
STRATIGRAPHIC SEDIMENTARY INVERSION USING PATHS IN GRAPHS

Alexandre Simões Raymond

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
de Sistemas e Computação, COPPE, da
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessários à obtenção do
título de Mestre em Engenharia de Sistemas e
Computação.

Orientador: Franklin de Lima Marquezino

Rio de Janeiro
Março de 2017

STRATIGRAPHIC SEDIMENTARY INVERSION USING PATHS IN GRAPHS

Alexandre Simões Raymond

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE
JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A
OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE
SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Franklin de Lima Marquezino, D.Sc.

Prof. Abílio Pereira de Lucena Filho, D.Sc.

Prof. Alexandre Antonio de Oliveira Lopes, D.Sc.

Prof. Raphael Carlos Santos Machado, D.Sc.

RIO DE JANEIRO, RJ – BRASIL
MARÇO DE 2017

Raymond, Alexandre Simões
Stratigraphic Sedimentary Inversion Using Paths in

Graphs/Alexandre Simões Raymond. – Rio de Janeiro:
UFRJ/COPPE, 2017.

XII, 61 p.: il.; 29, 7cm.
Orientador: Franklin de Lima Marquezino
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2017.
Bibliografia: p. 58 – 61.
1. Stratigraphy Inversion. 2. Paths in Graphs.

3. Algorithms. I. Marquezino, Franklin de Lima.
II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia de Sistemas e Computação. III.
Título.

iii

“An algorithm must be seen to be
believed.” - Donald Knuth

iv

Acknowledgements

This dissertation marks the end of a long period of an intense transformation. En-
rolling into this programme was a very enriching experience, and my perspective
regarding science grew from curiosity into profound admiration. Many hardships
were endured along the way, battles were fought and here I stand. There enters
a student, and now, there exits an aspiring member of the community. I would
like to thank the Federal University of Rio de Janeiro, the Systems Engineering
and Computer Science programme, the Algorithms and Combinatorics laboratory,
all the professors, professionals, and colleagues for providing the conditions to this
development.

I would like to thank Prof. Franklin Marquezino for all the invaluable dedication
and support throughout these years. He was a firm believer in what I could accom-
plish, even when I would question myself. There has never been a moment where
I could not count with his support and prompt assistance to any query during this
journey. I was his apprentice during this time, and I am glad that I made the right
choice. I believe that we make a great team together, and I am looking forward to
collaborating with him in the future, now as colleagues. I wholeheartedly express
my highest appreciation and gratitude for his work.

I would like to thank Prof. Alexandre Lopes for being the first person to believe
in my potential in the early stages of my career. We fought many battles together for
many years and his support was the groundwork for my professional and academic
development. Lopes vouched for my competence against the odds and placed high
stakes on it. I could not have reached new heights without his impulse, and therefore
I am very grateful for all his support.

I would like to give special thanks to Prof. Abílio Lucena for positively impacting
my academic life. My experience as his student at the Linear Programming course
has deeply transformed my perspective of education. Prof. Abílio is passionate
and sensible about the art of teaching, and together we managed to flip a difficult
situation into a strong success case. I will always remember the importance of that
act and carry on this learning to my future academic life. Without his support, this
study could not have been possible. I hope that this work makes him proud and
serves as some kind of retribution.

v

I would like to thank José Wilson Pinto, Diego Nicodemos, Ana Luísa Carvalho,
and Filipe Cabral (sorted in ascending order of length of homework lists), also known
as the “Algorithms ∨ Combinatorics” study group, for being the best colleagues and
friends I could have inside the university. We have constantly saved each other’s
lives, and I believe that our companionship made the whole challenge of academia
worth enduring. My transformation and newfound admiration for the Mathematical
Sciences is largely due to our time studying together.

I think that “friendship” fails to describe how precious our relationship is, but I
cannot express in other words how much I would like to thank my lifetime partners
André Sobral, Wagner Reck, Willian Pessoa, Adriana Buzzacchi, Priscila Faria, and
Marcelle Magalhães for holding my back (literally) during hard times and being
genuinely happy for my accomplishments. You all held me on your arms after I
survived a dangerous surgery, took good care of me, and I hope to always make you
proud. Our moments together have shown me that a family need not be bloodbound,
and that I am one of the luckiest people alive for having you all around.

I would like to thank all my best friends and family for all the encouragement
during these academic years. Naming them is beyond the scope of this work, but
their support was precious and much appreciated.

I would like to thank the team at PetroSoft for supporting and contributing to
my technical advancement throughout these years.

Lastly, I would like to thank the person that deeply impacted my life and shaped
my character 12 years ago. With all my heart, I dedicate my life to her memory.

Love is eternal.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

INVERSÃO SEDIMENTAR ESTRATIGRÁFICA USANDO CAMINHOS EM
GRAFOS

Alexandre Simões Raymond

Março/2017

Orientador: Franklin de Lima Marquezino

Programa: Engenharia de Sistemas e Computação

O problema de Inversão Sedimentar Estratigráfica consiste em analisar quanti-
dades de dados sedimentos depositados em determinadas regiões em um espaço de-
posicional, calculando os volumes totais necessários para que os dados das amostras
possam ser igualados em uma simulação deposicional forward. Esse é um problema
central em geologia e exploração de petróleo. Tentativas de resolver esse problema
foram conduzidas na ótica de técnicas de otimização e abordagens de tentativa-e-
erro. Nós apresentamos um algoritmo de simulação forward deposicional utilizado
em indústrias de petróleo, além de uma nova abordagem para algoritmos de inversão
baseada em caminhos em grafos. Conjecturamos que este algoritmo gera resultados
exatos quando há pelo menos uma solução disponível, ao invés de soluções aproxi-
madas. Nós demonstramos uma execução do algoritmo em detalhes. Resultados são
discutidos e futuros desenvolvimentos e extensões deste trabalho são sugeridas.

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

STRATIGRAPHIC SEDIMENTARY INVERSION USING PATHS IN GRAPHS

Alexandre Simões Raymond

March/2017

Advisor: Franklin de Lima Marquezino

Department: Systems Engineering and Computer Science

The problem of Stratigraphic Sedimentary Inversion consists of analysing quan-
tities of given sediments deposited in sampled regions of a depositional space and
calculating the total volumes that are necessary to match the sampled data in a
forward depositional simulation. This is a central problem in geology and oil ex-
ploration. Attempts to solve this problem were driven in the optics of optimisation
techniques and trial-and-error approaches. We present a forward depositional sim-
ulation algorithm used in oil industries and a new counterpart inversion algorithm
based on paths in graphs. It is conjectured that this algorithm can yield exact mea-
surements when at least one feasible solution is available, instead of approximated
solutions. We present a sample run of the algorithm in details. Results are discussed
and future developments and extensions of this work are suggested.

viii

Contents

List of Figures xi

List of Tables xii

1 Introduction 1

2 Fundamentals 3
2.1 Geology Background . 3

2.1.1 Sedimentology . 3
2.1.2 Stratigraphy . 4
2.1.3 Sedimentary Transport . 7
2.1.4 Eustasy . 8

2.2 Graph Theory . 9
2.3 Forward and Backward Simulations 11

3 A Review of Stratigraphic Simulation Methods 14
3.1 Forward Stratigraphic Simulation . 14
3.2 Stratigraphic Inversion . 16

4 An Algorithm for Forward Stratigraphic Simulation 19
4.1 Algorithm Input . 20

4.1.1 Vertices . 20
4.1.2 Flow Configuration . 20

4.2 Deposition . 21
4.3 Sediment Spread . 22
4.4 Considerations . 25

5 A New Backward Simulation Algorithm 27
5.1 Core Concepts . 28

5.1.1 Path Restrictions . 28
5.1.2 Spread Restrictions . 29
5.1.3 Visitor Lists . 29

ix

5.1.4 Initial Vertex and Traversal Order 30
5.1.5 Step Traversal . 30
5.1.6 Auxiliary Visitors . 31
5.1.7 Spread Locks . 31
5.1.8 Continuation Locks . 31
5.1.9 Demand readjustment and feasibility validation 31

5.2 A Thorough Run of the Algorithm 32
5.2.1 Input Data . 32
5.2.2 Visitor List . 36
5.2.3 Initial Vertex . 37
5.2.4 Step Traversal for w1 . 38
5.2.5 Auxiliary Visitors for w1 . 42
5.2.6 Demand readjustment and feasibility for w1 43
5.2.7 Results for w1 . 43
5.2.8 Step traversal for w2 . 44
5.2.9 Auxiliary Visitors for w2 . 45
5.2.10 Demand readjustment and feasibility for w2 46
5.2.11 Results for w2 . 47
5.2.12 Step traversal for w3 . 47
5.2.13 Results for w3 . 49
5.2.14 Final results . 49

5.3 Result Verification . 50
5.3.1 Forward w1 run . 50
5.3.2 Forward w2 run . 52
5.3.3 Forward w3 run . 52

5.4 Complexity Estimate . 53

6 Conclusion and Future Directions 55

Bibliography 58

x

List of Figures

2.1 Stratigraphic column with visible different depositional episodes. p . 6
2.2 Chalk (carbonate) layers deposited horizontally. p 6
2.3 Laterally continuous layers separated by an erosional feature. p . . . 7
2.4 The Hjulström curve. 7
2.5 Representations of flow types: a) Laminar flow. b) Turbulent flow. . . 8
2.6 King’s Graph with m = 4 and n = 4. 10
2.7 Hamiltonian cycles with even and odd m values. 12
2.8 3D depositional surface with m = 80 and n = 50. 12

4.1 Bathymetry and the associated capacity of v. 20
4.2 N(v, 2) immediate Moore neighbourhood, defined as input up to d = 1. 22
4.3 First neighbour is visited. All adjacent cells are added to N 23
4.4 Second neighbour is visited. All adjacent cells are added to N 23
4.5 Third neighbour is visited. All adjacent cells are added to N 23
4.6 Fourth neighbour is visited. All adjacent cells are added to N 24
4.7 Fifth neighbour is visited. All adjacent cells are added to N 24
4.8 Sixth neighbour is visited. All adjacent cells are added to N 24
4.9 Seventh neighbour is visited. All adjacent cells are added to N 25
4.10 The process repeats itself until the neighbourhood N(v, 2) is totally

filled. 25

5.1 3D depositional surface. 28
5.2 Sample depositional grid. 34
5.3 Sample depositional grid with streamlines s1, s2, and s3. 34
5.4 Path Steps of s1, s2, and s3. 35
5.5 Restrictions R(v2,4), R(v3,2), and R(v3,4 and their respective demands. 35
5.6 N(v, 2) immediate Moore neighbourhood, defined as input up to d =

1. v has d = 0. 36
5.7 Visitors at v2,2. 40
5.8 Growth of a Moore Neighbourhood N(v, z + 1) 54

xi

List of Tables

2.1 Clastic grain sizes and their associated rock types. 4

xii

Chapter 1

Introduction

The exploration and transformation of resources have always been one of the foun-
dations for the development of mankind. Technological prowess granted humans
the ability and the ever-increasing necessity to probe Earth’s sources in all king-
doms of its Systema Naturæ [1]. Mineral resources played a central role in human
advancement, through the mastery of materials such as iron, steel, coal, fossil fuel,
and silicon.

Ergo, the inquisitive nature of humankind coupled with the eagerness for new
means of development spurred the research of Earth sciences, in order to unravel
the mechanisms after well-defined coherent models of nature. The science of geology
ensued this urgency and yielded a deep scrutiny at the ontogeny of our home planet.

Transistors and Turing machines became the ultimate tool to harvest the popu-
lation of what is arguably the fourth missing kingdom in [1]: Regnum Informatio1.
Our updated understanding of nature linked with a new reality of quantifiable in-
formation originated digital representations of our physical world.

Albeit diverse, most digital portrayals of reality are profoundly limited by the
boundaries of computability and available processing power. For this reason, our
understanding of many natural systems is still narrow as to encompass its full com-
plexity. Notwithstanding that, the contributions are still valid and can extend our
available knowledge of the agencies of nature.

This dissertation is presented as the culmination of the studies of a Theoreti-
cal Computer Science student collaborating amongst the Geosciences’ research and
development team of a major oil company in Brazil.

The team was presented with the challenge of constructing a stratigraphic sim-
ulator to be applied in survey and exploration efforts. Spanning several years, the
ongoing development of this tool enabled many different studies and applications on
the improvement of geological analysis.

