Radius of gyration (Rxx) 33.6 [m] 

Radius of gyration (Ryy) 33.4 [m] 

Radius of gyration (Rzz) 37.0 [m] 
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The hull of the TLP is moored to the seabed by eight tendons with a length of 1155 meters 

and a pre-tension of 11 500 kN. The tendons are circular pipes with a mass per unit length 

equal to 0.635 mT/m, axial stiffness equal to 1.71E7 kN and an outer diameter equal to 0.81 

m.  

 

3.2 TENDER ASSISTED DRILLING 

The TAD unit is a semi-submersible platform composed of two rectangular pontoons 

connected by three circular beams and six columns, as shown in Fig. 3.3. The main 

characteristics of the TAD are listed in Table 3.2.  

The main advantages of the use of semi-submersible platforms as TAD platforms are the 

low motions developed by this unit relative to barges, excellent stability, large deck area and 

relatively fast tow speeds.  

 

  
(A) (B) 

Figure 3.3 Tender Assisted Drilling (TAD) hull. 

 

Table 3.2 Main characteristics of the TAD. 

Description Value  Units 

TAD overall length  93.8 [m] 

TAD overall breadth 47.0 [m] 

Draft 13.0 [m] 

Mass 18122 [mT] 

Longitudinal position of center of gravity -0.9 [m] 

Vertical position of center of gravity 14.3 [m] 

Radius of gyration (Rxx) 16.8 [m] 

Radius of gyration (Ryy) 29.0 [m] 

Radius of gyration (Rzz) 31.2 [m] 
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The TAD unit is moored to the seabed with a semi-taut leg system of eight lines 

composed of a combination of: steel chain with a nominal diameter of 0.12 m and mass per 

unit length of 0.26 mT/m; and polyester ropes with a nominal diameter of 0.15 m and mass 

per unit length of 0.018 mT/m. The values of the pre-tension of the mooring lines vary in the 

range of [1200 – 2300] mT. 

 

3.3 HAWSER SYSTEM 

The hawser system is designed to control the relative motions between the TLP and the 

TAD unit in horizontal modes. It contains 12 lines of polyester ropes, as shown in Fig. 3.4, 

with a nominal diameter equal to 0.2 m and mass per unit length equal to 0.026 mT/m. Figure 

3.5 presents the nonlinear axial stiffness of the polyester ropes.  

 

 

Figure 3.4 Hawser line system for the TLP-TAD connection.  

 

 

Figure 3.5 Axial stiffness of polyester ropes in hawser lines. 
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3.4 STIFFNESS AND NATURAL PERIODS  

With the information provided in the previous sections, numerical models were 

developed in Orcaflex [70] to calculate the stiffness curves and matrixes, and the natural 

periods of the floaters. Three cases are considered: TLP alone, TAD alone and TLP 

connected with TAD by a hawser system. Figure 3.6 presents the numerical models. In 

addition, for the case TLP alone, stiffness curves calculated with the Orcaflex FEM model 

are compared with the analytical formulations presented in Section 2.1.  

 

 

Figure 3.6 Numerical models of TLP alone, TAD alone and TLP-TAD multi-body system. 

 

The stiffness curves and matrix are obtained by numerical offset tests, i.e., by applying a 

known constant load to the system and reporting the response. In addition, the natural periods 

were estimated by numerical decay tests, i.e., given an initial displacement, the system is 
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released to move freely; then, the time domain movements are analyzed by the Fast Fourier 

Transform (FFT).   

As mentioned in Section 2.1, the linear stiffness constants due to the TLP tendons are 

given by Eqns. (3.1) to (3.4) 

𝐶11 = 𝐶22 = ∑
𝑇𝑡𝑛

𝐿𝑛

𝑁

𝑖=1

 3.1 

𝐶33 = ∑
𝐸𝑛𝐴𝑛

𝐿𝑛

𝑁

𝑖=1

 3.2 

𝐶44 = 𝐶55 = ∑
𝐸𝑛𝐴𝑛

𝐿𝑛
𝑦𝑛

2

𝑁

𝑖=1

 3.3 

𝐶66 = ∑
𝑇𝑡𝑛

𝐿𝑛
(𝑋𝑛

2 + 𝑌𝑛
2)

𝑁

𝑖=1

 3.4 

where 𝐶jj are the linear stiffness coefficients, 𝑁 is the number of tendons, 𝐿𝑛 is the tendon 

length, 𝑇𝑡𝑛 is the pre-traction in the tendon, 𝐸𝑛 is the elastic modulus, 𝐴𝑛 is the cross-

sectional area of the tendon, and 𝑋𝑛 𝑎𝑛𝑑 𝑌𝑛 are the tendon coordinates. Note that, j=1, 2, 

3...6 correspond to Surge, Sway, Heave, Roll, Pitch and Yaw, respectively. 

Figure 3.7 shows the stiffness curve for surge comparing the analytical and numerical 

formulations. The analytical formulation presents excellent agreement for offsets in the range 

of [0 – 40] m. However, for larger offsets, the nonlinear effects become larger, and significant 

differences are observed.    

 

Figure 3.7 Stiffness curve for Surge of the TLP alone from analytical and numerical 

formulae.  
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Figure 3.8 presents the results for the stiffness curves for the six degrees of freedom of 

the TLP, comparing the analytical formulations for the TLP alone with numerical results for 

the TLP alone and the TLP coupled with the TAD. Figure 3.9 shows the results for the 

stiffness curves for the six degrees of freedom of the TAD, comparing the numerical results 

for the cases of the TAD alone and the TAD coupled with the TLP. Finally, Table 3.3 

presents the results of the numerical decay tests, comparing the single-body and multi-body 

cases.    

 

 

Figure 3.8 TLP stiffness for six degrees of freedom. The orange and black lines represent 

the results for the TLP alone using analytical and numerical approaches, respectively. The 

blue lines present the results for the TLP coupled with the TAD using the numerical 

approach. 
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Figure 3.9 TAD stiffness for six degrees of freedom. The orange lines represent the results 

for the TAD alone. The blue lines present the results for the TAD coupled with TLP. Both 

sets of results were produced using the numerical approach. 

 

Table 3.3 Natural periods of the TLP and TAD for the single-body and multi-body cases. 

Mode 

TLP TAD 

Alone 
Connected 

to TAD 
Alone 

Connected 

to TLP 

Surge 201 183 224 183 

Sway 201 199 221 199 

Heave 4.40 4.40 16.4 16.3 

Roll 3.93 3.93 25.9 25.6 

Pitch 3.93 3.93 18.3 18.6 

Yaw 134 95.7 68.9 57.4 
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Based on these results, the following conclusions are drawn. 

• Despite some differences at larger offsets, the analytical and numerical approaches 

present reasonable agreement. Consequently, the analytical formulation provides 

accurate results for the TLP alone case. 

• The comparison between the single-body and multi-body cases for the TLP and TAD 

reveals relevant differences in horizontal modes; it is evident that these are a 

consequence of the hawser system. No significant differences were found in terms of 

the vertical motions.   

• The values of the natural periods of the TLP and TAD confirm the influence of the 

hawser system in the behavior of the floaters for horizontal modes. Note that the 

natural periods of Surge, Sway and Yaw change significantly. Notably, the natural 

periods of Surge and Sway are the same for the TLP and TAD.  

 

Finally, the same procedure used to obtain the stiffness curves for the six degrees of 

freedom of each floater was used to calculate the complete stiffness matrices. Note that these 

matrices present the linear approximation of the nonlinear stiffness calculated with the 

numerical formulation for all cases. Tables 3.4, 3.5, and 3.6 present the stiffness matrices for 

the TLP alone, TAD alone and TLP-TAD multi-body system, note that the units for lengths, 

forces, and angles are meters, kN, and radians, respectively.   

 

Table 3.4 Stiffness matrix of TLP alone. 
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Table 3.5 Stiffness matrix of TAD alone. 

 

 

Table 3.6 Coupled stiffness matrix of TLP and TAD. 
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CHAPTER IV. WAVE-INDUCED LOADS AND MOTIONS 

This chapter presents a numerical study of linear and second-order wave loads on the TLP-

TAD multi-body system. An extensive hydrodynamic analysis focuses on the hydrodynamic 

interactions between the floaters and how these effects modify the wave loads on the platforms. 

Time and frequency domain approaches were applied in this study. Using TD simulations, the 

simplifications adopted in the FD analysis, the accuracy of the Newman approximation, and the 

contribution of nonlinear wave loads are evaluated. 

   

4.1 INTRODUCTION 

First-order wave loads, which are proportional to the wave amplitude and associated with 

the wave frequency, affect the motions of floating moored structures [28]. The second-order 

wave loads are proportional to the square of the wave amplitude and related to the sum or 

difference of a pair of frequencies of the irregular sea [11].  

The first-order wave loads provide the dominant wave loading on floating bodies [28] 

and include added mass, potential damping, diffraction forces and mean drift forces. The 

second-order loads are usually smaller than the first-order loads. However, these loads can 

excite resonance motions in frequencies at which the system has low damping [28]. 

Therefore, the second-order wave loads have particular importance in the design of mooring 

systems.  

The multi-body system composed of a Tension Leg Platform (TLP) and a Tender 

Assisted Drilling (TAD) unit involves the complex scenario of two floaters moored in close 

proximity. This complexity requires an extensive and careful hydrodynamic analysis to 

guarantee the successful execution of such a challenging project.  

In the present study, the 3D diffraction-radiation code Wamit [59] was used to calculate 

the wave loads. In addition, time domain simulations were conducted using the fully 3D 

nonlinear time domain finite element software Orcaflex [70]. Thus, the study is divided into 

two parts: the first-order analysis, and the second-order studies. 
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The first part includes the analysis of the hydrodynamic coefficients in the frequency 

domain; here the floaters are analyzed in three cases: TLP alone, TAD alone, and TLP 

connected to TAD with a hawser system. For the multi-body analysis, several relative 

positions were studied to analyze the hydrodynamic coupling effects between the floaters. 

The properties of the floaters, the mooring lines of the TLP and TAD, and the hawser system 

are presented in Chapter III. Note that, in the frequency domain, the mooring systems are 

modeled by linear stiffness matrixes. Subsequently, time domain simulations have conducted 

to analyze the simplifications adopted in the frequency domain studies; this study in time 

domain includes an extensive analysis of regular and irregular waves in three cases, TLP 

alone, TAD alone, and the multi-body cases.    

The second part of this study involves the analysis of the second-order loads on the 

system. Low-frequency second-order loads on the TLP and TAD and high-frequency loads 

for vertical motions of the TLP were analyzed. This study includes computation of the 

second-order loads using the direct and indirect methods presented in Section 2.4. 

Additionally, the importance of the free surface integral (FSI) on the computation of the 

second-order loads and the accuracy of the Newman approximation (NA) for low-frequency 

loads are examined in frequency domains. Finally, fully nonlinear time domain simulations 

were conducted to verify the accuracy of the Newman approximation (NA) and the relevance 

of high-frequency second-order loads to the TLP-TAD multi-body system.     

     

4.2 LINEAR WAVE-INDUCED MOTIONS 

In this section, the linear wave induced motions and loads on the TLP-TAD multi-body 

system were examined. This study includes an analysis of coupling effects on the multi-body 

system. The first-order diffraction loads, mean drift loads, and the Response Amplitude 

Operator (RAO) were reviewed considering the floaters in single-body and multi-body cases. 

Subsequently, time domain simulations were conducted in regular and irregular seas to verify 

the accuracy of the frequency domain predictions. 

4.2.1 Geometry Discretization 

The computation of the wave loads requires discretization of the body surfaces. 

[59] provides two methods to represent the geometry of the bodies, the low-order, and 

the higher-order methods. 
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The low-order approach represents the geometry of the floater with a set of flat 

four-sided panels. The potential velocity and the physical quantities derived from it 

are considered to be constant in each panel area. Consequently, the accuracy of the 

calculations depends on the complexity of the geometry and the number of panels used 

to represent it. In contrast, the higher-order method characterizes the geometry of the 

body with continuous b-spline surfaces. Thus, physical quantities are calculated as 

continuous functions on each surface. In the present study, both methods were used to 

verify their accuracy for the calculations of wave hydrodynamic loads on the TLP-

TAD system. Figure 4.1 shows the 3-D meshes for the TLP and TAD represented with 

the low-order and higher-order methods, note that due to the symmetry of the bodies, 

only one quadrant of the TLP and two quadrants of the TAD, in green color, were 

modeled. The main geometrical characteristics of both floaters were presented in 

Chapter II.  

 

Figure 4.1 Computational grids of TLP (left) and TAD (right) 

using the low-order method (above) and the higher-order method (below). 

 

The mean drift loads were computed using the middle-field method described in 

Section 2.3.3. This step required the discretization of a control surface involving the 

bodies. According to [99], the use of control surfaces in the middle-field method 

improves the accuracy of the results in the integration of the momentum flux when 
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one analyzes bodies with sharp corners. As in the case of body surfaces, the control 

surfaces can be modeled using the low-order and the higher-order methods. Figure 4.2 

presents the control surfaces of the TLP and TAD, due to the symmetry of the control 

surfaces, only one quadrant for the TLP and two quadrants for the TAD, in green color, 

are used in the calculations. Note that, the higher-order method was used with the aim 

of increasing accuracy. 

 

 

Figure 4.2 Control surfaces for the calculation of mean drift loads:  

TLP (left) and TAD (right)  

 

4.2.2 Sensitivity Analysis 

The sensitivity analysis was performed with the aim of verifying the influence of 

the computational grids on the first-order wave loads. This analysis included six grids 

divided into two groups: low-order grids and higher-order grids. Thus, three levels of 

refinement were considered in each group: coarse, medium and fine.  

In the low-order method, the grids were refined by increasing the number of 

panels used to represent the geometry of the bodies [59]. In the higher-order method, 

the maximum size of the panels into which the body surfaces are divided determines 

the refinement [59].  

Tables 4.1 and 4.2 present the main characteristics of the computational grids. 

Note that, due to the symmetry of the bodies, the number of panels in the low-order 

grids represents only one quadrant of the TLP hull and two quadrants of the TAD hull.  

The sensitivity analysis is focused on the Response Amplitude Operator (RAO) 

of the TLP alone and the TAD alone. The range of wave periods considered is [2 - 40] 
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sec. The range of wave headings is [0° - 180°] in steps of 15°. Note that, the wave 

heading indicates the direction in which the waves are progressing. Figure 4.3 presents 

the main wave headings and the coordinate systems adopted in the present analysis. 

 

Table 4.1 Number of panels in the TLP and TAD low-order grids  

Grid code Refinement 
Floater 

TLP TAD 

LO1 Coarse 768 1712 

LO2 Medium 1728 2675 

LO3 Fine 3072 3924 

 

Table 4.2 Maximum panel sizes of the TLP and TAD higher-order grids  

Grid code Refinement 
Floater 

TLP TAD 

HO1 Coarse 20 20 

HO2 Medium 10 10 

HO3 Fine 5 5 

 

 

Figure 4.3 Global coordinate system used in the analysis. 
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The linear stiffness matrixes from the mooring systems calculated in Section 3.4 

and viscous damping coefficients reported in Appendix B were incorporated into the 

numerical simulations. The physical properties of the floaters were presented in 

Chapter III. 

Figures 4.4 and 4.5 present a comparison of the RAOs for the TLP and TAD 

respectively. Selected results are presented only. As noted above, six grids for both 

floaters were tested, three using the low-order panel method (LO1, LO2, and LO3) 

and three using the higher-order panel method (HO1, HO2, and HO3). 

Despite small differences, the results were strongly consistent between the low 

and higher-order methods. Moreover, the results seem to be independent on the grid 

refinements for both floaters. 

 

 

Figure 4.4 Analysis of the RAO of the TLP for different computational grids 
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Figure 4.5 Analysis of the RAO of the TAD for various computational grids  

 

In the case of the TLP, the largest differences for Roll and Pitch correspond to 

wave periods in the range of [3-6] sec. For TAD, the maximum differences are 

observed for Heave, Roll and Pitch for wave periods in the range of [15-18] sec., [21-

36] sec. and [15-22] sec. respectively. Another important observation is that the 

differences between low-order grids are considerably larger than the discrepancies 

between higher-order grids, i.e., the results for the higher-order grids are independent 

on refinement, while the low-order grids present a slight dependence on refinement.  

Thus, both methods are adequate for the calculations of wave loads. Because the 

dependence on the higher-order method on grid refinement is smaller and almost 

negligible, the higher-order grids with the finest refinement HO3 were used for both 

floaters in the following sections. 
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4.2.3 Hydrodynamic Coefficients   

After defining the computational grids to represents the geometry of the bodies, 

the first-order wave potential for the multi-body system was calculated to investigate 

the interactions between the floating bodies. Thus, this extensive study includes the 

analysis of two single-body cases (TLP alone and TAD alone) and the nine multi-body 

cases shown in Fig. 4.6. 

 

 

Figure 4.6 Positions of TLP and TAD for multi-body analysis (units are meters).  

 

The analysis is focused on the diffraction forces, RAOs and mean drift forces. 

The range of wave periods considered is [2 - 40] sec. The range of wave headings is 

[0° - 345°] in steps of 15°. Note that, the mooring systems in the single-body and 

multi-body cases are represented by the linear stiffness matrixes presented in Section 

3.4. Moreover, viscous damping coefficients, reported in Appendix B, were 

incorporated into the numerical simulations. 

Figures 4.7 and 4.8 present a comparison of the linear diffraction loads on the 

TLP and TAD respectively. For a better comparison of the hydrodynamic interactions, 

results for the single-body and multi-body cases are depicted together. Selected results 

were presented only.  
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The diffraction loads on the TLP present little variations between the single-body 

and multi-body cases. In general, the maximum variations occur in the wave period 

range of [0 - 9] sec. For Surge, the discrepancies are slightly higher for the range of 

wave periods of [4 – 8] sec. Sway and Heave do not present significant variations, and 

for Roll, Pitch, and Yaw the largest differences are observed in the vicinity of the peak 

forces.  

Finally, in the range of wave periods of [15 – 40] sec., no differences exist 

between the single-body and multi-body cases.   

 

 

Figure 4.7 Diffraction loads on the TLP for single-body and multi-body cases. 
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The diffraction loads on the TAD present higher differences than the observed on 

the TLP between the single-body and multi-body cases. The larger variations occur in 

the vicinity of the peak forces and for wave periods in the range of [2 – 12] sec. No 

significant differences are observed between the single-body and multi-body cases for 

larger periods. 

In general, despite some small variations, the differences between the single-body 

and multi-body cases, for both floaters, are relatively small. Thus, the presence of one 

body does not modify the wave diffraction loads significantly on the other one, i.e., 

the hydrodynamic interaction between the floaters is weak.   

 

 

Figure 4.8 Diffraction loads on the TAD for single-body and multi-body cases.  
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The mean drift loads on the TLP and TAD are presented in Figs. 4.9 and 4.10, 

respectively. The results for the single-body and multi-body cases are shown together. 

The mean drift loads on the TLP present small differences for periods greater than 12 

sec. However, for shorter periods, the trends depend on the mode. For instance, Surge 

presents significant variations for wave periods in the range of [5 -12] sec. Sway and 

Heave present relatively small differences over the entire range of wave periods. Roll 

and Pitch present the largest variations in the range of [2 – 10] sec. Finally, Yaw 

motion presents the largest discrepancies over the entire wave period range.  

   

 

Figure 4.9 Mean drift loads on the TLP for single-body and multi-body cases. 

 



 

53 
 

The mean drift loads on the TAD unit present significant differences for periods 

in the range of [2 – 8] sec. That is, the variations are concentrated in a smaller range 

of wave periods than in the case of the TLP. Surge, Sway and Heave motions present 

minor variations between the single-body and multi-body cases. However, it is evident 

that the trends are approximately the same for all of these cases in each mode. Roll 

and Pitch present small variations around the peak loads, particularly in the range of 

[6 - 8] sec. Finally, the mean drift moment for Yaw present the largest discrepancies 

in terms of trends and order of magnitude for the entire wave period range. 

 

 

Figure 4.10 Mean drift loads on the TAD for single-body and multi-body cases. 
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In general, the variations in mean drift loads were considerably higher than those 

observed for linear diffraction loads. The linear motions (Surge, Sway, and Heave) 

present smaller differences, while the rotational motions (Roll, Pitch, and Yaw) 

present higher variations, particularly for Yaw.  

Figures 4.11 and 4.12 present a comparison of the RAOs of the TLP and TAD, 

respectively. In the case of the TLP, the RAOs do not present relevant differences 

between the single-body and multi-body cases. Only Yaw motion presents significant 

variations over the wave period range of [5-8] sec.  

 

 

Figure 4.11 RAOs of the TLP for the single-body and multi-body cases. 
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The trend observed in the RAOs of the TLP is reported in the TAD unit as well, 

i.e., small differences exist in all modes except for Yaw, which presents significant 

variations for wave periods over the range of [5-12] sec. 

In general, neither units presented any major modifications in the RAOs due to 

the presence of the other floater. Consequently, it is possible to conclude that the 

hydrodynamic coefficients present a relatively weak coupling effect. The behavior of 

one body in the multi-system can be approximated by its behavior alone. 

An interesting aspect of this analysis is related to the CPU time consumed by the 

two approaches. In general, no significant differences were found with similar grades 

of mesh refinement.  

 

Figure 4.12 RAOs of the TAD unit for single-body and multi-body cases. 
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Another important conclusion of this analysis corresponds to the variation of the 

hydrodynamic coefficients with the relative position of the bodies. Normally, in time 

domain simulations, these coefficients are considered to be constant. This study has 

proved that this approximation is reasonable due to the relatively small variation in 

these coefficients with the position of the floaters. 

 

4.2.4 Response in Regular Sea 

In this section, the behavior of the multi-body system is analyzed using regular 

waves. The RAOs of the TLP and TAD reported in the previous section are compared 

with time domain simulations performed in Orcaflex [70]. 

As mentioned above, the frequency domain omits the nonlinear properties of the 

mooring lines, the interaction between floating bodies and mooring lines, the drag 

forces and the added mass of mooring. In addition, the RAOs are considered to be 

linear, i.e., these coefficients do not depend on the wave amplitude. In contrast, time 

domain simulations include all of these aspects that were omitted in the frequency 

domain. Therefore, here is examined the accuracy of the frequency domain predictions 

relative to those of the more realistic study performed with the time domain approach.  

Table 4.3 presents the wave periods and the wave amplitudes considered in this 

analysis. Note that, to investigate possible nonlinear effects in the RAOs, two wave 

amplitudes were taken into account for each wave period. The wave headings 

considered in the study ranged from 0° to 180° in steps of 45°. As in the frequency 

domain analysis, the damping ratios presented in Appendix B were included in the 

time domain simulations. 

 

Table 4.3 Regular wave characteristics used in the time domains simulations 

 

 

Figure 4.13 presents the time domain RAOs of the TLP and TAD for the single-

body cases considering the wave heights H1 and H2 of Tab. 4.3. Despite small 
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differences observed for wave periods higher than 15 sec., the RAOs present the same 

behavior for both wave heights.  

Figure 4.14 shows the results of the time domain simulations considering the 

multi-body cases. In this case, the RAOs show more dependence on the wave height. 

The differences are slightly higher than for the single-body cases. Note that, for the 

single-body and multi-body cases, the highest values of the RAOs do not necessarily 

correspond to the highest wave amplitude, i.e., in some wave periods, the maximum 

response amplitude corresponds to the lowest wave amplitude.  

 

Figure 4.13 Time domain RAOs of the TLP and TAD for the single-body cases. 

 

Figure 4.14 Time domain RAOs of the TLP and TAD for the multi-body cases. 

 

Figure 4.15 presents a comparison between the single-body and multi-body cases 

for wave height H1. The largest differences occur at the larger wave periods. 
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Moreover, these disparities are considerably higher than those predicted by the 

frequency domain predictions. In general, significant differences arise for periods 

greater than 10 sec.  

 

Figure 4.15 Time domain RAOs of the TLP and TAD. Single-body (SB) vs. Multi-

body (MB). 

 

Finally, a comparison between the frequency domain (FD) and time domain (TD) 

predictions is presented below. Figure 4.16 presents a comparison of the response 

amplitude operator (RAOs) of the TLP for the following cases: TLP alone in the 

frequency domain (FD_AL); TLP coupled with TAD in the frequency domain 

(FD_CO); TLP alone in the time domain with wave height H1 (A1_TD_AL); TLP 

coupled with TAD in the time domain with wave height H1 (A1_TD_CO); TLP alone 

in the time domain with wave height H2 (A2_TD_AL); and TLP coupled with TAD 

in the time domain with wave height H2 (A2_TD_CO). 

This analysis reveals relevant differences for wave periods in the range of [10 - 

30] sec. Note that, for Surge and Yaw, the frequency domain predictions are the most 

conservatives. For Heave, Roll, and Pitch, peaks that the frequency domain approach 

does not predict are observed in the time domain simulations for wave periods of 16.0, 

4.0, and 4.0 sec., respectively.  Finally, for Yaw motion, at some wave headings, no 

motions are observed in the frequency domain. However, the time domain simulations 

reveal small motions in the range of wave periods of [5 – 10] sec.        
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Figure 4.16 – RAO of the TLP for the single-body and multi-body cases analyzed 

by frequency and time domain. 

 

Similarly, Figure 4.17 presents a comparison of response amplitude operator 

(RAOs) of the TAD for the following cases: TAD alone in the frequency domain 

(FD_AL); TAD coupled with TLP in the frequency domain (FD_CO); TAD alone in 

the time domain with wave height H1 (A1_TD_AL); TAD coupled with TLP in the 

time domain with wave height H1 (A2_TD_AL); TAD alone in the time domain with 

wave height H2 (A1_TD_CO); and TAD coupled with TLP in the time domain with 

wave height H2 (A2_TD_CO). 

For the TAD, the highest variations occur in the range of wave periods of [10 - 

30] sec. However, the frequency domain predictions were the more conservative ones 

for all modes, with some exceptions for certain wave headings for Roll and Pitch as 

shown in Fig. 4.17.  
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Figure 4.17 – RAO of the TAD for the single-body and multi-body cases 

analyzed in the frequency and time domain. 

In general, major differences between the time domain and the frequency domain 

predictions were observed, particularly for periods in the range of [10 – 30] sec. In 

addition, the variations between the cases analyzed with the time domain approach are 

significantly larger than the differences between cases examined with the frequency 

domain approach. Therefore, these differences can be explained for the more realistic 

representation of mooring lines in the time domain simulations.  

Furthermore, the horizontal modes present the most significant differences 

between the single-body and multi-body cases. It confirms the influence of the hawser 

system; note that, as shown in Section 3.4 the hawser system primarily modifies the 

behavior of the horizontal modes of the floaters. 

For most of the cases, the frequency domain predictions were the most 

conservative. Therefore, the frequency domain approach can be used as a useful and 

quick tool in the analysis of the system in the initial design stages. 
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4.2.5 Response in Irregular Sea 

In this section, the behavior of the multi-body system is analyzed in seas with 

irregular waves. Table 4.4 presents the combinations of significant wave height (Hs), 

peak period (Tp) and Gamma parameter (Ga) considered in this analysis. The 

JONSWAP spectrum with three parameters (Hs, Tp, Ga) [43] was used to represent 

the energy distribution of the irregular sea, as shown in Fig. 4.18. The range of wave 

headings considered in this analysis is from 0° to 180° with steps of 45°.  

In the frequency domain, the response of the floating structures 𝑆𝑥𝑥 corresponds 

to the power spectral density (PSD) calculated by the Eqn. (4.1). 

𝑆𝑥𝑥 = 𝑆𝜔 ∗ 𝑅𝐴𝑂2 (4.1) 

where 𝑆𝜔 is the sea spectrum, and RAO is the Response Amplitude Operator of the 

body. The RAOs take into account the hydrodynamic coefficients of added mass, 

potential damping and diffraction loads. Note that, the mooring lines are modeled by 

linear stiffness matrixes.  

