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Abstract. This lecture offers an updated review on the Generalized Integral Transform 

Technique (GITT), with focus on handling complex geometries, coupled problems, and 

nonlinear convection-diffusion, so as to illustrate some new application paradigms. Special 

emphasis is given to demonstrating novel developments, such as a single domain reformulation 

strategy that simplifies the treatment of complex geometries, an integral balance scheme in 

handling multiscale problems, the adoption of convective eigenvalue problems in dealing with 

strongly convective formulations, and the direct integral transformation of nonlinear 

convection-diffusion problems based on nonlinear eigenvalue problems. Representative 

application examples are then provided that employ recent extensions on the Generalized 

Integral Transform Technique (GITT), and a few numerical results are reported to illustrate the 

convergence characteristics of the proposed eigenfunction expansions.  

1. Introduction 

Integral transforms are classical analytical tools in providing exact solutions for certain classes of 

linear partial differential equations, which have been extensively employed in engineering and 

physical sciences, including thermal sciences and engineering, for more than a century [1-4]. With the 

concurrent development of computers and numerical methods for PDE´s, such class of analytical 

approach has to some extent lost relevance in the realm of applications, and only retained a 

complementary role in the verification of numerical codes and in the solution of sufficiently simple 

linear problems. Nevertheless, the integral transforms method was progressively extended and 

generalized along the last three decades, leading to the establishment of a hybrid numerical-analytical 

methodology, known as the Generalized Integral Transform Technique (GITT) [5-11]. The 

generalized approach consists of choosing an eigenvalue problem, that retains part of the information 

on the operators of the original problem, and proposing an eigenfunction expansion, which leads to a 

coupled linear or nonlinear infinite transformed system, usually to be numerically solved upon 

truncation to a sufficiently large order. Therefore, the numerical task is undertaken essentially in one 

single independent variable, usually time, and the solution is analytically recovered in all the other 

space variables. This hybrid numerical-analytical method holds the relative merits on robustness and 

accuracy of an analytical technique, while gaining the applicability and flexibility of a purely 

numerical approach. Various classes of problems that could not in principle be handled by the classical 
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approach were then progressively dealt with via the generalized concept. The list of extensions 

achieved through the GITT includes solving equations with time variable coefficients, moving 

boundary problems, nonlinear formulations in general, irregular domains, eigenvalue problems, 

boundary layer and Navier-Stokes equations, etc, as reviewed in different sources [5-11].  

In recent years, there has been an effort to consolidate this knowledge on the GITT into a general 

purpose open source algorithm, known as the UNIT (UNified Integral Transforms) algorithm [11-14]. 

Such a demand, together with fairly recent application challenges [15-24], have induced the 

proposition of novel computational schemes and theoretical extensions, that have not yet been 

presented in a systematic form, as here attempted. Among such recent advancements, one may point 

out the proposition of progressive filtering for multidimensional problems [13-14], the implementation 

of reordering schemes via multiple criteria [13-14], the single domain reformulation strategy for 

complex geometries [15-19], the solution of coupled nonlinear reactive flow systems [20], the integral 

balance approach for convergence enhancement of multiscale problems [21-22], the proposition of 

convective eigenvalue problems for highly convective formulations [23], and the direct use of 

nonlinear eigenvalue problems in the integral transformation process of nonlinear PDEs [24]. Before 

incorporating such developments into a general purpose algorithm, it is of interest to compile and link 

these ideas, so as to permit a continuous unification effort, as here discussed. A couple of selected 

examples are also presented to illustrate the recent application challenges posed to the integral 

transforms approach, involving transient conjugated heat transfer in microsystems and on the analysis 

of mass transfer with multiple nonlinear reactions in biodiesel synthesis within micro-reactors. 

2. Formal Solution 

So as to provide a basis for the comprehension of the proposed extensions, the formal GITT solution 

to a general nonlinear convection-diffusion problem is first presented. A transient convection-diffusion 

problem of n coupled potentials is thus considered, defined in region V, with boundary surface S [14]:  

 

,( ) ( , ) ( , ) ( , , ). ( , ) ( , , ),    ,   0,   1,2,...,k k t k k k k kw L T t LT t t T t g t V t n      x x x u x T x x T x        (1a) 

where the t variable operator, ,k tL , for a parabolic or parabolic-hyperbolic formulation  may be given 

by,  

,k tL
t




                                                                                (1b) 

while for an elliptic or hyperbolic formulation it is written as 

, ( ) ( )k t k kL a t b t
t t

 

 

 
   

 
                                                                  (1c) 

and the remaining space coordinates operator, with diffusion and linear dissipation, is given as 

 ( ) ( )k k kL K d  x x                                                                     (1d) 

The initial or boundary conditions in the t variable are given, respectively, by 

( ,0) ( ),      k kT f V x x x ,   for the parabolic formulation                                          (1e) 

( ,0)
( ,0) ( ),    ( ),   k

k k k

T
T f h V

t


  



x
x x x x ,   for the hyperbolic formulation                                (1f) 

or 

1

, , ,( ) ( 1) ( ) ( , ) ( ),  at = , =0,1, l

k l k l k k l lt t T t f t t l V
t


 



 
    

 
x x x , for the elliptic formulation         (1g) 

and the boundary conditions in the remaining coordinates is concisely written as 

( , ) ( , , ),  , 0k k kB T t t S t  x x T x                                                   (1h) 

with the boundary conditions operator 
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( ) ( ) ( )k k k kB K
 

  
 

x x x
n


 


                         (1i) 

where n denotes the outward-drawn normal to the surface S, and  the coupled potentials vector is 

given by 

 1 2, ,..., ,...,k nT T T TT                                                                (1j) 

Equations (1) are fairly general since nonlinear terms may be grouped into the equations and 

boundary conditions source terms. In the case of decoupled linear source terms, i.e., ( , )g g t x , and 

( , )t  x , and in the absence of the convective term ( 0u ), this example is reduced to a class I 

linear diffusion problem for each potential, according to the classification in [4], and exact analytical 

solutions are readily available via the Classical Integral Transform Technique.   

