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Dynamic behavior of axially functionally graded (FG) pipes conveying fluid was investigated numerically by using the generalized
integral transform technique (GITT).The transverse vibration equation was integral transformed into a coupled system of second-
order differential equations in the temporal variable. TheMathematica’s built-in function, NDSolve, was employed to numerically
solve the resulting transformed ODE system. Excellent convergence of the proposed eigenfunction expansions was demonstrated
for calculating the transverse displacement at various points of axially FG pipes conveying fluid. The proposed approach was
verified by comparing the obtained results with the available solutions reported in the literature. Moreover, parametric studies were
performed to analyze the effects of Young’s modulus variation, material distribution, and flow velocity on the dynamic behavior of
axially FG pipes conveying fluid.

1. Introduction

Pipelines conveying fluid exist widely in many application
fields, particularly in nuclear power plants, chemical plants,
aeronautic, oil transportation, water supply, heat exchanger
devices, human circulation, and so forth. The high velocity
internal flow may cause severe flow-induced vibration of
piping systems, which may further result in leakages, fatigue
failures, high noise, fire, and explosions of the pipes [1].
Extensive investigations have been carried out in the past
decades to understand the dynamical behavior of pipes
conveying fluid, as described by Paı̈doussis and Li [2] and
Päıdoussis [3, 4].

Similar to other structural dynamic problems, the earliest
concern of fluid-conveying pipes was the free vibration
response [5]. Research reveals that the boundary conditions
can affect significantly the natural frequencies of the dynamic
systems [6, 7]. Some numerical methods such as homotopy
perturbation method [8] and precise integration method [9]
were developed to analyze the effect of fluid flow velocity
on the natural frequencies. Although there are many studies
considering the flow velocity as constant, the flow velocity
varies with time for the actual industrial problems. The

unsteady flow is usually modeled by the superposition of
the steady flow and a time-dependent harmonic component,
which may induce the dynamic instability due to parametric
resonances [10]. For instance, Jin and Song [11] investigated
the effect of some physical parameters of the system, such as
damping, mean flow velocity, mass ratio, tension, and gravity,
on the three regions of parametric resonances of pipes with
supported ends conveying pulsating fluid. Panda andKar [12]
analyzed the nonlinear planar vibration of a hinged-hinged
pipe conveying fluid with harmonic flow velocity pulsation in
the presence of internal resonance. With the development of
material technology and application, new materials exhibit-
ing viscoelastic behaviors such as polymermatrix composites
are now widely used for pipes. Zhao et al. [13] investigated
the dynamic behavior and stability of Maxwell viscoelastic
pipes conveying fluid with simply supported ends. Zhang
et al. [14] presented a viscoelastic finite element approach
to the vibration analysis of viscoelastic Timoshenko pipes
conveying fluid. Wang et al. [15] studied the vibration and
stability of viscoelastic curved pipes conveying fluid using
normalized power series method. Yang et al. [16] investigated
the dynamic stability for the transverse vibrations of pipes
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conveying fluid using the method of multiple scales. To avoid
the failure caused by resonance due to the excitation of exter-
nal forces, many researchers considered the forced vibrations
of pipes conveying fluid. Gulyayev and Tolbatov [17] carried
out the numerical modelling of self-excited vibrations of
tubes containing inner flows of nonhomogeneous boiling
fluid. Seo et al. [18] presented the finite element method to
predict the forced vibration response of a pipe conveying
harmonically pulsating fluid. Liang and Wen [19] studied
the forced responses with both an internal resonance and an
external periodic excitation of the constant-fluid-conveying
pipe by the multidimensional Lindstedt-Poincaré method. In
practice, most of the load applied on the industrial pipes is
random, therefore, the dynamic response of pipes conveying
fluid subjected to random excitation was studied by Zhai et
al. [20, 21]. Since the high-temperature environment should
be confronted in some industries such as nuclear reactors,
space planes, and chemical plants, the vibration behaviors of
pipes conveying fluid under thermal loads have been studied
in recent years [22–26].

Due to the advantages of being able to withstand
severe high-temperature gradient while maintaining struc-
tural integrity, functionally graded materials (FGMs) have
attracted great interest in a broad range of applications
including biomechanical, automotive, aerospace, mechani-
cal, civil, nuclear, and naval engineering [27, 28], as it is
known that FGMs are a novel class of composite materials
whose composition and/or function is designed to change
continuously within the solid. The composites are usually
made from a mixture of metals and ceramics to ensure the
elastic and toughness properties gradually vary in space,
which can prevent delamination and stress concentration
in traditional multilayer, laminated composites. For pipes
conveying fluid, Sheng and Wang [24] reported the result of
an investigation into the coupled vibration characteristics of
fluid-filled functionally graded cylindrical shells, while Hos-
seini and Fazelzadeh [26] investigated the thermomechanical
stability of functionally graded thin-walled cantilever pipes
conveying flow and loading by compressive axial force. Both
of the above-mentioned investigations assumed that the
material properties vary along the thickness direction of
pipes; however, dynamic behaviors of axially functionally
graded systems (structures with material graduation through
the longitudinal directions) should be also concerned, as
reported by [29–34]. To the authors’ knowledge, the literature
dealing with the dynamic behavior of fluid-conveying pipes
made of axially FGMs is very limited, which forms the
motivation for the current work.

