Analysis of conjugated heat transfer in micro-heat exchangers via integral transforms and non-intrusive optical techniques

Diego C. Knupp, Carolina Palma Naveira-Cotta, Adrian Renfer, Manish K. Tiwari, Renato M Cotta, Dimos Poulikakos

Article information:

To cite this document:
Permanent link to this document: https://doi.org/10.1108/HFF-08-2014-0259

Users who downloaded this article also downloaded:


For Authors

If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com

Emerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.
Analysis of conjugated heat transfer in micro-heat exchangers via integral transforms and non-intrusive optical techniques

Diego C. Knupp, Carolina Palma Naveira-Cotta, Adrian Renfer, Manish K. Tiwari, Renato M. Cotta and Dimos Poulikakos

(Information about the authors can be found at the end of this article.)

Abstract

Purpose – The purpose of this paper is to employ the Generalized Integral Transform Technique in the analysis of conjugated heat transfer in micro-heat exchangers, by combining this hybrid numerical-analytical approach with a reformulation strategy into a single domain that envelopes all of the physical and geometric sub-regions in the original problem. The solution methodology advanced is carefully validated against experimental results from non-intrusive techniques, namely, infrared thermography measurements of the substrate external surface temperatures, and fluid temperature measurements obtained through micro Laser Induced Fluorescence.

Design/methodology/approach – The methodology is applied in the hybrid numerical-analytical treatment of a multi-stream micro-heat exchanger application, involving a three-dimensional configuration with triangular cross-section micro-channels. Space variable coefficients and source terms with abrupt transitions among the various sub-regions interfaces are then defined and incorporated into this single domain representation for the governing convection-diffusion equations. The application here considered for analysis is a multi-stream micro-heat exchanger designed for waste heat recovery and built on a PMMA substrate to allow for flow visualization.

Findings – The methodology here advanced is carefully validated against experimental results from non-intrusive techniques, namely, infrared thermography measurements of the substrate external surface temperatures and fluid temperature measurements obtained through Laser Induced Fluorescence. A very good agreement among the proposed hybrid methodology predictions, a finite elements solution from the COMSOL code, and the experimental findings has been achieved. The proposed methodology has been demonstrated to be quite flexible, robust, and accurate.

Originality/value – The hybrid nature of the approach, providing analytical expressions in all but one independent variable, and requiring numerical treatment at most in one single independent variable, makes it particularly well suited for computationally intensive tasks such as in optimization, inverse problem analysis, and simulation under uncertainty.

Keywords Infrared thermography, Micro-channels, Conjugated problem, Hybrid methods, Integral transforms, Micro-LIF, Micro-heat exchangers, Conjugated heat transfer, Micro-laser induced fluorescence

Paper type Research paper

The authors would like to acknowledge the financial support provided by the Brazilian sponsoring agencies CNPq and FAPERJ. Diego C. Knupp is deeply indebted to Jovo Vidic (ETH-Zürich) for all the support in assembling the μ-LIF experimental setup.
Nomenclature

- $h_{\text{eff}}$: effective heat transfer coefficient at the heat exchanger external surface, in contact with the surrounding environment;
- $k$: thermal conductivity;
- $L_x, L_y, L_z$: height, width, and thickness of the heat exchanger;
- $M$: truncation order of the eigenvalue problem solution via integral transforms;
- $N$: normalization integrals;
- $T$: temperature field;
- $u$: flow velocity;
- $w$: thermal capacitance;
- $x$: longitudinal coordinate;
- $y$: transversal coordinate (width);
- $z$: transversal coordinate (thickness);

Greek letters

- $\psi$: eigenfunction of the eigenvalue problem with space variable coefficients;
- $\mu$: eigenvalues corresponding to $\psi$;
- $\Omega$: eigenfunction of the auxiliary eigenvalue problem;
- $\lambda$: eigenvalues corresponding to $\Omega$;

Subscripts and Superscripts

- $\text{in}$: quantity corresponding to the entrance of the channel ($x = 0$);
- $i$: order of eigenquantities;
- $\ast$: filtered temperature field;
- $s$: quantity corresponding to the solid region;
- $f$: quantity corresponding to the fluid flow region;
- $-$: integral transform;
- $\sim$: normalized eigenfunction;