 

Table 4.4 Wave conditions for the irregular sea analysis 

Wave code Hs [m] Tp [sec] Ga [-] 

J1 0.5 5.0 2.8 

J2 2.5 7.5 2.2 

J3 4.5 10.0 2.0 

J4 6.0 12.0 1.6 

J5 7.5 13.5 1.4 

 

In the time domain, in addition to the hydrodynamic coefficients mentioned 

above, both the mean drift loads and low-frequency QTFs approximated with the 

Newman method described in Section 2.4.3 were included into the Orcaflex runs. As 

discusses in Section 2.5, the time domain simulations model the mooring lines using 

the Finite Element Method (FEM), which provides a more realistic representation of 

these structural elements and considers drag forces and added mass on mooring lines. 

Consequently, the nonlinear properties of the mooring system and the interaction 

between the lines and floating bodies are taken into account. 
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Figure 4.18 JONSWAP wave spectrum considered in the irregular sea analysis 

 

As recommended in [24], the time domain simulations with irregular waves are 

performed considering storms of 3-hours duration. Finally, the comparison between 

the frequency domain (FD) and time domain (TD) predictions is made using the power 

spectral density (PSD) calculated by the Fast Fourier Transform (FFT) applied to the 

time series of the floater response. 

Figure 4.19 presents the comparison between the frequency domain and time 

domain responses of the TLP alone in irregular waves. For Surge and Sway motions, 

the FD presents excellent agreement for the range of wave frequencies of [0.05 – 0.10] 

Hz. However, the low-frequency response shows higher energy that the FD do not 

include.  

Heave presents reasonable agreement, particularly for frequencies in the range of 

[0.04 – 0.16] Hz. The peak energy at 0.227Hz does not appear in FD results, note that 

the TD simulations do not consider high-frequency second-order loads, consequently, 

the peak of energy at the natural frequency of the TLP for Heave correspond to the 

response of the tendons, which are represented accurately using FEM.  

Roll and Pitch motions present reasonable agreement between the FD and TD 

predictions, even in the high-frequency range. Finally, Yaw presents the worst 
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agreement. Although it is a low-frequency motion, the FD does not represent this 

range of wave frequencies. 

 

Figure 4.19 – Response of the TLP alone analyzed by the FD and TD. 

 

Figure 4.20 presents the comparison between the frequency and time domain 

responses of the coupled TLP in random waves. The differences between the FD and 

TD predictions were essentially the same as in the case of the TLP alone. FD presents 

reasonable agreement for the main wave frequency ranges; however, FD does not 

represent the low-frequency and high-frequency responses. As in the case of TLP 

alone, Yaw motion presents the worst agreement, the low-frequency range is not 

properly represented, and even some peaks in high-frequency are observed in the FD 

predictions. 

Figure 4.21 compares the frequency and time domain response of the TAD alone 

in random waves. In general, the predictions of the FD approach present excellent 

results for frequencies in the range of [0.05 – 0.30] Hz. for all degrees of freedom. 
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However, the FD approach fails to represent the low-frequency responses, and for 

some modes (namely, Surge, Sway, and Yaw) this part of the energy distribution 

presents the highest peaks in the TD results. 

Finally, Figure 4.22 presents the comparison between the frequency and time 

domain response of the TAD coupled in irregular waves. In general, the same 

observations from the TAD alone case can be applied to the multi-body cases. 

 

Figure 4.20 – Response of coupled TLP analyzed in the frequency and time domain. 

 

In general, the FD predictions present favorable results relative to the TD results 

for the main wave frequency range. The FD approach did not consider low-frequency 

and high-frequency loads, consequently, the predictions of this method fails to 

represent these frequency regions. 

Unfortunately, in some cases, the low-frequency and high-frequency 

contributions represent, in terms of energy, the strongest part of the responses. Thus, 

in the analysis of the TLP-TAD multi-body system subject to irregular waves, the FD 

approach must be applied with extreme care and with knowledge of its significant 

limitations.  
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Figure 4.21 – Response of the TAD alone analyzed in the FD and TD. 

 

 

Figure 4.22 – Response of the coupled TAD analyzed in the FD and TD. 
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4.3 SECOND-ORDER WAVE LOADS 

The second-order loads are proportional to the square wave amplitude and correspond to 

the wave-wave and wave-body interactions [11]. Thus, these forces contain terms 

corresponding to frequencies equal to sums and differences of the elementary wave 

frequencies, i.e., wave drift loads (low-frequency effects) and sum frequency loads (high-

frequency effects) [57]. 

Figure 4.23 presents a typical distribution of the energy of the irregular waves in the 

frequency domain. Vertical lines represent the natural frequencies of the TLP and TAD. The 

TLP has low natural frequencies in the horizontal modes (i.e., Surge, Sway, and Yaw) and 

high natural frequencies in the vertical modes (i.e., Heave, Roll, and Pitch). In contrast, the 

TAD presents low natural frequencies in horizontal and vertical modes. 

Note that, the natural frequencies of the TLP and TAD are out of the high-energy region 

where the first-order loads are predominant. However, these are located in areas where the 

second-order loads of low and high frequencies are predominant. Furthermore, possible 

resonant motions due to the second-order loads must be investigated and considered in the 

moored system design of the TLP-TAD system. 

 

 

Figure 4.23 Typical wave energy spectrum and natural frequencies of TLP-TAD system. 

 

This section presents a numerical study of the second-order wave loads on the TLP-TAD 

multi-body system. Second-order wave loads are represented by the quadratic transfer 
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function (QTF). An extensive hydrodynamic analysis focusing on the hydrodynamic 

interactions between the floaters and how these effects modify the second-order loads on the 

platforms was performed.  

The second-order Quadratic Transfer Functions (QTFs) were evaluated using the indirect 

and direct methods presented in Section 2.4. The importance of the free surface integral (FSI) 

shown in Section 2.4.2 in the estimation of the second-order QTFs was checked. In addition, 

the accuracy of the Newman approximation (NA) presented in Section 2.4.3 for the low-

frequency QTF was evaluated. Finally, time domain simulations were conducted to complete 

the analysis of the NA accuracy and the importance of sum-frequency loads on the behavior 

of the TLP-TAD multi-body system.   

 

4.3.1 Free Surface Discretization 

The computation of the second-order wave loads requires the discretization of the 

hull and the free surface around the bodies. The computational grids of the floaters are 

presented in Section 4.2.1. The free surfaces were modeled using the computational 

grids presented in Fig. 4.24. Note that, the low-order panel method described above 

was used to represent these surfaces. Table 4.5 presents the number of panels used in 

the discretization of the free surface for three cases: TLP alone, TAD alone and TLP-

TAD multi-body.  

Chapter III contains the physical and geometrical properties of the floaters, and 

the linear stiffness matrixes considered in this analysis. Finally, as in the case of the 

first-order analysis, the damping ratios presented in Appendix B were included in the 

numerical simulations. 

 

Table 4.5 Number of panels in the free surface. 

Case Number of panels Reference 

TLP alone 7680 Fig. 4.24 (A) 

TAD alone 14680 Fig. 4.24 (B) 

TLP+TAD 15740 Fig. 4.24 (C) 
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Note that, the number of panels presented in Table 4.5 represents one quadrant 

of the free surface in the case of the TLP alone and two quadrants for TAD alone 

and coupled TLP - TAD cases. 

 

  
(A) (B) 

 
(C) 

Figure 4.24 – Free surface discretization (A) TLP alone, (B) TAD alone  

and (C) TLP-TAD multi-body case. 

  

4.3.2 Direct Method vs. Indirect Method 

As shown in Section 4.2.2, the representation of the hull of the floating bodies by 

a set of flat panels requires an analysis of the influence of the computational grids on 

the hydrodynamic coefficients. This observation can be extended to the second-order 

loads. Thus, the results presented in [55] indicate the dependence on second-order 

loads on the discretization of the free surface. In this work is also noted that the 

agreement between the results estimated by the direct and indirect methods indicates 

that the computational grids have appropriate refinement and, consequently, a 

satisfactory numerical convergence was achieved. Because, although the methods 
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were developed using different numerical formulations, the methods are physically 

equivalent. Hence, the results obtained from these methods must be the same.  

Thus, with the aim of verifying the influence of the computational grid on the 

calculation of the second-order loads, a sensitivity analysis has been performed. This 

study included the calculations of the second-order wave loads using the direct and 

indirect methods presented in Section 2.4. The numerical analysis consisted of three 

cases: TLP alone, TAD alone and TLP connected with TAD. For all of the cases, five 

wave headings were considered: 0°, 45°, 90°, 135° and 180°. The range of wave 

frequencies considered was from 0.05 to 0.25 Hz in steps of 0.001Hz, i.e., 201 wave 

frequencies. The second-order wave loads were calculated for all of the frequency 

combinations, i.e., 20301 pair of frequencies for each wave heading.  

Figure 4.25 presents the high-frequency QTF of the TLP alone based on the direct 

method for three cases: (namely, (A) Heave and θ = 0°, (B) Pitch and θ = 0°,  and (C) 

Roll and θ = 45°) and the indirect method for three cases (namely, (D) Heave and θ = 

0°, (E) Pitch and θ = 0°, and (F) Roll and θ = 45°).   

 

Figure 4.25 –High-frequency QTFs of TLP alone. Direct method: (A) Heave and 

θ=0°, (B) Pitch and θ=0°, and (C) Roll and θ=45°. Indirect method: (D) Heave and 

θ=0°, (E) Pitch and θ=0°, and (F) Roll and θ=45°. 
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Figure 4.26 presents the low-frequency QTF of the TLP for Surge for the 

following cases: (A) TLP alone using the direct method, (B) TLP alone using the 

indirect method, (C) TLP coupled with TAD using the direct method, and (D) TLP 

coupled with TAD using the indirect method. The wave heading for all cases is 45°. 

 

 

Figure 4.26 – Low-frequency QTFs for Surge and θ=45°. (A) TLP alone and direct 

method (B) TLP alone and indirect method (C) TLP coupled and direct method (D) 

TLP coupled and indirect Method 

 

Figure 4.27 presents the low-frequency QTF of the TAD considering the 

following cases: (A) TAD alone using the direct method, (B) TAD alone using the 

indirect method, (C) TAD coupled with TLP using the direct method, and (D) TAD 

coupled with TLP using the indirect method. The wave heading for all cases is 45°. 
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Figure 4.27 – Low-frequency QTFs for Surge and θ=45°. (A) TAD alone and direct 

method, (B) TAD alone and indirect method, (C) TAD coupled and direct method, 

and (D) TAD coupled and indirect method 

 

In general, the direct and indirect methods present similar results, not only in the 

single-body cases but also for the multi-body case, and for the sum-frequency and 

difference-frequency QTFs. Therefore, it is possible to conclude that the mesh 

refinement is sufficient to achieve accurate results. In addition, it is important to note 

that convergence of the direct and indirect methods for low-frequency QTFs is easier 

than the convergence of high-frequency QTFs. The high-frequency QTFs require fine 

refinement in the free surface to achieve the same results with both methods. 

Therefore, the convergence of high-frequency QTFs must take priority in the analysis 

of the TLP-TAD multi-body system.           
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Furthermore, the differences observed between the alone and coupled cases in 

Figs. 4.26 and 4.27 present evidence of hydrodynamic coupling effects on the second-

order loads. The results of Section 4.2.3 proved that hydrodynamic coupling effects 

are weak in linear wave loads. However, the second-order loads appear not to follow 

the same trend. 

 

4.3.3 Importance of The Free Surface Integral 

As noted in Section 2.4, computation of the free surface integral (FSI) requires 

an enormous amount of time. Thus, several studies have discussed the relevance of 

this term in the calculation of low and high-frequency QTFs, for instance [63] and 

[75]. Although most of these studies have concluded that the free surface integral has 

no significant impact on the computation of low-frequency second-order loads, these 

conclusions are limited to ship-shaped floaters. Consequently, the importance of the 

free surface integral needs to be evaluated for geometries with pontoons and columns 

as is the case for the geometry of the TLP and TAD.  

Furthermore, [60] demonstrated that the free surface integral is a relevant term in 

the calculation of high-frequency second-order loads. However, that conclusion is also 

assessed for the TLP-TAD multi-body system by the analysis described below.  

Using the computational grids validated in the previous section, the analysis of 

the influence of the free surface integral was performed using the direct method and 

comparing the results obtained with and without the Free Surface Integral (FSI).      

Figure 4.28 presents the low-frequency QTFs of the TLP alone for Surge motion 

and the high-frequency QTFs of the TLP alone for Heave. The comparison of QTFs 

for Surge reveals differences in the regions (𝑓𝑖 ≅ 𝑓𝑗) and (𝑓𝑖 > 0.15 𝐻𝑧 ∩ 𝑓𝑗 <

0.10 𝐻𝑧); some peaks forces estimated by the direct method consider the FSI are not 

reproduced in the results that do not consider the FSI. The differences become more 

significant in the case of Heave, in which the high-frequency QTFs calculated without 

the FSI present substantially different results over the entire range of frequencies.   

Figure 4.29 presents the low-frequency QTFs of the TAD alone for Surge and 

Heave motion. In the case of TAD, the analysis of QTFs for Surge reveals significant 

differences, relatively high forces are observed in the regions (𝑓𝑖 > 0.15 𝐻𝑧 ∩ 𝑓𝑗 <
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0.10 𝐻𝑧) and 𝑓𝑖 ≅ 𝑓𝑗 in the results with the FSI that are not present in the calculation 

without the FSI. Similar results are found in the QTFs for Heave motions. 

In general, the differences between QTFs computed with and without the FSI 

were significant at low and high-frequencies. In the case of low-frequency QTFs, the 

differences were higher in regions away from the diagonal 𝑓𝑖 ≅ 𝑓𝑗. Thus, if the natural 

frequency of the floating body is close to the diagonal 𝑓𝑖 ≅ 𝑓𝑗, these differences may 

not be relevant, while if the natural frequency is far from the diagonal, the QTFs 

without the FSI may provide inaccurate results. 

 

 

Figure 4.28 – QTFs of the TLP and θ=135° (A) Surge with the F.S.I. (B) Surge 

without the F.S.I (C) Heave with the F.S.I. (B) Heave without the F.S.I 
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Figure 4.29 – QTFs of the TAD and θ=135° (A) Surge with the F.S.I. (B) Surge 

without the F.S.I (C) Heave with the F.S.I. (B) Heave without the F.S.I 

 

For the high-frequency QTFs of the TLP, the differences were relatively large in 

terms of trends and order of magnitude. Consequently, the computing of these loads 

without considering the Free Surface Integral (FSI) it is not recommended.  

Another interesting aspect of this analysis is related to the CPU time consumed 

by the different methods, i.e., the direct method, indirect method and direct method 

without the free surface integral. Table 4.6 presents a comparison of the CPU time 

required by these methods for the three cases analyzed: TLP alone, TAD alone and 

TLP-TAD. Note that, for a simple comparison, the CPU time for the direct method 

was used as a reference value (100%). Notably, on average, the indirect method 

consumes 35% less time than the direct method. The direct method without the free 
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surface integral takes, on average, 70% less CPU time. Therefore, considering these 

results and the conclusions of Section 4.3.2, the indirect method considering the FSI 

has shown to be the more efficient and accurate method for the estimation of second-

order loads on the TLP-TAD multibody-system. 

 

Table 4.6 – Summary of CPU time 

Component Case Method CPU Time 

Diff-frequency 

TLP alone 

Direct w FS 100% 

Indirect w FS 72.5% 

Direct w/o FS 18.3% 

TAD alone 

Direct w FS 100% 

Indirect w FS 67.7% 

Direct w/o FS 23.3% 

TLP-TAD 

Direct w FS 100% 

Indirect w FS 60.8% 

Direct w/o FS 34.6% 

Sum-frequency 

TLP alone 

Direct w FS 100% 

Indirect w FS 77.2% 

Direct w/o FS 18.6% 

TLP-TAD 

Direct w FS 100% 

Indirect w FS 67.3% 

Direct w/o FS 37.4% 

 

4.3.4 Difference-Frequency Loads 

In this section, the low-frequency QTFs for the TLP alone, TAD alone and 

coupled TLP-TAD cases are presented and discussed. Comparison between the single-

body and multi-body cases are shown with the aim of investigating the hydrodynamic 

interactions between the floaters and their influence on the QTFs of the TLP and TAD. 

In addition, the performance of the Newman approximation (NA) is evaluated by 

comparing its predictions with the QTFs calculated with the direct method (full-QTF). 

Note that, as mentioned in Section 2.4.3, the QTFs can be estimated based on the mean 

drift loads in an approximated manner using the Newman method. Thus, the complete 

low-frequency QTF matrix can be deduced by Eqn. (2.59). 



 

76 
 

Figure 4.30 compares the low-frequency QTFs of the TLP for Surge motion, 

considering the following cases: (A) TLP alone and θ = 0°, (B) TLP coupled with 

TAD and θ = 0°, (C) TLP coupled with TAD and θ = 180°, (D) Newman 

approximation for TLP alone and θ = 0°, (E) Newman approximation for TLP coupled 

with TAD and θ = 0° and (F) Newman approximation for TLP coupled with TAD and 

θ = 180°. Note that, θ is the wave heading. 

 

 

Figure 4.30 – QTFs of the TLP for Surge (A) Alone and θ=0°, (B) Coupled and 

θ=0°, and (C) Coupled and θ=180°. Newman approximation for QTF (D) Alone and 

θ=0°, (E) Coupled and θ=0°, and (F) Coupled and θ=180°  

 

A comparison between cases (A), (B) and (C) in Fig. 4.30 reveals strong 

hydrodynamic coupling effects, particularly in the region where 𝑓𝑖 ≅ 𝑓𝑗.  Additionally, 

significant differences between the forces are found in the region where 𝑓𝑖 > 0.15 𝐻𝑧. 

A comparison of the full-QTFs with the Newman approximation for the three cases, 

reveals poor global agreement, particularly for regions far from the condition of 𝑓𝑖 ≅

𝑓𝑗. 

Figure 4.31 compares the low-frequency QTF of the TLP for Yaw in the 

following cases: (A) TLP alone and θ = 45°, (B) TLP coupled with TAD and θ = 45°, 
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(C) TLP coupled with TAD and θ = 135°, (D) Newman approximation for TLP alone 

and θ = 45°, (E) Newman approximation for TLP coupled with TAD and θ = 45°, and 

(F) Newman approximation for TLP coupled with TAD and θ = 135° 

 

 

Figure 4.31 – QTFs of the TLP for Yaw (A) Alone and θ=45°, (B) Coupled and 

θ=45°, and (C) Coupled and θ=135°. Newman approximation for QTF (D) Alone 

and θ=45°, (E) Coupled and θ=45°, and (F) Coupled and θ=135°  

 

As in the results obtained for the case of Surge motion, strong influence between 

the floaters are observed. For instance, the TLP alone case with θ = 45° presents small 

second-order moment; however, the multi-body cases with θ = 45° and in particular 

for θ = 135° present large values of the second-order moment. In addition, the 

Newman approximation provides a poor global agreement with the full-QTFs. In order 

to compare the full-QTFs with the predictions given by the Newman approximation 

in more detail, curves were defined for which the values of the QTFs correspond to 

the pair of frequencies (𝑓𝑖 , 𝑓𝑗) with constant difference 𝑑𝑓, as shown in Eqn. (4.2). 

This constant is defined to be equal to the natural frequency of the analyzed mode. 

𝑑𝑓 = 𝑓𝑖 − 𝑓𝑗 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (4.2) 
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Figure 4.32 compares the full-QTFs with their respective the Newman 

approximation for Surge in these cases: alone with θ = 0°, coupled with θ = 0° and 

coupled with θ = 180°. Note that, the difference frequency 𝑑𝑓 was set to 0.005 Hz, 

which is the Surge natural frequency of the TLP.       

Figure 4.33 compares the full-QTFs with their respective the Newman 

approximation for Yaw for the following cases: alone with θ = 45°, coupled with θ = 

45° and coupled with θ = 135°. In this case, 𝑑𝑓 =0.007 is the Yaw natural frequency 

of the TLP.  

 

Figure 4.32 Full-QTF (FQ) vs. Newman approximation (N) for the TLP for Surge. 

A and C denote alone and coupled with TAD, respectively. θ = 0° and 180°. 

 

 

Figure 4.33 – Full-QTF (FQ) vs. Newman approximation (N) for the TLP for Yaw. 

A and C denote alone and coupled with TAD, respectively. θ = 45° and 135°. 
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Figures 4.32 and 4.33 confirm that the hydrodynamic coupling effects are 

stronger when the wave headings are equal to 135° and 180°. That is, the variations in 

QTFs between the single-body and multi-body cases are relatively high for these wave 

headings. 

Although, the Newman approximation presents poor global agreement with the 

full-QTF as shown in Figs. 4.30 and 4.31, it presents excellent agreement for a 

difference frequency 𝑑𝑓 equal to the natural frequencies of Surge and Yaw. This result 

could be a consequence of the relatively small values of these natural frequencies of 

the TLP. 

Figure 4.34 presents the QTFs of the TAD for Surge motion. This figure 

compares the following cases: (A) TAD alone and θ = 0°, (B) TAD coupled with TLP 

and θ = 0°, (C) TAD coupled with TLP and θ = 180°, (D) Newman approximation for 

TAD alone and θ = 0°, (E) Newman approximation for TAD coupled with TLP and θ 

= 0° and (F) Newman approximation for TAD coupled with TLP and θ = 180°. 

 

 

Figure 4.34 – QTFs of the TAD for Surge (A) Alone and θ=0°, (B) Coupled and 

θ=0°, and (C) Coupled and θ=180°. Newman approximation for QTF (D) Alone and 

θ=0°, (E) Coupled and θ=0°, and (F) Coupled and θ=180° 
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Figure 4.35 presents the comparison between the full-QTFs and the Newman 

approximation for Surge in the following cases: alone with θ = 0°, coupled with θ = 

0° and coupled with θ = 180° using a difference frequency 𝑑𝑓 = 0.004𝐻𝑧, which 

corresponds to the values of the natural frequency of Surge for the TAD. 

 

Figure 4.35 – Full QTF (FQ) vs. Newman approximation (N) of the TAD for Surge. 

A and C denote alone and coupled with TLP, respectively. θ = 0° and 180°. 

 

The differences between the single-body and the multi-body cases are significant, 

particularly in the case of θ = 180° (see parts (A) and (C) of Fig. 4.34). Moreover, it 

is evident that the Newman approximation presents poor global agreement with the 

full-QTF. However, for the QTF analyzed at the natural frequency of Surge in Fig. 

4.35, there is relatively strong agreement. As in the case of the TLP, this result could 

be a consequence of the relatively small natural frequency of the TAD for Surge. 

Fig. 4.36 compares the low-frequency QTFs of the TAD for Heave motion 

between the following cases: (A) TAD alone and θ = 0°, (B) TAD coupled with TLP 

and θ = 0°, (C) TAD coupled with TLP and θ = 180°, (D) Newman approximation for 

TAD alone and θ = 0°, (E) Newman approximation for TAD coupled with TLP and θ 

= 0° and (F) Newman approximation for TAD coupled with TLP and θ = 180°.  

Figure 4.37 compares the full-QTFs with their respective Newman approximation 

for the TAD for Heave motion for the following cases: alone with θ = 0°, coupled with 

θ = 0° and coupled with θ = 180°. The natural frequency for Heave 0.061Hz is set as 

the difference frequency 𝑑𝑓. 
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Figure 4.36 – Low-frequency QTFs of the TAD for Heave (A) Alone and θ=0°,  

(B) Coupled and θ=0°, and (C) Coupled and θ=180°. Newman Approximation for 

QTFs (D) Alone and θ=0°, (E) Coupled and θ=0°, and (F) Coupled and θ=180°  

 

 

Figure 4.37 – Full QTF (FQ) vs. Newman approximation (N) of the TAD for Heave. 

A and C denote alone and coupled with TLP, respectively. θ = 0° and 180°. 

 

An analysis of the QTFs of the TAD for Heave motions reveals relevant 

variations between the single-body and multi-body cases, particularly for multi-body 

case with θ=180° in the region where 𝑓𝑖 ≅ 𝑓𝑗 ≅ 1.25𝐻𝑧, where a huge force peak is 
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observed. In general, the variations are higher in the region where 𝑓𝑖 ≅ 𝑓𝑗. A 

comparison of the full-QTF with their respective Newman approximation maps 

reveals poor global agreement. An analysis of the curves with a difference frequency 

equal to the heave natural frequency reveals poor local agreement as well, it is clear 

that the Newman approximation overestimates the second-order force for heave on the 

TAD unit.     

Figure 4.38 compares the low-frequency QTFs of the TAD for Pitch motion in 

the following cases: (A) TAD alone and θ = 0°, (B) TAD coupled with TLP and θ = 

0°, (C) TAD coupled with TLP and θ = 180°, (D) Newman approximation for TAD 

alone and θ = 0°, (E) Newman approximation for TAD coupled with TLP and θ = 0° 

and (F) Newman approximation for TAD coupled with TLP and θ = 180°.  

 

Figure 4.38 – Low-frequency QTFs of the TAD for Pitch (A) Alone and θ=0°,  

(B) Coupled and θ=0°, and (C) Coupled and θ=180°. Newman Approximation for 

QTFs (D) Alone and θ=0°, (E) Coupled and θ=0°, and (F) Coupled and θ=180°  

 

In addition, a local analysis considering a difference frequency 𝑑𝑓 = 0.055𝐻𝑧, 

which is the natural frequency of the TAD for Pitch is presented in Fig. 4.39 for the 

following cases: alone with θ = 0°, coupled with θ = 0° and coupled with θ = 180°. 
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Figure 4.39 – Full QTF (FQ) vs. Newman Approximation (N) of the TAD for 

Heave. A and C denote alone and coupled with TLP. θ = are 0° and 180°. 

 

An analysis of the QTFs of the TAD for Pitch motions reveals significant 

variations between the single-body and multi-body cases that appear in nearly all of 

the degrees of freedom, particularly in the multi-body case with θ=180° in the regions 

under the condition (𝑓𝑖 ≅ 0.125 𝐻𝑧 ∩ 𝑓𝑗 ≅ 0.175 𝐻𝑧) where a huge moment peak is 

observed. In general, the variations are higher in the region where 𝑓𝑖 ≅ 𝑓𝑗. The 

comparison of the full-QTFs with their respective Newman approximation reveals 

poor global agreement. Finally, an analysis of the curves with a difference frequency 

𝑑𝑓 equals to the Pitch natural frequency reveals poor local agreement as well; it is 

clear that the Newman approximation underestimates the Pitch moments on the TAD 

unit.     

 

4.3.5 Sum-Frequency Loads   

The analysis of the QTFs concludes with the study of high-frequency loads on 

the TLP for the single-body and multi-body cases when the TLP is connected to the 

TAD.  

Note that, in the case of high-frequency QTFs, no approximate method exists to 

estimate the values of the second-order high-frequency loads.    

Figure 4.40 presents the high-frequency QTF of the TLP for Heave in the 

following situations: (A) Alone and θ = 0°, (B) Coupled with TAD and θ = 0°, and 
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(C) Coupled with TAD and θ = 180°. In addition, the high-frequency QTF of the TLP 

for Pitch is presented for the cases of (D) Alone and θ = 0°, (E) Coupled with TAD 

and θ = 0°, and (F) Coupled with TAD and θ = 180°. 

 

 

Figure 4.40 – High-frequency QTFs of the TLP for Heave (A) Alone and θ=0°,  

(B) Coupled and θ=0°, and (C) Coupled and θ=180°. High-frequency QTFs of the 

TLP for Pitch (D) Alone and θ=0°, (E) Coupled and θ=0°, and (F) Coupled and 

θ=180°. 