In this study, the dynamic behavior of axially functionally
graded (FG) pipes conveying fluid is analytically and numer-
ically investigated on the basis of the generalized integral
transform technique (GITT), which has been successfully
applied in solving the dynamic response of axially moving
beams [35], axially moving orthotropic plates [36], fluid-
conveying pipes [37] and pipes conveying gas-liquid two-
phase flow [38], the wind-induced vibration on overhead
conductors [39], the vortex-induced vibration of long flexible
cylinders [40], and the transverse vibrations of a cantilever
beam with an eccentric tip mass in the axial direction [41].
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Figure 1: Illustration of an axially functionally graded pipe con-
veying fluid; the transverse displacement of which is described by𝑤(𝑥, 𝑡).

From an engineering viewpoint, the novel contribution of
this investigation is to generate the reliable reference data on
the dynamic behavior of axially FG conveying fluid, while,
from a mathematical viewpoint, this work provides a feasible
numerical solution of the variable coefficient partial differen-
tial equations governing the phenomenon. The rest of paper
is organized as follows. In the next section, the mathematical
formulation of the transverse vibration problem of axially FG
pipes conveying fluid is presented. In Section 3, the hybrid
numerical-analytical solution is obtained by carrying out
integral transform. Numerical results of proposed method
including transverse displacements and their corresponding
convergence behavior and verification are presented in Sec-
tion 4. A parameter study is then performed to investigate
the effects ofmaterial distributions andmass ratios on natural
frequencies and vibration amplitude of pipes conveying
fluid, respectively. Besides, the variation of the dimensionless
frequencies with Young’smodulus ratio, power exponent, and
flow velocity are also presented. Finally, the paper ends in
Section 5 with conclusions and perspectives.

2. Mathematical Formulation

We consider a fluid-conveying pipe made of axially func-
tionally graded (FG)material based on Euler-Bernoulli beam
theory, as illustrated in Figure 1. If gravity, internal damping,
external imposed tension, and pressurization effects are
either absent or neglected, the equation of motion of the FG
pipe can be derived following the Newtonian derivation by
means of decomposing an infinitesimal pipe-fluid element
into the pipe element and the fluid element, according to the
procedure given by Paı̈doussis [3]:

𝜕2𝜕𝑥2 [𝐸 (𝑥) 𝐼𝜕
2𝑤𝜕𝑥2 ] + 𝑚𝑓V2 𝜕

2𝑤𝜕𝑥2 + 2𝑚𝑓V 𝜕
2𝑤𝜕𝑥𝜕𝑡

+ [𝑚𝑓 + 𝜌 (𝑥)𝐴] 𝜕2𝑤𝜕𝑡2 = 0,
(1a)

subjected to the clamped-clamped boundary conditions

𝑤 (0, 𝑡) = 0, (1b)

𝜕𝑤 (0, 𝑡)𝜕𝑥 = 0, (1c)

𝑤 (𝐿, 𝑡) = 0, (1d)

𝜕𝑤 (𝐿, 𝑡)𝜕𝑥 = 0, (1e)
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where 𝑤(𝑥, 𝑡) is the transverse displacement, 𝐸(𝑥)𝐼 is the
flexural rigidity of the pipe which depends upon both Young’s
modulus 𝐸(𝑥) and the inertial moment of cross-sectional
area 𝐼, 𝑚𝑓 is the mass of fluid per unit length, V is the
steady flow velocity, 𝜌(𝑥)𝐴 is the mass of the pipe per unit
length which depends upon mass density 𝜌(𝑥) and cross-
sectional area 𝐴, and 𝐿 is the pipe length. Note that, for
the axially FG pipe, 𝐸(𝑥) and 𝜌(𝑥) are functions of the axial
coordinate 𝑥. In addition, we assume that the coefficient of
thermal expansion and the thermal conductivity of the FG
material are constant along the pipe; therefore, the influence
of the thermal environment can be ignored. The following
dimensionless variables are introduced:

𝑥∗ = 𝑥𝐿 , (2a)

𝑤∗ = 𝑤𝐿 , (2b)

𝑡∗ = 𝑡𝐿2√ 𝐸0𝐼𝑚𝑓 + 𝜌0𝐴, (2c)

V∗ = V𝐿√ 𝑚𝑓𝐸0𝐼 , (2d)

𝛼 (𝑥∗) = 𝐸 (𝑥∗)𝐸0 , (2e)

𝛽 = √ 𝑚𝑓𝑚𝑓 + 𝜌0𝐴, (2f)

𝛾 (𝑥∗) = 𝑚𝑓 + 𝜌 (𝑥∗) 𝐴𝑚𝑓 + 𝜌0𝐴 , (2g)

where 𝐸0 and 𝜌0 are the corresponding Young’s modulus
and mass density at the end 𝑥∗ = 0. Substituting (2a)–(2g)
into (1a)–(1e) gives the dimensionless equation (dropping the
superposed asterisks for simplicity)