1. Introduction

The analytical treatment of conjugated conduction-convection problems has been pursued for many years since the pioneering works of Perelman (1961) and Luikov et al. (1971) requiring more involved mathematical approaches than either the pure conduction or the pure convection problems. In fact, conjugation effects are quite frequently neglected in heat transfer models for applications at the macro-scale, which allows the direct treatment of convective heat transfer with simplified boundary conditions. Nevertheless, for different micro-scale applications, it has been observed that the conjugation effects can be essential in appropriately quantifying heat transfer rates (Morini, 2004; Maranzana et al., 2004; Hetsroni et al., 2005; Nunes et al., 2010; Horvat and Catton, 2003).

Even though modern numerical methods may readily handle conjugated problems within different platforms and through different methodologies, the availability of analytical solutions for such class of problems remains of major interest, not only in the context of validation and verification, but also for handling more computationally intensive tasks, such as optimization, inverse analysis, and more recently, stochastic simulation due to properties, geometric, or source terms uncertainties. The method of integral transforms for solving partial differential equations dates back to Fourier's classical treatise on heat conduction first published in 1822, and has been widely used and developed since then in the analytical solution of linear heat and mass diffusion problems (Koshlyakov, 1936; Luikov, 1968, 1980; Ozisik, 1968, 1980; Mikhailov and Ozisik, 1994/1984). It is essentially based on the proposition of eigenfunction expansions, associated with the eigenvalue problems that naturally appear after application of the method of separation of variables to the homogeneous versions of the originally posed...
procedures. The integral transformation process is in general applied to all but one independent variable. Then, in such transformable cases, it yields a decoupled linear system of ordinary differential equations for the transformed potentials, for which analytical solutions can be readily obtained. By mid 1980s this classical approach gained a hybrid numerical-analytical structure, known as the Generalized Integral Transform Technique (GITT) (Cotta and Ozisik, 1986, 1987; Aparecido et al., 1989; Cotta, 1990, 1993, 1994a, b, 1998; Serfati and Cotta, 1990, 1992; Diniz et al., 1990; Perez Guerrero and Cotta, 1992; Machado and Cotta, 1995; Cotta and Mikhailov, 1997) for overcoming the barrier of handling non-transformable problems, such as in the cases of nonlinear diffusion problems, irregular geometries, moving boundaries, boundary layer equations, Navier-Stokes equations, etc., as reviewed in Cotta and Mikhailov (2006).

Concerning the conception and design of thermal microsystems, numerous works are still aimed at the investigation of the most adequate models and solution methodologies for describing the physical phenomena that take place in such micro-scale heat transfer problems. For instance, it has been observed for different micro-scale applications that conjugation effects can be essential in appropriately quantifying heat transfer rates, while usual macro-scale based correlations can result in considerable deviations from both measurements and simulations accounting for the participation of the whole micro-system structure (Morini, 2004; Maranzana et al., 2004; Hetsroni et al., 2005; Nunes et al., 2010; Horvat and Catton, 2003). In this context and quite recently, a hybrid numerical-analytical approach has been advanced for the solution of conjugated heat transfer problems, based on the GITT and on a single domain formulation of the solid-fluid coupling (Knupp et al., 2012, 2013a, b). This same approach has also been further advanced in order to allow for the analysis of complex physical and geometrical configurations, such as heat and fluid flow in multiple and irregular sub-regions (Knupp et al., 2014a, b; Cotta et al., 2014).

The present work is thus aimed at the theoretical and experimental analysis of conjugated heat transfer in a multi-stream micro-heat exchanger, designed for waste heat recovery applications. The experimental investigation is undertaken for validation purposes, employing non-intrusive optical techniques for both temperature and velocity measurements. The temperature measurements of the micro-heat exchanger external surface are obtained through infrared thermography. Fluid temperature measurements within the micro-channels are also provided, obtained through a micro Laser Induced Fluorescence (µ-LIF) system. The analyzed configuration and associated experimental setups provide a complete verification and validation framework for the proposed combined hybrid approach based on integral transforms.

2. Problem formulation and solution methodology

The conjugated heat transfer problem here considered comes from applications related to waste heat recovery employing multi-stream micro-heat exchangers. A model for flow visualization made on PMMA through laser ablation is shown in Figure 1. The heat exchanger section is graphically represented in Figures 2(a) and (b) for the whole set of channels and for a single micro-channel.