 

The high-frequency QTFs of the TLP for Heave and Pitch present small variations 

between the single-body and multi-body cases. In general, when the TAD is present, 

these loads undergo slight amplifications. The highest variations are observed in the 

multi-body case and θ = 180° and for regions with (𝑓𝑖 ≅ 0.15 𝐻𝑧) for both degrees of 

freedom. Based on this extensive analysis of the second-order loads on the TLP-TAD 

multi-body system, the following conclusions are drawn: 

• Numerical grids of the floaters and the discretization of the free surface were 

validated. Calculations using the indirect and direct methods present similar 

results. Thus, a reasonable numerical convergence was achieved.  



 

85 
 

• The importance of the free surface integral was tested and confirmed. The results 

showed that even the low-frequency QTFs of both floaters are sensitive to the 

free surface integral. The TAD presents the more significant variations. These 

results indicate that the free surface integral cannot be neglected without previous 

analysis in this type of geometry. In addition, the influence of this integral on the 

high-frequency QTFs of the TLP has been confirmed.  

• Significant differences between the single-body and multi-body cases reveal that 

hydrodynamic coupling effects on the second-order loads of the TLP-TAD 

system are relevant. These effects induced significant variations in the low-

frequency QTFs of both floaters, in both horizontal modes and vertical modes. 

Similar variations in the high-frequency QTF were observed, however, these 

variations are minor relative to the low-frequency results.  

• The results of Section 4.2 showed that this multi-body system presents weak 

hydrodynamic coupling effects for first-order loads on the systems. However, 

such behavior was not found for the second-order loads.   

• For horizontal modes, the Newman approximation presents poor global 

agreement with the full-QTF. However, when the QTFs were analyzed in detail 

with the constant difference frequency 𝑑𝑓 equal to the natural frequency of the 

floaters, acceptable “local” agreements were found. This finding is a consequence 

of the relatively low natural frequencies of the floaters in these modes.  

• For vertical modes, the comparison between the Newman approximation and full-

QTF of the TAD reveals poor global and local agreement. The method 

overestimated the Heave forces and underestimated the Pitch moments. 

• In general, it is possible to conclude that the Newman approximation presents 

satisfactory predictions when the natural frequency is lower than 0.005 Hz. 

 

4.4 TIME DOMAIN ANALYSIS OF SECOND-ORDER LOADS  

This section provides an analysis of the second-order loads on the TLP-TAD multi-body 

system using the time domain approach. Several numerical simulations were conducted using 

Orcaflex [70]. This study has three objectives. First, to confirm the predictions of frequency 

domain analysis regarding the accuracy of the Newman approximation. Second, to verify the 
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importance of high-frequency QTFs for the behavior of the system. Third, to evaluate the 

hydrodynamic coupling effects by comparing the behavior of the units in single-body and 

multi-body cases.  

The numerical configuration and environmental conditions considered in the time 

domain simulations are presented in Section 4.2.5. Note that, the low-frequency QTFs were 

approximated using the Newman approximation and the high-frequency QTFs were 

neglected.  

Figure 4.41 presents the results of time domain simulations of the TLP alone considering 

the wave conditions of Table 4.4. Notably, for Surge motion, slight differences exist between 

the results obtained with the Newman Approximation (NA) and the full-QTFs.  

Similar results arise for Sway and Yaw motions. These results confirmed the predictions 

of the analysis in the frequency domain, i.e., although the Newman approximation presents 

poor global agreement with the full-QTFs, it provides results an excellent local agreement 

for modes with relatively low natural frequencies.  

In contrast, for Heave motion, the differences between simulations with and without the 

sum-frequency QTFs were small. The results including the high-frequency loads were 

slightly larger.  

Finally, the analysis of Pitch and Roll motions reveals significant differences between 

simulations with and without consideration of the high-frequency effects. It is evident that in 

this case, the sum-frequency QTFs cannot be neglected.          

Figure 4.42 presents the results of time domain simulations of the coupled TLP. In 

general, the results from the multi-body analysis were consistent with the single-body case, 

Surge and Yaw present similar trends, i.e., the NA present reasonable agreement with the 

full-QTFs. In addition, the response for Roll and Pitch were significantly lower in TD 

simulations without consideration of the sum-frequency QTFs. As in the TLP single-body 

case, the high-frequency QTFs cannot be neglected for these modes.          

For Sway response, the Newman approximation does not provide accurate predictions, 

notable differences are observed in Fig. 4.42 part. (B). Therefore, the NA must be applied 

with extreme care and with knowledge of its limitations for this mode in the multi-body 

cases.  
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For Heave, a similar trend to the single-body case was found, i.e., no significant 

differences are observed. 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

Figure 4.41 – Newman approximation vs. full-QTF for the TLP alone. 

 

Figure 4.43 presents the results of time domain simulations of the TAD alone. Despite 

some small differences exist for Surge, Sway, and Yaw, the agreement between the Newman 

approximation and the full-QTFs is excellent. 

For Heave of the TAD, in general, the Newman approximation provides reasonable 

predictions. However, significant differences in the time traces are observed.  
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For Roll and Pitch motions of the TAD, important differences are observed, the 

predictions provided by the full-QTFs are systematically higher than the Newman 

Approximation results. 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

Figure 4.42 – Newman approximation vs. full-QTF for the Coupled TLP. 
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Figure 4.44 presents the results of time domain simulations of the coupled TAD. The 

differences observed for Surge are small. The differences between the prediction given by 

the Newman Approximation and the full-QTFs increase for Sway and Yaw. For Heave 

motions, no significant differences were found between the two methods. Finally, for Roll 

and Pitch, the predictions from the full-QTFs were systematically higher, i.e., the Newman 

approximation underestimates the movements in these modes.  

(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

Figure 4.43 – Newman approximation vs. full-QTF for the TAD alone. 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

 

Figure 4.44 – Newman approximation vs. full-QTF for the coupled TAD. 
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As a conclusion, in horizontal modes, the Newman approximation presents excellent 

results for Surge, Sway, and Yaw for both floaters in the single-body cases. However, 

significant differences were found in these modes in the analysis of the multi-body cases.  

Note that, the QTFs, for the single-body and multi-body cases, are approximated by the 

Newman method based on the mean drift loads. As shown in Section 4.2.3, the differences 

observed in the mean drift loads between single-body and multi-body cases are small. 

Consequently, no relevant differences are expected between the QTFs of the single-body and 

multi-body cases provided by the Newman approximation. This could be the reason why the 

Newman approximation presents relevant differences in the time domain simulations for the 

multi-body cases calculate with the full-QTFs that incorporate the coupling effects in the 

multi-body cases.  

Therefore, the hydrodynamic interactions in the low-frequency QTFs have a significant 

impact on the analysis of the multi-body cases and the Newman approximation must be 

carefully used for horizontal modes in these cases. 

The analysis of vertical modes reveals that Heave of the TAD does not present relevant 

differences between the Newman approximation and full-QTFs. However, Roll and Pitch 

present important differences. Generally, the results from full-QTFs are slightly higher than 

those provided by the Newman approximation. 

Finally, the analysis of vertical motions of the TLP reveals that the influence of the high-

frequency QTFs for Heave in the single-body cases is marginal. Consequently, the use of 

FEM to represent the TLP tendons seems to be sufficient to represent the high-frequency 

motions in this mode. However, for the multi-body cases, the differences between the 

simulations with and without consideration of the high-frequency QTFs were slightly larger 

than the single-body case. Therefore, for multi-body analysis, the use of the sum-frequency 

QTFs is recommended.  

For Roll and Pitch, the differences between the motions computed with and without the 

high-frequency QTFs were significant for the single-body and multi-body cases. the 

predictions provided by the simulation that considered the sum-frequency effects are 

systematically higher. Thus, these results have been proved that high-frequency QTFs cannot 

be neglected in the analysis of the system.  
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CHAPTER V. CURRENT LOADS 

This chapter presents an experimental and numerical analysis of current loads on the TLP-

TAD multi-body system including an extensive study of shielding effects. The model tests consider 

the cases of the TLP alone, the TAD alone and the multi-body system with several relative positions 

between the floaters. Computational Fluid Dynamics (CFD) simulations were conducted to 

evaluate blockage and scale effects on the current load coefficients. Furthermore, several current 

velocities and angles of attack were examined. 

  

5.1 INTRODUCTION 

Current loads on offshore structures have a tremendous importance in the design of 

mooring systems, installation analysis, wet tow operations, and the dimensioning of dynamic 

positioning systems [20]. An underestimation of these loads could affect safety during 

operations; In contrast, an overestimation could lead to a severe impact on profitability. 

Consequently, accurate estimations of current loads are indispensable for an efficient design 

[20]. 

The prediction of current loads can be assessed using theoretical or empirical methods, 

CFD simulations, or experimental tests in a current channel, wind tunnel, or towing tanks. 

However, due to the complex geometries of offshore platforms, experimental tests have been 

used as the most trusted method. Although CFD is now an attractive alternative to model 

tests, it still requires further validations, and its applicability may be limited [94]. 

Recent studies have focused on current loads on offshore structures, for instance, [47], 

[90], and [94]. Only a few have investigated shielding effects on multi-body systems [48], 

and none was focused on the TLP-TAD system. 

Note that, when two bodies are positioned close to each other and subject to currents, 

significant shielding or interaction effects can be observed. Thus, the presence of one body 

can significantly modify the current loads on other [48]. Consequently, this effect must be 

considered in multi-body systems. 
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This work presents an extensive experimental and numerical study of the current loads 

on the TLP-TAD multi-body system. The experimental tests are performed in the current 

channel of the Laboratory of Waves and Currents (LOC) of COPPE/UFRJ with the aim of 

investigating shielding effects on the current loads. The units are tested alone and then tested 

while interacting with one another. Several relative positions between the floaters are 

considered.  

Note that, in experimental tests, current load coefficients are typically measured for a 

fixed floater. In [20] current loads are measured in a wind tunnel, and [48] used a towing 

tank. In both examples, the authors considered mass distribution and the motion of the 

platform to be negligible. In concordance with these previous experimental tests, the current 

loads are measured with the unit TLP and TAD hulls fixed.      

The numerical analysis is performed with the aim of investigating possible blockage 

effects due to the walls of the channel and scale effects corollary to the difference in Reynolds 

numbers between the model-scale and full-scale. ANSYS-CFX software [2] was used in the 

numerical analysis. First, the influence of the computational grids was analyzed. Then, the 

numerical predictions are compared and validated with the experimental data. Finally, 

blockage and scale effects are investigated for the TLP alone and TAD alone.      

 

5.2 SIMILITUDE AND FROUDE MODEL LAW 

Model tests are intended to reproduce the behavior of full-scale systems using reduced 

scales with the highest possible accuracy [84]. Thus, the physical similitude between model 

scale and full-scale behavior is divided into three types of similarities: geometric, kinematic, 

and dynamic [12]. Geometric similarity requires that any equivalent dimensions of the full-

scale and model-scale bodies are related by Eqn. (5.1). 

𝜆 =
𝐿𝐹𝑈𝐿𝐿−𝑆𝐶𝐴𝐿𝐸

𝐿𝑀𝑂𝐷𝐸𝐿−𝑆𝐶𝐴𝐿𝐸
 5.1 

where 𝜆 is known as the model scale factor. Kinematic similarity implies that the ratios 

between full-scale velocities must be equal to the equivalent velocity ratios in the model 

scale. Finally, dynamic similarity implies that the ratios between the full-scale forces must 

be equal to the equivalent force ratios in the model scale [12].  



 

94 
 

According to [84], if the geometric and dynamic similarities are ensured, then kinematic 

similarity follows. The geometric similarity is obtained by the faithful representation in 

reduced scale of the geometry of the bodies. However, limitations such as roughness of the 

body surfaces and the presence of walls in the laboratory facilities must be considered.     

The dynamic similarity is evaluated using non-dimensional coefficients such as the 

Froude number, Reynolds number, Mach number, Weber number, Strouhall number and 

Keulegan-Carpenter number [12]. These coefficients are defined as ratios of the forces 

involved in the physical phenomena. In offshore hydrodynamic testing, the most significant 

forces are classified to be the gravitational, viscous, pressure, drag, and inertial forces. 

All of the nondimensional parameters play a role in the correct representation of dynamic 

similarity. However, only a few are predominant. Consequently, the scaling laws are defined 

by the equality of only the most relevant non-dimensional numbers [84]. In offshore 

hydrodynamics, the most relevant non-dimensional parameters are the Froude and Reynolds 

numbers. These non-dimensional parameters are defined below.  

The Froude number relates inertia and gravitational forces on an element of fluid in a 

medium by Eqn. (5.2) [12]. In systems with water flow and free surface, the gravitational 

effects are significant, while effects such as viscosity and surface tension are small and can 

be neglected [84].     

𝐹𝑟 =
𝑉𝐶

√𝑔 ∙ 𝐿𝐶

 5.2 

The Reynolds number relates inertial and viscous forces by Eqn. (5.3).  

𝑅𝑒 =
𝑉𝐶 ∙ 𝐿𝐶

𝜇
 5.3 

Thus, to guarantee similitude between model-scale and full-scale behavior, these non-

dimensional quantities must be equal for both scales. Unfortunately, in practice, it is not 

possible to simultaneously satisfy the scaling laws based on Froude and Reynolds numbers 

[84]. In addition, maintaining an equality of Reynolds number presents a practical limitation 

because the model scale requires relatively high velocities. Consequently, the scaling law 

must be chosen as a compromise between the fulfillment of dynamic similarity and the 

reliability of the model tests [84]. 
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Conventional model tests of offshore structures are typically based on the Froude scaling 

law, i.e., the dynamic similarity is addressed by equality of the Froude numbers in the model-

scale and full-scale. In addition, the geometrical similarity is represented in Eqn. (5.1). Based 

on these two conditions, the scale factors for the main physical parameters involved in the 

experimental tests are deduced as shown in Tab. 5.1.   

 

Table 5.1 Scale factors for the main physical properties in offshore model testing. 

Parameter Scale factor 

Length 𝜆 

Area 𝜆2 

Volume 𝜆3 

Time 𝜆0.5 

Velocity  𝜆0.5 

Acceleration 1 

Radius of gyration 𝜆 

Mass  𝜆3(𝜌𝐹𝑆/𝜌𝑀𝑆) 

Force  𝜆3(𝜌𝐹𝑆/𝜌𝑀𝑆) 

Moment 𝜆4(𝜌𝐹𝑆/𝜌𝑀𝑆) 

Pressure 𝜆(𝜌𝐹𝑆/𝜌𝑀𝑆) 

 

Note that, 𝜌𝐹𝑆 is the full-scale fluid density, while 𝜌𝑀𝑆 is the model-scale fluid density. 

 

5.3 REGIME FLOW AND SCALE EFFECTS 

The purpose of this model test campaign is to investigate the current loads on the TLP-

TAD multi-body system in different current conditions (velocities and angles of attack). The 

range of current velocities considered in this study is presented in Tab. 5.2.  

As described above, in a conventional model test of offshore structures, the physical 

scaling and test execution are only feasible using the Froude model law. Consequently, the 

scale effects due to the difference in the Reynolds number must be considered. Table 5.2 

presents the Froude and Reynolds number for the full-scale and model-scale. Note that, in 
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the calculation of the dimensionless numbers, the characteristic length is assumed to equal 

the diagonal of the square profile of the TLP column (L=21.21 m). The values for the TAD 

are similar. See Eqns. (5.2) and (5.3). 

 

Table 5.2 Current velocities, Froude and Reynolds numbers of the model tests. 

Full scale  Model scale 

Vc [m/s] Re [-] Fr [-] Vc [m/s] Re [-] Fr [-] 

0.3 6.33E06 0.021 0.021 2.44E03 0.021 

0.6 1.27E07 0.042 0.042 4.47E03 0.042 

0.9 1.90E07 0.062 0.064 6.71E03 0.062 

1.2 2.53E07 0.083 0.085 8.94E03 0.083 

1.5 3.16E07 0.104 0.106 1.12E04 0.104 

 

The Reynolds numbers at full-scale are on the order of [1.0E6 - 1.0E7], which 

corresponds to the transcritical flow regime. Consequently, the boundary layer is turbulent 

upstream of the separation point [28]. The Reynolds number at model scale is related to the 

Reynolds number at full-scale by Eqn. (5.4)     

𝑅𝑒𝑀𝑂𝐷𝐸𝐿 =
𝑅𝑒𝐹𝑈𝐿𝐿

√𝜆3
 5.4 

where 𝜆 is the model scale factor. Thus, the Reynolds numbers at model scale are in the range 

of [1.0E3 – 1.0E4], which corresponds to the subcritical flow regime, in which the boundary 

layer is laminar [28].   

As shown in Part (c) of Fig. 5.1, the Reynolds number has a strong influence on the drag 

forces on circular sections. The drag in the transcritical flow regime is considerably lower 

than the drag in the subcritical flow regime. Consequently, significant scale effects due to 

the Reynolds number difference can be expected in floating bodies with cylindrical elements 

with circular sections.  

Figure 5.1 Part (C) and Fig. 5.2 present experimental evidence that drag forces on 

rectangular sections have a weak dependence on the Reynolds number. This finding can be 

related to the fact that the separation point in sharp edged structures is fixed, while for curved 

shapes it depends strongly on the Reynolds number. Therefore, fewer scale effects associated 
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with the Reynolds number can be expected in floating bodies with cylindrical elements than 

in those with square sections. 

 

 

Figure 5.1 Reynolds number influence on the drag coefficients of square cylinders with 

different corner radii [83]. 

 

 

Figure 5.2 Drag coefficients for a square section with several corner radii [76]. 
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5.4 ULTRA-REDUCED SCALE MODELS  

The scale factor is probably the most important parameter in experimental tests. 

Depending on the physical phenomenon, models that are too small present scale effects due 

to viscosity and represent a substantial challenge in the correct representation of the mass 

distribution [84]. However, large models are expensive, difficult to handle and sensitive to 

blockage effects, i.e., the walls and bottom of the tank can modify the behavior of the reduced 

model [84].  

Therefore, the scale must be defined based on the dimensions of the floater, the 

environmental conditions of interest and the operational limitations of the current channel. 

Tab. 5.3 presents the properties considered in the scale factor analysis. Figure 5.3 presents a 

schematic representation of the experimental setup considered in the scale factor analysis. 

The analysis of the scale factor focuses on the following relations:   

𝐶1 [%] = 100 ∙
𝑇1

𝑘1
 5.5 

𝐶2 [%] = 100 ∙
𝐿2

𝑘3
 5.6 

𝐶3 [%] = 100 ∙
𝐴𝑇𝐿𝑃

𝑘4
 5.7 

where 𝑇1 is the TLP draft, 𝐿2 is the total TAD length, 𝐴𝑇𝐿𝑃 is the TLP transversal area, 𝑘1 

is the channel depth, 𝑘2 is the channel breadth, and 𝑘3 is the channel transversal area. Note 

that, these parameters were selected because they are the critical dimensions of the floaters 

in terms of minimizing the blockage effects. For reference, see Fig. 5.3 and Tab. 5.3. These 

parameters (𝑇1, 𝐿2 and 𝐴𝑇𝐿𝑃) are related to the full-scale values of Tab. 5.3 by the scale 

factors presented in Tab. 5.1. Moreover, C1 is the ratio between the maximum draft of the 

floaters and the depth of the channel, C2 is the ratio between the maximum horizontal 

dimension of the floaters and the breadth of the channel, and C3 is the ratio between the 

maximum transversal area of the floaters and the transversal area of the channel.   

Note that, the values of the coefficients C1, C2, and C3 from Eqns. (5.5) and (5.6) depend 

on the scale factor. Thus, after establishing reasonable limits for these coefficients (C1 and 

C2 were limited to 35%, and C3 was limited to 7.5%), the most suitable scale factor was 

chosen as 1:200. Table 5.4 presents a summary of the scale factor analysis.  
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Table 5.3 Parameters included in the analysis of the scale factor. 

Description Symbol Values Units 

TLP 

Breadth overall  L1 80.5 [m] 

Draft T1 31.0 [m] 

Transversal area ATLP 1619.5 [m2] 

TAD 

Length overall L2 93.8 [m] 

Breadth overall L3 47.0 [m] 

Draft T2 12.95 [m] 

Transversal area ATAD 817.8 [m2] 

Current 

Channel 

Breadth - 1.4 [m] 

Depth - 0.5 [m] 

Transversal area - 0.7 [m2] 

Maximum current velocity - 0.5 [m/s] 

    

 

Figure 5.3 Arrangement for the scale factor analysis. 
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Table 5.4 Summary of scale factor analysis. 

Scale factor C1 [%] C2 [%] C3 [%] Max. VC [m/s] 

120 51.7 55.8 16.1 0.14 

150 41.3 44.7 10.3 0.12 

175 35.4 38.3 7.6 0.11 

200 31.0 33.5 5.8 0.11 

220 28.2 30.5 4.8 0.10 

250 24.8 26.8 3.7 0.09 

300 20.7 22.3 2.6 0.09 

Limits 35.0 35.0 7.5 0.50 

Finally, the ultra-reduced scale models were constructed using 3D-printed blocks made 

of PLA filament by fused deposition modeling (FDM) technology. Figures 5.4 and 5.5 

present the TLP and TAD models under construction and complete, respectively. 

  

Figure 5.4 Construction of the TLP ultra-reduced model. 

 

  

Figure 5.5 Construction of the TAD ultra-reduced model. 
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5.5 EXPERIMENTAL SETUP 

The model tests were conducted in the current channel of the Laboratory of Waves and 

Currents (LOC) of COPPE/UFRJ. The current channel is 22 m in length, 1.4 m in width and 

0.5 m in depth. Four electrical pumps generate the flow into the channel. An electronic 

module controls the RPM of the pumps and consequently the flow velocity in the channel. 

Finally, a propeller flowmeter measures the flow velocity. 

The experimental setup was assembled to measure the current loads on the floaters, 

considering the five current velocities of Tab. 5.2 and current angles of incidences varying 

from 0° to 360° in 15° increments.  

The main components of the experimental apparatus are the aluminum profile supports 

mounted on the walls of the current channel, the load cell to measure the forces and moment 

on the bodies in the horizontal plane and the rotational plate to modify the angle of attack. 

An HBM Quantum X MX840B unit completes the data acquisition system. This unit is an 

8-channel universal amplifier that connects the load cell to a CPU computer.  

Note that, the aluminum profile supports comprise four parts: the fixed part, the mobile 

part along the x-axis, a mobile part along the y-axis and the mobile part along the z-axis. 

Figure 5.6 presents these parts in silver, green, dark yellow and yellow, respectively. The 

movable parts guarantee the correct position and draft of the mounted platform during the 

tests.  

 
Figure 5.6 Experimental setup for the TLP alone. The current direction is shown in red. 
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Figures 5.6 and 5.7 present the experimental arrangement for TLP alone and TAD alone 

cases, respectively. The apparatus for both single-body cases is the same.  

 

 

Figure 5.7 Experimental setup for the TAD alone. The load cell is shown in magenta. 

 

The multi-body case is divided into two sub-cases. In the first, the TLP is the main unit, 

and the TAD is the auxiliary unit. In the second, the TAD is the main unit, and the TLP is 

the auxiliary unit.  

For both sub-cases, the main unit is mounted on the load cell, and the auxiliary unit is 

fixed at a constant distance from the main unit. Thus, the main unit is analyzed for all the 

angles of attack and current velocities, while the auxiliary unit is fixed.  

Figures 5.8 and 5.9 present the experimental setup for both multi-body sub-cases. The 

main unit is mounted the same manner as that described for the single-body cases. The 

auxiliary unit is fixed to the additional support. This support is installed on aluminum support 

to ensure the correct position and draft of the auxiliary unit along the x-axis, y-axis, and z-

axis during the tests.  

Furthermore, each sub-case considered the main unit upstream and downstream of the 

auxiliary unit. In addition, three relative distances between the main and auxiliary units were 
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considered, as shown in Figs. 5.10 and 5.11. Table 5.5 presents the relative distances between 

the TLP and TAD.  

Table 5.5 Relative distances between main and auxiliary units 

Case code Full-scale Dx [m] Model-scale Dx [m] 

D1 100 0.50 

D2 110 0.55 

D3 120 0.60 

 

 

(A) 

 

(B) 

Figure 5.8 Experimental setup for the multi-body case. TLP as a main unit and TAD as an 

auxiliary unit: (A) TLP upstream and (B) TLP downstream. 
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(A) 

 

(B) 

Figure 5.9 Experimental setup for the multi-body case. TAD as a main unit and TLP as an 

auxiliary unit: (A) TAD upstream and (B) TAD downstream. 

 

  

(A) (B) 

Figure 5.10 Relative distances between TLP and TAD: 

(A) TLP upstream and (B) TLP downstream. 
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(A) (B) 

Figure 5.11 Relative distances between TAD and TLP: 

(A) TAD upstream and (B) TAD downstream. 

 

The load cell was calibrated by applying known forces and moments to the systems. The 

current velocities were calibrated by varying the RPM of the pumps. Table 5.6 presents the 

mean value, standard deviation, and turbulence intensity of the current velocities. Figure 5.12 

a time series of measurements of current velocities. In general, the differences between mean 

values and target values are reasonable, i.e., less than 10%. The turbulence intensity is 

relatively high, as is evident at velocity V1.    

  

Table 5.6 Experimental and target values of the current velocities of the model tests. 

 Target values Experimental values 

 Full-scale 

[m/s] 

Model scale 

[m/s] 

Mean 

[m/s] 

Error 

[%] 

Std. Dev. 

[m/s] 

Turbulence 

intensity [%] 

V1 0.3 0.021 0.023 8.3 0.0030 13.0 

V2 0.6 0.042 0.044 5.9 0.0039 8.9 

V3 0.9 0.064 0.060 5.7 00057 9.5 

V4 1.2 0.085 0.080 6.4 0.0063 7.9 

V5 1.5 0.106 0.111 4.8 0.0091 8.2 

 

Finally, Table 5.7 presents a summary of this experimental campaign. Each test has a 

duration of 300 sec. at model scale, which represents more than 70 minutes at full scale. 

Furthermore, each test was repeated three times, and the average values were reported to 

suppress variations. A total of 60 tests were conducted for the TLP alone; 195 tests for the 
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TAD alone were performed, and 144 tests have been conducted for the TLP-TAD multi-

body system.  

 

 

Figure 5.12 Time series of the current velocities. 

 

Table 5.7 Summary of the experimental campaign. 

Tests Description Current velocity 

[m/s] 

Current angle 

[deg.] 

TLP alone 0.3 -1.5@0.3 0°-45°@15° 

TAD alone 0.3 -1.5@0.3 0°-180°@15° 

TLP upstream with TAD @ Dx = 100m  0.3 and 1.5 0°-345°@15° 

TLP upstream with TAD @ Dx = 110m 0.3 and 1.5 0°-345°@15° 

TLP upstream with TAD @ Dx = 120m 0.3 and 1.5 0°-345°@15° 

TLP downstream with TAD @ Dx = 100m  0.3 and 1.5 0°-345°@15° 

TLP downstream with TAD @ Dx = 110m 0.3 and 1.5 0°-345°@15° 

TLP downstream with TAD @ Dx = 120m 0.3 and 1.5 0°-345°@15° 

TAD upstream with TLP @ Dx = 100m 0.3 and 1.5 0°-345°@15° 

TAD upstream with TLP @ Dx = 110m 0.3 and 1.5 0°-345°@15° 

TAD upstream with TLP @ Dx = 120m 0.3 and 1.5 0°-345°@15° 

TAD downstream with TLP @ Dx = 100m 0.3 and 1.5 0°-345°@15° 

TAD downstream with TLP @ Dx = 110m 0.3 and 1.5 0°-345°@15° 

TAD downstream with TLP @ Dx = 120m 0.3 and 1.5 0°-345°@15° 
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5.6 EXPERIMENTAL RESULTS 

The outputs of the experimental tests are the current loads on the floaters in the horizontal 

plane. Thus, the forces 𝐹𝑋 and 𝐹𝑌 on the x-axis and y-axis, and the moment 𝑀𝑍 about the z-

axis were measured by the load cell. These forces and moments are reported in the non-

dimensional form presented in Eqns. (5.8) to (5.10).  