1The Kingdom of Information - free translation.

1

Drilling wells in deep waters can cost up to 50 million dollars for a single attempt,
and the failure rate is significant enough to cause an important loss of investment in
case the targeted area was not analysed correctly. The cost of developing multiple
computational teams and funding research is, in many cases, lower than the cost
of a single missed well. Thus, if research and development can save at least one
instance of a deep water perforation from failure, the investment is already paid off.

However, in a competitive field for the world’s most valuable resource, technology
is well-kept and protected from prying eyes. Hence this work situates itself within a
narrow, conceded exclusion zone of industrial secrecy. Some other developments and
accomplishments were kept out of this work due to the risk of sensitive intellectual
property breaches. Many systems and papers associated with the industry present
their accomplishments exclusively in higher-level approaches, either because those
systems possess very high complexities or for the very reason of maintaining certain
results as easy to demonstrate, but hard to reproduce [2–4].

We present a novel, authorial, detailed, and low-level approach to the problem of
stratigraphic inversion, departing from comprehensively different techniques, such
as traversing paths in graphs, rather than ordinary optimisation methods. This
dissertation does not make strong claims as to the applicability of these methods
in current systems, despite providing a very well-defined algorithm that may be
reproduced at diligence. It is noteworthy that the algorithms presented are stripped
of many implementation details that could vastly extend beyond the scope of this
work.

Chapter 2 covers the theoretical background required to understand this disser-
tation in full. Chapter 3 follows with a concise review of the efforts driven towards
stratigraphic simulation and inversion. An algorithm for forward stratigraphic sim-
ulation encompassing sediment transfer is presented in Chapter 4, alongside the
terminology chosen to represent new concepts in this work. The inversion algorithm
is presented in Chapter 5, accompanying a thorough, detailed example run to illus-
trate the concepts explained. Chapter 6 presents our final considerations and the
possibilities of future studies related to the topic.

2

Chapter 2

Fundamentals

2.1 Geology Background
In order to fully comprehend the geological background beneath the motivations for
this study, we present an overview of the current literature. In-depth explanations
can be found in the present bibliography. [5]

2.1.1 Sedimentology

The study of sediments and the processes regarding their distribution and deposition
is called sedimentology. Several different factors play a key role on the formation of
sedimentary structures. Physical, chemical and biological processes are constantly
studied and observed by sedimentologists. In this study, we will focus only on the
physical aspects of sedimentology.

Sedimentation is the process of accumulation after precipitation of mineral or
organic matter on a given surface. Constant accumulation under pressure may lead
settled particles to crack and form sedimentary rocks. Those can be divided in three
primary types:

Carbonates: Composed of minerals containing the carbonate ion (CO3
2−), car-

bonate rocks are sedimentary rocks that can be dissolved or precipitated by
groundwater, depending on factors such as pH or temperature. The two main
types of Carbonate rocks are limestone and dolostone.

Evaporites: Mineral sediments accumulated by chemical processes and precipita-
tion. Sea salt is an example of an evaporite sedimentary rock. Evaporites
are soluble in water, and tend to precipitate in high-concentration, saturated
water bodies. The water evaporation leads to a higher concentration of salts
in the water body, until saturation is reached and precipitation begins. The
Dead Sea is an example of an evaporite depositional environment.

3

Size Aggregate Rock
256mm Boulder Boulder conglomerate
64mm Cobble Cobble conglomerate
4mm Pebble Pebble conglomerate
2mm Granule Granule conglomerate
1mm Very coarse sand Very coarse sandstone
1/2mm Coarse sand Coarse sandstone
1/4mm Medium sand Medium sandstone
1/8mm Fine sand Fine sandstone
1/16mm Very fine sand Very fine sandstone
1/256mm Silt Siltstone
< 1/256mm Clay Claystone

Table 2.1: Clastic grain sizes and their associated rock types.

Clastic: Composed of other minerals and rocks fragmented by weathering or ero-
sion. Clastic sediments are transported by physical processes and accumulated
in a low-energy environment. For example, a river flow transporting debris
and fragments of rocks will eventually settle in the ocean, if the velocity is
low enough. The term siliciclastic is used to denominate noncarbonate clastic
rocks that contain silicon in its composition, such as sand, silt or clay(mud).
Siliciclastic sediments will be the focus of this study. Clastic sediments can be
classified based on grain size, as seen in Tab. 2.1. [6]

2.1.2 Stratigraphy

Over time, sedimentation processes or other geological happenstances (such as vol-
canism) lead to the formation of rock layers, or strata. The study of rock layers is
called stratigraphy. It is important to point the scale difference between sedimen-
tology and stratigraphy. Whilst the former deals with particles and the detailed
composition of sediments, the latter deals with sediments in a widely manner, treat-
ing whole strata as the atomic units of study. Minor generalisations may apply.

Studies in stratigraphy can be categorised regarding the approach taken to their
basic units. Lithostratigraphy interprets and correlates physical aspects of rocks
(lithologies) and direct relationships between strata, not considering any chronolog-
ical properties within deposition or accumulation. A sole approach on lithostratig-
raphy ignores breaks caused by unconformities, and can lead to mistakes such as
correlating two similar lithologies that may have been deposited in very different
depositional episodes.

Allostratigraphy is a complement of lithostratigraphy. An allostratigraphical
unit is a sedimentary body defined by its bounding unconformities and discontinu-
ities. The sedimentary section is mapped with time significance, often associated

4

with discontinuous surfaces [7].
Biostratigraphy is strongly associated with paleontology, and is also called pa-

leontologic stratigraphy. Its main focus is to correlate fossil evidence within rock
layers in outspread locations. Biological material within rocks are useful to corre-
late and determine their relative age. Biostratigraphic studies played a central role
on the development of the geological time scale [5]. There are also narrower fields
of study whose specialisations are hinted by prefixes, such as chemostratigraphy,
magnetostratigraphy, seismic stratigraphy, and chronostratigraphy [8].

The Principles of Steno

In 1669, Nicolas Steno, a Danish scientist, formulated rules after his observation of
rocks and encompassed solids. These observations became the defining basis for the
science of stratigraphy [9].

Principle of Superposition: “At the time when any given stratum was being
formed, all the matter resting upon it was fluid, and, therefore, at the time
when the lower stratum was being formed, none of the upper strata existed.”

This principle is valid to most stratigraphic analyses. Different strata are
stacked with younger ones on top (see Figure 2.1). Some exceptions apply to
this rule, such as tectonic faulting or older layers collapsing.

Principle of Original Horizontality: “(...) strata either perpendicular to the
horizon or inclined to it, were at one time parallel to the horizon.” Layers
of sediment are deposited horizontally due to gravity (see Figure 2.2). Other
forces or processes may lead to further deformations. This principle led to the
development of the plate tectonics theory.

Principle of Lateral Continuity: “Materials forming any stratum were continu-
ous over the surface of the Earth unless some other solid bodies stood in the
way.” This principle states that layers of sediment are extended laterally until
their continuity is broken by some other acting process, such as erosion or
orogenetic movements, for example (see figure 2.3). The lateral extension of
a layer is determined by the amount and composition of sediments deposited,
along with spatial limitations from the sedimentary basin.

Principle of Cross-Cutting Relationships “If a body or discontinuity cuts
across a stratum, it must have formed after that stratum.” Generally speaking,
cross-cutting relationships are those where a body cuts through or penetrates
pre-existing rocks, such as fractures, faults, or even volcanic intrusions. Since
the previously cited principles state that strata are deposited horizontally and

5

Figure 2.1: Stratigraphic column with visible different depositional episodes. p

Figure 2.2: Chalk (carbonate) layers deposited horizontally. p

are laterally continuous, any event that proceeds to penetrate or disrupt the
original horizontality or lateral continuity must be a later episode regarding
the formation of any sedimentary layers.

6

Figure 2.3: Laterally continuous layers separated by an erosional feature. p

2.1.3 Sedimentary Transport

The formation of sedimentary layers depends heavily on a supply of depositional
matter. Most sediments are transported by air or water currents, and deposited in
low-energy environments. A Swedish geographer named Filip Hjulström devised a
curve that described the thresholds for erosion and deposition of particles in wa-
ter [10].

Figure 2.4: The Hjulström curve.

The Hjulström curve (see 2.4) indicates the velocity required to transport or
erode particles, depending on their grain size (see table 2.1). If the stream velocity
is too low, particles will be deposited. If the stream velocity is too high, previously
deposited particles will be removed from the surface and dragged along the current
(erosion). Intermediate velocities will transport suspended particles, but not erode
the sedimentary surface.

Particle transport is not continuous. Fast, strong currents may deposit gravel,
while keeping sands and mud in suspension. If the current weakens and decelerates,

7

a layer of sand will be deposited on top of the gravel. If it stops completely, a layer
of mud (silt and/or clay) will be deposited on top of the sand layer.

The physics of fluid dynamics are the ruling mechanism for understanding the
behaviour of currents and streams [11]. An useful representation of fluid flow is
through the concept of streamlines. A laminar flow is a type of fluid motion where
the streamlines are parallel, and do not intersect paths. A stream of rain water
running over a gutter is an example of laminar flow. Turbulent flow, on the other
hand, has a chaotic movement pattern, with streamlines crossing their paths and
forming spirals and whirls (see Figure 2.5).

Figure 2.5: Representations of flow types: a) Laminar flow. b) Turbulent flow.

2.1.4 Eustasy

Sea level is not constant in geological history [12]. Most sedimentary structures
present in continental bodies were, at one given point of time, within a water body.
It is important to point out the sea level variation in a stratigraphic setting, so that
depositional environments can be correctly identified and timestamped accordingly.

Local measurements of sea level, such as those regarding a land benchmark, are
not precise enough to indicate global tendencies, as a local setting may be affected
for extraneous factors, such as tectonism or all sorts of faulting.

Long term, global sea level changes are also called eustatic changes [13]. It is
strongly related to global climate change, and is mostly controlled by the ratio of

8

ice to water in the planet. Colder periods indicate a strong glaciation, and the
volume of ocean water is diminished by the increase of frozen bodies. Analogously,
the transition to hotter periods causes the melting of global icecaps, thus raising the
sea level.

Eustatic sea level measurements are also dependent on benchmarks. However,
differently from local sea level measurements, eustatic changes take global references,
such as the centre of the Earth or an orbiting satellite.

“It is impossible to determine the size of the variations in eustatic
position that occurred during deposition sedimentary section. This is
because of the position of the sea varies as a function of eustasy, tec-
tonic behavior and sedimentary fill. It can be demonstrated that if the
size of two of the variables are specified then third can be established.
This presents a problem since the sizes of all three of these variables are
unknown. The solution chosen by most earth scientists is to assume a
‘reasonable’ size for two of the three variables and solve for the third.”
[14]

2.2 Graph Theory
Graph Theory is the study of graphs, a mathematical structure used to describe and
model connectivity between objects.

Definition 2.2.1 (Graph). A graph G is an ordered pair G = (V,E), where V

denotes a set of vertices, and E denotes a set of edges. Every element of E represents
a pair of elements in V .

Definition 2.2.2 (Undirected Graph). If there is no special ordering for every pair
described by the elements of E, we may denote G as undirected. Else, the graph is
named a directed graph or digraph.

Definition 2.2.3 (Simple Graph). If the elements of E are all distinct, we denote
G as a simple graph. Else, if E has repeated edges, the graph is named a multigraph.

In this dissertation, we may assume graph as a simple undirected graph for con-
venience.

Definition 2.2.4 (Chebyshev Distance). Chebyshev distance is a metric defined
on a vector space where the distance between two vectors is the greatest of their
differences along any coordinate dimension. [15] Let M1 = (A1, d1) and M2 =

9

(A2, d2) be metric spaces. Let A1 ×A2 be the cartesian product of A1 and A2. The
Chebyshev distance on A1 × A2 is defined as

d∞ (x, y) := max {d1 (x1, y1) , d2 (x2, y2)} (2.1)

where x = (x1, x2) , y = (y1, y2) ∈ A1 × A2.

Definition 2.2.5 (Moore Neighbourhood). The Moore neighbourhood of a point is
defined as the set of points at a Chebyshev distance of 1. [16]

We proceed to construct a graph considering grid cells as vertices. The neigh-
bourhood of any given vertex v is given by the Moore neighbourhood of v [17]. The
resulting graph is a King’s Graph [18].

