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ABSTRACT
Background: One of the challenges faced during the hyperthermia treatment of cancer is to monitor
the temperature distribution in the region of interest. The main objective of this work was to accur-
ately estimate the transient temperature distribution in the heated region, by using a stochastic heat
transfer model and temperature measurements.
Methods: Experiments involved the laser heating of a cylindrical phantom, partially loaded with iron
oxide nanoparticles. The nanoparticles were manufactured and characterized in this work. The solution
of the state estimation problem was obtained with an algorithm of the Particle Filter method, which
allowed for simultaneous estimation of state variables and model parameters. Measurements of one
single sensor were used for the estimation procedure, which is highly desirable for practical applica-
tions in order to avoid patient discomfort.
Results: Despite the large uncertainties assumed for the model parameters and for the coupled radia-
tion–conduction model, discrepancies between estimated temperatures and internal measurements
were smaller than 0.7 �C. In addition, the estimated fluence rate distribution was physically meaningful.
Maximum discrepancies between the prior means and the estimated means were of 2% for thermal
conductivity and heat transfer coefficient, 4% for the volumetric heat capacity and 3% for
the irradiance.
Conclusions: This article demonstrated that the Particle Filter method can be used to accurately pre-
dict the temperatures in regions where measurements are not available. The present technique has
potential applications in hyperthermia treatments as an observer for active control strategies, as well
as to plan personalized heating protocols.
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Introduction

The use of heat for therapeutic purposes in medicine dates
back from remote centuries [1–3]. The hyperthermia treat-
ment of cancer requires heat deposition in tumorous tissues
with minimum heating of healthy cells. With the recent
developments in nanotechnology, nanoparticles have been
concentrated in the tumor to locally increase the absorption
of electromagnetic waves imposed by energy sources [4]. In
the case of near-infra-red laser-induced hyperthermia, noble
metal nanoparticles, nanopolymers and oxide nanoparticles,
with high optical absorption, were used as thermal agents in
several reported studies [5–7].

One of the challenges faced during the hyperthermia
treatment of cancer is to monitor the temperature distribu-
tion in the region of interest. Temperature measurement
techniques available nowadays can be classified as invasive

and noninvasive [8,9]. Noninvasive techniques are generally
contact free, do not require the sensors to be inserted into
the body and can provide a three-dimensional map of the
temperature field. Currently, magnetic resonance tempera-
ture imaging (MRTI) via proton resonance frequency shift is
the most advanced non-invasive temperature measurement
technique, but its widespread use in clinics is still limited
[8–11]. In contrast, the sensors are inserted into the body in
invasive techniques. Thus, the number of sensors must be
kept small for minimising patient discomfort. Fiber optic sen-
sors were used for internal temperature measurements dur-
ing breast hyperthermia treatment by Notter et al. [12], while
Schena et al. [9] provided an overview on the types of fiber
optic sensors used for invasively monitoring hyperthermia.

Regardless of the measurement technique, whether inva-
sive or noninvasive, the measured temperatures do contain
uncertainties. Likewise, tissue properties exhibit a large
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variability that must be accounted for in numerical simula-
tions required for the planning and the predictive control of
the hyperthermia treatment [13–20]. Bayesian state estima-
tion techniques provide a systematic framework for combin-
ing uncertainties in the measured data and in the
mathematical model of the physical problem [15–18]. Such
techniques result in accurate estimates of the temperature
distribution inside the body, thermal dose and thermal dam-
age [21] during the hyperthermia treatment of cancer
[13,15–18]. In the case of invasive temperature monitoring,
where the number of measurement points must be small,
such a methodology can be useful for providing an estimate
of the transient spatial distribution of the temperature in the
region of interest.

Bayesian state estimation formulation of the hyperthermia
treatment of cancer was shown to provide accurate esti-
mates of state variables, for cases involving synthetic meas-
ured data [13,15–18]. In these works, Particle Filter Methods
[22–29], also referred to as Sequential Monte Carlo Methods,
were used for the solution of state estimation problems
related to the hyperthermia treatment of cancer, with heat-
ing in the near-infra-red or radiofrequency ranges. Here, we
focus on the experimental validation of the state estimation
approach advanced by our group [13,15–18], for the case of
the near-infra-red heating of a cylindrical phantom. A tumor
was simulated inside the phantom by a disk that contained
iron oxide nanoparticles, which were used to promote a
localized absorption of the near-infra-red laser beam. The
state estimation problem was solved using transient tem-
perature measurements available at a single position within
the phantom and a coupled radiation—heat conduction evo-
lution model. The transient temperature distribution within
the phantom was estimated together with the laser fluence
rate distribution, as well as with the parameters that appear
in the mathematical formulation of the problem.