Following the formal solution procedure for nonlinear convection-diffusion problems through 

integral transforms, one starts with the proposition of eigenfunction expansions for the associated 

potentials. The preferred eigenvalue problem choice appears from the direct application of the 

separation of variables methodology to the linear homogeneous purely diffusive version of the 

proposed problem. Thus, the recommended set of decoupled auxiliary problems is here given by: 
2[ ( )] ( ) 0,   k ki k kiL w V  x x x                                                              (2a) 

( ) 0,   k kiB S x x                                                                     (2b) 

where the eigenvalues, ki , and associated eigenfunctions, ( )ki x , are assumed to be known from 

exact analytical expressions, for instance obtained through symbolic computation [25], or application 

of the GITT itself [6,11]. One should notice that eqs. (1) are presented in such a form which already 

reflects this choice of eigenvalue problems, given by eqs. (2), with the adoption of linear x-dependent 

coefficients in both the equations and boundary conditions, and incorporating the remaining terms 

(coupling, nonlinear and convective terms) into the source terms, without loss of generality. 

Making use of the orthogonality properties of the eigenfunctions, it is then possible to define the 

following integral transform pairs: 

( ) ( ) ( ) ( , )dki k ki k
V

T t w T t V  x x x ,          transforms                                           (3a) 

,

1

( , ) ( ) ( )k ki k i

i

T t T t




x x ,          inverses                                                    (3b) 

where the symmetric kernels ( )ki x  are given by 

( )
( ) ki

ki

kiN


x
x


 ;   

2

v
( ) ( )dki k kiN w v  x x                                                      (3c,d) 

with Nki being the normalization integral. 

The integral transformation of eq.(1a) is accomplished by applying the operator 

 ( ) dki
V

V x and making use of the boundary conditions given by eqs. (1g) and (2b), yielding: 

2

, ( ) ( ) ( , ),         k t ki ki ki kiL T t T t g t i=1,2,... , t>0, k =1,2,...,n  T                               (4a) 

where the transformed source term ( , )kig t T is due to the integral transformation of the equation source 

terms and of the boundary source terms: 

 
   

( )
( ) ( )

( , ) ( ) ( , , ). ( , ) ( , , ) ( , , )

ki
ki k

ki ki k k k
V S

k k

K

g t t T t g t dV t ds

 
       

 
 

x
x x

nT x u x T x x T x T
x x




 
 

      

(4b) 

The initial or boundary conditions in the t variable given by eqs. (1e-1g) are transformed through 

the operator  ( ) ( )k ki
V

w dV x x , to provide: 
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(0) ( ) ( ) ( )ki ki k ki k
V

T f w f dV   x x x , for the parabolic problem                     (4c) 

0

(0) ; ( ) ( ) ( )ki
ki ki ki k ki k

V
t

dT
T f h w h dV

dt


    x x x , for the hyperbolic problem                     (4d,e) 

1

, , , ,( ) ( 1) ( ) ( ) ( ) ( ) ( ) ,  at = , =0,1, l

k l k l ki k li k ki k l l
V

d
t t T t f w f dV t t l

dt

 
    

 
 x x x   for the elliptic 

problem      (4f) 

For the solution of the infinite coupled system of nonlinear ordinary differential equations given 

by eqs. (4), one usually needs to make use of numerical algorithms, after the truncation of the system 

to a sufficiently large finite order. For instance, the built-in routine of the Mathematica system [25], 

NDSolve, may be employed, which is able to provide reliable solutions under automatic absolute and 

relative errors control. After the transformed potentials have been numerically computed, the 

Mathematica routine automatically provides an interpolating function object that approximates the t 

variable behavior of the solution in a continuous form. Then, the inversion formula can be recalled to 

yield the potential field representation at any desired position x and t. 

The formal solution regarding the standard procedure of the UNIT algorithm is known as the total 

transformation scheme, described in [11-14], in which all spatial variables are integral transformed. 

There is also the partial integral transformation scheme option of the UNIT algorithm [11,14], as an 

alternative solution path to problems with a strong convective direction, which is not eliminated 

through integral transformation, but kept within the transformed system. This alternative 

transformation scheme will not be examined in the present review. 

3. Recent Developments 

A few recent developments are now discussed, which significantly enhance the applicability of the 

hybrid approach in complex geometric configurations, multiscale variable properties and/or 

dimensions, and coupled convective and nonlinear formulations.  

3.1.  Reordering Schemes  

In multidimensional applications, the final integral transform solution for the related potential could 

in principle be expressed as double or triple infinite summations for two or three-dimensional transient 

problems, respectively. From a computational point of view, only a truncated version of such 

summations should be actually evaluated. However, if one just truncates each individual summation to 

a certain prescribed finite order, computations become quite ineffective. Some important information 

to the final result can be disregarded due to the fixed summations limits, while other terms are 

accounted for that have practically no contribution to convergence of the potential in the relative 

accuracy required. Therefore, for an appropriate computation of these expansions, the infinite multiple 

summations should first be converted to a single sum representation with the appropriate reordering of 

terms according to their individual contribution to the final numerical result [8]. Then, it becomes 

possible to evaluate the minimal number of eigenvalues and related derived quantities required to 

reach the user-prescribed accuracy target. Since the final solution is not, of course, known a priori, the 

parameter which shall govern this reordering scheme must be chosen with care. The most common 

choice of reordering strategy is based on arranging in increasing order the sum of the squared 

eigenvalues in each spatial coordinate, which offers a good compromise between the overall 

convergence enhancement and simplicity in use. However, individual applications may require more 

elaborate reordering that accounts for the influence of transformed initial conditions and transformed 

nonlinear source terms in the ODE system, as discussed in what follows. 

To more clearly understand alternative reordering schemes, let us start from the formal solution of 

the transformed potentials, equations (4), for the parabolic problem case, which is written as: 
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 2 2

0

( ) exp ( ', )exp ( ') '

t

ki ki i ki iT t f t g t t t dt        T     (5) 

Integration by parts of eq.(5) provides an alternative expression that allows the understanding of 

the influence of the transformed initial conditions and source terms in the choice of reordering 

schemes, in rewriting the multiple series as a single one: 

   2 2 2

2 2

0

1 1
( ) exp ( , ) (0, )exp exp ( ') '

'

t

ki
ki ki i ki ki i i

i i

dg
T t f t g t g t t t dt

dt
  

 
             T T     (6)  

It is evident that the squared eigenvalues, which involve the combination of the eigenvalues in 

each spatial coordinate,  play the most important role in the decay of the absolute values of the 

transformed potentials, and thus of the infinite summation parcels, both through the exponential term 

 2exp i t  and, at lower convergence rates, through the inverse of the squared eigenvalues, 
21/ i . 