𝐶𝐹𝑋 =
𝐹𝑋

0.5𝜌𝑉2𝐴𝑋
 5.8 

𝐶𝐹𝑌 =
𝐹𝑌

0.5𝜌𝑉2𝐴𝑌
 5.9 

𝐶𝑀𝑍 =
𝑀𝑍

0.5𝜌𝑉2𝐴𝑍𝐿𝑍
 5.10 

where 𝐶𝐹𝑋, 𝐶𝐹𝑌 and 𝐶𝑀𝑍 are the nondimensional coefficients, 𝜌 is the water density of the 

channel, 𝑉 is the current velocity, and 𝐴𝑋, 𝐴𝑌, 𝐴𝑍 and 𝐿𝑍 are characteristic dimensions of the 

platforms. Table 5.8 presents these characteristic dimensions for both platforms. 

 

Table 5.8 Characteristic dimensions of TLP and TAD. 

Parameter 

TLP TAD 

Full scale Model scale Full scale Model scale 

𝐴𝑋 [𝑚2] 2000 0.050 300 0.0075 

𝐴𝑌 [𝑚2] 2000 0.050 800 0.0200 

𝐴𝑍 [𝑚2] 1000 0.025 1000 0.0250 

𝐿𝑍 [𝑚] 31 0.155 15 0.0750 

 

The initial tests were conducted with the TLP and TAD alone over a current velocity 

range of [0.3 - 1.5] m/s to assess the dependence on current speed. Five current velocities 

were considered in this analysis. Due to the symmetry of the hulls, the angles of attack were 

respectively reduced to 4 ([0° - 45°] in steps of 15°) and 13 ([0° - 180°] in steps of 15°).  

Figure 5.13 presents the coefficient 𝐶𝐹𝑋 for the TLP and TAD alone with an angle of 

attack equal to 0°. Although some fluctuations of 𝐶𝐹𝑋 were observed, these variations 

represent less than 3.4%. Similar spreading was found in the coefficients 𝐶𝐹𝑌 and 𝐶𝑀𝑍. 
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The results from the tests with different angles of attack reveal same trends. Therefore, 

it is possible to conclude that there were no significant effects due to current velocity in the 

range adopted for the tests. 

 

Figure 5.13 Variation of 𝐶𝐹𝑋 with the current velocity.  

 

Based on these results, the number of current velocities of the tests was reduced from 5 

to 2 in the multi-body cases. An analysis of the influence of the current velocity on the current 

load coefficients for the multi-body cases reveals similar trends. No significant variations 

were found, and the fluctuations between the values represent less than 5.1% for all multi-

body cases. The variations in the repeated tests were relatively low; less than 3.9% in all 

cases.  

The current loads on the TLP and TAD alone were assessed through an analysis of the 

angle of attack. Figures 5.14, 5.15 and 5.16 present, respectively, the current load coefficients 

𝐶𝐹𝑋, 𝐶𝐹𝑌 and 𝐶𝑀𝑍 of the TLP alone. In the three figures the following are observed: 

• 𝐶𝐹𝑋 presents relatively small variation over angles of attack ranging from 0° to 60°. The 

peak force corresponds to 30°. In the range of [60° - 120°], 𝐶𝐹𝑋 decays linearly with the 

angle of attack.  
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• 𝐶𝐹𝑌 presents constant behavior with small variation over angles of attack ranging from 

30° to 150°. The force peak corresponds to 60°. Additionally, 𝐶𝐹𝑌 presents a linear 

behavior over the range of [150° - 210°].  

• 𝐶𝑀𝑍 presents periodical behavior with peaks in the moment for angles 30°, 60° and so 

on. It is important to note that the moment has a no zero value for the angles of 0° and 

45°, when due to the symmetry, a zero value could be expected.  

 

Figure 5.14 Variation of  𝐶𝐹𝑋 with angle of attack for TLP alone. 

 

Figure 5.15 Variation of  𝐶𝐹𝑌 with angle of attack for TLP alone. 
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Figure 5.16 Variation of  𝐶𝑀𝑍 with angle of attack for TLP alone. 

 

Similarly, Figs. 5.17, 5.18 and 5.19 present, respectively, the current load coefficients 

𝐶𝐹𝑋, 𝐶𝐹𝑌 and 𝐶𝑀𝑍 of the TAD alone. The following are observed: 

• 𝐶𝐹𝑋 presents the peak force at 25°, and presents a linear trend over angle of attack ranging 

from 30° to 150°. In contrast to the TLP case, the TAD does not present large constant 

value force regions.  

 

Figure 5.17 Variation of  𝐶𝐹𝑋 with angle of attack for TAD alone. 
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• 𝐶𝐹𝑌 presents constant behavior with little variations over angle of attack ranging from 

60° to 120°. The peak force corresponds to 60°. Additionally, 𝐶𝐹𝑌 presents linear 

behavior over the range of [120° - 240°].  

• 𝐶𝑀𝑍 presents peaks in the moment for angles of 60° and 75°. The curve increases and 

decreases linearly over the ranges of [0° - 60°] and [75° - 105°], respectively.  

  

 

Figure 5.18 Variation of  𝐶𝐹𝑌 with angle of attack for TAD alone. 

 

 

Figure 5.19 Variation of  𝐶𝑀𝑍 with angle of attack for TAD alone. 
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The results of the multi-body tests with the TLP as the primary unit and the TAD as an 

auxiliary unit are shown and discussed below. The TLP was analyzed for the cases being 

upstream (UP) and downstream (DO) of the TAD. Three relative distances were considered 

(namely, D1, D2, and D3; see Tab. 5.5). For a better comparison of the relevance of shielding 

effects on the current coefficients, the results of the TLP alone are depicted together.    

Figures 5.20, 5.21 and 5.22 present, respectively, the coefficients 𝐶𝐹𝑋, 𝐶𝐹𝑌 and 𝐶𝑀𝑍 of 

the TLP. In these figures, the part (A) presents the global results, while the part (B) presents 

only the results for one relative distance (D1).  

The variations in coefficient 𝐶𝐹𝑋 of the TLP upstream range of [-7.5% to 5.3%] relative 

to that of the TLP alone. The highest variation occurs at an angle of attack equal to 30°. The 

results of the TLP downstream case present variations in the range of [-8.5% to 5.6%] relative 

to that of the TLP alone. The largest difference occurs for at an angle of 135°. See part (B) 

of Fig. 5.20 for angles of attack in the ranges of [120° – 240°] and [300° – 345°]  

The coefficient 𝐶𝐹𝑌 with the TLP upstream varies in the range of [-6.4% to 5.7%] relative 

to that of the TLP alone. The highest variation occurs for an angle of attack equal to 30°. In 

contrast, the results of the case TLP downstream case present variations in the range of [-

7.0% to 3.7%] relative to that of the TLP alone. The largest difference occurs for an angle of 

210°. See part (B) of Fig. 5.21 for angles of attack in the ranges of [30° – 45°] and [120° – 

150°].  

The variations observed in the coefficient 𝐶𝑀𝑍 were considerably higher than those in 

𝐶𝐹𝑋 and 𝐶𝐹𝑌. The differences in relation to the case TLP alone case are more evident for 

angles of attack of 15°, 105° and 295°.  In general, the TLP upstream presents higher loads 

than TLP alone and TLP downstream. However, some angles deviate from this trend. 

The spread in 𝐶𝑀𝑍 for an angle of 60° was the lowest, approximately 14%. 

In general, the variations in the coefficients 𝐶𝐹𝑋 and 𝐶𝐹𝑌 were higher than the fluctuations 

found in the repeatability tests using different current. Although, these fluctuations could 

represent evidence of shielding effects, they are relatively small since the maximum 

difference was approximately 10%.  

Moreover, no significant differences were found between upstream and downstream 

cases. Thus, it is difficult to establish a relationship between the variations in 𝐶𝐹𝑋 and 𝐶𝐹𝑌 and 
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the relative distances between the floaters. Therefore, the shielding effects on these 

coefficients of the TLP are relatively weak.  

Only 𝐶𝑀𝑍 presents significant variations. Therefore, the shielding effects on the current 

moment of the TLP are relevant and cannot be neglected. 

 

   

(A) 

 

(B) 

Figure 5.20 Current coefficient 𝐶𝐹𝑋 for the TLP. Single-body vs. multi-body cases with 

TLP upstream (UP) and TLP downstream (DO). D1= 100 m, D2= 110 m, and D3= 120 m. 
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(A) 

 

(B) 

Figure 5.21 Current coefficient 𝐶𝐹𝑌 for the TLP. Single-body vs. multi-body cases with 

TLP upstream (UP) and TLP downstream (DO). D1= 100 m, D2= 110 m, and D3= 120 m. 

 

Finally, the results of the multi-body tests with the TAD as the primary unit and the TLP 

as an auxiliary unit are presented and discussed below. The TAD was analyzed for the cases 

being upstream (UP) and downstream (DO) of the TLP, considering the relative distances 
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(namely, D1, D2, and D3) reported in Tab. 5.5. For a better understanding of the shielding 

effects on the current coefficients, the results of the TAD alone case are depicted together.  

 

 

(A) 

 

(B) 

Figure 5.22 Current coefficient 𝐶𝑀𝑍 for the TLP. Single-body vs. multi-body cases with 

TLP upstream (UP) and TLP downstream (DO). D1= 100 m, D2= 110 m, and D3= 120 m. 
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Figures 5.23, 5.24 and 5.25 present, respectively, the coefficients 𝐶𝐹𝑋, 𝐶𝐹𝑌 and 𝐶𝑀𝑍 for 

the TAD. In these figures, part (A) presents the general results, while part (B) presents only 

the results considering one relative distance (D1).  

In contrast to the case of the TLP, where the differences between the upstream and 

downstream cases were not clear. The results of the TAD tests reveal a clear trend. In general, 

the loads on the TAD upstream were higher than those on the TAD downstream case.  

Despite small differences, the loads on the TAD upstream case were similar to that of the 

TAD alone case. As in the case of the TLP, the relative distance between the floaters seems 

to have a weak influence on the current loads on the TAD. 

The coefficients 𝐶𝐹𝑋 of the TAD upstream case vary in the range of [-6.3% to 4.7%] 

relative to that of the TAD alone case. The highest variation occurs at an angle of attack 

equal to 255°.  

The results of the TAD downstream case present variations in the range of [-24.8% to -

4.3%] relative to that of the TAD alone case. The largest differences occur for the angles 

15°, 120°, and 135°.  

Part (B) of Fig. 5.23 shows the differences between upstream and downstream cases 

(both for D1) and the alone case. Small shielding effects on TAD upstream are observed. 

Thus, the variations in relation to the alone case are minor.   

In contrast, shielding effects on the TAD downstream were high. Consequently, the loads 

were minor relative to the alone case.  

The 𝐶𝐹𝑌 for the TAD upstream varies in the range of [-4.9% to 3.7%] relative to that of 

the TAD alone case. The highest variations occur for angles of attack equal to 15° and 240°.  

In contrast, the results of the TAD downstream case present variations in the range of [-

26.1% to -2.0%] relative to that of the TAD alone case. The largest difference occurs at 90°. 

See part (B) of Fig. 5.24 for angles of attack in the range of [45° – 120°] and [240° – 315°]  

Finally, the coefficients 𝐶𝑀𝑍 of the TAD case present the same trends that are observed 

for 𝐶𝐹𝑋 and 𝐶𝐹𝑌. The TAD upstream results vary in the range of [-2.7% to 4.8%] relative to 

that of the TAD alone case.  

The highest variation occurs at an angle of attack equal to 195°. In addition, the results 

of the TAD downstream case present variations in the range of [-25.1% to -0.3%] relative to 

that of the TAD alone case. 
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(A) 

 

(B) 

Figure 5.23 Current force coefficient 𝐶𝐹𝑋 for the TAD.  

Single-body vs. Multi-body cases with TAD upstream (UP) and TAD downstream (DO). 

D1 = 100 m, D2 = 110 m, and D3 = 120 m. 
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(A) 

 

(B) 

Figure 5.24 Current force coefficient 𝐶𝐹𝑌 for the TAD.  

Single-body vs. Multi-body cases with TAD upstream (UP) and TAD downstream (DO). 

D1 = 100 m, D2 = 110 m, and D3 = 120 m. 
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(A) 

 

(B) 

Figure 5.25 Current force coefficient 𝐶𝑀𝑍 for the TAD.  

Single-body vs. Multi-body cases with TAD upstream (UP) and TAD downstream (DO). 

D1 = 100 m, D2 = 110 m, and D3 = 120 m. 
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5.7 FREQUENCY DOMAIN ANALYSIS 

This section presents an analysis of the current loads in the frequency domain with the 

aim of identifying resonant frequencies that could induce VIM response in the floaters. The 

Power Spectral Density (PSD) is obtained by applying the Fast Fourier Transform (FFT) on 

the time history of the current load measurements. Note that the current velocities, frequency 

ranges and natural frequencies refer to the model-scale data.     

The FFT was also used in the treatment of the experimental results. Fig. 5.26 compares 

the original time history measured in the test with the filtered signal, note that the mean 

values are the same for both signals.  

 

Figure 5.26 Current force coefficient 𝐶𝐹𝑋 of TLP alone with θ = 0°.  

 

Figure 5.27 presents the power spectrum density (PSD) of the current force coefficient 

𝐶𝐹𝑋 for the TLP alone considering a 0° angle of attack and the five current velocities 

presented in Tab. 5.6. The spectral analysis reveals an energy concentration in a short-band 

range of frequencies that peaks at approximately 0.05 Hz, particularly for velocities V1 and 

V2. As the velocity increases, the energy spreads across a wide-band range of frequencies. 

However, most of the energy remains concentrated in the range of [0.0 – 0.1] Hz. This fact 

is relevant because as mentioned in Section 3.4, the TLP has a Surge natural frequency equal 

to 0.070 Hz, hence, resonant motions could be expected in VIM tests.  

The analysis of the coefficients 𝐶𝐹𝑋 for other angles of attack, reveals similar findings, 

i.e., the energy is concentrated in a low-frequency ranges of [0.0 – 0.1] Hz. 

Figure 5.28 presents the PSD of the current force coefficient 𝐶𝐹𝑌 for the TLP alone at a 

15° angle of attack. The PSD shows that the major of the energy is concentrated in the range 

of [0.0 – 0.1] Hz. However, some peaks appear at frequencies of approximately 0.15 Hz and 

0.20 Hz. Note that, the Sway natural frequency is 0.07 Hz. 
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Figure 5.27 Power spectrum density from FFT of 𝐶𝐹𝑋 for TLP alone 

as a function of current velocity and frequency for θ = 0°. 

 

 

Figure 5.28 Power spectrum density from FFT of 𝐶𝐹𝑌 for TLP alone 

as a function of current velocity and frequency for θ = 15°. 
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Figure 5.29 shows the PSD of the current moment coefficient 𝐶𝑀𝑍 for the TLP alone. 

Note that, in this case, the angle of attack is 30°. For velocities V1, V2 and V3, a 

concentration of energy is observed for frequencies in the range of [0.00 – 0.05] Hz. For 

velocities V4 and V5, peaks appear in the range of [0.00 – 0.15] Hz. Note that, the Yaw 

natural frequency is 0.106Hz. 

 

 

Figure 5.29 Power spectrum density from FFT of 𝐶𝑀𝑍 for TLP alone 

as a function of current velocity and frequency for θ = 30°. 

 

Figure 5.30 presents the power spectrum density of the current force coefficient 𝐶𝐹𝑋 for 

the TLP coupled with the TAD. Note that, the angle of attack is 0°, the distance between the 

floaters is D2 from Tab. 5.5, and the TLP is in the downstream position, as Fig. 5.10 – part 

(B) shows.  

Based on the analysis presented in the previous section, no major differences between 

the single-body and multi-body cases were expected. However, the spectral analysis reveals 

small differences, particularly for velocities V3, V4, and V5. The energy peaks are observed 

at approximately 0.02 and 0.05 Hz, and the energy spreading is broader than that of the 
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single-body case, see Fig. 5.27, particularly for velocities V4 and V5, for which small peaks 

appear at frequencies up to 0.25Hz. 

 

 

Figure 5.30 Power spectrum density from FFT of 𝐶𝐹𝑋 for TLP coupled with TAD 

as a function of current velocity and frequency for θ = 0°. 

 

Figure 5.31 shows the PSD of the current force coefficient 𝐶𝐹𝑌 for the TLP coupled with 

the TAD at a 15° angle of attack. The distance between the floaters is D2 from Table 5.5 and 

the TLP is in the downstream position, as shown in Fig. 5.10 – part (B). 

In this case, the spread across the frequencies is relatively broad, particularly for 

velocities V4 and V5. The largest peaks are in the frequency range of [0.00 - 0.15] Hz. 

However, additional peaks appear at frequencies of up to 0.25Hz.      

Finally, Fig. 5.32 shows the PSD of the current moment coefficient 𝐶𝑀𝑍 for the TLP 

coupled with the TAD. In this case, the angle of attack is 30°, the distance between the 

floaters is D2 from Tab. 5.5, and the TLP is in the downstream position as Fig. 5.10 – part 

(B) shows. 
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The PSD shows small differences between the single-body and multi-body cases, 

particularly for velocities V4 and V5. Thus, peaks of energy appear at approximately 0.2 Hz, 

and the spreading of the energy is slightly broader, see Fig. 5.29.  

 

Figure 5.31 Power spectrum density from FFT of 𝐶𝐹𝑌 for TLP coupled with TAD 

as a function of current velocity and frequency for θ = 15°. 

 

In general, the results reveal that for velocities V1 and V2, the energy is concentrated in 

the range of [0.00 – 0.05] Hz, and the variations between single-body and multi-body cases 

are small. For velocities V3, V4 and V5, the energy peaks are observed in the range of [0.00 

– 0.15] Hz and at approximately 0.20 Hz. The spreading in the multi-body case is wider than 

that of the single-body case. The current coefficient 𝐶𝐹𝑌 presents the widest spread over the 

range of frequencies of [0.00 – 0.30] Hz.    

Note that the energy peaks are observed in regions that includes the values of the natural 

frequencies of Surge, Sway, and Yaw. Therefore, resonance movements can be expected in 

the VIM tests. 

The analysis of the load coefficients for other angles of attack and relative positions 

between the floaters presents the same general trends. In addition, the upstream TLP case 

presents similar results to the case of the TLP alone. 
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Figure 5.32 Power spectrum density from FFT of 𝐶𝑀𝑍 for TLP coupled with TAD 

as a function of current velocity and frequency for θ = 30°. 

 

The frequency domain study of the current loads on the TAD is summarized in Fig.  5.33. 

In this figure, the Power Spectrum Density (PSD) of 𝐶𝐹𝑋 for the TAD alone is presented. 

The angle of attack is 0°.  

As shown in Fig. 5.33 the largest amount of energy is concentrated in the frequency range 

of [0.00 – 0.05] Hz, the magnitudes of the peaks outside of this range are relatively small. 

Note that, the differences between single-body and multi-body cases for the TAD are very 

small. The spreading of the energy is considerably smaller than that of the TLP. 

As noted in Section 3.4, the natural frequencies of Surge, Sway and Yaw are, 

respectively, 0.063 Hz, 0.064 Hz, and 0.205 Hz. Therefore, the possibility of resonance 

movements on the TAD due to the current loads is relatively lower. 

The analysis of the load coefficients 𝐶𝐹𝑋, 𝐶𝐹𝑌 and 𝐶𝑀𝑍 for other angles of attack and 

relative positions between the floaters for the multi-body cases reveals that the loads on the 

TAD present similar trends than that of the Fig. 5.32.  
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Figure 5.33 Power spectrum density from FFT of 𝐶𝐹𝑋 for TAD alone 

as a function of current velocity and frequency for θ = 0°. 

 

5.8 NUMERICAL ANALYSIS  

The numerical analysis using Computational Fluid Dynamics (CFD) was performed with 

the aim of investigating three main issues. First, to confirm the capability of CFD to 

reproduce the experimental results obtained in the LOC current channel. Second, to 

investigate blockage effects in the current load coefficients due to the walls and bottom of 

the channel. Third, to examine scale effects in the current load coefficients due to the 

tremendous difference in Reynolds number between the model-scale and full-scale. The 

numerical study focused on the TLP alone and the TAD alone, considering the following 

three cases: 

• Full scale with a numerical domain to avoid the wall influences.  

• Model scale with a numerical domain to avoid the wall influences.  

• Model scale with a numerical domain equivalent to the current channel. 

Note that, for the two first cases, the numerical domains were dimensioned to avoid the 

influence of the walls and bottom using the guidelines presented in [48] and [94]. Details of 

the numerical domains are shown in Section 5.8.1. 
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The interactions between currents and the 3-D body geometries were analyzed using the 

CFD code ANSYS CFX, which employs the Finite Volume Method (FVM) and the 

Reynolds-Averaged Navier-Stokes (RANS) equations complemented with turbulence 

models [94]. 

Although the interactions between the platforms and the flow are fundamentally 

unsteady, the computational effort required to perform unsteady simulations is prohibitive.  

Therefore, due to the large number of simulations required to complete the present 

analysis, the study considers steady-state simulations. This simplification is not new in this 

kind of analysis; for instance [47], [48], and [94] used the same approach.  

 

5.8.1 Model and Meshing  

The analysis considers two main cases: TLP alone and TAD alone. The 

dimensions and properties of the floaters are presented in Chapter III. Each floater is 

analyzed in three sub-cases: full scale (FS), model scale (MS_LD) and model scale 

with a domain similar to the current channel (MS_SD).  

For simplicity, the sub-case with the domain corresponding to the current channel 

dimensions is denoted as the model scale with a small domain (SD) and, the other is 

denoted as the model scale with a large domain (LD).  

The computational domains for the three sub-cases are boxes as shown in Fig. 

5.34. Table 5.9 presents the dimensions L1, L2, and H of the three computational 

domains for each sub-case (See Fig. 5.34). In addition, the coefficients C1 to C3 from 

Eqns. (5.5) to (5.7) are reported. Note that, these coefficients correspond to the 

dimensions of the body and the domain dimensions.  

In section 5.4, the model scale factor 1:200 was selected by establishing 

reasonable limits for the coefficient C1, C2, and C3. The blockage effects increase 

with the model size. However, with smaller models, scale effects due to the Reynolds 

number difference and surface tension are higher. Thus, the model scale with small 

domain (MS_SD) sub-case has the same dimensions as the current channel and has 

the same coefficients C1, C2, and C3 as the experimental test. The computational 

domains for the full scale (FS) and model scale with large domain (MS_LD) cases 

were defined following the guidelines presented in [47] and [48], i.e., the dimensions 
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L1 and L2 of Fig. 5.34 must be at least 8Lpp, where Lpp is the maximum length of 

the body. For this study Lpp = 93.8 meters since it is the larger dimension of the two 

platforms. Finally, the parameter H must be at least 4Lpp. Note that, the dimensions 

of the computational domains are the same for the TLP alone and TAD alone. 

 

 

Figure 5.34 Computational domain for the CFD simulations. 

 

Table 5.9 Computational domain for the CFD simulations. 

Parameter Full-scale Model-scale LD Model-scale SD 

Scale 1:1 1:200 1:200 

L1 [m] 800 4.0 10 

L2 [m] 800 4.0 1.4 

H [m] 400 2.0 0.5 

C1 [%] 7.8 7.8 31.0 

C2 [%] 11.7 11.7 33.5 

C3 [%] 0.5 0.5 5.8 

 

Figures 5.35 and 5.36 present the computational domains for the three sub-cases 

for the TLP alone and TAD alone, respectively. Note that the direction of the current 

velocity is always the same. Thus, for each angle of attack, the platform geometry was 

introduced with the appropriate orientation. 
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(A) 

 
(B) 

 
(C) 

Figure 5.35 Computational domain for the TLP alone (A) Full-scale θ = 0°, 

(B) Model-scale LD θ = 45°, and (C) Model-scale SD θ = 30°. 
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(A) 

 
(B) 

 
(C) 

Figure 5.36 Computational domain for the TAD alone (A) Full-scale θ = 0°, 

(B) Model-scale LD θ = 45°, and (C) Model-scale SD θ = 90°. 
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The computational grids were modeled using a grid generator software which 

allows for building block-structured hexahedral grids.  

For each sub-case three different refined grids were used. The grids are refined 

on the hull of the platforms to property represent the boundary layer and a maximum 

value of y+ below 1.  

Table 5.10 presents the number of cells in the different grids for all of the cases 

and sub-cases. Figures 5.37 and 5.38 present the computational grids of the TLP alone 

and TAD alone, respectively.   

 

Table 5.10 Number of cells, in millions, in the computational grids. 

Platform 
TLP alone TAD alone 

G1 G2 G3 G1 G2 G3 

Full scale (FS) 3.45 5.93 7.56 3.19 6.90 9.27 

Model scale (MS_LD) 3.85 5.46 7.36 3.34 6.29 8.97 

Model scale (MS_SD) 3.70 5.90 7.40 3.28 6.65 9.00 

 

 

 

Figure 5.37 Full-scale (FS) computational grid G3 for the TLP. 
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Figure 5.38 Full-scale (FS) Computational grid G3 for the TAD.  

 

5.8.2 Numerical Settings 

The numerical simulations were conducted considering the following 

assumptions.  

• Similar to the experimental tests, the platforms are fixed. 

• The flow and loads are stationary. Thus, unsteady effects from the flow and 

wake of the platforms are neglected. 

• The flow at the inlet surface is uniform, constant and has a specific value of 

turbulence intensity.   

• The effects of the free water surface on the current loads are negligible. 

The boundary conditions considered in the numerical simulations are described 

below.  

• On the inlet surface, the boundary condition is defined with the values for the 

uniform velocity and turbulence intensity reported in Tab. 5.6. Note that, for 

the full-scale simulations, the turbulence intensity is constant and equal to 

10% for all of the current velocities.   

• On the outlet surface, a constant average static pressure is imposed.     
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• In the full-scale (FS) and model-scale with large domain (MS_LD) cases, the 

walls and bottom were defined as free-slip surfaces, i.e., the normal velocity 

on these surfaces is equal to zero. In contrast, for the model-scale with small 

domain (MS_SD) case, these surfaces are considered to be no-slip surfaces. 

Consequently, the computational grids for these cases have adequate spatial 

discretization to achieve values of y+ near 1.0.  

• The boundary corresponding to the mean free surface was considered to be a 

free-slip surface.  

• The platform surfaces are defined as nonslip surfaces. Note that the 

computational grids for these cases have adequate spatial discretization near 

platform surfaces to achieve values of y+ near 1.0.    

 

The initial condition for the simulations was defined by setting the current 

velocity for the full computational domain equal to the current velocity of the inlet 

surface. Table 5.11 presents relevant information of the setup used in the numerical 

simulations. 

Table 5.11 Setup of the numerical simulations  

Parameter Description 

Analysis type Steady state 

Grid Element type Hex dominant 

Turbulence model Shear Stress Transport (SST) k-ω 

Advection scheme High-resolution 

Minimum number of iterations 90 

Maximum number of iterations 1000 

Convergence Criteria RMS < 1E-5 

Maximum y+ on no slip surfaces 1.0 

 

5.8.3 Sensitivity Analysis of The Grids 

The sensitivity analysis of the grids in terms of the current load coefficients was 

performed for the TLP alone and TAD alone considering the three domains described 

above. One single current velocity of 1.5 m/s for the full-scale and 0.106 m/s for the 
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model-scale, was considered. In addition, four angles of attack 0°, 15°, 30° and 45° 

were included in the analysis.  

