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We study the onset of intermittency in stochastic Burgers hydrodynamics, as characterized by the statistical
behavior of negative velocity gradient fluctuations. The analysis is based on the response functional formalism,
where specific velocity configurations—the viscous instantons—are assumed to play a dominant role in modeling
the left tails of velocity gradient probability distribution functions. We find, as expected on general grounds,
that the field-theoretical approach becomes meaningful in practice only if the effects of fluctuations around
instantons are taken into account. Working with a systematic cumulant expansion, it turns out that the integration
of fluctuations yields, in leading perturbative order, to an effective description of the Burgers stochastic dynamics
given by the renormalization of its associated heat kernel propagator and the external force-force correlation

function.
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I. INTRODUCTION

Burgers one-dimensional hydrodynamics, introduced long
ago [1,2] as a simpler model designed to illustrate some
aspects of Navier-Stokes turbulence [3], has been, as actually
foreseen by von Neumann at the dawn of the computational
era [4], a valuable testing ground for the development of
alternative approaches and new ideas in the framework of the
statistical theory of turbulence [5].

It is worth emphasizing that the Burgers model is more than
just a mathematical toy. The Burgers equation has been ap-
plied to realistic problems in the fields of nonlinear acoustics
[6], cosmology [7,8], critical interface growth [9], traffic flow
dynamics [10,11], and biological invasion [12].

A number of theoretical efforts have been devoted to the
study of intermittent fluctuations of fluid dynamic observ-
ables, such as velocity gradients & = d,u(x, t), or velocity
differences, é,u = u(x, t) — u(—x, t), in statistically homoge-
neous and stationary states of the stochastic version of the
Burgers model [13-21]. Positive fluctuations of & or §,u, re-
lated to spatially smooth velocity field configurations, are sub-
Gaussian random variables [13,14]. In contrast, the presence
of velocity shocks in Burgers dynamics leads to extremely
intermittent negative fluctuations of these observables, which
can be described, in principle, by fat-tailed probability distri-
bution functions [15-20], still the matter of current research.

An important point was made in the analytical study
put forward in Ref. [16], where specific velocity field
configurations—the so-called viscous instantons—were con-
jectured to be the dominant structures for a statistical account
of large negative fluctuations of &. It follows that the left
tail of the velocity gradient probability distribution functions
(vgPDFs), which can be written, without loss of generality,
as pg(§) = exp[—S(§)], should have its asymptotic behavior

given by S(&) ~ |§|%, a result later validated by numerical
evaluations of the viscous instanton solutions by Chernykh
and Stepanov [18]. However, as it has been noted in the
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remarkable numerical four de force by Gratke et al. [20],
even though the asymptotic form of S(£) is presently far be-
yond the reach of direct numerical simulations, the instanton
computational strategy is still able to give reasonable answers
for the local stretching exponent 6(§) = d InS(§)/d In(|§]).
The same authors have found, furthermore, that a satisfactory
matching between the vgPDF tails obtained from numerical
studies and the ones provided by the instanton configurations
can be achieved only if the random force strength parameter
is multiplied by a Reynolds number dependent adjustment
factor. A detailed analytical investigation of why such an
empirical “noise renormalization procedure” works is the
central aim of our work.

We apply, in the following discussion, field-theoretical
techniques formerly introduced in the analytical approach to
vgPDFs in Lagrangian turbulence [22,23], where it was found,
similarly, that renormalizations of the heat-kernel propagator
and of the force-force correlation function play a fundamental
role in the description of the vgPDFs’ tails. The essential
idea of the method consists in the integration, by means
of a specifically designed cumulant expansion, of arbitrary
fluctuations around the instanton solutions, derived from
the Martin—-Siggia—Rose—Janssen—de Dominicis (MSRID) re-
sponse functional formalism [24-27]. It is natural to expect
that corrections to the instanton evaluations of vgPDFs’ tails
have to be supplemented, for the sake of accuracy, by subdom-
inant fluctuation contributions. As a matter of fact, extensive
numerical studies of fluctuations in the instanton approach to
Burgers turbulence have been established only very recently
through the application of importance sampling and hybrid
Monte Carlo techniques [28,29].

