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The advection-dispersion transport equation with first-order decay was solved analytically for multi-
layered media using the classic integral transform technique (CITT). The solution procedure used an asso-
ciated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coefficients
as the original problem. The generalized solution of the eigenvalue problem for any numbers of layers
was developed using mathematical induction, establishing recurrence formulas and a transcendental
equation for determining the eigenvalues. The orthogonality property of the eigenfunctions was found
using an integrating factor that transformed the non-self-adjoint advection-diffusion eigenvalue problem
into a purely diffusive, self-adjoint problem. The performance of the closed-form analytical solution was
evaluated by solving the advection-dispersion transport equation for two- and five-layer media test cases
which have been previously reported in the literature. Additionally, a solution featuring first-order decay
was developed. The analytical solution reproduced results from the literature, and it was found that the
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rate of convergence for the current solution was superior to that of previously published solutions.
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1. Introduction

The study of heat and mass transfer in layered media is an
important subject in several branches of science and engineering.
In heat conduction, for example, multilayer components are
important due to the advantages of combining different thermo-
physical properties as insulation materials, with energy efficiency
being improved by optimizing temperature distributions. Layered
materials also feature prominently in nuclear reactors, where heat
conduction in fuel rods occurs through several layers. In environ-
mental sciences, mass transport often occurs in layered systems,
especially in soils, which typically have a layered morphology
(where the layers are termed “soil horizons”).

The literature contains many analytical solutions for diffusion in
a composite medium, with applications to unsteady heat or mass
diffusion problems. Methods of solution and citations of classic
references can be found in [1-3]. On the other hand, the literature
contains relatively few analytical solutions for advection-
dispersion transport problems in layered media. The available solu-
tions include [4-8]. These solutions, which we will briefly review
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here, were all presented in the context of solute transport in
composite porous media.

Al-Niami and Rushton [4] used the Laplace transform to obtain
analytical solutions for solute transport in finite layered media
with constant concentration in the inlet boundary condition. As
observed by Leij et al. [5], Al-Niami and Rushton [4] imposed the
physically unrealistic assumption that the concentration gradient
is zero at the interfaces of the layers.

Leijetal.[5] also used the Laplace transform to develop analytical
solutions of the one-dimensional advection-dispersion equation
(without decay term) for transport in a semi-infinite, two-layered
soil profile with either first- or third-type boundary conditions at
the inlet and layer interfaces. Later, Leij and van Genuchten [6] used
Laplace transforms to derive an approximate analytical solution for
solute transport in a two-layer porous medium and compared the
solution with results obtained by numerical inversion of the Laplace
transform. These authors noted that the use of Laplace transforms
becomes more complicated if the concentration of an upstream layer
depends on properties of its downstream layers. This situation arises
when both concentration and solute flux are required to be continu-
ous at the interfaces.

Liu et al. [7] used the generalized integral transform technique
(GITT) to solve the advection-dispersion multilayer transport
equation, using an eigenvalue problem without advection informa-
tion. The solution of the eigenvalue problem was found using the
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sign-count method to avoid the risk of missing eigenvalues. The
resulting transformed problem was truncated and solved analyti-
cally using similarity transformation. The authors reported that
simulating a two-layer porous medium required 60 terms in the
series solution, although in some cases 120 terms were required
for convergence. Liu et al. [7] also noted that integral transform
methods such as Laplace and Fourier transforms are frequently
used to derive analytical solutions for transport in porous media.
However, as Liu et al. [7] state, because of the continuity require-
ment for both concentration and mass flux at layer interfaces, it
is difficult to apply integral transforms to space variables in mul-
ti-layer problems.

Recently, Li and Cleall [8] presented analytical solutions for con-
servative solute advection-dispersion in one-dimensional double
layered media. Solutions were derived for five scenarios with vari-
ous combinations of fixed concentration, fixed flux and zero concen-
tration gradient conditions at the inlet and the outlet boundaries
considered. The analytical solutions were shown to be in excellent
agreement with numerical solutions obtained with a finite element
approach and with the Leij and van Genuchten [6] solution.

Analytical solutions for multi-layered media, particularly finite
media, tend to be relatively complicated, and the required lengthy
solution procedures have likely contributed the relatively small
number of available solutions. However, modern software tools
such as Mathematica [9], with capabilities for both symbolic and
numerical calculations, have made solution procedures such as
the classic integral transform technique (CITT) much more tracta-
ble [10]. As noted by Ozisik [3], the CITT provides a systematic ap-
proach for solving transient and steady problems having
homogeneous or non-homogeneous boundary conditions. Heat
and mass diffusion problems have been categorized and treated
systematically using this technique, creating a unified approach
for solving those problems [2]. Transport equations not immedi-
ately analytically solvable with the CITT can often be transformed
into an amenable form using techniques such as algebraic substitu-
tion or integrating factor methods (e.g. [10-13]).

