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Abstract. The Recent Fluid Deformation Closure (RFDC) model of lagrangian
turbulence is recast in path-integral language within the framework of
the Martin–Siggia–Rose functional formalism. In order to derive analytical
expressions for the velocity-gradient probability distribution functions (vgPDFs),
we carry out noise renormalization in the low-frequency regime and find
approximate extrema for the Martin–Siggia–Rose effective action. We verify, with
the help of Monte Carlo simulations, that the vgPDFs so obtained yield a close
description of the single-point statistical features implied by the original RFDC
stochastic differential equations.
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1. Introduction

It has long been known, since the seminal work of Batchelor and Townsend [1], that spatial
derivatives of a turbulent velocity field do not behave as gaussian random variables.
The current view on this still barely understood phenomenon is that the non-gaussian
fluctuations of the velocity gradients—the hallmark of turbulent intermittency—are
likely to be related to the existence of long-lived coherent structures and to deviations
from the Kolmogorov ‘K41’ scaling, both important ingredients in the contemporary
phenomenology of turbulence [2, 3].

The main notorious difficulties with first-principle theories of intermittency stand on (i)
the inadequacy of perturbative expansions to deal with the coupled dynamics of vorticity
and the rate-of-strain tensor at high Reynolds numbers and (ii) the fact that the closed
equations for the time evolution of the velocity gradient tensor are non-local in the space
variables. Notwithstanding the strong coupling/non-local issues, it is actually possible to
devise simplified fluid dynamical models that would capture relevant qualitative features
of the intermittent fluctuations of the velocity gradient tensor [4]. Here, a fundamental role
is played by the lagrangian framework of fluid dynamics, since it leads in a natural way
to reduced-dimensional systems, in the form of either ordinary or stochastic differential
equations for the time evolution of the velocity gradient tensor [5–8].

The aforementioned lagrangian models have mostly been investigated by means
of numerical integrations of the associated differential equations, which can then be
compared to well-established results of alternative direct numerical simulations. There
is however, much room for the exploration of analytical tools in the study of lagrangian
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models of intermittency, a direction we pursue here, joining other authors in this effort
[7,9]. We focus our attention on one particularly interesting stochastic model, the Recent
Fluid Deformation Closure (RFDC) model [8] and derive reasonable approximations for
its velocity gradient probability distribution functions (vgPDFs). We put into practice
standard statistical field-theoretical procedures for the computation of effective actions
through vertex renormalization [10–12], which are carried out in the context of the Martin–
Siggia–Rose functional formalism [13–16]. Our approach—essentially a semiclassical
treatment—is general enough, so that, in principle, it can be applied to a large class
of stochastic models.

This paper is organized as follows. In section 2, we briefly outline, as grounds for the
subsequent discussions, the essential points of the RFDC model. In section 3, we rephrase
the RFDC model in the Martin–Siggia–Rose path-integral formalism and study it through
the effective action method. Analytical expressions for the vgPDFs are then obtained. In
section 4, we compare, using Monte-Carlo simulations, our vgPDFs with the ones derived
from the numerical integration of the RFDC differential stochastic equations. Finally, in
section 5, we summarize our main findings and highlight the direction of further research.

2. The RFDC lagrangian stochastic model

Our central object of interest is the time-dependent lagrangian velocity gradient tensor
A(t), which has cartesian components Aij = ∂jvi. Taking, as a starting point, the Navier-
Stokes equations with external gaussian stochastic forcing, the exact lagrangian evolution
equation for A(t) = A(�r(t), t) is

Ȧ = V [A] + gF, (1)

where V [A] is a functional of A, defined as

Vij[A] = −(A2)ij + ∂i∂j∇−2Tr(A2) + ν∇2(A)ij, (2)

and F is a zero-mean, second order gaussian random tensor, which satisfies

〈Fij(t)Fkl(t′)〉 = Gijklδ(t − t′), (3)

with

Gijkl = 2δikδjl − 1
2
δilδjk − 1

2
δijδkl. (4)

Note that there is a space convolution integral in (2), which renders (1) not only non-
linear, but non-local as well. Spatial derivatives here are taken with respect to the Eulerian
space coordinate and then evaluated along the lagrangian trajectory. In (1), g is just an
arbitrary coupling constant proportional to the external power per unit mass, which has
an important role in our discussion, since it will be taken as an expansion parameter
around the linearized model.