This paper is organized as follows. In the next section,
we describe the specific details of our path-integral approach
to the improved derivation of vgPDF tails, which relies on
the perturbative integration of fluctuations around instan-
ton solutions, within the cumulant expansion framework. In
Sec. III, we discuss the transition from the low to the high
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Reynolds number regime, related to the crossover between the
weak to strong coupling domains in the field theory context.
We then show how our results and the empirical ones by
Grafke et al. [20] come together into a consistent theoretical
picture. In Sec. IV, we determine the range of validity of the
perturbative treatment, which breaks down at strong coupling.
Finally, in Sec. V, we summarize our findings and point out
directions for further research.

II. FIELD-THEORETICAL SETUP

To start our analysis, we write down the evolution equation
for the velocity field, u = u(x, t), in the stochastic Burgers
model. In dimensionless form it is given as [20]

U + Uy = Uy, + g9, 2.1

where ¢ = ¢(x, t) is a zero-mean Gaussian random field used
to model large-scale forcing, with correlator

(@, P, 1) = x(x — xSt — 1),

which is peaked at wave number k = 0 and broadened in
Fourier space within a region of size Ak ~ 1. In other words,
L =1 (~Ak™") is taken to be the random force correlation
length, defined as the largest relevant length scale in the flow.
Note that the intensity of forcing is given by the noise strength
parameter g. While most of our considerations in this section
are general, we will eventually adopt, as it has been addressed
in former works [16,20,30],

2 2
X = —Dexp (-2 ) =—a2exp(-2), 3
2 x 2

a case study of particular interest, due to its simple formu-
lation and good analytical properties. Furthermore, once the
viscosity v and the integral length scale L are normalized
to unit in Eq. (2.1), by defining the Reynolds number as
Re = L*3/((0,u)?)/v? we get Re = \/g?/2 [31].

The vgPDFs can be computed in the MSRJID formalism
as path integrations over the velocity field u(x,¢) and its
conjugate auxiliary field p(x, ), combined with an ordinary
integration over a Lagrange multiplier variable A as

pg(§) = (8(uxlo — &)

=N"! /DpDu/oo dhexp{=S[u, p, »; g1}, (2.4)

(2.2)

where A is an unimportant normalization constant (to be
suppressed from now on, in order to simplify notation), u,| is
the velocity gradient taken at (x, t) = (0, 0), and S[u, p, A; g]
is denoted as the MSRID action,

Slu, p, A; gl

= g;/dtdxp(x * p)

+i / dtdx p(u; + uu, — uy) — id(ulo — &), (2.5)

with x * p= [dx'yx(x —x)p(x',1).

The saddle-point method is a standard tool to find the
asymptotic form of vgPDF tails, provided that they decay
faster than exp(—c|&|) for any arbitrary ¢ > 0, as it is actually

observed from numerical studies of Burgers turbulence [30].
The saddle-point configurations u¢, p°, and A that extrem-
ize the MSRID action are named instantons [14,32]. In our
specific problem, they can be obtained as the solutions of the
Euler-Lagrange variational equations

N N aS
— =0, — =0 and — =0. (2.6)
St [ e e e P lue peose 2 e
It is convenient to rescale p(x, ¢) and A as
p— L and n— 2, 2.7
8 g
so that the MSRIJD action in (2.4) is rescaled as
1
Slu, p, 1; ¢] = —zS[u, p, A5 1] (2.8)
8

and the Euler-Lagrange equations stated in (2.6) become

Up + Uty — Uy = i) * D, (2.9)
pr Fupx + prc = A8(2)8' (x), (2.10)
§ = uxlo- (2.11)

As we see from (2.8), the noise strength g has been factored
out from the expression for the action, a simple observation
that will be of great importance later on in our arguments. It is
clear, furthermore, from the above equations, that the saddle-
point solutions p°(x, ¢) and A¢, if existent, are pure imaginary
numbers, since we look for real velocity instantons u¢(x, ).

When dealing with instantons, one needs, in general, to
worry about the existence of degenerate families of saddle-
point solutions, associated to symmetries of the action, like
translation or gauge invariance. The Fadeev-Popov method
is the usual procedure to eliminate such redundant solutions
[19,33]. However, in the formalism addressed here, we bypass
the degeneracy issue through the explicit assignment of the
spacetime point (x, t) = (0, 0) as the symmetry center around
which the instantons evolve [Eqs. (2.9) and (2.10) are, in fact,
not translationally invariant].

