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The Generalized Integral Transform Technique (GITT) is a well-established hybrid numerical-
analytical method applicable to the solution of linear or nonlinear convection–diffusion problems,
which presents relatively low computational cost and automatic error control. Here, this hybrid
method is employed in the analysis of mass transfer in hollow-fiber mass separators. The adopted
model considers fully developed laminar flow of a Newtonian fluid with diffusion and reaction trans-
port effects of the solute through the membrane pores. The diffusive–reactive process at the membrane
is represented through a nonlinear boundary condition. A hybrid numerical–analytical solution is
obtained, based on retaining the original nonlinear boundary condition coefficients in the eigenvalue
problem proposition. The developed nonlinear eigenfunction expansion is then thoroughly analyzed
in terms of convergence behavior. The novel approach is also critically compared against previously
reported numerical results for typical parametric values and with an alternative convergence en-
hancement approach based on the proposition of an implicit nonlinear filter, that makes the boundary
condition homogeneous and allows for an integral transform solution through the proposition of a
linear eigenvalue problem.
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NOMENCLATURE

C dimensionless concentration
C̄ integral transformed dimensionless

concentration
C∗ dimensional concentration, mol m−3

CT total carrier concentration in all forms
(B andAB)

D diffusivity of solute in the fluid phase,
m2 s−1

H equilibrium distribution coefficient of
solute concentration in the membrane
to that in the fluid

h∗ dimensional slope of the distribution
coefficient, m3 mol−1

ho distribution coefficient for infinite
solute dilution

Keq equilibrium constant, ratio of the
forward to the backward rate constants

km membrane permeability coefficient,
m s−1

R inner radius of hollow fiber, m
Ro outer radius of hollow fiber, m
r dimensionless radial coordinate
r∗ dimensional radial coordinate, m
s hollow fiber shape factor

Shw wall Sherwood number
U dimensionless velocity profile
u dimensional velocity profile, m s−1

um average fluid velocity, m s−1

z dimensionless axial coordinate
z∗ dimensional axial coordinate, m

Greek symbols
γ dimensionless slope for a variable

distribution coefficient
α maximum facilitation factor
β dimensionless equilibrium constant
Ψ eigenfunction
Ψ̃ normalized eigenfunction
µ eigenvalues

Subscripts and superscripts
e entrance position
f filter solution
i, j order of eigenvalues and

eigenfunctions
h homogeneous solution
A referring to the species A
B referring to the species B

1. INTRODUCTION

Mass separators of hollow fiber membranes have application in several areas, such as in dialysis,
metal or non-dispersive solvent extraction, gas separation, artificial oxygenation, and removal
of pollutants from industrial waste streams (Urtiaga et al., 1992). This device is formed by a
large number of modules containing several synthetic tubular membranes that can promote the
separation of two or more phases, restricting the transport of many chemical species and selec-
tively transporting other species (Porter, 1990).

There is great interest in the study of supported liquid membranes because they can promote
the selective separation of a solute between two aqueous solutions. The procedure consists of
immobilizing an organic liquid (solvent) in the micropores within the porous structure of the
membrane, to promote the transfer of the solute by the membrane through diffusion, accom-
panied or not by chemical reaction (Cardoso et al., 2009; Kim and Stroeve, 1988, 1989, 1990;
Urtiaga et al., 1992).

Supported liquid membranes can be applied in various processes such as separation of metals
(Cardoso et al., 2009; Lakshmi et al., 2004; Swain et al., 2004), wastewater purification (Hosseini
et al., 2016), and pervaporation (Rdzaneck et al., 2018). This technology offers advantages as
facilitated transport mechanism, high selectivity, easy scale-up, low energy demand, and low
operational cost, and it is an alternative to the traditional separation and purification processes
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(Kocherginsky et al., 2007). However, the use of this technology on an industrial scale is still
reduced due to instability problems of the organic phase impregnated in the porous structure of
the membrane, whose losses can contaminate the stripping solution and reduce the separation
efficiency (Kocherginsky et al., 2007).

The mass transfer rate is limited by the transport of the solute through the membrane and it
is characterized by the wall Sherwood number (Shw), which is defined as the ratio of the mass
transfer resistance in the fluid to that in the membrane. If Shw → ∞ then the mass transfer
resistance in the membrane can be neglected and the solute concentration in the membrane wall
can be considered constant, and the problem formulation becomes similar to the classical Graetz
problem in heat transfer analysis. For Shw = 0, the resistance in the membrane is dominant and
the problem has a prescribed flux condition at the fluid–membrane interface. High values of Shw

ensure improved mass transfer rates through the membrane and a high selectivity for the sepa-
ration process. For a fluid with several components, it is necessary to choose a membrane that
allows a higher Sherwood number for the component to be separated in comparison to the oth-
ers. A relatively high Sherwood number can be obtained by using liquid membranes containing
a suitable liquid to ensure a high distribution coefficient for the solute (Urtiaga et al., 1992).

The mass transfer process can also be improved through the use of carrier species which
selectively and reversibly react with the solute by promoting its transport through the porous
liquid membrane. These carrier species should be retained in the membrane due to limitations
of solubility. This transport favored by a carrier species is known as carrier-facilitated transport
(Kim and Stroeve, 1988).

Mathematical models that govern the mass transfer process in hollow fiber membranes in-
volving chemical reaction are generally nonlinear due to reaction kinetics and, therefore, require
the application of numerical or hybrid analytical–numerical methods to construct the solution.
Hybrid methods are in general advantageous over purely numerical methods since they explore
known analytical ideas within the computational procedure, in an attempt to achieve results of
higher accuracy and lower computational cost, and are naturally preferable in time-consuming
computational tasks such as optimization and inverse problem analysis.