The objective of the present work is to develop a closed-form ana-
lytical solution for advection-dispersion transport problems in mul-
tilayer, finite media using the CITT. The novel contributions include
the use of an associated advection-diffusion eigenvalue problem
having the same mathematical form and coefficients as the govern-
ing transport equation. It will be shown that when the integral trans-
form procedure uses that associated eigenvalue problem, the
procedure converges faster than it does with other possible eigen-
value problems. Also, we overcome a common difficulty associated
with the orthogonal expansion technique thatis typically used in un-
steady heat or mass diffusion problems in composite media, namely
the risk of missing some eigenvalues when they are calculated by
solving an equation of null determinant [2]. In the present paper,
we overcome this problem by developing a transcendental equation
for each layer. Lastly, because of our chosen eigenvalue problem and
its orthogonality property, we obtain an uncoupled transformed
problem and a closed-form analytical solution, which is in contrast
to previous solutions which were not closed-from and required the
determination of integral coefficients [7].

2. General problem formulation

The one-dimensional unsteady advection-dispersion transport
equation for the quantity ¢, = c,(x,t) in a finite composite media
of M layers with constant properties in each layer is given by:

& cm Cm
mgx2 ~ Um gy~ HmCm = LnCm

o
™ot

Xm_o1 < X < Xm
m=1,2,3,....M
(1)

=D

where for each layer m the parameter u,, is the constant velocity
coefficient, u,, and R,, are constant parameters, and is Dy, is the con-
stant dispersion (or diffusion) coefficient.

The operator L, is defined L, = Dy, (;’722 — Uy 0% — Upp-

The boundary and initial conditions are, respectively:
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where C, is a reference value and G, (x) is a known arbitrary func-
tion. The generic coefficient k,, preserves continuity in the flux at
the layer interfaces and its specification depends on the physical
problem being considered; k,, would be, for example, equal to the
product of the water content and dispersion coefficient in the case
of solute transport in porous media, or equal to thermal conductiv-
ity in a general heat conduction problem.

The advection-dispersion transport equation for composite
media, Egs. (1)-(3), is an extension of what is termed Class II prob-
lems in the system established by Mikhailov and Ozisik [2] for
purely diffusive problems. The problem (Egs. (1)-(3)) is formulated
for perfect contact at layer interfaces. Contact resistances at the
interfaces are not considered in the present work, but they could
be incorporated into the solution using the procedure given by
Mikhailov and Ozisik [2], or by following the procedure given be-
low in Section 3, but with Eq. (2b) replaced by an equation that in-
cludes contact resistance. The presented solution procedure could
also accommodate entrance and exit boundary conditions different
from those given by Egs. (2a) and (2d), with the alternative formu-
lation resulting in expressions for the coefficients A,,; and B, ; dif-
ferent from those given below. Lastly, although the present
problem formulation considers layers with constant coefficients,
spatially variable coefficients within layers, including abrupt vari-
ations such as considered by Naveira-Cotta et al. [17], could be
treated by approximating the spatial variability with stepwise
functions. With this technique, the same solution procedure is
used, but with the “layers” corresponding to both the material
boundaries and the stepwise variations in parameter values.

3. Analytical solution

Our objective is to develop a closed-form analytical solution for
the advection-dispersion problem. We will use the Classic Integral
Transform Technique (CITT) combined with a mathematical induc-
tion procedure to develop the analytical solution.

3.1. Homogenization of the boundary conditions

The boundary conditions of the problem are homogenized by
introducing a “filter” function F,,(x) and an unknown function H,,
(x,t) such that:

Cm(X,t) = Fim(X) + Hm(x, 1) 4)

When F,(x) is appropriately chosen, substituting Eq. (4) into Egs.
(1)- (3) leads to a problem with homogeneous boundary conditions
in terms of dependent variable H,,(x,t). Appendix A describes in de-
tail the procedure for determining the filter function F,(x). Once
Fn(x) is determined, substituting Eq. (4) into Egs. (1)-(3) gives:
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3.2. The associated advection-dispersion eigenvalue problem

Following the systematized procedure of the CITT [2,3,14], we
need to define an auxiliary homogeneous problem for the space
variable function 1/,,(x) in the same layers of the original problem.
An auxiliary problem can be obtained by applying separation of
variables to Eqs. (5)-(7). The resulting advection-dispersion auxil-
iary problem is,

Xm_1 < X < Xm
L Rni2y, =0 " 8
m‘//m+ m l//m m:1,2,3,...,M ( )

uln/zlfDl%:O; X=X =0 (9a)
‘P l//m+1 X=Xn

9b-
kmdd'ﬁ;n_kar]demxﬂ m:172737---:M71 ( C)
D _ g
X =0; X=Xy (9d)

The system Egs. (8) and (9) is an eigenvalue problem and has non-
trivial solutions for a discrete spectrum of the parameter A= /;
(i=1,2,3,...,00), the eigenvalues, and the corresponding nontrivial
solutions V/,(x) = Wm(x), the eigenfunctions.

This eigenvalue problem is attractive because it can completely
transform Eqs. (5)-(7) such that the resulting system of equations
is not coupled [10]. However, this eigenvalue problem is non-self-
adjoint, and the orthogonality property is not defined.