The second and third contributions to the right hand side of (2) are, respectively, the
pressure Hessian (written as a non-local functional of the velocity gradient tensor) and
the viscous dissipation term. As it stands, (2) is of course not closed: exact solutions on
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a single lagrangian trajectory are clearly dependent on the bulk space-time profiles of
the velocity gradient tensor. However, motivated by the fact that A(t) is typically short-
time correlated, it is natural to conclude that both the pressure Hessian and the viscous
dissipation term are dominated by local contributions. This is the point of view taken
in the RFDC model of Chevillard and Meneveau [8], where these local contributions are
related to the Kolmogorov and the large eddy time scales of the flow, τ and T , respectively
(the Reynolds number is, thus, Re ∝ (T/τ)2). It is then assumed that the lagrangian
evolution of A(t) is associated, for small time scales, to the approximate Cauchy-Green
tensor

C = exp[τA] exp[τA
T], (5)

so that the functional V [A] in (1) gets replaced by a local function of A,

V (A) = −A
2 +

C
−1Tr(A2)
Tr(C−1)

− Tr(C−1)
3T

A. (6)

We end up, therefore, with a closed and much simpler time evolution equation for A:

Ȧ = V (A) + gF = −A
2 +

C
−1Tr(A2)
Tr(C−1)

− Tr(C−1)
3T

A + gF. (7)

We refer the reader to [8] for a more detailed account on the conceptual and technical
aspects of the RFDC model.

It is convenient to set T = 1 (without loss of generality) and perform an expansion
of V (A) up to some arbitrary power of τ in (6). A previous extensive numerical study
shows that even the first order expansion is enough to grasp the physical content of the
model [17]. We work, throughout the paper, with second order expansions of V (A), which
we write as

V (A) =
4∑

p=1

Vp(A), (8)

where

V1(A) = − A, (9)

V2(A) = − A
2 +

I

3
Tr(A2) +

2τ
3

Tr(A)A, (10)

V3(A) = − τ

3

(
A + A

T − 2I

3
Tr(A)

)
Tr(A2) − τ 2

3
Tr(AT

A)A

− τ 2

3
Tr(A2)A, (11)

V4(A) = − I

9
τ 2Tr(AT

A)Tr(A2) − I

9
τ 2[Tr(A2)]2 +

4I

27
τ 2[Tr(A)]2Tr(A2)

+
τ 2

3
A

T
ATr(A2) +

τ 2

6
(A2 + A

TT )Tr(A2). (12)

Thus, it is clear that Vp(A) comprises all the contributions of O(Ap) to V (A). Note that
there is no dimensional inconsistency in the above expansions, since the velocity gradient
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tensor has a dimension of inverse of time and T has been taken to be the time measurement
standard by definition (that is, T = 1), so that T is actually hidden (with no loss of
physical content) in the power series expansion (8). The RFDC model yields a promising
stage for further improvements, insofar as its vgPDFs as well as its geometrical statistical
properties related to the coupling between the vorticity and the rate-of-strain tensor share
several qualitative features in common with the ones observed in experiments and direct
numerical simulations of turbulence [18,19].