Equations (2.9) and (2.10) have to be solved forward and
backward in time, respectively, in the time domain —oo <
t <0, with u(x, —o0) = p(x, —o0) = 0, and the additional
boundary conditions given by Eq. (2.11) and p(x,0") =0
[14] [equivalent to p(x,0”) = —A&'(x), which amounts, in
Fourier space, to p°(k, 07) = —iik].

Chernykh and Stepanov have proposed a fruitful self-
consistent numerical strategy to solve the above saddle-point
equations [18]. One neglects, from the start, the boundary
condition (2.11), trading it, as a counterpart, for an arbitrary
fixed value of A. The Chernykh-Stepanov method establishes
a sequence of progressively better approximations to the exact
numerical instantons,

{ur(x,t) =0, up(x, t), us(x,t),...} (2.12)

and

{p1(x, 1), pa(x, 1), p3(x, 1), ...}, (2.13)

which, up to specific optimization strategies [34] is generated
as follows: At the ny, iteration step, substitute u(x,t) in
Eq. (2.10) by u,(x,t) to find p,(x, ). The field p,(x, 1) is,
then, substituted in Eq. (2.9), which is solved to yield the
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velocity field u,,(x, t). If this procedure converges, typically
in L? norm, then iterations can be carried out until u(x, ¢) and
p(x, t) are obtained up to some desired accuracy. The velocity
gradient & is defined, a posteriori, from Eq. (2.11), with
the help of the last iterated velocity field. It turns out, from
extensive computational analyses, that £ is a monotonically
increasing function of A, and that the left asymptotic vgPDF
tails can be numerically addressed, in principle, along the
lines of the instanton approach [20]. It is important to note,
however, that the Chernykh-Stepanov method may require
further numerical tricks to attain convergence for |A| large
enough.

Once u“(x, t), p°(x, t), and A€ are available, we perform the
following substitution in the path integral expression (2.4) (of
course, after the mappings (2.7) and (2.8) have already been
implemented),

u(x,t) = u(x, t) + ulx,t), (2.14)
p(x,t) — p(x, 1)+ p(x, 1), (2.15)
A= A+ A (2.16)

We have introduced, in the right-hand side of Egs. (2.14)—
(2.16), the fluctuations u(x, 1), p(x, t), and A, around their re-
spective saddle-point solutions. The MSRIJD action is rewrit-
ten, accordingly, as

A1l — Sl +u, p° +p, A"+ ;1]
= SC[MC9 pc]+S()[u7 p] + Sl[uca M, pcv )\']7

S[u, p,
(2.17)

where S., Sy, and S; are, respectively, the saddle-point action,
the sum of all quadratic forms in the u and p fields that do not
depend on p° and u¢, and, finally, S; is the contribution that
collects all the terms that have not been included in S, and Sy.
We have

1
S, = 3 / dtdx p°(x * p°) —{—i/dtdxpc(uf +uul — u;x)

= [using Eq. 2.9] =

1
—E/dtdx P (x * p°), (2.18)

1
So = fdtdx{é p(x *p)+iplu — uxx)}, (2.19)
and, up to second order in the fluctuating fields,

S| = i/dtdx{p"uux — peuu} — iigp. (2.20)

It is clear that S, is a functional of the instanton fields, which
on their turn depend on the velocity gradient § = u$|o. Hence
we can write, more synthetically, that S, = S.(£).

Now, taking into account the instanton solutions, we can
reformulate the vgPDF, Eq. (2.4), as

1
pg(§) = exp [—g—zSc(é)]

X /DpDu/Do dXexp [—glz(So —i—Sl)]
1 o 1
o exp |:——ZSC(§)]f dk<exp (——2S1>> , (2.21)
g —0 g 0

(a) X

(z,t) (a',t")

®» @ R—@

(z,t) (2',t')

FIG. 1. Feynman diagrammatic representation of (a) the heat
kernel propagator (u(x,t)p(x’,t'))o and (b) the velocity-velocity
correlator (u(x, )u(x’, t'))g.

where ((...))o stands for expectation values computed in the
linear stochastic model defined by the MSRIJD action S.