Materials and methods

Experiment

The experiment consisted of a cylindrical plastic phantom
that contained a disk-shaped region loaded with nanopar-
ticles. Such a region was aimed at promoting localized heat-
ing under near-infra-red laser exposure. The material used

for the preparation of the phantom was PVCP (Polyvinyl
Chloride Plastisol, M-F Manufacturing Co., Fort Worth, TX).
Iron oxide nanoparticles were used as the laser absorbing
agent due to their relative low cost.

The nanoparticles were manufactured by loading iron
oxide (Fe2O3 powder with particles smaller than 5 lm,
bought from Sigma-Aldrich, Co) into a planetary ball mill
(Fritsch GmbH Pulvirisette 6), where hardened steel vials with
257.65 cm3 containing six stainless steel balls of 22mm diam-
eter, were set in rotation at 600 rpm. The ball-to-powder
mass ratio was 30:1 [30]. Milling was performed in a dry air
atmosphere for 24 h. X-ray diffraction measurements of the
produced nanoparticles were performed in an XRD Bruker
D8 Discover, with Co (Ka) radiation in the 2h range from 20�

to 90�. The morphology and size of the nanoparticles were
observed by Field emission gun-scanning electron micros-
copy in a FEG-MEV model FEI Versa 3D. Typical X-ray powder
diffraction patterns of the iron oxide particles, before and
after milling, are shown by Figure 1. The diffraction patterns
are consistent with Fe2O3, thus indicating that the milling
process did not affect the chemical structure of the initial
sample. Furthermore, the XRD diffractogram has relative
sharp peaks, indicating an excellent crystallinity of the sam-
ples. For the milled samples, the peaks are broad and with
small intensity, indicating the presence of nanoparticles [31].
Figure 2 presents SEM micrographs of the nanoparticles,
where it can be noticed agglomerates varying from 30 to
100 nm in size.

For the preparation of the phantom, 30mg of the manu-
factured Fe2O3 nanoparticles were mixed with 25ml of pure
PVCP (concentration of 24% vol) and stirred with an ultra-
sonic mixer (Cole Parmer, 750W) for 15min. Afterwards, the
mixture was heated in an oven at 170 �C for one hour and
then allowed to naturally cool down at room temperature in
a disk-shaped mould, with diameter of 28mm and thickness
of 6mm. The top and bottom of the mould containing the
mixture were covered with glass plates to obtain flat surfa-
ces. The PVCP disk loaded with Fe2O3 nanoparticles was then
placed in another larger cylindrical mould, with diameter of
40mm and height of 44mm. Finally, pure liquid PVCP at
170 �C was poured into the cylindrical mould containing the
disk loaded with nanoparticles, to fill the void spaces. Figure
3(a) shows a top view of the phantom, where the disk

Figure 1. X-ray powder diffraction patterns.
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loaded with nanoparticles appears in brown at the centre.
Thermocouple wires can also be seen in this figure.

A near-infra-red laser diode (Oclaro) with a mean wave-
length of 829.1 nm was used to heat the phantom. The laser

diode was connected to a collimator F-H10-NIR-FC (Newport)
by an optical fiber. The laser output power was controlled by
a laser driver (model 525B, Newport) with a maximum out-
put power of 600mW. The laser diode was cooled to avoid
excessive heating. Light reflection from the bottom of the
phantom was minimized by using a support with very low
reflectivity. The collimator was coaxially located 15 cm above
the phantom. In the experiments, the laser diode was set to
deliver two output powers (P1¼ 156.6mW and P2¼ 220mW)
on continuous wave mode through the collimator. A digital
power meter and an infra-red card (Thorlabs) were used for
the measurement of the laser output power and spot size,
respectively. The phantom was exposed to the laser for 100 s
in all experiments. During irradiation, an infra-red thermo-
graphic camera (FLIR Thermacam SC660), placed at 80 cm
above the phantom, was used to measure its top surface
temperature. Also, three thermocouples type K, located at
the phantom axis at different depths below the irradiated
surface, were used to measure local temperature variations.
The thermocouples were placed below the region loaded
with nanoparticles (where the absorption coefficient is high)
in order to avoid direct laser heating. One of the thermocou-
ples was placed at the back surface of the disk with Fe2O3

nanoparticles, at a depth of 8mm below the top surface of
the phantom. The other thermocouples were located at 10
and 15mm below the top surface of the phantom. The ther-
mocouples were connected to a data acquisition system
(AGILENT 34970A) controlled by a computer, which provided
readings with a frequency of 1 Hz. The experimental setup
and a snapshot of the infra-red camera measurements are
shown by Figures 3(b) and 3(c), respectively.

The transient temperature measurements from a single
thermocouple and a computational model describing the
physics of the problem were jointly used in an inverse

Figure 2. FEG-SEM micrographs of the milled sample.

Figure 3. (a) Top view of the phantom with thermocouples; (b) Experimental
setup; (c) Snapshot of the infra-red camera readings.
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analysis. The objective was to provide sequential estimates
of the temperature distribution inside the phantom, as
described below.