3. Path-integral formulation of the RFDC model

Assume that at time t0 = 0 the velocity gradient tensor is A(0) ≡ A0. We may write,
within the framework of the Martin–Siggia–Rose (MSR) functional formalism [13–16],
the following path-integral expression for the conditional probability density function of
finding, at time t1 = β, the velocity gradient tensor A(β) ≡ A1,

ρ(A1|A0, β) ≡ N
∫

Σ
D[Â]D[A] exp

{
−S[Â, A]

}
, (13)

where N is an unimportant normalization factor (which, for convenience, is suppressed
from now on),

S[Â, A] =
∫ β

0
dt

{
iTr[ÂTL(A)] +

g2

2
GijklÂijÂkl

}
(14)

with
L(A) ≡ Ȧ − V (A) (15)

is the so-called MSR action and

Σ = {A(0) = A0, A(β) = A1} (16)

specifies the set of boundary conditions in the path integration. In the above expressions,
Â = Â(t) is an auxiliary tensor field (a time-dependent 3 × 3 matrix) with no direct
physical meaning. The conditional PDF given in (13) is nothing but a formal solution,
written with path-integral dressing of the Fokker-Planck equation that can be derived
from the stochastic differential equation (7).

3.1. General strategy for the derivation of vgPDFs

Taking β → ∞ in the conditional PDF (13), we obtain the stationary vgPDF evaluated
at A1, which is expected to be independent from the initial condition A0. Also, as is clear
from the original RFDC equations, in the limit of small g, nonlinear perturbations become
negligible and all we get are gaussian distributions for the vgPDFs. Thus, we are interested
in investigating how the vgPDFs evolve as the noise strength g gets progressively larger
and intermittency effects cannot be neglected any more.

Once the conditional vgPDF (13) is independent upon the initial condition A0, for
β → ∞, we may impose the particular periodic boundary conditions

A(0) = A(β) = Ā, (17)
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motivated by the assumption (verified in numerical studies) that there is no singular
behaviour in the time evolution of velocity gradients, as predicted by the RFDC model.
The choice of periodic boundary conditions for A(t) is in fact very convenient, since, as
we will see, it leads to considerable computational simplifications. The probability density
function of having A(t) = Ā at an arbitrary time instant t in the asymptotic stationary
fluctuation regime is given, therefore, by

ρ(Ā) = lim
β→∞

ρ(Ā|Ā, β). (18)

We adopt, in our treatment, the path-integral semiclassical approach [10–12], which is a
suitable framework to deal with the outset of strong coupling regimes. The whole analysis
is based on the existence of dominant configurations Â

sp and A
sp that satisfy the saddle-

point equations

δS[Âsp, A]
δAij

∣∣∣∣∣
A=Asp

= 0, (19)

δS[Â, Asp]
δÂij

∣∣∣∣∣
Â=Âsp

= 0, (20)

subject to the boundary conditions A
sp(0) = A

sp(β) = Ā. The MSR action can then
be expanded, up to the second order, around its saddle-point solutions, through the
substitutions Â → Â

sp + Â and A → A
sp + A in (14), viz.,

S[Â, A] → S[Â, A] = S[Âsp, Asp] + ΔS[Â, A], (21)

where ΔS[Â, A] is a quadratic functional of Â and A. We have, accordingly,

ρ(Ā) = exp
{

−S[Âsp, Asp]
}∫

D[Â]D[A] exp
{

−ΔS[Â, A]
}

. (22)

The path-integration over fluctuations in (22) can be computed, within the lowest order
in perturbation theory, along the following straightforward two-step procedure:

Step 1. Decompose ΔS[Â, A] in two terms,

ΔS[Â, A] = ΔS0[Â, A] + ΔS1[Â, A], (23)

where ΔS0[Â, A] is quadratic and independent on the saddle-point solutions. More
explicitly,

ΔS0[Â, A] =
∫ β

0
dt

{
iTr[ÂT(Ȧ − A)] +

g2

2
GijklÂijÂkl

}
. (24)

There is, on the other hand, a large number of saddle-point dependent contributions in the
definition of ΔS1[Â, A]. As a simplifying working hypothesis, we retain only one of these
terms, which leads to meaningful comparisons with the empirical vgPDFs. The truncation
is given as

ΔS1[Â, A] = i
∫ β

0
dtTr[(Âsp)TV2(A)]. (25)

doi:10.1088/1742-5468/2014/10/P10015 6
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As will become more clear very soon, the physical mechanism behind (25) is such that
fluctuations produce, as a main effect, an enhancement of the external random forcing,
while not modifying the original structure of the non-linear response in the RFDC model,
well captured by the corresponding terms of the MSR saddle-point action.