The conjugated problem, involving conduction in the acrylic substrate and laminar forced convection in the water flow within the six triangular shaped micro-channels, is thus combined into a single domain formulation. Motivated by the fairly high values of the Péclet number and relatively low thermal conductivity of the substrate, the longitudinal conduction terms both in the fluid and along the plate are neglected for the
sake of simplicity. Therefore, the formulation of the steady state conjugated problem as a single region model is achieved by making use of space variable coefficients represented as functions with abrupt transitions at the fluid-wall interfaces, as follows:

\[
\begin{aligned}
    w(y, z) \frac{\partial T(x, y, z)}{\partial x} &= \frac{\partial}{\partial y} \left( k(y, z) \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left( k(y, z) \frac{\partial T}{\partial z} \right), \\
    0 < y < L_y, 0 < z < L_z, 0 < x < L_x
\end{aligned}
\]  

(1a)
\[ T(0,y,z) = T_{in}(y,z) \]  
(1b)
Once problem (4) is solved, it yields the eigenvalues, $\mu_i$, and corresponding normalized eigenfunctions, $\tilde{\psi}_i(y, z)$, with:

$$\tilde{\psi}_i(y, z) = \frac{\psi_i(y, z)}{\sqrt{N_i}}, \quad N_i = \int_0^{L_y} \int_0^{L_z} w(y, z) \psi_i^2(y, z) dy \, dz$$ \hspace{1cm} (5a,b)

Problem (3) can be exactly transformed by operating Equation (3a) with $\int_0^{L_z} \int_0^{L_y} \tilde{\psi}_i(y, z)(\cdot) dy \, dz$ and making use of the boundary conditions, Equations (3(e)-(f)); and (4(b)-(e)), providing the decoupled transformed ODE system:

$$\frac{d \tilde{T}_i^*(x)}{dx} + \mu_i^2 \tilde{T}_i^*(x) = 0, \quad i = 1, 2, \ldots$$ \hspace{1cm} (6a)

The initial condition given by Equation (3b) is transformed through the operator $\int_0^{L_z} \int_0^{L_y} w(y, z) \tilde{\psi}_i(y, z)(\cdot) dy \, dz$:

$$\tilde{T}_i^*(0) = \tilde{T}_{in,i} \equiv \int_0^{L_z} \int_0^{L_y} w(y, z) \tilde{\psi}_i(y, z) \tilde{T}_{in,y}^*(y, z) dy \, dz$$ \hspace{1cm} (6b)

Problem (6) can be analytically solved to provide:

$$\tilde{T}_i^*(x) = \tilde{T}_{in,i} e^{-\mu_i^2 x}$$ \hspace{1cm} (7)

and the solution of problem (1) can be analytically expressed by making use of the inversion formula:

$$T(x, y, z) = T_\infty + T_\infty^*(x, y, z) = T_\infty + \sum_{i=1}^{\infty} \tilde{\psi}_i(y, z) \tilde{T}_i^*(x)$$ \hspace{1cm} (8)

Therefore, the main task in this solution path is associated with the solution of the two-dimensional eigenvalue problem with space variable coefficients, Equations (4(a)-(e)), which can also be achieved by means of integral transforms, as described in details in Cotta (1993). The solution of the particular problem given by Equation (4(a)-(e)) is undertaken through the proposition of the following simple auxiliary eigenvalue problem:

$$\nabla^2 \Omega(y, z) + \lambda^2 \Omega(y, z) = 0, \quad 0 < y < L_y, \quad 0 < z < L_z$$ \hspace{1cm} (9a)

$$-k_s \frac{\partial \Omega}{\partial y} \bigg|_{y=0} + h_{eff} \Omega(0, z) = 0, \quad k_s \frac{\partial \Omega}{\partial y} \bigg|_{y=L_y} + h_{eff} \Omega(L_y, z) = 0$$ \hspace{1cm} (9b,c)
Problem (9) allows for exact analytical solution after the application of separation of variables.