The Generalized Integral Transform Technique (GITT) is a well-established tool in the
hybrid numerical–analytical solution of various classes of linear and nonlinear diffusion and
convection–diffusion problems (Cotta, 1990, 1993, 1994, 1998; Cotta and Mikhailov, 1997,
2006; Cotta et al., 2016a). This method can be viewed as an extension of the Classical Inte-
gral Transform Technique (Kakaç et al., 2018; Mikhailov and Ozisik, 1984;Özisik, 1993) and
consists of constructing the solution to the desired potentials as an expansion of orthogonal
eigenfunctions, obtained from the proposition of a suitable eigenvalue problem, that, as much as
possible, should incorporate information on the original problem for improved convergence.

In most of the previous implementations of this approach, linear eigenvalue problems have
been proposed in providing the basis for the eigenfunction expansions. Typically, the original
nonlinear problem formulation is first rewritten by retaining characteristic linear coefficients
in the transient, diffusive, and dissipation operators of the partial differential equations, while
transporting the remaining nonlinear terms to a rewritten nonlinear equation source term. Again,
the same formulation interpretation is adopted in case those nonlinear boundary conditions are
present. Then, such characteristic equation and boundary condition linear coefficients naturally
lead to the eigenvalue problem choice to be employed in constructing the expansions. Recently,
a variant in the GITT approach has been advanced, based on retaining the original nonlinear
operator coefficients in the eigenvalue problem proposition (Cotta et al., 2016b). This method-
ology has been demonstrated in diffusion problems with nonlinear boundary conditions, which
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(Cotta et al., 2015, 2016b; Pontes et al., 2017) clearly illustrate the relative gains in conver-
gence enhancement in comparison to other alternative convergence acceleration schemes, such
as filtering and integral balances.

The present contribution is focused on the analysis of the convective–diffusive mass trans-
fer related to the transport of a solute through polymeric hollow fiber membranes, undergoing
diffusive or diffusive–reactive separation, as modeled through a nonlinear boundary condition.
The novel GITT variant with nonlinear eigenfunction expansion is then employed, and critically
compared to the more traditional approach of employing a linear eigenvalue problem basis but
adopting a nonlinear filter scheme for convergence enhancement. The aim is to analyze the com-
putational performance achieved by both approaches, before selecting the most adequate solu-
tion path for a broader physical analysis. Then, the influence of the governing parameters on the
mass separation process in tubular membranes is investigated. Comparisons are also performed
against results from previously reported numerical implementations, in order to verify the algo-
rithms and demonstrate the potential of this technique in dealing with such class of nonlinear
problems.

2. PROBLEM FORMULATION

The mass separator will be studied assuming that each hollow fiber membrane within the device
exhibits a similar behavior, and thus assuming that modeling the mass transfer process for one
single membrane is then sufficient to represent the overall physical performance of the separator.
The membranes are suitably supported on the porous walls of the hollow fiber whereby the solute
is transported by diffusion or diffusion–reaction, according to the characteristics of the material
used in the membrane composition and its affinity with the solute. A schematic diagram of the
hollow fiber membrane is shown in Fig. 1.

The partial differential equations that govern the mass transfer process in the mass separator
were presented in the literature (Kim and Stroeve, 1988, 1989; Urtiaga et al., 1992), based on the
mass conservation principle, assuming steady-state fully developed laminar flow of a Newtonian
fluid containing the solute to be separated through the hollow fiber membranes, by diffusion or
diffusion–reaction effects. The fluid enters the separator with known uniform concentrationC∗

e

and the separation process starts atz = 0, where the fluid comes into contact with the supported

FIG. 1: Schematic representation of the hollow fiber geometry and coordinates system, with the supported
liquid membrane
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liquid membrane. The solute permeates through the liquid membrane by diffusion or diffusion–
reaction process, and on the other side of the fiber reacts instantaneously with the stripping
solution, so that its concentration is equal to zero. The axial diffusion effect is neglected com-
pared to axial convection and radial diffusion. The dimensionless mathematical model is thus
given by

U(r)
∂C(r, z)

∂z
=

1
r

∂

∂r

(
r
∂C(r, z)

∂r

)
, 0 < r < 1, z > 0 (1a)

C(r, 0) = 1, 0 < r < 1 (1b)

∂C(r, z)
∂r

∣∣∣∣
r=0

= 0, z > 0 (1c)

∂C(r, z)
∂r

∣∣∣∣
r=1

+ f (C) C(1, z) = 0, z > 0 (1d)

wherer = r∗/R is the dimensionless radial coordinate,z = z∗D
/
umR2 is the dimensionless

axial coordinate,C = C∗/C∗
e is the dimensionless concentration of the solute, andU(r) =

2(1− r2) is the dimensionless velocity profile of the fluid.
Equation (1c) represents the symmetry condition at the channel center line, while Eq. (1d) is

a nonlinear boundary condition that imposes the continuity of solute flux across the membrane–
fluid interface, which makes it unlikely to obtain a fully analytical solution for this problem.
In this case, a reliable numerical or hybrid numerical–analytical method should be employed to
obtain an accurate solution.

The termf (C) in the boundary condition Eq. (1d) is defined according to the assumptions
adopted for the transport of the solute through the membrane. For instance, Urtiaga et al. (1992)
assumed a linear dependency of the equilibrium distribution coefficient on the solute concen-
tration. The equilibrium distribution coefficient is defined as the equilibrium distribution ratio
of the solute concentration in the liquid membrane to the concentration in the fluid side. In this
case, the solute is separated only by diffusion through the membrane, and the termf (C) and the
dimensionless groups are defined by Eqs. (1e)–(1g), respectively:

f (C) = Shw (1 + γC (1, z)) (1e)

γ =
C∗

e h∗

ho
(1f)

Shw =
kwsRho

D
(1g)

whereho is the value of the distribution coefficient for infinite dilute solutions ands = (Ro− R)/
(R ln [Ro/R]) is the shape factor based on the inside radius (Noble, 1983).

The mathematical model proposed by Urtiaga et al. (1992) can be applied in the analysis of
the separation process of toxic phenolic solutes from water through liquid membranes, for which
some solvents have a distribution coefficient depending on the concentration of phenol.