Physical problem and mathematical formulation

The physical problem corresponding to the experiment
involves the heating of a cylindrical medium by an external
collimated Gaussian laser beam. The laser beam is coaxial
with the phantom, so that the problem can be formulated as
two-dimensional and axisymmetric. The cylinder made of
PVCP contains a coaxial disk inclusion, which simulates the
tumor and is made of PVCP loaded with Fe2O3 nanoparticles,
as illustrated by Figure 4. The dimensions of the phantom
and the locations of the thermocouples are also shown in
this figure.

By assuming that absorption dominates scattering in the
phantom, the laser light propagation was modeled with
Beer–Lambert’s law. The light propagation model was then
coupled to a transient heat conduction problem. The surface
exposed to the laser radiation (at z¼ 0) exchanged heat with
the surrounding media at T¼ T0 by convection and linearized
radiation, while the surface at z¼ Lz was maintained at a pre-
scribed constant temperature T¼ T0. Heat transfer was
neglected through the lateral surfaces of the phantom. The
medium was assumed at a constant uniform initial tempera-
ture, T0. The validity of the hypotheses made for the math-
ematical formulation is addressed in the discussions of
this work.

The heat conduction problem in terms of tempera-
ture increase,

T�(r,z,t)¼ T(r,z,t) – T0, is then formulated by using position-
dependent properties as:

C r; zð Þ @T
� r; z; tð Þ
@t

¼ r � k r; zð ÞrT� r; z; tð Þ� �
þ Qlaser r; zð Þ; 0 < z < Lz; 0 � r < Lr; t > 0

(1.a)

�k
@T�

@z
þ hT� ¼ 0; z ¼ 0; 0 � r< Lr; t> 0 (1.b)

T� ¼ 0; z ¼ Lz; 0 � r< Lr; t> 0 (1.c)
@T�

@r
¼ 0; r ¼ Lr; 0< z< Lz; t> 0 (1.d)

T� ¼ 0; 0< z< Lz; 0 � r< Lr; t ¼ 0 (1.e)

where C is the volumetric heat capacity, k is the thermal con-
ductivity and h is the combined heat transfer coefficient for
convection and linearised radiation at the surface z¼ 0. In
Equation (1a), the volumetric heat source term Qlaser is due
to the laser absorption within the phantom and is given by:

Qlaser r; zð Þ ¼ j r; zð ÞU r; zð Þ (2)

where j is the local absorption coefficient and the fluence
rate, Uðr; zÞ, follows Beer-Lambert's law, that is,

U r; zð Þ ¼ Ui r; zð Þ ¼ U0;i�1 r; di�1 rð Þð Þ exp �ji z � zið Þ½ � (3.a)

The subscript i refers to the material layer i, di is the thick-
ness of each layer, while zi and U0;i�1 are the axial position
at which the collimated light enters layer i and the colli-
mated fluence rate at this position, respectively. For i¼ 1 we
have:

U1 r; zð Þ ¼ E0 exp �2r2=r20
� �

exp �j1zð Þ (3.b)

where r0 is the Gaussian beam radius, that is, the radial loca-
tion where the irradiance falls to 1/e2 of the maximum irradi-
ance and is related to the Full Width Half Maximum (FWHM)
by

r0 ¼ FWHMffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p (3.c)

State estimation problem

Two kinds of problems can be associated to the mathemat-
ical formulation given by Equations (1) to (3): a direct prob-
lem and an inverse problem. In the direct problem, all the
optical and thermophysical properties, boundary conditions,
initial condition and the heat source term are known. The
objective of the direct problem is to obtain the fluence rate
and the transient temperature distribution within the
medium. On the other hand, in this work we define an
inverse problem of temperature field estimation, given transi-
ent temperature measurements taken at single location
within the medium. The kind of inverse problem addressed
here falls into the class of state estimation problems, which
are quite common in science and engineering [22–29].

In a state estimation problem, the mathematical modeling
of the physical phenomena and available measurements are
combined, in order to sequentially estimate the state varia-
bles of interest [22–29,32–34]. State estimation problems are
formulated within the Bayesian framework, in order to cope
with the different sources of uncertainties present in the
mathematical formulation of the physical problem and in the
measurements [22–29,32–34].

The definition of the state estimation problem requires
two models: a state evolution model, which describes the

Figure 4. Sketch of the phantom with its associated dimensions, laser beam,
thermocouples and IR camera.
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dynamics of the state variables, and an observation model,
which relates the state variables to the available measure-
ments [22–29,32–34]. Let xk denote the state vector, which
contains all the variables that uniquely describe the system
at a given time instant tk. The state evolution model and the
observation model can be respectively written in terms of
the general vector functions fk and gk as [22–29,32–34]:

xk ¼ fk xk�1; h; vk�1ð Þ; k ¼ 1; :::;M (4.a)

zk ¼ gk xk; h;nkð Þ; k ¼ 1; :::;M (4.b)

The vector h contains all the non-dynamic parameters of
the models, while vk and nk represent the noises in the state
evolution model and in the observation model, respectively.

