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A number of systematic procedures for the identification of vortices/coherent structures have been
developed as a way to address their possible kinematical and dynamical roles in structural formu-
lations of turbulence. It has been broadly acknowledged, however, that vortex detection algorithms,
usually based on linear-algebraic properties of the velocity gradient tensor, can be plagued with severe
shortcomings and may become, in practical terms, dependent on the choice of subjective threshold
parameters in their implementations. In two-dimensions, a large class of standard vortex identifica-
tion prescriptions turn out to be equivalent to the “swirling strength criterion” (A;-criterion), which
is critically revisited in this work. We classify the instances where the accuracy of the A.;-criterion
is affected by nonlinear superposition effects and propose an alternative vortex detection scheme
based on the local curvature properties of the vorticity graph (x, y, w)—the “vorticity curvature cri-
terion” (A, -criterion)}—which improves over the results obtained with the A;-criterion in controlled
Monte Carlo tests. A particularly problematic issue, given its importance in wall-bounded flows,
is the eventual inadequacy of the A.;-criterion for many-vortex configurations in the presence of
strong background shear. We show that the A,,-criterion is able to cope with these cases as well,
if a subtraction of the mean velocity field background is performed, in the spirit of the Reynolds
decomposition procedure. A realistic comparative study for vortex identification is then carried out
for a direct numerical simulation of a turbulent channel flow, including a three-dimensional extension
of the A,,-criterion. In contrast to the A.;-criterion, the A,-criterion indicates in a consistent way the
existence of small scale isotropic turbulent fluctuations in the logarithmic layer, in consonance with
long-standing assumptions commonly taken in turbulent boundary layer phenomenology. Published
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l. INTRODUCTION

The twofold question on whether long-lived vorticity-
carrying structures—coherent structures for short—can sur-
vive up to higher Reynolds numbers and play an important
dynamical role in turbulence, with particular attention to the
problems of isotropic and wall-bounded flows, has been for
a long time a matter of great interest in the fluid dynamics
community.'~’

From a modeling perspective, the vorticity field & of
incompressible flows (our focus in this work) can be consid-
ered to be a more fundamental observable than the velocity
field v, once the latter can be derived from the former through

-2
v = —€;x0” " Ojwy,

(1.1)

where, above, 92 stands for the inverse Laplacian operator.
Of course, Eq. (1.1) is nothing more than the Biot-Savart law
in the fluid dynamical context.

One aims, in the so-called “structural formulation of tur-
bulence,” to achieve an expressive reduction in the number of
degrees of freedom from the introduction of kinematical or
dynamical models of coherent structures, the spatial support
of strongly correlated vorticity lines. These special vorticity
domains are then taken to be the sources of the turbulent veloc-
ity field, straightforwardly recovered with the help of Eq. (1.1).
It is interesting to point out that while structural modeling is
still a very open problem, one finds, within the framework of
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wavelet compression techniques, strong support for pursuing
this direction of research.®1°

Among the several types of turbulent flows, the turbu-
lent boundary layer (TBL) is a particularly rich stage for the
production and interaction of coherent structures,® like stream-
wise and hairpin vortices (often bunched in packets), the latter
remarkably anticipated several decades ago by Theodorsen'!
and Townsend.!? Due to the variable sizes of these structures,
which are directly related to their distances from the wall,
as depicted in the attached eddy hypothesis,'>!® the TBL
turns out to be a dynamical system characterized by strong
multiscale couplings.

The pioneering structural approach of Perry and Chong!*
has underlined in many alternative ways, subsequent investi-
gations of the TBL along the years,'>2? devoted to the study
of boundary layer phenomena like viscous drag, the existence
of enhanced intermittent velocity fluctuations near the wall
region, and the crossover between turbulent kinetic energy pro-
duction and dissipation, all of these being points of potential
applied relevance. In spite of its appealing physical picture, the
structural approach has been unable, so far, to address in a pre-
dictive way a relevant phenomenological framework like the
law of the wall. An even more ambitious aim for the structural
program would be to provide a foundation for the broadly
used Reynolds-averaged phenomenological models (like the
k-epsilon model).?!> In these approaches, one has to resort to
ad hoc closure assumptions which relate the Reynolds stress

Published by AIP Publishing.
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tensor to the mean properties of the flow. This mathematical
object could, as a matter of principle, be derived from the sta-
tistical modeling of the energetically most important vortical
structures.

While at the present state of knowledge, the aforemen-
tioned ideas are still essentially speculative, we show in
this work that the structural approach, as based on an accu-
rately validated vortex identification procedure, can offer
an interesting insight into the physics of wall bounded
flows, if one restricts attention on issues of turbulent
isotropization.

A major problem in the structural formulation of
turbulence—paradoxically as it may sound—is the ambigu-
ous meaning of the coherent structure concept itself, as long
ago emphasized in the seminal papers by Hussain.”>** An
operational answer to this question is to define a coherent
structure as the compact flow configuration that is obtained,
from numerical or experimental data, through the application
of some postulated identification algorithm.

Galilean invariant vortex identification methods usu-
ally rely on the information encoded in velocity gradients,
which tag regions of the flow characterized by “swirling
motions” in locally co-moving reference frames. An inter-
esting physical picture underlying the usefulness of veloc-
ity gradients in the identification of coherent structures has
to do with the empirical fact that they are correlated with
the zones of quasi-uniform momentum.? Therefore, veloc-
ity gradients are enhanced around the boundaries of such
zones, and provide, in this way, “shear envelopes,” which
are ultimately the reason for the phenomenon of coherent
structure persistence, as observed in the dynamics of hairpin
vortices.?¢

Most of the discussions on the structural aspects of tur-
bulence adopt Eulerian vortex detection methods like the Q-
criterion,?’2? the A-criterion,*? and its closely related swirling
strength criterion (A;-criterion)3’3 or the A,-criterion.? In
all of these criteria, a scalar field, derived from the velocity
gradient tensor, is used as a “marker” to indicate if a given
point in the flow belongs or not to a vortex. Vortices are, there-
fore, identified as the connected regions mapped by such scalar
fields.

Other classes of vortex identification methods shift from
the definition of “scalar markers,” to representative flow con-
figurations, either by selecting the most energetic ones instan-
taneously or by retrieving flow patterns by means of statistical
averaging procedures. For the sake of completeness, we list
below a brief description of five of these approaches.

(i) In the proper orthogonal decomposition, one tries to
extract the relevant flow modes that are, on the aver-
age, more energetic, by solving associated eigenvalue
problems.?*

(i) A computer-science inspired approach uses artmap
neural networks as a classification tool, in which a
self-refining algorithm is used to identify relevant
structures.>

(iii) Wavelet denoising theory can provide a decomposition
of the velocity field on a complete set of orthogonal
spatially localized modes, in which the more energetic
ones turn out to be associated with coherent structures.®
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(iv) “Lagrangian coherent structures” can be defined from
the investigation, along the pathlines, of the local
dynamical system of fluid element motions.3®3’

(v) Conditionally averaged flow configurations, represent-
ing coherent structures, can be obtained from a subset
of flow realizations that satisfy certain prescribed sta-
tistical signatures, a procedure which is closely related

to the method of linear stochastic estimation.38-3

Even though there are studies which have pointed out
the pros and cons of the available vortex identification meth-
ods,3?40-4 gystematic investigations of their limitations are
still in order. Commonly noted problems are related to shape
distortions of retrieved vortices and the subjective definition of
threshold parameters, sometimes necessary to increase the effi-
ciency of the identification algorithms. As we will emphasize
in the following, a less obvious (but not less important) diffi-
culty is associated with the effects produced on vortex identi-
fication by a shearing environment, as in free shear turbulence,
turbulent boundary layers or channel flows.

