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Abstract An unifying overview of the Generalized Integral
Transform Technique (GITT) as a computational-analytical
approach for solving convection-diffusion problems is pre-
sented. This work is aimed at bringing together some of the
most recent developments on both accuracy and convergence
improvements on this well-established hybrid numerical-
analytical methodology for partial differential equations.
Spec i a l emphas i s i s g iven to nove l a l go r i t hm
implementations, all directly connected to enhancing the
eigenfunction expansion basis, such as a single domain refor-
mulation strategy for handling complex geometries, an inte-
gral balance scheme in dealing with multiscale problems, the
adoption of convective eigenvalue problems in formulations
with significant convection effects, and the direct integral
transformation of nonlinear convection-diffusion problems
based on nonlinear eigenvalue problems. Then, selected ex-
amples are presented that illustrate the improvement achieved
in each class of extension, in terms of convergence accelera-
tion and accuracy gain, which are related to conjugated heat
transfer in complex or multiscale microchannel-substrate ge-
ometries, multidimensional Burgers equation model, and

diffusive metal extraction through polymeric hollow fiber
membranes. Numerical results are reported for each applica-
tion and, where appropriate, critically compared against the
traditional GITT scheme without convergence enhancement
schemes and commercial or dedicated purely numerical
approaches.

1 Introduction

The quest for accuracy and speed in computer simulations of
heat and fluid flow problems is clearly endless, as more mas-
sive and complex computations are pursued, independent of
the mathematical methodology employed. The progress on
numerical methods for partial differential equations promoted
along the last 60 years or so, closely followed by the some-
times disruptive but continuous improvements on computer
hardware, has not only offered the path for simulating three-
dimensional complex domains and chaotic time evolutions,
but also made it feasible to analyze multiple potentials and
multiple space and time scales within the same computation.
Nevertheless, in different contexts of numerical methods de-
velopment, gains in accuracy end up by sacrificing speed,
while gains in speed, if not obtained by accuracy relaxation,
are not always followed by an also desirable gain in accuracy,
due to some sort of improvement saturation inherent to the
discrete nature of the nowadays well-established purely nu-
merical methods.

Some 30 years after the computer boom and by the end of
the computational engineering maturation period, a few dif-
ferent research efforts started promoting the development of
hybrid numerical-analytical methods for partial differential
equations, in attempts of combining the ample analytical
knowledge base already available, with co-currently devel-
oped numerical tools for algebraic and ordinary differential
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equations. The aim was to achieve simultaneous and signifi-
cant gains in both accuracy and speed, as well as increased
robustness, at the price of additional analytical effort, while
also alleviating somehow the applicability limitations of clas-
sical analytical approaches. Numerical inversion of Laplace
transforms, Finite analytic methods, and Generalized integral
transforms are examples of hybrid methodologies that turned
into alternative hybrid approaches, which found their own
applicability and relevance in modern engineering practice
and research. Almost in parallel, the advancement of symbolic
computation platforms has also been playing a major role in
the expansion of the development interest and applicability
width of such classes of hybrid solution methodologies, dras-
tically reducing the developer or user derivation effort along
the analytical phases of these approaches.

The integral transform method is a classical analytical tool
for exact solution of certain classes of linear partial differential
equations, which has originated from the Separation of
Variables method introduced by Fourier [1] in the realm of
heat diffusion problems, and has been extensively employed
in thermal sciences and engineering for almost 200 years
[2–5]. The overall concept is to employ an eigenfunction ex-
pansion for the unknown potential, based on the orthogonality
property of the eigenvalue problem that results from
Separation of Variables as applied to the homogeneous ver-
sion of the original transient (or steady) linear diffusion prob-
lem. Such a natural eigenvalue problem permits, a priori, the
construction of both a transformation and an inversion formu-
lae. Thus, upon integral transformation, the space variables are
eliminated and the original PDE gives place to a system of
decoupled ordinary differential equations for the transformed
potentials. This linear decoupled ODE system is then readily
solved in analytical form, and the inversion formula allows for
the explicit reconstruction of the potential field, via the inver-
sion formula already available upon definition of the eigen-
value problem. This analytical approach has to some extent
lost relevance after the appearance of computers and the de-
velopment of the more flexible numerical methods, but even
though, retained a complementary role in the verification of
numerical codes and in the realm of applications for a few
classes of transformable linear problems [4, 5].

Nevertheless, the integral transform method was progres-
sively extended and generalized along the last three decades or
so, leading to the establishment of a hybrid numerical-
analytical methodology known as the Generalized Integral
Transform Technique (GITT) [6–12]. The generalized ap-
proach again involves the consideration of an eigenfunction
expansion, based on a more freely chosen eigenvalue prob-
lem, that desirably retains part of the information on the oper-
ators of the original problem, and leads, upon integral trans-
formation, to a coupled linear or nonlinear infinite trans-
formed ODE system, usually to be numerically solved upon
truncation to a sufficiently large finite order. Therefore, the

more costly numerical task is undertaken essentially in one
single independent variable (time for a transient problem or
one of the space variables for a steady-state problem), and the
original potential solution is analytically recovered in all the
other independent variables. This hybrid numerical-analytical
method holds the relative merits on robustness and accuracy
of the classical analytical technique, with the inherent gain in
computational speed in comparison to the conventional purely
numerical methods, while extending the applicability and
flexibility of an analytic-type methodology towards that of a
purely numerical approach. Various classes of problems that
could not previously be handled by the classical analytical
approach were then progressively dealt with via the general-
ized method [6–12]. The list of extensions achieved through
the GITT includes solving equations with time variable coef-
ficients, moving boundary problems, nonlinear formulations
in general, irregular domains, phase change problems, eigen-
value problems, boundary layer and Navier-Stokes equations,
etc., as reviewed in different sources [6–14]. In a natural se-
quence to the handling of such a priori non-transformable
classes of diffusion and convection-diffusion problems, the
hybrid method was consolidated into a general purpose algo-
rithm, also known as the UNIT (UNified Integral Transforms)
algorithm [13, 14], in order to facilitate a more widespread
use.

While developing and applying such general purpose algo-
rithm, the need for a number of computational improvements
and additional theoretical developments became more evident
and led to some recent advances on the GITT methodology
[15–26], which are here consolidated. Among such recent
advancements, one may point out the single domain reformu-
lation strategy for complex geometries, the integral balance
approach for convergence enhancement of problems with
multiscale or abruptly varying coefficients, the proposition
of convective eigenvalue problems for formulations with sig-
nificant convective effects, and the direct use of nonlinear
eigenvalue problems in the integral transformation process
of nonlinear PDEs [15–26]. All the methodological variants
here discussed are aimed at the enrichment of the
eigenfunction expansion basis, towards increasing the amount
of information from the original formulation that is carried
into the eigenvalue problem and then recovered at any spatial
position by the corresponding eigenfunctions. The inversion
formula, which represents the final solution of the originally
posed problem, is essentially composed of the eigenfunctions
and the transformed potentials, with the eigenfunctions offer-
ing the reconstruction of the local spatial dependence and the
transformed potentials covering for the overall time vari-
able (or equivalent space variable) behaviour, while influ-
enced by the space domain integrated operators coefficients.
Therefore, the more information that is locally (and even in-
stantaneously, in nonlinear eigenvalue problems) accounted
for by the eigenfunctions, some reduction is expected on the
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number of modes that shall be required to represent such spa-
tial effects through the transformed potentials, which, as men-
tioned before, only perceive the space variables information in
integrated form. These ideas are here compiled and linked,
providing an unified view of this continuously improving
computational-analytical approach. Selected examples are
then presented to illustrate such recent developments, that
further enhance the integral transforms computational
performance.

2 Computational-analytical approach

The formal GITT solution to a general nonlinear convection-
diffusion problem is first presented, from which the recently
proposed extensions, to be consolidated in what follows, shall
become more evident. A transient multidimensional
convection-diffusion problem of n coupled potentials is thus
considered, defined in the single arbitrary region V, with
boundary surface S [12]:

wk xð ÞLk;tT k x; tð Þ ¼ LkTk x; tð Þ−u x; t;Tð Þ:∇Tk x; tð Þ

þ gk x; t;Tð Þ; x∈V ; t > 0; k ¼ 1; 2;…; n

ð1aÞ

where the t variable operator, Lk, t, for a parabolic (or
parabolic-hyperbolic) formulation may be given by,

Lk;t≡
∂
∂t

ð1bÞ

while for an elliptic or hyperbolic formulation it is written as

Lk;t≡−ak tð Þ ∂
∂t

bk tð Þ ∂
∂t

� �
ð1cÞ

and the remaining space coordinates operator, with diffusion
and linear dissipation, is given as

Lk≡∇⋅ Kk xð Þ∇ð Þ−dk xð Þ ð1dÞ

The initial or boundary conditions in the t variable are
given, respectively, by

Tk x; 0ð Þ ¼ f k xð Þ; x∈V ; for the parabolic formulation

ð1eÞ

Tk x; 0ð Þ ¼ f k xð Þ; ∂Tk x; 0ð Þ
∂t

¼ hk xð Þ; x∈V ; for the hyperbolic formulation

ð1f ; gÞ

or

λk;l þ −1ð Þlþ1γk;l
∂
∂t

� �
Tk x; tð Þ ¼ f k;l xð Þ; at t ¼ tl; l

¼ 0; 1; x∈V ; for the elliptic formulation ð1hÞ

where the coefficients λk, l and γk, l allow for obtaining bound-
ary conditions of first, second and third kinds. It should be
noted that for the elliptic problem, the variable t stands for one
of the space coordinates, chosen not to be eliminated through
integral transformation, while the vector x stands for the re-
maining one or two space coordinates.

The boundary conditions in the remaining coordinates sur-
faces are concisely written as

BkTk x; tð Þ ¼ ϕk x; t;Tð Þ; x∈S; t > 0 ð1iÞ
with the boundary conditions operator

Bk≡ αk xð Þ þ βk xð ÞKk xð Þ ∂
∂n

� �
ð1jÞ

where the coefficients αk and βk again allow for obtaining
boundary conditions of the different types, n denotes the
outward-drawn normal to the surface S, and the coupled po-
tentials vector is given by

T ¼ T1; T 2;…; Tk ;…; Tnf g ð1kÞ

Equations (1) offer a more general formulation then it might
appear at first glance, since nonlinear terms may be grouped
into the equations and boundary conditions source terms, gk(x,
t,T) and ϕk(x, t,T), including even the nonlinear convection
terms explicitly shown in Eq. (1a). Thus, the linear coefficients
that appear in the different operators above can be interpreted as
characteristic ones, chosen so as to provide an informative basis
for the eigenfunction expansions to be considered. In the case of
decoupled linear source terms, i.e.,g ≡ g(x, t), and ϕ ≡ ϕ(x, t),
and in the absence of the convective term (u ≡ 0), this example
is reduced to a class I linear diffusion problem for each poten-
tial, according to the classification in [5], and formal analytical
solutions are readily available via the Classical Integral
Transform Technique, once the corresponding Sturm-
Liouville eigenvalue problem has been solved for.

Following the formal solution procedure for nonlinear
convection-diffusion problems through integral transforms
[6–12], one starts with the consideration of eigenfunction ex-
pansions for the unknown potentials. The natural eigenvalue
problem choice appears from the direct application of the
Separation of Variables method to the linear homogeneous
purely diffusive version of the proposed problem, such as in
the exact solution of the so called Class I problems [5]. For the
formulation in Eqs. (1), the suggested set of decoupled auxil-
iary problems becomes:

Lk þ μ2
kiwk xð Þ� �

ψki xð Þ ¼ 0; x∈V ð2aÞ
Bkψki xð Þ ¼ 0; x∈S ð2bÞ
where the eigenvalues, μki, and associated eigenfunctions,
ψki(x), are assumed to be known from analytical expressions,
for instance obtained through symbolic computation [27] or
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application of the GITT itself, which reduces the differential
eigenvalue problem to algebraic matrix eigenvalue problems,
upon integral transformation [7, 12].