The goal of the state estimation problem is to sequen-
tially estimate the posterior probability density pðxkjz1:k; hÞ of
the state variables, or the joint posterior probability density
pðxk; hjz1:kÞ of the non-dynamic parameters and of the state
variables, given the measurements z1:k ¼ ½z1; z2; . . . ; zk�.
Inference on the joint posterior density pðxk; hjz1:kÞ is of
practical interest, since the non-dynamic parameters appear-
ing in the models might be unknown or known under uncer-
tainties. Given the state evolution and observation models,
as well as the initial distributions of parameters and state
variables, the solution of the joint parameter and state esti-
mation problem can be obtained with Bayesian filters. In this
work, the Particle Filter algorithm of Liu and West was
applied because of its robustness and because it allows that
model parameters be simultaneously estimated with state
variables [17,18,28,29,35,36].

The Particle Filter method is a Monte Carlo technique for
the solution of state estimation problems, in which the pos-
terior probability density function is represented by a set of
random samples (particles) with associated weights. As the
number of Monte Carlo samples becomes large, it is
expected that they provide an appropriate representation of
the posterior probability density function and the solution
approaches the optimal Bayesian estimate. The Particle Filter
algorithms generally make use of an importance density,
which is a probability density function proposed to represent
another one that cannot be exactly computed, that is, the
sought posterior density in the present case. Then, samples
are drawn from the importance density instead of the actual
density [22–29,32–34].

For the simultaneous estimation of state variables and
non-dynamic parameters, let fxik; hikg denote the particle i at
time tk, with associated weight wi

k; i ¼ 1; . . . ;N, where N is
the number of particles. The subscript k for the parameter
vector h does not represent a time dependence of such
quantity, but the fact that it is also estimated sequentially,
like the state variables x. The weights are normalized so thatPN

i¼1 w
i
k ¼ 1. The posterior probability distribution of the

state variables and of the parameters at tk can be discretely
approximated by [37–39]:

p xk; hkjz1:kð Þ�
XN
i¼1

wi
kd xk � xik
� �

d hk � hik
� �

(5)

Where dð:Þ is the Dirac delta function.

The algorithm of Liu and West for the Particle Filter is
based on West's hypothesis [40] of a Gaussian mixture for
the vector of parameters h [28,29,40], that is,

p hjz1:k�1ð Þ�
XN
i¼1

wi
k�1N hjmi

k�1; h
2Vk�1

� �
(6)

where Nð�jm; SÞ is a Gaussian density with mean m and
covariance matrix S, while h is a smoothing parameter.
Equation (6) shows that the density pðhjz1:k�1Þ is a mixture
of Gaussian distributions weighted by the sample weights
wi

k�1. The kernel locations are specified by using the follow-
ing shrinkage rule [28,37]:

mi
k�1 ¼ A hik�1 þ 1�Að Þ�hk�1 (7)

where A ¼
ffiffiffiffiffiffiffiffiffiffiffi
1�h2

p
and �hk�1 is the mean of h at time tk-1.

The shrinkage factor, A, is computed as [28,37]:

A ¼ 3e�1
2e

(8)

where 0.95<e< 0.99.
The steps of Liu and West's particle filter algorithm

[28,37], as applied for the advancement of the particles from
time tk-1 to time tk, are presented in Table 1.

In this work, the vector of state variables at time tk, xk ,
includes the fluence rates and temperatures at the centers of
the discretized finite volumes, which were used for the solu-
tion of the forward problem, represented by the vectors Uk

and Tk , respectively. The state estimation problem aims at
obtaining the spatial distribution of the fluence rate and
transient temperature distribution in the phantom, given
transient temperature measurements available from one sin-
gle thermocouple. For the results presented in this article,
only the transient measurements obtained with the thermo-
couple located at the position (r¼ 0, z¼ 8) mm were used
for the solution of the state estimation problem. Since the
physical properties and the laser flux are known with a cer-
tain degree of uncertainty, they are jointly estimated with
the fluence rate and temperature fields.

For solving this problem with Liu and West’s Particle Filter
algorithm, we assume Gaussian additive uncertainties for the
state evolution model and for the observation model. The
state evolution model is given by:

xk ¼ fk xk�1; hk�1; vk�1ð Þ ¼ Uk

Tk

" #

¼
fradk hradk�1

� �
þ rUeUk

fcondk Tk�1;Uk; h
cond
k�1

� �
þ rTeTk

2
64

3
75

(9)

In Equation (9), the evolution models for the temperature
and fluence rate were represented separately, where fradk and
fcondk are given by the discrete forms of Equations (3) and (1),
respectively. The vectors eU and eT are uncorrelated Gaussian
variables, with zero mean and unitary standard deviations,
while the standard deviations for the temperature and flu-
ence rate models are given by rT ¼ 0.5 �C and rU ¼ 1% of
the fluence’s deterministic value, respectively. The vectors of
parameters hrad and hcond contain the optical and
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thermophysical properties, respectively. The initial distribu-
tions of the state variables at time t¼ 0 were also assumed
Gaussian, with zero means and the standard deviations given
above. For the results presented below, 2000 particles were
used in the computations with the Particle Filter.