The proposed expansion of the original eigenfunctions is then given by:

**transform:** \( \psi_i = \int_0^{L_y} \int_0^{L_z} \tilde{\Omega}_i(y,z) \psi(y,z) dydz \)  

**inverse:** \( \psi(y,z) = \sum_{i=1}^{\infty} \tilde{\Omega}_i(y,z) \psi_i \)  

where the normalized eigenfunctions \( \tilde{\Omega}_i \) are given by:

\[
\tilde{\Omega}_i(y,z) = \frac{\Omega_i(y,z)}{\sqrt{N_{\Omega_i}}} 
\]

with:

\[
N_{\Omega_i} = \int_0^{L_y} \int_0^{L_z} \Omega_i^2(y,z) dydz 
\]

Then the integral transformation of the original eigenvalue problem with spatio-variable coefficients given by Equations (4(a)-(e)) is performed by operating on Equations (4a) with \( \int_V \tilde{\Omega}_i(y,z) \cdot \cdot dV \), to yield the following algebraic problem in matrix form after truncation of the expansion to a sufficiently large order \( M \):

\[
(A + C)\{\Psi\} = \mu^2 B\{\Psi\} 
\]

with the matrices' elements given by:

\[
A_{ij} = -\int_S (k(y,z)-1) \dot{\tilde{\Omega}}_i(y,z) \frac{\partial \tilde{\Omega}_j(y,z)}{\partial \mathbf{n}} dS + \\
+ \int_V (k(y,z)-1) \nabla \tilde{\Omega}_i(y,z) \cdot \nabla \tilde{\Omega}_j(y,z) dV 
\]

\[
C_{ij} = \lambda_i^2 \delta_{ij} 
\]

\[
B_{ij} = \int_V u(y,z) w(y,z) \tilde{\Omega}_i(y,z) \tilde{\Omega}_j(y,z) dV 
\]

where \( V \) is the domain defined by the coordinates \( y \) and \( z \), \( S \) is the contour of region \( V \) and \( \mathbf{n} \) denotes the outward-drawn normal to the surface \( S \).

The algebraic eigenvalue problem (11) can be readily solved numerically to provide results for the eigenvalues \( \mu \) and corresponding eigenvectors \( \{\Psi\} \) which are then combined by the inverse formula given in Equation (10b) to provide an explicit representation of the desired original eigenfunctions, \( \psi(y,z) \). Then, the transformed system solution, given by Equation (7), can be readily substituted into Equations (8), together with the calculated eigenfunctions, yielding the temperature field \( T \) representation at any desired position \( (x, y, z) \).
3. Experimental Apparatus and Procedure

3.1 IRT surface temperature measurements

For temperature measurements at the micro-heat exchanger external surface we have employed the experimental apparatus for infrared thermography analysis presented in Figure 3, assembled in the Laboratory of Nano- and Microfluidics and Microsystems, LabMEMS, at the Federal University of Rio de Janeiro, Brazil. The setup employs temperature measurements obtained from a high performance infrared camera FLIR645sc, with 640×480 pixel resolution. For more accurate temperature evaluations, the surfaces are uniformly covered with a graphite ink of known emissivity of 0.97. The main components of the setup are shown in Figure 3 as: infrared camera (FLIR645sc); camera stand; tweezers grabbing the micro-heat exchanger; thermocouples measuring the inlet fluid temperature and room temperature, which are connected to the data acquisition system (Agilent 34970-A); and syringe infusion pump. The experimental procedure is initiated by feeding the syringe with water, which is heated with the syringe heating pad (New Era Pump Systems, Inc.). Then, the data acquisition system, including thermocouples and infrared camera, is started and, next, the syringe infusion pump is turned on with a prescribed volumetric flow rate and the experiment is carried on, with the temperature field at the heat exchanger external surface being monitored and registered through the computer, until steady state is achieved. In Knupp et al. (2014a) the variance inference of the infrared thermography temperature measurements has been carried out for a similar experiment, and the standard deviation associated with the experimental error was calculated as \( \sigma_{\text{IRT}} = 0.407 \degree \text{C} \). Figures 4(a) and (b) illustrate the infrared thermography images at steady state for the front and back faces of the acrylic substrate, respectively.