Eigenvalue problems with self-adjoint operators have several
important and desirable properties: (i) the eigenvalues are real;
(ii) the eigenfunctions are orthogonal; and (iii) the eigenfunctions
form a complete set. The completeness means that any well-
behaved (at least piecewise continuous) function F*(x) can be
approximated by a series [15].

To utilize Egs. (8) and (9), we must transform the non-self-
adjoint eigenvalue problem to a self-adjoint one by using an inte-
grating factor, as will be shown below (Section 3.2.2).

3.2.1. Solution of the eigenvalue problem

The general symbolic solution of Eq. (8) can be written in terms
of two linearly independent solutions ¢, i(X) = ¢mi(X;4i) and O
(x) = 0mi(x;4;) and two coefficients A,; and B,

Xm_1 < X < Xm

Ymi(X) = m=1,2,3,....M

Am,i¢m.i(x) + Bm,iem.i (X) (10)

Substituting Eq. (10) into Egs. (9a, b, ¢) and solving the resulting
system for Ap,; and B,; with m=1,23,... reveals a pattern that
can be generalized by mathematical induction. The result is the fol-
lowing expressions for the coefficients A,,; and B, ;:
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ke G i(Xm1) O s (Xim 1) = Om i (Xim—1) P i (Xm—1)

(13)

In Egs. (11)-(13), the prime symbol (') denotes the first derivative,
and m=2,3,...,M. The value of Ay is arbitrary and is set to A;;= 1.

The solution of the eigenvalue problem can be completed after
establishing an equation for the determination of the eigenvalues
/i Eqs. (9d) and (10) are used to find a symbolic general transcen-
dental equation. The result suggests a formation rule that can be
generalized by mathematical induction for a problem with M
layers:

A i(Xm) + Buibly;(Xu) = 0 (14)

Following Boyce and Di Prima [16] for the case of complex roots
in the characteristic equation, the general solution of the advec-
tion-dispersion eigenvalue problem (Eq. (8)) can be expressed in
terms of exponential and trigonometric functions:

i) = exp (55 sin(f (152)
O = exp (53 ) os( 0 (15b)

where B,,,; are the layer eigenvalues, m = 1,2,3,...,M, which are re-

lated to the eigenvalues /; by

o (4).1»2DmRm — U% — 4Dm,um)1/2 (15C)
mE 2Dy,
From Eqs. (11) and (15), the coefficients for the first layer are:
2D1 4
Bii= 1[;]"1/\1‘1' (16)
28]

For the others layers (m=2, 3,...,
mulas are obtained:

M), the following recursive for-
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The coefficients A,,; and B, ;are expressed in Egs. (17)-(20) as the
product of exponential and trigonometric functions. Egs. (10),

X €OS(Xim-1Pm-1,)
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(15), and (17)-(20) can be combined to yield, after appropriate sim-
plification, an expression for the eigenfunctions y/, (x):

Xm-1 <X<Xm
U0 =D (50 ) S0 0+ B COS(fp 0] m=12.3,...M
i=1,23,...,0
e1)
where for m=1:
—_ _ 2D -
Au=1: B ="0hig, (22a.b)

and for m=2,34,...,M the coefficients A,,; and B,,; were defined
previously by Egs. (18) and (20). The term s,, is given by:

0 (m=1)

S _ m
m= 1 Un-1 _ Um )y
ZZ Dp_1 ~ Dy )"m-1

m=2
Finally, from Eqgs. (14) and (15) the following transcendental equa-
tion is obtained:

(22¢)

(m=2,3,....M)

Awi[SN(Xp By i) s + 2 €OS(Xng By 1) Dra B ]
+ Bui[cOS (Xn By i) Ut — 2 SIN(XnByr;)DuPi] = 0 (23)

3.2.2. Orthogonality and norm of the eigenvalue problem

In the classification system given by Mikhailov and Ozisik [2]
for self-adjoint problems of heat and mass diffusion, a Class II
eigenvalue problem is defined by:

o [P0 2] 4 Pt — quiim =0 T
(24)
u]wﬁm%:o; X=x=0 (25a)
Zm d;mwj ;M B } ;::XT 2.3, .M—1 (252-¢)
ddwx"" 0; x=2xy (25d)

Mikhailov and Ozisik [2] developed the orthogonality relation
for this class of (self-adjoint) problems. To determine the orthogo-
nality relation and norm for our study, we will relate Egs. (8) and
(9) with Egs. (24) and (25) by using the integrating factor concept.