The prior probability densities for the model parameters
at time t¼ 0 were assumed Gaussian, centered on values
obtained from independent measurements made in this
work, or taken from the literature. The C-Therm TCi Thermal
Conductivity Analyzer (C-Therm Tecnologies), which is based
on the modified transient plane source technique, was used
to measure the thermal conductivity and the thermal effusiv-
ity of both pure PVCP and of the PVCP disk containing the
iron oxide nanoparticles. The measured thermal conductivity
values were (0.21 6 0.01) W m�1 K�1 and (0.22 6 0.01) W
m�1 K�1, for pure PVCP and for PVCP containing Fe2O3

nanoparticles, respectively. The volumetric heat capacities
were directly calculated from the measured thermal conduc-
tivities and thermal effusivities as (1.4989 6 0.0003)
MJm�3 K�1 and (1.4755 6 0.0003) MJm�3 K�1, for pure PVCP
and for PVCP with nanoparticles, respectively. The mean

value for the absorption coefficient of the pure PVCP was
taken from the literature [41,42]. For the absorption coeffi-
cient of the PVCP disk containing nanoparticles, the prior
mean value was assigned by comparing the surface tempera-
tures measured on the surface of the heated phantom with
numerical simulations of the forward problem. These tem-
perature measurements were taken in experiments different
from those used for the estimations presented below, in
order to keep the prior independent of the measurements
used for the solution of the state estimation problem. The
heat transfer coefficient at the irradiated surface (z¼ 0) was
assumed as h¼ 10Wm�2 K�1, which is typical of natural con-
vection with air coupled to linearized radiation at room tem-
perature. Two different laser output powers, P1¼ 156.6mW
and P2¼ 220mW, were used in the experiments and the cor-
responding irradiances were calculated from the measured
laser output power and beam radius as:

E0 ¼ 2P
pr20

(10)

The mean irradiance values were E01¼ 4580.5Wm�2 and
E02¼ 6447.7 Wm�2 for P1 and P2, respectively.

Table 2 summarises the mean values for the Gaussian pri-
ors of the model parameters. In order to reflect the associ-
ated uncertainties, standard deviations of 5% of the mean
values were assigned for the priors of all parameters, except
the absorption coefficients. The absorption coefficients were
the parameters with most uncertain priors, because their val-
ues were taken from the literature (pure PVCP) or assigned
based on independent measured data of the phantom sur-
face temperature (PVCP with nanoparticles). Hence, the
standard deviations for the absorption coefficients were
assigned as 10% of their mean values.

The observation model was based on the calibration pro-
cedure for the thermocouples, which resulted in an

Table 1. Liu and West’s algorithm [28].

Step 1
Find the mean �hk�1 of the parameters h at time tk–1.

Step 2
For i¼ 1,… ,N compute mi

k�1 with Equation (7), draw new particles xik from the prior density p(xkjxik�1
,mi

k�1) and then calculate the mean lik of xk. Use the
likelihood density to calculate the corresponding weights wi

k ¼ p(zkjlik ,mi
k�1)w

i
k–1.

Step 3
Calculate the total weight t¼Ri w

i
k and then normalise the particle weights, that is, for i¼ 1,… ,N let wi

k¼ t–1 wi
k .

Step 4
Resample the particles as follows:
Construct the cumulative sum of weights (CSW) by computing ci ¼ ci–1þwi

k for i¼ 1,… ,N, with c0¼ 0
Let i¼ 1 and draw a starting point u1 from the uniform distribution U[0,N-1]
For j¼ 1,… ,N

Move along the CSW by making uj ¼ u1þN�1(j�1)
While uj > ci make i¼ iþ 1
Assign samples xj

k�1
¼ xi

k�1
, mj

k�1
¼ mi

k�1
and lj

k
¼ li

k

Assign parent ij¼ i

Step 5
For j¼ 1,… ,N draw samples hjk from Nðhjkjmij

k�1; h
2Vk�1Þ, by using the parent ij

Step 6
For j¼ 1,… ,N draw particles xj

k
from the prior density p(xkjxijk�1

,hjk), by using the parent ij, and then use the likelihood density to calculate the correspondent

weights wj
k ¼p(zkjxjk ,hjk)/p(zkjlijk ,mij

k�1
)

Step 7
Calculate the total weight t¼Rjw

j
k and then normalise the particle weights, that is, for j¼ 1,… ,N let wj

k ¼ t–1 wj
k

Table 2. Means for the priors of the model parameters.

