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Phenomenological friction equation for turbulent flow of Bingham fluids
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Most discussions in the literature on the friction coefficient of turbulent flows of fluids with complex rheology
are empirical. As a rule, theoretical frameworks are not available even for some relatively simple constitutive
models. In the present work, a formula is proposed for the evaluation of the friction coefficient of turbulent flows of
Bingham fluids. The developments combine a fresh analysis for the description of the microscales of Kolmogorov
and the phenomenological turbulence model of Gioia and Chakraborty [G. Gioia and P. Chakraborty, Phys. Rev.
Lett. 96, 044502 (2006)]. The resulting Blasius-type friction equation is tested against some experimental data
and shows good agreement over a significant range of Hedstrom and Reynolds numbers. Comments on pressure
measurements in yielding fluids are made. The limits of the proposed model are also discussed.
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I. INTRODUCTION

The seminal works of Prandtl and Blasius in the beginning
of the 20th century produced an answer for the determination
of the drag or resistance of external and internal flows. The
formulations were a great advance over the trivial solutions
provided by the 19th century Eulerian (inviscid) hydrodynam-
ics, furnishing in particular consistent solutions to the common
problem of estimating the pressure loss suffered by a liquid
flowing around a flat plate or through a pipe. The approaches
basically handled common fluids such as air and water; more
complex fluids were left for particular consideration.

Viscoplastic fluids are a distinguished class of complex
fluids, for they exhibit a dual response to shear stresses: At low
stresses their behavior resembles that of a rigid solid; at high
stresses they flow like a fluid. The most common idealization
of a viscoplastic fluid is the Bingham model. In this model, a
sharp yield stress value τy exists such that for an instantaneous
shear stress τ < τy , the local deformation rate γ̇ is null; for
τ > τy , a Newtonian fluid flow is triggered in which stress and
strain are linearly related through a constant plastic viscosity
μb. The mathematical description of the Bingham fluid is

γ̇ =
{

0 for τ < τy

μ−1
b (τ − τy) otherwise.

(1)

The viscous effects of the wall vicinity on the mean axial
momentum are normally encapsulated into a single nondi-
mensional number, the Darcy friction factor Cf = 8τw/ρU 2,
where U is a characteristic velocity of the flow (usually the
mean velocity), ρ is the density of the fluid, and τw is the wall
shear stress, a measure of force per unit area exerted by the
fluid on the wall surface.

In [1], the empirical resistance law of Blasius for Newtonian
fluids suggests Cf ∼ 1/Re1/4, in what has been proven to be a
good approximation for turbulent flows with Reynolds number
up to a few hundred thousands. Nikuradse [2] further showed
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that in a rough pipe, the friction also depends on the relative
roughness size ε/R.

The task of finding an appropriate relation for the ratio
between inertial and viscous forces is a complex subject for
non-Newtonian fluid flows. For power-law flows, Dodge and
Metzner [3] proposed a Reynolds-number formulation that is
able to combine all the non-Newtonian parameters into one
single expression. In the presence of yielding stresses, the
progress has been, however, elusive.

For Bingham fluid flows, the appropriate Reynolds-number
definition depends only on the Bingham viscosity. Neverthe-
less, the presence of the yield stress parameter gives rise to an
additional nondimensional parameter, the Hedstrom number
He, which is a measure of the magnitude of the yield stress
effects τy relative to the dynamic Bingham viscosity μb:

Reb = ρUL

μb

, He = ρτyL
2

μ2
b

. (2)

In [4], Darby and Melson proposed a semiempirical expression
for the Fanning friction factor of fully developed turbulent flow
of Bingham fluid, which reads

Cf = 10aRe−0.193
b , (3)

where a = −1.47[1 + 0.146 exp(−2.9 × 10−5He)].
In the present work, an alternative friction relation is

proposed for Bingham fluids as the result of an analysis based
on two fundamental premises: (i) the dimensional arguments
of Kolmogorov and (ii) a phenomenological closure model
for the Reynolds’ stresses first proposed in [5] for Newtonian
flows in the presence of rough walls. This methodology has
been fundamental to the developments presented in [6], where
an analytical friction coefficient for power-law fluid flows was
proposed. However, this extension is not straightforward for
the viscoplastic materials and requires further considerations
about the energy cascade and energy spectrum.