Making use of the orthogonality property of the
eigenfunctions, one readily defines the integral transform
pairs:

Tki tð Þ ¼ ∫Vwk xð Þ~ψki xð ÞTk x; tð ÞdV ; transforms ð3aÞ
Tk x; tð Þ ¼ ∑

∞

i¼1

~ψki xð ÞTk;i tð Þ; inverses ð3bÞ

where the symmetric kernels ~ψki xð Þ and the associated nor-
malization integrals Nki are given by.

~ψki xð Þ ¼ ψki xð Þffiffiffiffiffiffiffi
Nki

p ; and Nki ¼ ∫Vwk xð Þψ2
ki xð ÞdV ð3c; dÞ

The integral transformation of Eq. (1a) is accomplished by

applying the operator ∫V ~ψki xð Þ ⋅ð ÞdV and making use of the
boundary conditions given by Eqs. (1i) and (2b), yielding:

Lk;tT ki tð Þ þ μ2
kiTki tð Þ ¼ gki t;T

� �
; i ¼ 1; 2;…; t > 0; k ¼ 1; 2;…; n

ð4aÞ

where the transformed source term gki t;T
	 


is due to the
integral transformation of the equation source terms, and in
addition the contribution of the boundary source terms [7, 12],
to yield:

gki t;T
� �

¼ ∫V ~ψki xð Þ −u x; t;Tð Þ:∇Tk x; tð Þ þ gk x; t;Tð Þ½ �dV

þ ∫Sϕk x; t;Tð Þ
~ψki xð Þ−Kk xð Þ ∂

~ψki xð Þ
∂n

αk xð Þ þ βk xð Þ

2
6664

3
7775dS

ð4bÞ

The initial or boundary conditions in the t variable given by
Eqs. (1e–1h) are transformed through the operator ∫Vwk xð Þ~ψki

xð Þ ⋅ð ÞdV , to provide:

Tki 0ð Þ ¼ f ki≡∫Vwk xð Þ ~ψki xð Þ f k xð ÞdV ; for the parabolic problem

ð4cÞ

Tki 0ð Þ ¼ f ki;
dTki

dt

�����
t¼0

¼ hki≡∫Vwk xð Þ~ψki xð Þhk xð ÞdV ; for the hyperbolic problem

ð4d; eÞ

λk;l þ −1ð Þlþ1γk;l
d
d t

� �
Tki tð Þ ¼ f k;li

≡∫Vwk xð Þ~ψki xð Þ f k;l xð ÞdV; at t ¼ tl; l ¼ 0; 1; for the elliptic problem

ð4fÞ

In obtaining the surface integral term of Eq. (4b), the 2nd
Green’s formula is employed to express the volume integral
involving the transformation of the diffusion term [4, 5], in the
form:

∫V ~ψki xð Þ∇⋅ Kk xð Þ∇Tk x; tð Þð Þ−Tk x; tð Þ∇⋅ Kk xð Þ∇~ψki xð Þ
� �h i

dV ¼

¼ ∫SKk xð Þ ~ψki xð Þ ∂Tk x; tð Þ
∂n

−Tk x; tð Þ ∂
~ψki xð Þ
∂n

" #
dS

ð4gÞ

Then, the integrand in the right hand side is evaluated by
manipulating the boundary conditions, Eqs. (1i) and (2b), first

by multiplying the first one by ~ψki xð Þ and the second one by
Tk(x, t), and subtracting them, to obtain:

Kk xð Þ ~ψki xð Þ ∂Tk x; tð Þ
∂n

−Tk x; tð Þ ∂
~ψki xð Þ
∂n

" #
¼ ϕk x; t;Tð Þ

−Kk xð Þ ∂
~ψki xð Þ
∂n

 !

αk xð Þ
ð4hÞ

Alternatively, the integrand can be evaluated by multiply-

ing Eq. (1i) by ∂~ψki xð Þ
∂n and multiplying Eq. (2b) by ∂Tk x;tð Þ

∂n ,
which after their subtraction leads to:

Kk xð Þ ~ψki xð Þ ∂Tk x; tð Þ
∂n

−Tk x; tð Þ ∂
~ψki xð Þ
∂n

" #
¼ ϕk x; t;Tð Þ

~ψki xð Þ
βk xð Þ ð4iÞ

The expression given by Eq. (4h) should be avoided when
second kind boundary conditions are involved (αk(x) ≡ 0,
βk(x) ≠ 0), while Eq. (4i) should be avoided for first kind
boundary conditions (αk(x) ≠ 0,βk(x) ≡ 0), or the two formulae
can be combined through algebra in the general form of Eq.
(4b), valid in any situation.

For the solution of the infinite coupled system of nonlinear
ordinary differential equations given by Eqs. (4), one usually
needs to make use of special numerical algorithms, after the
truncation of the system to a sufficiently large finite order.
Such ODE systems are likely to present a significant stiffness
ratio, especially for larger truncation orders, due to the mark-
edly different t variable behaviour of the lowest and highest
order transformed potentials. The built-in routine NDSolve of
the Mathematica system [27], for instance, offers automatic
control of absolute and relative errors and dedicated schemes
for stiff systems, including an automatic stiffness switching
procedure. After the transformed potentials have been numer-
ically computed, the Mathematica routine automatically pro-
vides an interpolating function object that approximates the t
variable behaviour of the solution in a continuous form. Then,
the inversion formula can be recalled to analytically and ex-
plicitly yield the potential field representation at any desired
position x and time t.

An important computational aspect in this hybrid approach
is the employment of filtering solutions for convergence
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acceleration [7, 9]. The aim is to reduce the required truncation
orders in the eigenfunction expansions, since this directly af-
fects the size of the truncated transformed ODE system, and
its numerical solution represents most of the overall computa-
tional effort in this methodology. Therefore, the idea behind
filtering is to extract information from the problem formula-
tion, preferably in analytical form, to reduce the magnitude of
the original equation and boundary conditions source terms,
which are ultimately responsible for the convergence devia-
tion from the exponential decay pattern (spectral conver-
gence). In general form, the filtering is introduced through a
readily obtainable function, subtracted from the original po-
tential, as:

Tk x; tð Þ ¼ Tk
* x; tð Þ þ T F;k x; tð Þ ð5Þ

where TF, k(x; t) is the proposed filter and Tk
∗(x, t) is the

resulting filtered potential to be determined. After introducing
Eq. (5) into Eqs. (1), the filtered problem becomes

wk xð ÞLk;tT*
k x; tð Þ ¼ LkT*

k x; tð Þ−u x; t;Tð Þ:∇T*
k x; tð Þ

þ g*k x; t;Tð Þ; x∈V ; t > 0; k ¼ 1; 2;…; n

ð6aÞ

The initial or boundary conditions in the t variable are
given, respectively, by

T*
k x; 0ð Þ ¼ f *k xð Þ; x∈V ; for the parabolic formulations

ð6bÞ

T*
k x; 0ð Þ ¼ f *k xð Þ; ∂T*

k x; tð Þ
∂t

����
t¼0

¼ h*k xð Þ; x∈V ; for the hyperbolic formulation

ð6c; dÞ

or

λk;l þ −1ð Þlþ1γk;l
∂
∂t

� �
T*
k x; tð Þ ¼ f *k;l xð Þ; at t ¼ tl; l

¼ 0; 1; x∈V ; for the elliptic formulation ð6eÞ

while the boundary conditions in the remaining coordinates
are concisely written as

BkT*
k x; tð Þ ¼ ϕ*

k x; t;Tð Þ; x∈S; t > 0 ð6fÞ
where the filtered functions become

f *k xð Þ≡ f k xð Þ−T F;k x; 0ð Þ ð7aÞ

h*k xð Þ≡hk xð Þ−∂T F;k x; tð Þ
∂t

����
t¼0

ð7bÞ

g*k x; t;Tð Þ ¼ gk x; t;Tð Þ−wk xð ÞLk;tT F;k x; tð Þ
þ LkT F;k x; tð Þ−u x; t;Tð Þ:∇T F;k x; tð Þ ð7cÞ

f *k;l xð Þ ¼ f k;l xð Þ− λk;l þ −1ð Þlþ1γk;l
∂
∂t

� �
T F;k x; tð Þ; at t ¼ tl; l ¼ 0; 1; x∈V

ð7dÞ
ϕ*
k x; t;Tð Þ ¼ ϕk x; t;Tð Þ−αk xð ÞT F;k x; tð Þ−βk xð Þkk xð Þ ∂T F;k x; tð Þ

∂n
; x∈S

ð7eÞ

In case the filtering solution identically satisfies the bound-
ary conditions, the boundary source term becomes zero, and
the filtered equation source term remains as defined in Eq.
(7c). Besides the simplest algebraic boundary conditions fil-
ters, a number of filtering strategies have been proposed along
the GITT development, including recursive filters, local-
instantaneous filtering, implicit nonlinear filter, and progres-
sive filtering in multidimensional problems [9, 13, 14]. It is
well documented that such strategies are very effective in pro-
viding faster converging eigenfunction expansions.

Another important computational aspect of the GITT solu-
tion, specifically in multidimensional applications, is the ap-
propriate ordering of the parcels in the infinite summation of
the inverse formula, Eq. (3b), in representing the final integral
transform solution for the related potential. In multidimen-
sional situations, as a result of the analytical solution of the
associated multidimensional eigenvalue problem, the expan-
sion can be expressed as double or triple infinite summations
for two or three-dimensional transient problems, respectively.
For computational purposes, these nested summations will
have to be truncated to finite orders somehow, but if they are
truncated to a certain prescribed finite order each, the compu-
tations become inefficient and costly. For instance, if the dou-
ble summation of a two-dimensional eigenfunction expansion
is truncated to individual orders Nx and Ny, the terms with
indices (1, Ny + 1) and (Nx + 1,1) will be left out and are
certainly more relevant to the final result than the last term
accounted for, of indices (Nx,Ny), and even several others be-
fore that last one. Therefore, for an appropriate computation of
these expansions, the infinite multiple summations should first
be converted to the single sum representation of Eq. (3b), with
the appropriate reordering of terms according to their relative
contribution to the final numerical result [9]. Since the final
solution is not a priori known, the criteria which shall govern
this reordering of the multiple summations into a single one
should borrow information from the transformed ODE system
formulation. The most common choice of reordering strategy
is based on arranging in increasing order the sum of the
squared eigenvalues in each spatial coordinate, which result
from the transformation of the characteristic diffusive and dis-
sipative operators within Lk. It offers a good compromise be-
tween the overall convergence enhancement and simplicity in
use. However, certain applications may require more informa-
tive reordering criteria, that accounts for the influence of trans-
formed initial conditions and transformed nonlinear source
terms in the ODE system. To more clearly understand the
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possible reordering schemes, one may examine the formal
solution of the transformed potentials, Eqs. (4), for the para-
bolic problem case, which is essentially a nonlinear integral
Volterra-type equation, written as:

�Tki tð Þ ¼ �f kiexp −μ2
kit

	 

þ ∫

t

0
�gki t

′; �T t′
	 
	 


exp −μ2
ki t−t

′
	 
� �

dt′ ð8Þ

Integration by parts of Eq. (8) provides an alternative ex-
pression that allows the understanding of the influence of the
transformed initial conditions and source terms in the choice
of reordering criteria, in rewriting the multiple series as a
single one:

Tki tð Þ ¼ f kiexp −μ2
kit

	 
þ 1

μ2
ki

gki t;T tð Þ
� �

−gki 0;T 0ð Þ
� �

exp −μ2
kit

	 
h i

−
1

μ2
ki
∫
t

0

dgki
dt

0 exp −μ2
i t−t

0
� �h i

dt
0

ð9aÞ

It is evident that the squared eigenvalues, which involve the
combination of the eigenvalues in each spatial coordinate,
play a major role in the decay of the absolute values of the
transformed potentials, and thus of the infinite summation
parcels, both through the exponential term decay exp
−μ2

kit
	 


and, for slower convergence rates, through the inverse
of the squared eigenvalues, 1=μ2

ki. Therefore, the traditionally
employed reordering scheme based on the ascending order of
the squared eigenvalues should be able to account for some of
the most important terms in the adequate reorganization of the
expansion. Nevertheless, supposing that the last integral term
in Eq. (9a) plays a less important role in the reordering choice,
and it even vanishes when the source term is not time depen-
dent, one concludes that the decays of the transformed initial
condition and of the transformed source term, play a comple-
mentary role in the selection of terms in the eigenfunction
expansion for a fixed truncation order. Thus, a more robust
selection can be proposed, based on adding to the initially
reordered terms, according to the squared eigenvalues criteri-
on, those extra terms that might be of significant contribution
to the final result under the analysis of the initial condition
decay and of the transformed source term behaviour.