The velocity gradient-based vortex identification strate-
gies so far addressed in the literature are essentially equivalent,
in two-dimensions, to the A-criterion. This is a key point in
our discussion, which relies on a careful study of how the
Ag-criterion performs for a variety of controlled “synthetic”
two-dimensional flow configurations. It turns out that there
are serious challenges with the use of the A;-criterion, which
have motivated us to introduce an alternative vortex identifica-
tion prescription, referred to as the vorticity curvature criterion
(A, -criterion), a vortex identification method entirely based on
local properties of the vorticity field.

Our results are centered on the analysis of two-
dimensional coherent structures, which are important actors,
for instance, in the quasigeostrophic approximation for the
dynamics of the atmosphere and the ocean (low Rossby
number regime, planetary length scales),” in purely two-
dimensional turbulent systems,*® and also in the properties of
streamwise/wall normal plane sections of turbulent boundary
layer flows,”*’=39 which reveal the existence of spanwise vor-
tex tubes. We introduce and study the problem of vortex iden-
tification for large ensembles of synthetic two-dimensional
vortex systems and subsequently investigate, by means of a
turbulent channel flow direct numerical simulation (DNS), the
statistical features of boundary layer vortices from the point
of view of both the A.; and the A, criteria.

This work is organized as follows. To make the paper as
self-contained as possible, we provide, in Sec. II, a detailed
definition of the A;-criterion, and classify, from the analy-
sis of simple two-dimensional vortex configurations, its main
issues. In order to overcome the observed difficulties with the
Aci-criterion, an essentially threshold-free vortex identification
method, the 4,,-criterion, is proposed and discussed in Sec. I,
which is found to considerably improve vortex detection for
most of the problematic cases.

Monte Carlo simulations of synthetic vortex systems are
introducedin Sec. IV, as a way to evaluate how the A;-criterion
and the A,,-criterion automated algorithms perform for a large
number of samples. We find, at this point, poor results for both
vortex identification methods for the case of vortices in the
presence of a strong background shear. To cope with that, we
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devise a background shear subtraction procedure, meaningful
for statistically stationary flows, which points out the better,
and reasonably good, performance of the A,,-criterion when
compared to the one of the A.;-criterion.

We, then, move to the analysis of a more realistic scenario
in Sec. V, provided by the numerical simulation of a turbulent
channel flow. Having in mind all the issues discussed in the
previous sections, it turns out that while the A;-criterion fails
to indicate isotropization of small scale turbulent fluctuations
in the TBL logarithmic layer, the A,,-criterion can do so, very
successfully, which is a remarkable phenomenological result
within the context of the structural formulation. We also dis-
cuss, in Sec. VI, the extension of the A,,-criterion to the case
of fully three-dimensional flows, including some preliminary
visualizations for the turbulent channel structures obtained in
this way. Finally, in Sec. VII, we summarize our findings and
point out the directions of further research.

Il. SWIRLING-STRENGTH ISSUES

The A;-criterion for vortex identification relies on the
analysis of the instantaneous topology of the velocity vector
field.*! In two dimensions (our main interest in this paper),
one wants to single out points of the flow that can be classified
either as sources or sinks of streamlines. In more concrete
terms, set as (x, x2) = (0, 0) the position of an arbitrary point
in the flow, which has an instantaneous vanishing velocity in
the co-moving reference frame. Taking the velocity field to be
“frozen,” we can write down the linearized equation of motion
for a particle that follows the frozen streamlines of the flow in
a neighborhood of the origin as

Xi = Ayx;j 2.1

where A;; = 0jvi|x=0 is the 7, j matrix element of the velocity
gradient tensor A. It is not difficult to show that the spiraling
orbits around the origin (the focus of motion) are necessarily
associated with the complex eigenvalues of A. The eigenvalue
equation reads

det(djv; — A8;) = 2> — Adv; + det@v) = 0. (2.2)

The “swirling strength” field is the scalar quantity defined as
the imaginary part, taken as positive, of the complex eigenvalue
A = A¢r + idsi. The A-criterion, thus, postulates that vortex
domains are regions of the flow which have non-zero swirling
strength. For incompressible two-dimensional flows, things
are a bit simpler, once Eq. (2.2) tells us that these regions are
the loci of the points where the velocity gradient determinant
is positive.

To exemplify the analysis, we illustrate how the
Aci-criterion works for the prototypical Lamb-Oseen vortex,>!
which is in fact an important building block in structural stud-
ies. 1892754 Let €;j be the two-dimensional Levi-Civita symbol.
The Lamb-Oseen vortex is defined by the divergence free
velocity field, with components

v = €;xF(r), 2.3)
where

(2.4)
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Above, r. and I' denote the vortex core radius and its
asymptotic circulation, respectively. The velocity gradient
determinant can be easily derived as

det(djv;) = F[F + rF’]
2

2 r 2r2 2
- ( r ) [1 Y (3 - 2L)] 2.5)
2nr? r?
and it is shown in Fig. 1 as a function of r/r.. The interesting
point here is that the velocity gradient determinant is positive
only within a finite distance r <7 from the origin, so that the
Lamb-Oseen vortex is identified as the disk on the density
plot given in the inset of Fig. 1. From Eq. (2.5), we find that
7 and the vorticity flux across the disk, T are related to the

corresponding vortex parameters as

re=arand I = I, (2.6)
where in terms of the Lambert W function®
~0.89 2.7)
and |

It is common to assume, as a first approximation, that the con-
nected regions highlighted by the A.;-criterion have, even in
many-vortex two-dimensional systems, circular shapes, so that
the relations given in (2.6) can be used to recover, in an auto-
mated fashion, the radius and the circulation parameters of the
identified vortices. These same parameters can be obtained,
alternatively, but with greater computational cost and com-
parable accuracy, from fittings, in the spotted regions, of the
recorded velocity fields to the Lamb-Oseen pattern, Egs. (2.3)
and (2.4).53°4

Serious difficulties can arise in the implementation of the
Aci-criterion when two or more vortices get close enough to
each other, or if they are in the presence of a shearing back-
ground. However, there are no comprehensive works in the
literature which attempt to define the conditions for the accu-
rate use of this vortex identification method. Therefore, we
put forward below, as a necessary stage for an improvement

2.5/ o ——— -
ré 2.0 77 N\
= 1.5 I
;{Tl 1.0;

Nhu 0.5 x 1 . 5 l
T 0.0} N ]
-0.5

0 1 2 3 4
Fft

FIG. 1. The dimensionless velocity gradient determinant for the Lamb-Oseen
vortex as a function of r/r.. Inset: density plot of the swirling strength field
and the vortex streamlines (coordinates are given in units of r.).
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over the A.;-criterion, an informal (and not exhaustive) clas-
sification of its important problematic issues for the case of
two-vortex systems. To render our discussion free of ambi-
guities, whenever we refer to strict two dimensional vor-
tices throughout the paper, we mean precisely Lamb-Oseen
vortices.

A. Vortex shape distortion and coalescence

As it is shown in Fig. 2(a), the shapes of two vor-
tices get distorted as they approach each other, up to the
point where they coalesce into a single vortex structure,
as in Fig. 2(b), due to the fact that the streamlines with
opposite flow directions can mutually cancel in the region
between them. Despite the fact that there are two local swir-
ling strength peaks in the merged region, it is not an obvi-
ous task how to disentangle them in practical automated
analyses.