The diversity of complex fluids and their rheological
behavior naturally hampers the advancement of simple classi-
fication rules and universal mathematical frameworks. The
traditional attempt at classifying complex fluids into two
groups (Newtonian or Non-Newtonian fluids) has proven to
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be ineffective, since the term “non-Newtonian” contains a
large family of fluids with unrelated physical behavior. A
common classification consists in splitting non-Newtonian
fluids into three essential groups: purely viscous, viscoplastic,
and viscoelastic. In [6], the power-law model was considered
to propose a friction factor equation. The resulting equation
was developed as a function of the generalized Metzner-Reed
Reynolds number ReMR, which encapsulates in one single
expression the ratio between inertial and rheological stresses.

Viscoplastic fluids are in unambiguous contrast to the
power-law model, which, despite its variable effective vis-
cosity, does not present a sharp behavior at slightly different
stresses. This feature gives rise to an additional nondimen-
sional parameter, the Hedstrom number He [Eq. (2)], which is
a measure of the magnitude of the yield stress effects relative
to the dynamic Bingham viscosity.

From the modeling point of view, the main difference
between the results of [6] and the present results is that the
Kolmogorov transitional scales, the wall units, and the friction
velocity are now obtained as a function of two nondimensional
control parameters Re and He. The latter control parameter
leads to a different description of Kolmogorov’s cascade
scenario in terms of the stress tensors, which needs to incor-
porate the additional yielding stress. The resulting equation
for the viscous stress is shown here to be an explicit second-
order polynomial relation, a nontrivial relation between the
Kolmogorov and the macroscopic velocity scales as a function
of both Re and He. The proposed friction factor expression is
described by a family of curves, one for every fixed value of He.
Another important difference concerns the limits of validity of
the Blasius-like expressions. Here we have a two-dimensional
region of validity that agrees well with experiments. This is
in contrast to the friction equation obtained for Newtonian
fluids and power-law fluids that can be described by a single
curve, with limits of validity described by a single interval. The
derivation of Kolmogorov’s and wall length scales in the pres-
ence of multiple nondimensional dynamic control parameters
is important to the study of turbulence of other complex and
relevant fluid flows, such as viscoelastic fluids, where multiple
nondimensional dynamic control parameters are present, such
as the Reynolds, Weissenberg, and Deborah numbers.

The structure of the paper is as follows. In Sec. II A key
assumptions and consequences of Kolmogorov’s theory are
reviewed. The extension to non-Newtonian Bingham fluid is
described in Sec. II B. The phenomenological turbulent model
and the resulting friction equation are discussed in Sec. III.
Considerations of the limits of validity of the proposed equa-
tion are introduced in Sec. IV. A summary is given in Sec. V.

II. KOLMOGOROV’S SCALING

A. Newtonian fluids

Kolmogorov published the first of a series of ground break-
ing articles concerning the investigation of fully developed
turbulent Newtonian fluid flows [7]. These works were orig-
inally formulated on purely dimensional grounds and based
on Richardson’s energy cascade scenario. The latter concept
argues that in a turbulent fluid flow in statistical equilibrium,
where the motion is mainly driven by forces acting at large

scales, energy cascades through intermediate scales, the so-
called inertial range, from larger to small scales, where it gets
dissipated. The main assumption advanced by Kolmogorov is
that in the inertial range, the average energy flux is constant,
independent of the kinematic viscosity ν, and equals the mean
energy dissipation rate per unit mass ε (see [8,9]). We now
derive some of the well known Kolmogorov relations through
scaling arguments for the related stress tensors, since using
this unconventional quantity (stress rather than strain rate) is
more suited for working with non-Newtonian fluids.

First, we define an inertial stress at scale � as τ� ∼ ρu2
�,

where u� is the characteristic velocity of typical eddies at
scale �. We can also define the characteristic time scale � as
t� ∼ �/u�. Now, assuming that the eddy with characteristic
scale � lies in the inertial range, where the energy dissipation
rate by unit mass is constant and equals ε, it is argued
on dimensional grounds that the inertial stress in units of
time at scale � must balance the energy dissipation rate
balance so that τ�/t� ∼ τ�/(�/u�) ∼ ρε. This leads to the
celebrated Kolmogorov spectral relation u� ∼ ε1/3�1/3. From
this relation, we can rewrite the inertial strain rate relation
at scale � as τ� ∼ ρε2/3�2/3 for eddies in the inertial range.
This phenomenology is independent of the rheology of the
considered fluid and thus also justifiable for fluid flows
described by the Bingham model.