Having in mind perturbative developments in cases where
the fluctuation-dependent contributions are small relative to
the leading saddle-point results, that is,

o Lol (o))

we can resort to the cumulant expansion method for evaluating
(2.21). We obtain, considering contributions up to second
order in the instanton fields and A,

i)

_ L 2 2

= exp (Sn 0+ 5= [((S)%)o — (S1)g] - (223)
2¢*

Adding the terms between curly brackets in (2.23) to

—S.(&)/g* we get, by definition, —I"/g?, where T is referred

to as the effective MSRJD action, i.e.,

S.&) > ¢ , (2.22)

1 2 2
=S8+ (Si)o— 2—g2[((51) Yo — (S1)5]- (2.24)
The perturbative integration of fluctuations around the saddle-
point solutions by means of cumulants is in fact a standard
approximation in field theory, as already discussed long ago,
for instance, in Ref. [35].

The basic building blocks needed to evaluate (2.23) are the
correlation functions

Gpu(x, X' 1,1") = (p(x, Hux', 1"))o
ig’ [ (x —x')?
= — exp | —
27 —1) 4@’ —1)

i|®(t/ —1)
(2.25)
and

Gu(x, X' t,t) = (ulx, Hu', t'))o

g exp [—

W T 202 -1

(2.26)

(x —x')? }

which are graphically identified to the Feynman diagrams
depicted in Fig. 1.
It is not difficult to show, from (2.25) and (2.26), that
<S 1 >() = 0and
((S1)*)o =

1PS u) + BIpTl— A (o), (2:27)
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FIG. 2. One loop contributions for the renormalization of (a)
the noise kernel and (b) the heat kernel propagator in the effective
MSRID action. Incoming and outgoing dashed lines are associated to
the instanton fields p°(x, ) and u‘(x, t), respectively, as they appear
in Eqgs. (2.28) and (2.29).

with

LIPS, u] E/ dtdt'dxdx’ p©(x, u (', t Hy (x, x', ¢, 1),
t,t'<0

(2.28)

Llpl= / dtdt'dxdx’ p°(x, )p* (X', t YHy(x, x', 1, 1),
t,t'<0

(2.29)

where

Hl (xv x/a ta t/) = _zax[Guu(xa x/a tv t/)apru(X,, X, t/9 t)]v
(2.30)

Hy(x,x',1,1) = 59 Gux, ¥ 1,0, (231)

Note that I, [p¢, u¢] and L[p°], both of O(g*), are, in diagram-
matic representation, the one-loop contributions which renor-
malize, respectively, the heat and the noise kernels associated
to the original stochastic Burgers equation (2.1). See Fig. 2.

The overall effect of perturbative contributions can al-
ways be conventionally accounted by a redefinition of the
noise strength parameter g in the expression for the vgPDF,
pg(§) o exp(—=Sc(§)/ g%), obtained at leading order, as given
in Eq. (2.21). As a matter of fact, we are led to a partic-
ularly simple formulation in the present context. Define the
g-independent coefficient

LIyt wl + L[y
28*S.

Using (2.21) and (2.23), and integrating over A in the Gaussian
approximation given by (2.27), we get, from (2.32),

SC(E)}
2

c(§&) = (2.32)

pg(§) o exp [— (2.33)
where

=& (2.34)

8r =
V1+ce®)g
defines an effective noise strength parameter, which is, in prin-
ciple, a velocity-gradient dependent quantity that encodes the
effects of fluctuations around the instantons, up to the lowest
nontrivial order in the cumulant perturbative expansion.

III. THE ONSET OF INTERMITTENCY

Equation (2.34) suggests, in fact, a simple criterion for the
consistency of the perturbative analysis. It is indicated, from
that result, that the cumulant expansion is meaningful, up to
second order, if |c(&)|g? is reasonably smaller than unity. It
follows, immediately, that for any fixed velocity gradient &,
the cumulant expansion will break down for g large enough.
Similarly, since (as we will see) c(§) is a positive mono-
tonically increasing function of |£[, the cumulant expansion
framework becomes inadequate for large-enough |£| at any
fixed g.

The consideration of strong coupling regimes implied by
g > 1 (the ones which have high Reynolds numbers) and/or
asymptotically large velocity gradient fluctuations is, thus,
precluded from the cumulant expansion approach. The pertur-
bative analysis, nevertheless, is actually useful to model the
shape of vgPDF left tails in the non-Gaussian region, where
|&| > g, for not very large g. We expect, on physical grounds,
that as the noise strength g grows and incipient turbulent
fluctuations associated to flow instabilities come into play, the
onset of non-Gaussian behavior gets captured by dominant
instanton contributions “dressed” by cumulant corrections.