Although Eq. (8) is non self-adjoint, an integrating factor can be
used transform Eq. (8) into a form that is equivalent to the self-ad-
joint Eq. (24). As shown by Pérez Guerrero and Skaggs [10], an inte-
grating factor p,,(x) is obtained by solving the equation:

dpn (%) Up
“dx —Dm(X) D,

For a reference position x = X,,, we define p,,(X,) = Pm. Thus, an
analytical expression for p,(x) is obtained from Eq. (26):

DPin(X) pmexp{ / umdx}

_pmexp{ Dm(x xm)} (m=1,2,...,M) (27)

(m=1,2,....M) (26)

The determination of p,, is detailed in Appendix B. Then, the
coefficient p,,(x) for each layer is given by:

Xm-1 < X < Xm
Pal®) = knexp |- —xa) g 0 IIT L 8)
0 (m=1)
= & 29
Em Z%(xﬁl—]_xﬁl) (m:27377M) ( )
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Following [10], the others coefficients of Eq. (24) are:
—p(x)Em. R m=12,....M 30,31
qm(x)_pm(X)D ’ Wm(x)_pm(X)D (m_ 3Ly ey ) ( ) )
m m

Since the non-self-adjoint eigenvalue system was re-written in
the form of the Class II self-adjoint diffusion problems, the orthog-
onality relation is given by [2]:

M Xm
Do W)W (X)W (x)dx = 5;N; (32)
m=1+Xm-1

where N; is the norm. Using Egs. (21), (18), (20), (22a-c), (28) and
(29) in Eq. (30) results in the following closed-form expression for
the norm:

M —
Ni=Y Npi
m=1

(33a)

. knRnexp (5-X1) ]
Npj = ngl) {Aﬁl,i[sm(zﬂm,ixmq )= SIN(2f Xm)

+ 2Bmi(Xm — Xm_1)] + 2AmiBmi[COS(2 B iXm_1)

— COS(2f )]

o+ B, [SI0(2B Xm) — SIN(2B X 1) + 2B m — Xm 1))}
(33b)

3.3. The integral transform pair

Representing the unknown function H(x,t) as a series expansion
in terms of the eigenfunctions \/,,(x) and using the orthogonality
property (Eq. (30)) results in the following integral transform pair:

Hp(x,t) = Zl//"”( )H,-(t) (Inverse) (34)

i=1

Z (X)Ymi(x)H (X,t)dX

leml

(Transform) (35)

3.4. Integral transform of the differential equation

Applying the inverse formula (Eq. (32)) to Eq. (5) and recalling
the eigenvalue problem (Eq. (8)) results in:

aoc m. me)b m
Ry 2V 0 - -3

=

Xmo1 < X < Xm
m=1,23,....M

(36)

Now, applying Z’L] ];‘mm ] Pm Dy i(X)dx to both sides of Eq. (36) and
grouping resulting terms glves

P (0 )

0~ TJ. M Xm
=y S [ P R (g e 37)
J m

Then, using the orthogonality property (Eq. (32)), the following is
obtained:
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dH;i(t) Xm_1 < X < Xm

= —27Hi(t 38
dt iHi(t) m=1,2.3,....M (38)
The initial condition (Eq. (7)) is also transformed to yield:
M Xmo1 <X <X
m1 <X (39a)

m=1,23,....M

Hi(0) = fmi
m=1
Xmo1 <X < Xp
m=1,2,3,....M
(39b)

Eq. (39) is a generalized expression for any functional form of
Gm(x). For situations when G,(x)=0 and F,(x) is the general
expression given in Appendix A (Eq. (A6)), the following integral
coefficient f,,; results:

Fi= [ Wi (O () [Gon () — Fo ()]

am sz,

b T3,
(U — 2D 1) + 4D2 B2
m m m mFm.i

(Um — 2Dr2m)* +4D% B2
(40a)
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— 2D (1A, + BmiBmi)] + COS(XmfPm ) (2D B iAmi
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— exp

+ rlmxm} SIN(Xin B 1) [UmAm.i

+ Bi(m — (40¢)
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(40d)
When G,,(x) =0 and F,(x) = 1, the integral coefficient f,; is:

L 2KknRueXp gy +Sm 2 (X1~ 2%n)| -
fm.i = u,zn +4Dﬁ1[},2n_i {_ Sln(/jm.ixmfl )"lmAm.i_2

X COS(/)'m_iXm,1 )Dm,Bm.iZm.i - Cos(ﬁmjxmfl )umﬁm.i + 2
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% SIN(By iXm-1)Dm P iBm.i +€Xp [72; (Xm-1 *Xm)] (2Dm B iAm,i
m

“+ UmBm,) COS(By iXm) + (UnAm; — 2Dm By iBim.) 5in<ﬁm.ixm)]} (41)

3.5. Analytical solution for the transformed and original problems

Solving Eq. (38) with initial condition Eq. (39) gives the trans-
formed field:

H;(t) = Hi(0) exp (- 4t) (42)

Finally, invoking the inverse formula Eq. (32) and the relationship
in Eq. (4), the closed-form analytical solution is obtained for the
advection-dispersion transport equation in multilayered media:

Cm(X, ) = Fn (%) + i t//,,;\;.(x) H;(0) exp (—27t) Xm-1 < X< Xm
i=1

i m=1.2.3,....M
(43)

4. Test-case evaluation

The performance of the closed-form analytical solution devel-
oped in Section 3 is evaluated by solving the advection-dispersion
transport problem in saturated soils for the case of two and five
layers, using the same transport parameters given by Liu et al.
[7]. The porous medium is assumed to consist of homogeneous lay-
ers subject to steady water flow perpendicular to the layer inter-
face. For these cases the coefficient k, is defined k;, =é&nDpm,
where &, and D, denote the volumetric water content (soil poros-
ity) and the dispersion coefficient in each layer, respectively.