Kolmogorov’s phenomenology implies the existence of a
transitional scale �d , called Kolmogorov’s dissipative scale,
between the inertial and dissipative ranges, where both viscous
and inertial effects are important. At this transitional scale,
the energy relation ρε ∼ ρεd ∼ μu2

�d
/�2

d holds, which follows
from the energy equation of Newtonian flows. From this
last relation, one may define a viscous stress at scale � as
τμ ∼ μu�/� ∼ (μρε)1/2. Because τμ ∼ τ� at scale �d , we
recover Kolmogorov’s dissipative scale �d ∼ (μ3/ρ3ε)1/4. The
scale �d depends of course on the rheology of the fluid, so
Kolmogorov’s scale must be modified for Bingham flows as
discussed in the following section. A discussion of changes in
the Kolmogorov scale for power-law fluids is presented in [6].

The relation between Kolmogorov’s scale �d and the
characteristic macroscale L is obtained through the following
arguments. At the top of the inertial range, the global energy
flux relation ε ∼ U 3/L holds. Inserting this relation into the
relation for �d results in �d/L ∼ 1/Re3/4. The arguments also
imply the relation ud/U ∼ (�d/L)1/3 ∼ 1/Re1/4. As reported
in [6], this last relation is crucial for the derivation of
a phenomenological friction factor equation for power-law
fluid flows. Equally, the same arguments are crucial for the
developments of the present work.

Kolmogorov’s spectral relations were originally formulated
for Newtonian flows, but are observed in several experiments
with turbulent non-Newtonian fluid flows. The relations hold
even in an anisotropic context, where the presence of other
physical scalings challenges the assumption of the existence
of an inertial range, in the spirit of Landau’s famous criticisms
of Kolmogorov’s theory (see [5,6,10]).

B. Turbulent Bingham fluids

We now describe how the Kolmogorov phenomenology can
be recovered for turbulent Bingham fluid flows. First, it is well
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known that the central plug disappears at the end of the laminar
to turbulent transition in the yielding fluids [11–14]. Due to
lack of observation of any microplug region in the turbulent
flow, the researchers argue that the local stress is always higher
than the yielding limit of the fluid in this regime [11,12]. A
more fundamental explanation is also offered in [13] based
on the interaction between the turbulence and the internal
structure of viscoplastic fluids. In this work, the authors argue
that the process of cross-link formation and destruction is not
instantaneous and yielding fluids show extensive thixotropic
properties. The instantaneous zero shear regions do not act like
a solid immediately but need time to relax to the behavior of a
solid. However, the turbulent time scales are shorter than the
relaxation time, so microplug regions cannot form in turbulent
flows [13].

To obtain the dissipative scales, the dimensional analysis
for the viscous strain rate relation needs to be modified.
Consideration of either the first or the last reasoning implies
that the constitutive equation (1) can be simplified by assuming
that eventual microplugs do not interfere with the energy
cascade mechanism. For Bingham flows, at the transitional
scale �d , the energy dissipation relation becomes

ρε ∼ ρεd ∼
(

τy + μb

ud

�d

)
ud

�d

. (4)

Multiplying Eq. (4) by μb, we obtain a second-order degree
polynomial for the characteristic viscous stress at the transi-
tional scale τμ,d = μbud/�d ,

τ 2
μ,d + τyτμ,d − ρμbε = 0, (5)

with the positive solution

τμ,d =
√

τ 2
y + 4ρεμb − τy

2
. (6)

In the transitional scale, because the flow is in statistical
equilibrium, dimensional reasoning leads to the following
balance relation between the inertial stress and the total
dissipative stress τd :

ρu2
d ∼ τd ≡ τy + τμ,d . (7)

Thus, we obtain

ud ∼
√

τy + τμ,d

ρ
=

√√√√τy +
√

τ 2
y + 4ρεμb

2ρ
. (8)

This statement is equivalent to the following local Reynolds
number relation at the dissipative scale:

Red = ρud�d

μe

= ρu2
d

μbt
−1
d + τy

= 1. (9)

Equation (8) furnishes immediately

ud

U
∼

√
τy

ρU 2 + √
(τy/ρU 2)2 + 4ρεμb/ρ2U 4

2
. (10)

Since τy/ρU 2 = He/Re2 and 1/Re = ρεμb/ρ
2U 4, it follows

that

ud

U
∼ 1√

2

√√√√√
He2

Re4 + 4

Re
+ He

Re2 . (11)

III. PHENOMENOLOGICAL FRICTION FACTOR

In [6], a friction factor relation for power-law fluid flows
was derived through a phenomenological closure model for
the Reynolds stress tensor first introduced by Gioia and
Chakaborty in [5] in the context of Newtonian flows over
rough walls. The same approach is used next to model the
Reynolds stress tensor of Bingham fluid flows bounded by
smooth walls.