Step 2. Within the lowest non-trivial order of perturbation theory, apply the standard
second-order cumulant expansion, in the present context, to get∫

D[Â]D[A] exp
{

−ΔS[Â, A]
}

=
∫

D[Â]D[A] exp
{

−ΔS0[Â, A] − ΔS1[Â, A]
}

= exp
[
1
2
〈(ΔS1[Â, A])2〉0

]
, (26)

where 〈(...)〉0 stands for the expectation value computed in the model defined by the
quadratic action ΔS0[Â, A]. In order to derive (26), we have taken into account that
〈ΔS1[Â, A]〉0 = 0, as it is found in a detailed calculation. Using (26), equation (22) is
replaced, therefore, by the improved vgPDF

ρ(Ā) = exp
{

−Γ [Âsp, Asp]
}

, (27)

where

Γ [Âsp, Asp] ≡ S[Âsp, Asp] − 1
2
〈(ΔS1[Â, A])2〉0 (28)

is referred to as the ‘MSR Effective Action’. It is important to note that the effective action
Γ [Â, A] satisfies, within the lowest order of perturbation theory, saddle-point equations
analogous to those given in (19) and (20). Without affecting the accuracy of the results,
one can postpone—as we will—the derivation of saddle-point configurations to the stage
where the form of the effective action has been already established.

3.2. Structure of the MSR effective action

The truncated form (25) for the saddle-point dependent quadratic fluctuations leads to
noise renormalization, which amounts to saying that the operator kernel Gijklδ(t − t′) in
(13) is substituted by an alternative one, Gren

ijkl(t − t′), so that the MSR effective action
becomes

Γ [Â, A] = i

∫ β

0
dtTr[ÂTL(A)] +

g2

2

∫ β

0
dt

∫ β

0
dt′Gren

ijkl(t − t′)Âij(t)Âkl(t′). (29)

As is usually done in effective action studies [10–12], we work with low-frequency
renormalization. This procedure consists in the replacement of the operator kernel
Gren

ijkl(t − t′) by G̃ren
ijklδ(t − t′), where

G̃ren
ijkl ≡

∫ ∞

−∞
dtGren

ijkl(t). (30)

Low-frequency renormalization is actually a welcome simplification in several relevant
instances such as (i) in the evaluation of the translationally invariant ground state
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expectation values of observables of interest, (ii) in renormalization group studies near the
vicinity of second order phase transitions (since the order parameter fluctuations are long-
ranged) and (iii) in dynamical regimes characterised by the presence of solitons/instantons
defined on a large enough space or time scale [20]. In our particular case, even if we do not
have a strong separation of scales (Reynolds numbers are not very high), we are motivated
by the fact that the saddle-point solutions, as we will see, have characteristic time scales
of the order of T (= 1), which is the largest time scale of the RFDC model.

Taking into account now, as the result of calculations, that Gren
iikl = Gren

ijkk = 0, we may
introduce the x and y parameters to define

G̃ren
ijkl ≡ Dijkl − 1

3
(x + y)δijδkl, (31)

where

Dijkl ≡ xδikδjl + yδilδjk. (32)

Furthermore it is not difficult to show, from the saddle-point equations for the effective
action, that the latter may be written as a functional of the velocity gradient tensor A,
which makes no reference to the auxiliary field Â:

Γ [A] =
1

2g2

∫ β

0
dt

[
D−1

ijklLij(A)Lkl(A)
]
, (33)

where D−1
ijkl is the tensor inverse of Dijkl,

D−1
ijkl ≡ aδikδjl + bδilδjk, (34)

with

a = − x

y2 − x2 , b =
y

y2 − x2 . (35)

We underline that A
sp can be directly obtained from the single saddle-point equation

δΓ [A]
δAij

∣∣∣∣
A=Asp

= 0, (36)

a useful result, as discussed below.