Kim and Stroeve (1988) considered that the solute may be transported through the mem-
brane by carrier-facilitated transport, promoted by a complexation reaction with carrier species
contained in the membrane, which provide improved mass transfer rates and high selectivity.
The solute-carrier complexAB is obtained from an elementary and reversible equilibrium re-
action between the solute (speciesA) and carrier (speciesB) inside the membrane, with the
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kinetics represented in Eq. (1h). The termf (C) and the dimensionless groups can be defined by
Eqs. (1i)–(1m), respectively.

A + B À AB (1h)

f (C) = Shw

(
1 +

α

1 + βC (1, z)

)
(1i)

z =
z∗DA

umR2
(1j)

Shw =
kwsR

DA
(1k)

α =
D′

BCT Keq

D′
A

(1l)

β = KeqHC∗
e (1m)

The mathematical model proposed by Kim and Stroeve (1988) can be applied in the removal
process of CO2 from synthesis gas, using a reactive carbonate solution immobilized in microp-
orous polymeric membranes.

Kim and Stroeve (1989) also considered that the solute can be transported through the mem-
brane by carrier-facilitated ion-pair transport, promoted by an ion-pair formation and complex-
ation reaction. First, the cationA (solute to be separated) reacts with the anionB leading to the
speciesAB, with kinetics defined by Eq. (1n). Then, the complexABP is obtained from the
reaction between the speciesAB and the carrierP , with kinetics defined by Eq. (1o). Both re-
actions are considered elementary and reversible. The termf (C) and the dimensionless groups
are defined by Eqs. (1p)–(1t), respectively,

A + B À AB (1n)

AB + P À ABP (1o)

f (C) = Shw

(
1 +

α

1 + βC2 (1, z)

)
C (1, z) (1p)

z =
z∗DA

vR2
(1q)

Shw =
kwABskC∗

e

DA
(1r)

α =
D′

CCT Keq

D′
AB

(1s)

β = Keqh (C∗
e )2 (1t)

The mathematical model proposed by Kim and Stroeve (1989) can be applied in the transport
of mono- and divalent cations through chloroform-saturated membranes containing crown ether
carriers.
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3. SOLUTION METHODOLOGY

As an alternative to conventional numerical methods, the hybrid numerical–analytical approach
known as GITT (Generalized Integral Transform Technique) (Cotta, 1990, 1993, 1994, 1998;
Cotta and Mikhailov, 1997, 2006; Cotta et al., 2016a) will be used to construct the solution
of the given problem, as an expansion of orthogonal eigenfunctions defined from an appropri-
ate eigenvalue problem. Following the solution of the eigenvalue problem, the dependence of
the radial variabler is then removed through integral transformation of the partial differential
equation, leading to a system of coupled ordinary differential equations which must be solved
numerically for the transformed concentrations.

Two variants of the eigenfunction expansion will be here analyzed. First, as a major goal
of the present work, a nonlinear eigenvalue problem will be adopted, which incorporates the
nonlinear diffusion–reaction effects at the interface fluid-membrane. In this first solution vari-
ant, the circular geometry and velocity profile are not accounted for by the eigenvalue problem
choice, so as to provide simpler eigenfunctions. It incorporates the boundary condition nonlin-
earity, generating nonlinear ordinary differential equations for the determination of eigenvalues,
to be solved simultaneously with the transformed system. In the second solution variant, both the
circular geometry and the velocity profile are incorporated into the eigenvalue problem formula-
tion, which yields Laguerre polynomials as the basis for the expansion, but without incorporating
the boundary nonlinearity, which must then bea priori homogenized by the application of an
implicit nonlinear filter, within a constrained range of the governing parameters.

3.1 Nonlinear Eigenvalue Problem Approach

Here, a recently introduced integral transforms approach (Cotta et al., 2016b), based on the adop-
tion of nonlinear eigenvalue problems, will be further investigated. There is some computational
advantage, as will be seen further ahead, in adopting a simpler eigenvalue problem formulation
that does not account for the circular geometry and velocity profile information, but instead di-
rectly incorporates the nonlinear boundary condition information. Following this alternative, the
proposed nonlinear eigenvalue problem is given by

∂2Ψi

∂r2
+ µ2

i (z)Ψi(r; z) = 0 (2a)

∂Ψi

∂r

∣∣∣∣
r=0

= 0 (2b)

∂Ψi

∂r

∣∣∣∣
r=1

+ f (C)Ψi(1; z) = 0 (2c)

Making use of the orthogonality property of the eigenfunctions, the following integral trans-
form pair can be defined:

C̄i (z) =

1∫

0

Ψi(r; z)C (r, z) dr transform (3a)

C (r, z) =
∞∑

i=1

Ψi(r; z)
Ni(z)

C̄i (z) inverse (3b)
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where the kernelsΨi(r; z) are given by the solution of the eigenvalue problem, Eqs. (2a) and
(2b). This eigenvalue problem has a known analytical solution given by

Ψi(r; z) = cos (µi (z) r) (4a)

with Ni(z), the normalization integral, given by

Ni(z) =

1∫

0

Ψ2
i (r; z)dr =

1
4

(
2 +

sin(2µi (z))
µi (z)

)
(4b)

The proposed eigenvalue problem is typical of diffusion problems in Cartesian coordinates,
but it was chosen to allow for the analytical solution of the integrals obtained along the integral
transformation procedure, thus avoiding costly numerical integrations.