Definition 2.2.6 (King’s Graph). The m × n King’s Graph is a graph with mn

vertices in which each vertex represents a square in an m× n chessboard, and each
edge corresponds to a legal move by a king.

Figure 2.6: King’s Graph with m = 4 and n = 4.

Theorem 2.2.1. Every (m,n)-King’s Graph with m ≥ 2 and n ≥ 2 is Hamiltonian
and biconnected.

Proof. Let G be an (m,n)-King’s Graph. We can construct a cycle using the fol-
lowing procedure. G is Hamiltonian if and only if there exists a Hamiltonian cycle

10

in G. It is trivial to find Hamiltonian cycles for m ≤ 3 and n ≤ 3. Suppose m is
even. We can construct a cycle using the following procedure

1. Start in vertex (1, 1) and move n− 1 steps right to vertex (1, n).

2. Move m− 1 steps downward to vertex (m,n).

3. Move n− 1 steps left to vertex (m, 1).

4. Move one step up to (m− 1, 1) and move n− 2 steps right to (m− 1, n− 1).

5. Move one step up to (m− 2, n− 1) and move n− 2 steps left to (m− 2, 1).

6. Since m is even, the two last steps can be repeated k = m/2 times, returning
to vertex (1, 1), closing the Hamiltonian cycle.

Suppose m is odd. We can construct a cycle using the following procedure.

1. Start in vertex (1, 1) and move n− 1 steps right to vertex (1, n).

2. Move m− 1 steps downward to vertex (m,n).

3. Move n− 1 steps left to vertex (m, 1).

4. Move one step up to (m− 1, 1) and move n− 2 steps right to (m− 1, n− 1).

5. Move one step up to (m− 2, n− 1) and move n− 2 steps left to (m− 2, 1).

6. Repeat steps 4 and 5 until the vertex (3, n− 1) is reached.

7. Move one step up to (2, n− 1) and move one step to the south-west diagonal
(3, n− 2). Repeat this step until (3, 1) is reached.

8. Move two steps up back to (1, 1), closing the Hamiltonian cycle.

We have proved that G is Hamiltonian. As proven by [19], all Hamiltonian graphs
are biconnected. Thus, G is biconnected.

2.3 Forward and Backward Simulations
In general terms, a simulation can be regarded as the replication or reproduction
of a process through a model of reality or a hypothetical model. The quality of
the simulation is directly related to the adequacy, correctness and precision of the
proposed model.

The very concept of computer simulation is inherently and conceptually attached
to the notion of automata. A simulation can be regarded as a relationship between

11

Figure 2.7: Hamiltonian cycles with even and odd m values.

Figure 2.8: 3D depositional surface with m = 80 and n = 50.

states a and a′ of a system, where a represents an input state and a′ represents the
state after the transition from the input space to the result state.

A more formal definition of types of simulation by the means of automata theory
can be found in [20]. We shall attempt to adapt, alter and simplify some of those
definitions in order to suit the scope of this work in its competence.

The relationship of states in a forward simulation is similar to a homomorphism
in automata theory.

The existence of a forward simulation from state A to state B is defined as
A≤FB.

Conceptually, backward simulations provide a way to a start state that would
generate the current end state from a forward simulation. Lynch et al. defines:

“In many respects, backward simulations are the dual of forward sim-
ulations. Whereas a forward simulation requires that some state in the
image of each start state should be a start state, a backward simula-
tion requires that all states in the image of a start state be start states.
Also, a forward simulation requires that forward steps in the source au-

12

tomaton can be simulated from related states in the target automaton,
whereas the corresponding condition for a backward simulation requires
that backward steps can be simulated. (...) From any given state, all
the possible histories are finite executions, whereas the possible futures
can be infinite.” [20]

The existence of a backward simulation from state A to state B is defined as
A≤BB.

We can extend these concepts to cover the notion of hybrid simulations - which
combine in a single relation both a forward and a backward simulation. We are
interested in the concept of backward-forward simulations.

We say that there is a backward-forward simulation between states B and A if
B≤BA and A≤FB.

In Chapters 4 and 5 we will present forward and backward simulation algorithms,
respectively. Section 5.2 contains a backward-forward simulation—defined as such
to conjecture that the backward method is capable of finding an adequate input
space that generates its original state.

13

Chapter 3

A Review of Stratigraphic
Simulation Methods

A large number of predictive science applications rely on simulations, especially
computational simulations. A concise simulation model must be able to reproduce
studied phenomena more efficiently than clear human observation and deduction. As
a very large number of factors and parameters operate on real-world systems, most
simulations are simplifications aiming to obtain predictive data under an expected
error threshold.

One may reproduce a scenario in an artificial system (i.e., a simulation) and
compare results with sampled data from the original system. If a clear relationship
between simulated and real data is to be found, then evidence suggests that the
simulation is accurate to the extent of its own produced information.

Forward simulations will be used to model events that happen forwardly in time.
We define input parameters and conditions for the simulator, which outputs an
outcome of such calculations. These data can represent a prediction over the initial
parameters.

Simulation is an important tool to study and address geological hypotheses. The
understanding of parameters and factors that lead to a certain scenario is crucial
for effective analyses of real world cases. The problem of sedimentary transport has
been addressed in several studies. [21] [22] [23] [24] Computational and numerical
simulations are widely used in geological research, yielding results in several fields,
such as geochemistry or sedimentology.

3.1 Forward Stratigraphic Simulation
Geological analysis and resource prospection in new regions often require an in-
depth knowledge of the ancient natural processes that took place millions of years

14

ago. The current setting of rock layers at large scales is studied through stratigraphic
phenomena.

Stratigraphic simulation software came to existence in the late 1980s, with Stan-
ford University’s SEDSIM [25]. The interest in computer-assisted simulation tech-
niques grew as geologists acknowledged the capabilities of simulation models being
developed along the years. [26]

Although unanimity among geologists regarding the effectiveness of comput-
erised stratigraphic simulation tools was hard to achieve in the early years, the
ever-increasing adoption of such methods urges the field for further developments
and improvements.

Most models for stratigraphic simulation work in a similar way, despite some
minor differences in approach and internal methods. [27] In general terms, users
input:

• The ”basement” surface (in 2D or 3D representations)

• Values for sea levels

• Sediment supply parameters

• Flow configurations, such as border velocities and sediment transport rules

Optional inputs can also be:

• Paleobathymetries1 as depositional limits

• Real-world well data for comparison

• Eustatic curves for dynamic sea level adjustment

• Wave base levels

• Erosion data

Combined with the rules of the forward stratigraphy simulator, these inputs pro-
duce an output state that contain varied outputs, depending on how each simulator
is structured. It is very common to encounter a distribution of sediments, variations
in eustasy, sediment compaction, tectonic and orogenetic movements, subsidence
etc.

1Paleobathymetry is the study of past underwater depths.

15

3.2 Stratigraphic Inversion
In 1987, Burton et al. reasoned [14] that stratigraphic inversion was impossible to
be carried out due to the complexity of the many variables involved in the process,
such as eustasy, tectonics and sediment transport. The main argument was the
non-uniqueness of possible states, which would render such a process impossible to
predict even with a well-defined forward model.

Two years later, Carron [28] and Fabre et al. [29] presented their first models
for stratigraphic inversion of seismic data. In what seemed to be the consideration
of [14] as a challenge for the community, more and more efforts to prove the actual
possibilities within the inversion and backward modelling of stratigraphic processes.

The year of 1991 introduced Lessenger et al. [30], a more complete model of
stratigraphic inversion. Lessenger encompassed several variables in their simpli-
fied forward stratigraphy simulator, and provided the inversion capabilities through
GLI2. Albeit a preliminary work, the extension of that study culminated in [32], a
definitive refutal for the claims in [14]. The claim that stratigraphic inversion is
feasible was accompanied by a more sophisticated method of forward simulation,
contemplating temporal and spatial distributions of stratigraphic surfaces and sedi-
mentation patterns atop synthetic basins. Inversion was accomplished by numerical
optimisation techniques, such as gradient descent methods.

Lessenger et al. established the theoretical possibility of inversion, but her prac-
tical methods were not at par with the demanding requirements of the exploration
industry. It is even suggested that a better algorithm for stratigraphic inversion
should be tested in their model. Conjointly, the expediency of stratigraphic in-
version drove the interest of industry and conferences in order to build accurate
stratigraphic simulators.

A solid attempt to provide such an algorithm surfaced in 1998, with Bornholdt et
al. [33]. The authors created a quasi-backward optimisation model for automatising
the input parameters in a forward stratigraphic model using genetic algorithms.
Granted the dissimilarities in approaches, our dissertation is very similar to this
work scope-wise.

The methods applied in Bornholdt et al. [33] are approximative heuristics, hence
the terminology quasi-backward. Fitness functions attempt to converge the variables
in the input space to the best possible distribution of lithologies alongside the basin.
In many cases, approximative solutions are sufficient for practical results.

It is worth recognising that most of the input data provided for real-world sim-
ulations are fairly noisy, imprecise, and incomplete. Geochronological information

2Generalised Linear Inversion [31].

16

extracted from samples have margins of error that span values beyond 1 Ma3. Sim-
ulating time steps that are orders of magnitude smaller than the margins of error of
their input data is considerably challenging, yet acceptable for evaluating broader
hypotheses and concepts.

Structuring and formalising the problem of stratigraphic inversion came with a
very influential paper by Lessenger et al. [34]. The definition of an inverse model
was established as:

1. Selecting a stratigraphic forward model;

2. Defining invertible mathematical abstractions that describe real stratigraphic
processes;

3. Transcribing the output data of the forward model into an optimisation-
friendly format;

4. Selecting an appropriate optimisation algorithm;

5. Binding previous steps into a stratigraphic inversion model.

Lessenger’s work was also able to provide accurate stratigraphic predictions on
real-world data, which can be presented as practical evidence of the claims made
in [32].

Significant developments on the subject can be seen in Sharma [35]. The ap-
proach of using different parameterisations for different time intervals provided an
extra insight on the coupling of different parameters. Source location and transport
coefficients indicated significant coupling in [36].

A more recent study by Falivene et al. [2] incorporated a full three-dimensional
stratigraphic inversion and further alterations to the optimisation models used in
previous works, such as Neighbourhood Algorithms [37].

It is critical to point out that the field of geological simulation is deeply covered
in industrial secrecy. Many of the more modern approaches to geological simulation
are protected under intellectual property of industries in the fields of energy and
resource exploration, mainly.

Moreover, it follows that some of the studies don’t disclose inner mechanisms
of their forward and backward models in sufficient detail for reproducing results;
alternatively, they refer to those topics in a higher level of abstraction, either to
preserve secrecy or to address purely the geological countenances—which might be
the relevant subject for their intended audience.

In Chapters 4 and 5 we are going to present a different abstraction for the
problem of stratigraphic simulation and sediment transfer. We choose to define our

3One million years.

17

forward model in terms of graph theory, and we shall provide an inversion algorithm
that aims to provide exact inversion values for sediment supply totals.

18

Chapter 4

An Algorithm for Forward
Stratigraphic Simulation

We present an algorithm used in the oil and gas industry for the simulation of
siliciclastic sediment transport in stratigraphic scales, originally devised by Lopes et
al. [38] [39] and adapted by the author. As stated, stratigraphic analyses are held in
lower resolution settings, with large models and discrete units that may span over
several hundred meters.

This algorithm aims to simulate the distribution of sediments in a basin over a
specific period of time. The process can be repeated multiple times for each new
period, or time step. It is important to point out that whilst the greater process
is associated with time, each time step is considered a discrete unit. There can be
steps of any granularity, but time is not counted inside the steps—it only progresses
discretely.

Many different sediments can be deposited in the same time step. Geologically,
sediment flow is commonly mixed and composed of different lithologies. However,
according to Figure 2.4, larger grains require more energy for transportation, there-
fore, deposit earlier than smaller grains. A simplified way to represent this property
is to run the deposition algorithm once for every sediment, in decreasing order of
grain size. Since multiple-sediment runs are essentially extra iterations of the algo-
rithm, we can assume, without loss of generality, that the algorithm for one sediment
described below is valid for every number of sediments, by running it one time for
every different sediment.