3.3. Saddle-point solutions

It is a difficult—if not actually impossible—task to obtain the exact saddle-point solution
of (36). Around the small g regime, however, we can keep only the quadratic terms in the
effective action, as a first approximation. From (33) and (34), we find, in the quadratic
approximation,

Γ [A] ≡ a

2g2

∫ β

0
dtTr

[
Ȧ

T
Ȧ + A

T
A

]
+

b

2g2

∫ β

0
dtTr

[
Ȧ

2 + A
2
]
. (37)

The saddle-point equation (36) yields, in this case,

Ä − A = 0. (38)

doi:10.1088/1742-5468/2014/10/P10015 8
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The solution of (38) that satisfies the boundary conditions (17) is

A
sp(t) = Āfβ(t), (39)

where

fβ(t) = 2
sinh(β

2 )
sinh(β)

cosh(t − β

2
). (40)

Substituting, now, (39) in (8), we obtain

V (Asp(t)) =
4∑

p=1

Vp(Ā)[fβ(t)]p. (41)

The MSR effective action is therefore written, in the limit where β → ∞, as

Γ [Asp] ≡ Γ (Ā) = Γ1(Ā) + Γ2(Ā), (42)

with

Γ1(Ā) =
a

2g2 Tr

[
I1Ā

T
Ā +

4∑
p=1

4∑
q=1

Ip+qVp(ĀT)Vq(Ā)

]
, (43)

and

Γ2(Ā) =
b

2g2 Tr

[
I1Ā

2 +
4∑

p=1

4∑
q=1

Ip+qVp(Ā)Vq(Ā)

]
, (44)

where the above I-coefficients are defined as

I1 = lim
β→∞

∫ β

0
dt[ḟβ(t)]2, Ip+q = lim

β→∞

∫ β

0
dt[fβ(t)]p+q. (45)

Their numerical values are listed below:

I1 = I2 = 1, I3 = 2/3, I4 = 1/2,
I5 = 2/5, I6 = 1/3, I7 = 2/7, I8 = 1/4. (46)

We emphasize, at this point, that the number of terms that contribute to Γ (Ā) would
be unnecessarily larger had we not used periodic boundary conditions for A

sp(t). This
is because, due to the periodic boundary conditions, the several time integrations of
tensorial products involving only one time derivative of the velocity gradient tensor can
be completely removed for the evaluation of the effective action.

3.4. Noise renormalization

As we have already seen, in our particular problem the MSR effective action is given by
the MSR saddle-point action added to −〈(ΔS1[Â, A])2〉0/2. We have, more concretely,

− 1
2
〈(ΔS1[Â, A])2〉0 =

1
2

∫ β

0
dt

∫ β

0
dt′Âsp

ij (t)Âsp
kl (t

′)Cijkl(t − t′), (47)

where

Cijkl(t − t′) = 〈[V2(A(t))]ij[V2(A(t′))]kl〉0. (48)
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ij kl ij kl
+

Figure 1. The Feynman diagram contributions to the noise vertex
renormalization of the effective Martin–Siggia–Rose action, up to O(g4). The
free one-particle propagators are represented by directed lines. The bare noise
vertices are depicted as isolated crossed circles linked to two convergent lines.
The bare three-point vertices are associated to the contributions provided by
V2(A) in the RFDC stochastic time evolution equation (7).

It is clear, from the form of (47), that this contribution renormalizes the noise term as it
appears in the original saddle-point MSR action, according to the substitution

g2Gijklδ(t − t′) → g2Gren
ijkl(t − t′) = g2Gijklδ(t − t′) + Cijkl(t − t′). (49)

The two contributions in the right-hand-side of (49) are represented by the two diagrams
depicted in figure 1 (a good account on the perturbative diagrammatic expansions for
stochastic differential equations can be found in [21]), which use, as graphic elements, the
propagator and the noise vertex of the quadratic model given by the action (24).

Recalling, now, the notation introduced in (31) and (32), we find, from the
straightforward computation of Cijkl(t − t′),

x = 2 +
3
2
g2, (50)

y = −1
2

− 1
16

g2. (51)

We determine, from equations (50) and (51), the a and b parameters defined in (35) and
use them to conclude the evaluation of the MSR effective action (42), taking into account
(43) and (44). The vgPDF can then, be readily written (up to a normalization factor) as
ρ(Ā) = exp[−Γ (Ā)].