Therefore, the traditionally employed reordering scheme based on the ascending order of the squared 

eigenvalues should be able to account for the most important terms in the adequate reorganization of 

the expansion. Nevertheless, supposing that the last integral term in eq. (6) plays a less important role 

in the reordering choice, and in fact it vanishes when the source term is not time dependent, one 

concludes that the decay of the transformed initial condition and the transformed source term 

evolution from its initial value, play a complementary role in the selection of terms in the 

eigenfunction expansion for a fixed truncation order. Thus, a more robust selection can be proposed, 

based on adding to the initially reordered terms, according to the squared eigenvalues criterion, those 

extra terms that might be of significant contribution to the final result under the analysis of the initial 

condition decay and/or the transformed source term behavior. In the first case, for the lowest time 

value of interest, mint t , the criterion that reorders the terms based on the decay of the initial 

conditions is based on sorting in decreasing order from the expression  2

minexpki if t . In the second 

case, for the general situation of a nonlinear transformed source term, the estimation of the terms 

importance is more difficult, since the source terms, in the more general nonlinear situation, are not 

known a priori. One possible approach is to consider the limiting case of an uniform unitary source 

term, representing for instance its normalized maximum value, and analyzing the reordering of terms 

in descending absolute value based on the expression 
2

1
( )ki

i V

dV
  x . Therefore, combining the three 

criteria, and eliminating the duplicates with respect to the traditional reordering scheme based on the 

squared eigenvalues, a few extra terms are added to the initially reordered terms that may have still 

some relevant effect in the final truncated summation.  

3.2. Single Domain Formulation 

Consider now a general transient convection-diffusion problem, which corresponds to the general 

parabolic formulation represented in section 2, defined in a complex multidimensional configuration 

that is represented by Vn different sub-regions with volumes lV , 1,2,..., Vl n , with potential and flux 

continuity at the interfaces among themselves, as illustrated in Figure 1a [11]. We consider that a 

certain number of potentials are to be calculated in each sub-region, , ( , )k lT tx , 1,2,...,k n , governed 

in the corresponding sub-region through this fairly general formulation including the general equation 

and boundary source terms, respectively, , ( , , )k lP tx T  and , ( , , )k l t x T . For conciseness, the nonlinear 

equation source term already incorporates the nonlinear convective term in eq.(1a). Thus, 

 ,

, , , , , ,

( , )
( ) ( ) ( , ) ( ) ( , ) ( , , ),    

                ,   0,   1,2,..., ,   1,2,...,

k l

k l k l k l k l k l k l

l Vk l

T t
w K T t d T t P t

t

V t n n




    

   

x
x x x x x x T

x

                          (7a) 

with initial, interface and boundary conditions given, respectively, by 
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, ,( ,0) ( ),      k l k l lT f V x x x      (7b) 

, , ,( , ) ( , ),  , 0k l k m l mT t T t S t  x x x      (7c) 

, ,

, , ,

( , ) ( , )
( ) ( ) ,  , 0

k l k m

k l k m l m

T t T t
K K S t

 

 
  

x x
x x x

n n
              (7d) 

, , , , ,( ) ( ) ( ) ( , ) ( , , ),  , 0k l k l k l k l k l lK T t t S t


  


 
    

 
x x x x x T x

n
     

                 (7e) 

where n  denotes the outward-drawn normal to the interfaces, ,l mS , and external surfaces, lS .  

The Generalized Integral Transform Technique (GITT) [5-11] can in principle be applied to solve 

system (7) above, either by constructing an individual eigenfunction expansion basis for each 

potential, and then coupling all the transformed systems and potentials for each sub-region, or by 

constructing a multiregion eigenvalue problem that couples all of the sub-regions into a single set of 

eigenvalues, which in general involves cumbersome computations in multidimensional applications. 

Figure 1 provides two possibilities for representation of the single domain, either by keeping the 

original overall domain after definition of the space variable coefficients, as shown in Figure 1b, or, if 

desired, by considering a regular overall domain that envelopes the original one, as shown in Figure 

1c. Irregular domains can be directly integral transformed and, in principle, there is no need to 

consider the second representation possibility pointed out above. However, some computational 

advantages may be achieved by enveloping the original irregular domain by a simple regular region. 

 

 
 

Figure 1: (a) Diffusion or convection-diffusion in a complex multidimensional configuration with nV 

sub-regions; (b) Single domain representation keeping the original overall domain; (c) Single domain 

representation considering a regular overall domain that envelopes the original one [11,15]. 

 

Therefore, as already demonstrated in the analysis of specific conjugated problems [11,15-16], it is 

possible to rewrite problem (7) as a single domain formulation with space variable coefficients and 

source terms, given by: 

 
( , )

( ) ( ) ( , ) ( ) ( , ) ( , , ),    ,   0k
k k k k k k

T t
w K T t d T t P t V t

t




     

x
x x x x x x T x                     (8a) 

with initial and boundary conditions given, respectively, by 

( ,0) ( ),      k kT f V x x x                  (8b) 

(a) 

(b) (c) 
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( ) ( ) ( ) ( , ) ( , , ),  , 0k k k k kK T t t S t


  


 
    

 
x x x x x T x

n
   (8c) 

where 

1 1

,      
V Vn n

l l

l l

V V S S
 

            (8d,e) 

The space variable coefficients in equations (8), besides the new equation and boundary source 

terms and initial conditions, now without the subscript l  for the sub-regions lV , incorporate the abrupt 

transitions among the different sub-regions and permit the representation of system (7) as a single 

domain formulation, to be directly handled by integral transforms, as described in section 2. 

3.3.  Eigenvalue Problem: Integral Balance Approach 

For an improved convergence of the eigenfunction expansion for the original potential, Eq. (3b), it 

is of interest to include as much information as possible of the coefficients spatial behavior into the 

eigenvalue problem, Eqs. (2), via the user chosen coefficients ( ), ( ),and ( )k k kw k dx x x . The GITT 

approach itself is employed in the hybrid numerical-analytical solution of this eigenvalue problem, as 

discussed in [6,11], after choosing an auxiliary eigenvalue problem with simpler structure, defined by 

the coefficients ˆ ˆˆ ( ), ( ),and ( ),k k kw k dx x x which should allow for an analytical solution.  The solution of 

problem (2) is thus itself proposed as an eigenfunction expansion: 

,

1

( ) ( ) ,ki kn ki n

n

inverse




 x x                                                                  (9a) 

,
ˆ ( ) ( ) ( ) ,ki n k ki kn

V

w dV transform  x x x                                                           (9b) 

where the normalized auxiliary eigenfunction and its norms are 

( )
( )

kn

kn
kn

N


 

x
x  , with 2ˆ ( ) ( )

kn k kn

V

N w dV   x x                                                    (10a,b) 

in terms of the simpler auxiliary eigenvalue problems given as: 