The integral transformation of Eq. (1a) is accomplished by applying the operator
1∫

0
Ψi (r; z)(.)dr and making use of the boundary conditions given by Eqs. (1c), (1d), (2b), and

(2c), yielding the transformed system of ordinary differential equations below:

∞∑

j=1

Ai,j(z)
dC̄j (z)

dz
=

∞∑

j=1

(Ei,j(z) − Bi,j(z)) C̄j (z) − µ2
i (z) C̄i (z) , i = 1, 2, 3, ... (5a)

where

Ai,j(z) =
1

Nj(z)

1∫

0

U(r)Ψi(r; z)Ψj(r; z)dr (5b)

Bi,j(z) =

1∫

0

U(r)Ψi(r; z)
∂

∂z

(
Ψj (r; z)
Nj(z)

)
dr (5c)

Ei,j(z) =
1

Nj(z)

1∫

0

Ψi(r; z)
r

∂Ψj

∂r
dr (5d)

The inlet boundary condition given by Eq. (1b) is transformed through the operator
1∫

0
Ψi(r; 0) (.) dr, to provide

C̄i (0) = Fi (5e)

where

Fi =

1∫

0

Ψi(r; 0)dr (5f)

For the solution of the infinite coupled system of nonlinear ordinary differential equations
(ODE) given by Eqs. (5a)–5(f), one usually needs to make use of numerical algorithms, after
the truncation of the system to a sufficiently large finite order. For instance, the built-in routine
NDSolve of theMathematicasystem, Wolfram (2015), may be employed, which is able to pro-
vide reliable solutions under automatic absolute and relative errors control. Then, the inversion
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formula, Eq. (3b), can be recalled to yield the concentration field representation at any desired
positionr andz.

Replacing Eq. (4a), obtained for the eigenfunctionΨi(r; z), into the nonlinear boundary
condition, Eq. (2c), one may reach the transcendental equation forµi (z):

−µi (z) sin(µi (z)) + f (C(1, z)) cos (µi (z)) = 0 (6a)

Taking the derivative of Eq. (6a), it is obtained an ODE system forµi (z), in the form:

dµi (z)
dz

=
cos (µi (z)) df/dz

sin(µi (z)) + µi (z) cos (µi (z)) + f (C(1, z)) sin(µi (z))
, i = 1, 2, 3, ... (6b)

The derivative off (C(1, z)) is evaluated for each model as

• Urtiaga et al. (1992):
df

dz
= Shwγ

∂C(1, z)
∂z

(6c)

• Kim and Stroeve (1988):

df

dz
= − Shwαβ

(1 + βC(1, z))2

∂C(1, z)
∂z

(6d)

• Kim and Stroeve (1989):

df

dz
= Shw

[
1 +

α
(
1− βC2(1, z)

)

(1 + βC2(1, z))2

]
∂C(1, z)

∂z
(6e)

where

∂C(1, z)
∂z

=
∞∑

j=1

1
N2

j (z)

[(
dΨj (1; z)

dz
Nj (z) − Ψj (1; z)

dNj (z)
dz

)
C̄j (z)

+ Ψj (1; z)Nj (z)
dC̄j (z)

dz

] (6f)

The inlet boundary conditions for the eigenvalues ODE system, Eqs. (6b)–6(f), can be ob-
tained by the evaluation of Eq. (6a) atz = 0. At z = 0, there is a prescribed concentration con-
dition, but when computing the eigenvalues for this inlet condition, the inverse formula for the
concentration should be employed in Eq. (6a), to be consistent with the substitution performed
in deriving Eq. (6f) for its derivative evaluation.

3.2 Nonlinear Filtering Solution Approach

Employing a nonlinear (or implicit) filter solution can be a very effective strategy to account
for the nonlinear source term and avoid a slower convergence behavior of the eigenfunction
expansion (Cotta and Mikhailov, 1997). In order to remove the nonlinearity of the boundary
condition [Eq. (1d)], the following nonlinear filter solution has been proposed:

C(r, z) = Ch(r, z) + Cf (r; z) (7)
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whereCh(r, z) is the homogeneous potential solution andCf (r; z) is the nonlinear filter solu-
tion.

The filter solution is then obtained from the following problem formulation:

1
r

∂

∂r

(
r
∂Cf (r; z)

∂r

)
= 0 (8a)

∂Cf (r; z)
∂r

∣∣∣∣
r=0

= 0 (8b)

while the nonlinear boundary condition and the filter solution for each model is given as

• Urtiaga et al. (1992):

∂Cf (r; z)
∂r

∣∣∣∣
r=1

+ ShwCf (1; z) = −Shwγ
[
C2

h(1, z) + 2Ch(1, z)Cf (1; z) + C2
f (1; z)

]
(8c)

Cf (z) =
− [1 + 2γCh(1, z)] +

√
1 + 4γCh(1, z)

2γ
, if γ 6= 0 (8d)

Cf (z) = 0, if γ = 0 (8e)

• Kim and Stroeve (1988):

∂Cf (r; z)
∂r

∣∣∣∣
r=1

+ ShwCf (1; z) = −Shwα (Ch (1, z) + Cf (1; z))
1 + β (Ch (1, z) + Cf (1; z))

(8f)

Cf (z) =
− (1 + α + βCh(1, z)) +

√
−4αβCh(1, z) + [1 + α + βCh(1, z)]2

2β
(8g)

if β 6= 0

Cf (z) = −αCh(1, z)
(1 + α)

, if β = 0 (8h)

Since the first boundary condition, Eq. (8b), eliminates the logarithmic radial dependence in
the filter, the resulting filter solutions are given by functions of the axial variable only,Cf (z).
Equations (8d), (8e), (8g), and (8h) establish nonlinear relationships between the filter and the
homogeneous concentration atr = 1, for these particular forms of the boundary source terms
here analyzed. It is only possible to obtain a real solution for Eqs. (8d) and (8g) if the following
conditions are satisfied, respectively:

1 + 4γCh(1, z) ≥ 0 (8i)

−4αβCh(1, z) + [1 + α + βCh(1, z)]2 ≥ 0 (8j)

In addition, the mathematical model proposed by Kim and Stroeve (1989) does not provide
an explicit relationship for the nonlinear filter, following the same proposal shown above, and is
therefore not included in the comparisons that shall be here performed between the two solution
variants.
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After finding the filter solution, the problem to determine the homogeneous potential can be
analyzed, which is defined by the following equations:

U(r)
∂Ch(r, z)

∂z
=

1
r

∂

∂r

(
r
∂Ch(r, z)

∂r

)
+ P (r, z, Ch(1, z)) (9a)

Ch(r, 0) = 1− Cf (0) (9b)

∂Ch(r, z)
∂r

∣∣∣∣
r=0

= 0 (9c)