19

4.1 Algorithm Input

4.1.1 Vertices

The algorithm operates on a 3D depositional surface, given as input. Bathymetric1

data is used to construct the surface. The surface is then partitioned in |V | = m×n

vertices disposed in a regular grid. Real simulation instances may have over 250
thousand vertices.

Figure 4.1: Bathymetry and the associated capacity of v.

A 2-dimensional grid Vm×n of vertices represents the sedimentary cells vij ∈
V . We denote MAX(V) as the matrix of maximum capacities associated with V .
DEP (V) is the matrix of deposit amounts in every vertex vij.

Definition 4.1.1 (Vertex Capacity). The matrix of vertex capacities is defined as
CAP (V) = MAX(V)−DEP (V), where cap(vij) ≥ 0, ∀i ≤ m and ∀j ≤ n.

The neighbourhood model for the vertices is the Moore neighbourhood, as dis-
cussed in Section 2.2.

4.1.2 Flow Configuration

All deposited matter follows a given flow throughout the grid, visiting cells and
depositing amounts of sediment over them. Different modelling approaches in fluid
dynamics can be used to define the physics of flow for effective and reliable sim-
ulations. While this is an interesting topic that has provided several theses and
dissertations on the subject, it is not the focus of this work. We will consider all
flow calculations and mechanisms as a valid input to define our streamlines.

1Bathymetry is the underwater equivalent to hypsometry or topography.

20

Definition 4.1.2 (Path). A path is a finite sequence of edges between two vertices
u and v without including any vertex more than once.

Definition 4.1.3 (Streamline). A streamline si = {v1, v2, . . . , vn} ∈ S is a path
by which sediments will be transported and deposited. Different streamlines may
share vertices and edges, but their paths cannot be crossed in the current topolog-
ical representation of the graph. Every streamline si has an amount of sediments
sed(si) ≥ 0 associated to it.

Definition 4.1.4 (Path Step). The k-th vertex present in the path of si will be
denoted as si–k.

4.2 Deposition
Given the capacities of all vertices and a set S of streamlines with their associated
volumes, we can now proceed to the transport of sediments in the graph. Let smax

be the longest streamline available.
We describe, in general terms, the forward deposition algorithm below.

Algorithm 4.1 Forward deposition algorithm
for k in 1 to |smax| do

for every si ∈ S do
if k < |si| and dep(si) > 0 then

si visits the k-th vertex in the path.
Transfers sediment from sed(si) to the vertex in si–k.
deposit := min(sed(si), cap(si–k)
sed(si) := sed(si)− deposit
dep(si–k) := dep(si–k) + deposit
if sed(si) > 0 then

Sediment spread(si–k, sed(si))
end if

end if
end for

end for

Essentially, the algorithm visits the k-th vertex of every streamline, proceeds
to deposit the maximum amount possible (limited by the capacity of the vertex)
and then proceeds to the sediment spread procedure. After the sediment spread is
finished, it visits the next streamline, until all streamlines were visited at the k-th
round. It continues until all paths are fully visited or if there is no sediment left in
streamlines. The sediment spread procedure will be discussed in depth in 4.3.

21

4.3 Sediment Spread
Since this forward modelling aims to reproduce a physical phenomenon, some ap-
proximations are made in order to efficiently reproduce some of the aspects and
properties of sediment deposition and transport. Sediment has a tendency to spread
along its deposition site, and it is important to represent this in the simulation.

One way to do so is to make small depositions around the neighbouring cells of
the grid. The proportion of deposited sediments diminishes along with the distance
of the deposition centre in an exponential manner.

Definition 4.3.1 (Spread Radius). The spread radius r is the maximum Chebyshev
distance (2.2.4) where sediment spread takes place.

Let v be the deposition centre and N(v, r) the set of all neighbouring vertices at
a distance d < r. We define the maximum amount dep(u) spread to a given vertex
u ∈ N(v, r) as

dep(u) = cap(u) · f−d, (4.1)

where f is a constant used as the linear factor for the exponential decrease. For
example, if f = 4 and r = 3, all vertices at distance 1 from v would be able to
receive 1/4 of its current capacity, as 1/16 and 1/64 would be the limits for d = 2

and d = 3, respectively. A higher value of f would deposit smaller amounts in
neighbouring vertices, which allows for the desired calibration of spread behaviour.

However, sediment spread does not happen simultaneously for all vertices. All
the spread is done consecutively. The visiting order for sediment spread is well-
defined and can be given as input. This order considers in what sequence should the
immediate (d = 1) Moore neighbourhood be visited. Larger neighbourhoods can be
constructed using the procedure illustrated by Figures 4.2 to 4.10.

Figure 4.2: N(v, 2) immediate Moore neighbourhood, defined as input up to d = 1.

22

Figure 4.3: First neighbour is visited. All adjacent cells are added to N .

Figure 4.4: Second neighbour is visited. All adjacent cells are added to N .

Figure 4.5: Third neighbour is visited. All adjacent cells are added to N .

It is important to notice that any vertex u ∈ N(v, r) can only receive a maxi-
mum amount of dep(u). However, as dep(u) is a multiplication by a fraction of the
available space (exponentially related to the Chebyshev distance), for all d > 0, no
spread vertex will be completely filled by sediment spread. Thus, a vertex can only

23

Figure 4.6: Fourth neighbour is visited. All adjacent cells are added to N .

Figure 4.7: Fifth neighbour is visited. All adjacent cells are added to N .

Figure 4.8: Sixth neighbour is visited. All adjacent cells are added to N .

be topped by direct deposition.

24

Figure 4.9: Seventh neighbour is visited. All adjacent cells are added to N .

Figure 4.10: The process repeats itself until the neighbourhood N(v, 2) is totally
filled.

4.4 Considerations
As in most large-scale, low-resolution geological simulations, it is important to no-
tice that this algorithm is an extreme simplification of the real process, which is
inherently complex and still a target of many researchers and geologists. That said,
one can observe behaviours in specific cases that this algorithm will not correspond
to the physical reality of geological settings.

For instance, this forward approach disregards phenomena such as the alteration
of flow velocity throughout streamlines, which could cause sediment bypass (not
depositing in available vertices due to high sediment velocity) or erosion (actually
removing previously deposited sediment due to extreme sediment velocity). Also,
other odd behaviours might be seen, such as sediment from lower regions being
spread upwards, just because the vicinity criteria is not bounded by altitude.

One must point that, however precise the sedimentation simulator might be, it
can only be as good as its input data. Most sediment dating is carried through the

25

analysis of fossils, and those can have a margin of error as large as one million years.
Considering that most simulations are carried in steps smaller than the margin
of error of the input (hundred-thousand-year time steps, for example), it becomes
evident that even the most sophisticated algorithm would not produce an exact
geological representation of a given setting, mostly because the input data is rarely
precise enough.

That said, the simulator can still provide general and low-resolution results that
are satisfying to test or verify broad hypotheses for simulators. Users will work to
obtain tendencies and rough estimates, which can already debunk flawed assump-
tions, such as the impossibility of a certain sediment coming through a path, or
discovering a possible alternate source for a sediment.

26

Chapter 5

A New Backward Simulation
Algorithm

In summary, the greater steps of the forward algorithm are listed as:

1. Graph construction.

2. Definition of flow paths.

3. Establishment of sediment supply volumes.

4. Sediment transport and deposition.

These steps will simulate the deposition of sediments along a grid of cells of dif-
ferent capacities. Streamlines will be traversed and spread proportional capacities
to neighbouring vertices. A geologist might use the results from the forward algo-
rithm to test geological hypotheses. This sort of test is normally performed through
the comparison of expected results in vertices that contain real data extracted from
wells. We shall denote any such vertex as a restricted vertex.

However, adjusting initial parameters manually until restrictions are met is a
very thorough task. The forward algorithm is complex and not intuitive enough for
a user to make appropriate guesses in reasonable time. The average user may take
several days to manually find satisfiable initial parameters that meet the restrictions
(yet still with significant error rates).

This chapter aims to propose an algorithm that will perform a backward traversal
of the grid, starting from the restrictions. Vertices alongside the paths will add up
to the total demand of sediment. The overall demand for each streamline will be
obtained so that the forward algorithm, when set with the parameters found by the
backward algorithm, will match all restrictions in just one run (with no error). This
can greatly speed up analyses from geologists, making day-long manual trial-and-
error attempts become automated executions that takes minutes to perform.

27

We will consider the same abstractions and structures previously defined in Chap-
ter 4. The original implementation of the forward algorithm was not organised with
those abstractions. They were devised for the purpose of this study by the author,
and shall bear no distinctions from the original concept. Thereupon, the whole
concept of the algorithm arose from the author’s point of view whilst observing the
original problem structured in the means of graph theory.

5.1 Core Concepts
The basis of the inversion algorithm revolves on the concept of visitors.

A Visiting Step represents the unitary and indivisible step of the deposition
process.

Definition 5.1.1 (Visiting Step). A Visiting Step is the conjunction of a Path Step
with the associated spread index. It is written in the form si–k–e, or as a 3-tuple
(i, k, e), where i represents the i-th streamline si, k represents the k-th step in the
traversal of si, and e represents the e-th sediment spread step at si–k.

For a clearer understanding, Path Steps are illustrated in Figure 5.4, and some
Visiting Steps are shown in Figure 5.5 (dotted arrows). The spread index is the
same index referenced by the Moore neighbourhood (see Section 4.3), considering
the current Path Step as the centre of the sediment spread.

Figure 5.1: 3D depositional surface.

5.1.1 Path Restrictions

The earliest step of the inversion algorithm is the establishment of path restrictions.
This is a pre-processing step for the algorithm. Streamlines are traversed individ-
ually, from start to end, and if a restricted vertex is found in a given Path Step

28

during the traversal, all the following Path Steps will be marked with the heaviest
possible sediment found in the restricted vertex’s demand.

Path restrictions are necessary for two reasons:

• Simulations encompassing the inversion of different sediments must restrict
their paths in order to prevent heavier sediments to be deposited on top of
lighter sediments.

• Simulations with just one sediment and multiple restricted vertices may require
path restrictions in order to prevent overfilling of demands.

5.1.2 Spread Restrictions

Analogously to Section 5.1.1, heavier sediments cannot be deposited on top of lighter
sediments. Specifically, if a vertex has its demand fully satisfied but at incomplete
capacity, it is vulnerable to other visitors that may deposit extra amounts of sedi-
ment to top the remaining capacity totals. It is noteworthy that spread restrictions
are negligible in unrestricted vertices, yet very important on vertices where an exact
distribution of sediments must be matched.

Therefore, the algorithm ought to verify, for every Path Step visited, what visitors
have restricted sediment spread towards the vertex represented by the current Path
Step. This is done by verifying the heaviest possible sediment found topping the
restricted vertex’s demand, and comparing with the visitor’s spread sediment type.
If the sediment to be spread by the visitor is heavier than the heaviest possible
sediment at the restricted vertex, this visitor is removed from the visitor list for
that specific vertex, and a spread lock (5.1.7) is placed on the visitor’s Path Step.

5.1.3 Visitor Lists

Considering that streamlines are traversed iteratively, one step at a time, and with
spreading steps, most vertices will be visited more than once by neighbouring stream-
lines. More than one visit for the same streamline can occur in different steps, and
this phenomenon is normally associated with large spread radii or streamline ge-
ometries that may reach the same vertex in different spread steps. It is important
to stress that every Visitor List in each vertex will only have one entry per Path
Step.

In order to obtain Visitor Lists, it suffices to perform one run of the forward
algorithm, registering every visit in a queue inside each vertex. Therefore, each
vertex will contain its own Visitor List, i.e., a list of Path Steps that will proceed to
reach the said vertex in case there is enough sediment at the time of its traversal.

29

5.1.4 Initial Vertex and Traversal Order

One may utilise the same run of the algorithm above to register the order of visited
vertices. The initial vertex for the backward algorithm is the last restricted vertex
visited in the forward algorithm. Repeated instances of restricted vertices are not
considered for the definition of the initial vertex.

Choosing the appropriate initial vertex is very important for the correctness of
the algorithm. Extra sediment volumes, or insufficient amounts can be accounted
in case the initial vertex chosen is not correct.

The traversal order of the algorithm is the reversed order of visit from the forward
algorithm, starting from the initial vertex.

5.1.5 Step Traversal

The traversal starts from the initial vertex. Since the initial vertex is a restricted
vertex, there is a demand for sediments associated with it. The algorithm will then
attempt to fulfil this demand by requesting sediments from other Path Steps present
in its Visitor List.