4.1. Two-layer media

Parameter data for the two-layer test-case are given in Table 1
for three different situations. This test-case with x; =10 cm and
X, =30 cm was initially proposed and solved by Leij and van
Genuchten [6] with a semi-infinite second layer. Liu et al. [7]
solved the same problem with a finite second layer, but they did
not report its length.

The series convergence of Eq. (36) is presented in Table 2 for the
three cases. For the range of conditions established by Cases 1-3 in
Table 1, no more than N = 15 terms were necessary to achieve con-
vergence and obtain a solution with the same precision such as re-
ported by Leij and van Genuchten [6] and Liu et al. [7]. Table 3
compares the converged values from the present analytical solu-
tion with those obtained previously by Leij and van Genuchten
[6] and Liu et al. [7]. Calculations with the present solution were
repeated for different values of the exit location, x,. It was found
that any finite domain with x, > 25 cm produced a solution which,
over the range 0 cm < x < 20 cm, matched the semi-infinite solu-
tion to the precision reported by Leij and van Genuchten [6] (not
shown). The problem was also solved numerically using the meth-
od of the lines as implemented in the Mathematica NDSolve library
with options set to “ImplicitRungeKutta” [9]. The numerical results
matched the analytical solution to the precision reported in Table 3
(not shown).

Liu et al. [7] reported that their analytical solution required
N =60 (or in some cases N =120) terms for their series solution
to achieve convergence. The faster convergence (no more than
N =15 terms) in the current work is because the presented analyt-
ical solution utilizes an eigenvalue problem that closely resembles
the original problem. The eigenvalue problem used in [7] does not
include an advection term. The use of a closely associated eigen-
value problem in the integral transform procedure is convenient
because the convergence is faster in relation to other possible
eigenvalue problems.

Table 1
Transport parameters for the two-layer test-case.
Case Layerm up(cm/d) Dy, (cm?/d)  &n Rn  m (d7") X, (cm)
1 1 25 50 04 1 0 10
2 40 20 025 1 0 30
2 1 25 20 0.4 1 0 10
2 40 50 025 1 0 30
3 1 40 20 025 1 0 10
2 25 50 0.4 1 0 30
4 1 25 50 0.4 3 3 10
2 40 20 025 2 4 30




Table 2

Convergence of solute concentration in a two-layer porous medium (N is the numbers of terms summed).