𝜕2𝜕𝑥2 [𝛼 (𝑥) 𝜕
2𝑤𝜕𝑥2 ] + V2 𝜕

2𝑤𝜕𝑥2 + 2𝛽V 𝜕
2𝑤𝜕𝑥𝜕𝑡 + 𝛾 (𝑥) 𝜕

2𝑤𝜕𝑡2
= 0,

(3a)

together with the boundary conditions

𝑤 (0, 𝑡) = 0, (3b)

𝜕𝑤 (0, 𝑡)𝜕𝑥 = 0, (3c)

𝑤 (1, 𝑡) = 0, (3d)

𝜕𝑤 (1, 𝑡)𝜕𝑥 = 0. (3e)

The initial conditions are defined as follows:

𝑤 (𝑥, 0) = 0, (4a)

𝑤̇ (𝑥, 0) = V0 sin (𝜋𝑥) . (4b)

3. Integral Transform Solution

To conduct the integral transform technique, the additional
eigenvalue problem should be introduced for the governing
equation (3a) with the boundary conditions (3b)–(3e). The
coordinate “𝑥” is eliminated by using integral transformation,
and the eigenvalue problem is employed for the transverse
displacement as follows:

d4𝑋𝑖 (𝑥)
d𝑥4 = 𝜇4𝑖𝑋𝑖 (𝑥) , 0 < 𝑥 < 1, (5a)

with the boundary conditions

𝑋𝑖 (0) = 0, (5b)

d𝑋𝑖 (0)
d𝑥 = 0, (5c)

𝑋𝑖 (1) = 0, (5d)

d𝑋𝑖 (1)
d𝑥 = 0, (5e)

where𝑋𝑖(𝑥) and 𝜇𝑖 are the eigenfunctions and eigenvalues of
problem (5a)–(5e), respectively. The orthogonality property
should be satisfied by the eigenfunctions

∫1
0
𝑋𝑖 (𝑥)𝑋𝑗 (𝑥) d𝑥 = 𝛿𝑖𝑗𝑁𝑖, (6)

with 𝛿𝑖𝑗 = 0 when 𝑖 ̸= 𝑗 and 𝛿𝑖𝑗 = 1 when 𝑖 = 𝑗. The norm is
defined as

𝑁𝑖 = ∫1
0
𝑋2𝑖 (𝑥) d𝑥. (7)

Eigenvalue problem (5a)–(5e) can be solved analytically
to generate

𝑋𝑖 (𝑥)

=
{{{{{{{{{

cos [𝜇𝑖 (𝑥 − 1/2)]
cos (𝜇𝑖/2) − cosh [𝜇𝑖 (𝑥 − 1/2)]

cosh (𝜇𝑖/2) , for 𝑖 odd,
sin [𝜇𝑖 (𝑥 − 1/2)]

sin (𝜇𝑖/2) − sinh [𝜇𝑖 (𝑥 − 1/2)]
sinh (𝜇𝑖/2) , for 𝑖 even,

(8)

where the eigenvalues are calculated through the transcen-
dental equations:

tanh(𝜇𝑖2 ) =
{{{{{{{
− tan(𝜇𝑖2 ) , for 𝑖 odd,
tan(𝜇𝑖2 ) , for 𝑖 even, (9)

and the normalization of integral is

𝑁𝑖 = 1, 𝑖 = 1, 2, 3, . . . . (10)

Then, the normalized eigenfunction yields

𝑋̃𝑖 (𝑥) = 𝑋𝑖 (𝑥)𝑁1/2𝑖 . (11)
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For the transverse displacement, the integral transforma-
tion and the inversion equations are as follows:

𝑤𝑖 (𝑡) = ∫1
0
𝑋̃𝑖 (𝑥)𝑤 (𝑥, 𝑡) d𝑥, transform, (12a)

𝑤 (𝑥, 𝑡) = ∞∑
𝑖=1

𝑋̃𝑖 (𝑥) 𝑤𝑖 (𝑡) , inverse. (12b)

Now, the integral transformation procedure is conducted
by operation of (3a) with ∫1

0
𝑋̃𝑖(𝑥)d𝑥, to obtain the trans-

formed transverse displacement equation system:

∞∑
𝑗=1

[𝐴 𝑖𝑗 d
2𝑤𝑗 (𝑡)
d𝑡2 + 2𝛽V𝐵𝑖𝑗 d𝑤𝑗 (𝑡)d𝑡

+ (V2𝐶𝑖𝑗 + 𝐷𝑖𝑗 + 2𝐸𝑖𝑗 + 𝜇4𝑗𝐹𝑖𝑗)𝑤𝑗 (𝑡)] = 0,
𝑖 = 1, 2, 3, . . . ,

(13a)

where the coefficients are given by the integrals below

𝐴 𝑖𝑗 = ∫1
0
𝛾 (𝑥) 𝑋̃𝑖 (𝑥) 𝑋̃𝑗 (𝑥) d𝑥, (13b)

𝐵𝑖𝑗 = ∫1
0
𝑋̃𝑖 (𝑥) 𝑋̃𝑗 (𝑥)󸀠 d𝑥, (13c)

𝐶𝑖𝑗 = ∫1
0
𝑋̃𝑖 (𝑥) 𝑋̃𝑗 (𝑥)󸀠󸀠 d𝑥, (13d)