It is noteworthy that non-direct sediment transfers are limited to the exponential
factor f−d associated with the decrease in distance during sediment spread. That
said, if the first visitor in the Visitor List has distance d from the current step u,
the maximum amount transferred cannot exceed cap(u) · f−d per step. Also, cap(u)
changes at every sediment transfer.

Proposition 5.1.5.1. A vertex can only be completely filled via direct transfer if
f > 1.

Proof. We define direct transfer as when a Path Step has distance 0 from the target
vertex. Suppose there is a vertex v that can be completely filled via non-direct
transfer {d ∈ Z≥0 | d > 0}. Since d ≥ 1 and f > 1, f−d is strictly less than 1.
Thus, cap(v) · f−d < cap(v). The vertex is not filled at the first visit by a non-direct
transfer. Repeating the steps, we denote capn(v) as the remaining capacity after the
n-th visit. If the n+1-th visit holds a non-direct transfer, the previous relationship
holds, and capn(v) ·f−d < capn(v). Therefore, v cannot ever be completely filled via
non-direct transfer for values of f greater than 1. Contradiction.

After the capacity (or demand) of the vertex is filled, the vertex is marked as
visited and the algorithm proceeds to the next vertex following the traversal order
defined in section 5.1.4.

30

5.1.6 Auxiliary Visitors

In order to adequately invert the sediment spread procedure described in 4.3, the
algorithm must account for other sediment transfers that occur between the start of
the spread and the target vertex.

An auxiliary visitor is a Path Step that transfers sediments to a non-target vertex
in a collateral manner. Auxiliary vertices are vertices that are not in the path of
any streamline, and thus can only be accessed by sediment spread.

It is crucial that all vertices that participate in the depositional process, either
auxiliary or not, are accounted for within the inversion algorithm. Otherwise, a
slight deviation or skipped vertex may contaminate the whole result afterwards.

5.1.7 Spread Locks

When multiple streamlines reach the same vertex, the visiting order must be du-
tifully followed, respecting the appropriate deposition priorities. However, when a
Path Step deposits the maximum capacity or demand for the target vertex before
subsequent Path Steps can deposit into the same vertex, a spread lock is placed on
all following Path Steps that visit the previously filled vertex.

Spread locks are necessary because:

• Only one Path Step is effectively going to fulfil the maximum capacity of a
vertex in the forward algorithm, thus, the spread event can only be triggered
by one visitor.

• The initial Visitor List does not consider which Path Step actually tops the
vertex capacity. This is calculated during step traversal.

• It should not be possible to demand spread quantities from Path Steps that
are not spreading, hence the necessity of a lock.

5.1.8 Continuation Locks

When a deposit takes place in a vertex where the restriction is met yet its capacity
is not fulfilled, all other visitors must be specifically disallowed to deposit in that
particular vertex. Therefore, all visitors that occur after a continuation lock are
flagged as not allowed, and their depositions cannot continue after that point, hence
the name continuation lock.

5.1.9 Demand readjustment and feasibility validation

Due to the topology of streamlines, there is a possibility that continuation or spread
locks are added after some otherwise illegal visit is accounted for that particular

31

vertex. In this case, it suffices to perform a single run per Path Step and rebalance
the demands according to which demands are disallowed or required. For example, if
a visit is deemed illegal at step k but registered in a previous step, the readjustment
should remove this visitor and all the subsequent others that might depend on it.

If this process can be carried without leaving any contradictions in the visitor
tables, it shows that the model is feasible and can produce a solution for the problem.
Otherwise, the backward algorithm is unable to provide a solution and might require
a change in the input parameters.

5.2 A Thorough Run of the Algorithm
In order to fully demonstrate the concepts listed in the previous sections, we will
perform a detailed run of an instance of the problem. The backward simulation
algorithm is presented in Algorithm 5.1.

5.2.1 Input Data

We will begin with a sample grid of size 4 ·4 = 16 vertices (Figure 5.2). The vertices
have the following capacities:

CAP =

cap(v1,1) cap(v1,2) cap(v1,3) cap(v1,4)

cap(v2,1) cap(v2,2) cap(v2,3) cap(v2,4)

cap(v3,1) cap(v3,2) cap(v3,3) cap(v3,4)

cap(v4,1) cap(v4,2) cap(v4,3) cap(v4,4)

and

CAP =

2400 3300 2000 2900

1000 3300 3200 1600

2800 3400 1600 2000

1500 1700 3300 1800

 .

We will define 3 streamlines for this instance (Figure 5.3). Their paths are:

s1 = {v1,1, v2,1, v2,2, v3,2, v4,2},

s2 = {v1,2, v2,2, v2,3, v3,3, v3,4},

and
s3 = {v1,4, v2,4, v3,4}.

32

Algorithm 5.1 Simplified Backward Simulation Algorithm
Build the Visitor Lists for all vertices (5.1.3)
Update all Path Restrictions (5.1.1)
Store the ordered list of Path Steps in P
for every si–k ∈ P do

Store the ordered list of visitors in Vis

Enforce spread restrictions (5.1.2) and remove restricted visitors from Vis

for every s′i–k′–j ∈ Vis do
d := Chebyshev Distance(si–k, s′i–k′)
Add the restriction demand to demand.
Add the spread demand from si–k to demand.
if si = s′i then

Add the overall stream demand to demand.
end if
demand := demand− deposited
if demand > 0 then

if cap(si–k) > 0 then
if demand < cap(si–k) · f−d OR j = 0 then

Add demand to the overall stream amount at si.
if j > 0 AND s′i–k′ has spread lock then

continue
end if
cap(si–k) := cap(si–k)− demand
Set si–k topped by s′i–k′–j

else
if si–k has spread lock (5.1.7) AND spread lock is not s′i–k′–j

then
continue

end if
deposit := cap(si–k) · f−d

Add deposit to fixed demand amount of s′i–k′

Set Auxiliary Demands(s′i–k′–j)
deposited := deposited+ deposit

end if
else

Add demand to the overall stream amount at si.
end if

end if
end for

end for
Add all auxiliary demands to the respective stream totals.

33

Algorithm 5.2 SET AUXILIARY DEMANDS(si–k–Ej)

r := maximum spread radius.
Create the spread neighbourhood of j items and radius r for si–k–j as in Fig-
ure 4.10 and store it in N .
for every spread step z ≤ j ∈ N do

d := Chebyshev Distance(si–k–z, si–k–j)
Add auxiliary visit to si–k–z with cap(si–k–z) · f−d demand.

end for
Set si–k as the Spread Lock for this vertex.

Figure 5.2: Sample depositional grid.

Figure 5.3: Sample depositional grid with streamlines s1, s2, and s3.

We will establish 3 restrictions within this grid. Our simulation will encompass
3 different sediments, named w1, w2, and w3, from coarser to finer. The backward
algorithm must be able to find the initial amounts for each streamline si in order to
match the required distribution of sediments at each restriction.

34

Figure 5.4: Path Steps of s1, s2, and s3.

The restrictions are defined as:

R(v2,4) = {800w1, 400w2, 400w3}

R(v3,2) = {1200w1, 1200w2}

R(v3,4) = {1500w3}

Figure 5.5: Restrictions R(v2,4), R(v3,2), and R(v3,4 and their respective demands.

For this example, we will assume the maximum spread radius (4.3.1) r = 1, and
the exponential decrease factor f = 4.

35

5.2.2 Visitor List

After the input data is established, we now proceed to build the list of visitors
at each step of the simulation. This is achieved by simulating a forward run of
all streamlines considering the maximum spread radius defined at the simulation.
Vertices that cannot be accessed are excluded from the visitor list. The spread
index of each visit will be listed under the according vertex. Index 0 represents
direct deposition (not limited by dep(u) = cap(u)× f−d, since d = 0.)

Figure 5.6: N(v, 2) immediate Moore neighbourhood, defined as input up to d = 1.
v has d = 0.

s1–1 : {v1,1
0

, v2,1
1

, v1,2
2

, v2,2
5

}

s2–1 : {v1,2
0

, v2,2
1

, v1,3
2

, v1,1
4

, v2,3
5

, v2,1
8

}

s3–1 : {v1,4
0

, v2,4
1

, v1,3
4

, v2,3
8

}

s1–2 : {v2,1
0

, v3,1
1

, v2,2
2

, v1,1
3

, v3,2
5

, v1,2
6

}

s2–2 : {v2,2
0

, v3,2
1

, v2,3
2

, v1,2
3

, v2,1
4

, v3,3
5

, v1,3
6

, v1,1
7

, v3,1
8

}

s3–2 : {v2,4
0

, v3,4
1

, v1,4
3

, v2,3
4

, v1,3
7

, v3,3
8

}

s1–3 : {v2,2
0

, v3,2
1

, v2,3
2

, v1,2
3

, v2,1
4

, v3,3
5

, v1,3
6

, v1,1
7

, v3,1
8

}

36

s2–3 : {v2,3
0

, v3,3
1

, v2,4
2

, v1,3
3

, v2,2
4

, v3,4
5

, v1,4
6

, v1,2
7

, v3,2
8

}

s3–3 : {v3,4
0

, v4,4
1

, v2,4
3

, v3,3
4

, v2,3
7

, v4,3
8

}

s1–4 : {v3,2
0

, v4,2
1

, v3,3
2

, v2,2
3

, v3,1
4

, v4,3
5

, v2,3
6

, v2,1
7

, v4,1
8

}

s2–4 : {v3,3
0

, v4,3
1

, v3,4
2

, v2,3
3

, v3,2
4

, v4,4
5

, v2,4
6

, v2,2
7

, v4,2
8

}

s1–5 : {v4,2
0

, v4,3
2

, v3,2
3

, v4,1
4

, v3,3
6

, v3,1
7

}

s2–5 : {v3,4
0

, v4,4
1

, v2,4
3

, v3,3
4

, v2,3
7

, v4,3
8

}

The notation si–k–e verbally represents ’the e-th spread of the k-th step of
streamline si. For instance, s2–2–5 represents the moment where s2–2 performs its
fifth spread step, reaching vertex v3,3.

5.2.3 Initial Vertex

The backward algorithm will be performed once for every sediment wi available.
Considering all zero-indexed visits from the previous step, we list:

v1,1
s1–1

, v1,2
s2–1

, v1,4
s3–1

, v2,1
s1–2

, v2,2
s2–2

, v2,4
s3–2

, v2,2
s1–3

, v2,3
s2–3

, v3,4
s3–3

, v3,2
s1–4

, v3,3
s2–4

, v4,2
s1–5

, v3,4
s2–5

Highlighting the vertices with w1 demands, we have:

v1,1
s1–1

, v1,2
s2–1

, v1,4
s3–1

, v2,1
s1–2

, v2,2
s2–2

, v2,4
s3–2

, v2,2
s1–3

, v2,3
s2–3

, v3,4
s3–3

, v3,2
s1–4

, v3,3
s2–4

, v4,2
s1–5

, v3,4
s2–5

The initial vertex is v3,2, starting at Path Step s1–4.
The backward traversal order for w1 inversion will be s1–4, s3–3, s2–3, s1–3, s3–2,

s2–2, s1–3, s3–1, s2–1, s1–1.
Highlighting the vertices with w2 demands, we have:

v1,1
s1–1

, v1,2
s2–1

, v1,4
s3–1

, v2,1
s1–2

, v2,2
s2–2

, v2,4
s3–2

, v2,2
s1–3

, v2,3
s2–3

, v3,4
s3–3

, v3,2
s1–4

, v3,3
s2–4

, v4,2
s1–5

, v3,4
s2–5

The initial vertex is v3,2, starting at Path Step s1–4.
The backward traversal order for w2 inversion will be s1–4, s3–3, s2–3, s1–3, s3–2,

s2–2, s1–3, s3–1, s2–1, s1–1,

37

Highlighting the vertices with w3 demands, we have:

v1,1
s1–1

, v1,2
s2–1

, v1,4
s3–1

, v2,1
s1–2

, v2,2
s2–2

, v2,4
s3–2

, v2,2
s1–3

, v2,3
s2–3

, v3,4
s3–3

, v3,2
s1–4

, v3,3
s2–4

, v4,2
s1–5

, v3,4
s2–5

The initial vertex is v3,4, starting at Path Step s3–3.
The backward traversal order for w3 inversion will be s1–4, s3–3, s2–3, s1–3, s3–2,

s2–2, s1–3, s3–1, s2–1, s1–1,

5.2.4 Step Traversal for w1

Step s1–4

The inversion starts at step s1–4, on vertex v3,2. This vertex is restricted and has a
demand of 1200w1 sediment units. Querying the visitor list, we can obtain the list
of visiting steps that reach v3,2:

Visitor Distance (d) Deposit
s1–2–5 1 dep1 := cap(v3,2)× f−d

s2–2–1 1 dep2 := (cap(v3,2)− dep1)× f−d

s2–3–8 1 dep3 := (cap(v3,2)−
∑2

i depi)× f−d

s1–4–0 0 dep4 := (cap(v3,2)−
∑3

i depi)

s2–4–4 1 dep3 := (cap(v3,2)−
∑4

i depi)× f−d

Total —— dep :=
∑

i depi

Replacing cap(v3,2) = 3400 and f = 4, we have:

Visitor Distance (d) Deposit
s1–2–5 1 dep1 := 850

s2–2–1 1 dep2 := 350 (1200w1 matched. Stop demands.)
s2–3–8 1 not allowed
s1–4–0 0 not allowed
s2–4–4 1 not allowed
Total —— dep := 1200w1

It only required 2 spread visitors to fulfil v3,2’s restriction requirements. Note
that since v3,2 is a restricted vertex, we do not aim to fill the whole capacity, but
instead satisfy the required amount. It is important to point out that s2–2–1 did not
use its full capacity to spread. This means that for all s2–2–e where e > 1, the spread
step will not be able to deposit any sediments to other vertices. Since the spread
mechanism is essentially sequential, depositing on subsequent vertices would require
s2–2–1 to use its maximum capacity, which would exceed the restriction values for

38

v3,2. To prevent this from happening, we will add a continuation lock to s2–2–1,
meaning that deposits are not allowed for any s2–k–e where k ≥ 2 and e > 1.

Step s3–3

This step has no demand of w1 and neither is an intermediary for other steps. We
will skip to the next step.

Step s2–3

Building up v2,3’s visitor list, we identify an intermediary step, meaning that this
demand must be fully satisfied in order to proceed to the final restriction.

Considering cap(v2,3) = 3200:

Visitor Distance (d) Deposit
s2–1–5 1 dep1 := 800 (required for s2–2–1 above).
s3–1–8 1 no demand
s2–2–2 1 locked (continuation lock at s2–2–1)
s3–2–4 1 no demand
s1–3–2 1 no demand
s2–3–0 0 locked (continuation lock at s2–2–1)
s3–3–7 1 no demand
s1–4–6 1 no demand
s2–4–3 1 locked (continuation lock at s2–2–1)
Total —— dep := 800w1

Step s1–3

Building up v2,2’s visitor list, we identify intermediary steps, meaning that those
demands must be fully satisfied in order to proceed to the final restriction.

Considering cap(v2,2) = 3300:

39

Visitor Distance (d) Deposit
s1–1–5 1 dep1 := 825 (required for s1–2–5 above).
s2–1–1 1 dep2 := 618.75 (required for s2–2–1 above).
s1–2–2 1 dep3 := 464.0625 (required for s1–2–5 above).
s2–2–0 0 dep4 := 1392.1875 (required for s2–2–1 above). Maxi-

mum capacity reached. Stop demands.
s1–3–0 0 vertex is full (...)

...
Total —— dep := 3300w1

Figure 5.7: Visitors at v2,2.

Step s3–2

This vertex (v2,4) is restricted and has a demand of 800w1 sediment units.
Considering cap(v2,4) = 1600:

Visitor Distance (d) Deposit
s3–1–1 1 dep1 := 400

s3–2–0 0 dep2 := 400 (800w1 matched. Stop demands. Since the
deposit was not the maximum amount, set continuation
lock at s3–2–0.)

s2–3–2 1 not allowed (...)
...

Total —— dep := 800w1

40

Step s2–2

Vertex v2,2 was already visited at step s1–3. The demands are the same.

Step s1–2

Building up v2,1’s visitor list, we identify intermediary steps, meaning that those
demands must be fully satisfied in order to proceed to the final restriction.

Considering cap(v2,1) = 1000:

Visitor Distance (d) Deposit
s1–1–1 1 dep1 := 250 (required for s1–1–5 above).
s2–1–8 1 dep2 := 187.5 (required for s2–2–0 above).
s1–2–0 0 dep3 := 562.5 (required for s1–2–2 above). Maximum

capacity reached. Stop demands.
s2–2–4 1 vertex is full (...)

...
Total —— dep := 1000w1

Step s3–1

Building up v1,4’s visitor list, we identify an intermediary step, meaning that this
demand must be fully satisfied in order to proceed to the final restriction.

Considering cap(v1,4) = 2900:

Visitor Distance (d) Deposit
s3–1–0 0 dep1 := 2900 (required for s3–1–1 above). Maximum

capacity reached. Stop demands.
s2–3–2 1 vertex is full (...)

...
Total —— dep := 1000w1

Step s2–1

Building up v1,2’s visitor list, we identify an intermediary step, meaning that this
demand must be fully satisfied in order to proceed to the final restriction.

Considering cap(v1,2) = 3300:

41

Visitor Distance (d) Deposit
s1–1–2 1 dep1 := 825 (required for s1–1–5 above).
s2–1–0 0 dep1 := 2475 (required for s3–1–1 above). Maximum

capacity reached. Stop demands.
s1–2–6 1 vertex is full (...)

...
Total —— dep := 3300w1

Step s1–1

Building up v1,1’s visitor list, we identify an intermediary step, meaning that this
demand must be fully satisfied in order to proceed to the final restriction.

Considering cap(v1,1) = 2400:

Visitor Distance (d) Deposit
s1–1–0 0 dep1 := 2400 (required for s1–1–1 above). Maximum

capacity reached. Stop demands.
s2–1–4 1 vertex is full (...)

...
Total —— dep := 2400w1

5.2.5 Auxiliary Visitors for w1

Although the step traversal is complete, this inversion did not account for other
collateral deposits that may have occurred in vertices that are not part of any
streamline, but must still have its deposits added to the total amount of sediments.
Those visitors are called auxiliary visitors, and were described in section 5.1.6.

As it was pointed in section 4.3, it is not possible to deposit in a spread step e

without depositing in all previous steps e′ < e. The subroutine described in 5.2 was
devised to run alongside the main step traversal inversion algorithm.

Once each auxiliary vertex has all their auxiliary visitors stored, they can traverse
their own visitor list following the same precedence rules as seen on the step traversal
procedure.

We can identify 3 auxiliary vertices: v3.1, v1,3, and v3,3. Although v3,3 has a
streamline that crosses the vertex, since this vertex appears after the initial vertex,
it is considered an auxiliary vertex for all effects.

Considering cap(v3,1) = 2800:

42

Visitor Distance (d) Deposit
s1–2–1 1 dep1 := 700

Total —— dep := 700w1

Considering cap(v1,3) = 2000:

Visitor Distance (d) Deposit
s2–1–2 1 dep1 := 500

s3–1–4 1 dep2 := 375

Total —— dep := 875w1

5.2.6 Demand readjustment and feasibility for w1

According to Section 5.1.9, we must verify the necessity for readjustments for w1.
In this case, we have, for vertex v2,3:

Visitor Distance (d) Deposit
s2–1–5 1 dep1 := 800 (required for s2–2–1 above).
s3–1–8 1 dep2 := 600 (readjustment for s3–2–0).
s2–2–2 1 locked (continuation lock at s2–2–1)
s3–2–4 1 no demand
s1–3–2 1 no demand
s2–3–0 0 no demand
s3–3–7 1 no demand
s1–4–6 1 no demand
s2–4–3 1 locked (continuation lock at s2–2–1)
Total —— dep := 1400w1

In this case, the demands could be correctly redistributed along the visitors,
confirming the feasibility for w1.

5.2.7 Results for w1

Adding up all visitors from s1, s2, and s3 we have a total of 6876.5625w1,
6323.4375w1, and 4675w1, respectively. These are the exact values of w1 required
to satisfy the restrictions R(v2,4) and R(v3,2).

43

5.2.8 Step traversal for w2

Step s1–4

The inversion starts at step s1–4, on vertex v3,2. This vertex is restricted and has a
demand of 1200w2 sediment units. Querying the visitor list, we can obtain the list
of visiting steps that reach v3,2:

Replacing cap(v3,2) = 2200 and f = 4, we have:

Visitor Distance (d) Deposit
s1–2–5 1 locked (spread lock at w1 : s1–2–0).
s2–2–1 1 locked (spread lock at w1 : s2–2–0).
s2–3–8 1 dep1 := 550w2

s1–4–0 0 dep2 := 650w2

s2–4–4 1 not allowed
Total —— dep := 1200w2

Step s3–3

This step has no demand of w2 and neither is an intermediary for other steps. We
will skip to the next step.

Step s2–3

Building up v2,3’s visitor list, we identify intermediary steps, meaning that this
demand must be fully satisfied in order to proceed to the final restriction.

Considering cap(v2,3) = 1800:

Visitor Distance (d) Deposit
s2–1–5 1 locked (spread lock at w1 : s2–1–0).
s3–1–8 1 locked (spread lock at w1 : s3–1–0).
s2–2–2 1 locked (spread lock at w1 : s2–2–0).
s3–2–4 1 no demand
s1–3–2 1 locked (spread lock at w1 : s2–2–0).
s2–3–0 0 dep1 := 1800 (required for s2–3–8 above). Maximum

capacity reached. Stop demands.
s3–3–7 1 vertex is full
s1–4–6 1 vertex is full
s2–4–3 1 vertex is full
Total —— dep := 1800w2

44

Step s1–3

Vertex v2,2 was already filled during the w1 traversal. We shall skip to the next step.

Step s3–2

This vertex (v2,4) is restricted and has a demand of 400w2 sediment units.
Considering cap(v2,4) = 800:

Visitor Distance (d) Deposit
s3–1–1 1 locked (spread lock at w1 : s3–1–0).
s3–2–0 0 dep1 := 400 (400w2 matched. Stop demands. Since the

deposit was not the maximum amount, set continuation
lock at s3–2–0.)

s2–3–2 1 not allowed (...)
...

Total —— dep := 400w2

Step s2–2

Vertex v2,2 was already visited at step s1–3.

Step s1–2

Vertex v2,1 was already filled during the w1 traversal.

Step s3–1

Vertex v1,4 was already filled during the w1 traversal.

Step s2–1

Vertex v1,2 was already filled during the w1 traversal.

Step s1–1

Vertex v1,1 was already filled during the w1 traversal.

5.2.9 Auxiliary Visitors for w2

Considering cap(v1,3) = 843.75:

45

Visitor Distance (d) Deposit
s2–3–3 1 dep1 := 210.9375

Total —— dep := 210.9375w2

Considering cap(v3,3) = 1200:

Visitor Distance (d) Deposit
s2–3–1 1 dep1 := 300

Total —— dep := 300w2

5.2.10 Demand readjustment and feasibility for w2

Analogously to Section 5.2.6, the same process of readjustment and feasibility check
applies after the first traversal.

We can observe that step s3–2 possesses a restriction fulfilled by visitor s3–2–0.
Since the vertex is not full at that stage, any other visitors that come after it are
not allowed to deposit and interfere with the sediment amounts.

A conflict, then, comes up: s2–3–2 is a visitor in step s3–2 that appears after
the fulfilment of the vertex. Consequently, s2–3–2 must not carry any sediment.
However, at step s1–4, we see a visitor s2–3–8 depositing 550w2 into the vertex.
Since s2–3–8 depends on all spread steps e′ < 8 to deposit in their respective targets,
it cannot have any sediment, for s2–3–2 is not allowed to deposit. We can, then, fix
v3,2:

Visitor Distance (d) Deposit
s1–2–5 1 locked (spread lock at w1 : s1–2–0).
s2–2–1 1 locked (spread lock at w1 : s2–2–0).
s2–3–8 1 dep1 := 550w2 not allowed
s1–4–0 0 dep2 := 650w2 dep1 := (650 + 550)w2. 1200w2 matched.