Case x (cm) t=0.2 day t=0.4 day t=0.6 day t=0.8 day
N=5 N=10 N=15 N=20 N=5 N=10 N=15 N=20 N=5 N=10 N=15 N=20 N=5 N=10 N=15 N=20
1 0 0.885 0.884 0.884 0.884 0.963 0.963 0.963 0.963 0.987 0.987 0.987 0.987 0.995 0.995 0.995 0.995
2 0.743 0.742 0.742 0.742 0.915 0.915 0.915 0.915 0.969 0.969 0.969 0.969 0.988 0.988 0.988 0.988
4 0.560 0.561 0.561 0.561 0.841 0.841 0.841 0.841 0.940 0.940 0.940 0.940 0.977 0.977 0.977 0.977
6 0.372 0.375 0.375 0.375 0.746 0.746 0.746 0.746 0.901 0.901 0.901 0.901 0.962 0.962 0.962 0.962
8 0.223 0.222 0.222 0.222 0.645 0.645 0.645 0.645 0.858 0.858 0.858 0.858 0.945 0.945 0.945 0.945
10 0.149 0.142 0.142 0.142 0.579 0.579 0.579 0.579 0.829 0.829 0.829 0.829 0.933 0.933 0.933 0.933
10 0.149 0.142 0.142 0.142 0.579 0.579 0.579 0.579 0.829 0.829 0.829 0.829 0.933 0.933 0.933 0.933
12 0.059 0.063 0.063 0.063 0.480 0.480 0.480 0.480 0.781 0.781 0.781 0.781 0.914 0.914 0914 0.914
14 —-0.308 0.021 0.021 0.021 0.371 0.372 0.372 0.372 0.722 0.722 0.722 0.722 0.889 0.889 0.889 0.889
16 -1.950 —0.008 0.005 0.005 0.250 0.264 0.264 0.264 0.651 0.651 0.651 0.651 0.858 0.858 0.858 0.858
18 0.545 0.089 0.001 0.001 0.153 0.168 0.168 0.168 0.567 0.567 0.567 0.567 0.819 0.819 0.819 0.819
20 90.700 -0.214 0.000 0.000 0.658 0.094 0.094 0.094 0.476 0.473 0.473 0.473 0.770 0.770 0.770 0.770
2 0 0.980 0.978 0.978 0.978 0.998 0.998 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.873 0.868 0.868 0.868 0.984 0.984 0.984 0.984 0.998 0.998 0.998 0.998 1.000 1.000 1.000 1.000
4 0.608 0.634 0.634 0.634 0.942 0.942 0.942 0.942 0.991 0.991 0.991 0.991 0.999 0.999 0.999 0.999
6 0.298 0.345 0.345 0.345 0.848 0.849 0.849 0.849 0.972 0.972 0.972 0.972 0.995 0.995 0.995 0.995
8 0.382 0.131 0.131 0.131 0.697 0.693 0.693 0.693 0.930 0.930 0.930 0.930 0.986 0.986 0.986 0.986
10 0.549 0.033 0.033 0.033 0.511 0.496 0.496 0.496 0.853 0.853 0.853 0.853 0.966 0.966 0.966 0.966
10 0.549 0.033 0.033 0.033 0.511 0.496 0.496 0.496 0.853 0.853 0.853 0.853 0.966 0.966 0.966 0.966
12 -0.672 0.008 0.011 0.011 0.364 0.370 0.370 0.370 0.783 0.784 0.784 0.784 0.944 0.944 0.944 0.944
14 —3.950 0.005 0.003 0.003 0.175 0.257 0.257 0.257 0.697 0.699 0.699 0.699 0913 0.913 0913 0.913
16 —6.980 0.012 0.001 0.001 -0.015 0.166 0.166 0.166 0.597 0.601 0.601 0.601 0.871 0.871 0.871 0.871
18 -0.193 -0.020 0.000 0.000 0.027 0.098 0.098 0.098 0.496 0.498 0.498 0.498 0.817 0.817 0.817 0.817
20 31.300 —-0.036 0.000 0.000 0.724 0.054 0.054 0.054 0.409 0.395 0.395 0.395 0.751 0.751 0.751 0.751
3 0 1.000 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.994 0.988 0.988 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 0.941 0.928 0.928 0.928 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
6 0.579 0.765 0.764 0.764 0.994 0.995 0.995 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8 —-1.090 0.490 0.496 0.496 0.966 0.976 0.976 0.976 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999
10 —3.140 0.181 0.152 0.152 0.742 0.780 0.780 0.780 0.939 0.940 0.940 0.940 0.979 0.979 0.979 0.979
10 —3.140 0.181 0.152 0.152 0.742 0.780 0.780 0.780 0.939 0.940 0.940 0.940 0.979 0.979 0.979 0.979
12 1.320 0.045 0.049 0.049 0.600 0.600 0.600 0.600 0.870 0.870 0.870 0.870 0.952 0.952 0.952 0.952
14 9.610 —0.059 0.013 0.013 0.515 0.418 0.418 0.418 0.774 0.773 0.773 0.773 0911 0.911 0911 0.911
16 6.720 0.100 0.003 0.003 0.355 0.262 0.262 0.262 0.654 0.653 0.653 0.653 0.851 0.851 0.851 0.851
18 -17.700 0.076 0.000 0.000 -0.015 0.148 0.148 0.148 0.521 0.522 0.522 0.522 0.774 0.774 0.774 0.774
20 —36.000 —0.346 0.000 0.000 -0.329 0.075 0.075 0.075 0.389 0.393 0.393 0.393 0.681 0.681 0.681 0.681
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Table 3
Comparison results among present work (CITT), Liu et al. [7] (GITT) and Leij and van Genuchten [6] (L™1).
Case x (cm) t=0.2 day t=0.4 day t=0.6 day t=0.8 day
CITT GITT L! CITT GITT L! CITT GITT L! CITT GITT L!
1 0 0.884 0.884 0.884 0.963 0.963 0.963 0.987 0.987 0.987 0.995 0.995 0.995
2 0.742 0.742 0.742 0.915 0.915 0.915 0.969 0.969 0.969 0.988 0.998 0.988
4 0.561 0.561 0.561 0.841 0.841 0.841 0.940 0.940 0.940 0.977 0.977 0.977
6 0.375 0.374 0.375 0.746 0.746 0.746 0.901 0.901 0.901 0.962 0.962 0.962
8 0.222 0.222 0.222 0.645 0.645 0.645 0.858 0.858 0.858 0.945 0.945 0.945
10 0.142 0.142 0.142 0.579 0.579 0.579 0.829 0.829 0.829 0.933 0.933 0.933
10 0.142 0.142 0.142 0.579 0.579 0.579 0.829 0.829 0.829 0.933 0.933 0.933
12 0.063 0.063 0.063 0.480 0.480 0.480 0.781 0.781 0.781 0.914 0.914 0.914
14 0.021 0.021 0.021 0.372 0.372 0.372 0.722 0.722 0.722 0.889 0.889 0.889
16 0.005 0.005 0.005 0.264 0.265 0.264 0.651 0.651 0.651 0.858 0.858 0.858
18 0.001 0.001 0.001 0.168 0.169 0.168 0.567 0.567 0.567 0.819 0.819 0.819
20 0.000 0.000 0.000 0.094 0.094 0.094 0.473 0.473 0.473 0.770 0.770 0.770
2 0 0.978 0.977 0.978 0.998 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000
2 0.868 0.867 0.868 0.984 0.984 0.984 0.998 0.998 0.998 1.000 1.000 1.000
4 0.634 0.633 0.634 0.942 0.942 0.942 0.991 0.991 0.991 0.999 0.999 0.999
6 0.345 0.345 0.345 0.849 0.848 0.849 0.972 0.972 0.972 0.995 0.995 0.995
8 0.131 0.131 0.131 0.693 0.693 0.693 0.930 0.929 0.930 0.986 0.986 0.986
10 0.033 0.033 0.033 0.496 0.496 0.496 0.853 0.853 0.853 0.966 0.966 0.966
10 0.033 0.033 0.033 0.496 0.496 0.496 0.853 0.853 0.853 0.966 0.966 0.966
12 0.011 0.011 0.011 0.370 0.370 0.370 0.784 0.783 0.784 0.944 0.944 0.944
14 0.003 0.003 0.003 0.257 0.257 0.257 0.699 0.698 0.699 0.913 0.913 0.913
16 0.001 0.001 0.001 0.166 0.166 0.166 0.601 0.601 0.601 0.871 0.871 0.871
18 0.000 0.000 0.000 0.098 0.099 0.098 0.498 0.498 0.498 0.817 0.817 0.817
20 0.000 0.000 0.000 0.054 0.054 0.054 0.395 0.395 0.395 0.751 0.750 0.751
3 0 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.988 0.987 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 0.928 0.928 0.928 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
6 0.764 0.763 0.764 0.995 0.995 0.995 1.000 1.000 1.000 1.000 1.000 1.000
8 0.496 0.495 0.496 0.976 0.976 0.976 0.998 0.998 0.098 0.999 0.999 0.999
10 0.152 0.152 0.152 0.780 0.779 0.780 0.940 0.939 0.940 0.979 0.978 0.979
10 0.152 0.152 0.152 0.780 0.779 0.780 0.940 0.939 0.940 0.979 0.978 0.979
12 0.049 0.050 0.049 0.600 0.600 0.600 0.870 0.870 0.870 0.952 0.952 0.952
14 0.013 0.013 0.013 0.418 0.418 0.417 0.773 0.773 0.773 0.911 0.910 0.911
16 0.003 0.003 0.003 0.262 0.262 0.262 0.653 0.653 0.653 0.851 0.851 0.851
18 0.000 0.000 0.000 0.148 0.148 0.148 0.522 0.522 0.522 0.774 0.774 0.774
20 0.000 0.000 0.000 0.075 0.075 0.075 0.393 0.393 0.393 0.681 0.681 0.681
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Table 4
Transport parameters for the five-layer test-case.
Layer Velocity  Dispersion Porosity Retardation  Constant
(emd™!)  coefficient factor decay
(cm?d1) (dm
Sand 10 7 0.4 425 0
Clay 8 18 0.5 14 0
- - -t=2d
......... t=6d
— t=10d