2ˆ ˆˆ. ( ) ( ) ( ( ) ( )) ( ) 0,k kn kn k k knk w d V      x x x x x x                                                 (11a)  

with boundary conditions 

( )ˆ( ) ( ) ( ) ( ) 0,kn
k kn k kk S


   



x
x x x x x

n
                                                                   (11b) 

Equation (2a) is then operated on with  ( )ki
V

dV  x , to yield the transformed algebraic systems: 

   2( )k k k k k k A C ψ B ψ                                                                           (12a) 

with the elements of the M x M matrices given by: 

   

   

,

( )ˆ( ) ( ) ( ) ( )
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ki
ki k

kj kj

k ij k k k k k ki

k kS S

k k ki kj k k ki kj

V V

k

A k k dS k k dS

k k dV d d dV


          

    

       

 

 

x
x x x xn x x x x x x

x x n n

x x x x x x x x


 

(12b) 
2

,k ij ki ijC      , ( ) ( ) ( )k ij k ki kj

V

B w dV   x x x     (12c,d) 

where ij  is the Kronecker delta. 
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Therefore, the eigenvalue problem given by Eqs. (2) is reduced to the standard algebraic 

eigenvalue problems given by Eqs. (12), which can be solved with existing software for matrix 

eigensystem analysis, yielding the eigenvalues k , whereas the corresponding calculated eigenvectors 

from this numerical solution, 
ki  , are to be used in the inversion formula, given by Eq. (9a), to find 

the desired eigenfunction. 

However, when dealing with the GITT solution of this eigenvalue problem with markedly variable 

spatial coefficients, it is not always possible to employ an auxiliary eigenvalue problem that 

incorporates even part of this information, since it may result unsolvable in analytic explicit form. 

Therefore, in many cases it is required to choose simpler expressions for the auxiliary coefficients, 
ˆ ˆˆ ( ), ( ),and ( ),k k kw k dx x x which may lead to slowly converging expansions for the original 

eigenfunctions. This is particularly important when multiple spatial scales and/or very abrupt 

variations of the coefficients need to be handled. In such cases, an integral balance procedure [21-22] 

can be particularly beneficial in accelerating the convergence of such eigenfunction expansions by 

analytically rewriting the expansion for the eigenfunction itself, while explicitly accounting for the 

space variable coefficients local variation. The integral balance procedure employed is a convergence 

acceleration technique [8,21-22] here aimed at obtaining eigenfunction expansions of improved 

convergence behavior for both the eigenfunction and its derivatives, through integration over the 

spatial domain, thus benefiting from the better convergence characteristics of the integrals of 

eigenfunction expansions. It consists of the double integration of the original equation that governs the 

potential for which the convergence improvement is being sought, in this case, the eigenvalue problem 

itself. Through a single integration of the original equation, in a chosen coordinate, an improved 

expression for the eigenfunction derivative is obtained, and a second integration then offers an 

improved relation for computation of the eigenfunction itself. Then, the problem boundary conditions 

in that coordinate are accounted for, so that the eigenfunctions and respective derivatives at the 

boundaries can be eliminated. The expressions provided by the integral balance approach can then be 

employed back into the solution of the eigenvalue problem (2), following the integral transformation 

procedure above described, yielding the algebraic eigenvalue which provides the eigenvalues  and the 

eigenvectors, that can be readily substituted back in the inversion formula, Eqs. (9a). This approach is 

illustrated in details in [21-22].  

3.4. Convective Eigenvalue Problem 

An interesting approach towards enhancing convergence of eigenfunction expansions for convection-

diffusion problems with strong convective effects, involves incorporating the convective effects into 

the chosen eigenvalue problem that forms the basis of the proposed eigenfunction expansion. The aim 

is to improve convergence, especially in such cases of highly convective formulations, by directly 

accounting for the relative importance of convective and diffusive effects within the eigenfunctions 

themselves [23], in constrast to the traditional approach via a purely diffusive eigenvalue problem, 

above revised. Through a straightforward transformation of the original convection-diffusion problem, 

basically by redefining the coefficients associated with the transient and diffusive terms, the 

convective terms are merged into a generalized diffusion term with a space variable diffusion 

coefficient. The generalized diffusion problem then naturally leads to the eigenvalue problem to be 

adopted for deriving the eigenfunction expansion in the linear situation, as well as for the appropriate 

linearized version in the case of a nonlinear application. The resulting eigenvalue problem with space 

variable coefficients is then solved through the GITT, yielding the corresponding algebraic eigenvalue 

problem upon selection of a simple auxiliary eigenvalue problem of known analytical solution [6,11]. 

The GITT is also applied in the solution of the generalized diffusion problem, and the resulting 

transformed ordinary differential equations system is solved either analytically, for the linear case, or 

numerically for the nonlinear formulation. This approach is here briefly illustrated by considering a 

fairly general nonlinear one-dimensional parabolic formulation: 
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0 1,
( , ) ( , ) ( , )

( ) ( ) [ ( ) ] ( ) ( , ) ( , , ) , 0k k k
k k k k k k x x

T x t T x t T x t
w x u x k x d x T x t P x t x t

t x x x

  
      

   
T  (13) 

where ( )ku x  is a characteristic linear representation of the convective term coefficient, while the 

remaining of the nonlinear convective operator (or of any other operator) is incorporated into the 

nonlinear source term, ( , , )kP x t T . Problem (13) can be readily rewritten as a generalized diffusion 

problem, through a simple transformation of the diffusive and transient terms as: 

0 1,
( , ) ( , )ˆ ˆ ˆˆ ( ) [ ( ) ] ( ) ( , ) ( , , ) , 0k k

k k k k k x x
T x t T x t

w x k x d x T x t P x t T x t
t x x

 
     

  
              (14) 

where, 

* ( )*

ˆ ˆ ˆ ˆˆˆ ( ) ( ) ( ) / ( ); ( ) ( ) ( ) / ( ); ( , , ) ( , , ) ( ) / ( );

( )1 ˆ( ) ( ) ; ( )
( )

k

k k k k k k k k k k k k

u x dx
k

k k k

k

w x w x k x k x d x d x k x k x P x t T P x t k x k x

dk x
u x u x and k x e

k x dx



  

     
 

T

(15a-e) 

Equation (14) is a special case of the nonlinear diffusion problems that have been extensively 

handled through the GITT, as described in section 2, but are now treated through an eigenfunction 

expansion basis that includes convective effects through the characteristic convective term coefficient, 

( )ku x . The self-adjoint eigenvalue problem with space variable coefficients to be considered would 

then be given by the following equation: 

2

0 1,
( )ˆ ˆˆ[ ( ) ] [ ( ) ( )] ( ) 0k

k k k k k x x
d xd

k x w x d x x x
dx dx

    


                                           (16) 

which can be readily solved by the GITT itself, as discussed above, yielding the corresponding 

algebraic eigenvalue problems. The extension of this analysis to multidimensional problems is 

straightforward [23]. 