3.2 \( \mu \)-LIF fluid temperature measurements

For fluid temperature measurements we have employed a \( \mu \)-LIF system, whose experimental apparatus is depicted in Figure 5(a), installed at the Laboratory of Thermodynamics in Emerging Technologies, LTNT, at the Swiss Federal Institute of Technology (ETH Zürich). The main components appearing in the setup are marked in Figure 5(a) as: (a) syringe pump; (b) high frequency acquisition camera of the PIV/LIF system (LaVision); (c) microscope; (d) reservoir with rhodamine B solution for...
filling the injection syringes; (e) heating micro-channels; (f) micro-heat exchanger under investigation; (g) cup for collection of the rhodamine B solution at the outlet of the heat exchanger; (h) PID controller system for the heating micro-channels; (i) computer interface for the PID controller system; (j) computer for the PIV/LIF system (LaVision) acquisition; and (l) laser control (PIV/LIF system). Figure 5(b) depicts in details the micro-heat exchanger positioned on the microscope for the $\mu$-LIF fluid temperature measurements acquisition. The procedure is first initiated with the heating micro-channels filled with the rhodamine B solution, but no flow, positioned at the microscope. This heating micro-channels system (Escher et al., 2010) is equipped with an RTD array for temperature monitoring and a PID controller system, in such a way that it is possible to prescribe a desired constant temperature to the rhodamine B solution inside the channels.
This procedure is employed for the calibration of the LIF system regarding the correlation between the rhodamine B solution fluorescence intensities and corresponding temperatures. A detailed description of the $\mu$-LIF procedure for fluid temperature measurements concerning this experimental setup can be found in Renfer et al. (2013).

Having finished the calibration step, the experimental procedure for obtaining fluid temperature measurements inside the heat exchanger under investigation is initiated by feeding the syringe with the rhodamine B solution used in the calibration step. Then the data acquisition of the $\mu$-LIF system is started, and next the syringe infusion pump is turned on with a prescribed volumetric flow rate and the experiment is carried on, until steady state is achieved. Once the acquired images are stored (for posterior treatment), the syringe pump is turned off, and the experimental analysis can be carried on for another selected position in the heat exchanger. In all experiments it was used the same rhodamine B

---

Figure 5.
(a) Experimental apparatus for fluid temperature measurements through $\mu$-LIF; (b) micro-heat exchanger positioned at the microscope.
solution, prepared with distilled water and a 0.2 mM concentration of rhodamine B. This concentration was chosen based on the investigation of Renfer et al. (2013) in which the 0.2 mM concentration was found to yield satisfactory optimal signal to noise ratio.

Concerning the experimental error related to the LIF measurements, Figure 6(a) illustrates the temperature distribution along the center of seven micro-channels employed during the calibration step, in all cases the temperatures are supposedly constant and equal to each other, which does not occur in the measurements due to experimental errors. In this case, the data presented in Figure 6(a) were used in order

Figure 6.
(a) Temperature distribution along the center of seven microchannels employed during the $\mu$-LIF calibration step; (b) histogram plotted from the data in Figure 6(a)
to infer the standard deviation associated with the experimental errors, yielding the value of \( \sigma_{e,LIF} = 0.955 \, ^\circ C \), resulting in an uncertainty of \( \pm 1.91 \, ^\circ C \) for 95 percent confidence level. This value is not far from the observations of Coolen et al. (1999) which stated an uncertainty of \( \pm 1.7 \, ^\circ C \) with 95 percent confidence level for their LIF temperature measurements. Figure 6(b) depicts the histogram plotted from the data in Figure 6(a), also illustrating that the experimental error closely follows a normal distribution.

4. Results and discussion

As shown in Figure 2(a), for the problem formulation considered, only the heat exchange section is modeled, i.e. the inlet and outlet distribution manifolds are not taken into account. It was considered that the 2 mL/min volumetric flow rate is equally distributed between all six channels, resulting in a volumetric flow rate of 1/3 mL/min in each channel. We have also considered uniform velocity profiles in each channel, \( \bar{u}_f \) in Equation (1g), which was considered a reasonable approximation from previous works (Knupp et al., 2014a). For the physical properties of the materials involved, we have employed: \( k_s = 0.17 \, \text{W/mK} \) (PMMA), \( k_f = 0.64 \, \text{W/mK} \), and \( w_f = 4.186 \times 10^6 \, \text{J/m}^3\text{K} \) (water as the working fluid) (Lienhard and Lienhard, 2008). The inlet temperature distribution, required by Equation (1b), was obtained from the complete model simulation by the Comsol solver (COMSOL Multiphysics, 2014), in order to set the same channels inlet temperatures for comparison purposes. For the heat transfer coefficient, \( h_{eff} \), appearing in Equations (1(c-f)), we have considered natural convection, with \( h_{eff} = 15 \, \text{W/m}^2\text{K} \).