In order to solve the vortex merging problem, we could
define a threshold parameter 7 and select the regions of the
flow which have A.; > T. This can actually break the coa-
lesced structures back to two vortices again, but as a side effect
other vortices in the system would be erased from detection.
It is also likely that many other coalesced vortices in the flow
would not be split in this way. Once there is not a clear pre-
scription on how to define 7, its choice is essentially subjective,
and the threshold solution is far from being a well-established
procedure. It should be clear, however, that there should be
some room, in principle, for the implementation of itera-
tive thresholding algorithms like the ones used in denoising
theory.®

-4 -2 0 2 4

_.4.._2 O 24

FIG. 2. In all of the four depicted cases, vortex pairs have the same core
radius. Coordinates are given in units of r.. Let I';, and I'g be the circulations
of the left and right vortices, respectively. (a) Shape distortions of two near
vortices with I';, = T'g; (b) vortex coalescence for a configuration with vortex
centers separated by 2r. and I'y, = I'g; (c) configuration with vortex centers
separated by 4r. and I';, = 5Tg; (d) the same separation as in (c), but with
I'r, = 10Tk. The right vortex escapes detection by the A.;-criterion.
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B. Ghost vortices

Considering two vortices with the same radius, for
instance, if one of them has larger circulation, shape distortion
is, as expected, more pronounced for the vortex with smaller
circulation. Instead of coalescence, however, the weaker vor-
tex can disappear completely from the flow, if it happens to be
close enough to the strong one. These situations are depicted
in Figs. 2(c) and 2(d).

C. Background shear effects

The most dramatic issues on the identification of vortices
by means of the A.;-criterion are probably the ones associated
to background shear effects, which for evident phenomeno-
logical reasons, are especially important in wall-bounded
flows.

Take, as an illustrative example, the constant background
shear with vorticity @, described by the velocity field with com-
ponents (vx, vy) = (=@y, 0), which can be superimposed to the
velocity field produced by a vortex or a couple of vortices. Of
course, the presence of background shear modifies the velocity
gradient determinant. Analogously to Fig. 1, the velocity gra-
dient determinant is plotted in Fig. 3 for y =0, as a function of
x/r.. Differently from the free vortex case, the velocity gradi-
ent determinant becomes positive again at some distance from
the origin, a fact that is related to the existence of two discon-
nected and spurious unbounded regions—henceforth referred
to as “flaps”—which surround the real vortex, as shown in the
inset of Fig. 3. Depending on the intensity and relative sign of
the background vorticity, the vortex can disappear and only the
flaps remain, or the flaps can coalesce with the vortex, forming
a large, unbounded, structure.

In the test situation where we have two Lamb-Oseen vor-
tices with identical circulations in the presence of a constant
background shear, the flaps still show up, as can be seen in
Figs. 4(a) and 4(b). Furthermore, it turns out that if the back-
ground vorticity is opposite to the ones of the two vortices,
then, besides the flaps, two spurious vortices appear. More
complex patterns arise if additional vortices are superimposed
to the background shear flow, once flaps and spurious vortices
can also mutually interact.

2.0

S 15/

o101\

= \ s =

<5 05

< 00\ :
S, | A

0 1 2 3 4

FIG. 3. The dimensionless velocity gradient determinant along the y = 0 axis,
for a vortex of positive circulation I" and radius r. in the presence of a horizon-
tal background shear of negative vorticity @ = —0.05T'/r2. The x coordinate
is given in units of r.. Inset: density plot of the swirling strength field for this
flow configuration.
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(@
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W e e )
-6-4-20 2 4 6

FIG. 4. The background shear is horizontal and both vortices have positive
circulation I' and radius r.. Coordinates are given in units of r.. The back-
ground vorticity is |@| = 0.05T"/ rf.. (a) Two vortices in a background shear of
positive vorticity; (b) two vortices in a background shear of negative vorticity.

D. Spurious vortices

Spurious vortices can be misleadingly identified by the
Ag-criterion in many-vortex configurations. These regions
have, in general, relatively small area and circulation, mak-
ing them, even if sometimes numerous, mostly non-influential
to the overall properties of flow, with the exception of count-
ing statistics. Disregarding other aspects of Fig. 4(b), the two
vertically aligned and disconnected spots shown, there are
examples of spurious vortices generated from the approxima-
tion of two real vortices, further enlarged by the presence of
background shear, identified in the picture as the two darker
disconnected compact regions.

The four general instances discussed above clearly indi-
cate that the analysis of the coherent structures through the use
of the A;-criterion, even though meaningful in cases where
the vortex density and the vorticity of the background shear
are small enough, can lead to inaccurate results, mainly in
the investigation of turbulent flows, characterized by strong
multiscale intermittent fluctuations of vorticity and strain.

In Sec. III, we put forward an alternative vortex iden-
tification method, which has the local vorticity field as its
main ingredient and is devised to mitigate the aforementioned
deficiencies of the A.;-criterion.

lll. VORTICITY CURVATURE CRITERION

As a key point in understanding the behavior of the
Ag-criterion in two-dimensional many-vortex systems, it is
useful to point out the connection between this criterion and
the differential-geometric properties of the stream function
¥ = (7). Note that in a dimensionless system of fluid dynam-
ical units, the Gaussian curvature K°° of the stream function
graph (x,y, ) can be written as

2y 02y — (01020)°
K = 3.1
L+@1) + (00’

_ 0101 Ohvy — 010y Dy _ det(d;v;)
(1 +72)* (1+2)°
It is clear, thus, from the comparison between (2.2) and (3.2),
that in incompressible two-dimensional flows a point belongs
to a vortex, according to the A;-criterion, if and only if its

stream function graph has positive Gaussian curvature, like a
dome.

(3.2)
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For a typical vortex, which has two-dimensional vortic-
ity w(7) (a pseudoscalar field) that decays faster than 1/r, the
streamfunction is asymptotically logarithmic, since

1 [F =7

W) = -072w(P) = 7 /d27’ log(

where a is some (unimportant) arbitrary length scale in the
flow. The Lamb-Oseen vortex, in particular, is associated to
the stream function

v =1 [lostr )~ Bic=r12)]

)w(?') , (33

34

where Ei(-) refers to the Exponential-Integral function,>

which is dominated, far from the origin, by the slowly varying
logarithmic contribution in Eq. (3.4).

The asymptotic logarithmic profile of the vortex stream
function implies that there is strong non-linear superposi-
tion effects that affect the curvature of the stream function
graph associated to the individual vortices in many-vortex sys-
tems. This is the main reason for all of the issues with the
implementation of A.-criterion, as discussed in Sec. II. To
understand this point in a more detailed way, consider a set of
N two-dimensional vortices, placed at positions 7, which are
associated to the respective streamfunctions (7 — 7;), where
i=1,2,...,N. The streamfunction at a general position 7 of
the flow, is given, therefore, as

N
GEDN G (3.5)
i=1
Since the individual streamfunction fields y; have spatial slow
logarithmic variations, the above superimposed streamfunc-
tion, ¥ (7), can be considerably perturbed by the presence of
other vortices in the system.

The ideal setup to deal with vortex identification, thus,
would be to base the analysis on the properties of spatially
bounded fluid dynamical observables like the vorticity field
carried by coherent structures. In two dimensions, the most
immediate attempt along these lines would be to work with
vorticity level curves, but this is a limited approach, since spu-
rious vortices would proliferate and the subjective choice of
thresholds would be unavoidable.

If we insist on vorticity as a fundamental element in a local
vortex identification scheme, an interesting heuristic proposal
is simply to replace the stream function as it is used in the A;-
criterion by the vorticity field. Now, to find vortices, we would
look for positive curvature regions of the vorticity graph. This
prescription is promising, but the inspection of simple cases
suggests that some refinement is still in order.

Consider, for example, four identical vortices which are
placed at the vertices of a square. It is not difficult to show
that the Gaussian curvature of the vorticity graph is positive
at the center of the square, even though there is no vortex
there. Without loss of generality, if we take the real vortices
to be “bumps” of the vorticity graph (i.e., if they have positive
vorticity) then the spurious vortex at the center is a bowl, with
idiosyncratic positive vorticity.