∂Ch(r, z)
∂r

∣∣∣∣
r=1

+ ShwCh(1, z) = 0 (9d)

where

P (r, z, Ch(1, z)) = −U(r)
dCf (z)

dz
(9e)

As it can be observed from Eqs. (9a)–(9e), application of the nonlinear filter results in a
linear and homogeneous boundary condition, while a nonlinear source term is created in the
partial differential equation, Eq. (9a). The GITT methodology can also be directly applied to this
homogeneous problem with a linear boundary condition atr = 1. For this purpose, the following
linear eigenvalue problem was chosen:

1
r

d

dr

(
r
dΨi

dr

)
+ µ2

iU(r)Ψi(r) = 0 (10a)

dΨi

dr

∣∣∣∣
r=0

= 0 (10b)

dΨi

dr

∣∣∣∣
r=1

+ ShwΨi(1) = 0 (10c)

The eigenvalue problem above defined has analytical solution in terms of Laguerre polyno-
mials:

Ψi(r) = e−(r2µi/
√

2)L(1/4)(−2+
√

2µi)
(√

2r2µi

)
(11)

After the eigenvalue problem solution, the transform and inverse formulae for the homoge-
neous concentration can be defined as

C̄h,i (r) =

1∫

0

rU (r) Ψ̃i (r) Ch (r, z) dr (12a)

Ch (r, z) =
∞∑

i=1

Ψ̃i (r) C̄hi (z) (12b)

whereΨ̃i(r) is the normalized eigenfunction defined as

Ψ̃i(r) =
Ψi(r)√

Ni

(12c)
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Ni =

1∫

0

rU (r)Ψ2
i (r)dr =

1
2µi

(
∂Ψi

∂r

∂Ψi

∂µi
− Ψi

∂2Ψi

∂r∂µi

)

r=1

(12d)

The integral transformation of Eq. (9a) is accomplished by applying the operator
1∫

0
rΨ̃i (r) (.) dr and making use of the boundary conditions given by Eqs. (9c), (9d), (10b),

and (10c), yielding the transformed system of nonlinear ordinary differential equations:

dC̄h,i (z)
dz

+ µ2
i C̄h,i (z) = P̄i (z, Ch(1, z)) (13a)

where

P̄i (z, Ch(1, z)) = −
1∫

0

rΨ̃i(r)U(r)dr.
dCf (z)

dz
(13b)

The inlet boundary condition given by Eq. (9b) is transformed through the operator
1∫

0
rU (r) Ψ̃i(r) (.) dr, to provide

C̄h,i (0) = (1− Cf (0))

1∫

0

rΨ̃i(r)U(r)dr (13c)

Equations (13a)–(13c) form a coupled nonlinear system of ordinary differential equations
that are numerically solved by appropriate computational routines, such as the NDSolve intrinsic
function of theMathematicasystem (Wolfram, 2015). After the numerical solution procedure is
concluded, the concentration profile is recovered through its respective inversion formulae and
the proposed nonlinear filter solution.

After the solution of the concentration field is available, through either one of the solution
variants, the average solute concentration along the channel can be analytically derived through
the following relation:

Cav (z) =

1∫
0

rU(r)C (r, z) dr

1∫
0

rU(r)dr

(14)

4. RESULTS AND DISCUSSION

The results presented in this section were obtained through a mixed symbolic-numerical compu-
tational routine built on theMathematicav.10 platform, and employing the subroutineNDSolve
for the solution of the nonlinear transformed ODEs systems, Eqs. (5), (6), (13a), and (13c).
Numerical results were generated through the two solution variants explored in this work and
are compared with results available in the literature, also as a way of numerically verifying the
developed computational code.

Tables 1–3 present the convergence behavior of the dimensionless average solute concentra-
tion at different positions along thez direction and for increasing truncation orders NT of the
transformed ODE system. Two different combinations for the parameter values are investigated
to evaluate the influence of the nonlinear term on the convergence of the series solution. Table 1
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TABLE 1: Convergence behavior of the dimensionless average solute concentration
Cav (z) for the model proposed by Urtiaga et al. (1992)

GITT with nonlinear eigenvalue problem
Shw = 0.1 andγ = 10 Shw = 10andγ = 1

NT z = 0.01 z = 0.5 z = 2 NT z = 0.01 z = 0.5 z = 2
10 0.983595 0.590917 0.218047 10 0.922964 0.174980 0.001509
20 0.983595 0.590917 0.218047 20 0.922816 0.174964 0.001508
30 0.983595 0.590917 0.218047 30 0.922806 0.174963 0.001508
40 0.983594 0.590917 0.218047 40 0.922804 0.174963 0.001508
50 0.983594 0.590917 0.218047 50 0.922803 0.174963 0.001508
60 0.983594 0.590917 0.218047 60 0.922802 0.174963 0.001508

GITT with nonlinear filter
Shw = 0.1 andγ = 10 Shw = 10andγ = 1

NT z = 0.01 z = 0.5 z = 2 NT z = 0.01 z = 0.5 z = 2
10 0.983645 0.590924 0.218046 20 0.922889 0.174971 0.001509
20 0.983602 0.590918 0.218046 40 0.922822 0.174965 0.001508
30 0.983597 0.590917 0.218046 60 0.922811 0.174964 0.001508
40 0.983595 0.590917 0.218046 80 0.922806 0.174963 0.001508
50 0.983595 0.590917 0.218046 100 0.922805 0.174963 0.001508
60 0.983595 0.590917 0.218046 120 0.922804 0.174963 0.001508

Ref.* 0.9835 0.5903 0.2177 — 0.9227 0.1749 0.0015

(*) Cardoso et al. (2009).