Table I shows a close inspection of the convergence of the front surface temperatures along the heat exchanger width and length (transversal centerline and longitudinal centerline), in (a) and (b), respectively, with respect to the truncation order (\( M \)) of the algebraic eigenvalue problem. One may observe that the results are converged to practically three significant digits at the selected positions for \( M < 70 \). It should be highlighted that in all performed calculations we have employed only ten terms in the temperature field expansion in terms of the calculated eigenfunctions, which are enough to yield a full five digits convergence throughout the domain, confirming that the variable coefficients eigenvalue problem involves most of the computational effort in this problem solution and convergence.

<table>
<thead>
<tr>
<th>(a) Transversal centerline</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( M )</td>
<td>( y = 0.01 , \text{m} )</td>
<td>( y = 0.02 , \text{m} )</td>
<td>( y = 0.03 , \text{m} )</td>
</tr>
<tr>
<td>( M = 30 )</td>
<td>39.940</td>
<td>47.354</td>
<td>40.843</td>
</tr>
<tr>
<td>( M = 40 )</td>
<td>38.691</td>
<td>47.690</td>
<td>39.465</td>
</tr>
<tr>
<td>( M = 50 )</td>
<td>38.787</td>
<td>47.419</td>
<td>39.963</td>
</tr>
<tr>
<td>( M = 60 )</td>
<td>38.830</td>
<td>47.481</td>
<td>39.914</td>
</tr>
<tr>
<td>( M = 70 )</td>
<td>38.821</td>
<td>47.457</td>
<td>39.954</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Longitudinal centerline</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( M )</td>
<td>( x = 0.03 , \text{m} )</td>
<td>( x = 0.04 , \text{m} )</td>
<td>( x = 0.05 , \text{m} )</td>
</tr>
<tr>
<td>( M = 30 )</td>
<td>49.680</td>
<td>47.062</td>
<td>45.688</td>
</tr>
<tr>
<td>( M = 40 )</td>
<td>48.400</td>
<td>47.882</td>
<td>45.816</td>
</tr>
<tr>
<td>( M = 50 )</td>
<td>48.329</td>
<td>47.629</td>
<td>46.656</td>
</tr>
<tr>
<td>( M = 60 )</td>
<td>48.355</td>
<td>47.372</td>
<td>46.599</td>
</tr>
<tr>
<td>( M = 70 )</td>
<td>48.394</td>
<td>47.457</td>
<td>46.558</td>
</tr>
</tbody>
</table>

**Table I.** Convergence of the front surface temperature along the micro-heat exchanger (a) width (transversal centerline) (b) length (longitudinal centerline) with the order of the algebraic eigenvalue problem.
Figure 7 depicts the theoretical predictions of the surface temperatures in a case with volumetric flow rate of 2 mL/min, obtained with both the single domain model solved through GITT and the COMSOL Multiphysics finite elements commercial code (COMSOL Multiphysics, 2014), together with the infrared camera experimental measurements obtained at the transversal centerline of the substrate external surfaces. In Figure 7(a) are provided the results corresponding to the micro-heat exchanger front face, whereas in Figure 7(b) the back face is considered. Similar comparative results are presented in Figures 8(a) and (b), which depict the surface temperature profiles in the longitudinal direction at the centerline along the length of the micro-heat exchanger, corresponding to the front face, (a), and the back face, in (b). From these results samples, it is clear that a good adherence between the hybrid theoretical prediction via GITT and the experimental measurements is achieved, indicating the adequacy of the proposed model and solution methodology. It should also be observed the good agreement between the solution provided by GITT employing the single domain formulation and the numerical finite elements solution (COMSOL) of the conjugated problem, with the difference between these predictions remaining within the experimental error.