In more mathematical terms, we just mean that while
wd’w is negative at the square vertices, it changes its sign
at the center. This fact is the hint to establish a meaning-
ful vortex identification prescription, the A,,-criterion, which
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relies on the local Gaussian curvature properties of the vor-
ticity graph. To introduce it in detail, we first introduce some
notation. Having in mind our two-dimensional context, define,
from the vorticity field w(7), the pseudo-velocity field, with
Cartesian components

5i(F) = €;;0,0(7) 3.6)
and the pseudo-vorticity field
o) = -0*w(7) . (3.7)

The streamlines associated to the pseudo-velocity field for the
case of a single Lamb-Oseen vortex are qualitatively the same
as the ones derived for the physical velocity field, so that they
still represent a swirling motion. The main advantage in the use
of above definitions is that while they do not spoil the physical
meaning of what we consider to be a standard vortex, they are
mathematical functions with more interesting local properties,
like a fast Gaussian decay as the radial distance from the vortex
center increases.

We can also write down the determinant of the pseudo-
velocity gradient tensor as

det(95;) = -1° . (3.8)

Taking the imaginary part of 1 as positive, consider the scalar
field
Ao = O(-wd*w)m 1 = O(wd)Im 1, 3.9)

where O(w®) is the Heaviside filtering function that is
expected to vanish for spurious vortices, like the one discussed
in the preceding four-vortex example. Vortices are then iden-
tified by the A,,-criterion as the connected regions of the flow
where 4., # 0.

Comparing the A,-criterion to the A.;-criterion, we note
that the essential advantage of the former is that it depends
locally on the vorticity field, which has sharp peaks and rapidly
decaying tails for general vortices. The A.;-criterion, on its
turn, is related to the curvature properties of the stream function
graph, which has much broader peaks and tails, and may lead
to poor vortex identification resolution.

The A,,-criterion can be classified as a higher order deriva-
tive vortex identification scheme, since it depends on the
evaluation of third order derivatives of the velocity field (in
contrast to the A.;-criterion, which is defined in terms of first
order derivatives). Two decades ago this fact would be proba-
bly a main objection to its practical use. However, taking into
account the present status of optical measurement techniques
such as particle image velocimetry and the fast increasing com-
putational power of direct numerical simulations, there is an
open avenue for the investigation of high-order derivative vor-
tex identification methods. A point of great relevance here is
that the A,,-criterion works efficiently even without the impo-
sition of subjective threshold parameters. This brings con-
siderable simplification in the implementation of automated
analyses of many-vortex configurations.

We re-examine, now under the light of the A,,-criterion,
the relevant vortex identification issues presented in Sec. II.
The results are schematically depicted in Fig. 5.

Without background shear, the 4,,-criterion has, clearly,
higher resolution than the standard A;-criterion, since it is able
to split coalesced vortices (Fig. 5(a)) that would otherwise
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FIG. 5. In (a)-(d), the respective vortex configurations previously studied by
means of the A;-criterion in Figs. 2(b), 2(d), 4(a), and 4(b) are now reanalysed,
taking the A, -criterion as the vortex detection tool.

be counted as one, and to recover ghost vortices (Fig. 5(b)).
With constant background shear, we also find improvements:
the vortex shape distortion is considerably reduced and the
large, unbounded flaps are completely eliminated (Figs. 5(c)
and 5(d)). However, as it can be seen in Fig. 5(d), there is
a couple of relatively small 1,, spurious regions in the form
of vertical stripes, produced for the case where the two vor-
tices have vorticity opposite to the one of the background.
This undesirable effect is due to the specific form of the filter-
ing function @(w®). If a background with constant vorticity
@ is added to the vorticity field w, the filtering function can
be written as @((w + @)@). Therefore, if @ and w have oppo-
site signs and |@| > |w|, the filtering function may, as a side
effect, introduce errors or even hamper the identification of
a true vortex. We will have more to say about this issue in
Sec. IV.

In order to illustrate the crucial importance of the filter-
ing function and the general improvement gained with the
A -criterion over the A;-criterion, we show in Fig. 6 the anal-
ysis of a sample of 20 Lamb-Oseen vortices with varying radii
and circulations, which are randomly distributed in a square
domain. While the use of the A.;-criterion is unable to avoid
the merging of two of the vortices and the disappearance of
another one, all of the vortices are recovered with the use of
Ay -criterion, which approximately preserves their original
circular shapes.

If the filtering function were not used, many spurious
regions would remain, as evidently pointed out in Fig. 6(c).
One notices that a few spurious vortices have survived the
screening of the A,, criterion. We have to keep in mind, for
proper applications of the A, -criterion, that although lead-
ing to improvements, it is not free of errors, in the sense
that probably any meaningful vortex identification method
will eventually break in the analysis of extreme (hopefully
unrealistic) flow conditions.
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FIG. 6. Small open circles indicate the positions of 20 randomly distributed
vortices. (a) Vortex detection via the A;-criterion. The phenomena of vortex
coalescence and vortex erasing take place, respectively, in the first and fourth
quadrants of the domain; (b) vortex detection via the filtered A,,-criterion,
where all of the original vortices have been identified; (c) inaccurate vortex
detection via the unfiltered A, -criterion. The color bars represent the A.; and
A fields in arbitrary units.

At this point, it is interesting to briefly discuss the rel-
evance of the Lamb-Oseen vortex as a standard of analysis.
The Burgers vortex>! could be an alternative, having in mind
that it is perhaps a more relevant structure for general turbu-
lence modeling, as it has been suggested from turbulent wind
tunnel experiments,’’ and from the fact that it can play an
important role in the theoretical understanding of intermit-
tency in homogeneous and isotropic turbulence.’® However,
it turns out that if we are actually interested to focus on the
performance of vortex identification methods, more than on
modeling issues, the Lamb-Oseen vortex is by far the simpler
and more convenient choice, leading to equivalent conclu-
sions. More specifically, while the Burgers vortex is defined
from four independent parameters (two strain rate eigen-
values, the asymptotic circulation, and its core radius), the
Lamb-Oseen vortex is completely determined by its asymp-
totic circulation and core radius parameters. It is not difficult
to show that while the variations of the two extra-parameters
for the Burgers vortex are rigorously harmless in the context
of the A,,-criterion, they may affect the performance of the
Aci-criterion in unwanted ways, due to the presence of addi-
tional shearing.

So far, all of our arguments have been based on the
inspection of a few representative analytical vortex con-
figurations. Of course, more is needed to validate the
A, -criterion as a reliable tool. This is our next step, to be car-
ried out with the help of extensive Monte Carlo simulations,
where we consider, instead, discretized velocity derivatives
for the analysis of large ensembles of synthetic many-vortex
systems.
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IV. MONTE CARLO STUDY

To address a comparative study of accuracy for the A,
and the A; criteria, we run Monte Carlo tests for large ensem-
bles, where in each sample vortices are randomly distributed
over the area of a square domain. The velocity field over a
discretized grid is recorded and the two vortex identification
criteria are applied to investigate how they perform in detect-
ing and also in recovering the properties (circulation, radius,
and position) of the original vortices.