cre;

0 e

0 5 10 15 20 25 30
Distance (cm)

e o o o e e i |

Fig. 1. Relative concentration (C/Cp) as a function of distance at three different
times in a composite media with five-layers (sand-clay-sand-clay-sand).

Symbol = Numerical

Line = Analytical
®----t=02d
- i t=04d
o]
o =, t=06d
y =i b 2 0,8:d

Distance (cm)

Fig. 2. Relative concentration (C/Co) as a function of distance at five different times
in a composite media with two-layers and solute decay (case 4 of Table 1,
x1=10cm and x, = 30 cm).

4.2. Five-layer media

Table 4 gives parameter data for simulating advective-
dispersive transport in a composite media consisting of five layers
arranged as sand-clay-sand-clay-sand (with x; = 10 cm, X, = 12 cm,
X3=20cm, x4=22 cm and x5 =30 cm), as described in [7]. Fig. 1
illustrates the relative concentration distribution along the layers
at the times t=2, 6 and 10 days. The concentration distributions
are in full agreement with those obtained previously in [7].

4.3. Adevection—dispersion transport equation with decay term

Case 4 of Table 1 gives parameter data for a hypothetical test case
used to evaluate the present analytical solution when the decay

term (i) is nonzero. For this case the filter function developed in
Appendix A corresponds to the steady state solution of the transport
equation. The numbers of summed terms required in Eq. (43) were
N =30 and N =40 for layers 1 and 2, respectively. Fig. 2 illustrates
the solute concentration in each layer for different times. Also
shown are results obtained numerically using the method of the
lines as implemented in the Mathematica NDSolve library with op-
tions set to “ImplicitRungeKutta” [9]. It is noted that for long times
the analytical solution corresponds to the steady state solution.