TABLE 2: Convergence behavior of the dimensionless average solute concentration
Cav (z) for the model proposed by Kim and Stroeve (1988)

GITT with nonlinear eigenvalue problem
Shw = 1,α = 15, andβ = 1000 Shw = 10,α = 1000, andβ = 15

NT z = 0.05 z = 0.5 z = 2 NT z = 0.05 z = 0.5 z = 2
10 0.923412 0.492612 0.052531 10 0.716432 0.131677 0.000546
20 0.923359 0.492579 0.052524 20 0.716218 0.131649 0.000546
30 0.923354 0.492576 0.052523 30 0.716197 0.131646 0.000546
40 0.923352 0.492576 0.052523 40 0.716192 0.131645 0.000546
50 0.923352 0.492576 0.052523 50 0.716190 0.131645 0.000546
60 0.923352 0.492576 0.052523 60 0.716189 0.131645 0.000546

GITT with nonlinear filter
Shw = 1,α = 15, andβ = 1000 Shw = 10,α = 1000, andβ = 15

NT z = 0.05 z = 0.5 z = 2 NT z = 0.05 z = 0.5 z = 2
2 0.923093 0.492575 0.052523 20 0.716271 0.131654 0.000546
4 0.923353 0.492576 0.052523 40 0.716204 0.131647 0.000546
6 0.923352 0.492575 0.052523 60 0.716194 0.131646 0.000546
8 0.923352 0.492575 0.052523 80 0.716191 0.131645 0.000546
10 0.923352 0.492575 0.052523 100 0.716190 0.131645 0.000546
12 0.923352 0.492575 0.052523 120 0.716189 0.131645 0.000546

Ref.* 0.924 0.494 0.0533 — 0.716 0.131 0.00055

(*) Kim and Stroeve (1988).
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TABLE 3: Convergence behavior of the dimensionless average solute concentration
Cav (z) for the model proposed by Kim and Stroeve (1989)

GITT with nonlinear eigenvalue problem
Shw = 1, α = 15, andβ = 1000 Shw = 10, α = 1000, andβ = 15

NT z = 0.05 z = 0.5 z = 2 NT z = 0.05 z = 0.5 z = 2
10 0.935884 0.610327 0.238780 10 0.720639 0.137532 0.001181
20 0.935852 0.610312 0.238775 20 0.720455 0.137526 0.001181
30 0.935849 0.610311 0.238774 30 0.720441 0.137528 0.001181
40 0.935848 0.610310 0.238774 40 0.720439 0.137529 0.001181
50 0.935848 0.610310 0.238774 50 0.720438 0.137530 0.001181
60 0.935848 0.610310 0.238774 60 0.720438 0.137530 0.001181

presents the results obtained from the mathematical model proposed by Urtiaga et al. (1992),
providing also a direct comparison with the earlier work of Cardoso et al. (2009), considering
a linear eigenvalue problem without any filtering scheme for the nonlinear boundary condition,
but with very high truncation orders (NT up to 1000). Tables 2 and 3 present the results obtained
from the mathematical models proposed by Kim and Stroeve (1988; 1989), respectively. The
present solution with nonlinear eigenvalue problem provides a marked improvement on con-
vergence rates over the previous more simple GITT implementation (Cardoso et al. 2009) and
ensures in all cases five or six fully converged significant digits, in the whole axial variable range
analyzed, with truncation orders as low as NT= 40 or NT= 60, depending on the parameter val-
ues. The solution obtained through the GITT with nonlinear filter has also achieved an excellent
convergence rate, reaching again five or six converged significant digits with truncation orders
of NT = 40 or NT= 120 in each set of results of Table 1, and six converged significant digits
with NT = 12 terms and five digits with NT= 120 terms, in each of the two sets of results of
Table 2. The results are in excellent agreement with previous results from the literature as well.
The present set of results suggests that the simulations with parameters that increase the relative
importance of the nonlinear boundary condition term, especially for the second solution variant
that employs a linear eigenvalue problem, require higher truncation orders in the transformed
system to ensure the same convergence level.

Tables 4–6 provide, for each of the three models, respectively, a convergence analysis of the
nonlinear eigenfunction expansion variant only, by considering a fixed maximum value of the
truncation order (NTmax = 50) and inspecting the convergence behavior of both the local con-
centrationC (r, z) and of the average concentrationCav (z), for increasing number of terms in
the fixed expansion, for N= 6 to 30, in steps of 6, for the local field, and N= 4 to 20, in steps
of 4, for the average field. This analysis allows one to verify that the convergence of the eigen-
function expansions is indeed outstanding once the nonlinear eigenvalue problem is adopted as
the expansion basis. The local concentration field is fully converged to four or five significant
digits, in the worst case, with just 30 terms in the expansion, which occurs for the lower values
of thez variable and atr = 1. As for the average concentration, again in the worst situation for
z = 0.01, five or six significant digits are converged for N as low as 16.

Tables 7 and 8 present a comparison of the dimensionless average concentration values be-
tween the two hybrid solution schemes explored in this work, against available literature data.
The GITT results here reported were obtained with a fixed truncation order for the transformed
system, with NT= 60 for the nonlinear eigenvalue problem solution in both Tables 7 and 8, and
for the nonlinear filter solution, NT= 120 in Table 7 and NT= 250 in Table 8. One may observe
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TABLE 4: Convergence behavior of GITT solution with nonlinear eigenvalue problem for the
dimensionless localC (r, z) and averageCav (z) solute concentrations, for the model proposed
by Urtiaga et al. (1992) with Shw = 10andγ = 1 and with NTmax = 50

C (r, z)
N r = 0 z = 0.1 r = 0 z = 0.25 r = 0 z = 0.5 r = 1 z = 0.1 r = 1 z = 0.25 r = 1 z = 0.5
6 0.952403 0.639705 0.289923 0.101507 0.058996 0.027143
12 0.952309 0.639657 0.289903 0.101174 0.058827 0.027069
18 0.952304 0.639655 0.289902 0.101139 0.058809 0.027061
24 0.952303 0.639654 0.289901 0.101130 0.058805 0.027059
30 0.952302 0.639654 0.289901 0.101127 0.058803 0.027059

Cav (z)
N z = 0.01 z = 0.1 z = 0.2 z = 0.5 z = 1 z = 2
4 0.922013 0.636334 0.455869 0.174953 0.035824 0.001508
8 0.922798 0.636373 0.455894 0.174963 0.035826 0.001508
12 0.922802 0.636374 0.455895 0.174963 0.035826 0.001508
16 0.922803 0.636374 0.455895 0.174963 0.035826 0.001508
20 0.922803 0.636374 0.455895 0.174963 0.035826 0.001508

Ref.* 0.9227 0.6363 0.4558 0.1749 0.0358 0.00150

(*) Cardoso et al. (2009).