𝐷𝑖𝑗 = ∫1
0
𝛼 (𝑥)󸀠󸀠 𝑋̃𝑖 (𝑥) 𝑋̃𝑗 (𝑥)󸀠󸀠 d𝑥, (13e)

𝐸𝑖𝑗 = ∫1
0
𝛼 (𝑥)󸀠 𝑋̃𝑖 (𝑥) 𝑋̃𝑗 (𝑥)󸀠󸀠󸀠 d𝑥, (13f)

𝐹𝑖𝑗 = ∫1
0
𝛼 (𝑥) 𝑋̃𝑖 (𝑥) 𝑋̃𝑗 (𝑥) d𝑥. (13g)

In a similarway, the initial conditions can be also transformed
to eliminate “𝑥” coordinate:

𝑤𝑖 (0) = 0, (14a)

d𝑤𝑖 (0)
d𝑡 = V0 ∫1

0
𝑋̃𝑖 (𝑥) sin (𝜋𝑥) d𝑥,

𝑖 = 1, 2, 3, . . . .
(14b)

In the computational process, the expansion for the
transverse displacement is truncated to finite orders 𝑁𝑊.
Equations (13a)–(13g), (14a), and (14b) in the truncated series
are calculated using the NDSolve inMathematica [43]. Once
the values of 𝑤𝑖 are determined, the inversion formulas
equation (12b) is subsequently employed to yield explicit
expression for the transverse displacement 𝑤(𝑥, 𝑡).

4. Results and Discussion

4.1. Convergence Behavior of the Solution. Wenowpresent the
convergence behavior of numerical results for the transverse
displacement𝑤(𝑥, 𝑡) of a functionally graded pipe conveying
fluid calculated using the GITT approach. For the case
examined, the geometrical parameters adopted by Zhai et al.
[20] are taken in (1a)–(1e): 𝐿 = 1010mm, 𝐷 = 22.85mm,
and 𝑑 = 19.65mm, where 𝐷 and 𝑑 are the outer and inner
diameters of pipe cross section, respectively. In this study,
we assume that the material properties of the pipe, such as
Young’s modulus 𝐸 and mass density 𝜌, vary continuously as
a power law through the pipe axis [34]: 𝑃(𝑥) = (𝑃𝐿 − 𝑃𝑅)(1 −𝑥/𝐿)𝑘+𝑃𝑅, where𝑃𝑅 and𝑃𝐿 are the correspondingmaterial of
the right and the left side of the pipe, and 𝑘 is the nonnegative
power-law exponent which dictates the material variation
profile through the pipe axis. In the following calculations,
aluminum and zirconia are chosen for the corresponding
material of the left and the right sides of the pipe, respectively,
the material properties of which are [29] 𝐸𝑎 = 70GPa,𝜌𝑎 = 2702 kg/m3 for aluminum, and 𝐸𝑧 = 200GPa, 𝜌𝑧 =5700 kg/m3 for zirconia. The fluid density conveying in the
pipe is 𝜌𝑓 = 1000 kg/m3. The dimensionless variables can
be obtained through (2a)–(2g). The solution of the system,
(13a)–(13g), (14a), and (14b), is obtained with 𝑁𝑊 ≤ 16 to
analyze the convergence behavior.

The dimensionless transverse displacement 𝑤(𝑥, 𝑡) at
different positions, 𝑥 = 0.1, 0.3, 0.5, 0.7, and 0.9, of
axially FG pipes conveying fluid is presented in Tables 1
and 2, respectively. The convergence behavior of the integral
transform solution is examined for increasing truncation
terms𝑁𝑊 = 4, 8, 12, and 16 at 𝑡 = 10, 20, and 30, respectively.
For the dimensionless transverse displacement with V = 1.0
and 𝑘 = 1.0, it can be observed that convergence is achieved
essentially with a reasonably low truncation order (𝑁 ≤ 8).
For a full convergence to three significant digits, more terms
(e.g.,𝑁 ≤ 12) are required. The results at 𝑡 = 30 indicate that
the excellent convergence behavior of the integral transform
solution does not change with time, verifying the good long-
time numerical stability of the scheme. For the dimensionless
transverse displacement with V = 3.0 and 𝑘 = 1.0, conver-
gence to three significant digits is achieved with truncation
order𝑁 ≤ 16, which demonstrates that the increasing of V can
make the solution with a relatively slow convergence. For the
same cases, the profiles of the transverse displacement at 𝑡 =20 are illustrated in Figure 2 with different truncation orders,
where it can be clearly seen that the convergence behavior of
the integral transform solution for the case of V = 1.0 is better
than the case of V = 3.0.
4.2. Verification of the Solution. The influence of fluid velocity
on the first five dimensionless natural frequencies of axially
FG pipes conveying fluid with the power-law exponent 𝑘 =1.0 is presented in Table 3. To obtain the natural circular
frequencies for the transverse vibration of the system, the
coupled ODEs, (13a)–(13g), can be represented in the matrix
form as follows:

Mẅ (𝑡) + Cẇ (𝑡) + Kw (𝑡) = F (𝑡) . (15)
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Table 1: Convergence behavior of the dimensionless transverse displacement 𝑤(𝑥, 𝑡) of FG pipes conveying fluid for V = 1.0 and 𝑘 = 1.0.
𝑥 𝑁𝑊 = 4 𝑁𝑊 = 8 𝑁𝑊 = 12 𝑁𝑊 = 16
𝑡 = 10

0.1 0.0044244 0.0037878 0.0039159 0.0039563
0.3 0.0191635 0.0206171 0.0206690 0.0207072
0.5 0.0207420 0.0244299 0.0245583 0.0246031
0.7 0.0127285 0.0124189 0.0123877 0.0124042
0.9 0.0021788 0.0012293 0.0012868 0.0013476

𝑡 = 20
0.1 −0.0060519 −0.0062440 −0.0060664 −0.0060803
0.3 −0.0291388 −0.0296250 −0.0298559 −0.0298584
0.5 −0.0358924 −0.0382805 −0.0382784 −0.0382978
0.7 −0.0235454 −0.0256259 −0.0257693 −0.0257332
0.9 −0.0040988 −0.0044978 −0.0042350 −0.0042428

𝑡 = 30
0.1 0.0064297 0.0066167 0.0064907 0.0064724
0.3 0.0325025 0.0313819 0.0315394 0.0315556
0.5 0.0405411 0.0390336 0.0384158 0.0383750
0.7 0.0251618 0.0234384 0.0238947 0.0239246
0.9 0.0040959 0.0038549 0.0037553 0.0037439

Table 2: Convergence behavior of the dimensionless transverse displacement 𝑤(𝑥, 𝑡) of FG pipes conveying fluid for V = 3.0 and 𝑘 = 1.0.
𝑥 𝑁𝑊 = 4 𝑁𝑊 = 8 𝑁𝑊 = 12 𝑁𝑊 = 16
𝑡 = 10

0.1 0.0030463 0.0024006 0.0026071 0.0026145
0.3 0.0083268 0.0100507 0.0099890 0.0099936
0.5 0.0025960 0.0057039 0.0059138 0.0059497
0.7 −0.0013099 −0.0021990 −0.0022931 −0.0023027
0.9 −0.0006775 −0.0011992 −0.0010060 −0.0010314

𝑡 = 20
0.1 −0.0019432 −0.0013335 −0.0015234 −0.0015166
0.3 −0.0071319 −0.0088004 −0.0088014 −0.0088167
0.5 −0.0055658 −0.0118234 −0.0123907 −0.0124569
0.7 −0.0028723 −0.0073600 −0.0070684 −0.0071240
0.9 −0.0005661 −0.0009220 −0.0011155 −0.0011267

𝑡 = 30
0.1 0.0033760 0.0043476 0.0041930 0.0041604
0.3 0.0113849 0.0171511 0.0168645 0.0169404
0.5 0.0093804 0.0150589 0.0157554 0.0157545
0.7 0.0054698 0.0066738 0.0066753 0.0066903
0.9 0.0008500 0.0005556 0.0008388 0.0009427

The fluid velocities of 0, 10, 20, 30, 40, and 50m/s are
considered, and, with the increasing of the velocity, all
of the five natural frequencies of the system decrease. To
demonstrate the validity and accuracy of the proposed GITT
approach, GITT solution for dimensionless free vibration
frequencies for clamped-clamped pipes with 𝑚𝑓 = 0 and𝑘 = 0 is calculated to compare with the results presented
in the literature [42], where the excellent agreement between
them can be found, as shown in Table 3.

4.3. Parametric Study. In this section, transverse displace-
ment of axially FG pipes conveying fluid with clamped-
clamped boundary conditions is analyzed to illustrate the
applicability of the proposed approach. Different values of
the mass ratio 𝛽, Young’s modulus ratio 𝐸ratio, the material
distribution 𝑘, and the dimensionless flow velocity V are
chosen to assess their effects on the dynamic behavior of
the system. In the following analysis, we use a relative high
truncation order,𝑁𝑊 = 16, for a sufficient accuracy.
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Table 3: Influence of fluid velocity on the first five dimensionless natural frequencies of FG pipes conveying fluid (𝑘 = 1.0).
Fluid velocity
(m/s) 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5
0 22.373∗ 61.673∗ 120.903∗ 199.859∗ 298.556∗

0 22.373∗∗ 61.673∗∗ 120.903∗∗ 199.859∗∗ 298.556∗∗

0 26.866 74.323 145.936 241.576 361.572
10 26.850 74.306 145.918 241.558 361.556
20 26.801 74.255 145.865 241.506 361.508
30 26.720 74.171 145.777 241.419 361.428
40 26.605 74.052 145.653 241.296 361.315
50 26.457 73.899 145.493 241.139 361.171
∗: dimensionless free vibration frequencies for clamped-clamped beams [42].
∗∗: GITT solution for dimensionless free vibration frequencies for clamped-clamped pipes (𝑚𝑓 = 0 and 𝑘 = 0).
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Figure 2: GITT solutions with different truncation orders 𝑁𝑊 for the dimensionless transverse displacement profiles: (a) 𝑤(𝑥, 𝑡)|𝑡=20 for
V = 1.0 and (b) 𝑤(𝑥, 𝑡)|𝑡=20 for V = 3.0 of FG pipes conveying fluid.