3.5. Nonlinear Eigenvalue Problem 

A whole new frontier for the GITT methodology has been recently envisioned [24], when 

eigenfunction expansions based on nonlinear eigenvalue problems, that incorporate the original 

nonlinear equation and boundary condition coefficients, have been proposed. The aim is to achieve 

improved convergence behavior, in comparison to the classical approach with a linear eigenvalue 

problem, here in particular for problems with nonlinear boundary conditions. For the sake of 

illustration, the nonlinear single-potential parabolic problem below is considered, with no need of 

collapsing the nonlinear boundary condition coefficients information into the nonlinear source terms, 

as previously prefered: 

( , )
( ) . ( ) ( ) ( , , )  ,    

T t
w k T d T P t T

t


   



x
x x x x  in  ,  t>0Vx                               (17a) 

with initial and boundary conditions 

( ,0) ( ) ,      T fx x V   x                                                                       (17b) 

( , , ) ( , , ) ( ) ( , , ) ,     
T

t T T t T k t T


   


x x x x
n

 S ,  t>0 x                                     (17c) 

where  and  are the nonlinear boundary condition coefficients and n  is the outward drawn normal 

vector to surface S. All the boundary condition coefficients and source terms are allowed to be 

nonlinear, besides being explicitly dependent also on the space and time variables for the sake of 

generality.  

Here, it suffices to proceed with the formal integral transform solution for the non-filtered 

potential. Taking a different path from the usual formalism in the GITT, as presented in section 2, a 

nonlinear eigenvalue problem that preserves the original boundary condition coefficients is preferred 

instead of the one with linear characteristic coefficients, as in eqs.(2), in the form: 

7th European Thermal-Sciences Conference (Eurotherm2016) IOP Publishing
Journal of Physics: Conference Series 745 (2016) 022001 doi:10.1088/1742-6596/745/2/022001

9



 

 

 

 

 

 

 2. ( ) ( ; ) ( ) ( )  ( )  ( ; ) 0 ,i i ik t t w d t      x x x x x V   x                                    (18a) 

with boundary conditions 

( ; )
( , , ) ( ; ) ( , , )k( ) 0,i

i

t
t T t t T


   



x
x x x x

n
  S x                                       (18b) 

and the solution for the associated t-dependent eigenfunctions, ( ; )i t x , and eigenvalues, ( )i t , is at 

this point assumed to be known. 

Problem (18) allows for the definition of the following integral transform pair: 

 

( ) ( ) ( ; ) ( , )  ,       transformi i
V

T t w t Τ t dv  x x x                                                     (19a) 

1

1
( , ) ( ; ) ( ) ,                    inverse

( )
i i

i i

Τ t t T t
N t





 x x                                      (19b) 

and the normalization integrals 

 

2( ) ( ) ( ; ) i i
V

N t w t dv  x x                                                                                (19c) 

After application of the integral transformation procedure, the resulting ODE system for the 

transformed potentials, ( )iT t , is written as: 

 

,

1

( )
( , ) ( ) ( , ),i

i j j i

j

dT t
A t T t g t

dt





  T T  t> 0,   i, j = 1,2…                                  (20a) 

with initial conditions 

(0)=i iT f                                                                                 (20b) 

where, 
2 *

, ,( , ) ( ) ( , )i j ij i i jA t t A t   T T                                                                (20c) 

and 

*

,

1
( , ) ( ) [ ( ; )] ( ; ) 

( )
i j i j

V
j

A t w t t dv
N t t


   

T x x x                                                (20d) 

*( , ) ( ; ) ( , , ) i i
V

g t t P t T dv  T x x

( ; ) ( )

( , , )  
( , , ) ( , , )

i
i

S

t k

t T ds
t T t T

 
    
   

 


x x

nx
x x

                        (20e) 

( ) ( ;0) ) dvi i
V

f w f  x x (x                                                                  (20f)  

 

System (20) is again numerically solved through well-established initial value problem solvers 

[25]. It should be recalled that the eigenvalue problem in eqs.(18) has now to be solved simultaneously 

with the transformed system given by eqs. (19), yielding the time variable eigenfunctions, eigenvalues 

and norms, as is further discussed in [24]. The desired final solution is then reconstructed from the 

inverse formula (19b). The GITT itself is employed in the solution of the nonlinear eigenvalue 

problem, eqs.(18). The basic idea is to reduce the eigenvalue problem described by the partial 

differential equation into a nonlinear algebraic eigenvalue problem, which can be solved by known 

approaches for matrix nonlinear eigensystem analysis.  Therefore, the eigenfuctions of the original 

auxiliary problem can be expressed by eigenfunction expansions based on a simpler auxiliary 

eigenvalue problem, with linear coefficients, for which exact analytic solutions exist, as previously 

discussed and detailed in [24].  
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4. Applications and Results 

The developments above discussed are now in part illustrated through a couple of applications recently 

dealt with via the GITT. The first one is associated with conjugated heat transfer in a non-straight 

microchannel configuration, which demonstrates both the single domain reformulation strategy as well 

as the comparison of different reordering schemes on the expansions convergence behavior. The 

second application brings a coupled three-dimensional nonlinear reactive-convective-diffusive 

problem, associated with the continuous synthesis of biodiesel in micro-reactors. Here, two different 

choices of eigenvalue problems were critically compared, either by accounting only for the diffusion 

effects or by incorporating information on the convective effects through a space variable coefficient. 

 

4.1. Conjugated Heat Transfer in Microsystems 

This example is aimed at illustrating the combination of the single domain formulation with the 

Generalized Integral Transform Technique to tackle conjugated heat transfer problems in arbitrarily 

shaped channels [15-17, 19]. 