Equation (9a) can be also quite useful in pre-analyzing the
convergence behaviour of the expansion at the limits of very
small (early transients) or large (steady state) values of the t
variable. For instance, the transformed potential solution for
the lowest time value of interest, t = tmin, may be approximated
by the truncated form of Eq. (9a), eliminating the integral
term, as:

�Tki tminð Þ≅�f kiexp −μ2
kitmin

	 
þ 1

μ2
ki

� �gki tmin; �fð Þ−�gki 0; �fð Þexp −μ2
kitmin

	 
� � ð9bÞ

where the unknown potentials on the r.h.s. are approximated
by the known transformed initial conditions for each potential,

f k . The inverse formula is then recalled, Eq. (3b), and the
approximate eigenfunction expansion convergence can be an-
alyzed for each potential in the neighbourhood of the initial
condition. This analysis provides not only estimates for the
truncation orders to be employed along the transformed ODE
system numerical solution, for t > tmin, but also aids in under-
standing the importance of each term in the convergence be-
haviour. For instance, the criterion that reorders the terms
based on the decay of the initial conditions is based on sorting
in decreasing order from the expression �f kiexp −μ2

kitmin

	 

. In

the second case, for the general situation of a nonlinear trans-
formed source term, the estimation of the terms importance is
more difficult, since the source terms, in the more general
nonlinear situation, are not known a priori. As from Eq.
(9b), in the vicinity of the initial condition, the transformed
source term influence on the convergence rates is clearly an-

alyzed through the approximate term �gki tmin;�fð Þ
μ2
ki

. However, the

source term may have an arbitrary variation along the t vari-
able, especially if it has not been properly filtered, and the
reordering around t = 0 might not be representative of the
whole t domain influence. One simple alternative is to consid-
er the limiting case of an uniform unitary source term,
representing for instance its normalized maximum value,
and analyzing the reordering of terms in descending absolute

value based on the expression 1
μ2
ki
∫
V

~ψ∼ki xð ÞdV . Therefore,
combining the three criteria, and eliminating the duplicates
with respect to the traditional reordering scheme based on
the sum of the squared eigenvalues, extra terms might be
added to the initially reordered terms that may have relevant
effect in the final truncated single summation.

Successive integration by parts of Eq. (8) leads to the gen-
eral expression below, which finds usefulness in refining the
approximate solutions once the mth order time derivatives of

the transformed source terms, gki
mð Þ tð Þ≡ dmgki tð Þ

dtm , can be analyt-
ically obtained:

Tki tð Þ ¼ f kie
−μ2

kit

þ ∑
M

m¼1

−1ð Þmþ1

μ2:m
ki

gki
m−1ð Þ

tð Þ−gki
m−1ð Þ

0ð Þe−μ2
kit

� �

þ −1ð ÞM
μ2:M
ki

∫
t

0
e−μ

2
ki t−t0ð Þgki

Mð Þ
t
0

� �
dt ð10aÞ

whereM is the total number of integration by parts performed.
For instance, the second level integration yields the following
approximate linearized solution for convergence and
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reordering analysis:

Tki tminð Þ≅ f kiexp −μ2
kitmin

	 
þ 1

μ2
ki

gki tmin; f
� �

−gki 0; f
� �

exp −μ2
kitmin

	 
h i

−
1

μ4
ki

g
1ð Þ
ki tmin; f
� �

−g
1ð Þ
ki 0; f
� �

exp −μ2
kitmin

	 
� �

ð10bÞ

Symbolic computation tools also allow for the iterative
analytical derivation of refined approximate solutions, which
may find usefulness even beyond such preliminary conver-
gence and reordering analysis. In addition, such approximate
solutions can be employed in the modulation of the trans-
formed potentials, so as to reduce the stiffness ration in the
numerical solution of the transformed ODE system, yielding
improved computational performance.

3 GITT algorithm variants

A few recently introduced variants of the basic computational
algorithm are now examined, which particularly enhance the
computational performance of the GITT approach in complex
geometries and heterogeneous media, multiscale variable
properties and/or dimensions, convection-dominated prob-
lems, and nonlinear boundary conditions.

The ideas explored below are all related to the proposition
of more informative eigenfunction expansion basis, by incor-
porating into the eigenvalue problem further knowledge on
the coefficients of the original equation and boundary condi-
tions operators. The inverse formula, Eq. (3b), is essentially
composed of the contributions from the normalized
eigenfunctions, which are x dependent only in this formal
solution, and from the transformed potentials, which are t
dependent only. The eigenfunctions are orthogonal oscillatory
functions with increasing frequency for increasing eigenvalue
order (or mode), while the transformed potentials are expected
to decay in absolute value with increasing eigenvalue order, as
made evident from the formal solution Eq. (8), essentially
governing the convergence of the expansion. Any coefficient
or operator that is not brought into the eigenvalue problem
formulation, after choosing the linear coefficients wk(x),
Kk(x), dk(x), αk(x), βk(x), will become part of the equation
and boundary condition source terms. These will then affect
the transformed potential, both through their explicit time de-
pendence and through their spatially integrated form in the
transformation of the source terms, Eq. (4b), eventually in-
cluding the inherent nonlinear behaviour. Therefore, a basis
with limited information from the original problem formula-
tion, naturally penalizes the convergence behaviour in light of
the artificial and relevant source terms that are generated, and
also due to the local spatial information on the operators not
accounted for in the eigenvalue problem, that will affect the

transformed potentials, only in integrated form, in general
requiring a large number of modes for recovery of this infor-
mation. Thus, the more information from the original formu-
lation that is incorporated into the eigenvalue problem, less
significant should be the spatial dependence of coefficients
and operators of the source terms on the transformed poten-
tials, therefore improving convergence rates. Also, the
eigenfunctions should in principle locally perceive the spatial
functional information provided by the chosen characteristic
coefficients, which are incorporated into the eigenvalue prob-
lem. Nevertheless, when the eigenvalue problem itself is han-
dled by GITT, with a simpler auxiliary eigenfunction basis,
this spatial dependence again appears only in integrated form
in the algebraic eigenvalue problem coefficients, then requir-
ing large truncation orders for convergence of the eigenvalues
and eigenfunctions themselves. Anyway, there is generally
already a significant gain in bringing more information into
the eigenvalue problem, since it is computationally less costly
to handle the large order algebraic eigenvalue problem than a
large transformed ODE system.

First, a single domain formulation strategy is described,
which not only facilitates the handling of complex geometries
and heterogeneous media, but also provides an evident path
for incorporating the spatial information from various subre-
gions or materials into one single eigenvalue problem with
spatially varying coefficients. Second, an integral balance pro-
cedure is detailed which leads to the convergence acceleration
in the solution of eigenvalue problems with spatially variable
coefficients through integral transforms. The aim is to account
for the local spatial variation of these coefficients in the form
of an improved inverse formula for the eigenfunction, thus
improving convergence with respect to the space variability
representation solely via the integrated form present in the
algebraic eigenvalue problem coefficients. Third, an algebraic
transformation is presented that allows for the incorporation of
convective operators into a generalized diffusion operator
with more complex space dependence, thus permitting the
convective effects to be directly influent on the eigenfunctions
spatial behaviour and also reducing the importance of convec-
tion in the source terms. Fourth, a very promising variant is
illustrated, through consideration of any nonlinear operator
coefficient in the boundary conditions directly into the eigen-
value problem formulation. This approach allows for an opti-
mum convergence rate at the nonlinear boundaries, which
would otherwise markedly penalize convergence in the form
of a boundary source term only accounted for by the trans-
formed source that results from the 2nd Green’s identity. In
this case, the nonlinear eigenfunction will inherently be both
space and time dependent, thus sharing with the transformed
potentials the response to the nonlinear effects. All such ideas
have a direct effect on both accuracy and convergence rates,
while opening new perspectives for extension of the hybrid
methodology.
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3.1 Single domain formulation strategy

Consider the general parabolic formulation from Eqs. (1), de-
fined in a multiregion configuration that is formed by
nV different sub-regions of volumes Vl, l = 1, 2,…, nV, with
potential and flux continuity at the interfaces, as illustrated
in Fig. 1a [12]. We consider that a certain number of potentials
are to be calculated in each sub-region, Tk, l(x, t), k = 1, 2,…,
n, governed by the corresponding equation and boundary
source terms, respectively, gk, l(x, t,T) and ϕk, l(x, t,T). Here,
for conciseness, the nonlinear equation source term, gk, l(x, t,
T), already incorporates the nonlinear convective term of Eq.
(1a), in the form:

wk;l xð Þ ∂Tk;l x; tð Þ
∂t

¼ ∇⋅ Kk;l xð Þ∇Tk;l x; tð Þ	 

−dk;l xð ÞTk;l x; tð Þ þ gk;l x; t;Tð Þ;

x∈Vl; t > 0; k ¼ 1; 2;…; n; l ¼ 1; 2;…; nV

ð11aÞ
with initial, interface and boundary conditions given, respec-
tively, by

Tk;l x; 0ð Þ ¼ f k;l xð Þ; x∈Vl ð11bÞ
Tk;l x; tð Þ ¼ Tk;m x; tð Þ; x∈Sl;m; t > 0 ð11cÞ

Kk;l xð Þ ∂Tk;l x; tð Þ
∂n

¼ Kk;m xð Þ ∂Tk;m x; tð Þ
∂n

; x∈Sl;m; t > 0 ð11dÞ

αk;l xð Þ þ βk;l xð ÞKk;l xð Þ ∂
∂n

� �
Tk;l x; tð Þ ¼ ϕk;l x; t;Tð Þ; x∈Sl; t > 0

ð11eÞ

where n denotes the outward-drawn normal to the interfaces
among the sub-regions,Sl,m, and to the external surfaces, Sl.

The traditional formalism on the GITT [6–14] would then
involve the proposition of a multiregion eigenfunction expan-
sion basis for the integral transform solution of Eqs. (11),
based on the so called Class II problems in the classification
of ref. [5], which would involve a cumbersome eigenvalue
problem. Alternatively, the integral transformation process
could be undertaken in each sub-region individually, and then
coupled through the transformed interface conditions, which
would lead to a large number of transformed potentials equa-
tions and certainly require convergence acceleration tech-
niques, such as the integral balance procedure. The idea in
the single domain formulation is to avoid either approach,
and proceed to interpret problem (11) as one single
convection-diffusion problemwritten for a heterogeneous me-
dia [29]. This alternative has been recently proposed, in the
context of conjugated heat transfer problems [15–21], when
fluid and solid regions were treated as a heterogeneous single
medium, after defining space variable coefficients for the
whole domain, that account for the abrupt variations of
thermophysical properties and other coefficients, through the
solid-fluid transitions. Figure 1 provides two possibilities for
representation of the single domain, either by keeping the
external borders of the original overall domain, after definition
of the space variable coefficients, as shown in Fig. 1b, or, if
desired, by considering a regular overall domain contour that
envelopes the original one, as shown in Fig. 1c. Irregular
domains can be directly integral transformed [7, 11] for a
general region Vand, in principle, there is no need to consider

Fig. 1 aDiffusion or convection-diffusion in a complex multidimensional configuration with nV sub-regions; (b) Single domain representation keeping
the original overall domain; (c) Single domain representation considering a regular overall domain enveloping original one
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the second representation possibility pointed out above, ex-
cept for simplifying the corresponding volume integrals in
determining the transformed system coefficients.