Parameter PVCP PVCP with nanoparticles

k0 (Wm–1K–1)a 0.21 0.22
C0 (Jm

–3K–1)b 1.4989	 106 1.4755	 106

j0 (m
–1) 9c 125d

h0 (Wm–2K–1)e 10
E01 (Wm–2)f 4580.5
E02 (Wm–2)f 6447.7
aMeasured in this work with C-Therm TCi thermal conductivity analyzer.
bDirectly calculated with thermal conductivity and thermal effusivity measured
in this work.
cReferences [41,42].
dEstimated in this work from independent surface temperature measurements
in the heated phantom.

eNatural convection with air and linearized radiation at room temperature.
fDirectly calculated with laser power and beam radius measured in this work.
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uncorrelated Gaussian distribution for the measurement
errors, with zero mean and standard deviation rmeas ¼
0.2 �C. Therefore, the likelihood function used to calculate
the weights wi

k (see Table 1) is given by:

p zmeas
k

jxi
k
; hk

� �
/ exp � 1

2

zmeas
k

� z
k
xi

k
; hk

� �h i2
r2meas

8<
:

9=
; (11)

Results

Figure 5(a) and (b) present the comparisons of the estimated
and measured transient temperature variations at the pos-
ition (r¼ 0, z¼ 8) mm, for the laser powers P1 and P2,
respectively. These measurements were used for the solution
of the state estimation problem. The associated 99% confi-
dence intervals of the estimated and measured temperature
variations are also included in these figures. It can be noticed
in Figure 5(a) and (b) that the temperature variations esti-
mated with the particle filter matched the measurements
used for the solution of the state estimation problem, for
both laser powers, at the graph scale. Note also the larger
temperature variations observed for the larger power P2 than
for P1.

As a validation of the solution of the state estimation
problem, the estimated temperature variations were com-
pared to the measurements obtained with the thermocouple
located at (r¼ 0, z¼ 10) mm, as well as with the temperature

profiles at the heated surface. We note that these measure-
ments were not used for the solution of the state estimation
problem. Figures 6(a) and (b) present the comparison of the
estimated temperature variations at the position (r¼ 0,
z¼ 10) mm with the thermocouple measurements, for the
laser powers P1 and P2, respectively. For both laser powers,
the estimated mean temperatures fell within the measured
99% confidence intervals for most of the points. Maximum
deviations between measurements and estimated means
were 0.7 �C and 0.5 �C for P1 and P2, respectively. Figure 7
presents a comparison of the estimated radial temperature
variations with the temperature measurements at the bound-
ary exposed to the laser radiation (z¼ 0), at selected times
(t¼ 60 s: top, t¼ 90 s: bottom), for the two laser powers (P1:
left, P2: right). The measurements shown in Figure 7 were
taken with the infra-red camera. The associated 99% confi-
dence intervals of the estimated and measured temperatures
are also included in this figure. As for the results presented
above, Figure 7 shows that the temperature variations esti-
mated with the proposed methodology were in excellent
agreement with the measurements. Maximum deviation
between measurements and estimated means was 0.8 �C.
The measurements were obtained at pixels along a line
drawn at the center of the phantom and clearly reveal the
heating concentrated at the center of the phantom, where
the laser beam was focussed. The measurements and the
estimated temperatures assumed a Gaussian profile, due to
the laser collimator used in the experiments and to the heat

(a) (b)

Figure 5. Comparison of the measured and estimated transient temperature variations at (r¼ 0, z¼ 8) mm: (a) Laser power P1; (b) Laser power P2.

(a) (b)

Figure 6. Comparison of the measured and estimated transient temperature variations at (r¼ 0, z¼ 10) mm: (a) Laser power P1; (b) Laser power P2.
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transfer process. Note in Figure 7 the larger temperature var-
iations as time and laser power increase. This figure shows
that the surface temperature spatial and transient variations
were correctly estimated through the solution of the state
estimation problem, with Liu and West’s version of the par-
ticle filter.

The temperature variation estimated in a longitudinal cut
through the center of the phantom, at t¼ 90 s, is presented
by Figure 8. This figure shows the highest temperatures in
the region loaded with nanoparticles, which mimics the
tumor. The distributions of fluence rates estimated on this
same longitudinal cut are shown by Figure 9. This figure
shows that, as expected, the estimated fluence rates were
larger in the region of the laser beam and where the disk
with nanoparticles was located. Moreover, the estimated flu-
ence rates were larger for the highest laser power.