4.3.1. The Effect of Young’s Modulus Variation. The first three
dimensionless natural frequencies of the axially FG pipe
conveying fluid for different Young’s modulus ratios, power-
law exponent, and mass ratios are tabulated in Tables 4–6,
where the following parameters are adopted: 𝐸𝑙 = 70GPa,𝐸ratio = 𝐸𝐿/𝐸𝑅, 𝜌𝑓 = 1000 kg/m3, 𝜌ratio = 𝜌𝐿/𝜌𝑅 = 1.0, and𝜌𝐿/𝜌𝑓 = 4.0. The mass ratio is calculated by (2a)–(2g) with
the specified value of pipe thickness 𝑡 and 𝑑 = 19.65mm.The
flow velocity of the fluid is 20m/s. For the specified modulus
ratio and power exponent, all of the first three dimensionless
natural frequencies increase with the decrease of the mass
ratio. The effect of the modulus ratios on the fundamental
frequency of fluid-conveying pipewith themass ratio of 0.796
is presented in Figure 3. It is observed that the fundamental
frequency decreases significantly with increasing of modulus

ratio especially for large power exponent. On the other
hand, no significant changes can be seen in the fundamental
frequency for different modulus ratios for lower value of
power exponent. Figure 4 illustrates the variation of the
fundamental frequency with the power exponent for fluid-
conveying pipe with the mass ratio of 0.796, which shows
that the increase in power exponent causes the increase in
frequency for 𝐸ratio < 1 and the decrease in frequency for𝐸ratio > 1 and no changes occur for 𝐸ratio = 1.
4.3.2. The Effect of Material Distribution. To examine the
effect of material distribution on the frequencies of the
axially FG pipe conveying fluid, the integral transform solu-
tions are obtained based on the material properties given
in Section 4.1 and the fluid velocity of 20m/s. The first
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Table 4: The variation of the first natural angular frequencies for different material distributions 𝑘 and mass ratios 𝛽 when flow velocity is
20m/s, 𝐸ratio = 𝐸𝑙/𝐸𝑟, 𝜌ratio = 𝜌𝑙/𝜌𝑟 = 1.0, and 𝜌𝑙/𝜌𝑓 = 4.0.
𝑡 (mm) 𝛽 𝐸ratio 𝑘 = 0.0 𝑘 = 0.1 𝑘 = 0.2 𝑘 = 0.5 𝑘 = 1.0 𝑘 = 2.0 𝑘 = 5.0 𝑘 = 10.0

1.0 0.796

0.25 22.1909 25.2702 27.1859 30.5936 33.4550 36.1690 39.0072 40.4687
0.50 22.1909 23.3497 24.1498 25.6193 26.8588 28.0211 29.1967 29.7777
1.00 22.1909 22.1909 22.1909 22.1909 22.1909 22.1909 22.1909 22.1909
2.00 22.1909 21.5289 20.9829 19.8618 18.8849 17.9785 17.0936 16.6791
4.00 22.1909 21.1690 20.2790 18.3220 16.5444 14.9059 13.3283 12.5955

2.0 0.672

0.25 22.3008 25.3695 27.2788 30.6755 33.5282 36.2347 39.0667 40.5260
0.50 22.3008 23.4554 24.2525 25.7159 26.9498 28.1068 29.2778 29.8571
1.00 22.3008 22.3008 22.3008 22.3008 22.3008 22.3008 22.3008 22.3008
2.00 22.3008 21.6413 21.0977 19.9830 19.0138 18.1167 17.2418 16.8313
4.00 22.3008 21.2828 20.3968 18.4519 16.6913 15.0763 13.5273 12.8067

3.0 0.587

0.25 22.3333 25.3989 27.3063 30.6998 33.5499 36.2543 39.0844 40.5430
0.50 22.3333 23.4867 24.2829 25.7445 26.9767 28.1322 29.3018 29.8807
1.00 22.3333 22.3333 22.3333 22.3333 22.3333 22.3333 22.3333 22.3333
2.00 22.3333 21.6746 21.1317 20.0189 19.0520 18.1575 17.2856 16.8762
4.00 22.3333 21.3165 20.4318 18.4904 16.7348 15.1266 13.5858 12.8688

Table 5: The variation of the second natural angular frequencies for different material distributions 𝑘 and mass ratios 𝛽 when flow velocity
is 20m/s, 𝐸ratio = 𝐸𝑙/𝐸𝑟, 𝜌ratio = 𝜌𝑙/𝜌𝑟 = 1.0, and 𝜌𝑙/𝜌𝑓 = 4.0.
𝑡 (mm) 𝛽 𝐸ratio 𝑘 = 0.0 𝑘 = 0.1 𝑘 = 0.2 𝑘 = 0.5 𝑘 = 1.0 𝑘 = 2.0 𝑘 = 5.0 𝑘 = 10.0