Therefore, one may rewrite problem (11) as a single do-
main formulation with space variable coefficients in the asso-
ciated operators and source terms, in the form:

wk xð Þ ∂Tk x; tð Þ
∂t

¼ ∇⋅ Kk xð Þ∇Tk x; tð Þð Þ−dk xð ÞTk x; tð Þ

þ gk x; t;Tð Þ; x∈V ; t > 0

ð12aÞ

with initial and boundary conditions given, respectively, by

Tk x; 0ð Þ ¼ f k xð Þ; x∈V ð12bÞ

αk xð Þ þ βk xð ÞKk xð Þ ∂
∂n

� �
Tk x; tð Þ ¼ ϕk x; t;Tð Þ; x∈S; t > 0 ð12cÞ

where.

V ¼ ∑
l¼1

nV

Vl; S ¼ ∑
l¼1

nV

Sl ð12d; eÞ

The space variable coefficients and source terms in Eqs.
(12), after dropping the subscript l for the sub-regions Vl, are
then responsible for the transitions among the different sub-
regions and permit the representation of system (11) as a sin-
gle domain formulation, to be directly handled by integral
transforms as described in Section 2. As desired, this variant
incorporates into the proposed eigenvalue problem all the spa-
tial variability inherent to the multiregion or multi-materials
physical situation.

3.2 Integral balance approach for eigenvalue problems

The GITT approach can be itself employed in the hybrid
numerical-analytical solution of this eigenvalue problem, as
discussed in [6, 12], after choosing an auxiliary eigenvalue

problem with simpler structure, defined by the coefficients ŵk

xð Þ; k̂k xð Þ; and d̂k xð Þ; which should allow for an analytical
solution. The solution of problem (2) is then itself proposed
as an eigenfunction expansion:

�ψki;n ¼ ∫
V
ŵk xð Þ ψki xð Þ ~Ω ∼kn xð ÞdV ; transf orm ð13aÞ

ψki xð Þ ¼ ∑
∞

n¼1

~Ωkn xð Þψki;n; inverse ð13bÞ

where the normalized auxiliary eigenfunction and its norm are
given by

~Ω ∼kn xð Þ ¼ Ωkn xð Þffiffiffiffiffiffiffiffiffiffi
NΩkn

p ;with NΩkn

¼ ∫
V
ŵk xð ÞΩ2

kn xð ÞdV ð13c; dÞ

The simpler auxiliary eigenvalue problem is written as:

∇:k̂k xð Þ∇Ωkn xð Þ þ λ2
knŵk xð Þ−d̂k xð Þ

� �
Ωkn xð Þ

¼ 0; x∈V ð14aÞ
with boundary conditions

αk xð ÞΩkn xð Þ þ βk xð Þk̂k xð Þ ∂Ωkn xð Þ
∂n

¼ 0; x∈S ð14bÞ

Equation (2a) is then operated on with ∫V ~Ωki xð Þ ⋅ð ÞdV , to
yield the transformed algebraic systems:

Ak þ Ckð Þ ψk

n o
¼ μ2

k Bk ψk

n o
ð15aÞ

with the elements of the M x M matrices given by [12]:

Ak;i j ¼
Z
S

~Ω ∼ki xð Þ−k̂k xð Þ ∂ ~Ω ∼ki xð Þ
∂n

αk xð Þ þ βk xð Þ βk xð Þ kk xð Þ−k̂k xð Þ
� � ∂ ~Ω ∼k j xð Þ

∂n

" #

dS−
Z
S

kk xð Þ−k̂k xð Þ
� �

~Ω ∼ki xð Þ ∂
~Ω ∼k j xð Þ
∂n

dSþ

þ
Z
V

kk xð Þ−k̂k xð Þ
� �

∇ ~Ω ∼ki xð Þ⋅∇ ~Ω ∼k j xð ÞdV þ
Z
V

dk xð Þ−d̂k xð Þ
� �

~Ω ∼ki xð Þ ~Ω ∼k j xð ÞdV

ð15bÞ
Ck;ij ¼ λ2

kiδij Bk;ij ¼ ∫
V
wk xð Þ~Ωki xð Þ~Ωkj xð ÞdV ð15c; dÞ

where δij is the Kronecker delta.
Therefore, the eigenvalue problem given by Eqs. (2) is

reduced to the standard algebraic eigenvalue problems given
by Eqs. (15), which can be solved with existing software for
matrix eigensystem analysis, yielding the eigenvalues μk,
whereas the corresponding calculated eigenvectors from this

numerical solution, ψki, feed the inversion formula, Eq. (13b),
to yield the original eigenfunctions.

However, when dealing with the GITT solution of this ei-
genvalue problem with variable spatial coefficients, it is not
always possible to find an auxiliary eigenvalue problem with
analytical solution, that incorporates, even partitally, this spa-
tial information, since it may result unsolvable in analytical
explicit form. Therefore, in many cases it is required to choose

fairly simple expressions for the auxiliary coefficients, ŵk xð Þ
; k̂k xð Þ; and d̂k xð Þ; which due to their lack of information
from the original problem spatial behaviour, may lead to slow-
ly converging expansions for the original eigenfunctions. This
is particularly relevant when multiple spatial scales and/or
very abrupt variations of the coefficients need to be handled.
In such cases, an integral balance procedure [21, 22] can be
particularly beneficial in accelerating the convergence of such
eigenfunction expansions by analytically manipulating the ei-
genvalue problem formulation, thus rewriting the expansion
so as to explicitly account for the local variations of the space
variable coefficients.
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The integral balance procedure is a convergence accelera-
tion technique [9] here aimed at obtaining expansions of im-
proved convergence behaviour for both the eigenfunction and
its derivatives [21, 22], through integration of the eigenvalue
problem over the spatial domain, benefiting from the better
convergence characteristics of the integrals of eigenfunction
expansions. It consists of the double integration of the original
equation that governs the potential for which the convergence
improvement is being sought, in this case, the eigenvalue
problem itself. Through a single integration of the original
equation, in a chosen coordinate, an improved expression for
the eigenfunction derivative is obtained, and a second integra-
tion then offers an improved relation for computation of the
eigenfunction itself. Then, the problem boundary conditions
in that coordinate are accounted for, so that the eigenfunctions
and respective derivatives at the boundaries can be eliminated.
The analytical expressions provided by the integral balance
approach can then be employed back into the solution of the
eigenvalue problem (2), following the integral transformation
procedure above described, yielding an enhanced algebraic
eigenvalue problem which provides the eigenvalues and the
eigenvectors, to be substituted back in the inversion formula,
Eq. (13b). This approach is demonstrated in details in [21, 22],
and shall be here illustrated.

3.3 Convective eigenvalue problem

An interesting approach towards enhancing convergence of
eigenfunction expansions for convection-diffusion problems
with relevant convective effects, involves incorporating the
convective terms into the chosen eigenvalue problem that
forms the basis of the proposed eigenfunction expansion.
The aim is to improve convergence by directly accounting
for the relative importance of convective and diffusive effects
within the eigenfunctions themselves [23, 24], in contrast to
the traditional approach when a purely diffusive eigenvalue
problem is adopted and the convection terms are incorporated
in full within the source terms, as presented above. Through a
straightforward transformation of the original convection-
diffusion problem, basically by redefining the coefficients as-
sociated with the transient and diffusive terms, the convective
terms are merged into a generalized diffusion term with a
space variable diffusion coefficient. The generalized diffusion
problem then naturally leads to the eigenvalue problem to be
adopted for deriving the eigenfunction expansion in the linear
situation, as well as for the appropriate linearized version in
the case of a nonlinear application. The resulting eigenvalue
problem with space variable coefficients is then solved
through the GITT, yielding the corresponding algebraic eigen-
value problem upon selection of a simple auxiliary eigenvalue
problem of known analytical solution, such as discussed in the
previous section. The GITT is also applied in the solution of
the generalized diffusion problem, and the resulting

transformed ordinary differential equations system is solved
either analytically, for the linear case, or numerically for the
nonlinear formulation.

This approach is here briefly illustrated by considering Eq.
(1a) for a nonlinear parabolic problem and, for conciseness,
dropping the subscript k for the potential:

w xð Þ ∂T x; tð Þ
∂t

þ u xð Þ:∇T x; tð Þ

¼ ∇: k xð Þ∇T x; tð Þ½ �−d xð ÞT x; tð Þþg x; t; Tð Þ; x∈V ; t > 0

ð16aÞ
where u(x) is a characteristic linear representation of the con-
vective term coefficient, while the remaining of the nonlinear
convective operator (or of any other operator) is incorporated
into the nonlinear source term, g(x, t, T), as previously
discussed. Equation (16a) can be readily rewritten as a gener-
alized diffusion problem, through a simple transformation of
the diffusive and transient terms. The first step in this trans-
formation is to expand the diffusive term in Eq. (16a), to yield:

w xð Þ ∂T x; tð Þ
∂t

þ u xð Þ:∇T x; tð Þ

¼ k xð Þ∇2T x; tð Þ þ ∇k xð Þ:∇T x; tð Þ−d xð ÞT x; tð Þ
þ g x; t; Tð Þ ð16bÞ

Next, Eq. (16b) is divided through by k(x) and the convec-
tive term is modified to incorporate the second portion of the
diffusion operator, as:

w* xð Þ ∂T x; tð Þ
∂t

þ u* xð Þ:∇T x; tð Þ

¼ ∇2T x; tð Þ−d* xð ÞT x; tð Þ þ g* x; t; Tð Þ ð16cÞ

where,

w* xð Þ ¼ w xð Þ=k xð Þ; d* xð Þ
¼ d xð Þ=k xð Þ; g* x; t; Tð Þ
¼ g x; t; Tð Þ=k xð Þ; u* xð Þ

¼ 1

k xð Þ u xð Þ−∇k xð Þ½ �; ð16d� f Þ

The modified convective term coefficient vector u∗ can be
represented in the three-dimensional situation by the three

components u*x xð Þ; u*y xð Þ; u*z xð Þ
n o

, in the Cartesian coordi-

nates systemwith x = {x, y, z}, and by defining the exponential
transformation coefficients as:

k̂̂x xð Þ ¼ e−∫u
*
x xð Þdx; k̂̂y xð Þ ¼ e−∫u

*
y xð Þdy; k̂̂z xð Þ ¼ e−∫u

*
z xð Þdz ð17a� cÞ

then the generalized diffusion equation is given as
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ŵ̂ xð Þ ∂T x; tð Þ
∂t

¼ k̂̂y xð Þk̂̂z xð Þ ∂
∂x

k̂̂x xð Þ ∂T x; tð Þ
∂x

� �

þ k̂̂x xð Þk̂̂z xð Þ ∂
∂y

k̂̂y xð Þ ∂T x; tð Þ
∂y

� �
þ

þ k̂̂x xð Þk̂̂y xð Þ ∂
∂z

k̂̂z xð Þ ∂T x; tð Þ
∂z

� �
−d̂̂ xð ÞT x; tð Þ

þ ĝ̂ x; t; Tð Þ; x∈V ; t > 0

ð17dÞ

where

k̂̂ xð Þ ¼ k̂̂x xð Þk̂̂y xð Þk̂̂z xð Þ; ŵ̂ xð Þ ¼ w* xð Þ k̂̂ xð Þ; d̂̂ xð Þ
¼ d* xð Þ k̂̂ xð Þ; ĝ̂ x; t; Tð Þ ¼ g* x; t; Tð Þ k̂̂ xð Þ ð17e� hÞ