In order to estimate what has been missed by the truncation (25), it is interesting to
have a deeper look at the structure of the diagrammatic expansion of the MSR effective
action. It is not difficult to show that a diagram that contains L loops and E incoming
external lines produces a contribution to the effective action which is proportional
to g2(L+E−1). The perturbative expansion of the effective action can be hierarchized,
therefore, from the number of loops that each one of its diagram’s contains. The situation
here is entirely analogous to the one long known in usual quantum field theory models (or
even in quantum mechanics), where the number of loops in the diagrammatic expansion
of the effective action is associated to powers of the Planck constant [12]. Note that the
analogy between g2 and the Planck constant becomes explicit if the auxiliary random
variable Â is integrated out from the formalism, as in equation (33).

An important additional point to stress is that g is not the only coupling constant to
appear in the loop expansion of the effective action for the RFDC model. Powers of the
dissipative time scale τ are brought into the one-loop contributions due to the specific
form of the vertices VN defined in (8). In figures 2(a) and (b) we depict the one loop
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Figure 2. Parts (a) and (b) show the structure of the one-loop contributions to
the vertex renormalization associated to VN .

diagrams that renormalize the vertex VN . Note the role, in these diagrams, played by
the vertices VN+2 (figure 2(a)) and VN−M+1 and VM+2, with M < N (figure 2(b)). In
the one-loop renormalization of the vertex V3, for instance, there is no way to avoid the
participation of two vertices V3 or just one V4. Both of these contributions are of the order
of τ 2. Such ‘casual’ powers of τ may provide, in fact, a hint as to why the noise is the
most important vertex to be corrected at one-loop order: the dynamic regimes of interest
have relatively small values of τ [8], so that it is likely that the g4 correction to the noise
vertex, which does not get any power of τ , turns out to be more important than the other
vertices corrected with contributions of order τg2 or τ 2g2.

Our approximations were actually motivated by both theoretical expectations and
general qualitative features that have emerged from the accumulated numerical experience
on the RFDC model, which are described as follows.

(a) It is clear, from (1), that as g becomes small, the velocity gradient fluctuations become
small as well, so that the non-linear terms in (1) can be neglected in that limit. There-
fore, in the limit of vanishing g, the saddle-point solution given in (39) is exact, the
velocity gradient fluctuations are described by gaussian statistics (since the associated
Langevin equations are linear) and there would be no need of renormalization.

(b) As previous numerical studies have suggested, the RFDC model provides a meaningful
account of intermittency effects only at the outset of turbulent behaviour. This is just
another way of saying that the model allows us to study phenomena in the range of
low to moderate Reynolds numbers. Therefore, one has necessarily to work in regimes
close to the ‘gaussian point’, which justifies our use of perturbative computations in
the analysis of the RFDC model and the substitution of the saddle-point solution in
the fully non-linear Martin–Siggia–Rose action (after noise renormalization is taken
into account).

(c) It is an empirical (i.e. numerical) result that the shapes of the velocity gradient PDFs
are only slightly changed in their cores as higher-order expansions are considered in the
expression for V (A), as given by (8)—it would be fine as well to work within the first
order expansion in τ . From a purely mathematical perspective, τ is effectively a small
parameter and we expect, thus, that the renormalization of the contributions to V (A)
which have coefficients proportional to τ would bring only subleading improvements
in the analytical form of the velocity gradient PDFs.

(d) It is also an empirical result that the shape of velocity gradient PDFs is very sensitive
to variations of the noise strength parameter g. This phenomenon has to do with the
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fact that as g increases, larger fluctuations of the velocity gradients will take place
and, as a consequence, non-linear terms become more important. This suggests that
we focus on noise strength renormalization as the main contribution in the evaluation
of the Martin–Siggia–Rose effective action.