As an illustration, a two-dimensional horseshoe-shaped microchannel on a rectangular substrate is 

considered, as depicted in Figure 2, undergoing a transient heat transfer process. The channel substrate 

participates on the heat transfer process through both transversal and longitudinal heat conduction. The 

single domain dimensionless formulation for this problem can be written as [19]: 

2

( , , ) ( , , ) ( , , )
( , ) ( , ) Pe ( , ) ( , )

1 ( , , ) ( , , )
( , ) ( , )

Pe

X Y t X Y t X Y t
U X Y W X Y V X Y W X Y

t X Y

X Y t X Y t
K X Y K X Y

X X Y Y

  
  

  

      
    

      

  

 
             (21a) 

with initial and boundary conditions: 

( , ,0) 0;  (0, , ) 1;   ( ,0, ) 0;   '( , , ) 0;   '( , , ) 0x yX Y Y t X t L Y t X L t                    (21b-f) 

In this formulation, the spatially varying coefficients ( , )U X Y , ( , )V X Y , ( , )W X Y  and ( , )K X Y  

are responsible for incorporating the two physical domains (solid and fluid stream) into the single 

domain model given by Eq. (21a), by presenting characteristic values at the different regions with 

abrupt transitions at the interfaces. Besides the assumption of constant physical properties, the inertia 

terms are disregarded in the flow problem. The obtained dimensionless velocity component ( , )U X Y  

is represented in Figure 2. One should note that by letting ( , ) 0U X Y   and ( , ) 0V X Y  at the solid 

region, Eq. (21a) reduces to the heat conduction equation in the substrate.  

 

 
Figure 2 – Horseshoe-shaped microchannel in rectangular substrate with contours of the X-

direction velocity component. 
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Following the formal solution procedure described in Section 2, first a filter is proposed, based on 

the steady state two-dimensional heat conduction equation with constant thermal properties, yielding 

homogeneous boundary conditions in both space coordinates in the filtered version of Problem (21). In 

this example, the simplest possible eigenvalue problem is chosen, given by: 

 
2 2

2

2 2

( , ) ( , )
( , ) 0i

X Y X Y
X Y

X Y

   
   

 
     (22a) 

 

(0, ) 0;   ( ,0) 0;  '( , ) 0;   '( , ) 0x yY X L Y X L           (22b-e) 

 

which allows for the definition of the following integral transform pair: 

Transform: 
*

0 0

( ) ( , ) ( , , )

y x
L L

i it X Y X Y t dXdY       (23a) 

Inverse: 
*

1

( , , ) ( , ) ( )i i

i

X Y t X Y t




       (23b) 

where *( , , )X Y t  is the filtered dimensionless temperature field and the normalized eigenfunctions are 

given by: 

( , )
( , ) i

i

i

X Y
X Y

N


   with  

2

0 0

( , )

y x
L L

i iN X Y dXdY           (24a,b) 

Operating on the filtered problem with  
0 0

( , )

y x
L L

i X Y dXdY    and making use of the 

eigenfunctions orthogonality property, the obtained transformed problem allows for analytical solution 

for the transformed potentials, ( )i t . Afterwards, the inverse formula, eq.(23b) can be readily 

employed to yield an analytical expression for the desired dimensionless temperature field, ( , , )X Y t . 

In order to illustrate some numerical results for the example involving conjugated heat transfer in 

arbitrarily shaped microchannels, the working fluid was taken as water ( 6 3

, 4.11 10  J/m Kp fc    and 

0.62 W/mKfk   ) and the substrate as acrylic ( 6 3

, 1.75 10  J/m Kp sc    and 0.19 W/mKsk  ), with 

Pe 1 , in the numerical results that follow. 

Table 1 presents the eigenfunction expansion convergence behavior of the calculated steady state 

temperature field at some selected points in both the solid and fluid regions, with truncation orders 

from N=40 up to 400. A convergence to at least three significant digits for a truncation order of N < 

400 is here demonstrated, in the whole region under analysis. For comparison purposes, the same 

problem has also been numerically solved via the Finite Element Method, employing the commercial 

CFD solver Comsol Multiphysics, and the results are shown in the last row of Table 1, showing an 

agreement of two significant digits in comparison with the converged GITT solution with N=400. 

In order to illustrate the solution behavior throughout the domain, Figure 3 depicts the calculated 

steady state temperature field in the horseshoe-shaped microchannel and substrate. One can clearly 

notice the effects of the internal convection occurring due to the fluid stream inside the microchannel, 

distorting the isotherms in the substrate region. The results clearly illustrate that the effects of the 

conjugated heat transfer are fully captured by the single domain formulation approach. 

It is also performed a convergence analysis considering two different reordering schemes to 

achieve a single sum representation for the inverse formula, namely the traditional scheme through the 

sum of the squared eigenvalues, already illustrated in the results shown above, and a more elaborate 

one, considering the most important elements appearing in the diagonal of the coefficients matrix of 

the transformed problem. In this analysis, a sufficiently large number of diagonal elements of this 
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matrix were calculated and sorted in ascending order, and the first four hundred terms were used for 

the comparative calculation. It is possible to observe in Figures 4a,b that a slightly better convergence 

rate is obtained with the second reordering scheme, which accounts for more information from the 

non-transformed convective terms in the original formulation. 

 

Table 1 – Convergence of the GITT solution for steady state temperature in conjugated problem 

 

N 
( , ), 0.1Y Z X    ( , ), 0.25Y Z X   ( , ), 0.25Y Z Y   

Y = 0.1 Y = 0.4 Y = 0.7 Y = 0.1 Y = 0.4 Y = 0.7 X = 0.25 X = 0.75 X = 1.5 

40 0.54098 0.84764 0.89491 0.31052 0.63804 0.73238 0.57969 0.21257 0.10320 

160 0.53301 0.84937 0.89171 0.29591 0.64935 0.73364 0.57562 0.20870 0.10251 

300 0.53338 0.84919 0.89129 0.29734 0.64648 0.73463 0.57424 0.20828 0.10177 

360 0.53351 0.84944 0.89151 0.29733 0.64730 0.73489 0.57434 0.20802 0.10199 

400 0.53356 0.84981 0.89121 0.29741 0.64764 0.73448 0.57408 0.20795 0.10190 

COMSOL 0.53160 0.85149 0.89320 0.29569 0.65310 0.73912 0.57770 0.21008 0.10662 

 

 

 
Figure 3 – GITT solution for the steady state temperature in both liquid and solid regions of the 

microsystem 

 

  
(a) (b) 

Figure 4 – Temperature convergence behaviour at (a) (X,Y) = (0.5, 0.5) and (b) (X,Y) = (0.1, 0.5). Solid 

line: squared eigenvalues reordering; Dashed line: coefficients matrix diagonal reordering  
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4.2.  Biodiesel Synthesis in Microreactors 

The use of microreactors for the transesterification reaction in continuous biodiesel synthesis, ensures 

high ration of interface area to volume and shorter diffusion paths for the reactive system, resulting in 

enhanced mass transfer and faster reactions, with lower energy and material consumption [26-27]. To 

illustrate this application, a 3D nonlinear mathematical model is proposed to describe the 

transesterification reaction between soybean oil and methanol, catalyzed by sodium hydroxide in 

microreators, considering the associated dispersion, reaction and convection phenomenon. The set of 

coupled nonlinear partial differential equations is then solved by the Generalized Integral Transform 

Technique (GITT).  