It is important, before proceeding, to comment on the
challenging technical difficulties associated to the evalua-
tions of S.(§), I1[p°, u“], and L[p°], given, respectively, by
Egs. (2.18), (2.28), and (2.29), the essential ingredients in
the derivation of vgPDF tails. It turns out that the associated
integrations based on the numerical instantons are extremely
demanding in terms of computational cost. The numerical
convergence of integrals is very slow as the system size in-
creases and the grid resolution gets finer. Fortunately, a helpful
hint for the computation of the saddle-point action S.(§)
is available from the numerical work reported in Ref. [20],
where it is pointed out that for large negative velocity gradi-
ents and at a given noise strength g, S.(§) can be retrieved with
good accuracy from the vgPDF p,(§) as

pg(é)}
pe(0) ]’

where k (g) is a g-dependent empirical correction factor.

It follows now, under the light of Eq. (2.33), that «(g) is
nothing more than (gg/ g)2, and, therefore, it should depend on
& as well. From such a perspective, one finds that the relevance
of Eq. (3.1) is fortuitously based on the fact that c(§), as
defined in (2.32), is in general a slowly varying function of
&. As a point of pragmatic methodology, we are going to
rely on Eq. (3.1) as an effective way to obtain a reasonable
evaluation of the saddle-point action. However, to make a
clear distinction between what would be the exact saddle-
point action versus the one approximated by (3.1), we refer
to the right-hand side of (3.1) as the surrogate saddle-point
action Sy (§).

Regarding the evaluation of the perturbative functionals
I[p¢, u] and L[ p°], while the full numerical approach is very
slowly convergent, if based on the Chernykh-Stepanov numer-
ical solutions of Egs. (2.9) and (2.10), we have found that ap-
proximate analytical expressions for u¢(x, t) and p°(x, t) lead
to considerable improvement by way of standard numerical
integration packages. Below, we first discuss such analytical

Se(8) ~ —g'k(g) ln[ (3.1
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approximations and, afterwards, focus on the determination of
Ssc(8), It [p¢, u], and L[p©].

A. Analytical approximations for the instanton fields

In the asymptotic limit of small velocity gradients, instan-
tons can be well approximated as the solutions of Egs. (2.9)
and (2.10) simplified by the suppression of nonlinear terms.
Working in Fourier space, where

plk,t) = /dx p(x, t)exp(—ikx), (3.2)

ik, t) = /dx u(x, t)exp(—ikx), (3.3)

it is straightforward to find, under the linear approximation,

that
~c __acC T 12 l
ik, t)y=»x /—2kexp[ k <|t|+2>], (3.4)

Pk, 1) = —irkexp(2)O(—1) = pPOk, 1).  (3.5)

Taking A = —iA, we get, from (3.4), & = 1/2, the velocity
gradient at (x, ¢) = (0, 0). From now on it is assumed, thus,
that X is a negative real number.

Note that if we write the exact solution for the instanton
response field as

P, t) = pOx, t) + 8p°(x, 1), (3.6)
then 8 p°(x, ¢) has to satisfy the boundary conditions
§p°(x, —00) = 8p°(x,07) =0, (3.7)

since, as it can be inferred from (3.5), p®(x, t) saturates the
boundary conditions for p°(x, t), already stated in our former
discussion of Egs. (2.9)—(2.11).

The vanishing boundary conditions (3.7) suggest that
8p°(x,t) can be taken as a perturbation field, which is clearly
a true fact for asymptotically small times ¢. Accordingly, the
instanton velocity field can be expanded as a functional Taylor
series,

[e¢] n
W) =u 0+ Y f [H dxdt{sp°(x}, 1] J
n=1 i=1

x Fy(x, ¢, {x', t'},), (3.8)

where

Xt = (XX, Xt ) (3.9)

and the many variable kernel F,(x, ¢, {x, ¢'},) is a functional
of p@(x, t). Note that u®¥(x, ) is independent (in the func-
tional sense) of §p°(x, ). An infinite hierarchy of equations
is obtained for F,(x,t, {x’,t'},), when (3.6) and (3.8) are
substituted into the saddle-point Egs. (2.9) and (2.10). In
general, o, F,(x, 1, {x', t'},) will depend in a nonlinear way on
the set of F, s, with m < n.