Stop demands.
s2–4–4 1 not allowed
Total —— dep := 1200w2

That change resonates in step s2–3. Since there is no requirement for s2–3–8
above, we can eliminate the demand for s2–3–0:

46

Visitor Distance (d) Deposit
s2–1–5 1 locked (spread lock at w1 : s2–1–0).
s3–1–8 1 locked (spread lock at w1 : s3–1–0).
s2–2–2 1 locked (spread lock at w1 : s2–2–0).
s3–2–4 1 no demand
s1–3–2 1 locked (spread lock at w1 : s2–2–0).
s2–3–0 0 dep1 := 1800 (required for s2–3–8 above). no demand
s3–3–7 1 no demand
s1–4–6 1 no demand
s2–4–3 1 no demand
Total —— dep := 0w2

Without the ability of spreading from s2–3–0, both auxiliary visitors (v1,3 and
v3,3) can be removed:

Considering cap(v1,3) = 843.75:

Visitor Distance (d) Deposit
s2–3–3 1 dep1 := 210.9375 no demand
Total —— dep := 0w2

Considering cap(v3,3) = 1200:

Visitor Distance (d) Deposit
s2–3–1 1 dep1 := 300 no demand
Total —— dep := 0w2

In this case, the demands could be correctly redistributed along the visitors,
confirming the feasibility for w2.

5.2.11 Results for w2

Adding up all visitors from s1, s2, and s3 we have a total of 1200w2, 0w2, and 400w2,
respectively. These are the exact values of w2 required to satisfy the restrictions
R(v2,4) and R(v3,2).

5.2.12 Step traversal for w3

Step s2–5

The inversion starts at step s2–5, on vertex v3,4. This vertex is restricted and has a
demand of 1500w3 sediment units. Querying the visitor list, we can obtain the list

47

of visiting steps that reach v3,4:
Considering cap(v3,4) = 2000:

Visitor Distance (d) Deposit
s3–2–1 1 dep1 := 500

s2–3–5 1 locked (spread lock at w2 : s2–3–0).
s3–3–0 0 dep2 := 1000 (1500w3 matched. Stop demands.)

...
Total —— dep := 1500w3

Step s1–5

This step has no demand of w3 and neither is an intermediary for other steps. We
will skip to the next step.

Step s2–4

This step has no demand of w3 and neither is an intermediary for other steps. We
will skip to the next step.

Step s1–4

This step has no demand of w3 and neither is an intermediary for other steps. We
will skip to the next step.

Step s3–3

Vertex v3,4 was already visited at step s2–5.

Step s2–3

Vertex v2,3 was already filled during the w2 traversal.

Step s1–3

Vertex v2,2 was already filled during the w1 traversal.

Step s3–2

This vertex (v2,4) is restricted and has a demand of 400w3 sediment units.
Considering cap(v2,4) = 400:

48

Visitor Distance (d) Deposit
s3–1–1 1 locked (spread lock at w1 : s3–1–0).
s3–2–0 0 dep1 := 400 (400w3 matched. Stop demands.)
s2–3–2 1 no demand (...)

...
Total —— dep := 400w3

Step s2–2

Vertex v2,2 was already visited at step s1–3.

Step s1–2

Vertex v2,1 was already filled during the w1 traversal.

Step s3–1

Vertex v1,4 was already filled during the w1 traversal.

Step s2–1

Vertex v1,2 was already filled during the w1 traversal.

Step s1–1

Vertex v1,1 was already filled during the w1 traversal.

5.2.13 Results for w3

Adding up all visitors from s1, s2, and s3 we have a total of 0w3, 0w3, and 1900w3,
respectively. These are the exact values of w3 required to satisfy the restrictions
R(v2,4) and R(v3,4).

5.2.14 Final results

Adding up the demands from all 3 runs of the algorithm (one per sediment type wi),
we obtain:

• s1 : 6876.5625w1, 650w2, 0w3

• s2 : 7529.6875w1, 3460.9375w2, 0w3

• s3 : 4675w1, 400w2, 1900w3

49

5.3 Result Verification
Provided the final results of the backward simulation, we can now proceed with a
forward run (i.e. a backward-forward simulation) to demonstrate that the results
obtained by the backward algorithm are valid.

5.3.1 Forward w1 run

For sediment w1, streamlines s1, s2, and s3 possess, respectively, 6876.5625w1,
6323.4375w1, and 4675w1 sediment units. We shall then perform a run of Algo-
rithm 4.1 with these values, considering the original capacities of all vertices and
visiting order, as defined in Section 5.2.1 and Section 5.2.2.

Step s1–1

The amount of available sediment in s1 before this step is 6876.5625w1.

Spread Visit Target t cap(t) Distance (d) Deposit (cap(t) · f−d)
s1–1–0 v1,1 2400 0 dep1 := 2400

s1–1–1 v2,1 1000 1 dep2 := 250

s1–1–2 v1,2 3300 1 dep3 := 825

s1–1–5 v2,2 3300 1 dep4 := 825

Total —— —— —— deps1–1 := 4300w1

Step s2–1

The amount of available sediment in s2 before this step is 6323.4375w1.

Spread Visit Target t cap(t) Distance (d) Deposit (cap(t) · f−d)
s2–1–0 v1,2 2475 0 dep1 := 2475

s2–1–1 v2,2 2475 1 dep2 := 618.75

s2–1–2 v1,3 2000 1 dep3 := 500

s1–1–3 v1,1 0 1 dep4 := 0 (vertex is full)
s2–1–5 v2,3 3200 1 dep5 := 800

s2–1–8 v2,1 750 1 dep6 := 187.5

Total —— —— —— deps2–1 := 4581.25w1

Step s3–1

The amount of available sediment in s3 before this step is 4675w1.

50

Spread Visit Target t cap(t) Distance (d) Deposit (cap(t) · f−d)
s3–1–0 v1,4 2900 0 dep1 := 2900

s3–1–1 v2,4 1600 1 dep2 := 400

s3–1–4 v1,3 3300 1 dep3 := 375

s3–1–8 v2,3 2400 1 dep5 := 600

Total —— —— —— deps3–1 := 4275w1

Step s1–2

The amount of available sediment in s1 before this step is 2576.5625w1.

Spread Visit Target t cap(t) Distance (d) Deposit (cap(t) · f−d)
s1–2–0 v2,1 562.5 0 dep1 := 562.5

s1–2–1 v3,1 2800 1 dep2 := 700

s1–2–2 v2,2 1856.25 1 dep3 := 464.0625

s1–2–3 v1,1 0 1 dep4 := 0 (v1,1 is full)
s1–2–5 v3,2 3400 1 dep5 := 850

s1–2–6 v1,2 0 1 dep6 := 0 (v1,2 is full)
Total —— —— —— deps1–2 := 2576.0625w1

Streamline s1 is now empty.

Step s2–2

The amount of available sediment in s2 before this step is 1742.1875w1.

Spread Visit Target t cap(t) Distance (d) Deposit (cap(t) · f−d)
s2–2–0 v2,2 1392.1875 0 dep1 := 1392.1875

s2–2–1 v3,2 2550 1 dep2 := 350

Total —— —— —— deps2–2 := 1742.1875w1

Streamline s2 is now empty.

Step s3–2

The amount of available sediment in s3 before this step is 400w1.

Spread Visit Target t cap(t) Distance (d) Deposit (cap(t) · f−d)
s3–2–0 v2,4 1200 0 dep1 := 400

Total —— —— —— deps3–2 := 400w1

Streamline s3 is now empty.

51

5.3.2 Forward w2 run

For sediment w2, streamlines s1, s2, and s3 possess, respectively, 1200w2, 0w2, and
400w2 sediment units. Since s2 is empty, we will ignore its steps.

Step s1–1

This vertex is full.

Step s3–1

This vertex is full.

Step s1–2

This vertex is full.

Step s3–2

The amount of available sediment in s3 before this step is 400w2.

Spread Visit Target t cap(t) Distance (d) Deposit (cap(t) · f−d)
s3–2–0 v1,4 800 0 dep1 := 400

Total —— —— —— deps3–2 := 400w2

Streamline s3 is now empty.

Step s1–3

This vertex is full.

Step s1–4

The amount of available sediment in s1 before this step is 1200w2.

Spread Visit Target t cap(t) Distance (d) Deposit (cap(t) · f−d)
s1–4–0 v3,2 2200 0 dep1 := 1200

Total —— —— —— deps1–4 := 1200w2

Streamline s1 is now empty.

5.3.3 Forward w3 run

For sediment w3, streamlines s1, s2, and s3 possess, respectively, 0w3, 0w3, and
1900w2 sediment units. Since s1 and s2 are empty, we will ignore their steps.

52

Step s3–1

This vertex is full.

Step s3–2

The amount of available sediment in s3 before this step is 1900w2.

Spread Visit Target t cap(t) Distance (d) Deposit (cap(t) · f−d)
s3–2–0 v2,4 400 0 dep1 := 400

Total —— —— —— deps3–2 := 400w3

Step s3–3

The amount of available sediment in s3 before this step is 1500w2.

Spread Visit Target t cap(t) Distance (d) Deposit (cap(t) · f−d)
s3–2–0 v2,4 2000 0 dep1 := 1500

Total —— —— —— deps3–3 := 1500w3

Streamline s3 is now empty.
All demands have been successfully satisfied with the values generated by the

backward simulation algorithm.

5.4 Complexity Estimate
The complexity of the backward simulation algorithm can be measured in terms of
the number of visitors at each Path Step. The worst case scenario for this partic-
ular measurement is if all streamlines are present within the Moore neighbourhood
N(v, r), where r is the maximum spread radius, and v is the current vertex visited
by the Path Step.

Proposition 5.4.0.1. |N(v, r)| = (2r + 1)2

Proof. We prove by induction on r. The property is clearly satisfied for r = 0. For
r = 1, there are 9 vertices including v, as shown in Figure 4.2. |N(v, 1)| = 9.

Assume that |N(v, r)| = (2r + 1)2 holds for r ≤ z.
For r = z + 1, we have:

|N(v, z + 1)| = |N(v, z)|+ 4(2z + 1) + 4

|N(v, z + 1)| = |N(v, z)|+ 8z + 8

53

Figure 5.8: Growth of a Moore Neighbourhood N(v, z + 1)

By the induction hypothesis, we can conclude (see Figure 5.8):

|N(v, z + 1)| = (2z + 1)2 + 8z + 8

|N(v, z + 1)| = 4z2 + 12z + 9

|N(v, z + 1)| = (2z + 3)2

|N(v, z + 1)| = (2(z + 1) + 1)2

Considering this result and following the definitions of sediment spread in Sec-
tion 4.3, we know that sediment spread happens after the last Path Step deposits,
fulfils, and exceeds the maximum capacity of the origin vertex. Therefore, for ev-
ery vertex in N(v, r), there is at most one Path Step that will visit and possi-
bly deposit to v. Thus, the maximum number of valid visitors per Path Step is
|N(v, r)| = (2r + 1)2.

Following Definition 4.1.4, the length of each streamline is measured in Path
Steps. Let us assume that, for the worst case, all streamlines have the same maxi-
mum length l. If there are s streamlines with length l, we have a maximum number
of valid visitors defined by s · l ·(2r+1)2. Removing the constants, we can conjecture
that the worst-case time complexity is

O(s · l · r2).

54

Chapter 6

Conclusion and Future Directions

This work presented a new contribution to the problem of stratigraphic inversion.
There are known approaches that make use of optimisation methods to empower
simulators to find the adequate sediment supply values for the forward simulation.
These methods have been thoroughly validated and tested throughout the industry
and the community.

We introduced an algorithm for sediment transfer over two dimensions. This
algorithm empirically reproduces a similar behaviour to the progression of sedi-
ment spread according to basic principles of deposition [10]. Sediment priority is
respected, and sediment spread can be simulated with various radii and exponential
factors for increased detail and realism. Close variants of this algorithm are applied
in some stratigraphic simulators in industry [39].

Many approaches in literature (see Chapter 3) attempt to attack the input space
with advanced search and optimisation methods, then running the forward algorithm
and converging the result towards the smallest possible error. This approach is
algorithm-agnostic, since it is only bounded by an error function that does not
depend on any particular implementation. However, the computational cost for
optimisation methods rapidly increase with the number of variables. In a simulation
grid with 250,000 cells, inverting values for 10 sediments for 1,000 streamlines with
over 200 steps each, the amount of variables to be accounted for can exceed the
computational resources available. Simulations then become either too lengthy or
devoid of resolution.