5. Conclusions

A closed-form analytical solution of the transient, one-dimen-
sional advection-dispersion transport equation with first-order de-
cay was obtained for multi-layered media using the classical
integral transform technique (CITT) in conjunction with mathemat-
ical induction. The solution procedure used an associated non-self-
adjoint advection-diffusion eigenvalue problem that had the same
form and coefficients as the original problem. A transcendental
equation for determining the eigenvalues was developed, which
eliminated the risk of missing eigenvalues, a common potential lim-
itation of these types of solution procedures. The performance of
the analytical solution was evaluated by comparing results
with those published previously by Liu et al. [7] and Leij and van
Genuchten [6] for the case of two layers. The present analytical
solution required no more than N = 15 terms to reproduce the pre-
viously published results. The number of terms required for conver-
gence was significantly fewer than the N=60 (or in some cases
N =120) terms reported for the Liu et al. solution [7]. The faster con-
vergence was because the present analytical solution is based on an
associated eigenvalue equation having the same form and coeffi-
cients as the original problem. A second test case involving a five-
layer medium was also simulated and the obtaining concentration
distributions were in full agreement with the previously reported
results in [7]. A final test case illustrated the concentration distribu-
tions that arise in layered media when first-order decay exists.
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Appendix A. Determination of the filter function F,,(x)

This appendix explains the procedure for determining the form
of the “filter” function F,;,(x) needed to transform Eqgs. (1)-(3), which
has non-homogeneous boundary conditions, into Eqs. (5)-(7),
which has homogeneous boundary conditions. In Eq. (4), we intro-
duced the expression:

Xn_1 < X < Xm

Cm = Fm(X) + Hn(x,t) m=1.2.3 M

(A1)

where F,;(x) is the unknown filter function. Following a procedure
similar to that given by Ozisik (1980), we substitute Eq. (A1) into
Egs. (1) and (2), which results in the following:

OHy, Xmo1 <X < Xp
Rn =5 = Lo L 1 93 M (A2)
o _
U][F](X)-&-H](X,t)]—D]a[F1(X)+H1(X,t)]:Ll1C0; X:X():O (ABH)
Fn(X) +Hpn(%,8) = Frniq (X) + H (X, 1) .
ki 2 [Fin (X) + Hi (%, £)] = oo (A3b,c)

, m=1,2,3,....M—1
km+1 (% [Fmﬂ (X) JrHmH (X7 t)] :
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9]

x (Fu) +Hu(x,6)] =0; x=2xy (A3d)
In comparing Eqs. (A2) and (A3) with the desired form of
Egs. (5)-(7), it is evident that Egs. (5)-(7) will be obtained from

Eqgs. (A2)-(A3) if F,, satisfies the following:

Xm_1 < X < Xm

LnFn(x) =0 0 53 M

(Ad)

(A5a)

Fn=F
k"’dFmi"*kl dFM} X=xm; m=1,23,....M—1  (A5b,c)
m gy — m+1 gy

dFy

dx
The filter F,;(x) is the solution of the Eqgs. (A4)-(A5). The general
solution is given by:

=0; x=xy (A5d)

Frn(x) = am exp[r1yx] + by exp[r2,x] (A6a)
_ (um — Am) | _ (Um +Am)

'y, = D, 2n = 2D, (A6D)

Ap = /U3 — 4Dy, (A6c)

The coefficients a,;, and b,, must be determined from the boundary
conditions (Eq. (A5)).

Appendix B. Determination of the parameter values p,,

This appendix gives the procedure for calculating parameter val-
ues p,, in the expression for the integrating factor p,, (x), Eq. (27).
The integrating factor transforms the non-self adjoint equation
(8) into a self-adjoint equation with the same dependent quantity,
Y/m. The boundary conditions, Egs. (9a,b,d) and (25a,b,d), are the
same. Eq. (9c) will be re-written in the form of Eq. (25c) by consid-
ering an appropriate definition of the coefficient p,,. For position
X = X1, we have:

Uy dyr(x
p1exp {* (X1 — Xl)} l//:ji )
o up =] dvn(x)
= P2 exp D, (X1 — xz)} i (B1)
Then considering X; = X1, X, = X and p; = k; leads to
_ dy(x Uy dy, (x
D1 wéi ) = P2 exp [ = (%1 —Xz)} % (B2)

By choosing p, = k; exp [1‘;—2 (%1 — xz)} in Eq. (B2) we obtain Eq. (9¢)
as required.
Similarly, for position x = x5:

D2 exp [_u_ (%2 — Xz)} %

=Py exp {f L) (X, — x3)} deiXZ) (B3)

Then taking x, = x,, X3 = x3 results in,

d _
k, exp B—z (%1 xz)] % = p3 exp

- g—z (%o — x3)} % (B4)

Considering again Eq. (9¢) leads to:

_ u u
By — ks exp {D—Z %1 — %)+ (x, —x3>] (B5)

D3 (
For position x = x3, we have:

s exp [— 5 x5 — x3)} %

— paexp {f l‘% (X3 — 24)} % (B6)

Then for X3 = x3 and X4 = X4:

d
ks exp {D (X1 — %2) +g—2(x2 —x;)} %
o Uy dijy(x3)
—paexp |- s - )| o) (87)
Eq. (9¢) requires that:
p47k4exp{ (%1 —xz)+§(x2 —X3)+#(X3 — X4) (B8)
3 4

Finally, by using mathematical induction, it is possible to obtain a
generalized expression for p,, in position x,:

=~ T Uy
Pm = km €Xp [ (Xm1 — Xm):| (B9)
=2 Dﬁ’l+1
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