Separation of Variables as applied to the homogeneous
version of Eq. (17d), leads to a non-self-adjoint eigenvalue
problem, hence the eigenfunctions are not a priori orthog-
onal and the classical integral transformation approach is
not directly applicable in the form previously presented.
However, the Generalized Integral Transform Technique
(GITT) [6–14] can still be employed with an appropriate
choice of a self-adjoint eigenvalue problem for the
eigenfunction expansion basis. When the transformed dif-
fusion coefficients are functions of only the corresponding

space coordinate, or k̂x xð Þ ¼ k̂x xð Þ; k̂y xð Þ ¼ k̂y yð Þ; k̂z xð Þ ¼
k̂z zð Þ; with the consequent restrictions on the choices of the
characteristic linear coefficients k(x) and u(x), a generalized
diffusion formulation is constructed which leads to a self-
adjoint eigenvalue problem, given in such special case by:

ŵ̂ xð Þ ∂T x; tð Þ
∂t

¼ ∇: k̂̂ xð Þ∇T x; tð Þ
h i

−d̂̂ xð ÞT x; tð Þ þ ĝ̂ x; t; Tð Þ; x∈V ; t > 0

ð18aÞ

where

k̂̂ xð Þ ¼ k̂̂x xð Þk̂̂y yð Þk̂̂z zð Þ ð18bÞ

and the corresponding self-adjoint eigenvalue problem is
written as

∇: k̂̂ xð Þ∇ψ xð Þ
h i

þ μ2ŵ̂ xð Þ−d̂̂ xð Þ
h i

ψ xð Þ ¼ 0; x∈V ð19Þ

which can be directly solved by the GITT itself, as
discussed above. Equation (19) incorporates relevant infor-
mation on the convective effects, as specified in the chosen
linear convective term coefficients that undergo the expo-
nential transformation, which provide a convergence en-
hancement effect in the integral transform solution.

3.4 Nonlinear eigenvalue problem

A whole new frontier for the GITT methodology has been
recently envisioned [25], when eigenfunction expansions
based on nonlinear eigenvalue problems, that incorporate the
original nonlinear equation and boundary condition coeffi-
cients, have been proposed. The aim is to achieve improved
convergence behaviour, in comparison to the classical ap-
proach with a linear eigenvalue problem, here in particular
for problems with nonlinear boundary conditions. For the sake
of illustration, the nonlinear single potential parabolic version
of problem (1) is considered, already with the nonlinear con-
vective term merged into the equation source term, but with-
out merging the nonlinear boundary condition coefficients
information into the nonlinear source terms, as previously
preferred:

w xð Þ ∂T x; tð Þ
∂t

¼ ∇:k xð Þ∇T−d xð ÞT þ g x; t;Tð Þ ; in x∈V ; t > 0

ð20aÞ
with initial and boundary conditions

T x; 0ð Þ ¼ f xð Þ; x∈V ð20bÞ
α x; t; Tð Þ T þ β x; t; Tð Þ k xð Þ ∂T

∂n
¼ ϕ x; t; Tð Þ; x∈S; t > 0 ð20cÞ

where α and β are the nonlinear boundary condition coeffi-
cients and n is the outward drawn normal vector to surface S.
All the boundary condition coefficients and source terms are
allowed to be nonlinear, besides being explicitly dependent
also on the space and time variables for the sake of generality.

Here, it suffices to proceed with the formal integral trans-
form solution for the non-filtered potential. Taking a different
path from the usual formalism in the GITT, as presented in
Section 2, a nonlinear eigenvalue problem that preserves the
original boundary condition coefficients is preferred, instead
of the one with linear characteristic coefficients, as in Eqs. (2),
in the form:

∇:k xð Þ∇ψi x; tð Þ þ μ2
i tð Þw xð Þ−d xð Þ� �

ψi x; tð Þ ¼ 0; x∈V ð21aÞ

with boundary conditions

α x; t; Tð Þψi x; tð Þ þ β x; t; Tð Þk xð Þ ∂ψi x; tð Þ
∂n

¼ 0; x∈S ð21bÞ

and the solution for the associated t-dependent eigenfunctions,
ψi(x; t), and eigenvalues, μi(t), is at this point assumed to be
known.

Problem (21) allows for the definition of the following
integral transform pair:

Ti tð Þ ¼ ∫Vw xð Þ ψi x; tð ÞΤ x; tð Þ dV ; transform ð22aÞ
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Τ x; tð Þ ¼ ∑
∞

i¼1

1

Ni tð Þ ψi x; tð ÞTi tð Þ; inverse ð22bÞ

and the normalization integrals

Ni tð Þ ¼ ∫Vw xð Þψ2
i x; tð Þ dV ð22cÞ

After application of the integral transformation procedure,
the resulting ODE system for the transformed potentials,

Ti tð Þ, is written as:

dTi tð Þ
dt

þ ∑
∞

j¼1
Ai; j t;T
� �

T j tð Þ ¼ gi t;T
� �

; t > 0; i; j ¼ 1; 2…

ð23aÞ
with initial conditions

Ti 0ð Þ ¼ f i ð23bÞ
where,

Ai; j t; �Tð Þ ¼ δi jμ
2
i tð Þ þ A*

i; j t; �Tð Þ ð23cÞ

and

A*
i; j t;T
� �

¼ −
1

N j tð Þ ∫Vw xð Þ ∂
∂t

ψi x; tð Þ½ �ψ j x; tð Þ dV ð23dÞ

gi t;T
� �

¼ ∫Vψi x; tð Þg x; t; Tð Þ dV

þ ∫Sϕ x; t; Tð Þ
ψi x; tð Þ−k xð Þ ∂ψi

∂n
α x; t; Tð Þ þ β x; t; Tð Þ

0
B@

1
CA dS

ð23eÞ
f i ¼ ∫Vw xð Þ ψi x; 0ð Þ f xð Þ dV ð23f Þ

The nonlinear coupling coefficients, A*
i; j t;T
	 


, can be al-

ternatively written in terms of surface integrals by manipulat-
ing the eigenvalue problem (21a,b) for two arbitrary orders i
and j, to yield:

A*
i; j t;T
� �

¼ −
1

N j tð Þ
1

μ2
i −μ2

j
∫Sk xð Þ ∂ψi x; tð Þ

∂t
∂ψ j x; tð Þ

∂n
−
∂2ψi x; tð Þ
∂n∂t

ψ j x; tð Þ
� �

ds

( )

ð23gÞ

and the limit of μj→ μi needs to be taken so as to evaluate

A*
i;i t;T
	 


, in the form

A*
i;i t;T
� �

¼ −
1

Ni tð Þ
1

2μi
∫Sk xð Þ ∂2ψ x; tð Þ

∂μ∂t μi

�� ∂ψi x; tð Þ
∂n

−
∂3ψ x; tð Þ
∂μ∂n∂t μi

�� ψi x; tð Þ
� �

ds
� 

ð23hÞ

System (23) can be numerically solved through well-
established initial value problem solvers [27]. It should be
recalled that the eigenvalue problem in Eqs. (21) has now to
be solved simultaneously with the transformed system given
by Eqs. (23), yielding the time variable eigenfunctions, eigen-
values and norms, as is further discussed in [25, 26]. The
desired final solution is then reconstructed from the inverse
formula, Eq. (22b). The GITT itself may be employed in the
solution of the nonlinear eigenvalue problem, Eqs. (21). The
basic idea is to reduce the eigenvalue problem described by
the partial differential equation into a nonlinear algebraic ei-
genvalue problem, which can be solved in combination with
the transformed system (23), forming a differential-algebraic
system, also solvable through the Mathematica system [27].

4 Applications and results

The developments above discussed are now illustrated
through applications dealt with via GITT. The first one is
associated with conjugated heat transfer in a non-straight
microchannel configuration, which demonstrates both the sin-
gle domain reformulation strategy as well as the comparison
of different reordering schemes on the expansions conver-
gence behaviour. The second application deals with conjugat-
ed heat transfer in a microchannel within the slip flow regime,
representing a formulation with multiscale spatial variation of
thermophysical properties, which benefits from the integral
balance approach for convergence enhancement. The third
selected problem deals with a two-dimensional Burgers equa-
tion classical test case, that allows for the demonstration of the
convergence enhancement achievable by the convective ei-
genvalue problem variant. Finally, the fourth application is
related to mass transfer in polymeric membranes for metal
extraction, which offers a typical formulation with nonlinear
boundary conditions, when the consideration of a nonlinear
eigenvalue problem leads tomarkedly improved computation-
al performance.

4.1 Conjugated heat transfer in corrugated microchannel

This example is aimed at illustrating the combination of the
single domain formulation with the Generalized Integral
Transform Technique in tackling conjugated heat transfer
problems in arbitrarily shaped channels and substrates
[16–18, 20]. As an illustration, a two-dimensional corrugated
microchannel on a rectangular substrate is considered, as
depicted in Fig. 2, undergoing a transient heat transfer process.
The channel substrate participates on the heat transfer process
through both transversal and longitudinal heat conduction.
The single domain dimensionless energy equation can bewrit-
ten as [20]:
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W X ;Yð Þ ∂θ X ;Y ; tð Þ
∂t

þ U X ; Yð ÞW X ; Yð Þ ∂θ X ;Y ; tð Þ
∂X

þ PeV X ;Yð ÞW X ;Yð Þ ∂θ X ;Y ; tð Þ
∂Y

¼

¼ 1

Pe2
∂
∂X

K X ; Yð Þ ∂θ X ;Y ; tð Þ
∂X

� �
þ ∂

∂Y
K X ;Yð Þ ∂θ X ;Y ; tð Þ

∂Y

� �

ð24aÞ

with initial and boundary conditions:

θ X ; Y ; 0ð Þ ¼ 0; θ 0; Y ; tð Þ ¼ 0; θ X ; Ly; t
	 


¼ 1;
∂θ Lx; Y ; tð Þ

∂X
¼ 0;

∂θ X ; 0; tð Þ
∂Y

¼ 0 ð24b� f Þ

In this formulation, the spatially varying coefficients U(X,
Y), V(X, Y), W(X, Y) and K(X, Y) are responsible for incorpo-
rating the two physical domains (solid and fluid stream) into
the single domain model given by Eq. (24a), with abrupt tran-
sitions at the interfaces. Besides the assumption of constant
physical properties, the inertia terms are disregarded in the
flow problem, and the velocity components are computed
from the mass balance, starting with a fully developed para-
bolic profile at the entrance.

Following the formal solution procedure described in
Section 2, first a filter is proposed, based on the steady state
two-dimensional heat conduction equation, yielding homoge-
neous boundary conditions in both space coordinates in the
filtered problem. In this test case, both eigenvalue problems,
with constant and variable coefficients, were considered for
comparison purposes.

In order to illustrate some numerical results for conjugated
heat transfer in arbitrarily shaped microchannels, the working
fluid was taken as water (cp, f = 4.11 × 106 J/m3K and kf =
0.62 W/mK) and the substrate as acrylic (cp, s = 1.75 × 106 J/
m3K and ks = 0.19 W/mK), with Pe = 0.25. Tables 1 and 2
present the eigenfunction expansion convergence behavior for
the calculated steady state temperature field at some selected
points in both the solid and fluid regions, with truncation
orders from N = 50 up to 400. A convergence to four signif-
icant digits for a truncation order of N < 400 is here demon-
strated in the region under analysis. For comparison purposes,
the same problem has also been numerically solved via the
Finite ElementMethod, employing the commercial CFD solv-
er COMSOL Multiphysics, and the results are shown in the
last rows of Tables 1 and 2, showing an agreement of at least
two significant digits in comparison with the converged GITT
solution with N = 400, with relative deviations below 1%.
Automatic mesh generation (Bphysics-controlled mesh^) was
adopted in the COMSOL simulations, with an element size
configuration in the Bextremely fine^ option.