The phenomenology considers that for a moderately large
Reynolds number, there exists a viscous wet surface W of
constant thickness in the flow, parallel to the wall, such that
above it the horizontal velocity of the flow scales as ∼U .
In this upper region, the fluid flow carries a high horizontal
momentum per unit volume ρU . Below W , the velocity of
the flow is small and the fluid has a negligible horizontal
momentum per unit volume. Consider also that over the
wet surface W , the stresses are mainly induced by vertical
fluctuations of horizontal momentum, so the net turbulent
stresses are dominant over W . Below W , the turbulent stress
contribution decays fast, so in the immediate vicinity of the
wall, the main contribution to the stress is due to viscous
forces.

The analysis proceeds with a pictorial description of eddies
that straddle the wet surface W . The eddies transport portions
of fluid of high horizontal momentum across W into the wall
direction, thus resulting in portions of fluid with negligible
horizontal momentum across W in the centerline direction.
The vortical contribution to the vertical momentum transport
across W is set by vN , the eddy’s velocity normal to W . As in
[5,6], the key hypothesis is that vN ∼ ud .

Now, because viscous stress is dominated by the inertial
vortical fluctuations over W , we assume τ |W ∼ ρUud . This
stress is then balanced by the wall shear stress. The wall shear
stress can therefore be stated through our phenomenological
picture as the balance law

τw ∼ τ|W ∼ ρUud, (12)

so the following friction formula can be advanced:

Cf = 8
τw

ρU 2
∼ 8

ρUud

ρU 2
= g(He)

ud

U
, (13)

where simple dimensional arguments show that the nondimen-
sional parameter g(He) is dependent only on the parameter
He. The effects of the yield stress are known to vanish at high
Reynolds number. Inspection of some empirical results suggest
that g is not a strong function of He over a relevant range of
Reynolds number. In particular, the relation g(He) ≡ 0.316
can be adopted, so the present results comply with Blasius’s
law for Newtonian fluid flows.
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TABLE I. Comparison of wall shear stress calculated from
pressure measurement and velocimetry using experimental results
of [14].

τF
w τw τF

w /τw (τF
w + τy)/τw

4.54 7.80 0.58 1.14
7.66 12.02 0.64 1.00
10.9 15.78 0.69 0.98

Inserting (11) into (13), the total friction coefficient equa-
tion is obtained

Cf = 8
τw

ρU 2
= 0.316√

2

√√√√√
He2

Re4 + 4

Re
+ He

Re2 . (14)

However, as the above expression is compared with the
available experimental data for turbulent flow of viscous plastic
fluids, the predictions are shown to overestimate the observed
results. A close examination of this discrepancy shows that
a simple constant shift in Eq. (14) (with equal value of
the yield stress) results in a very good match between the
two sets (see Fig. 2). This result, of course, suggests the
following analysis. The friction factor estimated in controlled
experimental simulators is based on pressure drop readings
along pipes and channels. However, the measured pressure
drop (at least in the turbulent regime) accounts only for the
viscous contribution μbdU/dy|y=0. The normal stresses due
to the yielding component are not captured by the pressure taps.
As a direct consequence, Eq. (14) overestimates the measured
pressure drop, since it considers the total wall shear stress.