TABLE 5: Convergence behavior of GITT solution with nonlinear eigenvalue problem for the
dimensionless localC (r, z) and averageCav (z) solute concentrations, for the model proposed
by Kim and Stroeve (1988) with Shw = 1, α = 15, andβ = 1000and with NTmax = 50

C (r, z)
N r = 0 z = 0.1 r = 0 z = 0.25 r = 0 z = 0.5 r = 1 z = 0.1 r = 1 z = 0.25 r = 1 z = 0.5
6 0.986177 0.848812 0.606689 0.598623 0.466586 0.326950
12 0.986136 0.848790 0.606675 0.598471 0.466505 0.326896
18 0.986134 0.848789 0.606674 0.598457 0.466497 0.326891
24 0.986133 0.848789 0.606674 0.598454 0.466496 0.326890
30 0.986133 0.848789 0.606674 0.598453 0.466495 0.326890

Cav (z)
N z = 0.01 z = 0.1 z = 0.2 z = 0.5 z = 1 z = 2
4 0.982297 0.858469 0.746044 0.492565 0.243867 0.052522
8 0.982703 0.858496 0.746061 0.492575 0.243872 0.052523
12 0.982705 0.858497 0.746062 0.492575 0.243873 0.052523
16 0.982706 0.858497 0.746062 0.492575 0.243873 0.052523
20 0.982706 0.858497 0.746062 0.492575 0.243873 0.052523

Ref.* 0.983 0.859 0.747 0.494 0.245 0.0533

(*) Kim and Stroeve (1988).

the expected excellent agreement between the two converged GITT solutions, which provide a
verification of the purely numerical results of Urtiaga et al. (1992) and Kim and Stroeve (1988),
with an adherence to at least two significant digits in all positions and parameter values consid-
ered.
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TABLE 6: Convergence behavior of GITT solution with nonlinear eigenvalue problem for the
dimensionless localC (r, z) and averageCav (z) solute concentrations, for the model proposed
by Kim and Stroeve (1989) with Shw = 1, α = 15andβ = 1000and with NTmax = 50

C (r, z)
N r = 0 z = 0.1 r = 0 z = 0.25 r = 0 z = 0.5 r = 1 z = 0.1 r = 1 z = 0.25 r = 1 z = 0.5
6 0.988226 0.878357 0.694949 0.679516 0.587795 0.487726
12 0.988199 0.878344 0.694940 0.679417 0.587744 0.487690
18 0.988197 0.878343 0.694939 0.679408 0.587740 0.487687
24 0.988197 0.878343 0.694939 0.679406 0.587738 0.487687
30 0.988197 0.878343 0.694939 0.679405 0.587738 0.487686

Cav (z)
N z = 0.01 z = 0.1 z = 0.2 z = 0.5 z = 1 z = 2
4 0.984321 0.884744 0.798782 0.610303 0.421349 0.238772
8 0.984678 0.884761 0.798793 0.610310 0.421353 0.238774
12 0.984680 0.884762 0.798793 0.610310 0.421353 0.238774
16 0.984680 0.884762 0.798793 0.610310 0.421353 0.238774
20 0.984680 0.884762 0.798793 0.610310 0.421353 0.238774

This comparative analysis is complemented through Figs. 2–4, which provide the profiles of
the dimensionless average solute concentration along the length of the hollow fiber membrane,
for the three different models, respectively, and for different values of the parameters. The GITT
results were obtained with a truncation order for the transformed system of NT= 50. To the
graphical scale, it is quite clear that the two hybrid solution schemes here employed are coinci-
dent, and in excellent agreement with the previously reported results (Urtiaga et al. 1992; Kim
and Stroeve, 1988; 1989). It is also clear that the average concentration of the solute is strongly
influenced by the values of Shw, γ, α, andβ. The nonlinear filtering solution here adopted leads
to a complex domain solution for values ofγ less than zero. For this reason, in the following
graphs, there are no curves of the nonlinear filter solution for negative values ofγ. The solution
scheme with the nonlinear eigenvalue problem, here emphasized, does not have this sort of lim-
itation, being valid for any value ofγ. The nonlinear filter solution was not implemented for the
third model (Kim and Stroeve 1989), and for this reason only the nonlinear eigenvalue problem
solution is provided in Figs. 4(a) and 4(b).

Figures 2(a) and 2(b) illustrate the influence of the parameterγ on the average concentration
of solute for the Sherwood numbers Shw = 0.1 and Shw = 1, respectively.γ is related to
the variable distribution coefficient depending on the solute concentration along the separator.
It is possible to observe that with the increase ofγ, there is a considerable improvement in the
mass transfer rates of the solute through the membrane. For positive value ofγ, the variable
distribution coefficient is higher at the entrance of the separator where the solute concentration
is maximal and it decreases along the channel as the solute concentration decreases. For negative
value ofγ an opposite effect occurs.