In order to illustrate the solution behavior throughout the
domain, Fig. 3 depicts the calculated steady state temperature
field in the corrugated microchannel and substrate. One can
clearly notice the effects of the internal convection occurring
due to the fluid stream inside the microchannel, distorting the
isotherms in the substrate region. The results clearly illustrate
that the effects of the conjugated heat transfer are fully cap-
tured by the single domain formulation approach.

It is also performed a convergence analysis considering
two different reordering schemes to achieve a single sum rep-
resentation for the inverse formula, namely the traditional
scheme through the sum of the squared eigenvalues, and a
more elaborate one, considering the most important elements
appearing in the diagonal of the coefficients matrix of the
transformed problem. In this analysis, a sufficiently large
number of diagonal elements of this matrix were calculated
and sorted in ascending order, and the first four hundred terms
were used for the comparative calculation. It is possible to
observe in Fig. 4a,b that a slightly better convergence rate is
obtained with the second reordering scheme, which accounts
for more information from the non-transformed convective
terms in the original formulation.

4.2 Conjugated heat transfer in microchannels with slip
flow

The application here considered aims at illustrating both the
single domain reformulation strategy and the integral balance
approach for eigenvalue problems discussed above. The prob-
lem considered involves incompressible gas flow in a parallel-
plates microchannel, supposed to be within the slip flow re-
gime, assuming a fully developed velocity profile at the inlet
[21], as schematically presented in Fig. 5.

Consider the following dimensionless groups:

Z ¼ z=Le
RePr

¼ z
LePe

; Y ¼ y
Le

; U ¼ u
uav

; θ* ¼ T−Tw

Tin−Tw
;Re ¼ uavLe

ν f
; Pr ¼ ν f

α f
;

Pe ¼ RePr ¼ uavLe
α f

;Kn ¼ λ
2Lf

; βt ¼
2−αtð Þ
αt

2γ
γ þ 1ð Þ

1

Pr
; βv ¼

2−αm

αm

ð25a� jÞ
where λ is the molecular mean free path, γ is the specific heat
ratio γ = cp/cv, αt is the thermal accommodation coefficient,
αm is the tangential momentum accommodation coefficient, βt
is the wall temperature jump coefficient and βv is the wall
velocity slip coefficient.

The dimensionless fully developed velocity profile is given
by [28]:

U f Yð Þ ¼ 6Knβv þ 3 1−Y 2
	 


=2

1þ 6Knβv
ð26Þ

The conjugated heat transfer problem under consideration
(conduction – internal convection) can be written as a single
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domain formulation with space variable coefficients, as
discussed in Section 2:

U Yð Þ ∂θ
* Y ;Zð Þ
∂Z

¼ ∂
∂Y

K Yð Þ ∂θ
*

∂Y

� �
; 0 < Y < 1þ Lfic; Z > 0 ð27aÞ

θ* Y ; 0ð Þ ¼ 1; 0≤Y ≤1þ Lfic ð27bÞ
∂θ*

∂Y

����
Y¼0

¼ 0; θ* 1þ Lfic; Z
	 
 ¼ 0; Z > 0 ð27c; dÞ

where:

U Yð Þ ¼ U f Yð Þ; if 0 < Y < Y i

0; if Y i < Y < 1þ Lfic

�
ð27eÞ

K Yð Þ ¼
1; if 0 < Y < Y i

Kfic; if Y i < Y < Y i þ Lfic
ks=k f ; if Y i þ Lfic < Y < 1þ Lfic

8<
: ð27f Þ

From the definition of problem (27), with the space vari-
able coefficients considered, it is clear that a fictitious layer
(with thickness Lfic and dimensionless thermal conductivity
Kfic) was artificially inserted in-between the two original do-
mains of the problem (fluid region and channel wall). This

fictitious layer is responsible for the simulation of the temper-
ature jump condition in this single domain formulation. The
values of Lfic and Kfic are arbitrarily chosen in such a way that
the following relation is satisfied:

Lfic
Kfic

¼ 2Knβt ð28Þ

It should be highlighted that axial diffusion effects could be
readily dealt with this methodology, but it is here intentionally
neglected in such a way that an exact analytical solution is
available for this problem [21], as it shall be used as bench-
mark for the analysis of the results.

The solution of problem (27) can be achieved with the
proposition of the following eigenvalue problem, including
all the information concerning the transition of the sub-do-
mains, as represented in the space variable coefficients K(Y)
and U(Y):

d
dY

K Yð Þ dψi Yð Þ
dY

� �
þ μi

2U Yð Þψi Yð Þ ¼ 0 ð29aÞ

Fig. 2 Conjugated heat transfer for corrugated microchannel in rectangular substrate

Table 1 Convergence of the GITTsolution for steady state temperature
in conjugated problem (X = 1, Pe = 0.25)

X = 0.1 Y = 0.1 Y = 0.4 Y = 0.7

N = 50 0.16364 0.19294 0.40148

N = 120 0.16363 0.19294 0.40166

N = 190 0.16370 0.19295 0.40163

N = 260 0.16378 0.19303 0.40167

N = 330 0.16372 0.19309 0.40164

N = 400 0.16371 0.19308 0.40166

COMSOL 0.16433 0.19343 0.40248

Relative Deviation 0.38% 0.18% 0.20%

Table 2 Convergence of the GITTsolution for steady state temperature
in conjugated problem (X = 5, Pe = 0.25)

X = 0.25 Y = 0.1 Y = 0.4 Y = 0.7

N = 50 0.65299 0.68514 0.82262

N = 120 0.65296 0.68469 0.82268

N = 190 0.65286 0.68479 0.82282

N = 260 0.65287 0.68486 0.82281

N = 330 0.65298 0.68496 0.82277

N = 400 0.65294 0.68503 0.82274

COMSOL 0.65096 0.68343 0.82339

Relative Deviation 0.30% 0.23% 0.08%
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dψi

dY

����
Y¼0

¼ 0 ψi 1þ Lfic
	 
 ¼ 0 ð29b; cÞ

Problem (29) does not allow for a closed form solution, but
the GITT formalism can be used in order to provide a hybrid
numerical-analytical solution, in which Eq. (29a) is integral
transformed based on a simpler auxiliary eigenvalue problem.
This procedure leads to an algebraic eigenvalue problem,
which can be numerically solved after truncation to a suffi-
ciently large finite order [29].

This procedure can be further improved with the integral
balance approach for eigenvalue problems [22], previously
discussed. Indeed, the main goal of this example is to illustrate
this feature as applied to the solution of problem (29), dem-
onstrating the remarkable convergence gains that can be
achieved.

Either via the traditional path or via the integral balance
approach for eigenvalue problems, once the solution of prob-
lem (29) is made available, problem (27) becomes completely
transformable, and the analytical solution can be written as:

θ* Y ; Zð Þ ¼ ∑
N

i¼1
θ
*

0;iexp −μ2
i Z

	 

~ψi Yð Þ ð30aÞ

where the inlet condition is transformed as

θ
*

0;i ¼ ∫
1þLfic

0
U Yð Þ~ψi Yð Þθ* Y ; 0ð ÞdY ð30bÞ

The final temperature distribution in the original domain
can then be readily obtained by simply omitting the fictitious
layer from the solution:

θ Y ; Zð Þ ¼ θ* Y ; Zð Þ; if 0≤Y ≤Y i

θ* Y þ Lfic; Z
	 


; if Y > Y i

�
ð31Þ

The application of the integral balance approach to prob-
lem (29), as performed following the general straightforward
procedure described in [22], leads to the following improved
recursive expressions for the eigenfunctions and their deriva-
tives:

ψ Yð Þ ¼ μ2 ∫
1þLic

Y

1

K Y
0	 
 ∫

Y 0

0
U Y

0 0
� �

ψ Y
0 0

� �
dY

0 0
" #

dY
0 ð32aÞ

dψ Yð Þ
dY

¼ −
μ2

K Yð Þ ∫
Y

0
U Y

0
� �

ψ Y
0

� �
dY

0 ð32bÞ

Writing ψi(Y) as eigenfunction expansions, we have:

ψi Yð Þ ¼ ∑
∞

n¼1

~Ωn Yð Þψi;n inverse ð33aÞ

ψi;n ¼ ∫
1þLfic

0
ψi Yð Þ~Ωn Yð ÞdY ; transform ð33bÞ

where.

~Ωn Yð Þ ¼ Ωn Yð Þ
N1=2

Ωn

;with NΩn ¼ ∫
1þLfic

0
Ω2

n Yð ÞdY ð34a; bÞ

with the eigenfunctions Ωn(Y) obtained from a simpler eigen-
value problem, with closed form solution. The simplest
choice, here employed, is:

Fig. 3 GITT solution for the steady state temperature in both liquid and
solid regions of the microsystem

Fig. 4 Temperature convergence behaviour at (a) (X,Y) = (1, 0.5) and (b) (X,Y) = (15, 0.5). Dashed line: squared eigenvalues reordering; Solid line:
coefficients matrix diagonal reordering
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d2Ωn Yð Þ
dY 2 þ λn

2Ωn Yð Þ ¼ 0 ð35aÞ

dΩn

dY

����
Y¼0

¼ 0; Ωn 1þ Lfic
	 
 ¼ 0 ð35b; cÞ

Employing the inversion formula, Eq. (33a), substituting
the original eigenfunctions on the rhs of Eqs. (32a,b) yields:

ψi Yð Þ ¼ μ2
i ∑

n
ψi;nIBn Yð Þ ð36aÞ

dψi Yð Þ
dY

¼ −
μ2
i

K Yð Þ ∑n ψi;nIAn Yð Þ ð36bÞ

with:

IAn Yð Þ ¼ ∫
Y

0
U Y

0
� �

~Ωn Y
0

� �
dY

0
; IBn Yð Þ ¼ ∫

1þLic

Y

1

K Yð Þ IAn Y
0

� �
dY

0

ð36c; cÞ
The integral transformation of problem (29) is achieved by
operating on Eq. (29a) with ∫1þLfic

0
~Ωm Yð Þ ⋅ð ÞdY , yielding:

− ∫
1þLfic

0
K Yð Þ dψi Yð Þ

dY
d ~Ωm Yð Þ

dY
dY þ μ2

i ∫
1þLfic

0
U Yð Þψi Yð Þ ~Ωm Yð ÞdY ¼ 0

ð37Þ

Substituting the expressions given by Eqs. (36a,b) into Eq.
(37) and truncating the expansions to a finite order M, yields
the following algebraic eigenvalue problem:

A−μi
2B

	 

ψi ¼ 0 ð38aÞ

with.

An:m ¼ ∫
1þLic

0
IAn Yð Þ d

~Ωm Yð Þ
dY

dY ; Bn;m ¼ − ∫
1þLfic

0
U Yð ÞIBn Yð Þ ~Ωm Yð ÞdY

ð38b; cÞ

Problem (38a) can be numerically solved, providing results

for the eigenvalues μ2
i and the eigenvectors ψi, which can

then be employed in Eqs. (36a,b), providing the solutions
for the desired eigenfunctions and their derivatives.

In order to illustrate the remarkable convergence enhance-
ment that is achieved, the results so obtained are compared
against those calculated with the traditional GITT solution of
the eigenvalue problem. For the numerical results, the dimen-
sionless thermal conductivity has been calculated motivated
by an application with a microchannel made of PMMA
(polymethyl methacrylate), with ks = 0.2 W/m°C, with air as
the working fluid (kf = 0.0271 W/m°C), so that ks/kf = 7.38.
The fluid region is considered from Y = 0 to Y = 0.5, whereas
from Y = 0.5 to Y = 1 it is considered the channel wall. The
remaining slip flow parameters were considered as βv = 1.5,
βt = 2.0, and Kn = 0.025. For the fictitious layer it has been
employed the dimensionless thickness value of Lfic = 0.05,
and the dimensionless thermal conductivity (Kfic) has been
obtained from Eq. (28).