In all of the synthetic samples, evaluations of the velocity
gradient, pseudo-velocity, and pseudo-velocity gradient have
been done with five-point weighted finite differences, which
in the worst situations (the ones involving three derivatives of
the velocity field) have precision of O(6?) in the grid spacing
0. Integrations rely on bilinear interpolations, which are also
precise to O(6%). The connected regions where vortices are
detected are individualized in the grid with the use of a con-
nected component labeling algorithm.>® For each connected
region Ry (k = 1,2,...) we compute

Ay = 1P =/ d’r, 4.1
Ry
= / wPdF, (4.2)
Ry
/ (6.3) WA(FdF
(e, 1) = % (4.3)
/w2(7)d2?
Ry

Egs. (4.1) and (4.2) allow us to infer, respectively, with the
help of Eq. (2.6), the real radius r; and circulation I'; vortex
parameters. While for the A.;-criterion, @ and § are already
known from Egs. (2.7) and (2.8), a similar and straightfor-
ward analysis for the A,,-criterion yields the analogous pair of
parameters (a, 8) = V2, 1/(1 - 1/+/e)) =~ (1.41,2.54). Addi-
tionally, Eq. (4.3) gives the “center of enstrophy” coordinates
for the position of the identified vortex. The @ parameter for
vortex core radius conversion is, in the A,-criterion, about 1.6
times greater than the one for the A.;-criterion. This is a casual
but nevertheless very helpful fact, since it improves the reso-
lution of the detected structures, as it could have already been
noticed from the former’s section results.

We have worked, for a set of flow configurations of inter-
est, with N = 10° Monte Carlo samples, each one containing
N, = 20 randomly distributed vortices, on a [-9, 912 square
(arbitrary length scale). The velocity field is exactly defined at
the sites of a Ny X N, = 2007 grid, which models the square
box [-10, 10]%>. When sampled, vortex centers are always sep-
arated by distances greater than 1.2 times the sum of their
radii.%* Circulations and vortex radii are sampled with uni-
form random distribution in the domains given, respectively,
byl <|[<20(or-20<T'<-1)and 0.5 <r. < L.5.

As a way to get rid of spurious vortices, we furthermore
prescribe that Ry is accepted as vortex only if || > Ty, for
some small circulation scale I'g. Note that this cutoff prescrip-
tion is conceptually distinct from the imposition of a threshold,
where the main worry is not exactly on the existence of spu-
rious vortices as individual objects, but on specific—noise
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TABLE I. General definitions for the Monte Carlo simulations of the
synthetic many-vortex two-dimensional systems.

Number of samples N =101

Number of vortices/sample N, =20

System’s dimensions (Lx, Ly) = (20, 20)
Vortex positions -9<x,y<9
Grid size 200 x 200

Vortex circulations I' € £[1,20]
Vortex core radii re €10.5,1.5]
Acceptance cutoff Ih=05

Vortex pair separation dij > 1.2 X (rej + 1))

contaminated—regions of the flow. The circulation cutoff for
vortex acceptance is defined as I'p =0.5. The Monte Carlo
simulation definitions are summarized in Table I.

Motivated by the distribution of spanwise vortices
observed in streamwise/wall normal planes of turbulent bound-
ary layers,>#"4932-5% we have considered, in our Monte Carlo
simulations, five distinct flow patterns, denoted by Latin
capital letters from A to E, described in Table II.

To define the weak and strong shear regimes referred
to in Table II, observe, as it can be derived from (2.2), that
a vortex with peak vorticity w, disappears from swirling
strength detection if the vorticity of the background shear is
|@] > |wpl/2, with —@w), < 0. Recalling that for a Lamb-Oseen
vortex, w, = F/nrf, and that in our Monte Carlo samples,
[T <20 and |r, — 1| < 0.5, we take, as representative param-
eters, '=10 and r. = 1, which lead to w,/2~1.6. Weak
and strong regimes are then defined as the ones which have
background velocity field components given, respectively, by
(vx, vy) = (0.35y, 0) and (vy, vy) = (1.6y, 0). Note that for
flow patterns with either weak or strong background shear, the
background vorticity is negative.

In the following, we organize the large lists of input and
output vortex parameters (circulation, radius, and position) in
the form of histograms that indicate how the A.; and 4, vor-
tex identification criteria perform in the automated analysis of
Monte Carlo ensembles.

Results for the flow pattern A are given in Fig. 7. The A,,-
criterion has an excellent performance, while the A.;-criterion
is mainly affected by vortex coalescence, which explains why
the counting is reduced for the larger vortices and why so
many non-existent structures with circulation |I'| >20 have
been artificially produced. One can note, from Figs. 7(c)
and 7(d) that there are boundary effects in the distribution of
vortices. This is actually due to the fact that by definition they
“avoid each other” in the bounded domain. The same feature
is observed in all of the other flow patterns.

TABLE II. The five flow patterns considered in our Monte Carlo simulations.

Flow pattern Vortex circulations

Background shear

A 1< <20 No background
B 1< <20 Weak
C 1< <20 Strong
D -20<T' <-1 No background
E -20<TI'<-1 Strong
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tex parameters. (a) Circulations; (b) radii; (c) x coordinates; (d) y coordinates.
The dashed lines are the histograms for the input data.

For the flow patterns B and C, which have weak and
strong background shear, respectively, the related histograms
are given in Figs. 8 and 9. In the flow pattern B, as shown
in Fig. 8, the A-criterion yields a small and uniform sup-
pression of vortices in the samples, but the circulation and
radius countings are actually close to the ones found for the
flow pattern A. The A, -criterion is still the better choice,
despite the fact that vortex counting is strongly affected by
the addition of spurious vortices of small circulation and
artificial structures like the stripes previously observed in
Fig. 5(d). Actually, as we will see in a moment, the A, -criterion
is able to capture the input vortices in this case, which are
more precisely counted when background shearing effects are
removed.

Driving our attention now to the flow pattern C, Fig. 9
tells us that both the A.; and the A, criteria perform badly.
It turns out that strong external shearing introduces, in gen-
eral, relevant effects in vortex identification that demand
improvement.
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FIG. 8. Flow pattern B. All the rest as in the caption of Fig. 7.
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FIG. 9. Flow pattern C. All the rest as in the caption of Fig. 7.

The visualization of a typical Monte Carlo sample of the
flow pattern C is given in Fig. 10, where we see, as a dom-
inant effect, coalescence percolation of flaps and vortices in
the application of the A-criterion. On the other hand, the
image associated to the 1,,-criterion looks qualitatively differ-
ent, and although most of the input vortices have been retrieved
from the sample, they are surrounded by several spurious struc-
tures that can spoil the histograms, like the ones we consider
here.

In order to deal with the shortcomings associated with
shearing/vorticity backgrounds, we put forward an improved
computational strategy, based on the subtraction of the back-
ground velocity field, sample by sample, from individual
velocity field realizations. This is, of course, nothing more
than the method of Reynolds decomposition, which, actually,
has been already employed in the previous studies of coher-
ent structure identification, as in Ref. 61. The idea, thus, is
to revisit our previous analyses, by just replacing the origi-
nal velocity field components v;(F) by its fluctuations over the
background, that is,

6vi(F) = vi(F) = (i(F)) ,

where (v;(¥)) stands for the expectation value of the velocity
field taken over the ensemble of configurations. Furthermore,
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FIG. 10. A sample of 20 vortices—the same as in Fig. 6, now in the pres-
ence of strong background shear (flow pattern C), investigated through the
(a) swirling strength and (b) the vorticity curvature fields. The color bars
represent the A.; and A, fields in arbitrary units.
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FIG. 11. Analysis of the flow pattern B, with background subtraction. All the
rest as in the caption of Fig. 7.

as an important prescription, in order to avoid additional spu-
rious effects, we assign a given point in the flow to a vortex if
it is detected in the vortex identification screening carried out
with and without the background subtraction procedure.

We compare, in the next six sets of histograms, the per-
formance of the A.; and the A4, criteria, both with background
subtraction procedure for the flow patterns B and C, while
analogous comparisons are done for the flow patterns D and
E, with and without background subtraction. We do not report
here the additional background subtraction analysis of the flow
pattern A, since (as expected) we find that both criteria work
again as in Fig. 7, due to the fact that the balanced mixing
of vortices with positive and negative circulations produces a
very small background.