Figures 3 and 4 illustrate the effect of the maximum facilitation factorα and the dimension-
less equilibrium constantβ on the average concentration of the solute in the membrane.α is
defined as the ratio of carrier-facilitated transport to purely physical transport of solute. High
values ofα ensure a more efficient transport of the solute through the membrane, according to
Figs. 3(a) and 4(a).β gives a measure of the intensity of the complexation reaction and has an
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TABLE 7: Comparison of the dimensionless average solute concentrationCav (z) with data
from Urtiaga et al. (1992)

Shw = 0.1 andγ = 0 Shw = 0.1 andγ = 0.1

Z
Urtiaga et
al. (1992)

Nonlinear
filter

Nonlinear
eigenvalue
problem

Urtiaga et
al. (1992)

Nonlinear
filter

Nonlinear
eigenvalue
problem

0.01 0.997937 0.998034 0.998034 0.997739 0.997844 0.997844
0.1 0.980597 0.980814 0.980814 0.978829 0.979062 0.979062
0.2 0.961899 0.962184 0.962185 0.958534 0.958842 0.958842
0.5 0.908104 0.908536 0.908536 0.900555 0.901012 0.901012
1.0 0.825084 0.825714 0.825714 0.812170 0.812824 0.812824
2.0 0.682032 0.682031 0.682032 0.660485 0.662879 0.662879

Shw = 0.1 andγ = 1 Shw = 1 andγ = 0

Z
Urtiaga et
al. (1992)

Nonlinear
filter

Nonlinear
eigenvalue
problem

Urtiaga et
al. (1992)

Nonlinear
filter

Nonlinear
eigenvalue
problem

0.01 0.995759 0.996195 0.996195 0.982283 0.982961 0.982961
0.1 0.963544 0.964428 0.964428 0.859620 0.860584 0.860585
0.2 0.933780 0.931542 0.931542 0.748813 0.749808 0.749808
0.5 0.840861 0.842418 0.842418 0.499920 0.500057 0.500057
1.0 0.716369 0.718403 0.718403 0.254408 0.255004 0.255004
2.0 0.532879 0.535389 0.535389 0.066080 0.066316 0.066316

Shw = 1 andγ = 0.1 Shw = 1 andγ = 1

Z
Urtiaga et
al. (1992)

Nonlinear
filter

Nonlinear
eigenvalue
problem

Urtiaga et
al. (1992)

Nonlinear
filter

Nonlinear
eigenvalue
problem

0.01 0.980048 0.981756 0.981756 0.971118 0.973046 0.973046
0.1 0.851779 0.854148 0.854148 0.811091 0.813065 0.813065
0.2 0.738177 0.740630 0.740630 0.682304 0.684142 0.684142
0.5 0.486580 0.488829 0.488829 0.421381 0.422825 0.422824
1.0 0.245085 0.246757 0.246757 0.198930 0.199923 0.199923
2.0 0.063000 0.063670 0.063670 0.048622 0.049018 0.049018

TABLE 8: Comparison of the dimensionless average solute concentrationCav (z) with data
from Kim and Stroeve (1988)

Shw = 0.1, α = 1000, and β = 15 Shw = 1, α = 1000, and β = 15

Z
Kim and
Stroeve
(1988)

Nonlinear
filter

Nonlinear
eigenvalue
problem

Kim and
Stroeve
(1988)

Nonlinear
filter

Nonlinear
eigenvalue
problem

0.05 0.730 0.730308 0.730308 0.717 0.716858 0.716859
0.1 0.592 0.591781 0.591780 0.580 0.579569 0.579569
0.2 0.407 0.406383 0.406383 0.396 0.396051 0.396052
0.5 0.138 0.137588 0.137588 0.132 0.132066 0.132066
1.0 0.023 0.022720 0.022720 0.021 0.021277 0.021277
2.0 0.00062 0.000619 0.000619 0.00055 0.000552 0.000552
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(a)

(b)

FIG. 2: (a) Effect of parameterγ on dimensionless average solute concentration for the model proposed
by Urtiaga et al. (1992) with Shw = 0.1; (b) Effect of parameterγ on dimensionless average solute
concentration for the model proposed by Urtiaga et al. (1992) with Shw = 1
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(a)

(b)

FIG. 3: (a) Effect of parameterα on dimensionless average solute concentration for the model proposed by
Kim and Stroeve (1988) with Shw = 0.1 andβ = 15; (b) Effect of parameterβ on dimensionless average
solute concentration for the model proposed by Kim and Stroeve (1988) with Shw = 0.1 andα = 15

opposite effect to that ofα. High values ofβ indicate a saturation in the complexation reaction
and make it difficult to transport the solute, according to Figs. 3(b) and 4(b).
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(a)

(b)

FIG. 4: (a) Effect of parameterα on dimensionless average solute concentration for the model proposed
by Kim and Stroeve (1989) with Shw = 0.001 andβ = 5; (b) Effect of parameterβ on dimensionless
average solute concentration for the model proposed by Kim and Stroeve (1989) with Shw = 0.001and
α = 1000
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5. CONCLUSIONS

A nonlinear convection–diffusion mathematical model for the mass transport of a solute through
hollow fiber membranes is here analyzed. The Generalized Integral Transform Technique (GITT)
is applied to solve the mathematical model considering two proposals for the eigenvalue prob-
lem: a formulation that does not account for curvature and velocity profile coefficients but
incorporates the nonlinearity of the boundary condition, and must then be simultaneously solved
with the set of ordinary differential equations for the transformed concentration field, and an-
other formulation with a linear eigenvalue problem that includes geometry and velocity field
information, but does not account for the nonlinear boundary condition. This second alterna-
tive then requires the development of a nonlinear filtering solution to homogenize the original
nonlinear boundary condition, moving the nonlinear effect to a new nonlinear source term in
the convection–diffusion equation itself. Both hybrid solution schemes, either with the nonlin-
ear eigenvalue problem or with the nonlinear filter, have markedly improved convergence rates
with respect to the plain GITT solution with a linear eigenvalue problem and without any filter,
previously implemented with very high truncation orders. The proposed solution with a nonlin-
ear eigenvalue problem reaches six significant digits convergence with truncation orders as low
as 40 to 60 terms. The agreement between the two GITT solutions schemes is remarkable, for
different values of the governing parameters, as well as with other available purely numerical
solutions of the same problem. The implemented nonlinear filter solution does have some lim-
itation in certain range of the governing parameters, and requires that other possible filters be
searched for. The proposed GITT approach with nonlinear eigenvalue problem results from a
general methodology for convection–diffusion problems with nonlinear boundary conditions. It
may even be further improved in terms of convergence rate, by either considering an eigenvalue
problem that incorporates all the original spatial operators of the partial differential equation
and/or by considering complementary convergence enhancement techniques, such as an analyti-
cal filtering solution to reduce the importance of source terms eventually present in the problem
formulation.
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