Besides the estimation of the state variables of interest for
this problem, that is, the temperature and fluence rate fields,

Liu and West’s algorithm of the particle filter allows for
simultaneous estimation of the nondynamic model parame-
ters. Figure 10 presents the estimated 99% confidence inter-
vals for the model parameters, including the irradiances, for
both P1 and P2. The means of the Gaussian priors used for
each parameter are also shown by this figure. Figure 10
shows that the confidence intervals of the model parameters
were sequentially reduced and tended to the mean values
used for the priors, as the information provided by the meas-
urements was taken into account in the solution of the state
estimation problem. Moreover, the confidence intervals for
the physical properties, which were estimated with the two
different laser powers, were quite similar because these
quantities are not functions of the incident irradiance. On
the other hand, the confidence intervals of the irradiances
tended towards the two different prior means, as these
parameters were sequentially estimated for the two laser
powers. The means and the 99% confidence intervals

Figure 7. Comparison of the estimated radial temperature variation with the measurements obtained at z¼ 0 with an infra-red camera at selected times (t¼ 60 s:
top; t¼ 90s: bottom). Experiment with P1 (left) and P2 (right).

(a) (b)

Figure 8. Estimated temperature variation on a longitudinal cut through the centre of the phantom at t¼ 90 s: (a) Laser power P1; (b) Laser power P2.
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estimated for each parameter at the final time, tf¼ 100 s, are
presented by Table 3. In general, the prior means are within
the estimated 99% confidence intervals, thus demonstrating
the robustness of the present approach for simultaneous
estimation of state variables and model parameters.
Exceptions include the absorption coefficient of PVCP with

nanoparticles, which was the parameter with the most uncer-
tain prior (standard deviation of 10% of the prior mean).
Similarly, the prior means for the absorption coefficient of
PVCP and for the irradiance estimated with power P2 are out-
side the estimated 99% confidence intervals, but still very
close to their bounds. Maximum discrepancies between prior

(a) (b)

Figure 9. Estimated fluence rates on a longitudinal cut through the centre of the phantom at t¼ 90 s: (a) Laser power P1; (b) Laser power P2.

Figure 10. Confidence intervals (99%) of the model parameters sequentially estimated with the particle filter: Experiments with P1 (red) and P2 (blue). Initial prior
mean is shown by the grey line.

Table 3. Model parameters estimated at the final time t¼ 100 s.

P1¼ 156.6mW P2¼ 220mW

Parameter Material Prior Mean
Estimated
Mean

Estimated 99%
Confidence Interval

Estimated
Mean

Estimated 99%
Confidence Interval

k (W m�1 K–1) PVCP 0.21 0.206 (0.201,0.211) 0.213 (0.206,0.219)
PVCP with Fe2O3 NP 0.22 0.216 (0.209,0.222) 0.225 (0.216,0.234)

C (J m�3 K–1)	 10–6 PVCP 1.4989 1.48 (1.46,1.50) 1.51 (1.46,1.56)
PVCP with Fe2O3 NP 1.4755 1.50 (1.46,1.53) 1.54 (1.48,1.59)

j (m–1) PVCP 9 9.2 (8.5,9.9) 9.7 (9.1,10.4)
PVCP with Fe2O3 NP 125 133 (128,137) 113 (105,121)

h (W m�2 K–1) — 10 10.1 (9.9,10.3) 9.8 (9.5,10.0)
E1 (Wm–2) — 4580.5 4645 (4519,4771) — —
E2 (Wm–2) — 6447.7 — — 6282 (6162,6404)
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means and estimated means are of 4%, except for the
absorption coefficient (10% for the power P2).

Discussions

The estimation of the fluence rate and transient temperature
fields, together with model parameters, was performed with
Liu and West’s algorithm of the particle filter method [28],
for a phantom heated by a laser diode. Transient measure-
ments of one single thermocouple were used for the solu-
tion of the state estimation problem, in order to keep the
number of intrusive sensors minimum, which is highly desir-
able for practical applications.

The results presented by Figure 5, where estimated and
measured temperature variations are shown at the single
measurement location used for the state estimation problem,
demonstrates the accuracy of the particle filter technique
applied in this work. The agreement between measurements
and estimated temperatures was excellent, thus revealing
quite small and uncorrelated residuals. The agreement
between the estimated model parameters and those inde-
pendently measured also reveals the accuracy of our solu-
tion. Indeed, despite the fact that priors with large variances
were assigned to the model parameters, the maximum dis-
crepancies between the prior means and the estimated
means were of 2% for thermal conductivity and heat transfer
coefficient, 4% for the volumetric heat capacity and 3% for
the irradiance. The discrepancies ranged from 2 to 10% for
the absorption coefficient, which was not independently
measured in this work and involved the largest variances
assumed for the prior. Therefore, the coupled mathematical
model given by Equations (1)–(3), with the model parameters
that were sequentially estimated together with the state vari-
ables (see Figure 10 and Table 3), were appropriate for the
physical problem under analysis.