The weak shear case, flow pattern B, is given in Fig. 11,
where both the A.; and A, criteria are noted to improve in their
performances, with a clear advantage for the latter.
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FIG. 12. Analysis of the flow pattern C, with background subtraction. All the
rest as in the caption of Fig. 7.
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FIG. 13. Analysis of the flow pattern D, without background subtraction. All
the rest as in the caption of Fig. 7.

For the flow pattern C, we conclude, from Figs. 9
and 12, that the background subtraction procedure consid-
erably improves the performance of the A,,-criterion, which
now becomes valid as a method of vortex identification.
Its only residual deficiency is the suppression of vortices
which have relatively large radii and small positive circu-
lations. This is, very clearly, a side effect of the Heaviside
filtering function, which erases positive-circulation vortices
that are completely “submerged” in the negative vorticity
background.

As a way to loosely mimic some of the turbulence bound-
ary layer characteristics found in streamwise/wall normal
planes, where the background vorticity has the same sign as
most of the viscous layer vortices,>**>3* we have devised the
flow regimes D and E. Note that in the flow pattern D, there
is no external background, & =0, but there is an essentially
uniform negative vorticity background produced by the many-
vortex system because (v;(7)) # 0. Curiously, as it can be seen
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FIG. 14. Analysis of the flow pattern D, with background subtraction. All the
rest as in the caption of Fig. 7.
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from Figs. 13 and 14, the A,-criterion is acceptable in both
cases, but it works a bit better, for the flow pattern D, if the
background was not subtracted. This has to do, this time, with
the existence of vortices that are placed in regions of the flow
where the local vorticity background is momentarily greater,
due to the effect of fluctuations, than the mean self-induced
vorticity background.

For the strong background case, flow pattern E, it turns out,
as indicated from Figs. 15 and 16, that the background subtrac-
tion procedure leads to an improvement, mainly in recovering
circulation statistics, which brings the quality of vortex iden-
tification back to the reasonably good standards observed in
the analysis of the flow pattern D.

The above benchmarking Monte Carlo study shows that
the A,,-criterion, enhanced by the background subtraction pro-
cedure, provides an appropriate identification prescription for
the investigation of two-dimensional vortex systems. With the
confidence acquired from the numerical experiments carried
out with synthetic samples, we focus now on the analysis of a
more realistic flow situation.
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FIG. 16. Analysis of the flow pattern E, with background subtraction. All the
rest as in the caption of Fig. 7.
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V. APPLICATION TO A TURBULENT CHANNEL FLOW

Cross sections of spanwise vortices, interpreted as
heads of hairpin vortices, have been usually observed in
streamwise/wall normal plane sections of wall-bounded
flows. 2477393254 We have investigated the statistical proper-
ties of such two-dimensional vortex flow patterns by means of
the A.; and the A, criteria, for a turbulent channel flow DNS.

The turbulent channel flow simulation has friction
Reynolds number Re; ~395 and setup parameters described
in Table III. We follow here the simulation guidelines put for-
ward by Kim, Moin, and Moser.%2 The streamwise, normal to
the wall, and spanwise coordinates are, respectively, x, y, and z;
periodic boundary conditions are imposed along the stream-
wise and spanwise directions; the grid is not uniform, with
enhanced resolution near the walls, so that the viscous sub-
layer can be resolved with approximately one viscous length
per lattice spacing. The simulation has been validated by stan-
dard tests, like the reproduction of the law of the wall and of
statistical moments.

We have recorded, at every ten time steps in the turbu-
lent stationary regime, the projection of the velocity field of
three parallel streamwise/wall normal planes z=0,z = /3, and
z = 2m/3. The ensemble defined in this way has a total number
of 5268 flow configuration snapshots, which are, then, studied
as two-dimensional velocity fields.

We show, in Fig. 17, vortex identification images for
one representative snapshot, analysed in three different ways.
Figs. 17(a) and 17(b) give the results obtained from the appli-
cation of the A.;-criterion without and with the use of the
background subtraction procedure, respectively. Fig. 17(c) is
the analogous result associated to the use of the 4,,-criterion
with background subtraction; no circulation cutoff has been
used in the identification of vortices.

There are expressive qualitative differences between the
two images produced by the A ;-criterion, for regions which are
closer to the wall, where shear effects become more relevant.
The A,,-criterion leads, on the other hand, to a much better vor-
tex resolution, but the background subtraction procedure does
not lead, in visual terms, to expressive modifications—that is
why we have not shown the picture associated to the applica-
tion of the A,,-criterion without background subtraction. This,
in fact, suggests that the flow takes place in weak background
shear conditions. There are, however, small but meaningful
improvements from the use of the background subtraction pro-
cedure that become evident only through histogram analysis,
as we will show below.

As a practical remark to be emphasized here, we note that
as it is a higher order derivative method, the A,,-criterion is
related to the identification fields that typically fluctuate over
a much wider range of values than the ones associated to the

TABLE III. Parameters for the DNS of a turbulent channel flow.

System’s dimensions (Ly,Ly,L;) = 2n,2, 1)

Grid size 256 x 192 x 192
Kinematic viscosity v=86x107*
Kinematic pressure gradient dP/dx =0.11
Simulation time step Ar=12x1073
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FIG. 17. Density plots of the A; [figures (a) and (b)] and the A, [figure (c)]
fields in a streamwise/wall normal plane for the DNS of a turbulent channel
flow, for all the channel extension and from the bottom wall up to the mid-
channel height. No threshold is used in the vortex identification analyses. The
background subtraction procedure is implemented only in figures (b) and (c).
The color bars represent the A; and the A, fields in linear and logarithmic
scales, respectively.

Agi-criterion. This justifies our use of the logarithmic scale
in the elaboration of the image given in Fig. 17(c). Fixing
attention on the A, -criterion, the natural application of the
logarithmic scale implies, furthermore, that an optional use
of thresholds is somewhat delicate for the case of turbulent
(intermittent) flows: in fact, if the threshold is defined, for
instance, as 20% of the maximum value of the logarithm of the
A, field, then its effects are likely to be irrelevant, since only
structures with very low kinetic energy would be discarded;
alternatively, if an analogous definition of the threshold is given
in a linear scale, it is not difficult to see that almost all of the
vortex structures would be erased in this way.

A closer look at the structures identified by the
A -criterion is given in Fig. 18, where we plot their contours
and the surrounding streamlines, computed for the velocity
field fluctuations around their mean values. The streamwise

T =
350%%%%) ~ R
300 '

bi§

FIG. 18. Streamlines (red lines) for the velocity fluctuations around the mean
flow and the closed contours (grey lines) of vortices identified through the
vorticity curvature criterion, in the region of wall units 0 <y* <395 and
590 <x* <990 (corresponding to 0 <y <1 and 1.5 <x <2.5 in Fig. 17(c)).
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and wall normal coordinates are defined in wall units. From
this picture, we can have a hint on some known important fea-
tures of boundary layer flows, as (i) the larger aspect ratios
and typical inclination of the structures below the onset of the
logarithmic layer (y* < 30), (ii) the scaling of structure sizes
with their distances to the wall, (iii) the presence of strong
vortices which dominate the local velocity fluctuations (there
at least, two of these in the picture), and (iv) the fact that the
zones of quasi-uniform momentum are correlated with vortex
regions,?> which in our specific example is particularly clear
from the organization of the streamlines in the upper region of
the sample (y* > 300).

The streamwise/wall normal plane snapshots of the tur-
bulent channel flow are partitioned in thin streamwise stripes
which have vertical width (bin size) Ay™ ~ 4. Through a com-
putational strategy analogous to the one discussed in Sec. IV,
we identify vortices for each one of the stripes and determine
their mean circulation, peak vorticity, mean radius, and mean
number as a function of the stripe distance to the wall. Results
are reported in Figs. 19-22. We provide, for some of the pic-
tures, insets which magnify their details, for the sake of better
visual inspection.