4. Analytical versus empirical vgPDFs

Plots of the analytical vgPDFs ρ(Ā) ∝ exp[−Γ (Ā)] can be compared to the empirical
PDFs obtained through the direct numerical solutions of the stochastic differential
equation (7). We have produced, using the analytical vgPDFs, large Monte Carlo
ensembles of velocity gradients. The numerical solution of (7), on the other hand is carried
out within a second order predictor-corrector method [22], with time step ε = 0.01. We
have considered, in all our numerical tests, τ = 0.1, a reference time-scale usually taken
in studies of the RFDC model.

In our Monte Carlo procedure, the velocity gradient A is additively perturbed
by random traceless 3 × 3 matrices at each iteration step. The stochastic increments
can always be written as a linear superposition of matrices of the overcomplete set
{B1, B2, ..., B9}, where

B1 =

⎡
⎣ 0 0 0

0 0 1
0 −1 0

⎤
⎦ , B4 =

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦ , B7 =

⎡
⎣ 1 0 0

0 −1
2 0

0 0 −1
2

⎤
⎦ ,

B2 =

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ , B5 =

⎡
⎣ 0 0 0

0 0 1
0 1 0

⎤
⎦ , B8 =

⎡
⎣ −1

2 0 0
0 1 0
0 0 −1

2

⎤
⎦ ,

B3 =

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ , B6 =

⎡
⎣ 0 0 1

0 0 0
1 0 0

⎤
⎦ , B9 =

⎡
⎣ −1

2 0 0
0 −1

2 0
0 0 1

⎤
⎦ . (52)

Observe that the above matrices are special generators of three-dimensional rotations
(B1, B2, B3), reflections (B4, B5, B6) and shearing transformations (B7, B8, B9). In more
precise terms, the ensemble of velocity gradients is produced from successive stochastic
perturbations of A given as

A → A
′ = A + sBp. (53)

Let ΔΓ (s) ≡ Γ (A′) − Γ (A) and χ be a gaussian random variable which is sorted at each
Monte Carlo step, with zero mean and some standard deviation σ, to be defined below.
In order to set s in (53), the Metropolis algorithm [23] is then applied as follows:

(a) If ΔΓ (χ) < 0, take s = χ, otherwise define p = exp[−ΔΓ (χ)] and go to step (b).

(b) Take s = χ with probability p and s = 0 with probability 1 − p.

As is usually done in an analogous Monte Carlo simulation context [24], the numerical
value of the standard deviation parameter σ is adjusted so that the case s = 0 is verified
in about 50% of the Monte Carlo steps.
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Figure 3. Comparative semi-log plots of vgPDFs. The solid lines represent the
analytical vgPDFs evaluated for τ = 0.1 and some values of the bare noise
strength g with and without noise renormalization. The vgPDFs depicted with
symbols refer to those obtained from the direct numerical integration of the
RFDC stochastic equations. The vgPDFs for the non-diagonal components of
the velocity gradient tensor are given in parts (a) (nonrenormalized noise for
g = 0.2, 0.8 and

√
2) and (b) (renormalized noise for g = 0.2, 0.5, 0.8, 1.1 and

√
2).

The analogous results for the diagonal components are given in figures (c) and (d).

Samples of non-diagonal and diagonal components of the velocity gradient tensor
have been grouped into two distinct sets. We refer, thus, to vgPDFs of non-diagonal and
diagonal components of A, without specifying any particular cartesian tensor indices. Our
statistical evaluations were performed with sets of 12 × 106 and 24 × 106 elements for the
diagonal and non-diagonal components, respectively, of the velocity gradient tensor.

Our results are shown in figures 3–5. In order to appreciate the relevance of noise
renormalization, we have also depicted how the vgPDFS would look if the noise vertex
were not corrected by the loop diagram of figure 1 (these PDFs are given in figures 3
(a, c) and 4(a, c)). The one-loop correction leads, in fact, to much better approximations
for the vgPDFs. The results are even more satisfactory to the eye if the vgPDFs are
plotted in linear scales (figure 4), since larger deviations from the analytical expressions
are found mostly in the far tails of the vgPDFs and are actually associated to small
cumulative probabilities.