Notes: (a) Front face; (b) back face with coolant inlet-outlet
Results are now also reported for fluid temperature measurements employing the µ-LIF system described in Section 3.1. Figure 9 indicates the three positions investigated. In this experimental setup we have no control on the depth position (in the channel) at which the fluid temperatures are monitored, since the channels depth is within the depth of field of the microscope. In order to understand the differences in temperatures at varying depths, the theoretical temperatures are presented at three different depths within the micro-channel, as illustrated in Figure 10. Figure 11(a)-(c) then depict the theoretical temperature profiles in the fluid, in comparison with the measurements.

Notes: (a) Front face; (b) back face with coolant inlet-outlet

---

Conjugated heat transfer in micro-heat exchangers

Figure 8. Comparison of infrared thermography temperature measurements at the external surfaces (longitudinal centerline) against the GITT (red) and COMSOL (blue) solutions
obtained through the $\mu$-LIF system, transversally to channels 1, 3, and 6, respectively, as marked on Figure 9, at the heat exchanger longitudinal central plane. The experimental results show larger temperature variations than predicted along the transversal direction within the channel for channels 1 and 6, in Figure 11(a) and (c), where increasing and decreasing temperatures are observed, respectively. One may notice that in both cases the cold side refers to the border, suggesting that the micro-heat exchanger is losing more heat than predicted by the model through the borders. This fact may be explained by the difficulty in insulating the contact between the PMMA substrate and the metallic holder of the microscope, which ends up working as a fin attached to the PMMA substrate. On the other hand, for the central channel in Figure 11(b), which is less sensitive to these borders effects, a much better adherence is observed between the predictions via GITT and the experimental measurements.

5. Concluding remarks
The methodology that combines the GITT and a single domain reformulation strategy is applied in the hybrid numerical-analytical treatment of a multi-stream micro-heat exchanger application, involving a three-dimensional configuration with triangular
cross-section micro-channels. The methodology here advanced is carefully validated against experimental results from non-intrusive techniques, namely infrared thermography measurements of the substrate external surface temperatures and fluid temperature measurements obtained through Laser Induced Fluorescence. A very good agreement among the proposed hybrid methodology predictions, a finite elements solution from the COMSOL code, and the experimental findings has been achieved. The proposed methodology has been demonstrated to be quite flexible, robust, and accurate. Most important, the hybrid nature of the approach, providing analytical expressions in all but one independent variable, and requiring numerical treatment at most in one single independent variable, makes it particularly well suited for computationally intensive tasks such as in optimization, inverse problem analysis, and simulation under uncertainty.

References

HFF 25,6


Author Affiliations

Diego C. Knupp, Dept. of Mechanical Engineering and Energy Patrícia O. Soares Laboratory of Experimentation and Numerical Simulation in Heat and Mass Transfer – LEMA, Instituto Politécnico, Universidade do Estado do Rio de Janeiro, Nova Friburgo, Brazil

Carolina Palma Naveira-Cotta, Laboratory of Nano- and Microfluidics and Microsystems, Mechanical Engineering Dept. POLI&COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Adrian Renfer, Department of Mechanical and Process Engineering, Laboratory of Thermodynamics in Emerging Technologies – LTNT, ETH Zurich, Zurich, Switzerland

Manish K. Tiwari, Dept. of Mechanical Engineering, University College London, London, UK

Renato M. Cotta, Laboratory of Nano- and Microfluidics and Microsystems, Laboratory of Transmission and Technology of Heat, Mechanical Engineering Dept. – POLI&COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, and

Dimos Poulikakos, Department of Mechanical and Process Engineering, Laboratory of Thermodynamics in Emerging Technologies – LTNT, ETH Zurich, Zurich, Switzerland

Corresponding author

Professor Renato M. Cotta can be contacted at: cotta@mecanica.coppe.ufrj.br

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm

Or contact us for further details: permissions@emeraldinsight.com
This article has been cited by:

1. Ivana Fernandes de Sousa, Daduí Cordeiro Guerrieri, Carolina P. Naveira-Cotta, Manish Tiwari. 2018. ON THE THERMAL PERFORMANCE OF A MICRO PARALLEL CHANNELS HEAT EXCHANGER. *Journal of Thermal Science and Engineering Applications*. [Crossref]


6. Jose Luiz Zanon Zotin, Diego Campos, Renato Machado Cotta. Conjugated heat transfer in complex channel-substrate configurations: Hybrid solution with total integral transformation and single domain formulation 184-191. [Crossref]