Similar evaluations of the mean vorticity and mean vortex
radii as a function of the distance to the wall have been dis-
cussed in Refs. 53 and 54 where, however, vortex parameters
are obtained from Levenberg-Marquardt fittings of the identi-
fied structures to the Lamb-Oseen vortex pattern. Their results
derived from a large turbulent database are compatible with
ours, in the context of the A.;-criterion.

The application of the A,,-criterion to the turbulent chan-
nel DNS data brings a phenomenologically interesting per-
spective on the statistical properties of the spanwise vortices.
Itis clear, from Figs. 19-21, that even with the use of the back-
ground subtraction procedure, the A.;-criterion gives, for all
the heights, distinct absolute values of the mean circulations,
vorticities, and radii for the populations of positive (retrograde)
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and negative (prograde) vortices. The application of the back-
ground subtraction procedure in the A,-criterion yields, on
the other hand, a fine collapse of these quantities for y* > 50,
which extends all throughout the logarithm boundary layer, as
it can be appreciated from Figs. 19(d), 20(d), and 21(d). If we
now take a look at the populations of prograde and retrograde
vortices in Figs. 22(b) and 22(d), they are found to match each
other in both criteria, but only after the background subtraction
procedure is carried out.

We know, from the law of the wall, that the mean vortic-
ity background is, in the logarithm layer, (w*)=2.5/y*. It is
clear, thus, from the inspection of Fig. 21, that the mean peak
vorticity of the vortex structures is well above the vorticity
background value for y* > 50, which tells us that the there is
in fact a weak background shear regime in the log-layer, fol-
lowing the convention put forward in Sec. IV. However, as it
is suggested from Fig. 21(d), the buffer layer is likely to be the
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FIG. 21. Absolute mean values of the peak vorticity, i.e., |{I'/ 7,,3 )| for ret-
rograde (open symbols) and prograde (solid symbols) vortices, as a function
of the distance to the wall. The dashed line is the average vorticity of the
turbulent channel (which closely agrees with the law of the wall). All the rest
as in the caption of Fig. 19.
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region where shear effects can become relevant in the problem
of vortex identification.

From the above compilation of statistical results, we find
that the detected vortical structures have their vorticities and
circulations enhanced within the region 5 <y* <30. This is
likely to be related to the observation that near the bottom of
the buffer layer, streamwise velocity fluctuations become more
intermittent as the distance to the wall decreases, as quantified
by a kurtosis analysis.®> A simple explanation of why individ-
ual vortices carry stronger vorticity as they get closer to the wall
can be addressed from a combination of the no-slip boundary
condition with the attached eddy hypothesis.'® It is expected,
of course, that fluctuations will disappear deep down in the
viscous layer, y* < 5, which, unfortunately, is poorly resolved
in our data.

The data collapse attained in Figs. 19(d), 20(d), 21(d),
and 22(d) is an important point for the consolidation of the
A, -criterion, once it supports the long-standing phenomeno-
logical assumption of small scale turbulence isotropization in
turbulent boundary layers.®+®” The A.;-criterion yields data
collapse only for the vortex counting histogram, Fig. 22(b),
failing to do so in the evaluations of vortex circulation, peak
vorticity, and radius parameters, as it can be clearly seen from
Figs. 19(b), 20(b), and 21(b).

The validity of the isotropic turbulence hypothesis in the
turbulent boundary logarithm layer has been usually checked
with the help of general theoretical relations that should hold
for the expectation values of some local fluid dynamical
observables.®*%7 This is a relevant aspect of the turbulent
boundary layer phenomenology that has lacked so far proper
corroboration within the structural analyses, a fact due, essen-
tially, to the limitations of the standard A.; vortex identification
methodology.

VI. EXTENSION TO THREE-DIMENSIONAL
VELOCITY FIELDS

It is interesting to devise three-dimensional generaliza-
tions of the A,,-criterion as a way to investigate the coherent
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structures that are behind their identified two-dimensional
cross sections. There are several ways to do that, following two
essential principles that all of the three-dimensional extensions
have to satisfy. They have to

(i) be covariant under rotations and
(i1) reduce to the A, -criterion in two-dimensional slices of
the flow.

With the above constraints in mind, let &(7) be the three-
dimensional vorticity vector field, so that we can define, anal-
ogously to Egs. (3.6) and (3.7), the pseudo-velocity and the
pseudo-vorticity vector field components, respectively, as

0;i(7) = €jjx0jwi(F) 6.1

and
@i(F) = =% wi(P) . (6.2)

We can then pick up any of the standard three-dimensional
vortex identification methods, like the Q or A criteria, to write
down a straightforward generalization of the A,,-criterion.
Taking the extensively used Q-criterion,”’~>° as our specific
example, recall that

1
Q(ajv,-) = —Eaivjﬁjvi . (63)

Vortex regions are defined as the connected sets of points where
0 > 0. Resorting to the pseudo-velocity and pseudo-vorticity
vector fields, the Q,,-criterion, which extends the A,-criterion
to three dimensions, is defined from the scalar field

00 (P) = O(w;@;)Q(9;1;) .

The filtering function previously used in the two-dimensional
context is re-written above in terms of the three-dimensional
vorticity field. We cannot get rid of it in the definition of the
Q. -criterion, otherwise we would surely recover the vortex
identification problems for the cases where the flow is quasi
two-dimensional, where Q,, () becomes essentially equivalent
to A, (7), Eq. (3.9).

In the same fashion as it is done with the Q-criterion, we
look now for the regions of the flow which have Q. >0 in
order to find vortices. The implementation of the background
subtraction procedure can be readily done by the substitution
of the velocity field by its fluctuation around the mean, exactly
as given in the Reynolds decomposition prescription defined
by Eq. (4.4).

To contrast the role of locality in the definitions of the
0 and the Q,, criteria, note that we may write, as it is well
known, Q= (Q?}. - Sl.zl.)/Z, where Q;; and §;; are the matrix
components of the rotation and the rate of the strain tensors,
respectively. Even though the rotation tensor content is iden-
tical to the one given by the set of vorticity field components,
the Q-criterion is, in fact, not fundamentally dependent on the
local properties of the vorticity field (as it is the case for the
Q,,-criterion). To understand it more clearly, just recall that the
strain tensor contribution to Q can be expressed as a non-local
functional of the vorticity field, as a direct consequence of
Eq. (1.1).

InFig. 23, we show how the Q and the Q,, criteria perform
for the simulation of the turbulent channel flow considered in
Sec. V. As expected, there are many more, and better resolved,

(6.4)
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7.7 FIG. 23. Vortex identification, with the
l use of thresholds, as seen from the top
& of the turbulent channel flow, accord-
ing to the DNS addressed in Sec. V.
? (a) Q-criterion with no background
subtraction, Q >102; (b) Q,-criterion
with background subtraction, Q,, > 1.1
-2 %107 (c) Oy, -criterion with background
I subtraction, Q,, > 1.2 X 108. The color
o scheme gives the magnitude of the
velocity field on the coherent structures.
The bottom of the channel is depicted as
=y a uniform blue background.
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structures obtained from the use of the Q,,-criterion. The color
scale indicates the absolute value of the velocity field, which
turns out to be a bit more intense for general regions of the
flow in the case where the background subtraction procedure
has been carried out.

We show, in these pictures, regions which have Q or Q,,
fields greater than the prescribed thresholds, in order to obtain
a clear visualization of flow structures at different distances
from the wall. Figs. 23(a) and 23(b) are the maps of the coher-
ent structures detected, approximately, for heights y* < 50,
while Fig. 23(c) is related to the structures found within
y* < 100.