Table 3 presents the convergence behaviour of the temper-
ature distribution considering a fixed truncation order ofN = 5
terms in Eq. (30a) and varying the truncation order of the
eigenvalue problem solution (M), here solved employing the
traditional GITT solution path [21]. One should observe that
in order to obtain accurate results, high truncation orders are
needed within the eigenvalue problem solution, such as
M = 300 terms, in order to achieve an agreement of two sig-
nificant digits with the exact solution. This slow convergence
behaviour takes place due to the multiscale nature of the space
variable coefficients present in the eigenvalue problem. It is
worth noting that the results are noticeably worse near the
interface (Y = 0.5), where the abrupt change in the space var-
iable coefficients takes place.

Table 4 presents the convergence behaviour of the temper-
ature distribution at the same positions, but now employing
the integral balance approach for the solution of the eigenval-
ue problem. In this convergence analysis, the truncation order
of the final expansion (N), in Eq. (30a), is varied, as well as the
truncation order of the eigenvalue problem solution (M). As it
can be clearly observed, a remarkable convergence enhance-
ment is achieved, leading to a full convergence of the five
significant digits presented with a truncation order as low as
M = 4, in full agreement with the exact solution employed as

Fig. 5 Schematic representation
of the conjugated heat transfer
problem in microchannel with
slip flow
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benchmark. One should also observe that, differently from the
traditional approach, the accuracy of the calculated solution is
not affected near the interface region (Y = 0.5).

4.3 Two-dimensional Burgers equations

The use of a convective eigenvalue problem in enhancing
convergence is here illustrated through a two-dimensional
Burgers equation, allowing for direct comparison against pre-
viously published results through the GITTwith a purely dif-
fusive eigenfunction basis [13]. The problem here considered
is written as [24]:

∂T x; y; tð Þ
∂t

þ Ux Tð Þ ∂T x; y; tð Þ
∂x

þ Uy Tð Þ ∂T x; y; tð Þ
∂y

¼ ∂2T x; y; tð Þ
∂x2

þ ∂2T x; y; tð Þ
∂y2

; 0 < x < 1; 0 < y < 1; t > 0

ð39aÞ

with initial and boundary conditions, and the non-linear func-
tions Ux(T) and Uy(T), given by:

T x; y; 0ð Þ ¼ 1; 0≤x≤1; 0≤y≤1 ð39bÞ
T 0; y; tð Þ ¼ 0; T 1; y; tð Þ ¼ 0; t > 0; T x; 0; tð Þ

¼ 0; T x; 1; tð Þ ¼ 0; t > 0 ð39c� f Þ
Ux Tð Þ ¼ u0 þ bxT ; Uy Tð Þ ¼ v0 þ byT ð39g; hÞ

From direct comparison against Eqs. (16–18), taking the
linear portion of the velocity coefficients to represent the char-
acteristic convective terms and transporting the remaining
terms to the nonlinear source term, the following coefficients
correspondence can be reached:

ux xð Þ ¼ u0; vx xð Þ ¼ v0; w xð Þ ¼ 1; k xð Þ ¼ 1;

d xð Þ ¼ 0; g x; t; Tð Þ ¼ − bxT
∂T
∂x

þ byT
∂T
∂y

� �

k̂̂x xð Þ ¼ e−u0x; k̂̂y xð Þ ¼ e−v0y; k̂̂ xð Þ ¼ k̂̂x xð Þk̂̂y yð Þ ¼ e− u0xþv0yð Þ

ŵ̂ xð Þ ¼ k̂̂ xð Þ; d̂̂ xð Þ ¼ 0; ĝ̂ x; t; Tð Þ ¼ g x; t; Tð Þ k̂̂ xð Þ;
ð40a� lÞ

The resulting transformed equation with the generalized
diffusion terms representation is then given by:

k̂̂ x; yð Þ ∂T x; y; tð Þ
∂t

¼ ∂
∂x

k̂̂ x; yð Þ ∂T
∂x

� �
þ ∂

∂y
k̂̂ x; yð Þ ∂T

∂y

� �

þ ĝ̂ x; y; t;Tð Þ; 0
< x < 1; 0 < y < 1; t > 0 ð41Þ

which leads to the following eigenvalue problem

∂
∂x

k̂̂ x; yð Þ ∂ψ
∂x

� �
þ ∂

∂y
k̂̂ x; yð Þ ∂ψ

∂y

� �
þ μ2 k̂̂ x; yð Þψ x; yð Þ

¼ 0; 0 < x < 1; 0 < y < 1 ð42aÞ

with boundary conditions

ψ 0; yð Þ ¼ 0;ψ 1; yð Þ ¼ 0; ψ x; 0ð Þ ¼ 0;ψ x; 1ð Þ ¼ 0; t > 0

ð42b� eÞ

This two-dimensional eigenvalue problem with space var-
iable coefficients is also readily solved by applying the GITT
itself, based on a simpler auxiliary eigenvalue problem. Also,
for the special case of a linear formulation, the problem is
readily solved in exact form, since the nonlinear source term
vanishes, yielding a decoupled transformed ODE system. The
traditional solution via a purely diffusive eigenvalue problem
[13] can be easily recovered, by adopting ux(x) = 0 and vx(x) =
0, and carrying the full convective terms to the source term,

i.e., g x; y; tð Þ ¼ − Ux Tð Þ ∂T x;y;tð Þ
∂x þ Uy Tð Þ ∂T x;y;tð Þ

∂x

h i
. Table 5

provides a convergence analysis for T(x,y,t) in the two-
dimensional Burgers equation, with bx = 0, by = 0 (linear
problem). The three sets of double columns correspond to
the values of the velocity coefficients u0 = 1, v0 = 1, u0 = 10,
v0 = 1, and u0 = 10, v0 = 10.

For this linear two-dimensional problem, a maximum trun-
cation order of N = 160 terms has been considered in the
solution of the generalized diffusive eigenvalue problem and
N < 160 in computing the potential expansion. The solution of
the eigenvalue problems, either for the convective or diffusive
basis, employs a reordering scheme based on the sum of the
squared eigenvalues of the auxiliary problem. The results in
Table 5 for the independent variables (x = 0.1, y = 0.1,
t = 0.01), confirm the excellent convergence behavior of the
expansions that follow the convective basis proposal, with
four converged significant digits at truncation orders as low
as N = 60 when employing the convective basis. The results
achieved by the diffusive basis are not even fully converged
for the largest truncation order here adopted, N = 160, and it is
noticeable that this solution presents an oscillatory behaviour
to reach convergence at the fourth significant digit. It can be
observed that since the velocity coefficients are accounted for
in the convective eigenvalue problems alternative, the conver-
gence behaviour is not noticeably affected by the increase in
their values, while the effect on the convergence rates of the
results with a diffusive basis can be clearly observed.

4.4 Metal separation by polymeric diffusive membranes

The nonlinear problem that will be here illustrated was pro-
posed in [30] and recently solved by GITT with a simplified
nonlinear eigenvalue problem [26]. Here, a more complete
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nonlinear eigenfunction expansion basis is adopted, based on
Laguerre polynomials that account for the circular tube geom-
etry. It consists of a separation process in a module of support-
ed liquid membranes. The analysis of the performance of the
separator is accomplished based on the study of only one
membrane, assuming that the others present similar behaviour.
A schematic diagram of the hollow fiber membrane is shown
in Fig. 6.

The mathematical model is obtained from the mass
conservation equations assuming fully developed one-
dimensional laminar flow of a Newtonian fluid containing
the solute to be separated. The fluid enters the separator

with known concentration C*
e and the separation process

starts at z = 0, where the fluid comes into contact with the
supported liquid membrane. The solute permeates through
the liquid membrane by diffusion and on the outside of
the fiber reacts instantaneously with the stripping solution,
so that its concentration is equal to zero. The distribution
coefficient H is a very important parameter of this mass
transfer process, and it is defined as equilibrium distribu-
tion ratio of the solute concentration in the liquid mem-
brane to the concentration in the fluid side. In this exam-
ple, the distribution coefficient will be considered as a

linear function of the concentration potential of solute in
the aqueous phase. The axial diffusion effect is neglected
compared to axial convection and radial diffusion. The
dimensionless mathematical model proposed in [26] is
given by:

U rð Þ ∂C r; zð Þ
∂z

¼ 1

r
∂
∂r

r
∂C r; zð Þ

∂r

� �
; 0 < r < 1; z > 0 ð43aÞ

C r; 0ð Þ ¼ 1; 0 < r < 1 ð43bÞ

∂C r; zð Þ
∂r

����
r¼0

¼ 0; z > 0 ð43cÞ

−
∂C r; zð Þ

∂r
j
r¼1

¼ Shw 1þ γC 1; zð Þð ÞC 1; zð Þ; z > 0 ð43dÞ

where

r ¼ r*

R
; C r; zð Þ ¼ C*

C*
e

; z ¼ z*D
vR2 ; γ ¼ C*

eh
*

ho
; Shw ¼ kwsRho

D
;

U rð Þ ¼ 2 1−r2
	 


; s ¼ L=R0

ln 1= 1−L=R0ð Þ½ � ;

ð44a� gÞ

Table 3 Convergence of the temperature distribution (for N = 5) with respect to the eigenvalue problem truncation order (M) in conjugated problem
with slip flow (without convergence enhancement)

M θ (0,0.05) Relative deviation θ (0.25,0.05) Relative deviation θ (0.5,0.05) Relative deviation

50 0.89526 0.36% 0.72414 1.02% 0.29571 5.86%

75 0.89589 0.29% 0.72592 0.78% 0.30023 4.42%

100 0.89674 0.20% 0.72758 0.55% 0.30403 3.21%

125 0.89705 0.16% 0.72843 0.43% 0.30641 2.46%

150 0.89730 0.13% 0.72886 0.37% 0.30724 2.19%

175 0.89750 0.11% 0.72938 0.30% 0.30868 1.73%

200 0.89760 0.10% 0.72957 0.28% 0.30906 1.61%

225 0.89772 0.09% 0.72985 0.24% 0.30979 1.38%

250 0.89779 0.08% 0.73001 0.22% 0.31021 1.25%

275 0.89785 0.07% 0.73015 0.20% 0.31049 1.16%

300 0.89791 0.06% 0.73030 0.18% 0.31092 1.02%

Exact 0.89849 – 0.73159 – 0.31412 –

Table 4 Convergence of the temperature distributionwith respect to the eigenvalue problem and temperature expansion truncation orders (N andM) in
conjugated problem with slip flow (with integral balance approach)

N = M θ (0,0.05) Relative deviation θ (0.25,0.05) Relative deviation θ (0.5,0.05) Relative deviation

1 0.89705 0.16% 0.72905 0.35% 0.31532 0.38%

2 0.90228 0.42% 0.72862 0.41% 0.31280 0.42%

3 0.89870 0.02% 0.73147 0.02% 0.31414 0.00%

4 0.89849 0.00% 0.73160 0.00% 0.31412 0.00%

5 0.89849 0.00% 0.73160 0.00% 0.31412 0.00%

Exact 0.89849 – 0.73159 – 0.31412 –
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Equation (43c) represents the symmetry condition at the
channel centerline, while Eq. (43d) imposes the continuity
of solute flux across the membrane-fluid interface. Equation
(43d) is a nonlinear boundary condition and, therefore, makes
it unlikely to obtain a fully analytical solution for this problem.