The interesting news here is that it is possible to get a
closed analytical solution for u©@(x, ). We find, in Fourier
space, that #” (k, ) is the sum of two contributions,

V%, 1) = AF " (k, 1) + 02 (k, 1), (3.10)

where A"F()(l)(k, t) is exactly the same as (3.4), and

- ik [3mk? 1
F(z) k 1) = —l k2 t by
0 (k,1) 3 4 exp lt] + 5

XF[_E 3_’9(|t|+1>}_ﬁ [z

22 2 32\ 3k2

X exp [k2<|t| + 1)]F[l, 3—kz<|t| + l)]
2 22 2

(3.11)

a result expressed in terms of the incomplete Gamma func-
tion, I'(x,y) = fvoc t*~!exp(—t)dt. From Eq. (3.10) (using,
again, A = —i), the velocity gradient at (x,¢) = (0, 0) can
be readily computed, in the approximation where u“(x,t) =
u(o)(x, t), as

£ = 0, (x, 0)lymg = f dkku® (k. 0)
27

A 3-2V3,

=+ —=—2, 3.12
Y (3.12)

which, on inversion leads to
N Zﬁ— 34203 —2V3) a3
- 2 . ﬁ . .

In order to see how accurate is Eq. (3.13), we have com-
puted the numerical instantons from Egs. (2.9)—-(2.11), along
the lines of the Chernykh-Stepanov procedure, implemented
through the pseudoespectral method for a system with
size 200 (recall that L = 1), and 2'° Fourier modes. The
time evolution is realized in the frame of a second-order
Adams-Bashfort time-difference scheme with time step 6t =
10/2048 ~ 5 x 1073 and total integration time 7 = 200.
Since instantons evolve within the typical integral timescale
To ~ 1/|X1], we have investigated the range 0.5 < |1] < 20.0,
sothatdr K Ty K< T.

As we can see from Fig. 3, the comparison between the pre-
dicted relation (3.13) and the one obtained from the numerical
instantons is reasonably accurate.

B. The surrogate saddle-point action

While we expect that the approximate instanton fields
given by Eqgs. (3.5) and (3.10) can be useful for the evaluation
of I1[p°, u°] and L[p°], up to lowest nontrivial order in the
functional perturbative expansion around p®(x, t), they are,
unfortunately, unable to provide the observed dependence of
the nonperturbative MSRJD action S.(§) with the velocity
gradient £. In fact, p{©(x,t) is proportional to A, leading,
from (2.18), to S.(§) = A?/4, a result that is not supported
by Eq. (3.1) with the input of numerical vgPDFs [20].

Taking advantage of the results reported in Ref. [20] for the
case of noise strength parameter g = 1.7, a flow regime close
to the onset of intermittency, we set k (g) = (0.92)? and write
down the surrogate saddle-point action (3.1) as

p1.7(§):|
p17(0) |

Si(8) >~ —(0.92 x 1.7)* In [ (3.14)
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25 //' i
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FIG. 3. The Lagrange multiplier A is given as a function of the
velocity gradient £. Open circles represent values obtained from the
numerical solutions of Egs. (2.9)—(2.11) (the black solid line is just
a polynomial interpolation of the numerical data); red solid line:
approximated instanton relation, Eq. (3.13); dashed line: A = 2§,
which holds for asymptotically small velocity gradients.

We have carried out direct numerical simulations to obtain the
surrogate action (3.14) and a set of vgPDFs for other values
of g, with the purpose of checking (2.21) in the approximation
given by (2.23).

The stochastic Burgers equation is solved with a fully
dealised pseudospectral method in N = 2048 collocation
points [36] by employing a second-order predictor-corrector
time marching scheme [37]. As in our numerical solution of
the instanton fields, the domain size is taken to be 200L. Ve-
locity gradients are saved every 30 time steps after a suitable
transient time, during a total simulation time 7 ~ 1.2 x 10”.

A useful and accurate fitting of the surrogate saddle-point
action (3.14) can be defined as

22 A £
Ssc(§) = —exp (—) + blél“[l — exp (—)} (3.15)
4 a d

where X is given by (3.13), and a = 2.046, b = 2.407, ¢ =
1.132, and d = 2.195 are optimal fitting parameters. The
result is shown in Fig. 4.