1.0 0.796

0.25 61.5004 69.4713 74.6411 84.2515 92.8974 101.469 110.495 114.810
0.50 61.5004 64.4750 66.6003 70.6875 74.4028 78.0533 81.7840 83.5138
1.00 61.5004 61.5004 61.5004 61.5004 61.5004 61.5004 61.5004 61.5004
2.00 61.5004 59.8213 58.4126 55.3901 52.5094 49.6838 46.9156 45.7453
4.00 61.5004 58.9166 56.6441 51.4604 46.2746 41.1824 36.2901 34.2703

2.0 0.672

0.25 61.5959 69.5577 74.7221 84.3233 92.9617 101.527 110.547 114.860
0.50 61.5959 64.5668 66.6895 70.7715 74.4821 78.1281 81.8547 83.5830
1.00 61.5959 61.5959 61.5959 61.5959 61.5959 61.5959 61.5959 61.5959
2.00 61.5959 59.9190 58.5124 55.4955 52.6216 49.8040 47.0441 45.8770
4.00 61.5959 59.0156 56.7467 51.5737 46.4032 41.3315 36.4620 34.4515

3.0 0.587

0.25 61.6276 69.5864 74.7490 84.3471 92.9830 101.546 110.564 114.876
0.50 61.6276 64.5973 66.7191 70.7995 74.5085 78.1529 81.8782 83.6060
1.00 61.6276 61.6276 61.6276 61.6276 61.6276 61.6276 61.6276 61.6276
2.00 61.6276 59.9515 58.5456 55.5305 52.6589 49.8439 47.0868 45.9207
4.00 61.6276 59.0485 56.7809 51.6114 46.4459 41.3809 36.5192 34.5117

five natural angular frequencies for different mass ratios
and power exponents are reported in Table 7. All of the
natural frequencies (𝜔1, 𝜔2, . . . , 𝜔5) increase with the power
exponent for the specified mass ratio. Note that the natural
frequencies increase with the decrease of the mass ratio for
the case of 𝑘 = 0.0, which means the pipe is made of single-
component, aluminum. However, when considering the FG
material with the power exponents 𝑘 = 0.1, 0.2, . . . , 10, the
natural frequencies decrease with the decrease of the mass
ratio.

The variation of vibration amplitudes for different mate-
rial distributions and mass ratios is listed in Table 8. It can be

seen that the vibration amplitude decreases with the increase
of the power exponent and increases with the decrease of the
mass ratio.

In addition, the effect of material distribution on the
critical velocity of fluid-conveying pipe with the material
properties given in Section 4.1 is analyzed, as shown in
Figure 5, which exhibits the variation of the fundamental
frequency with the flow velocity of fluid for different power
exponents. It can be clearly seen that the fundamental
frequency decreases with the flow velocity for the specified
power exponent, and the critical velocity (𝜔1 = 0) increases
with the power exponent.
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Table 6: The variation of the third natural angular frequencies for different material distributions 𝑘 and mass ratios 𝛽 when flow velocity is
20m/s, 𝐸ratio = 𝐸𝑙/𝐸𝑟, 𝜌ratio = 𝜌𝑙/𝜌𝑟 = 1.0, and 𝜌𝑙/𝜌𝑓 = 4.0.
𝑡 (mm) 𝛽 𝐸ratio 𝑘 = 0.0 𝑘 = 0.1 𝑘 = 0.2 𝑘 = 0.5 𝑘 = 1.0 𝑘 = 2.0 𝑘 = 5.0 𝑘 = 10.0

1.0 0.796

0.25 120.726 135.934 145.948 164.997 182.693 200.618 219.333 227.933
0.50 120.726 126.374 130.466 138.522 146.073 153.635 161.360 164.876
1.00 120.726 120.726 120.726 120.726 120.726 120.726 120.726 120.726
2.00 120.726 117.564 114.895 109.017 103.185 97.3618 91.6997 89.3743
4.00 120.726 115.872 111.598 101.632 91.1682 80.6355 70.6481 66.6398

2.0 0.672

0.25 120.822 136.020 146.028 165.068 182.757 200.677 219.386 227.984
0.50 120.822 126.466 130.555 138.606 146.153 153.711 161.432 164.946
1.00 120.822 120.822 120.822 120.822 120.822 120.822 120.822 120.822
2.00 120.822 117.663 114.996 109.124 103.298 97.4820 91.8275 89.5047
4.00 120.822 115.972 111.702 101.747 91.2969 80.7826 70.8185 66.8177

3.0 0.587

0.25 120.855 136.049 146.056 165.092 182.779 200.697 219.405 228.002
0.50 120.855 126.498 130.586 138.635 146.180 153.737 161.457 164.970
1.00 120.855 120.855 120.855 120.855 120.855 120.855 120.855 120.855
2.00 120.855 117.697 115.031 109.160 103.336 97.5231 91.8713 89.5494
4.00 120.855 116.006 111.738 101.786 91.3409 80.8330 70.8770 66.8789
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Young’s modulus ratio.