To further support the above argument, the results of the
experimental investigation of turbulent flow of yielding fluids
in [14] are reconsidered here. In this study, pressure drop data
are available and the velocity field is characterized in a region
very close to the wall (with profiles obtained through high-
resolution laser Doppler anemometry). As it turns out, a mis-
match between wall shear stress predictions obtained directly
from pressure drop measurements [τF

w = (R/2)(dp/dx)] and
from the linear near wall velocity profile (τw = τy + μbγ̇ )
is apparent (Table I). The discrepancy was justified by the
authors as a mere consequence of the thixotropic nature of
the investigated fluid. However, a thorough analysis of these
experimental results indicates that the difference between the
two evaluated wall shear stresses is identical to the yield stress,
as indicated by τw − τF

w = τy (see Table I).
Similar discrepancies between measured and expected

pressure drops, and the nature of pressure transmission for
Bingham flows have been discussed before in the literature,
as pointed out in [15] and references therein. Whether the
source of this anomalous behavior lies in the techniques used
to measure the pressure or is a more fundamental issue cannot
be concluded at this stage and is left as an open question for
future studies.

Hence, to compare our phenomenological friction factor
with the measured friction coefficient, the term τy needs to
be subtracted from the definition of the wall shear stress
in Eq. (14) so that one must consider τF

w = τw − τy . This

 0.01

C
f

(a)

98765432

Exp. [16]
Current Work
Laminar Sol.

Darby Melson Eq. 

 0.01

C
f

(b)

1 32

Exp. [17]
Current Work
Laminar Sol.

Darby Melson Eq. 

 0.01

C
f

Re × 104

(c)

1 32

Exp. [18]
Current Work
Laminar Sol.

Darby Melson Eq. 

FIG. 1. Generalized Blasius equation (16), as compared with the
results of the Darby-Melson formula, the laminar friction equation,
and the experimental data with (a) He = 2 × 106 from [16], (b) He =
7 × 105 from [17], and (c) He = 5 × 105 from [18].

modified friction formula follows naturally

CF
f = 8

τF
w

ρU 2
∼ 8

ρUud − τy

ρU 2
= g(He)

ud

U
− 8

τy

ρU 2
, (15)

where the superscript F stands for the flowing part of the
wall shear stress, a quantity evaluated directly from the
pressure drop measurements. Inserting Eq. (11) into Eq. (15),
a fundamental result arises:

CF
f = 0.316√

2

√√√√√
He2

Re4 + 4

Re
+ He

Re2 − 8
He

Re2 . (16)

The range of validity of the above equation is discussed in the
next section; however, let us first compare the present results
with some empirical works.

In Fig. 1, Eq. (16) is compared with 36 experimental points
from [16–18]. Figure 1 also displays Darby and Melson’s
empirical law (3) for reference. The agreement is very good,
with a relative error of less than 10% for all points; the
empirical equation shows a maximum deviation of 15% from
the experimental results. To clarify the problem discussed
above, the first set of the experimental results is shown again in
Fig. 2. For the sake of comparison, the results of Eqs. (14) and
(16) and Blasius’s formula are also shown. It is evident that

 0.01

C
f

Re × 104
4 5 6 7 8 9

0.004

Exp. [16]
Eq. (16)
Eq. (14)
Blasius

FIG. 2. Comparison of experimental results from [16] and the
final friction equation (16), the friction equation without subtracting
the yield stress effect (14), and the Newtonian Blasius equation.
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neglecting the last term in Eq. (16) results in an overprediction
of the experimental results. Notice that, unlike the Newtonian
case, it is possible to show that for some values of fixed He,
the friction formula is not a decreasing function of Re, even
in the turbulent flow regime, as illustrated in Fig. 1(a). In the
literature, it is common to consider that fully turbulent flow
occurs for conditions past this point. However, the present
results show that a combination of Re and He can result in
fully turbulent flow even for lower Reynolds numbers.

We also remark that this formula reduces to the well-known
Blasius equation, which is known to be a good approximation
for the friction coefficient for moderately large Reynolds
number, while Darby and Melson’s [4] equation does not. We
now turn to a brief discussion regarding the limits of validity
of Eq. (16).

IV. DISCUSSION

In this work a Blasius-type formula for the friction factor
of Bingham fluids is developed. As for the Newtonian Blasius
relation, the domain of validity for a fixed He extends over a
limited range of Reynolds number, before wall effects need to
be taken into account. For a fixed He and for a range of low
Reynolds number, velocity fluctuations are relatively small, the
inertial range is not well defined, and the viscous stress tensor
is dominant over the entire flow. Under these circumstances,
the present phenomenological analysis is not valid, since it
depends directly on the Reynolds stress fluctuations.

For sufficiently high Re, the wall inertial stress can be
defined as ρu2

τ ∼ τw ∼ τF
w + τy , so the friction velocity and

the wall viscous length scale are given by

uτ ≡
√

τF
w + τy

ρ
, δν = μb

ρuτ

.