This same problem has been previously solved by the
GITT [31], in its traditional form, by choosing a linear eigen-
value problem as a basis for the eigenfunction expansion, thus
without the inclusion of the nonlinear boundary condition in
its formulation. Then, from application of Green’s second
identity, the contribution of the nonlinear boundary source
term reappears in the transformed ordinary differential system.
However, there is some computational advantage in adopting
a nonlinear eigenvalue problem formulation, incorporating the
nonlinear boundary condition information directly into the
eigenfunction. Following this alternative, the nonlinear eigen-
value problem has been chosen as:

∂
∂r

r
∂ψi

∂r

� �
þ μ2

i zð ÞrU rð Þψi r; zð Þ ¼ 0 ð45aÞ

∂ψi

∂r
j
r¼0

¼ 0;
∂ψi

∂r
j
r¼1

þ Shw 1þ γC 1; zð Þð Þψi 1; zð Þ ¼ 0

ð45b� cÞ

This eigenvalue problem has a known analytical solution in
terms of Laguerre polynomials, obtained via symbolic

computation as [27]:

ψi rð Þ ¼ e−
r2μiffiffi

2
p
L1

4 −2þ ffiffi
2

p
μið Þ

ffiffiffi
2

p
r2μi

� �
ð46aÞ

with Ni(z), the normalization integral, given by:

Ni zð Þ ¼ ∫
1

0
rU rð Þψ2

i r; zð Þdr ¼ 1

2μi zð Þ
∂ψi

∂r
∂ψi

∂μi
−ψi

∂2ψi

∂r∂μi

� �
r¼1

ð46bÞ

Replacing the solution, Eq. (46a), obtained for the
eigenfunctionψ i(r; z), into the nonlinear boundary condition,
Eq. (45c), one reaches the transcendental equation for μi(z).

The integral transformation of Eq. (43a) is accomplished

by applying the operator ∫
1

0
rU rð Þψi r; zð Þ :ð Þdr and making use

of the boundary conditions given by Eqs. (43c–d) and (45b-c),

Table 5 Convergence analysis of eigenfunction expansions with convective and diffusive eigenvalue problems in the solution of the two-dimensional
Burgers equation

N bx = 0, by = 0

u0 = 1, v0 = 1 u0 = 10, v0 = 1 u0 = 10, v0 = 10

T(0.1,0.1,0.01) Conv. T(0.1,0.1,0.01) Diff. T(0.1,0.1,0.01) Conv. T(0.1,0.1,0.01) Diff. T(0.1,0.1,0.01) Conv. T(0.1,0.1,0.01) Diff.

10 0.2079 0.2118 0.1114 0.1334 0.05472 0.06619

20 0.2391 0.2440 0.1357 0.1550 0.07683 0.10040

30 0.2450 0.2451 0.1411 0.1379 0.08114 0.07001

40 0.2462 0.2469 0.1420 0.1450 0.08188 0.08732

50 0.2463 0.2457 0.1422 0.1393 0.08208 0.07715

60 0.2464 0.2458 0.1422 0.1406 0.08211 0.08035

70 0.2464 0.2458 0.1423 0.1408 0.08212 0.08079

80 0.2458 0.1423 0.1408 0.08212 0.08070

90 0.2458 0.1403 0.07983

100 0.2459 0.1412 0.08090

110 0.2460 0.1417 0.08215

120 0.2460 0.1409 0.08100

130 0.2460 0.1405 0.07964

140 0.2461 0.1417 0.08132

160 0.2463 0.1423 0.08307

Impermeable

membrane

Z = 0

Supported liquid membrane

Fluid
2R

r

Z

R

R0

eC
Solute diffusion through the wall

Stripping solution

Fig. 6 Diagram of the hollow fiber membrane with the solute fluid
stream
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yielding the transformed system of ordinary differential equa-
tions below:

dCi zð Þ
dz

¼ ∑
∞

j¼1
Bi; j zð ÞC j zð Þ−μ2

i zð ÞCi zð Þ; i ¼ 1; 2; 3;…ð47:aÞ

where:

Bi; j zð Þ ¼ 1

N j zð Þ ∫
1

0
rU rð Þψ j r; zð Þ ∂ψi

∂z
dr ð47:bÞ

The inlet boundary condition in the z variable given by Eq.

(43b) is transformed through the operator ∫
1

0
rU rð Þψi r; zð Þ :ð Þdr,

to provide:

�Ci 0ð Þ ¼ Fi≡ ∫
1

0
rU rð Þψi r; 0ð Þdr

¼ −
1

μ2
i 0ð Þ

∂ψi r; 0ð Þ
∂r

� �
r¼1

ð47:cÞ

The coupling coefficients in Eq. (43.a) can be analytically
determined as:

Bi; j zð Þ ¼ 1

N j zð Þ
1

μ2
i zð Þ−μ2

j zð Þ
h i

−2μi zð Þ dμi zð Þ
dz

Ni zð Þδi; j þ
∂ψ j

∂r
∂ψi

∂z
−ψ j

∂2ψi

∂r∂z

� �
r¼1

� �
ð47:dÞ

with.

Bi; j zð Þ ¼ −
Ni zð Þ
N j zð Þ Bj;i zð Þ;Bi;i zð Þ ¼ 1

2Ni zð Þ
dNi zð Þ
dz

ð47:e; f Þ

The traditional approach, as employed in [31], requires a
large amount of terms in the series solution, especially if no

Table 6 Convergence behaviour of the average concentration Cav(z)
for Shw = 10 and γ = 1

N z = 0.01 z = 0.1 z = 0.2 z = 0.5 z = 1 z = 2

GITTwith Nonlinear Eigenvalue Problem (Laguerre polynomial basis)

5 0.92307 0.63660 0.45604 0.17502 0.035837 0.001509

10 0.92297 0.63644 0.45594 0.17498 0.035829 0.001509

15 0.92288 0.63640 0.45592 0.17497 0.035827 0.001508

20 0.92285 0.63639 0.45591 0.17497 0.035827 0.001509

25 0.92283 0.63638 0.45590 0.17497 0.035826 0.001508

GITTwith Nonlinear Filter [26]

10 0.92316 0.63651 0.45599 0.17500 0.035833 0.001509

20 0.92289 0.63641 0.45592 0.17497 0.035828 0.001509

30 0.92284 0.63639 0.45590 0.17497 0.035827 0.001508

40 0.92282 0.63638 0.45590 0.17496 0.035826 0.001508

50 0.92281 0.63638 0.45590 0.17496 0.035826 0.001508

60 0.92281 0.63638 0.45590 0.17496 0.035826 0.001508

Ref. [31] 0.9227 0.6363 0.4558 0.1749 0.0358 0.00150

Table 7 Convergence behaviour of GITT solution with nonlinear eigenvalue problem (Laguerre polynomial basis) for the local C(r, z) and average
Cav(z) concentration for Shw = 10 and γ = 1, with Nmax = 25

C(r, z)

N r = 0 r = 0 r = 0 r = 1 r = 1 r = 1

z = 0.1 z = 0.25 z = 0.5 z = 0.1 z = 0.25 z = 0.5

2 0.95045 0.63975 0.28992 0.10098 0.058830 0.027064

4 0.95237 0.63968 0.28991 0.10116 0.058810 0.027060

6 0.95233 0.63967 0.28991 0.10114 0.058806 0.027059

8 0.95232 0.63966 0.28991 0.10113 0.058804 0.027059

10 0.95231 0.63966 0.28991 0.10113 0.058803 0.027058

12 0.95231 0.63966 0.28991 0.10113 0.058803 0.027058

14 0.95231 0.63966 0.28991 0.10113 0.058803 0.027058

Cav(z)

N z = 0.01 z = 0.1 z = 0.2 z = 0.5 z = 1 z = 2

4 0.92152 0.63639 0.45590 0.17497 0.035827 0.001509

8 0.92283 0.63638 0.45590 0.17497 0.035826 0.001509

12 0.92283 0.63638 0.45590 0.17497 0.035826 0.001509

16 0.92283 0.63638 0.45590 0.17497 0.035826 0.001509

20 0.92283 0.63638 0.45590 0.17497 0.035826 0.001509

24 0.92283 0.63638 0.45590 0.17497 0.035826 0.001509

Ref. [31] 0.9227 0.6363 0.4558 0.1749 0.0358 0.00150
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convergence enhancement scheme is adopted, since the eigen-
value problem does not include the nonlinear boundary con-
dition term, which reappears as a source term in the trans-
formed system. Employing a nonlinear (or implicit) filter so-
lution can be an alternative strategy to account for the nonlin-
ear source term and avoid a slower convergence behavior of
the eigenfunction expansion [26]. In order to remove the non-
linearity of the boundary condition (Eq. 43d), a nonlinear filter
solution has also been employed in solving the present appli-
cation [26], for comparison purposes.

Table 6 presents the convergence behaviour of the dimen-
sionless average solute concentration at different positions
along the z direction and for different truncation orders N of
the concentration eigenfunction expansion proposed with
Laguerre polynomial basis, for the values of the governing
parameters Shw = 10 and γ = 1. The truncation order of the
transformed ODE system was taken at the different fixed
values of N = 5 to 25, in steps of 5, so as to investigate the
effect of the truncation on the overall convergence. In the
same table are also shown the results through an alternative
GITT solution path [26] employing a linear eigenvalue prob-
lem, but a nonlinear filtering solution so as to satisfy the non-
linear boundary condition, Eq. (43d). At the last line, the nu-
merical results obtained through the traditional GITT without
filtering or any convergence enhancement scheme [31], but
with very high truncation orders (N up to 1000), are also
presented.

The present solution with nonlinear eigenvalue problem
provides a considerable convergence improvement over the
previous more crude GITT implementation [31], yielding five
fully converged significant digits in the axial variable range
analyzed and with truncation orders as low as N = 25. Also,
the present solution with a nonlinear eigenvalue problem was
chosen to be carried out without applying a filter, so as to
analyze only the relative gain of incorporating the full nonlin-
ear boundary condition into the eigenvalue problem formula-
tion. The solution obtained through the GITT with nonlinear
filter has also achieved an impressive convergence rate,
reaching 5 converged significant digits up to the maximum
truncation order of N = 60 terms. Both sets of results are in
excellent agreement with the previous GITT results with large
truncation orders [31].

Table 7 provides a convergence analysis of the concentra-
tion eigenfunction expansion only, by considering a fixed val-
ue of the truncation order (Nmax = 25) and inspecting the
convegence behavior of both the local concentration C(r, z)
and of the average concentrationCav(z), for increasing number
of terms in the expansions, N = 2 to 14, in steps of 2, for the
local field and N = 4 to 24, in steps of 4, for the average field.
This analysis allows one to verify that the convergence of the
eigenfunction expansions is indeed outstanding once the non-
linear eigenvalue problem is adopted as the expansion basis.
The local concentration field is fully converged to 5

significant digits, in the worst case, with just 8 terms in the
expansion, which occurs for the lower values of the z variable.
As for the average concentration, again in the worst situation
for z = 0.01, again 5 significant digits are converged for N as
low as 8.

5 Conclusions

Recent advances in the Generalized Integral Transform
Technique (GITT) have been presented and consolidated in
an unified framework, as a computational-analytical approach
for handling both linear and nonlinear convection-diffusion
problems. Besides the formal solution and some major com-
putational aspects, this work systematically presents four re-
cent advancements to the hybrid approach, involving a single
domain formulation strategy for complex geometries and het-
erogeneousmedia, an integral balance approach for multiscale
problems, the adoption of convective eigenvalue problems in
convection-dominated problems, and the proposition of non-
linear eigenvalue problems. All such extensions aim at in-
creasing the level of information from the original problem
formulation that is transferred to the eigenfunction expansion
basis, through the corresponding eigenvalue problem formu-
lation and its solution. The illustration of such developments is
then provided through the selection of applications that make
use of the proposed methodological extensions. Thus, four
applications are more closely analyzed in relation with conju-
gated heat transfer in wavy shaped micro-systems, conjugated
heat transfer in microchannels within the slip flow regime,
two-dimensional Burgers type equations, and nonlinear mass
transfer problem in hollow fiber membranes for metal extrac-
tion. Future work should involve the incorporation of such
recent developments into the multipurpose unifying structure
of the UNITalgorithm [13, 14], providing alternative paths for
convergence improvement and extension of applicability
limits.
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