5. Conclusions

The generalized integral transform technique (GITT) has
proved in this paper to be a good approach for the anal-
ysis of dynamic behavior of an axially FG pipe conveying
fluid, providing an accurate numerical-analytical solution for
the natural frequencies and transverse displacements. The
investigation shows that the solutions converge to the values
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with three significant figures at a reasonable low truncation
order 𝑁 ≤ 12 for V = 1.0, and the increasing of V
can make the solution with a relatively slow convergence.
The numerical results obtained are in good agreement with
the ones presented in the literature. The parametric studies
indicate that the fundamental frequency decreases signifi-
cantly with increasing of modulus ratio especially for large
power exponent, while no significant changes can be seen
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Table 7: The variation of natural angular frequencies for different material distributions 𝑘 and mass ratios 𝛽 when flow velocity is 20m/s.

𝑡 (mm) 𝛽 𝜔𝑖 𝑘 = 0.0 𝑘 = 0.1 𝑘 = 0.2 𝑘 = 0.5 𝑘 = 1.0 𝑘 = 2.0 𝑘 = 5.0 𝑘 = 10.0

1.0 0.796

𝑖 = 1 22.1835 23.8868 24.9026 26.4715 27.4513 28.1186 28.8294 29.4111𝑖 = 2 61.5036 65.7479 68.3906 72.7928 76.1318 79.0050 81.8223 83.2525𝑖 = 3 120.732 128.668 133.700 142.428 149.573 156.161 162.514 165.285𝑖 = 4 199.693 212.486 220.721 235.305 247.679 259.404 270.748 275.362𝑖 = 5 298.392 317.258 329.420 351.361 370.905 389.776 407.194 413.686

2.0 0.672

𝑖 = 1 22.2976 23.8315 24.6962 25.9020 26.4864 26.7497 27.1061 27.5738𝑖 = 2 61.5972 65.3592 67.5855 71.0306 73.3695 75.2171 77.0180 78.0331𝑖 = 3 120.825 127.785 131.993 138.872 144.125 148.770 153.121 155.007𝑖 = 4 199.781 210.932 217.798 229.340 238.617 247.159 255.195 258.328𝑖 = 5 298.477 314.839 324.951 342.322 357.127 371.143 383.736 388.144

3.0 0.587

𝑖 = 1 22.3317 23.7692 24.5496 25.5605 25.9443 26.0152 26.2112 26.6270𝑖 = 2 61.6283 65.1117 67.1047 70.0359 71.8650 73.2123 74.5377 75.3643𝑖 = 3 120.856 127.252 131.000 136.890 141.179 144.870 148.272 149.752𝑖 = 4 199.812 210.013 216.115 226.033 233.735 240.712 247.171 249.620𝑖 = 5 298.508 313.428 322.400 337.340 349.740 361.370 371.651 375.089

Table 8: The variation of vibration amplitudes for different material distributions 𝑘 and mass ratios 𝛽 when flow velocity is 20m/s.

𝑡 (mm) 𝛽 𝑘 = 0.0 𝑘 = 0.1 𝑘 = 0.2 𝑘 = 0.5 𝑘 = 1.0 𝑘 = 2.0 𝑘 = 5.0 𝑘 = 10.0
1.0 0.796 0.05064 0.04742 0.04562 0.04265 0.04067 0.03966 0.03864 0.03787
2.0 0.672 0.05071 0.04779 0.04607 0.04365 0.04226 0.04176 0.04093 0.04042
3.0 0.587 0.05076 0.04794 0.04657 0.04431 0.04315 0.04276 0.04237 0.04192

30

20

10

0

D
im

en
sio

nl
es

s f
re

qu
en

cy
 (𝜔

1
)

Dimensionless flow velocity
0 2 4 6 8 10

k = 0.0

k = 0.1

k = 0.2
k = 0.5

k = 1.0

k = 2.0
k = 5.0

k = 10.0
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in the fundamental frequency for different modulus ratios
for lower value of power exponent. The increase in power
exponent causes the increase in frequency for 𝐸ratio < 1 and
the decrease in frequency for 𝐸ratio > 1 and no changes

occur for 𝐸ratio = 1. The natural frequency increases with
the power exponent, and the natural frequency decreases
with the decrease of the mass ratio when considering the
pipe is made of the FG material with the power exponents𝑘 = 0.1, 0.2, . . . , 10. The vibration amplitude decreases with
the increase of the power exponent and increases with the
decrease of the mass ratio. The critical velocity of fluid-
conveying pipe increases with the power exponent. For future
investigation, the proposed approach can be employed to
predict the dynamic behavior of a transversally FG pipe
conveying fluid and for more general boundary conditions.

Competing Interests
The authors declare that they have no competing interests.

Acknowledgments
The work was supported by National Natural Science Foun-
dation of China (Grant no. 51509258), Science Foundation
of China University of Petroleum, Beijing (Grants nos.
2462013YJRC003 and C201602), National Key Research and
Development Plan (Grant no. 2016YFC0303700), and CNPq
(Grant no. 306618/2010-9) and CAPES and FAPERJ (Grant
no. E-26/102.871/2012) of Brazil.

References

[1] M. H. Sadeghi and M. H. Karimi-Dona, “Dynamic behavior of
a fluid conveying pipe subjected to a moving sprung mass—
an FEM-state space approach,” International Journal of Pressure
Vessels and Piping, vol. 88, no. 4, pp. 123–131, 2011.



10 Mathematical Problems in Engineering
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