Using τF
w + τy = ρUud , from Eq. (11) we obtain

δν

L
∼ 1

Re

(
U

ud

)1/2

= 21/4

Re

(√
He2

Re4 + 4

Re
+ He

Re2

)−1/4

,

(17)

which reduces to the Newtonian relation when τy = 0. From
Eq. (11) we also have

�d

L
∼

(
ud

U

)3

= 1

23/2

(√
He2

Re4 + 4

Re
+ He

Re2

)3/2

, (18)

where δν ≡ δν(He,Re) and �d ≡ �d (He,Re). Let s denote
the characteristic size of the eddies transporting momentum
over W and let aHeδν denote the characteristic thickness of the
viscous surface, where aHe is an O(1) constant that needs to
be estimated from experiments (in turbulent Newtonian flows,
a0 is typically 5; see [8]).

In our moderate-Reynolds-number scenario, it results from
(17) and (18) that for a fixed He, as Re increases, eddies in
the transitional region become both slower and smaller, just
as well as the wall viscous length scale. The ratio H between
the thickness of the viscous layer aHeδν and the transitional

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0  0.5  1  1.5  2  2.5  3  3.5  4

H
(R

e,
H

e)

Re × 105

Newtonian

He=725000

He=2066609

He=7250000

FIG. 3. Plot of H ≡ δ(n)
ν /�

(n)
d versus Re, for some fixed values of

He. Notice that H < 1 for Re ∼ 3.5 × 105, which is compatible with
Blasius’s range of validity. Notice also that for He = 7.25 × 106, the
ratio H is never greater than 1.

Kolmogorov scale �d satisfies

H (Re,He) ≡ aHeδν

�d

∼ 27/4

Re

(√
He2

Re4 + 4

Re
+ He

Re2

)−7/4

.

(19)

For a range of Re so that s ∼ �d < aHeδν , i.e., H > 1, the
flow near the wall is well described by the phenomenology
of the preceding section and (15) is a good approximation.
However, if �d � aHeδν , i.e., H < 1, then transitional eddies
become too large to get absorbed in the viscous layer, so the
present phenomenology breaks down and wall properties have
to be considered. Notice that if we consider that aHe remains
O(1), then, for sufficiently large He, the phenomenological
analysis here presented is no longer valid for any value of
Reynolds number. In fact, Figs. 3 and 4 show the behavior
of the ratio function H by assuming that aHe = a0 = 5 and
we can see that H < 1 for all values of Re, and He � 0.8 ×
107. The assumption that aHe remains O(1) is crucial for the

 0

 2

 4

 6

 8

 10

 0  50  100  150  200  250  300  350  400

H
e

× 106

Re × 103

H(Re,He)>1

H(Re,He)<1

FIG. 4. Level curve H ≡ 1. We expect the domain of validity of
Eq. (16) to be in a region similar to the region where H < 1.
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analysis above. This is a consideration that deserves further
investigation. We remark, however, that, as discussed in [19],
Darby and Melson’s empirical expression is considered to be
valid in a range where 1000 � He � 6.6 × 107, and ReB �
3.4 × 105, which is compatible with the constraints displayed
in Figs. 3 and 4.

V. CONCLUSION

The present work has developed Eq. (16), a friction
factor formula for Bingham fluid flows. The arguments were
dimensional, in the spirit of Kolmogorov’s analysis, and
further resorted to a phenomenological closure relation for
the Reynolds’ stress, similar to that proposed by Gioa and
Chakraborty in [5]. We have also derived limits of validity
of a presently proposed equation through a phenomenological
argument first introduced in [6]. The limits are compatible with
previous empirical Bingham friction relations, such as that
proposed by Darby and Melson in [4]. Equation (16) is derived
from Eq. (14) through a correction term that takes into account

a discrepancy between the latter equation and the experimental
data observed in the literature. Pressure drop discrepancies
in Bingham flows have been observed before, as remarked
in [15]; this continues to be a challenging theoretical and
experimental issue. Nonetheless, Eq. (16) has shown excellent
agreement with the experimental data for an extensive range
of Re and He and, moreover, similar arguments may be
extended to other types of purely viscous yielding flows,
such as Herschel-Bulkley fluids. This extension is currently
under investigation, but preliminary results show remarkable
agreement with experimental data.
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