Figure 5.39 presents the variation of the coefficient 𝐶𝐹𝑋 for the TLP alone, where 

three different computational grids were analyzed. In the full-scale results, differences 

appear in the range of [1.5% – 5.6%] between the G1 and G3 grids. However, the 

differences between G2 and G3 are in the range of [0.9% – 1.3%]. Note that G1 is the 

coarsest grid; G3 is the finest grid. The maximum differences appear for the angle of 

attack equal to 30°. The results for the model scale present smaller differences. For 

the large domain (MS_LD) case, the variations between G1 and G3 are in the range 

of [0.13% – 1.8%], and those between G2 and G3 are [0.04% – 0.55%]. Finally, for 

the model-scale with small domain (MS_SD) case, the differences between G1 and 

G3 are [0.69% – 1.21%] and [0.13% – 0.34%]. In general, the differences are higher 

for angles of attack of 15° and 30°. The results at 0° present smallest variations.    

Figure 5.40 presents the variation of the coefficient 𝐶𝐹𝑋 for the TAD alone, three 

different computational grids were analyzed. 

In the case of TAD alone, similar trends were found. At full-scale (FS), the 

differences are in the range of [2.5% – 6.7%] between the G1 and G3 grids and [0.85% 

– 1.72%] between the G2 and G3 grids. The maximum differences are for the angle 

of attack equal to 45°. 

For the model scale with large domain (MS_LD) case, variations between the G1 

and G3 are in the range of [0.98% – 1.47%], and those between the G2 and G3 are 

[0.11%-0.69%]. Finally, for the model-scale with small domain (MS_SD) case, the 

differences between the G1 and G3 were in the range of [0.18% case 2.18%] and 

[0.28% – 0.52%]. In general, the differences are higher for the angles of attack of 15° 

and 30°. 

Based on the results presented, it is possible to conclude that the current load 

coefficients are not strongly dependent on the computational grids, particularly for the 

model-scale simulations. The largest differences found are less than 7%, and these 

correspond to the full-scale (FS). In general, mesh independence was obtained. The 

differences between the two finest refinements G2 and G3 in the current load 

coefficients are slight.  
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(A) 

 
(B) 

 
(C) 

Figure 5.39 Grid convergence analysis for 𝐶𝐹𝑋 of the TLP alone. 

(A) Full-scale (B) Model-scale LD (C) Model-scale SD. 

Grid G1 is the coarsest, and G3 is the finest. 
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(A) 

 
(B) 

 
(C) 

Figure 5.40 Grid convergence analysis for 𝐶𝐹𝑋 of the TAD alone. 

(A) Full-scale (B) Model-scale LD (C) Model-scale SD. 

Grid G1 is the coarsest, and G3 is the finest. 
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Tables 5.12, 5.13 and 5.14 present the value of the maximum y+ for all of the 

simulations mentioned above. Although, the first part of these analysis indicates that 

grids G2 and G3 are sufficient to achieve independence on the computational grids. 

The second part shows that the maximum values for y+ require the grid refinement 

G3. Consequently, these grids were used for the further analysis.   

 

Table 5.12 Maximum y+ on nonslip surfaces for full-scale (FS) calculations. 

Angle of  

Attack 

TLP TAD 

G1 G2 G3 G1 G2 G3 

0° 3.296 2.810 0.859 4.122 1.883 0.933 

15° 3.295 2.836 0.849 3.984 2.137 0.979 

30° 3.249 2.846 0.847 3.896 2.026 0.978 

45° 3.192 2.706 0.832 4.139 2.433 0.991 

 

Table 5.13 Maximum y+ on nonslip surfaces for model-scale with LD calculations. 

Angle of  

Attack 

TLP TAD 

G1 G2 G3 G1 G2 G3 

0° 3.982 1.495 0.880 4.228 2.232 0.930 

15° 3.902 1.397 0.875 4.182 2.151 0.905 

30° 3.694 1.384 0.851 3.946 2.041 0.902 

45° 3.689 1.322 0.839 4.185 2.193 0.920 

 

Table 5.14 Maximum y+ on nonslip surfaces for model-scale with SD calculations. 

Angle of  

Attack 

TLP TAD 

G1 G2 G3 G1 G2 G3 

0° 4.218 1.886 0.949 4.372 2.370 0.966 

15° 4.198 1.871 0.949 4.197 2.359 0.923 

30° 4.076 1.856 0.948 4.154 2.210 0.912 

45° 3.998 1.810 0.935 4.201 2.363 0.924 
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5.8.4 Convergence Criteria  

As shown in Section 5.8.3, iterative convergence depends on the analysis type, 

angle of attack and grid refinement. Thus, the following convergence criterion were 

adopted for the further numerical simulations. 

• The number of the iterations was limited to the range of [90 – 1000]. 

• The maximum RMS was limited to 1.E-5. 

• The highest value for y+ was limited to 1.0. 

If the maximum number of iterations is reached with the residuals stagnating at 

orders higher than 1.E-5, the current loads are estimated by the average of the last 500 

iterations. However, if the limit for the maximum RMS is reached, then the load values 

that are reported corresponds to the values of the last iteration. 

These analyses reveal that most of the cases present excellent convergence. In the 

worst cases, the residuals stagnate at 1.0E-4, as shown in Fig. 5.41. However, the loads 

in such situations never present variations larger than 8.0%.  

In contrast, in the best cases, the residual reaches 1.0E-5 at 100 iterations, as 

shown in Fig. 5.42. 

 

 

Figure 5.41 Iterative convergence on the TLP alone – Full scale, V = 1.5 m/s, 

and θ = 30° corresponding to the worst iterative convergence. 
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Figure 5.42 Iterative convergence on the TAD alone – Model scale LD, 

V = 0.021 m/s and θ = 90°, corresponding to the best iterative convergence. 

 

5.8.5 Test Matrix 

An extensive numerical analysis has been conducted considering TLP alone and 

TAD alone. As mentioned above, three cases were analyzed. The first was at model 

scale in a numerical domain with the dimensions of the current channel. The second 

was at model scale with a large domain. The third was at full scale with a large domain.   

The simulations at model-scale with a domain with the dimensions of the current 

channel were performed with the aim of validating the numerical predictions. 

Moreover, the simulations at model-scale with a large domain were conducted to 

calculate the possible blockage effects on the current channel results. Finally, the 

simulation at full-scale with a large domain has been performed in order to evaluate 

the influence of Reynolds number on the current channel results.     

For all cases, a range of current velocities from 0.3 to 1.5 m/s in steps of 0.3 m/s 

were considered. Note that, these corresponding values correspond to the full-scale 

values and equivalent values from the Froude scaling law were applied in the model-

scale simulations. The symmetry of the hulls allows a reduction in the number of 

simulations. Thus, for the TLP, a range of angles of attack from 0° to 45° in steps of 

15° was considered. In addition, for the TAD, angles of attack from 0° to 180° in steps 
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of 15° were analyzed. Table 5.15 presents the CFD simulations matrix considered in 

this study.  A total of 60 steady-state simulations were conducted for the TLP alone. 

For the TAD alone, 195 steady-state simulations were performed. 

 

Table 5.15 CFD simulations matrix. 

Simulation description 
Current 

velocity [m/s] 

Current angle 

[deg.] 

TLP alone – Full scale 0.3 -1.5@0.3 0°-45°@15° 

TLP alone – Model scale – Large domain 0.3 -1.5@0.3 0°-45°@15° 

TLP alone – Model scale – Small domain 0.3 -1.5@0.3 0°-45°@15° 

TAD alone – Full scale 0.3 -1.5@0.3 0°-180°@15° 

TAD alone – Model scale – Large domain 0.3 -1.5@0.3 0°-180°@15° 

TAD alone – Model scale – Small domain 0.3 -1.5@0.3 0°-180°@15° 

 

5.8.6 Comparison with Experimental Results 

This section presents a comparison between the model-scale CFD results and the 

model test results for the TLP and TAD alone. Note that in this comparison, the 

domain of the CFD simulations corresponds to the small domain case (MS_SD), i. e. 

the domain for the CFD calculations has the dimensions of the current channel of 

LOC. The objective of this comparison is to investigate the capability and accuracy of 

CFD to calculate the current loads on both floaters. 

Figures 5.43 and 5.44 present the comparison of experimental and numerical 

results for the current force coefficient 𝐶𝐹𝑋 and 𝐶𝐹𝑌, respectively, of the TLP alone.  

A good agreement between the numerical and experimental results is found, not 

only in trends but also in order of magnitude of the loads.  

In the case of 𝐶𝐹𝑋, the differences are less than 10% for most of the angles of 

attack. The maximum differences of 15% and 19% are observed at 45° and 135°, 

respectively. The minimum difference, approximately 7%, occurs at 0°. In the case of 

𝐶𝐹𝑌, the differences are less than 8.5% for most angles of attack. The maximum 

differences of 12% and 19% at 30° and 45°, respectively. The minimum difference, 

approximately 7%, occurs at 90° degrees. 
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Figure 5.43 Comparison between numerical and experimental results  

for 𝐶𝐹𝑋 for the TLP. 

 

Figure 5.44 Comparison between numerical and experimental results  

for 𝐶𝐹𝑌 for the TLP. 

 

Figure 5.45 presents the comparison of experimental and numerical results for the 

current moment coefficient 𝐶𝑀𝑍 of the TLP alone. For this case, major differences 

arise, particularly for 0° and 15°. The minimum difference of 24% occurs at 30°.   

Figures 5.46 and 5.47 compares the experimental and numerical results for the 

current force coefficients 𝐶𝐹𝑋 and 𝐶𝐹𝑌, respectively of the TAD alone. In general, 

reasonable correlation is observed and the trends and order of magnitude are 

consistent. Both coefficients show differences around of approximately 10% between 



 

142 
 

the experimental and numerical results. For 𝐶𝐹𝑋, the largest difference occurs at 180°, 

approximately 70%, while the largest difference in 𝐶𝐹𝑌 is 40% at a 90° angle of attack.  

 

 

Figure 5.45 Comparison between numerical and experimental results  

for 𝐶𝑀𝑍 for the TLP. 

 

 

Figure 5.46 Comparison between numerical and experimental results  

for 𝐶𝐹𝑋 for the TAD. 
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Figure 5.47 Comparison between numerical and experimental results  

for 𝐶𝐹𝑌 for the TAD. 

 

Figure 5.48 presents the comparison of experimental and numerical results for the 

current moment coefficient 𝐶𝑀𝑍 of the TAD alone. In this case, the differences are 

surprisingly low. The variations are less than 9% for angles in the range of [0° – 45°] 

and [150° – 180°]. The maximum difference occurs at 105°, where it is 34%.   

 

 

Figure 5.48 Comparison between numerical and experimental results  

for 𝐶𝑀𝑍 for the TAD. 
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The numerical coefficients 𝐶𝐹𝑋 and 𝐶𝐹𝑌 of the TLP and TAD are systematically 

below the experimental results. This trend is small for most angles of attack; however, 

it is significant for 45°, 90° and 180°. There are several possible explanations for the 

small differences between experimental and numerical results, the most important are 

summarized below. 

• Due to the ultra-reduced scale factor, the loads measured by the transducers 

are small. Consequently, they could be a source of error. 

• In the numerical simulations, the flow was considered to be uniform; 

however, in the experimental tests, the flow presents spatial variations that 

are challenging to address.    

• The massive flow separation around the floaters increases the unsteadiness in 

the flow. However, due to the long processing time, only steady-state 

simulations were performed. 

• The results from the numerical simulations consider the average of the 

oscillating steady-state results.  

• The results from the experimental tests consider only the average loads.  

• Differences exist between the average transient loads from experiments and 

the average of the oscillating steady-state, constituting a topic recommended 

for further investigations.   

In general, despite some differences at specific angles of attack, reasonable 

agreement between numerical and experimental results is observed, not only in trends 

but also in order of magnitude. Therefore, the results demonstrate the capability of the 

CFD code to predict the current loads on the TLP-TAD multi-body system.  

    

5.9 NUMERICAL RESULTS 

The numerical study was performed to investigate the blockage and scale effects on the 

current loads of the TLP and TAD units. Three general cases have been considered: Full-

scale (FS), model scale with the large domain (MS_LD) and model scale with the small 

domain (MS_SD). Details of each case were shown in the previous section. The forces and 

moments calculated with the steady-state simulations are reported in the non-dimensional 

form presented in Eqns. (5.8) to (5.10). 
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As in the experimental analysis, the first step is to study the dependence on the current 

loads on current velocity. Thus, Fig. 5.49 presents the coefficient 𝐶𝐹𝑋 for the TLP for the 

three cases explained above. The fluctuations on the coefficients achieve values of 0.44%, 

1.00%, and 1.92% for the full-scale, model-scale with large domain, and model-scale with 

small domain cases respectively. Similarly, Fig. 5.50 presents the coefficient 𝐶𝐹𝑋 for the 

TAD, where the fluctuations on the coefficients achieve values of 1.87%, 2.89%, and 2.23% 

for full-scale, model-scale with the large domain, and model-scale with small domain cases, 

respectively. Note that, the results from the simulations with different angles of attack also 

presented similar trends. The fluctuations between the values represent less than 3.0% for all 

of the numerical simulations. Note that, the spread in numerical simulations is lower than in 

the experimental results. 

 

Figure 5.49 Variation of  𝐶𝐹𝑋 with current velocity for the TLP. 

 

Figure 5.50 Variation of  𝐶𝐹𝑋 with current velocity for the TAD. 
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The next step in the numerical analysis of the TLP and TAD involves studying the angle 

of attack dependence. Figures 5.51, 5.52 and 5.53 present, respectively, the current load 

coefficients 𝐶𝐹𝑋, 𝐶𝐹𝑌 and 𝐶𝑀𝑍 of the TLP. In the three figures the following are observed: 

• The differences in 𝐶𝐹𝑋 between the full-scale and model-scale with large domain 

cases are relatively low; these are in the range of [-2.7% to 2.6%]. The angle with the 

largest difference is 75°. The differences between the model-scale with large domain 

and model-scale with small domain cases are in the range of [-29.8% to 27.6%]. In 

this case, the largest difference corresponds to 45°.  

• In the case of 𝐶𝐹𝑌, the variations between the full-scale and model-scale with large 

domain cases are in the range of [-2.6% to 2.8%]. The angle with the largest 

difference is 15°. The differences between the model-scale with large domain and 

model-scale with small domain cases are in the range of [-28.5% to 29.3%]. In this 

case, the largest difference corresponds to 75°.  

• An analysis of 𝐶𝑀𝑍 reveals the largest variations between the full-scale and model-

scale with large domain cases, these variations are in the range of [-18.4% to 17.5%], 

with the largest difference reported at 30°. The differences between the model-scale 

with large domain and model-scale with small domain cases are up to 45% for angles 

of 30° and 60°.  

 

 

Figure 5.51 Variation of  𝐶𝐹𝑋 with angle of attack for the TLP. 
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In general, a comparison between the full-scale and model-scale with large domain 

results reveals that the coefficients 𝐶𝐹𝑋 and 𝐶𝐹𝑌 present relatively small differences, less than 

3% for the angles of attack examined. Consequently, it is possible to conclude that scale 

effects in these cases could be negligible. In contrast, the moment coefficient 𝐶𝑀𝑍 presents 

significant differences, particularly, at 15°, 30°, and 60°.     

From the results of the comparison between the model-scale with large domain and 

model-scale with small domain cases, it is possible to conclude that blockage effects are 

relevant for the coefficients 𝐶𝐹𝑋, 𝐶𝐹𝑌 and 𝐶𝑀𝑍. On average the differences were 

approximately 30%, reaching 45% for the moment coefficient. 

 

 

Figure 5.52 Variation of  𝐶𝐹𝑌 with angle of attack for the TLP. 

 

 

Figure 5.53 Variation of  𝐶𝑀𝑍 with angle of attack for the TLP. 
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Figures 5.54, 5.55 and 5.56 present, respectively, the current load coefficients 𝐶𝐹𝑋, 𝐶𝐹𝑌 

and 𝐶𝑀𝑍 of the TAD. In the three figures the following are observed: 

• The differences in 𝐶𝐹𝑋 between the full-scale and model-scale with large domain 

cases are relatively low, are in the range of [-8.7% to 6.7%]. The angle with the largest 

difference is 15°. The differences between the model-scale with large domain and 

model-scale with small domain cases are in the range of [-32.8% to 29.6%]. In this 

case, the largest differences correspond to 15° and 45°.  

 

 

Figure 5.54 Variation of  𝐶𝐹𝑋 with angle of attack for the TAD. 

 

• In the case of 𝐶𝐹𝑌, the variations between the full-scale and model-scale with large 

domain cases are over the range of [-7.9% to 7.7%]. The angle with the largest 

difference is 30°. The differences between the model-scale with large domain and 

model-scale with small domain cases are in the range of [-32.5% to 31.3%]. In this 

case, the largest difference corresponds to 30°.  

• An analysis of 𝐶𝑀𝑍 reveals the largest variations between the full-scale and model-

scale with large domain cases are in the range of [-13.6% to 19.5%], with the largest 

difference reported at 15°. The differences between the model-scale with large 

domain and model-scale with small domain cases are as high as 34% at 15°.  

In general, a comparison of the full-scale and model-scale with large domain results 

reveals that coefficients 𝐶𝐹𝑋 and 𝐶𝐹𝑌 present small differences, approximately 8%. Note that 
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for most of cases, the variation on the TAD is considerably higher than for the TLP case. In 

addition, the moment coefficient 𝐶𝑀𝑍 presents significant differences at 45°, it is as high as 

26.7%. 

 

 

Figure 5.55 Variation of  𝐶𝐹𝑌 with angle of attack for the TAD. 

 

 

Figure 5.56 Variation of  𝐶𝑀𝑍 with angle of attack for the TAD. 
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CHAPTER VI. CURRENT INDUCED MOTIONS 

An extensive model tests campaign was performed to investigate the motions induced by the 

current on the TLP-TAD multi-body system. This study includes the analysis of the TLP alone, 

TAD alone, TLP coupled with the TAD without mechanical connection and TLP coupled with TAD 

connected by a hawser system. The model tests were conducted in the fKN@LOC Laboratory 

facilities at COPPE/UFRJ. The ultra-reduced model scale was 200.  

 

6.1 INTRODUCTION 

Recently, interest regarding vortex-induced motions (VIM) of offshore units has grown. 

These induced motions are significant for the design of mooring systems and risers for 

offshore platforms.  

Of the multiple studies in the literature, most have focused on Spars, e.g., [7], [19], [40], 

[42], and [98]. Recently, some studies have presented interesting results for TLPs [51] and 

[95], semi-submersibles [35] and [36], and mono-columns [32]. These studies have shown 

that VIM is a complex topic that is dependent on several factors, including the current 

velocity, heading, current profile, hull geometry and appurtenances [3].  

The study of VIM in offshore structures is usually conducted with experimental tests. 

However, experiments in ocean basins are expensive, which hinders the optimization of 

platform geometry to reduce the VIM response. In addition, CFD is useful and relatively 

efficient. However, experimental validations are still required to ensure reliable results [87] 

and [88]. Finally, [50] proposed a set of analytical method, however, this approach requires 

further investigation and validation. 

In this context, experimental tests in the current channel of LOC/COPPE-UFRJ seems as 

the best alternative to performing VIM tests in terms of cost, time and accuracy. 

Consequently, the scope of this work is to investigate current induced motions on the TLP-

TAD multi-body system using the facilities of the LOC. For that, a novel experimental setup 

for use in analyzing a deep draft TLP in a shallow current channel using ultra-reduced scales 
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is proposed. As mentioned in Chapter V, the model scale factor for this model tests campaign 

is 1:200. Due to its simplicity, this innovative experimental setup could enable future 

researchers to optimize the platform geometries and to develop devices to mitigate the VIM 

response. 

In addition, a horizontal soft mooring with the appropriate stiffness is implemented to 

represent the mooring system of the TAD unit. Finally, four different configurations of 

hawser system were tested to study the influence of the mooring lines between the floaters.  

Consideration of the differences in the Reynolds number and possible scale effects can 

be found in Section 5.3. Moreover, possible wall effects are discussed in Section 5.4. 

 The experimental campaign presented and discussed below focuses on the dynamic 

behavior of the TLP alone, TAD alone and the interaction of both floaters in proximity while 

connected by the hawser systems and without mechanical connections. 

   

6.2 ULTRA-REDUCED SCALE MODELS  

Details of the selection of the model scale factor and the construction of the scale models 

can be found in Sections 5.2 to 5.4. In addition to these factors, the VIM tests require a 

calibration of the physical properties of the platform such as the mass, position of the center 

of gravity and moment of inertia. All these parameters were defined with respect to the full-

scale data presented in Chapter III. 

Thus, the masses of models were measured with a digital scale, and moments of inertia 

about three axes were measured indirectly by the pendulum arrangement shown in the sketch 

of Fig. 6.1 using the Eqn. (6.1).    

𝑇0 = 2𝜋√
𝐼

𝑀𝑔ℎ
 6.1 

where 𝑇0 is the period of the system in free oscillation, 𝑀 is the mass of the model, 𝑔 is the 

acceleration of gravity and 𝐼 is the moment of inertia of the model in relation to the fixed 

point.  

Note that the pendulum procedure can provide the moment of inertia and position of the 

center of gravity through additional measurements while varying the parameter ℎ. However, 
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more accurate results for the position of the center of gravity require the arrangement shown 

schematically in Fig. 6.2, which is based on static equilibrium, as shown in Eqn. (6.2). 

𝑇 ∙ 𝑑2 − 𝑚 ∙ 𝑔 ∙  𝑑1 = 0 6.2 

where 𝑇 is the tension of the line, 𝑑2 is the distance from a known point to the connection 

between the model and support line, 𝑚 is the model mass, 𝑔 is the acceleration of gravity, 

and 𝑑1 is the distance from the known point to the center of gravity of the platform. 

 

 

Figure 6.1 Pendulum configuration for the determination  

of the moment of inertia of the TLP.  

 

Figure 6.2 Experimental arrangement for estimating  

the position of the center of gravity of the TAD. 
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Figure 6.3 shows the two models during the inertia measurement. Tables 6.1 and 6.2 

present the values of the physical properties and the margins of error about the target values 

of the TLP and TAD, respectively. Ballast was carefully selected to achieve the target mass 

values. Consequently, the radius of gyration and the center of gravity positions present 

slightly higher error values, however, none in any case, were greater than 5%.  

For the longitudinal position of the center of gravity of the TAD, a larger error was 

obtained. However, in absolute terms, the target and experimental values are relatively close. 

Note that, these values were measured using the coordinate system presented in Chapter III. 

 

Table 6.1 Experimental and target values of the physical properties of the TLP 

Properties 
Target values Experimental 

values 
Error [%] 

Full scale Model scale 

Mass 32897 [mT] 4.01 [kg] 4.05 [kg] 0.97 

Radius of gyration Rxx 33.58 [m] 16.79 [cm] 17.58 [cm] 4.72 

Radius of gyration Ryy 33.43 [m] 16.72 [cm] 16.05 [cm] 3.95 

Radius of gyration Rzz 37.04 [m] 18.52 [cm] 19.43 [cm] 4.89 

Center of gravity LCG 0 [m] 0 [cm] 0.05 [cm] - 

Center of gravity TCG 0 [m] 0 [cm] 0.08 [cm] - 

Center of gravity VCG 31.10 [m] 15.55 [cm] 16.15 [cm] 3.85 

 

Table 6.2 Experimental and target values of the physical properties of the TAD 

Properties 
Target values Experimental 

values 
Error [%] 

Full scale Model scale 

Mass 18122 [mT] 2.21 [kg] 2.18 [kg] 1.52 

Radius of gyration Rxx 16.76 [m] 8.38 [cm] 7.97 [cm] 4.95 

Radius of gyration Ryy 28.98 [m] 14.49 [cm] 13.94 [cm] 3.78 

Radius of gyration Rzz 31.22 [m] 15.61 [cm] 16.15 [cm] 3.49 

Center of gravity LCG -0.97 [m] -0.49 [cm] -0.30 [cm] 38.7 

Center of gravity TCG 0 [m] 0 [cm] -0.04 [cm] - 

Center of gravity VCG 14.34 [m] 7.17 [cm] 7.44 [cm] 3.74 
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(A) (B) 

Figure 6.3 Inertia calibration tests: (A) Moment of inertia of the TLP 

(B) Position of the center of gravity of the TAD 

 

6.3 MOORING SYSTEMS  

The experimental setup includes an equivalent representation of the mooring system of 

both platforms and the mechanical connections for the coupled tests. Due to the complexity 

of the system, the design of the equivalent mooring systems was focused on horizontal 

stiffness, natural periods, and the set-down of the TLP. Thus, the vertical stiffness, added 

mass and drag forces on the mooring lines or risers and high-frequency movements due to 

the TLP tendons were neglected.    

 

6.3.1 TLP 

The linear stiffness of the TLP 𝐾𝑆𝑊𝐴𝑌 depends on the length 𝐿𝑛 and the pre-

tension 𝑇𝑡𝑛 of the tendons as shown in Eqn. (6.3). Moreover, for hydrostatic 

equilibrium, the tendon pre-tension is given by Eqn. (6.4).  

𝐾𝑆𝑊𝐴𝑌 = ∑
𝑇𝑡𝑛

𝐿𝑛

𝑛

𝑖=1
 6.3 

Buoyancy = Weight + ∑ 𝑇𝑡𝑛

𝑛

𝑖=1
 6.4 
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If the draft and the mass of the TLP are considered to be constant values, 

consequently, the pre-tensions on the tendons become constants of the system. Thus, 

to obtain the stiffness 𝐾𝑆𝑊𝐴𝑌 and, consequently, the correct natural period, the tendon 

must be represented with the correct scaled length. 

Furthermore, the tendon length governs the set-down (the coupling effect 

between Heave and Surge movements), i.e., a horizontal offset produces draft 

variations on the TLP. As shown in Fig. 6.4, an arbitrary horizontal offset D produces 

a positive draft variation equal to A for a length tendon H, however, if the tendon 

length is reduced to H/2 the resulting draft variation is 2.65A. Therefore, a reduction 

in the tendon length introduces significant variations in the set-down of the TLP. 

Considering these relevant aspects of TLP dynamics, three alternatives were 

examined to represent the TLP tendons. The first concept uses four vertical springs 

connected to each corner of the TLP hull, as shown in Fig. 6.5. Despite its simplicity, 

this concept requires relatively long tendons, which are unreliable under the conditions 

of the current channel. However, if the tendon length decreases, the stiffness, natural 

period and set-down are far from the target values, as shown in Table 6.3. 

 

Figure 6.4 Set-down comparison for different water depths. 
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Figure 6.5 First arrangement with vertical springs. 

 

Table 6.3 Properties if equivalent concept no. 1(Full-scale data). 

Parameter TLP properties Concept no. 1 

Tendon length [m] 1155 77 

Sway stiffness [kN/m] 79.02 1194 

Sway natural period [sec] 201 52 

Draft variation due to the set-down [m] A 12.5A 

 

The second arrangement uses vertical lines composed of springs and ropes, 

mounted on a metal pipe tower. Four pulleys change the lines direction from horizontal 

to vertical as shown in Fig. 6.6. In this system, it is possible to calibrate the spring 

constant and the pre-tension line to achieve the target values of stiffness and natural 

period. Moreover, the set-down could be considered to be zero. However, in concept 

no. 2 is difficult to mount and to maintain the correct draft; additionally, the pulleys 

introduce strong mechanical damping into the system. As shown in Fig. 6.7 a decay 

test on Sway reveals an overdamped system.  

Finally, the third arrangement uses four horizontal springs to provide restoring 

forces in the horizontal plane; the spring constants are calibrated to achieve the correct 

values of stiffness and natural period. A vertical carbon fiber pipe is connected to the 

far end of a metal pipe tower with a joint rod, and the pipe is attached to the TLP deck 

with a bearing connection as shown in Fig. 6.8. Moreover, the carbon fiber pipe 

provides the necessary strength to keep the proper TLP draft and mass ratio, and the 
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joint rod and bearing connection allow free movements of the TLP for Surge, Sway, 

and Yaw. 

This arrangement, based on the pendulum concept, induces a negative set-down, 

here called set-up. The horizontal offsets induce negative draft variations. However, 

as shown in Tab. 6.4 for a long bar, the set-up is low and can be neglected. 