Biodiesel can be obtained from the transesterification reaction between triglycerides and alcohol 

(alcoholysis reaction) in the presence of a catalyst, typically sodium or potassium hydroxide, which 

yields esters of fatty acids and glycerol. A general mechanism widely accepted in the literature 

considers the transesterification as a second order reversible and homogeneous reaction exhibiting 

elementary kinetics, as follows [26-28]: 

 

 

Triglyceride (TG) + Alcohol (A) 
k

1

k
2

¾ ®¾¬ ¾¾  Diglyceride (DG) + Biodiesel (B)

Diglyceride (DG) + Alcohol (A)
k

3

k
4

¾ ®¾¬ ¾¾  Monoglyceride (MG) + Biodiesel (B)

Monoglyceride (MG) + Alcohol (A) 
k

5

k
6

¾ ®¾¬ ¾¾  Glycerol (GL) + Biodiesel (B)

                       (25a-c) 

 

 Diglycerides and monoglycerides are considered intermediates and as contaminants in the 

final product [29]. 

 The reactants for the transesterification reaction, triglycerides and alcohol, present an 

immiscible nature and, therefore, in a continuous process inside a microreactor they form a multiphase 

flow. In this work, will be considered a stratified flow between two reacting fluids. A schematic 

description of the stratified velocity profiles is shown in Fig. 5. 

 

x

y

L

A A 

TG TG 
TGH

AH

H

 
Figure 5 – Stratified two-phase flow of immiscible liquids in rectangular microchannel 

 

 The mathematical model that describes the velocity profile scheme presented in Fig. 5, can 

be obtained from de Navier-Stokes equations assuming fully developed stratified laminar flow of two 

immiscible Newtonian fluids, with constant physical properties in a rectangular cross section micro-

reactor, subject to a constant pressure drop and under isothermal steady conditions. The body forces 

are neglected and it is considered the existence of a flat plane interface between the two fluids, located 

at HTG. At the interface it is assumed continuity of velocity and shear stress between the two fluid 

layers, while at the walls it is adopted the usual no-slip conditions. From these assumptions, the 

Navier-Stokes equations are simplified and can be written as: 
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2 2 2 2

2 2 2 2
;    , 0 ,

       
          

       

TG TG A A
TG A TG

u u u uP P
z W H y H

x y z x y z
   (26a,b) 

        ,0 , ,0 , 0TG TG A Au y u y W u y u y W     (26c-f) 

    0, , 0TG Au z u H z   (26g,h) 

    , , ;    
 

 
   

 
TG TG

TG A
TG TG A TG TG A

y H y H

u u
u H z u H z

y y
   (26i,j) 

 A three-dimensional mathematical model that governs the concentration of the species 

involved in the transesterification reaction in a micro-reactor of rectangular cross section can be 

obtained from the general species balance equations, assuming an isothermal and steady system with 

constant physical properties. It is considered that the reactive effects occur predominantly in the 

triglyceride phase and that only the alcohol species migrates through the interface and the other 

species remain confined in the triglyceride phase [20,27]. As the reaction occurs predominantly in the 

triglyceride phase, it is reasonable to assume that reactants, intermediates and products are subject to 

the same convective effects within the triglyceride phase. At the walls of the micro-reactor, it is 

assumed no penetrability conditions. At the inlet of the micro-reactor all species have known 

concentrations, while at the micro-reactor outlet it is assumed a zero flux condition for all species. 

Therefore, the dimensionless reaction-convection-diffusion equations that govern the concentration of 

the species in the triglyceride phase, with the specific nonlinear chemical kinetics terms, can be 

written as: 
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 (27a) 

    0, , 1; 0, , 0, where , , , ,  TG sF Y Z F Y Z s DG MG B A GL  (27b,c) 
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 (27d-g) 

 

 
1
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


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

s
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Y

F
F X Z F s TG DG MG B GL
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 (27h,i) 

 

where Gs represents the reaction kinetics term for each species involved in the transesterification. 

Considering a second-order consecutive elementary reversible reaction [26-28], the reaction kinetics 

terms for the species involved in the transesterification can be written according to Table 2 below. 

 

Table 2 - Dimensionless chemical kinetics expressions for the species s. 

Specie s  sG  

TG 1 2TG A DG Bk F F k F F   

A    1 3 5 2 4 6TG DG MG A DG MG GL Bk F k F k F F k F k F k F F       

DG    1 3 2 4TG DG A DG MG Bk F k F F k F k F F     

MG    3 5 4 6DG MG A MG GL Bk F k F F k F k F F     

GL 5 6MG A GL Bk F F k F F  

B    1 3 5 2 4 6TG DG MG A DG MG GL Bk F k F k F F k F k F k F F       

 

 The dimensionless groups used in Eqs. (27) were defined as: 
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 (28a-o) 

 

where *

AC  is the equilibrium concentration of the alcohol species at the interface. 

Equations (27) form a system of nonlinear partial differential equations, coupled by the reaction 

kinetic terms, that can be solved by GITT, following the formalism presented in section 2. Here, two 

different solution paths were considered for comparison purposes, through different choices of the 

eigenvalue problem that offers the basis for the eigenfunction expansions. Both the path with a purely 

diffusive constant coefficients eigenvalue problem and with a spatially variable coefficients 

eigenvalue problem were analyzed. In the second case, the space variable velocity profile is accounted 

for in the eigenvalue problem, adding information on the convective effects to the eigenfunction 

expansions. 

Although the reaction system is here considered to be isothermal, the transesterification reaction 

can be evaluated at different temperature levels, since this parameter is related to the energy state of 

the molecules. It is expected that higher temperatures provide better triglyceride conversion rates. The 

Arrhenius equation can be used to represent the relation between the kinetics constants and 

temperature: 

 

,1

1

, 1, 2, ..., 6i
i i

E
k Exp i

RT


 
   

 
                                                            (29) 

 

where ki,1 is the kinetic constant of index i at the temperature T1. The correction of the value of the 

kinetic constant ki,1 for a different temperature T2 can be accomplished by Eq. (30), directly obtained 

from Eq. (29), by assuming that the activation energy, Ei, and the pre-exponential factor, αi, do not 

present significant changes within the temperature range considered. Thus: 

 

,2

,1 1 2

1 1
ln ,  1, 2, ..., 6

i i

i

k E
i

k R T T

   
      

  

                                                         (30) 

 

where ki,2 is the kinetic constant of index i at temperature T2. 