Observing the problem as traversing separate paths in graphs and updating
weights in vertices can yield a different solution. Our inversion algorithm presented
in Chapter 5 is, in essence, the dual of our forward algorithm presented in Chapter 4.
Nonetheless, one must notice that the concept of duality does not imply in the same
level of simplicity as the original algorithm. A very simplified version is described in
Algorithm 5.1, stripped down of many implementation details and data structures
in order to be presented comprehensively.

55

The inherent difficulty in inverting Algorithm 4.1 lies in the process of sedi-
ment spread. Each path is not only affecting their own vertices, but also affecting
neighbouring vertices and changing their maximum capacities. That, consequently,
affects the demands of all other paths that attempt to deposit in that very same
vertex. The inversion algorithm, then, must be capable of calculating if a said path
will perform a visit to that particular vertex, and what amounts of sediments should
be considered for every possible streamline.

Thus, one can identify the presence of multiple complex structures that rely on
a long and interdependent ordering to establish the correct amounts throughout the
inverse traversal of the streamlines. Therefore, the concept of visitors demonstrates
its usefulness as to unify all the different orderings into one single abstraction.

The algorithm is presented in the form of a conjecture. It is believed that this
algorithm is correct. However, there might be extreme instances and corner cases
against which this algorithm was not tested. The very nature of the problem allows
for exceedingly complex and unwieldy instances, some of them yet unconceived by
the author. Those are not relevant to the practical applications of the problem,
but are worth testing to evaluate the soundness of the conjecture. Further formal
investigations around the correctness and invariants are beyond the scope of this
work.

Our first main contribution is to provide a different perspective on the approach
of inversion and optimisation problems. Understanding the structures of forward
problems can yield interesting results. This method is, to this date, the first of its
kind to provide stratigraphic inversion by using an algorithm as the inverse function
of a problem. Also, we provide the capability for exact inversion values, instead of
approximative solutions.

Secondly, the level of descriptiveness provided by both forward and backward
procedures in this work is a strong contribution on itself, as it allows the community
to reproduce step-by-step processes for stratigraphic inversion in a finer level of
detail. It is not widespread practice to delve unto the mechanics of sediment transfer
and inversion - at least algorithmically. Most methods in the literature are described
in a higher level of abstraction.

Thirdly, the estimated complexity of this algorithm is polynomial, with low de-
grees, which is a good indication of efficiency for such a complex problem. It is not
possible to provide any comparisons with other methods, since there are no common
datasets or implementation details of the methods in literature. It is important to
point out that most details about implementations in this field are highly protected
in industrial secrecy.

Next versions of this stratigraphic simulation model can account for added layers
of complexity. With variable velocity streamlines, we can evaluate the action for the

56

sediments at every Path Step according to the behaviour of particle transport as
shown by the Hjulström curve (see Figure 2.4), thus deciding if there happens a
deposition, bypassing (no deposition), or erosion (negative deposition). Simulating
erosion could be accomplished by the concept of negative demands, or visitors with
negative deposit amounts.

Future works could also provide a performance and accuracy benchmark of dif-
ferent approaches for stratigraphic inversion, something that has not yet been seen
in current literature.

57

Bibliography

[1] VON LINNÉ, C. Systema naturae per regna tria naturae secundum classes,
ordines, genera, species,..., v. 1. Impensis Georg. Emanuel Beer, 1788.

[2] FALIVENE, O., FRASCATI, A., GESBERT, S., et al. “Automatic calibration
of stratigraphic forward models for predicting reservoir presence in explo-
ration”, AAPG Bulletin, v. 98, n. 9, pp. 1811–1835, 2014.

[3] PAOLA, C. “Quantitative models of sedimentary basin filling”, Sedimentology,
v. 47, n. s1, pp. 121–178, 2000.

[4] PYRCZ, M. J., DEUTSCH, C. V. Geostatistical reservoir modeling. Oxford
university press, 2014.

[5] NICHOLS, G. Sedimentology and stratigraphy. John Wiley & Sons, 2009.

[6] WENTWORTH, C. K. “A scale of grade and class terms for clastic sediments”,
The Journal of Geology, v. 30, n. 5, pp. 377–392, 1922.

[7] CATUNEANU, O. Principles of sequence stratigraphy. Elsevier, 2006.

[8] HAQ, B. U., HARDENBOL, J., VAIL, P. R. Mesozoic and Cenozoic chronos-
tratigraphy and cycles of sea-level change. Special Publications of SEPM,
1988.

[9] KRAVITZ, G. “The Geohistorical Time Arrow: From Steno’s Stratigraphic
Principles to Boltzmann’s Past Hypothesis”, Journal of Geoscience Edu-
cation, v. 62, n. 4, pp. 691–700, 2014.

[10] HJULSTROM, F. Transportation of detritus by moving water: Part 1. Trans-
portation. AAPG Special Volumes, 1939.

[11] GEANKOPLIS, C. Transport processes and separation process principles (in-
cludes unit operations). Prentice Hall Press, 2003.

[12] HAQ, B. U., HARDENBOL, J., VAIL, P. R., et al. “Chronology of fluctuating
sea levels since the Triassic”, Science, v. 235, n. 4793, pp. 1156–1167,
1987.

58

[13] KENDALL, C. G. S. C., LERCHE, I. The rise and fall of eustasy. Special
Publications of SEPM, 1988.

[14] BURTON, R., KENDALL, C. G. S. C., LERCHE, I. “Out of our depth: on the
impossibility of fathoming eustasy from the stratigraphic record”, Earth-
Science Reviews, v. 24, n. 4, pp. 237–277, 1987.

[15] CANTRELL, C. D. Modern mathematical methods for physicists and engineers.
Cambridge University Press, 2000.

[16] SCHIFF, J. “Two-Dimensional Automata”. In: Introduction to cellular au-
tomata, cap. 4, University of Wisconsin, 2005.

[17] SMITH, A. R. “Two-dimensional formal languages and pattern recognition
by cellular automata”. In: Switching and Automata Theory, 1971., 12th
Annual Symposium on, pp. 144–152. IEEE, 1971.

[18] CHANG, G. J. “Algorithmic aspects of domination in graphs”, Handbook of
Combinatorial Optimization, pp. 221–282, 2013.

[19] SKIENA, S. Implementing Discrete Mathematics: Combinatorics and Graph
Theory with Mathematica. Boston, MA, USA, Addison-Wesley Longman
Publishing Co., Inc., 1991. ISBN: 0-201-50943-1.

[20] LYNCH, N., VAANDRAGER, F. “Forward and backward simulations”, Infor-
mation and Computation, v. 121, n. 2, pp. 214–233, 1995.

[21] VAN RIJN, L. C. “Sediment transport, part I: bed load transport”, Journal of
hydraulic engineering, v. 110, n. 10, pp. 1431–1456, 1984.

[22] MORGAN, R., QUINTON, J., SMITH, R., et al. “The European Soil Ero-
sion Model (EUROSEM): a dynamic approach for predicting sediment
transport from fields and small catchments”, Earth surface processes and
landforms, v. 23, n. 6, pp. 527–544, 1998.

[23] WU, W., RODI, W., WENKA, T. “3D numerical modeling of flow and sediment
transport in open channels”, Journal of Hydraulic Engineering, v. 126,
n. 1, pp. 4–15, 2000.

[24] MERRITT, W. S., LETCHER, R. A., JAKEMAN, A. J. “A review of erosion
and sediment transport models”, Environmental Modelling & Software,
v. 18, n. 8, pp. 761–799, 2003.

59

[25] LEE, Y.-H., HARBAUGH, J. W. “Stanford’s sedsim project: Dynamic three-
dimensional simulation of geologic processes that affect clastic sediments”.
In: Computer Graphics in Geology, Springer, pp. 113–127, 1992.

[26] LAWRENCE, D. T., DOYLE, M., AIGNER, T. “Stratigraphic Simulation of
Sedimentary Basins: Concepts and Calibration (1)”, Aapg Bulletin, v. 74,
n. 3, pp. 273–295, 1990.

[27] AIGNER, T., BRANDENBURG, A., VAN VLIET, A., et al. “Stratigraphic
modelling of epicontinental basins: two applications”, Sedimentary Geol-
ogy, v. 69, n. 3-4, pp. 167–190, 1990.

[28] CARRON, D. “Well guided stratigraphic inversion of borehole and surface
seismic sections”. In: SEG Technical Program Expanded Abstracts 1988,
Society of Exploration Geophysicists, pp. 837–840, 1988.

[29] FABRE, N., GLUCK, S., GUILLAUME, P., et al. “Robust multichannel strati-
graphic inversion of stacked seismic traces”. In: SEG Technical Program
Expanded Abstracts 1989, Society of Exploration Geophysicists, pp. 943–
945, 1989.

[30] LESSENGER, M. A., CROSS, T. A. “A stratigraphic inverse simulation
model”, AAPG Bulletin (American Association of Petroleum Geolo-
gists);(United States), v. 75, n. CONF-910403–, 1991.

[31] COOKE, D. A., SCHNEIDER, W. A. “Generalized linear inversion of reflection
seismic data”, Geophysics, v. 48, n. 6, pp. 665–676, 1983.

[32] LESSENGER, M. A., CROSS, T. A. “An inverse stratigraphic simulation
model–is stratigraphic inversion possible?” Energy exploration & exploita-
tion, v. 14, n. 6, pp. 627–637, 1996.

[33] BORNHOLDT, S., WESTPHAL, H. “Automation of stratigraphic simulations:
Quasi-backward modelling using genetic algorithms”, Geological Society,
London, Special Publications, v. 134, n. 1, pp. 371–379, 1998.

[34] CROSS, T. A., LESSENGER, M. A. “Construction and application of a strati-
graphic inverse model”, 1999.

[35] SHARMA, A. K. Quantitative stratigraphic inversion. Tese de Doutorado,
Virginia Tech, 2006.

[36] SHARMA, A. K., IMHOF, M. G. “Quantitative stratigraphic inversion: nu-
merical study”. In: SEG Technical Program Expanded Abstracts 2007,
Society of Exploration Geophysicists, pp. 1500–1504, 2007.

60

[37] SAMBRIDGE, M. “Geophysical inversion with a neighbourhood algorithm—
II. Appraising the ensemble”, Geophysical Journal International, v. 138,
n. 3, pp. 727–746, 1999.

[38] LOPES, A. A. O., FACCION, J. E., CARVALHO, C. V. A., et al. “Simu-
lação Numérica para o Estudo da Formação de Bacias Sedimentares Us-
ando Modelagem Estratigráfica”, Proceedings of the XXVIII Iberian Latin
American Congress on Computational Methods in Engineering, pp. 17–18,
2006.

[39] DUMONT, N. A., LOPES, A. A. O., AGUILAR, C. A., et al. “On a depth-
averaged numerical simulation of flow and transport phenomena in sed-
imentary basins”, CILAMCE XXXVI Iberian Latin-American Congress
on Computational Methods in Engineering, pp. 1–17, 2015.

61

	List of Figures
	List of Tables
	Introduction
	Fundamentals
	Geology Background
	Sedimentology
	Stratigraphy
	Sedimentary Transport
	Eustasy

	Graph Theory
	Forward and Backward Simulations

	A Review of Stratigraphic Simulation Methods
	Forward Stratigraphic Simulation
	Stratigraphic Inversion

	An Algorithm for Forward Stratigraphic Simulation
	Algorithm Input
	Vertices
	Flow Configuration

	Deposition
	Sediment Spread
	Considerations

	A New Backward Simulation Algorithm
	Core Concepts
	Path Restrictions
	Spread Restrictions
	Visitor Lists
	Initial Vertex and Traversal Order
	Step Traversal
	Auxiliary Visitors
	Spread Locks
	Continuation Locks
	Demand readjustment and feasibility validation

	A Thorough Run of the Algorithm
	Input Data
	Visitor List
	Initial Vertex
	Step Traversal for w1
	Auxiliary Visitors for w1
	Demand readjustment and feasibility for w1
	Results for w1
	Step traversal for w2
	Auxiliary Visitors for w2
	Demand readjustment and feasibility for w2
	Results for w2
	Step traversal for w3
	Results for w3
	Final results

	Result Verification
	Forward w1 run
	Forward w2 run
	Forward w3 run

	Complexity Estimate

	Conclusion and Future Directions
	Bibliography