Table 6.4 Draft variations due to set-down and set-up. 

Description Draft variation ΔT [m] 

TLP with tendons A 

Concept no. 01 12.5A 

Concept no. 03 -1.15A 

 

 

Figure 6.6 Second arrangement with vertical springs. 

 

 

Figure 6.7 Sway decay test using the second arrangement (Data in model scale) 
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Figure 6.8 Third arrangement with horizontal springs and carbon fiber pipe. 

 

Therefore, based on this brief analysis of these three concepts to represent the 

TLP tendon, the last arrangement was selected because it allows for the correct 

representation of stiffness and consequently of the natural periods for Sway and Yaw. 

In addition, the draft did not present significant variations, and there is no additional 

damping due to the mechanical connections.  

 

6.3.2 TAD 

As mentioned in Section 3.2, The TAD is moored using a semi-taut leg system. 

Thus, by linearizing the stiffness curve for Surge, Sway and Yaw, an equivalent 

horizontal soft mooring composed for four springs to represent the semi-taut leg 

system for the horizontal modes of the TAD is proposed, as shown in Fig. 6.9. 

 

 

Figure 6.9 Soft mooring arrangement for the TAD platform. 
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6.3.3 Hawser System 

As mentioned in Section 3.3, the TLP and TAD are connected by a hawser 

system, which is composed of a group of lines of polyester ropes. In the VIM test, the 

stiffness of the hawser system has been linearized.  

With the aim of verifying the influence of the hawser arrangement configuration 

on the VIM response of the multi-body system, four different hawser configurations 

were tested as shown in Fig. 6.10. Note that, the first arrangement is the hawser system 

presented in Section 3.3. The other three arrangements were defined as modifications 

of the first one. In the model tests, the hawser lines were modeled by linear springs, 

and properties of each hawser line are presented in the next section.  

Figure 6.10 Four hawser system configurations (A) HW1, (B) HW2, (C) HW3, and 

(D) HW4. Indexes from 1 to 9 indicate the line types with different values of initial 

length, pre-tension, and axial stiffness. (See Table 6.5) 

 

6.4 OFFSET AND DECAY TESTS 

The springs used on the equivalent mooring systems of the TLP, TAD and the hawser 

systems were calibrated based on the theoretical values of Section 3.4. Note that, the values 

of Sway and Surge stiffness depend primarily on the spring constants, spring lengths, spring 

pre-tension, Euler angles of the springs, and positions of the floaters. In addition, Yaw 
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stiffness depends on the distance between the mooring line attachment point and the 

centerline of the floater. Finally, the stiffness curves have been linearized in order to simplify 

the construction of the equivalent mooring systems.  

Thus, after the installation of the floating bodies and their respective mooring systems, 

offset and decay tests were conducted to experimentally measure the stiffness and natural 

periods of the horizontal modes (i.e., Surge, Sway and Yaw). 

The offset tests consist of applying a known force or moment and then measuring the 

linear (or angular) displacement. Decay tests were performed by introducing an initial linear 

or angular offset to the system and then releasing it to move freely. 

Figures 6.11, 6.12 and 6.13 present the stiffness for Surge, Sway, and Yaw of the TLP. 

Note that, the nonlinear curves are presented using full-scale values. For Surge stiffness, with 

offsets in the range of [0 - 30] m, the differences between the nonlinear and linear 

approximations are insignificant.  

 

Figure 6.11 Surge stiffness of the TLP, nonlinear curve,  

linear approximation (target) and experimental values. 

 

Figure 6.12 Sway stiffness of the TLP, target and experimental values. 
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Figure 6.13 Yaw stiffness of the TLP, target and experimental values. 

 

It is clear that the agreement with the target values is excellent for the cases of Surge and 

Sway. Because the Yaw stiffness depends on the position of the connection of the lines with 

the TLP, it was challenging to achieve better agreement. However, the results are acceptable. 

Similarly, Figures 6.14, 6.15, and 6.16 present the stiffness for Surge, Sway, and Yaw of 

the TAD. Again, the nonlinear curves are presented using full-scale values. In this case, the 

nonlinear values of Surge and Sway stiffness are significantly higher. It is evident that the 

linear approximation does not represent the correct values for offsets larger than the range of 

[0 - 20] m. The agreement between the target and experimental values is excellent.  

The hawser lines present nonlinear properties as shown in Fig. 6.17, however, to simplify 

the configuration of the hawser lines, the linear approximation shown in Fig. 6.17 was 

adopted. Table 6.5 presents the properties of the hawser lines of each hawser system used in 

the VIM tests.  

 

Figure 6.14 Surge stiffness of the TAD, nonlinear curve,  

linear approximation (target) and experimental values. 
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Figure 6.15 Sway stiffness of the TAD, nonlinear curve,  

linear approximation (target) and experimental values. 

 

Figure 6.16 Yaw stiffness of the TAD, nonlinear curve,  

linear approximation (target) and experimental values. 

 

Figure 6.17 Axial stiffness of the hawser lines, nonlinear curve,  

linear approximation (target) and experimental values. 
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Table 6.5 Properties of the hawser lines of the four hawser system configurations. 

Hawser line H1 H2 H3 H4 H5 H6 H7 H8 H9 

Initial length [m] 47.5 12.2 39.0 3.3 59.0 14.3 14.3 40 40 

Pre-tension [kN] 865 220 842 363 940 496 396 1900 2456 

Axial stiffness [kN] 116 116 116 116 116 116 116 116 179 

 

Finally, Table 6.6 presents the values of the natural periods of the TLP and TAD for the 

single-body and multi-body connected by the hawser system cases. Note that, the four 

configurations of the hawser systems were tested.  

Despite small variations, the hawser system does not modify the natural periods of the 

system significantly. In addition, Yaw motion has shown to be the most affected by the 

hawser configuration. However, these variations are small as well.    

Note that the floaters connected by the hawser system present similar values for the 

natural periods of Surge and Sway. Yaw does not follow this trend, i.e., the natural periods 

of Yaw are different for the TLP and TAD.   

In general, the values of the natural periods of the units when connected are smaller than 

the natural periods of the units in the single-body cases.  

 

 Table 6.6 Experimental and target values for the natural periods of the TLP and TAD 

Case Value 
Surge Sway Yaw 

TLP TAD TLP TAD TLP TAD 

Alone 
Target 201 224 201 221 134 68.9 

Experimental 196 219 198 216 120 65.8 

Coupled 

Target 183 183 199 199 95.7 57.4 

Exp. HW1 176 174 194 196 87.5 52.8 

Exp. HW2 178 177 195 194 85.0 54.7 

Exp. HW3 174 173 197 198 84.0 56.1 

Exp. HW4 170 171 190 191 86.0 52.6 
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6.5 VIM TEST DESCRIPTION 

The model tests were conducted in the current channel in the Laboratory of Waves and 

Currents (LOC) of COPPE/UFRJ. The current channel is 22 m in length, 1.4 m in width and 

0.5 m in depth. Four electrical pumps generate the flow into the channel. An electronic 

module controls the RPM of the pumps and consequently the flow velocity in the channel. 

Finally, a propeller flowmeter measures the flow velocity. Table 6.7 presents the 

experimental and target values of the current velocities.  In general, with a careful calibration 

of the current velocities, it is possible to achieve reasonable values of error. However, the 

turbulence intensity in the current channel is quite high. Unfortunately, there is no way to 

reduce these values without modification of the lab equipment.      

 

Table 6.7 Experimental and target values of the current velocities of the model tests. 

 Target values Experimental values 

 Full-Scale 

[m/s] 

Model Scale 

[m/s] 

Mean 

[m/s] 

Error 

[%] 

Std. Dev. 

[m/s] 

Turbulence 

Intensity [%] 

V1 0.30 0.021 0.024 13.8 0.0047 19.6 

V2 0.40 0.028 0.026 7.7 0.0049 18.6 

V3 0.50 0.035 0.038 8.2 0.0044 11.5 

V4 0.70 0.049 0.045 9.7 0.0054 12.1 

V5 0.85 0.060 0.065 7.8 0.0068 10.4 

V6 1.00 0.071 0.066 6.3 0.0062 9.3 

V7 1.24 0.088 0.096 9.4 0.0080 8.4 

V8 1.45 0.103 0.094 8.3 0.0069 7.3 

V9 1.60 0.113 0.121 7.4 0.0076 6.3 

V10 2.00 0.141 0.151 6.9 0.0097 6.4 

V11 2.40 0.170 0.158 7.1 0.0103 6.5 

 

The model test campaign is divided into four sections: TLP alone, TAD alone, TLP with 

TAD in a multi-body system without a mechanical connection between the floaters, and TLP 

with TAD connected by a hawser system. The components of the experimental apparatus are 

the scale models with the proper mass distributions and centers of gravity, the mooring 
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system of each floater and the hawser system as the connection between the floaters. Each 

mooring system and the metal pipe tower to support the vertical constraint for the TLP 

require support attached to the channel walls. Figure 6.18 presents the experimental setup for 

the TLP alone, TAD alone and TLP with TAD in the multi-body system without connection 

to the TLP, both upstream and downstream. Note that, for the single-body cases, the angle 

of attack is changed by rotating the entire system 

  

TLP alone TAD alone 

 

TLP with TAD without connection (TLP upstream and three distances Dx) 

 

TLP with TAD without connection (TLP downstream and three distances Dx) 

Figure 6.18 Experimental setup for the VIM tests – Part I. 
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Figure 6.19 presents the experimental setup for the TLP with TAD multi-body system 

connected by the hawser system considering the TLP upstream and downstream. 

 

 

TLP with TAD connected by hawser system (TLP upstream) 

 

TLP with TAD connected by the hawser system (TLP downstream) 

Figure 6.19 Experimental setup for the VIM tests – Part II. 

 

The experimental setup was assembled to measure the motions developed by the floaters 

when subject to currents. The motions of the floaters were measured using Qualisys Track 

Manager (QTM) [73]. The QTM system is an optical tracking system that uses cameras with 

infrared (IR) light sources and passive markers fixed on the body. These markers are 

retroreflective spheres of a specific size. During measurement, the cameras flash IR lights at 

a specific frequency; the IR lights hit the spherical markers, and the lights reflect back to the 

cameras. The system computes the center point of each sphere and transmits this information 

in real-time to the software. Based on the coordinates defined and calibrated before the 

measurements, the QTM system can calculate the position of each marker in 3D. Note that, 
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the measurement of the motions of a body in six degrees of freedom requires at least three 

spherical markers. 

Table 6.8 presents a summary of this experimental campaign.  

RPM of four pumps controls the current velocity. Note that, when the current velocity is 

changed from one value to the next one, there is an interval of time, when the current velocity 

is “high-transient” The final data analysis of the time traces considers only the “steady” part 

of the measurements, i.e., without the motions induced by the current velocity in the “high-

transient” interval of time. The “steady” part of the measurements represents at least 3-hours 

of full-scale time in all of the tests. Furthermore, each test was repeated twice.  

In the case of the TLP alone, five angles of attack and 11 current velocities were tested, 

for a total of 110 VIM tests. For the TAD alone, three angles of attack and 11 current 

velocities, for a total of 66 VIM tests. For the case of the TLP with TAD in a multi-body 

system without a mechanical connection between the floaters, one angle of attack, three 

relative distances between the floaters and two relative positions were considered; in total, 

132 VIM tests were conducted. For the case of the TLP with TAD in a multi-body system 

connected by the hawser system, one angle of attack, four hawser system configurations and 

two relative positions were considered; in total, 176 VIM tests were conducted on the current 

channel. 

Table 6.8 Summary of the VIM experimental campaign. 

Case Tests description 

TLP alone 11 velocities and 5 angles of attack 0°-45°@11.25° 

TAD alone 11 velocities and 3 angles of attack 0°-180°@90° 

TLP - TAD without connection 

(TLP upstream) 

11 velocities and 3 relative distances between TLP 

and TAD 

TLP - TAD without connection 

(TLP downstream) 

11 velocities and 3 relative distances between TLP 

and TAD 

TLP - TAD connected by hawser 

system (TLP upstream) 
11 velocities and 4 hawser system configurations  

TLP - TAD connected by hawser 

system (TLP downstream) 
11 velocities and 4 hawser system configurations 
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6.6 EXPERIMENTAL RESULTS OF VIM TESTS 

In this section, experimental data from the VIM test campaign are presented and 

discussed. As noted in previous sections, four general cases were considered: TLP alone, 

TAD alone, TLP-TAD multi-body system without mechanical connection and TLP-TAD 

multi-body system connected by the hawser system.  

Figure 6.20 shows the coordinate systems for cases of the TLP alone and TAD alone. 

The global coordinate system is depicted in blue, and it is fixed to the current channel. The 

local coordinate system is depicted in red, and it is fixed to the floater. In all tests, the current 

flows toward the positive side of the x-axis. The current angle of incidence is measured as 

the counterclockwise angle between the x-axes of the two coordinate systems. Thus, the 

floaters and their respective mooring systems are located with the appropriate orientation to 

fix the angle of attack. The motions of the floaters are measured in relation to the global 

system.     

  

(A) (B) 

Figure 6.20 Coordinate systems considered in the experimental tests for (A) TLP alone and 

(B) TAD alone. The global coordinate system is in blue, and the local one is in red.  

 

Figure 6.21 presents the coordinate systems for the multi-body cases. In these tests, two 

coordinate systems fixed to the current channel were defined, one for each floater. The angle 

of attack is 0° for all of the cases. In addition, two sub-cases are considered: TLP upstream 

and TLP downstream. In cases without mechanical connection, three relative positions 

between the floaters were considered. In cases with a mechanical connection between the 
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floaters, four different configurations for the hawser system were analyzed. The motions of 

the floaters are measured in relation to their respective coordinate systems. Note that the 

coordinate systems presented in Fig. 6.21 are similar to those for the cases with the hawser 

system.  

The origins of all of the coordinate systems fixed to the current channel are located at the 

initial position of the center of gravity of the respective floater. The origins of the coordinate 

systems fixed to the floaters are located at the position of the center of gravity of the 

respective floater.            

 

  

(A) (B) 

Figure 6.21 Coordinate systems adopted in the VIM tests for multi-body cases for: 

(A) TLP upstream and (B) TLP downstream.  

 

The results of the tests are presented by taking the statistics from the time traces of the 

motions of the floaters as follows. 

𝐴/𝐷𝑁𝑂𝑀 =
√2×𝜎( 𝑌̅(𝑡))

𝐿𝐶
 6.5 

𝐴/𝐷𝑀𝐴𝑋 =
𝑌̅𝑀𝐴𝑋 − 𝑌̅𝑀𝐼𝑁

2×𝐿𝐶
 6.6 

𝜓𝑀𝐴𝑋
̅̅ ̅̅ ̅̅ ̅ =

𝜓𝑀𝐴𝑋 − 𝜓𝑀𝐼𝑁

2
 6.7 

where 𝜎(𝑌̅(𝑡)) is the standard deviation of Sway response 𝑌̅(𝑡), Y̅𝑀𝐴𝑋 is the maximum value 

of 𝑌̅(𝑡), Y̅𝑀𝐼𝑁 is the minimum value of 𝑌̅(𝑡), 𝜓𝑀𝐼𝑁 is the minimum value of Yaw motion, 

𝜓𝑀𝐴𝑋 is the maximum value of Yaw motion and 𝐿𝐶 is the characteristic length of each floater. 

Note that, the Sway motion 𝑌̅(𝑡) is defined as the linear motion along the y-axis of the global 
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coordinate systems and Yaw as the rotational motion around the z-axis of the global 

coordinate systems in all cases.  

The characteristic length 𝐿𝐶 is defined as the projected length of the column of the TLP 

or TAD. In the case of the TLP with square columns, 𝐿𝐶 is evaluated as a function of the 

incident angle, as shown in Eqn. (6.8).  

𝐿𝐶 = 𝐿𝑇𝐿𝑃 (|𝑠𝑖𝑛 (
𝜋

4
− 𝜃)| + |𝑐𝑜𝑠 (

𝜋

4
− 𝜃)|) 6.8 

where 𝐿𝑇𝐿𝑃 is the face dimension of the column and θ is the angle of attack, as shown in Fig.  

6.22. In the case of the TAD, since the columns have different shapes, the section of the 

central column is considered to calculate the characteristic length. Thus, 𝐿𝐶 for the TAD is a 

function of the incident angle, as shown in Eqn. (6.9).  

𝐿𝐶 = 𝐴𝑇𝐴𝐷|𝑐𝑜𝑠(𝜃)| + 𝐵𝑇𝐴𝐷|𝑠𝑖𝑛(𝜃)| 6.9 

where 𝐴𝑇𝐴𝐷 and 𝐵𝑇𝐴𝐷 are the face dimensions of the TAD column rectangular section, as 

shown in Fig. 6.22. Table 6.9 presents the values of projected length for the TLP and TAD. 

    

  

(A) (B) 

Figure 6.22 Definition of characteristic length 𝐿𝐶 for (A) TLP, and (B) TAD.  

 

Table 6.9 Characteristic length 𝐿𝐶 for TLP and TAD. (Full-scale data). 

Parameter TLP TAD 

Angle of 

attack [deg.] 
0.0° 11.25° 22.5° 33.75° 45.0° 0.0° 90.0° 180.0° 

Characteristic 

length [m] 
21.21 20.81 19.60 17.74 15.00 9.15 12.2 9.15 
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In addition, the current velocity 𝑉𝐶 is represented by the non-dimensional reduced 

velocity 𝑉𝑅 defined as follows: 

𝑉𝑅 =
𝑉𝐶𝑇𝑌

𝐿𝐶
 6.10 

where 𝑇𝑌 is the natural period in the transverse direction, e.g., Sway for θ=0°, and 𝐿𝐶 is the 

characteristic lengths of the floater. Note that the natural periods considered for the 

calculations of 𝑉𝑅 correspond to the experimental values of TLP and TAD alone presented 

in Tab. 6.6, for all cases. Table 6.10 presents the values of the current velocities and reduced 

velocities considered in this study. 

 

Table 6.10 Reduced velocity 𝑉𝑅 for TLP and TAD. (𝑉𝐶 values are full-scale) 

𝑉𝐶 

[m/s] 

Angle of attack [deg.] 

TLP TAD 

0.0° 11.25° 22.5° 33.75° 45.0° 0.0° 90.0° 180.0° 

0.30 2.81 2.87 3.04 3.364 3.98 7.78 5.84 7.78 

0.40 3.61 3.68 3.91 4.319 5.11 9.91 7.43 9.91 

0.50 4.49 4.58 4.86 5.371 6.35 12.50 9.37 12.50 

0.70 6.36 6.48 6.88 7.602 8.99 17.69 13.27 17.69 

0.85 7.73 7.88 8.37 9.244 10.93 21.46 16.10 21.46 

1.00 9.57 9.75 10.35 11.438 13.53 26.41 19.81 26.41 

1.24 11.62 11.84 12.57 13.891 16.43 32.31 24.23 32.31 

1.45 13.58 13.84 14.69 16.234 19.20 37.74 28.30 37.74 

1.60 14.85 15.14 16.07 17.758 21.00 41.27 30.95 41.27 

2.00 18.52 18.87 20.04 22.137 26.18 51.41 38.56 51.41 

2.40 22.00 22.43 23.81 26.308 31.11 61.08 45.81 61.08 

 

Moreover, the analysis of the floater motions is completed with a study in the frequency 

domain using the Power Spectral Density (PDS) calculated by Fast Fourier Transform (FFT). 

Finally, to visualize the order of magnitude of the motions about the platform sizes, trajectory 

plots in the XY plane are also presented. 
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6.6.1 TLP Alone 

The results of VIM tests for the TLP alone are presented and discussed below. As 

mentioned in Section 6.5, five angles of attack and eleven current velocities were 

considered in this study.  

Figure 6.23 presents the nominal A/D responses for Sway. Notably, the behavior 

of the TLP has a strong dependence on the angle of attack, i.e., a typical bell VIM 

curve is observed while at 0°, and the response of the TLP increases steadily at 45° 

with the reduced velocity, indicating galloping instabilities. 

The behavior at 11.25°, 22.5° and 33.75° seems to be a combination of the trends 

described for 0° and 45° with some particularities. A typical VIM curve for 11.25°. 

However, the amplitudes of the motions are lower than those of the curve at 0°. In 

contrast, for 22.5° and 33.75°, the response increases steadily with the current. 

However, for these three angles of attack, the behavior at the last three velocities 

shows constant amplitude.  

 

 

Figure 6.23 Nominal A/D for the TLP alone and several current angles of 

incidences: 0°, 11.25°, 22.5°, 33.75°, and 45°  

 

Figure 6.24 presents the maximum A/D responses for Sway. The trends observed 

in these coefficients are similar to those of the nominal A/D response. However, the 

differences in terms of order of magnitude increase with the current velocity, i.e., the 

values of the maximum A/D and the nominal A/D are similar for low reduced 



 

173 
 

velocities, and, the values of the maximum A/D are considerably higher than the 

nominal A/D for high reduced velocities. This behavior occurs because the time series 

of the motions developed by the TLP have a sinusoidal shape at low velocities, and as 

the velocity increases, the shape of the time series becomes more irregular. Figure 6.25 

illustrates this point.  

Figure 6.26 presents the maximum Yaw response of the TLP alone for the five 

angles of attack. It is important to remark that the trend in the maximum Yaw response 

seems to be independent of the angle of attack, i.e., the response increases steadily 

with the reduced velocity for all angles of attack, indicating dominant galloping 

instabilities. The largest response is observed at 0°. No significant variations were 

found in the maximum responses for the other angles of attack.   

 

Figure 6.24 Maximum A/D for the TLP alone and several current angles of 

incidences: 0°, 11.25°, 22.5°, 33.75°, and 45°  

  

(A) (B) 

Figure 6.25 Full-scale time series of Sway motion 𝑌̅(𝑡)  

(A) θ=0° and 𝑉𝑅 = 7.73 (B) θ=0° and 𝑉𝑅 = 14.85  
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Figure 6.26 Maximum Yaw response for the TLP alone and several current angles 

of incidences: 0°, 11.25°, 22.5°, 33.75°, and 45°  

 

Figure 6.27 presents trajectory plots of the horizontal motions of the TLP alone, 

considering six velocities and one angle of attack. Note that, the current travels in the 

direction of the positive side of the x-axis. It is very interesting to observe that the 

amplitude of the Sway motion increases with the reduced velocities in the range of [2 

- 8], after which, it decreases with the reduced velocity for the range of [8 - 22]. In 

contrast, Yaw motion presents small values for low reduced velocities in the range of 

[2 - 8] and quickly increases with velocities in the range of [8 - 22]. 

Figure 6.28 presents the analysis of the motions developed by the TLP in the 

frequency domain for two angles of attack, namely 0° and 45°. For 0°, the PSD 

confirms that the response for Sway at low reduced velocities occurs at the natural 

frequency of the TLP. Consequently, the unit develops a resonant motion (i.e., VIM). 

As the velocity increases, some peaks at higher and lower frequencies are observed. 

Therefore, the motions of the TLP are a mix of VIM with galloping instabilities. The 

energy in Yaw motion is minuscule at low velocities; however, for high velocities, the 

energy of the rotational mode is widely spread across the entire range of frequencies.  

At 45° degrees, the PSD shows that the energy of Sway motion is concentrated at 

very low frequencies. Consequently, there are no resonant motions or VIM. Since the 

higher peaks occur in regions far from the natural frequency, it is possible to conclude 
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that the TLP presents galloping instabilities. The same observations apply to Yaw 

motion at the same angle of attack. 

  

  

𝑉𝑅 = 2.81 𝑎𝑛𝑑 𝜃 = 0° 𝑉𝑅 = 4.49 𝑎𝑛𝑑 𝜃 = 0° 

  

𝑉𝑅 = 7.73 𝑎𝑛𝑑 𝜃 = 0° 𝑉𝑅 = 11.62 𝑎𝑛𝑑 𝜃 = 0° 

  

𝑉𝑅 = 14.85 𝑎𝑛𝑑 𝜃 = 0° 𝑉𝑅 = 22.00 𝑎𝑛𝑑 𝜃 = 0° 

Figure 6.27 Trajectory plots of the motions of the TLP alone in the XY plane for 

θ=0° and different reduced velocities.   
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Sway of the TLP alone for θ=0° Yaw of the TLP alone for θ=0° 

  

Sway of the TLP alone for θ=45° Yaw of the TLP alone for θ=45° 

Figure 6.28 Power Spectral Density (PSD) of the motions of the TLP alone as 

functions of frequency and reduced velocity for θ = 0° and 45° 

 

6.6.2 TAD Alone 

The results of VIM tests for the TAD alone are discussed below. For this case, 

three angles of attack and eleven current velocities were considered.  

Figures 6.29 and 6.30 present the nominal and maximum A/D responses for 

Sway, respectively. The motions developed by the TAD are considerably smaller than 

those of the TLP.  

Previous studies, e.g. [95], have demonstrated that the length of the column is a 

relevant parameter to determine the order of the magnitude of the motion amplitude 

developed by a multi-column floater, i.e., floaters with smaller column lengths 
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develop smaller motion amplitudes. Note that, the column length of the TLP is 

approximately 3.4 times the column length of the TAD.   

 

 

Figure 6.29 Nominal A/D for TAD alone and several current angles of incidences: 

0°, 90°, and 180° 

 

 

Figure 6.30 Maximum A/D for TAD alone and several current angles of 

incidences: 0°, 90°, and 180°  

 

The amplitudes and trends in Sway motion at 0° and 180° are similar. Moreover, 

these motions increase steadily with the reduced velocity. This trend indicates that the 

TAD develops galloping instabilities with small amplitudes. The response of the TAD 

at 90° presents slightly higher amplitudes. However, the response is still considerably 
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smaller than that of the TLP. Despite some variations, the amplitude of the motions 

increases steadily with the current.     

Figure 6.31 presents the maximum Yaw response for the TAD. Note that, the 

maximum angle reached by the TAD is approximately 2.7°, far from the 7.5° achieved 

by the TLP. In addition, for 0° and 180°, the amplitude of the Yaw motions seems to 

increase with the current velocity until 𝑉𝑅 = 35, after which it slowly decreases. 

Finally, Yaw motion at 90° only increases with the velocity.  

In general, no significant differences between the behavior of the TAD observed 

were found at 0° and 180°. Moreover, the motions developed by the TAD at 90° are 

significantly higher.                

 

 

Figure 6.31 Maximum Yaw response for TAD alone and several current angles of 

incidences: 0°, 90°, and 180°  

 

Figure 6.32 presents trajectory plots of the horizontal motions of the TAD alone 

considering six velocities and one angle of attack. Note that, the Sway and Yaw 

motions developed by the TAD are small relative to the size of the platform. In 

addition, it is noticeable that the motions increase with the reduced velocity. 

Figure 6.33 presents the analysis of the motions developed by the TAD in the 

frequency domain for angles of attack of 0° and 180°. The Power Spectral Density 

(PSD) reveals that Sway motions developed by the TAD mainly occur at low 
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frequencies; the higher peaks occur at frequencies lower than 0.0045 Hz, which is the 

Sway natural frequency. 

However, for Yaw motions, it is notable that the PSD does not present peaks and 

has a uniform distribution of energy with respect to frequency. 

In addition, no relevant differences between the behavior of the TAD at 0° and 

180° are observed.  

 

  

𝑉𝑅 = 7.78 𝑎𝑛𝑑 𝜃 = 0° 𝑉𝑅 = 12.50 𝑎𝑛𝑑 𝜃 = 0° 

  

𝑉𝑅 = 21.46 𝑎𝑛𝑑 𝜃 = 0° 𝑉𝑅 = 32.31 𝑎𝑛𝑑 𝜃 = 0° 

  

𝑉𝑅 = 41.27 𝑎𝑛𝑑 𝜃 = 0° 𝑉𝑅 = 61.08 𝑎𝑛𝑑 𝜃 = 0° 

Figure 6.32 Trajectory plots of the motions of the TAD alone in the XY plane for 

θ=0° and different reduced velocities.   
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Sway of the TAD alone for θ=0° Yaw of the TAD alone for θ=0° 

  

Sway of the TAD alone for θ=180° Yaw of the TAD alone for θ=180° 

Figure 6.33 Power Spectral density of motions of the TAD alone as functions of 

frequency and reduced velocity for θ = 0° and 180°. 