The interpolation (3.15) is actually consistent with the
behavior of the local stretching exponent for the saddle-point
action, which shows a quick drop from 6(£) =2 at small
velocity gradients to () ~ 1.16 as |&| grows, a fact verified
from direct numerical simulations of the Burgers equation as

J

50

—— - (0.92X1.7)In[p, (8)/p, ()]
—— %exp(h/a)/4 + bIE[[1 - exp(g/d)] |

40

304 -

10 §

Surrogate Saddle-Point Action

FIG. 4. Comparison between the surrogate saddle-point action,
as prescribed by Grafke er al. [20] for the case of noise strength
parameter g = 1.7 (black solid line), and a four-parameter fitting
function (red line) which provides distinct power-law asymptotics
for domains of small and large velocity gradients.

well [20,30]. The main benefit of using (3.15) instead of the
raw surrogate saddle-point action derived from p; 7(§) is that
it yields a smooth interpolation of data, circumventing error
fluctuations that grow at larger values of |&].

C. Evaluation of I[p°, u] and I,[p°]

Since I;[p, u¢] is a linear functional of u‘(x,t) we can
write, from (3.6) and (3.10), that

I [pc’ U] +12[pC] =1 [p(o)’ )LCFOH)] +1 [p(o)’ ()\,C)ZFO(Z)]
+L[pV1+ Ol8p°1. (3.16)

In order to evaluate the first three terms on the right-hand side
of (3.16), it is interesting, for the sake of fast numerical con-
vergence, to write the two-point correlation functions (2.25)
and (2.26) in Fourier space, viz.,

Gk, t,t') = fdx Gpu(x,0,1,1") exp(—ikx)
= —ig exp[—(t' — DOK1OF —1), (3.17)
Gulk,t,t) = /dx Guu(x,0,1,1") exp(—ikx)
_ T _ o l 2
=g Eexp[ <|t t+ Z)k i| (3.18)

We have, from (2.28), (2.29), (3.17), and (3.18),

A i i i
WP xR = / didi’ / dkdk' k(k + k)P Ok, OF D (—k, ()G K 1. 0)Gpulk + K 1)
t,t'<0
A\2gt k(k + k) 1
= — [ dkdk —=(* + k|, 3.19
87 k2+k’2+(k+k’)zeXp[ WD ©.19)
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1

1=~ 2027 )2

Llp

A°g

2.4 2
= 28 [ dkar
167 / K24k k)

implying that
L[p©, 2 FV] = —n[p©1 = 3 - V/3)22¢' 24 (3.21)
and, according to (3.16),
LIPS, ul+ Lp1 = L[p?, A)F> ]+ 0l8p1.  (3.22)

A straightforward numerical evaluation yields, from (2.28),

L[p©, 0 FP] ~ 1.6 x 107327, (3.23)
Equations (2.21), (2.23), (2.27), and (3.22) provide all the
necessary ingredients we need to put forward an improved
expression for the vgPDF tails, more concretely,

1 1
pg(§) = C(g)exp {—g—zssc(s) gt [P, ) F] }
(3.24)

where C(g) is a normalization constant that cannot be deter-
mined from the instanton approach, since it depends on the
detailed shape of the vgPDF for —oo < & < oo, while (3.24)
refers, in principle, to negative velocity gradients which are
some standard deviations away from the mean. The relevance
of the saddle-point computational strategy (including fluctu-
ations), however, can be assessed from adjustments of C(g)
that produce the best matches between the predicted vgPDFs,
Eq. (3.24), and the empirical ones, obtained from the direct
numerical simulations of the stochastic Burgers equation [20].
We do exactly so, using the least squares method, in the
velocity gradient range —5g < £ < —3g.

Comparisons between the predicted and empirical vgPDFs
are shown in Fig. 5, forg = 1.0, 1.2, 1.5, 1.7, 1.8, 1.9, and 2.0,
with and without the fluctuation correction term proportional
to I;[p©, (AC)2F()(2)], as it appears in (3.24).

We find that the surrogate saddle-point action is in fact a
very good approximation to the exact one, by inspecting the
vgPDF for g = 1.0, when the cumulant contribution is almost
negligible. As g grows, the relative cumulant contributions
grow as well, and become essential in order to attain accurate
modeling of vgPDF tails. For g = 1.7, as an example, we
clearly verify the existence of a fat left tail, and an excellent
agreement between modeled and empirical vgPDFs that ex-
tends for about four decades.