The Q. images, at variance with the O ones, suggest
long-range correlations between the regions which have higher
magnitudes of the velocity field and the presence of vortex
packets, a fact that can be related to the existence of the very
large-scale motions (VLSMs) observed in the boundary layer
flows.68:69

Also, when we compare Figs. 23(b) and 23(c), it is tempt-
ing to evoke here the conjecture that low speed streaks are
connected with the formation of aligned packets of hairpin
vortices, as it has been put forward in Ref. 2.

The Q,-criterion seems, therefore, to be a promising
tool to address the three-dimensional organization of vortex
structures in the boundary layers at high Reynolds numbers.
However, since our aim in this section is just to give a first
glimpse on three-dimensional vortex identification, we left
this and other interesting issues to further comprehensive
studies.

VIl. CONCLUSIONS

We have introduced in this work an alternative vortex iden-
tification method—the A,,-criterion (or “vorticity curvature”
criterion)—which is fundamentally based on the local proper-
ties of the vorticity field. As the starting point of our approach,
we have critically revisited the usual swirling strength,
Ag-criterion, in order to classify its main shortcomings in

1T T T T T
0 1240 930 620 310 0 1240 930

simple two-dimensional vortex configurations (in two dimen-
sions, most of the velocity gradient-based vortex identification
methods become equivalent to the A.;-criterion, which, then,
has a central status in the general problem of vortex recogni-
tion). A careful and rigorous benchmarking analysis has then
been carried out, through an extensive statistical Monte Carlo
treatment of synthetic vortex systems, in order to compare the
performances of the 1, and the A.; criteria. We have been
able to find, in this way, that the A,,-criterion leads, in gen-
eral, to a considerably better and accurate identification of
two-dimensional vortices, as well as of their parameters of
circulation, size, and position. We have also shown how to
deal with possible spoiling external shear effects, by means of
a simple background subtraction procedure, which amounts in
the use of the local Reynolds decomposition of the velocity
field.

‘We note that some further, but not very expressive, refine-
ment of the A, -criterion may be necessary for the cases of
moderate/strong background shear in anisotropic vortex dis-
tributions (i.e., systems which have more negative than pos-
itive vortices, for instance), which may be relevant in flow
conditions like the turbulent boundary viscous sublayer.

There are two crucial points that explain the observed
good performance of the A,,-criterion: (i) the interesting local
properties of the vorticity field, when compared to the ones of
the streamfunction (which is a non-local function of vorticity)
and (ii) the use of the filtering Heaviside function ®(w®) in the
definition of the A,,-criterion, as given in Sec. III. This filter
removes most of the spurious vortices and renders the vorticity
curvature method essentially free from the need of subjective
threshold parameters.

We have provided the evidence which supports the appli-
cation of the A,,-criterion to flow configurations obtained by
direct numerical simulations, taking the paradigmatical tur-
bulent channel flow as an example. It turns out that DNS
velocity fields are smooth enough to allow the use of the
A -criterion, a third order derivative scheme. We have been
able, in this way, to address the issues of isotropization in
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the turbulent boundary layer, which have, so far, eluded the
structural approach. The application of the A,,-criterion to
the turbulent channel flow problem has led, for the first
time (to the authors’ knowledge), to a clear indication of
isotropization in the turbulent boundary layer, within the struc-
tural point of view. More work is needed here, of course, in
combination with the investigation of the three-dimensional
coherent structures.

The A, -criterion is directly generalizable to three-
dimensions in more than one way. We have explored
the three-dimensional extension motivated by the defini-
tion of the standard Q-criterion, which we have denoted as
the “Q,,-criterion.” Preliminary visualizations based on the
Q,,-criterion show a profusion of well-resolved vortex struc-
tures, not revealed in any of the previous standard analyses
based on the Q-criterion (likely to be affected by both vortex
coalescence and erasing due to thresholding), and may shed
light on the nature of the VLSMs, once they suggest some
correlation between percolating stronger velocity fluctuations
and the formation of vortex packets in the turbulent boundary
layer.

The study of other important boundary layer aspects is
in order, which can now be more accurately addressed. We
mean, for instance, an investigation of the coherent structures
in the turbulent viscous layer, and their role in the production
of viscous drag. In this respect, it is worthwhile mentioning
that phenomenological elements like the VLSMs and quasi-
streamwise vortices, which can be identified with improved
resolution through the Q,,-criterion, have been, actually, the
subject of previous works focused on the wall shear-stress
fluctuations.”"’!

An interesting discussion, which we touch in passing,
leaving a detailed account for a future study, is related to the
description of the coherent structures in terms of Kolmogorov
scales as developed in Refs. 53 and 61. Consistently with the
results of these works, we have found, through an application
of the A.;-criterion to the streamwise/wall normal planes of
our turbulent channel DNS samples, that the Kolmogorov-
rescaled vortex radii, mean circulations, and mean vortici-
ties become very approximately constant for y* > 50. This,
again, is a strong indication that the local Reynolds num-
ber (a function of y/n where n is the Kolmogorov dissipa-
tion length scale) is stable within the large regions of the
flow where turbulence can be considered to be effectively
isotropic.

To put the bulk of our findings into a proper context, it is
important to stress that the A;-criterion (or the Q-criterion
as well) still offers a reasonably good computational cost-
benefit ratio for the investigation of high Reynolds number
flows, both in experimental and numerical studies. As it can
be clearly seen from the turbulent channel analysis put for-
ward in Sec. V, results found from the use of the A.;-criterion
can be seen as a first approximation to the more accurate ones
related to the application of the A,,-criterion, as far as coherent
structure resolution and background shear effects are not the
points of concern. In such cases, the A.;-criterion can be loosely
interpreted as a low-pass filtered version of the A,,-criterion.

While the A-criterion relies on the set of first spa-
tial derivatives of the velocity field and its application to
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DNS or Particle Image Velocimetry (PIV) data is, there-
fore, comparatively less affected by numerical/measurement
errors, some special care is necessary when the A,,-
criterion comes into play, once it is a higher-order derivative
method.

In order to deal with PIV or DNS data at higher Reynolds
numbers, we point out here the main points related to the
accuracy of the A,,-criterion. On practical grounds, it is neces-
sary to comply with two basic conditions, namely, (i) the data
must be smooth enough to support accurate velocity deriva-
tives up to third order and (ii) the grid resolution has to be
fine enough to resolve both the boundaries and interior of
the vortex regions. In a general DNS, one can assure that the
computations of velocity fields and their second derivatives
are accurate if k4E(k), where E(k) is the energy spectrum,
is smooth and peaked at inertial range scales.”>’3 However,
the condition (i) can only be achieved if the resolution is
high enough so that the tail of the energy spectrum is steeper
than k=7, which can be sometimes a stringent requirement.
Of course, smooth velocity fields can be artificially attained
through low-pass filtering, as long as some resolution lost is
still acceptable. On the other hand, while condition (ii) is not
very problematic in the applications of the swirling strength
criterion, which usually produce well resolved large vortex
regions, it can be a matter of concern for the vorticity curva-
ture criterion. If the data are already smooth enough, it may be
necessary to use a high order interpolation scheme to reach the
grid resolution that would resolve vortex domains. In this way,
not only PIV but also DNS data may require a careful post-
processing for the use along the lines of the vorticity curvature
criterion.

The application of the A,,-criterion to the conventional
PIV data can be pursued without much worry when the goal is
to study the large scale vortices in the turbulent boundary layer
(length scales within and above the logarithmic layer) after the
procedure of velocity field smoothing is carried out. Hopefully,
smaller structures, within viscous layer dimensions, could be
also identified with the help of high resolution PIV data, a
subject we deserve for future research.
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