Temperature measurements, obtained with another
thermocouple and with an infra-red camera, were used for
the validation of the simultaneous estimation of state varia-
bles and model parameters. A comparison of the estimated
temperatures and those measured by one thermocouple
inside the phantom (in a region of small temperature vari-
ation), as well as those measured at the heated surface with
the infra-red camera, are presented by Figures 6 and 7,
respectively. These figures demonstrate the capabilities of
the technique used in this work for predicting the tempera-
ture variations at locations where measurements were not
used in the inverse analysis. Note in Figures 6 and 7 that
both spatial and transient temperature variations were accur-
ately estimated, with maximum discrepancies of 0.7 �C for
internal temperatures and 0.8 �C for surface temperatures.
Moreover, the estimated temperature distributions were
physically meaningful, where the highest temperatures were
estimated in the region of the disk loaded with the iron
oxide nanoparticles that mimics a tumor (see Figure 8). Such
a result is in accordance with the estimated fluence rate,
which was higher in the region where the laser was incident
(see Figure 9).

Differently from pure numerical simulation under uncer-
tainty [43], the methodology used in this work naturally pro-
vides confidence intervals for the estimated quantities that
reflect the amount of uncertainties present in the mathemat-
ical model and in the measurements. Besides the initial
uncertainties of the parameters, which were represented by
Gaussian priors, uncertainties related to the radiation and
heat conduction models were also accounted for in the esti-
mation procedure. Confidence intervals of the estimated
quantities can be reduced by improving the prior beliefs on
the parameters and on the models, for example, by perform-
ing other experiments. Moreover, the results could be further
improved if additional sensors were used within the region
of interest, because more information would be available for
the estimation procedure [39]. On the other hand, we note
in Figures 5, 6 and 7 that the estimated mean temperatures
agreed with most of the measurements within the measure-
ment uncertainties. Therefore, thermal damage to the tumor
and healthy cells can be controlled with the temperatures
estimated by the particle filter.

The temperature measurements required for the solution
of the state estimation problem were intrusively obtained in
this work with one thermocouple, since the experiments
were conducted in a phantom. However, in practice they
could have been taken with any other measurement tech-
nique. For example, synthetic magnetic resonance thermom-
etry measurements were used for the solution of the state
estimation problem in reference [11].

The iron oxide nanoparticles developed in this work con-
centrated the heating in the tumor region. Therefore, they
might be quite effective in the hyperthermia treatment of
cancer, by avoiding that healthy cells be unnecessarily
exposed to high temperatures and thermally damaged.

The present work was focused on the validation of the
solution of the state estimation problem in hyperthermia
imposed by a laser diode. However, it can be readily
extended to other heating methods, provided that the phys-
ical problem is appropriately modeled, as already demon-
strated by the authors in earlier works for radiofrequency
heating [15,17,18]. Furthermore, in our previous works the
Pennes bioheat transfer model was used. Hence, the blood
perfusion coefficient and the metabolic heat sources were
treated as uncertain parameters and jointly estimated with
other thermophysical properties and state variables, by using
synthetic temperature measurements [13,17,18].

Conclusions

This work presented an experimental validation of the solu-
tion of a state estimation problem related to the hyperther-
mia treatment of cancer, by using a phantom. The phantom
was manufactured with PVCP and contained a region loaded
with iron oxide (Fe2O3) nanoparticles (24%vol). The nanopar-
ticles (mean diameter of 10 nm) were manufactured during
this work, for the hyperthermia experiments that used a laser
diode in the near infra-red range (mean wavelength of
829.1 nm) as heat source. The state estimation problem was
solved with Liu and West’s algorithm of the particle filter,
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which allowed for the simultaneous estimation of the model
parameters and state variables.

Transient temperature measurements of one single
thermocouple were used for the solution of the state estima-
tion problem, resulting in quite small and uncorrelated resid-
uals. Therefore, the mathematical model, with the
parameters estimated via the particle filter, were appropriate
for the physical problem under analysis. Moreover, the spa-
tial and transient temperature variations that were estimated
with the particle filter were validated, by using the tempera-
ture measurements of another thermocouple and of an infra-
red camera. The temperature and fluence rate fields obtained
with the solution of the state estimation problem revealed
that the nanoparticles were effective in locally improving the
absorption of the incident laser irradiance.

The results presented in this article demonstrated that the
solution of the state estimation problem can be used to
accurately obtain the temperatures in regions where meas-
urements are not available. Therefore, the thermal damage
to the tumor cells can be controlled for the sake of optimiz-
ing the hyperthermia treatment, while healthy cells are min-
imally affected by the temperature increase in the region.
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[13] Lamien B, Orlande HRB, Eliçabe EG. Particle filter and approxima-
tion error model for state estimation in hyperthermia. J Heat
Transfer. 2016;139:012001.

[14] Dos Santos I, Haemmerich D, Schutt D, et al. Probabilistic finite
element analysis of radiofrequency liver ablation using the
unscented transform. Phys Med Biol. 2009;54:627–640.
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