Due to the absence of specific data on the reaction kinetics for microfluidic devices with the 

reaction system involving methanol and soybean oil, activation energy and pre-exponential data from 

a batch system were used to investigate the temperature effects on the process [28]. 

The reaction efficiency is analyzed through the fractional conversion of triglycerides, for different 

residence times, by the following equation: 

 

 
, ,

,

(0) (1)
(%) 100

(0)

TG AV TG Av

TG Av

F F
ConversionTG

F

 
  
  

 (31) 

 

The residence time provides an average time that the reacting fluids are subjected to the reactive, 

diffusive and convective conditions inside the micro-reactor. It is expected that higher conversion of 

triglyceride will occur at higher residence times. Therefore, the residence time is calculated taking into 

account only the volume of the triglyceride phase, which is where the reaction takes place 

predominantly, according to the following equation: 
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 The input data employed in the present study is shown in Table 3 [26,27]. 

 

Table 3 - Input data for simulation of a micro-reactor for biodiesel synthesis [26,27] 

 

Parameter Value Parameter Value 

TG
 

5.825×10
-2

 [Pa.s] k1
 

4.368×10
-6

 [mol/(m³.s)] 

A 5.47×10
-4

 [Pa.s] k2 9.623×10
-6

 [mol/(m³.s)] 

DTG
 

1.58×10
-9

 [m²/s] k3
 

1.88×10
-5

 [mol/(m³.s)] 

DA
 

1.182×10
-10

 [m²/s] k4
 

1.074×10
-4

 [mol/(m³.s)] 

DDG, DMG, DGL and DB
 

1.38×10
-9

 [m²/s] k5
 

2.117×10
-5

 [mol/(m³.s)] 

TG
 

885 [kg/m
3
] k6

 
9.0×10

-7
[mol/(m³.s)] 

QTG 0.4154[µl/min] Reaction Activation Energy [cal/mol] 

QTG/QA

 
3.402 TGDG 13145 

CTGo
 

1014 [mol/m³] DGTG 9932 

FAo
 

4.4 DGMG 19860 

L 0.0233 [m] MGDG 14639 

W = H 100 [μm] MGGL 6421 

R 1.987 [cal/(mol.K)] GLMG 9588 

 

 Table 4 presents the convergence analysis of the eigenfunction expansions for the average 

concentrations of both the triglyceride (TG) and biodiesel (B) species in the micro-reactor, at T = 25ºC 

and residence time of τ = 0.5min. The two alternative solution paths here adopted are critically 

compared, for the constant and variable coefficients eigenvalue problems. It can be seen that the 

solution obtained by the GITT with an eigenvalue problem including convective effects converges to 

practically five significant digits, for a lower truncation order (N<50) than for the eigenvalue problem 

with constant coefficients, which itself converges to at least three significant digits with N<100. 

 

Table 4 - Convergence analysis of the average concentrations of triglyceride and biodiesel 

 

Square Cross Section Microreactor 
Eigenvalue problem with constant coefficients 

Point X = 0.3 X = 0.5 X = 0.7 

NT TG B TG B TG B 

20 0.955411 0.049206 0.904022 0.117023 0.844553 0.210476 
40 0.955648 0.048923 0.904303 0.116622 0.844850 0.209973 

60 0.955815 0.048725 0.904513 0.116322 0.845079 0.209585 

80 0.955802 0.048740 0.904492 0.116351 0.845054 0.209627 

100 0.955752 0.048799 0.904426 0.116445 0.844981 0.209751 

Eigenvalue problem with variable coefficients 

Point X = 0.3 X = 0.5 X = 0.7 

NT TG B TG B TG B 

10 0.955449 0.049150 0.904122 0.116853 0.844666 0.210240 
20 0.955705 0.048851 0.904378 0.116504 0.844923 0.209831 

30 0.955751 0.048798 0.904427 0.116438 0.844977 0.209748 

40 0.955761 0.048785 0.904438 0.116423 0.844988 0.209729 

50 0.955766 0.048781 0.904444 0.116415 0.844997 0.209717 
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 Figures 6a,b illustrate the temperature effects in a microreactor with fixed dimensions L = 

2.33 cm, and respectively, (a) H=W=100 µm and (b) H=W=400 µm, on the triglyceride conversion. 

The temperature increase influences the kinetics constants of the transesterification process, which as a 

consequence, influence the reaction process, achieving higher conversion rates in shorter residence 

times. Also, comparing the two figures, Figs. 6.a and 6.b, for a fixed residence time and reaction 

temperature, it can be observed a higher conversion for the micro-reactor with the lower hydraulic 

diameter, due to a higher surface area to volume ratio and shorter diffusion pathways, ensuring 

improved mass transfer and triglyceride conversion. 
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(a)                                                                       (b) 

Figure 6 – Conversion rates of triglyceride in a square cross section micro-reactor for different temperatures and 

different cross sections: (a) H=W=100 µm and (b) H=W=400 µm. 

 

 

5. Conclusions 

The Generalized Integral Transform Technique (GITT) has been reviewed and presented in an unified 

framework, as an automatic hybrid numerical-analytical treatment of nonlinear coupled convection-

diffusion problems. Besides the formal solution, this work systematically presents a few recent 

advancements to the hybrid approach, involving reordering schemes for multidimensional expansions, 

single domain reformulation for complex geometries, an integral balance approach for multiscale 

problems, the adoption of convective eigenvalue problems, and the proposition of nonlinear 

eigenvalue problems. The compilation of such recent developments is then concluded through the 

selection of a couple of applications that make use of some of these methodology extensions. Two 

applications are more closely analyzed in relation with conjugated heat transfer in arbitrarily shaped 

micro-systems and with nonlinear reactive systems for continuous biodiesel synthesis in micro-

reactors. Such examples certainly add to the portfolio of challenging projects tackled by the integral 

transforms approach in its generalized hybrid numerical-analytical context. Future work should 

involve the incorporation of such recent developments into the multipurpose unifying structure of the 

UNIT algorithm [11-14], providing alternative solution paths for convergence improvement and 

extension of its applicability limits. 
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