As it can be seen from Fig. 5, as g grows, the velocity gra-
dient regions where the agreement between the predicted and
the empirical vgPDFs is reasonably good shrink in size. This
is, of course, expected under general lines, since the cumulant
expansion is a perturbative method supposed to break down
when the amplitude of saddle-point configurations become
large enough, which in our particular case takes place for large
negative velocity gradients.

didt’ / dkdk'k*pO (k, )P O (—=k, t)G (k' 1, 1)Gu(k + K, 1, 1)
1,t'<0

1 2 N2
P{—E[k +(k+k)]}, (3.20)

[
IV. PERTURBATIVE DOMAIN

We find, from an analysis of the vgPDFs depicted in Fig. 5,
that a fine matching between the predicted and the empirical
vgPDFs holds for |£| > 2g but starts to lose accuracy when
velocity gradients are such that the second-order cumulant
expansion contributions, (f;[p°, u‘] + Iz[pc])/2g4, are of the
order of 20% (in absolute value) of the dominant saddle-point
contributions, S,.(&)/g>. We report, in Fig. 6, how the ratio
between these two quantities depends on the velocity gradient

-15 -10 -5 0 5

10° : : : : : : : —y 10°

@

p(E)

FIG. 5. Modeled (red lines) and empirical (black lines) vgPDFs
are compared for noise strengths g = 1.0, 1.2, 1.5, 1.7, 1.8, 1.9, and
2.0. They have been shifted along the vertical axis to ease visual-
ization, and their associated values of g grow from the bottom to
the top in each one of the PDF sets. Panels (a) and (b) give the
modeled vgPDFs that include and neglect, respectively, the effects
of fluctuations around instantons.
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FIG. 6. Solid lines, labeled by values of g, represent relative
corrections to the MSRJD surrogate saddle-point action due to
fluctuations around instantons. The intersection points of each one of
the solid lines with the vertical and horizontal dashed lines define the
range of normalized velocity gradients £/g where the perturbative
cumulant expansion is assumed to work (highlighted region in the
plot).

& for the several investigated values of the noise strength
parameter g to g = 2.0. It can be estimated in this way, then,
that g~ 2.7 is an upper bound for the usefulness of the
cumulant expansion method.

V. CONCLUSIONS

Notwithstanding the fact that the instanton approach to
Burgers intermittency was introduced around two decades
ago [14,16], the modeling of its preasymptotic, but already
fat-tailed, vgPDFs has been a persistent puzzle for many
years. The central issue underlying such a difficulty is that
instantons are supposed to yield an asymptotic description of
far vgPDF tails, which are not accessible, in general, from
direct numerical simulations.

Previous results, derived in the context of Lagrangian tur-
bulence [22,23], have indicated that non-Gaussian fluctuations

of important fluid dynamic observables, such as velocity
gradients, can be perturbatively investigated at the onset of
intermittency by means of the cumulant expansion technique.
The main lesson taken from these studies is that at the
onset of intermittency, the MSRJD saddle-point action gets
its heat-kernel and noise correlator function renormalized as
a dynamical effect of fluctuations around instantons. In this
way, accurate comparisons between analytical and empirical
vgPDFs have been achieved.

Inspired by such ideas, we have applied a similar ap-
proach to the problem of stochastic Burgers hydrodynamics,
which is able to predict the detailed shape of vgPDF left
tails at the onset of intermittency. Our results show that an
account of fluctuations around instantons is in fact neces-
sary to render the instanton approach a meaningful tool for
the modeling of Burgers intermittency, as emphasized by
Grafke et al. [20].

It is likely that the field-theoretical treatment addressed in
this work can be extended to other related problems, like the
transport of passive scalars [16] and the statistics of vorticity
in three- or two-dimensional turbulence [38—40].

Moving forward to the study of vgPDF tails for fully
developed turbulent regimes, far beyond the onset of in-
termittency, is another challenging task. The cumulant ex-
pansion method breaks down and improved techniques for
evaluating the path-integration over fluctuations around the
instantons are in order, ultimately related to the analysis
of functional Hessian determinants [41-44]. However, it is
not clear at all whether alternative path-integration meth-
ods will be of any relevance without the consideration of
further improved analytical approximations for the instanton
solutions. Also, as a point to be clarified in further studies,
one may wonder whether Gaussian fluctuations are indeed
enough per se to model in a satisfactory way the whole ex-
tension of vgPDF tails, since an analogous approach is known
to lead to inconsistencies in the multifractal description of
intermittency [45].
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