The analytical velocity gradient PDFs discussed here allow us to address the outset of
intermittency in the RFDC model. In fact, all of them have a positive kurtosis excess (a
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Figure 4. Comparative linear plots of vgPDFs, described in the same way as in
figure 3. The fittings in (b) and (d) are very reasonable within about two standard
deviations around the peak values of the vgPDFs.
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Figure 5. Contour plots for the joint PDFs of the normalized Cayley-Hamilton
invariants Q∗ and R∗ for τ = 0.1 and g =

√
2. The level curves have PDF values

equal to 1, 10−1, 10−2 and 10−3. Part (a) is obtained from the direct numerical
integration of the RFDC stochastic equations, while part (b) is evaluated from
the analytical vgPDF discussed in section 3. The inverted V-shaped lines in both
parts (a) and (b) indicate the Vieillefosse zero discriminant line.
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signature of intermittency) and have their kurtosis reasonably close to the ones associated
to the numerical PDFs (maximum error around 10%).

In figure 5 we show how the analytical and the empirical joint probability distributions
of the normalized Cayley-Hamilton invariants

Q∗ = −Tr(A2)
2〈S2〉 and R∗ = − Tr(A3)

3〈S2〉3/2 , (54)

where S is the rate-of-strain tensor, with S2 ≡ SijSij, compare to each other. We find
that the analytical joint PDF accounts for the essential qualitative geometrical features
as the ‘tear-drop’ shapes of the level curves and the role of the zero-discriminant line.
The quantitative agreement is better, of course, close to the origin of the (R∗, Q∗) plane,
where non-linear fluctuations of the velocity gradient tensor tend to be suppressed.

5. Conclusions

We carried out an analytical study of the vgPDFs in the RFDC lagrangian model
of turbulence. The MSR framework in its path-integral formulation proves to be a
very convenient setup, where standard field-theoretical semiclassical approaches can be
straightforwardly applied. Once it is difficult to establish exact saddle-point solutions
for the Euler-Lagrange equations associated either to the bare or to the MSR effective
action, we have used, as an approximation, solutions that hold in the regime of small
noise strength. A further source of technical difficulty is related to the precise evaluation
of the MSR effective action up to one-loop order: in fact, one should take into account
a large number of vertex corrections, leading to non-local kernels as the result of much
more involved computations. We have, thus, put forward a pragmatic strategy for the
evaluation of the MSR effective action where, as working hypotheses, (i) only the noise
vertex is corrected up to one-loop order and (ii) a low-frequency approximation for the
renormalized noise vertex is implemented. In spite of the above simplifying assumptions,
the resulting analytical vgPDFs can be satisfactorily compared to the empirical ones for
a meaningful range of bare noise coupling constants (g <

√
2). We leave for additional

research the necessary refinements of the approach we have undertaken in this paper. We
also note that time-dependent correlation functions of the velocity gradient tensor can be
evaluated along similar semiclassical lines.

Analytical vgPDFs are a promising tool in the study of turbulent intermittency. Once
validated, they can be used to investigate conditional statistical phenomena in a way that
would be not possible through ensembles produced from solutions of the related stochastic
differential equations. As a general remark, when one has to hand some analytical
expression for the joint probability distribution function of random variables, Monte
Carlo procedures can be straightforwardly implemented for the analysis of conditional
statistical phenomena. The essential point is to devise Monte Carlo steps that preserve
the values of the conditioning quantity. In this way, statistical evaluations related to the
conditional pressure Hessian could be devised, a topic of great interest in the subject
of lagrangian models of turbulence. Another particularly interesting application of the
analytical vgPDFS could be used, in principle, in the context of turbulent geometrical
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statistics, in order to clarify the statistical relations between the vorticity and the rate-
of-strain fields.

As a concluding remark, it is important to emphasize that the semiclassical method
approach discussed in this work can be extended, with no further conceptual or technical
obstacles, to several turbulence models and to a large class of phase-space reduced
stochastic dynamical systems.
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