 

6.6.3 Multi-body System without Connection 

In this section, the experimental results of the VIM tests with both floaters without 

a mechanical connection are presented. With the aim of investigating the influence of 

the distance and the relative positions between the floaters, two cases were considered: 

TLP upstream and TLP downstream. In each of these cases, three different distances 

between the floaters were considered. The distances are the same as those adopted in 

the analysis of current loads in Chapter V. See Table 5.5 and Fig. 6.18. 

Figure 6.34 presents the nominal A/D, maximum A/D and maximum Yaw 

responses of the TLP in upstream and downstream positions for three different 

distances D1, D2, and D3. For a better comparison, the results for the TLP alone are 
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depicted together. Despite small variations, the results of the multi-body analysis with 

the TLP upstream and downstream did not present evidence of the influence of the 

distance between the TLP and the TAD on the motions of TLP. 

  

Nominal A/D for the TLP upstream Nominal A/D for the TLP downstream 

  

Maximum A/D for the TLP upstream Maximum A/D for the TLP downstream 

  

Maximum Yaw for the TLP upstream Maximum Yaw for the TLP downstream 

Figure 6.34 Nominal A/D, maximum A/D and maximum Yaw responses for the 

TLP upstream and downstream from multi-body VIM tests with no connection 

between the floaters.   

 

In general, the motions of the TLP upstream were slightly larger than those 

observed on the TLP alone. This effect is larger for the maximum A/D coefficient in 

the range of reduced velocities [4 - 14]. In contrast, the results from the tests with the 

TLP downstream were systematically lower than the results for the TLP alone, in 

terms of the motion amplitudes. Note that the differences between the TLP upstream 
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and TLP alone were considerably smaller than the differences between the TLP 

downstream and TLP alone. However, in both cases, the TLP upstream and TLP 

downstream cases, the trends of the curves are the same. Figure 6.35 presents 

trajectory plots of the horizontal motions of the TLP, comparing the single-body and 

multi-body cases with the TLP upstream and downstream. 

 

 

Figure 6.35 Trajectory plots of the motions of the TLP in the XY for cases alone, 

upstream and downstream without a mechanical connection. From left to right: TLP 

alone, TLP upstream and TLP downstream. From top to bottom: V3, V7, and V11. 
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The information presented in the XY plots is consistent with the statistical 

analysis. In general, while the motions with the TLP upstream are slightly higher than 

those with the TLP alone, the motions of the TLP downstream decrease slightly 

relative to those of the single-body case. 

Figure 6.36 presents the analysis of the motions developed by the TLP in the 

frequency domain with the PSD for cases of TLP alone, TLP upstream and TLP 

downstream. The Power Spectral Density (PSD) confirms that the influence of the 

presence of the TAD on the behavior of the TLP is relatively small. Despite some 

minor variations, the distribution of the energy in frequency is essentially the same for 

the three cases. The resonance motions are observed for low reduced velocities, and 

as the current velocity increases, the spreading of the energy increases as well. 

In the case of the TAD, the same cases are analyzed, thus, the TLP upstream test 

provides the information for the TAD downstream case, similarly, the TLP 

downstream case is now analyzed as the TAD upstream case, focusing on the motions 

developed by the TAD unit and how these motions are affected by the presence of the 

TLP hull. Figure 6.37 presents the nominal A/D, maximum A/D and maximum Yaw 

responses of the TAD in upstream and downstream positions for the three different 

distances (namely, D1, D2, and D3). In addition, the results for the TAD alone are 

depicted together. The results of the multi-body VIM tests show less influence of the 

TLP on the behavior of the TAD. However, as in the case of the TLP, the TAD 

presents slightly higher and lower movements for the upstream and downstream 

positions, respectively.  

Furthermore, the relative distances between the floaters do not significantly 

influence the motions of the TAD unit. The most significant variations appear for Yaw 

motions of the TAD when it is in the downstream position in the range of [26 – 46] of 

reduced velocities. 

In general, the motions of the TAD upstream were slightly higher than those 

observed for the TAD alone. In contrast, the results from the tests with the TAD 

downstream were systematically lower than the results of the TAD alone, in terms of 

the motion amplitudes. In addition, it is important to mention, that the trends of the 

curves are not modified by the presence of the TLP.   
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Sway of the TLP alone for θ=0° Yaw of the TLP alone for θ=0° 

  

Sway of the TLP upstream Yaw of the TLP upstream 

  

Sway of the TLP downstream Yaw of the TLP downstream 

Figure 6.36 Power Spectral Density (PSD) of the TLP motions for cases alone, 

upstream and downstream as functions of frequency and reduced velocity from 

multi-body VIM tests with no connection between the floaters. 
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Nominal A/D for the TAD upstream Nominal A/D for the TAD downstream 

  

Maximum A/D for the TAD upstream Maximum A/D for the TAD downstream 

  

Maximum Yaw for the TAD upstream Maximum Yaw for the TAD downstream 

Figure 6.37 Nominal A/D, maximum A/D and maximum Yaw responses for TAD 

upstream and downstream from multi-body VIM tests with no connection between 

the floaters.   

 

Figure 6.38 presents the analysis of the motions developed by the TAD in the 

frequency domain with the PSD for cases TAD alone, TAD upstream and TAD 

downstream. The Power Spectral Density (PSD) confirms that the influence of the 

presence of the TLP on the behavior of TAD is minuscule. As in the case of TLP, the 

variations in the energy distribution in the frequency of both motions, Sway and Yaw, 

were small. 

Figure 6.39 presents trajectory plots of the horizontal motions of the TAD, 

comparing the single-body and multi-body cases, with the TAD upstream and 
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downstream. No significant differences are found in the movements of three cases for 

low reduced velocities; however, for the highest velocities, these differences are large, 

particularly for the velocity V11 in Table 6.10.   

  
Sway of the TAD alone for θ=0° Yaw of the TAD alone for θ=0° 

  
Sway of the TAD upstream Yaw of the TAD upstream 

  
Sway of the TAD downstream Yaw of the TAD downstream 

Figure 6.38 Power Spectral Density (PSD) of the TAD motions for cases alone, 

upstream and downstream as functions of frequency and reduced velocity from 

multi-body VIM tests with no connection between the floaters. 
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Figure 6.39 Trajectory plots of the motions of the TAD in the XY plane for cases 

alone, upstream and downstream without a mechanical connection. From left to 

right: TAD alone, TAD upstream and TAD downstream. From top to bottom: V3, 

V7, and V11. 

 

6.6.4 Multi-body System with Hawser Systems 

In this section, the experimental results of the VIM tests with both floaters 

connected by the hawser system are presented. With the aim of investigating the 

influence of the relative positions between the floaters, two cases were considered: 

TLP upstream and TLP downstream. In addition, four configurations of the hawser 

systems were tested. Details of the hawser configurations are presented in Section 

6.3.3.  

Figure 6.40 presents the nominal A/D, maximum A/D and maximum Yaw 

responses of the TLP in upstream and downstream positions for the four different 

hawser configurations HW1, HW2, HW3, and HW4. For a better comparison, the 

results for the TLP alone are depicted together.  

A comparison of the behavior of the TLP alone with the TLP upstream and 

downstream reveals that the movements of the TLP, when it is connected to the TAD, 
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are smaller than in the single-body case. However, while the motions of the TLP 

upstream are slightly smaller, in the case of the TLP downstream, they are 

significantly lower. In addition, the trends of the curves of the three cases are similar. 

Furthermore, the variations between the different hawser configurations are small 

relative to the comparison with the variations between the single-body and multi-body 

cases. 

   

Nominal A/D for the TLP upstream Nominal A/D for the TLP downstream 

  

Maximum A/D for the TLP upstream Maximum A/D for the TLP downstream 

  

Maximum Yaw for the TLP upstream Maximum Yaw for the TLP downstream 

Figure 6.40 Nominal A/D, maximum A/D and maximum Yaw responses for TLP 

upstream and downstream from multi-body VIM tests with the hawser system 

connecting the floaters.   

 

Figure 6.41 presents trajectory plots of the horizontal motions of the TLP, 

comparing the single-body and multi-body cases connected by the hawser systems. 
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The trajectory plots show that the TLP downstream presents a significant reduction in 

both Sway and Yaw. In contrast, the differences between the TLP upstream and the 

TLP alone are considerably smaller. 

 

Figure 6.41 Trajectory plots of the motions of the TLP in the XY plane for cases 

alone, upstream and downstream with the hawser system HW1. From left to right: 

TLP alone, TLP upstream and TLP downstream. From top to bottom V3, V7, and 

V11. 

Figure 6.42 presents the analysis of the motions developed by the TLP in the 

frequency domain with the PSD for cases TLP alone, TLP upstream and TLP 

downstream with the hawser systems HW1 connecting the floaters.  
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Sway of the TLP alone for θ=0° Yaw of the TLP alone for θ=0° 

  

Sway of the TLP upstream Yaw of the TLP upstream 

  

Sway of the TLP downstream Yaw of the TLP downstream 

Figure 6.42 Power Spectral density of motions of the TLP alone, upstream and 

downstream as functions of frequency and reduced velocity from multi-body VIM 

tests with the hawser system HW1 connecting the floaters. 
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Although the hawser systems present a strong influence on the order of magnitude 

of the motions developed by the floaters, no evidence exists that the hawser systems 

modify the trends of the curves. In addition, the Power Spectral Density (PSD) reveals 

small variations in the distribution of the energy in the horizontal modes of the TLP. 

The order of magnitude of the PSD varies because of the lower motion amplitudes. 

However, no significant differences were found in the frequency distribution between 

the alone, upstream and downstream cases.  

Finally, this extensive study includes the analysis of the TAD and how the 

presence of the TLP and the hawser system modify its behavior with respect to the 

single-body case. Thus, Fig. 6.43 presents trajectory plots of the horizontal motions of 

the TAD, comparing the single-body and multi-body cases connected by the hawser 

systems HW1. In general, the motions of the TAD increase significantly. The motions 

of the TAD downstream present the highest variation, for both Sway and Yaw.  

 

Figure 6.43 Trajectory plots of the motions of the TAD in the XY plane for cases 

alone, upstream and downstream with the hawser system HW1. From left to right: 

TAD alone, TAD upstream and TAD downstream. From top to bottom V3, V7, and 

V11. 
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Figure 6.44 presents the nominal A/D, maximum A/D and maximum Yaw 

responses of the TAD in upstream and downstream positions for the four different 

hawser configurations HW1, HW2, HW3, and HW4. For a better comparison, the 

results of TAD alone are depicted together. A comparison of the behavior of the TAD 

alone with the TAD upstream and downstream reveals that the movements of the 

TAD, when it is connected to the TLP, are significantly higher than for the TAD alone. 

These variations involve not only the order of magnitude of the motions of the TAD 

but also the trends of the response for Sway. 

 

  

Nominal A/D for the TAD upstream Nominal A/D for the TAD downstream 

  

Maximum A/D for the TAD upstream Maximum A/D for the TAD downstream 

  

Maximum Yaw for the TAD upstream Maximum Yaw for the TAD downstream 

Figure 6.44 Nominal A/D, maximum A/D and maximum Yaw responses for the 

TAD upstream and downstream from multi-body VIM tests with a hawser system 

connecting the floaters.   
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An analysis of the nominal and maximum A/D of the motion developed by the 

TAD reveals that the shapes of these curves are consistent with the motions of the 

TLP. This finding indicates that the TLP induces these larger motions on the TAD.  

However, as shown in Section 6.7.3, the TLP does not induce significant motions 

on the TAD when a mechanical coupling does not connect the two units. 

Consequently, it is possible to conclude that the mechanical connection between the 

floaters is the largest generator of these induced motions. 

Furthermore, the response of the TAD using different configurations of the 

hawser systems that connect this unit with the TLP shows that the impact of the 

configuration of the hawsers is limited. 

Another important observation corresponds to the Yaw motion is that the 

variations in this mode are considerably smaller than those observed for Sway. 

However, for the TAD upstream case, the four configurations of the hawser system 

present significant amplitudes for reduced velocities in the range of [12 – 22]. In 

contrast, the TAD downstream case does not present this substantial increase in the 

angular amplitudes of motion. 

Figure 6.45 presents the analysis of the motions developed by the TAD in the 

frequency domain with the Power Spectral Density (PSD) for cases of TAD alone, 

TAD upstream and TAD downstream.  

The PSD confirms that the influence of the presence of the TLP connected by the 

hawser systems is significantly higher, not only in terms of the order of magnitude of 

the energy but also in the frequencies at which the response peaks. In addition, the 

differences increase with the velocity, i.e., the peaks for the velocities V9 and V11 

present significant differences not only between the single-body and multi-body cases 

but also among the multi-body cases. The TAD upstream presents higher peaks at low-

frequencies while the TAD is downstream presents peaks at high-frequency. 

For Yaw motion of the TAD, the results show that the differences between the 

results for the upstream and downstream cases are small.   
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Sway of the TAD alone for θ=0° Yaw of the TAD alone for θ=0° 

  

Sway of the TAD upstream Yaw of the TAD upstream 

  

Sway of the TAD downstream Yaw of the TAD downstream 

Figure 6.45 Power Spectral density of motions of the TAD alone, upstream and 

downstream as a function of frequency and reduced velocity from multi-body VIM 

tests with the hawser system HW1 connecting the floaters. 
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6.7 CONCLUSIONS  

Based on this extensive analysis of the current induced motions in the TLP-TAD multi-

body system, the following conclusions are drawn: 

• Although ultra-reduced scale models represent a significant challenge for calibration 

of the mass distribution, the position of the center of gravity and equivalent mooring 

systems, excellent results were achieved in the representation of these properties. 

Thus, experimental values of stiffness and natural periods for Sway and Yaw present 

excellent agreement with the target values. The arrangement for representing the TLP 

tendons has been shown as a powerful tool for the tests of deep draft TLPs in a 

shallow water channel.   

• The experimental results present evidence that the current velocities and angles of 

attack have a strong influence on the dynamic behavior of the TLP. Thus, the TLP is 

susceptible to VIM and Galloping. For lower velocities and θ=0°, VIM is 

predominant in the Sway response; and as the current velocity increases the TLP 

presents more galloping instabilities. For Yaw, the amplitude of the motion increases 

steadily with the current velocity, indicating galloping vibrations. For θ=45° the 

Sway motion presents a combination of VIM with galloping. An analysis in 

frequency domain reveals that Galloping is predominant for this angle of attack. In 

the case of Yaw, the motions increase steadily with the current velocity as well. 

• The results of the tests with the TAD unit reveal that the semi-submersible develops 

relatively small motions for the whole range of current velocities. Yaw seems to be 

the critical degree of freedom since it is slightly higher for high current velocities. 

The behavior of the TAD at θ=90° shows that the motions developed by the TAD are 

significantly greater than the motions at the other angles of attack. No significant 

differences exist between θ=0° and 180°.  

• The results of the multi-body analysis without mechanical connection reveal the weak 

influence of hydrodynamic interactions of the floaters on the motions developed by 

the units.  Systematically, the motions of the unit in the downstream position are 

slightly lower than those of the single-body case. In contrast, the motions of the unit 

in the upstream position present a slightly higher response. For all of the cases, the 
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distances between the floaters did not modify the amplitude of the motions 

significantly.  

• The results of the multi-body analysis with the hawser systems reveal that the 

influence of the configuration of the hawser lines on the motions developed by the 

TLP and TAD is slight.  

• The TLP connected to the TAD by the hawser system presents smaller amplitudes of 

motions than those of the TLP alone. This effect is larger for the TLP downstream, 

for which a significant mitigation of the motions is observed. The TAD presents an 

amplification of the motions with the TAD upstream and downstream, and the highest 

amplification was observed with the TAD downstream.      

• Although no relevant differences in the motion amplitudes were found between the 

four hawser system configurations, the differences between the behavior of the 

floaters in the connected and disconnected cases are relatively large. Therefore, it is 

evident that the hawser system can modify the behavior of the floaters significantly, 

mitigating the motions developed by the TLP and amplifying the motions of the TAD. 
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CHAPTER VII. VIM MITIGATION DEVICES 

An extensive experimental analysis of innovative solutions to mitigate the current induced 

motions of the TLP is presented. Four mitigation devices were built and tested. The analysis 

includes decay tests to determine the variations in natural frequencies and damping ratios, VIM 

tests with constant current velocity to measure the induced motions, and current load tests to 

determine the average drag forces and moments. Comparisons between the TLP alone and with 

mitigation devices are performed for this study.  

 

7.1 INTRODUCTION 

The TLP unit analyzed in this work develops significant motions when subject to 

currents. Although the presence of the TAD connected to the TLP by a hawser system 

slightly reduces these motions, the TLP induces large motions on the TAD. As shown in 

Section 6.6.1, these motions occur even for low reduced velocities. Therefore, the mitigation 

of the motions developed by the TLP could improve the dynamic performance of both the 

TLP and the multi-body system.  

The mitigation devices are analyzed using three different types of tests. First, decay tests 

were conducted for Sway and Yaw to investigate possible variations in the natural periods 

and damping ratios of the system due to the mitigation devices.  

Second, VIM tests were performed to measure the dynamic motions of the TLP when 

subject to current; eleven current velocities and two angles of attack were considered in this 

model test campaign. The results of these tests identify the most efficient device in terms of 

reducing the movements developed by the TLP. In addition, the frequency analysis of the 

time traces shows how the mitigation devices modify the frequency of the motions.  

Third, current load tests were conducted to measure the average drag forces and moments 

on the TLP. The results of these tests show the relation between the magnitude of the drag 

forces and the motions developed by the TLP. 
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7.2 VIM MITIGATION DEVICES 

In the literature, several devices to mitigate the VIM on Spars can be found. However, 

information is lacking on the mitigation of motions on TLPs or deep draft semi-submersibles. 

Figure 7.1 presents the most common mitigation devices used in the reduction of current 

induced motions in cylinders.  

 

 

Figure 7.1 VIM mitigation devices for cylinders: (a) Helical strake, (b) Shroud,  

(c) Axial slats, (d) Streamlined fairing, (e) Splitter, (f) Ribboned cable,  

(g) Pivoted guiding vane, and (h) Spoiler plates [9]  

 

Three of the VIM mitigation devices presented in Fig. 7.1 were adapted to the TLP square 

column. These are the shroud, the spoiler plates, and the helical strakes. In the case of the 

shroud, two configurations were tested, the first configuration with a square hole pattern and 

the second with a diamond hole pattern, as shown in Fig 7.2. Figure 7.3 presents the four 

VIM mitigation devices mounted on the TLP hull. 

The mitigation devices were dimensioned by adapting the guidelines presented in [9], as 

summarized below. 

Perforated shroud with square hole pattern: 

• The length of the shroud side is 1.25 times the length of the TLP column side. 
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• The minimum depth of the shroud is equal to the distance between the top of the 

pontoon and the draft mark of operation.  

• The shroud has 50 – 60% open area.  

• The hole geometry is defined as squares with a side length equal to 0.073 times the 

TLP column side length. 

• At least 15 holes are included in each row of the shroud face.  

 

 

Figure 7.2 VIM mitigation devices for the TLP from left to right and from top to 

bottom: shroud with diamond holes, shroud with square holes, helical strakes, and spoiler 

plates.  

 

Perforated shroud with diamond hole pattern: 

• The length of the shroud side is 1.25 times the length of the TLP column side. 
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• The minimum depth of the shroud is equal to the distance between the top of the 

pontoon and the draft mark of operation.  

• The shroud has 50 – 60% open area.  

• The hole geometry is defined as diamonds with a side length equal to 0.066 times the 

TLP column side length. 

• At least 16 holes are included in each row of the shroud face.  

 

Helical strakes: 

• The height of the strakes is 0.1 times the TLP column side length. 

• Three strakes in a parallel helix pattern are used in each column face. 

• The length of the strakes is equal to 0.5 to 1.0 times the TLP column side length.   

 

Spoiler plates: 

• The spoiler plate side has a length equal to 0.3 times the TLP column side length. 

• Seven spoiler plates are used in each column face. 

• The distance between the plates is equal to 0.4 times the TLP column side length. 

 

 

Figure 7.3 VIM mitigation devices for the TLP (A) shroud with square holes,  

(B) shroud with diamond holes, (C) helical strakes, and (D) spoiler plates.  



 

201 
 

7.3 DECAY TESTS  

Decay tests were performed to measure the natural periods and to calculate the damping 

ratios of the TLP with the mitigation devices. Sway and Yaw were considered in the decay 

tests. Three repetitions for each mode were done for every configuration.   

The decay tests started with a known static offset to the system, which is then released to 

oscillate freely. The oscillations are measured by the optical tracking system Qualisys [73]. 

The coordinate systems considered in the tests are described in Section 6.6. 

Figure 7.4 and 7.5 present the decay tests for Sway and Yaw, respectively. The cases of 

the TLP alone, TLP with a shroud with diamond holes (SD), TLP with a shroud with square 

holes (SS), TLP with spoiler plates (SP), and TLP with strakes (ST) are depicted together. 

The time traces were analyzed using the Fast Fourier Transform to estimate the natural 

periods of the oscillations. The damping was estimated by the method described in Appendix 

B.  

Table 7.1 presents the summary of the natural periods and damping ratios for each 

configuration. Note that, the damping ratios are presented as percentages of the critical 

damping of each mode.  

      

 

Figure 7.4 Decay tests for Sway of the TLP alone and  

the TLP with the mitigation devices.  
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Figure 7.5 Decay tests for Yaw for the TLP alone and  

the TLP with the mitigation devices.  

 

Table 7.1 Natural periods and damping ratios from decay tests.   

Description 
Natural periods [sec] Linear damping ratios [%] 

Sway Yaw Sway Yaw 

TLP alone 13.86 8.48 6.65 5.89 

Diamond Shroud (SD) 13.08 7.25 8.03 6.13 

Square Shroud (SS) 13.46 8.33 7.98 6.20 

Spoiler Plates (SP) 14.82 8.68 9.51 6.94 

Strakes (ST) 14.53 8.51 6.37 5.67 

  

Based on these results, it is possible to conclude that the mitigation devices modify the 

natural periods and damping ratios of the TLP alone. However, the variations in the natural 

periods are relatively small, approximately ± 7.0% for Sway and ± 2.5% for Yaw. In contrast, 

the differences between the damping ratios of the mitigation devices are in the range of [-

43% to 4%] for Sway and [-18% to 2.5%] for Yaw. Note that the spoiler plates present the 

highest damping ratio and natural periods, while strakes present the lowest damping ratios, 

and the shroud with diamond holes presents the lowest values for the natural periods. 
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7.4 VIM RESPONSE  

This new experimental campaign was performed using the arrangement described in 

Section 6.5. The four VIM mitigation devices were tested one by one, using the same 

mooring system, current velocities and coordinate system reported in Chapter VI. Note that 

the inertia of the devices was neglected and kept the draft of the TLP constant. Two angles 

of attack were considered in this study: 0° and 45°. 

Figure 7.6 presents a schematic representation of the experimental setup including the 

VIM mitigation devices. Note that, the devices were mounted directly on the columns of the 

TLP. Each test with a constant current velocity was repeated three times. Thus, 264 VIM 

tests were performed in the current channel of the LOC.  

As described in Section 6.5, the VIM response of the TLP was measured using the 

Qualisys system [73]. As the current velocity is controlled by the RPM of four pumps, there 

is an interval of time in which the current velocity is “high-transient”, and the final data 

analysis of the time traces considered only the “steady” part of the measurements, i.e., 

without the motions induced by the current velocity in the “high-transient” interval of time. 

The “steady” part of the measurements represents at least 3-hours of full-scale time in all 

tests. 

    

Figure 7.6 Experimental setup of VIM tests of the TLP using the mitigation devices. This 

figure shows the spoiler plates. 
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The VIM response was analyzed using the non-dimensional numbers described in 

Section 6.6, i.e., the reduced velocity, nominal A/D, maximum A/D and maximum Yaw 

response described in Section 6.6. These parameters depend on the natural period of Sway 

and the characteristic length of the floater.  

Although the same mooring system was considered for all cases, the results of Section 

7.3 reveal slight variations in the natural periods as shown in Table 7.1. In addition, as 

mentioned in Section 6.6, the characteristic length considered in the analysis of the TLP 

alone was a projected width of the column; consequently, this dimension changed due to the 

geometry of the mitigation devices. However, in order to have a better comparison between 

the experimental results for the TLP alone and with the mitigation devices, the values of 

reduced velocity and characteristic length of the TLP alone tests were adopted in the new 

tests. 

Figures 7.7, 7.8 and 7.9 present the nominal A/D, maximum A/D, and maximum Yaw 

responses of the TLP with the mitigation devices. The angle of attack considered in the tests 

presented in these figures is 0° degrees. For a better comparison, the results for the TLP alone 

were included. 

The shroud with square holes, shroud with diamond holes, and spoiler plates present 

excellent results. The mitigation achieved by using these devices is relatively high. In 

contrast, strakes on the TLP columns present the worst results; not only does it not mitigate 

the motions but also excites higher amplitudes, particularly for Sway.  

Despite some small differences for a few reduced velocities, both shrouds present similar 

results. The shroud with diamond holes presents mitigation ratios in the ranges of [19% - 

51%], [11% - 45%], and [2% - 58%] for the nominal A/D, maximum A/D, and maximum 

Yaw responses, respectively. The Shroud with square holes presents mitigation ratios in the 

ranges of [14% - 62%], [9% - 62%], and [2% - 69%] for the same parameters.  

In general, both shrouds exhibit satisfactory performance for reduced velocities in the 

range of [5 - 10]. The maximum mitigation ratio in linear and angular motions was observed 

for reduced velocities of 7.73 and 22, respectively. 

The spoiler plates present the best performance for both linear and rotational movements. 

Ratios of mitigations in the range of [25% - 78%], [15% - 68%], and [5% - 54%] for the 

nominal A/D, maximum A/D, and Yaw responses were observed, respectively. The best 
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performance in terms of linear motions was observed at the reduced velocity of 7.73; for 

rotational motion, the best performance was at the reduced velocity of 13.58. In general, 

spoiler plates present excellent results for the range of reduced velocities equal to [5 - 22]. 

The Sway motion of the TLP with strakes is as high as approximately 160% of the 

movements of the TLP alone. The worst performance is at a reduced velocity of 14.85. The 

Yaw motions increase by up to 50%, with the reduced velocity of 6.36 presenting the worst 

case. 

 

Figure 7.7 Nominal A/D response of the TLP for θ = 0° and the mitigation devices.  

 

 

Figure 7.8 Maximum A/D response of the TLP for θ = 0° and the mitigation devices. 
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Figure 7.9 Maximum Yaw response of the TLP for θ = 0° and the mitigation devices. 

 

Figures 7.10, 7.11 and 7.12 present the nominal A/D, maximum A/D and maximum Yaw 

responses of the TLP with mitigation devices for an angle of attack equal of 45°. In this case, 

the differences in the results between the mitigation devices are minor. However, the spoiler 

plates still present the best performance, while the strakes performed worst.  

The spoiler plates present mitigation ratios in the ranges of [5% - 77%], [12% - 62%], 

and [3% - 74%] for the nominal A/D, maximum A/D, and maximum Yaw responses, 

respectively. Notably, the highest ratio of mitigation in linear and rotational motions 

corresponds to a reduced velocity of 5.11. 

The shrouds with square and diamond holes present similar results for reduced velocities 

in the range of [0 – 10]. The shroud with diamond holes presents mitigation ratios in the 

ranges of [2% - 47%], [2% - 47%], and [1% - 51%] for the nominal A/D, maximum A/D, 

and maximum Yaw responses, respectively, while the shroud with square holes presents 

mitigation ratios in the ranges of [2% - 68%], [12% - 62%], and [3% - 74%] for the same 

parameters. In general, both shrouds present the best performance for reduced velocities in 

the range of [0 - 10]. 

At 45°, the strakes present better results; however, they still exhibit the worst 

performance. The nominal A/D is approximately 110% of the corresponding TLP alone 

value. The worst case occurs for at a reduced velocity of 14.85. For Yaw, the amplitude of 

the motions is higher than that of the TLP alone, reaching values as high as 137%.  
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In general, spoiler plates, shroud with diamond holes and shroud with square holes 

provide excellent performance.  

For linear motions, average mitigation ratios of 45%, 30%, and 29% were found using 

SP, SD, and SS, respectively. For Yaw motion, the mitigation ratio has average values of 

30%, 20% and 19% for SP, SD, and SS, respectively.  

 

 

Figure 7.10 Nominal A/D response of the TLP for θ = 45° and the mitigation devices.  

 

 

Figure 7.11 Maximum A/D response of the TLP for θ = 45° and the mitigation devices. 
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Figure 7.12 Maximum Yaw response of the TLP for θ = 45° and the mitigation devices. 

 

The results obtained with strakes were singular, at both angles of attack and most of the 

reduced velocities, higher amplitudes of linear and angular motions were found. However, it 

is not possible to conclude that strakes, in general, are not a favorable option for TLPs. 

Further investigation into the geometrical parameters of the strakes is recommended to 

understand these results. 

Figure 7.13 presents the XY plane motions of the TLP using the mitigation devices for 

the velocities V1, V3, V5, V7 and V11 of Table 6.7.  

The Sway motion increases with the current velocity in the range of reduced velocities 

[V1 - V5]; this trend seems to be independent of the mitigation device; as shown in Fig. 6.27, 

this trend is observed on the TLP alone as well. In addition, for the same range of reduced 

velocities, slight Yaw angles are observed. 

The TLP behavior for reduced velocities in the range of [V5 - V7] reveals that Sway 

motions decay and that Yaw motions increase rapidly with the current speed. Despite some 

small differences, similar trends were found on the TLP alone as well. 

Another relevant observation is that both shrouds present similar behavior for all of the 

reduced velocities shown in Fig 7.10. In addition, a comparison of XY plane motions 

between spoiler plates and strakes reveals that the efficiency of the first is higher than that of 

the second one. The differences between shrouds and spoiler plates are relatively small.  



 

209 
 

  

Figure 7.13 Motions in the horizontal plane XY for θ = 0°.  Columns from left to right: 

shroud diamond, shroud square, spoiler plates, and strakes. Rows from top to bottom: V1, 

V3, V5, V7, and V11. 

 

Finally, the study of the TLP motions with the VIM mitigation devices is concluded with 

an analysis in frequency domain. The Power Spectrum Density (PSD) is calculated by the 

Fast Fourier Transform (FFT) of the time traces. Figures 7.14 and 7.15 present the PSD for 

the TLP alone and the TLP with the mitigation devices for an angle of attack equal to 0° for 

Sway and Yaw motion, respectively.    
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Figure 7.14 Power Spectral Density (PSD) from FFT of Sway motion of the TLP as 

functions of frequency and the reduced velocities V3, V4, V5, V8, V10, and V11. 
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Figure 7.15 Power Spectral Density (PSD) from FFT of Yaw motion of the TLP as a 

function of frequency and the reduced velocities V3, V4, V5 V8, V10, and V11. 

 

Notably, for Sway, the motions for the reduced velocities V3, V4, and V5 are 

concentrated in a small range of frequencies of [0.07 – 0.09] Hz. because the time traces for 
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these velocities present a regular periodic shape. A notable consequence of this fact is that 

the values of nominal A/D and maximum A/D are close to each other.  

Note that this range of frequencies includes the Sway natural frequency of the TLP 

(approximately 0.08Hz). Consequently, this feature clearly defines a resonance motion. Note 

that, the phenomena called “lock-in” is not significantly modified by the presence of the 

mitigation devices. Furthermore, the mitigation of the motions observed in the statistical 

analysis is not a consequence of the modification of the frequency of the motions. 

The PSD of Sway motions for reduced velocities V8, V10, and V11 reveals that the 

movements of the TLP occur over a wide range of frequencies. Consequently, the Sway 

motions can be defined as a combination of VIM and Galloping instabilities.  

Notably, peaks exist at both low and high frequencies. The irregular shape of the time 

traces of the response and the significant differences between the nominal and maximum 

A/D confirm this observation. For this range of reduced velocities, the influence of the 

mitigation devices is more relevant. Significant differences are observed between the PSDs 

of the responses for the different devices. Finally, the mitigation of the motions of the TLP 

is consistent with the reduction of the magnitude of the peaks of the PSD for the different 

devices.  

The analysis in frequency domain of the response for Yaw reveals interesting trends; for 

instance, the peaks of the energy increase steadily with the reduced velocity. In addition, the 

first three velocities present short-band frequency responses. However, the response for the 

last three velocities occurs in a wide-band frequency. 

No significant variations appear between the TLP alone and with mitigation devices for 

velocities V3, V4, and V5. However, significant differences are observed for the last three 

velocities. The magnitude and the frequency of the peaks vary for all of the mitigation 

devices.  

 

7.5 DRAG FORCES 

Based on the information presented in Table 7.1, it is possible to conclude that the 

mitigation devices modify the natural periods and damping of the system. Consequently, it 

is reasonable to expect variations in the drag forces on the TLP as well, which is a critical 

issue for the dimensioning of mooring systems. Thus, the most convenient mitigation device 
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must have not only a high reduction ratio for the dynamic motions of the TLP but also a 

minimum impact on the drag forces on the TLP to reduce high static offsets on the TLP.  

To measure the average current loading on the TLP with the mitigation devices, the 

experimental setup presented in Section 5.9 was used. Figure 7.16 presents a schematic 

representation of the TLP with the mitigation devices during the measurement of the current 

loads. The procedure of the tests is the same as that described in Section 5.9. 

 

 

Figure 7.16 Experimental setup for the measurement of current loads on the TLP using the 

mitigation devices. The figure shows the strakes. 

 

This new model test campaign considers the velocity V5 presented in Table 5.6, a range 

of current angles of attack [0° - 345°] in steps of 15° and two repetitions for each test. 

Consequently, a total of 104 tests were conducted. 

Each test has a duration of 300 sec. in mode-scale time. The current load coefficients 

𝐶𝐹𝑋, 𝐶𝐹𝑌 and 𝐶𝑀𝑍 were calculated using Eqns. (5.8) to (5.10). using the characteristic 

dimensions in Table 5.8 and considering the average values of forces and moments on the 

TLP.     
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Figures 7.17, 7.18 and 7.19 respectively present the current load coefficients 𝐶𝐹𝑋, 𝐶𝐹𝑌 

and 𝐶𝑀𝑍 for the TLP with the four VIM mitigation devices. The results from the TLP alone 

were included in these figures to identify the variations due to the mitigation devices.  

Based on the results presented in these figures, the influence of the mitigation devices on 

the global current loads on the TLP is confirmed. In general, the trends are clear for the three 

current load coefficients of each mitigation device. Surprisingly, both shrouds decrease the 

drag forces on the TLP for all angles of attack. 

On average, reductions of 20% and 25% were observed for the shrouds with square and 

diamond holes, respectively. The variations between shrouds are significantly larger for 𝐶𝑀𝑍, 

for which average moment reductions of 53% and 29% appear for shrouds with square and 

diamond holes, respectively. 

The results show that strakes and, in particular, spoiler plates, increase the current loads 

on the TLP. On average, 𝐶𝐹𝑋 and 𝐶𝐹𝑌 present values of approximately 115% of the loads on 

the TLP alone. Additionally, 𝐶𝑀𝑍 presents values of approximately 142% and 130% of the 

loads on the TLP alone for the spoiler plates and strakes, respectively.  

 

 

Figure 7.17 Variation of 𝐶𝐹𝑋 with angle of attack for the TLP alone and with mitigation 

devices. 
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Figure 7.18 Variation of 𝐶𝐹𝑌 with angle of attack for the TLP alone and with mitigation 

devices. 

 

 

Figure 7.19 Variation of 𝐶𝑀𝑍 with angle of attack for the TLP alone and with mitigation 

devices. 

 

Therefore, based on this extensive study of VIM mitigation devices, it is clear that both 

aspects, the mitigation of motions and variations in drag forces, are independent. For 

instance, spoiler plates reduce the dynamic motions significantly and increase the drag 
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forces. Due to this fact, it is possible to conclude that there is not a direct relation between 

the average drag forces and current induced motions on the TLP. 

At this point, considering that mitigation devices do not modify the natural period of the 

system significantly and consequently, the devices do not prevent resonant motions. 

Additionally, an increase in drag forces does not imply an increase in the motions developed 

by the TLP. Hence, the reason that the spoiler plates present the best performance could be 

considered undetermined. However, there is a final consideration that must be incorporated 

into this analysis: the damping.  

As shown in Table 7.1, spoiler plates and both shrouds present high values of damping 

relative to that of the TLP alone. In addition, strakes present slightly lower values of damping 

than the TLP alone. Therefore, a direct correlation exists between the damping ratios and 

amplitudes of the motions of the TLP. The damping has shown to be the most relevant 

parameter in the mitigation of current induced motions.        

Finally, despite the excellent performance of spoiler plates in motion mitigation, shrouds 

seem to be the most efficient devices in terms of drag reduction and motion mitigation. Note 

that the four mitigation devices were defined following the general guidelines described in 

Section 7.3. Thus, further analysis for optimization of the geometrical parameters of the 

devices can be conducted. 
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CHAPTER VIII. CONCLUSIONS  

The present work examined the loads and motions induced by current and waves on the TLP-

TAD multi-body system. The extensive experimental and numerical studies presented represent an 

effort to improve the understanding of the dynamic behavior of such a complex system. Thus, the 

most relevant results and conclusions of this research are summarized in the following section. 

Furthermore, some suggestions for future works are included.  

 

8.1 WAVE-INDUCED LOADS AND MOTIONS 

The study of wave induced loads and motions on the multi-body system includes an 

analysis of the first and second-order loads using frequency and time domain approaches in 

single-body and multi-body simulations considering regular and irregular waves.     

The analysis of the first-order loads and RAOs indicates that there are not significant 

differences between the results obtained by the low-order and the higher-order panel methods 

when very fine grids are used. Furthermore, the higher-order method with coarse grids 

provides accurate results, and the low-order method requires a finer refinement on the body 

surfaces to provides reasonable accuracy, consequently, a longer processing time. Hence, 

higher-order method seems to be the most efficient in this type of analysis. 

The comparison of the first-order loads between the single-body case and several multi-

body cases reveals that the hydrodynamic coefficients of one floater are not affected by the 

presence of the other body. Consequently, the hydrodynamic interactions between the TLP 

and TAD are weak.  

Time domain simulations using regular waves have demonstrated that the RAOs of the 

system are not linear, i.e., the RAOs depend on the amplitude of the exciting waves. In 

addition, the comparison of RAOs between the single-body and multi-body cases reveals 

slightly higher variations than those predicted by the frequency domain analysis. Finally, for 

most of the cases, the frequency domain predictions were conservative.   
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Time domain simulations using irregular waves have shown that frequency domain 

predictions are relatively accurate in the range of elementary wave frequencies. However, 

the predictions of the frequency domain approach are not in strong agreement with the time 

domain results for low and high frequencies. Moreover, no significant differences were found 

between the motions of the floaters in the single-body and multi-body time domain 

simulations. Therefore, the weak coupling effects for linear wave loads are confirmed. 

In the analysis of second-order loads, the convergence between the direct and indirect 

method for low and high-frequency QTFs was achieved. The high-frequency QTFs are 

critical in terms of the body refinement and free surface discretization. In addition, the 

importance of the free surface has been confirmed for the high-frequency and the low-

frequency QTFs, i.e., QTFs computed without the free surface integral present significant 

differences from the results in which this integral is considered. Finally, the indirect method 

has shown to be the most efficient in terms of computational time without loss of accuracy. 

The comparison of QTFs between the single-body and multi-body simulations reveals 

significant hydrodynamic coupling effects, i.e., the differences between QTFs for the single-

body and multi-body cases are high, particularly for the low-frequency QTFs. 

In general, the predictions of the Newman approximation present poor agreement with 

the second-order QTFs. However, the analysis of the QTFs for a difference frequency equal 

to the natural frequency of the floaters shows that for the horizontal modes, the results of the 

Newman approximation are acceptable. Poor agreement is observed for the vertical modes. 

 Finally, two groups of time domain simulations were conducted. The first considers the 

low and high-frequency QTFs, whereas the second considers the Newman approximation for 

low-frequency QTFs and high-frequency QTFs were not computed. The results show that, 

for single-body cases, the differences between the two groups of simulations are minimal for 

the horizontal modes and relatively higher for the vertical modes, particularly for Pitch of 

the TLP. In contrast, the results for the multi-body cases reveal that the differences for 

horizontal modes are relatively higher and the differences for vertical modes. Therefore, 

based on these results it is recommended the use of the second-order QTFs in time 

simulations of the TLP-TAD multi-body system.    
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8.2 CURRENT LOADS 

The study of current loads is divided into two groups: the experimental and the numerical 

analysis. In the experimental analysis, the entire experimental apparatus was built and tested 

to accommodate the particular characteristics of the current channel of the LOC. This 

arrangement can be used in future investigations to measure current loads on any other 

floater. 

The results of the experimental tests reveal that the presence of the TAD does not affect 

the average current loads on the TLP. No significant differences were found for the cases, 

TLP alone, upstream, and downstream. Consequently, the shielding effects on the TLP loads 

due to the presence of the TAD are weak.  

The results for the TAD for a similar test campaign reveal that the differences between 

the loads on the TAD upstream and downstream are relatively significant. The loads on the 

TAD in downstream positions are, in general, lower.  

In general, for both floaters, the current load coefficients do not depend on the range of 

current velocities tested in the lab. In addition, the distance between the floaters has a minor 

impact on the current load coefficients in the multi-body cases. 

The frequency domain analysis of the current loads shows that the forces on the TLP 

present the largest portion of their energy in frequencies that are close to the natural 

frequencies of this floater. Consequently, resonance motions could be expected in VIM tests. 

Although the results for the TAD show that the current loads on this floater present the 

highest energy at frequencies lower than the natural frequencies, the difference is not 

significant enough to conclude that resonance motions on the TAD are not expected.  

The results of the extensive numerical analysis reveal that the differences in the Reynolds 

numbers and flow regimes between the model-scale and full-scale do not affect the average 

current loads on the TLP; the maximum difference is approximately 3%. In addition, the 

differences between full-scale and model-scale average loads on the TAD are slightly higher 

but never greater than 9%. Thus, scale effects are relatively small on the TAD as well.   

The numerical analysis of the model-scale considering the walls and bottom of the 

channel demonstrate that there are significant blockage effects on the average current loads 

on both floaters due to the walls. In general, the dependence on the current load coefficients 

on the current velocities is weak in the full-scale and model-scale simulations.  
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8.3 CURRENT INDUCED MOTIONS 

In the experimental analysis of the current induced motions on the TLP-TAD system, 

several contributions were made to the laboratory, such as the new experimental setup to test 

deep draft TLPs, semi-submersibles and multi-body systems.  

Despite the tremendous challenges in the use of ultra-reduced scale models, a reasonable 

accuracy in the calibration of the physical properties of the floater was achieved. In addition, 

despite some small margins of error, the natural periods and stiffness properties based on 

full-scale data from real platforms can be represented properly with reasonable accuracy.  

The influence of the current velocities and angles of attack on the behavior of the TLP 

was demonstrated. The TLP undergo Vortex Induced Motions (VIM) at 0°, however, at 45°, 

the trends of the motions correspond to Galloping Instabilities. Frequency domain analysis 

confirms these conclusions. 

The TAD does not present significant motions for the whole range of current velocities 

analyzed in this model test campaign. This finding confirms the influence of the column 

length of the floater on the amplitude of the motions, i.e., floaters with longer columns are 

more susceptible to VIM and Galloping.  

The analysis of the multi-body system without connection between the floaters reveals 

weak hydrodynamic coupling between the floaters. In general, the motions of the unit in a 

downstream position are slightly smaller. In contrast, the motions of the unit in an upstream 

position are slightly larger. In addition, as in the case of the average current load tests, the 

distance between the floaters has a marginal impact on the floater response, or at least it is 

challenging to establish a relationship between the distance between the floaters and the 

motion amplitude developed by the two floaters.  

Finally, the analysis of the multi-body system with the connection between the floaters 

reveals two interesting characteristics of the motions developed by the floaters. First, the 

hawser system modifies the behavior of the floaters significantly. Second, changes in the 

configuration of the hawser systems seem to have little impact on the motions of the floaters. 

In general, the TLP connected to the TAD develops considerably smaller motions. The 

mitigation is significantly larger for the case with the TLP downstream. In addition, the TAD 

develops considerably larger motions when connected to the TLP. The amplification is 

considerably larger for the case with the TAD downstream. 
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8.4 MITIGATION DEVICES 

The experimental test campaign with VIM mitigation devices demonstrated that the 

dynamic behavior of the TLP can be significantly modified due to the presence of small 

appendages on the hull. 

Decay tests show that the VIM mitigation devices do not alter the values of the natural 

periods of the TLP. In contrast, it is clear that these devices significantly modify the damping 

values.  

The VIM tests reveal that spoiler plates are the most efficient mitigation devices in terms 

of reducing the amplitude of the motions developed by the TLP. Surprisingly, strakes present 

poor behavior, while shrouds present an excellent performance. Note that, no significant 

differences arise in the behavior of the TLP between the two shrouds. 

The average current tests provide evidence that the presence of the VIM mitigation 

devices alters the average current loads on TLP. Thus, the spoiler plates and strakes present 

higher drag forces. In contrast, shrouds reduce the mean current loads.  

In general, no direct relationship appears between mean drag forces on the fixed TLP and 

the dynamic motions developed by the unit. That is, a reduction of drag does not imply that 

the amplitude of the motions must be smaller. Furthermore, the frequency domain analysis 

reveals that the VIM devices do not modify the frequency of the oscillations, nor do they not 

modify the natural periods of the TLP. Consequently, these devices do not prevent “lock-in.”  

Finally, the relationship between hydrodynamic damping generated by the mitigation 

devices and the amplitude of the motions developed by the TLP is clear. Therefore, based on 

these facts, it is possible to conclude that the damping is the most relevant parameter for the 

mitigation devices. 

 

8.5 RECOMMENDATIONS FOR FUTURE WORKS   

Although this thesis presents an extensive experimental and numerical analysis of the 

loads and motions induced by current and waves on the TLP-TAD multi-body system, there 

are many natural extensions of the present work, of which the following are suggested below.  

• The results of this research have proved that the Newman approximation provides 

accurate results only for horizontal modes with natural frequencies lower than 0.005 

Hz. Moreover, the Newman approximation presents poor results on vertical modes 
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of the TAD, and the omission of sum-frequency QTF implies underestimation on 

vertical modes of the TLP. Therefore, it is necessary to verify the impact of the 

second-order wave loads on the performance of the system and the mooring lines in 

operational and design phases using extreme seas and long-term fatigue analysis. 

• With additional computational tools, a study of the differences between the transient 

average current loads from experiments, transient average current loads from 

numerical simulations and steady-state average current loads from numerical 

simulations could be performed to estimate the accuracy of the steady-state 

simulations.   

• The VIM tests have shown that the mechanical connection has a tremendous impact 

on the system dynamic behavior of the system. The TAD develops very high 

amplitude when it is connected to the TLP. Consequently. A study to develop an 

alternative to the hawser system that can improve the dynamic behavior of the 

connected floaters is necessary to optimize the TLP-TAD multi-body system. 

• Results of VIM tests have shown the strong influence of the current angles of attack, 

current velocity, column size of the floaters, the damping, and the mechanical 

connection between the floaters on the dynamic behavior of the multi-body system 

subject to currents. However, as mentioned in Section 2.6, the effects of waves 

combined with currents can modify the VIM motions significantly. Consequently, 

these effects could be investigated in future works.  

• With the aim of mitigating the motions developed by the TLP in current, four 

mitigation devices were tested. Three of them present excellent results in terms of 

mitigation of the motions and drag forces. At this point, it is important to understand 

how the parameter of each mitigation devices can modify the VIM behavior of the 

platform to further optimizations 
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Appendix A  

Rather than limiting the analysis to six degrees of freedom for each floating body, modal 

analysis of the TLP tendons and TAD moored lines were performed. Three cases were analyzed: 

TLP alone, TAD alone and TLP-TAD connected by the hawser system presented in Section 3.3. 

For the TLP alone, tendon mode shapes were calculated analytically with the formulations 

described below.  

Eqn. (A.1) gives the natural frequencies f𝑛 𝑇𝑅𝐴𝑁𝑆
 of the transversal n-th shape mode of 

tensioned beams. This equation [81] originally developed for dry tensioned beams, was modified 

to include the added mass term.   

f𝑛 𝑇𝑅𝐴𝑁𝑆
=

𝑛2 ∙ 𝜋

2 ∙ 𝐿2
√1 +

𝑇 ∙ 𝐿

𝐸 ∙ 𝐼 ∙ 𝑛2 ∙ 𝜋2
√

𝐸 ∙ 𝐼

𝑀 + 𝐴
 (A.1) 

where 𝑛 is the n-th shape mode, L is the tendon length, 𝑇 is the pre-tension in the tendons, 𝐸 is the 

Young modulus of the tendons, 𝑀 is the tendon mass per unit length, 𝐴 is the added mass per unit 

length that Eqn. (A.2) approximates, and 𝐼 is the area moment of inertia calculated with Eqn. (A.3).  

𝐴 = ρ ∙ 𝜋 ∙ (
𝑂𝐷

2
)

2

 (A.2) 

𝐼 =
𝜋

64
∙ (𝑂𝐷4 − 𝐼𝐷4) (A.3) 

where OD and ID are the outer and inner diameters, respectively.  

The numerical results were calculated using Orcaflex software. For the TAD alone and TLP-

TAD multi-body system, only the numerical approach was used. Figure A.1 presents the natural 

periods of the first 20 modes of the TLP tendons and TAD moored lines. 

Note that, the T-Analytical and T-FEM curves are the results of the TLP tendons analysis, all 

the tendons present the same behavior. The MR1-FEM, MR2-FEM, MR3-FEM, and MR4-FEM 

curves are the results of the analysis of the TAD moored lines.  

Figure A.2 presents the results for the TLP-TAD coupled system. The T1, T2, T3 and T4 curves 

represent the results for the TLP tendons. Note that, tendons that are symmetrical about XZ- plane 
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have the same behavior. The MR1, MR2, MR3 and MR4 curves present the results for the TAD 

moored lines. 

 

 

Figure A.1 Natural periods of the mode shapes of the TLP tendons and TAD moored lines. 

 

 

Figure A.2 Natural periods of the mode shapes of TLP tendons and TAD moored lines when the 

TLP and TAD are connected.   

 

From these results, the following conclusions are reached: 

▪ Numerical and analytical approaches present similar results. Moreover, the natural periods of 

the mode shapes for the TLP tendons present the same values for TLP alone and coupled TLP-

TAD cases. 
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▪ The natural periods of the mode shapes of the TAD moored lines are slightly higher when the 

TAD is connected to the TLP.   

▪ The range of the natural periods of the mode shapes of the TLP tendons and moored lines 

includes typical frequencies of random seas. However, the wave loads on moored lines are 

relatively small and affect only the section close to the free surface.  

▪ Tendons and moored lines typically undergo current loads, and they are susceptible to vortex 

resonance (i.e., VIV). A structure develops vortex resonance if its natural frequency coincides 

with the vortex-shedding frequency given by Eqn. (A.4). 

 

𝑓𝑆 =
𝑆𝑡 ∙ 𝑉

𝐷
 (A.4) 

where 𝑆𝑡 is the Strouhal number. Typically, the value of St is assumed to be 0.2 for a circular 

cylinder, 𝑉 is the free stream current velocity, and 𝐷 is the structure diameter. Figure A.3 presents 

the vortex-shedding period for the TLP tendons and TAD moored lines, considering a uniform 

velocity profile. 

 

 

Figure A.3 vortex-shedding period for TLP tendons and TAD moored lines 

 

Although this analysis contains important assumptions, it shows that the TLP tendons and, to 

a lesser degree, the TAD moored lines are susceptible to VIV. This problem requires a deeper 

analysis that is nevertheless outside of the scope of the present work. 



 

234 
 

 

 

 

Appendix B  

In addition to the experimental tests described in Chapters V, VI and VII, decay tests were 

performed for the TLP and TAD unit for single-body cases to investigate the viscous damping. 

From the recorded motion decay curves, the natural period and damping coefficients were 

derived. Two approximations to calculate the damping coefficients were considering, the linear 

damping method and the nonlinear damping method. Eqns. (B.1) and (B.2) present the analytical 

models considered in the analysis. Details of how to calculate the coefficients 𝐵, 𝐵1 and 𝐵2 can be 

found elsewhere [84]. 

𝐴𝑥̈ + 𝐵𝑥̇ + 𝐶𝑥 = 0 (B.1) 

𝐴𝑥̈ + 𝐵1𝑥̇ + 𝐵2|𝑥|𝑥 + 𝐶𝑥 = 0 (B.2) 

Figure B.1 (A) presents the results of the decay test for Sway of the TLP. In addition, the results 

of both approximations are depicted together. 

Despite some small differences, it is clear that the nonlinear damping is more consistent with 

the experimental data. Linear damping presents satisfactory results; however, some significant 

differences are observed in the range of [50 – 75] sec. 

Figure B.1 (B) presents the results of the decay test for Yaw of the TLP. In this case, it is 

evident that the differences between the two analytical approaches are slight and that both provide 

excellent results. Figure B.2 presents the results of the decay test for Heave and Roll of the TAD. 

In the case of Heave, either linear or quadratic coefficients satisfactory agreement with the 

experimental values. In the case of Roll, the nonlinear model provides accurate results. 

In summary, although the nonlinear damping method presents excellent results, requires 

further calculations and careful analysis to achieve the correct values of the coefficients 𝐵1and 𝐵2. 

The linear damping method seems to have reasonable accuracy, and it requires a simple analysis 

of the time series. Table B.1 presents the values of linear damping approximated from the 

experimental values for the 6 degrees of freedom of the TLP and TAD.        
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(A) (B) 

Figure B.1 Decay tests for the TLP (A) Sway (B) Yaw. 

Experimental results vs. linear and nonlinear damping approximations 

  

(A) (B) 

Figure B.2 Decay tests of the TAD for (A) Heave (B) Roll. 

Experimental results vs. linear and nonlinear damping approximations 

 

Table B.1 Linear damping values approximated from experimental decay tests. 

Mode TLP TAD 

Surge 6.65%  7.10% 

Sway 6.49% 6.20% 

Heave 3.17% 3.40% 

Roll 3.92% 3.35% 

Pitch 4.12% 2.51% 

Yaw 5.89% 3.74% 
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Appendix C  

 

Figure C.1 Ultra-reduced scale model of the TLP. 

 

 

Figure C.2 Ultra-reduced scale model of the TAD. 
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Shroud with square holes  Shroud with diamond holes 

  

Helicoidal strakes Spoiler plates 

Figure C.3 VIM Mitigation devices for the TLP. 
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Figure C.4 Current load tests for the TAD in single-body case. 

 

 

Figure C.5 Current load tests for the TAD Upstream in multi-body case. 
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Figure C.6 VIM test of the TLP. 

 

 
Figure C.7 VIM test of the TAD. 
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Figure C.8 VIM test of the TLP and TAD without a connection. 

 

 
Figure C.9 VIM test of the TLP and TAD with a hawser system. 

 

 


