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a b s t r a c t

We perform wavelet decomposition of high frequency financial time series into large and
small time scale components. Taking the FTSE100 index as a case study, and working with
the Haar basis, it turns out that the small scale component defined bymost ( ≃99.6%) of the
wavelet coefficients can be neglected for the purpose of option premium evaluation. The
relevance of the hugely compressed information provided by low-pass wavelet-filtering is
related to the fact that the non-gaussian statistical structure of the original financial time
series is essentially preserved for expiration times which are larger than just one trading
day.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The problem of option pricing [1–3] has been a main topic of investigation in much of the econophysics literature,
challenged by the well-known inadequacy of the standard Black–Scholes model for the real world [1–6]. Options are an
imperative element in modern markets, since they play a fundamental role, as convincingly shown long ago by Black and
Scholes, in reducing portfolio risk. As an alternative to the Black–Scholesmodel, one of the present authors has implemented
an option pricing scheme which is based on the evaluation of statistical averages taken over samples generated from the
underlying asset log-return time series [6]. This method, which we will refer to as ‘‘Empirical Option Pricing’’ (EOP), has
been succesfully validated through a careful study of FTSE100 options.

A deeper understanding of the statistical features of financial time series is in order, since this would eventually allow us
to replace real samples by accurate synthetic financial series, improving the statistical ensembles used in EOP. As a closely
related issue, our aim in this work is to show that financial series can be hugely compressed (wemean lossy compression, in
the information theoretical sense) by wavelet-filtering, without spoiling option premium evaluation by EOP. The low-pass
wavelet-filtered signal contains log-return fluctuations defined on time scales larger than a few hours and it is likely to yield,
due to its high compression rate, a more suitable basis for modeling and synthetization.

This paper is organized as follows. Sections 2 and 3 provide brief accounts, respectively, of the EOPmethod and of the low-
pass wavelet-filtering procedure that has been applied to our analysis of the FTSE100 index. The wavelet-filtered financial
series, which keeps only 0.4% of the total number ofwavelet components of the original signal, is seen to encode the essential
statistical information needed for a consistent evaluation of FTSE100 option premiums with expiration times larger than a
single trading day. In Section 4, we summarize our findings and point out directions for further research.

2. Empirical Option Pricing (EOP)

We rephrase here, without paying much attention to rigorous considerations, the main points of EOP [6]. Let S(t) be an
arbitrary financial index modeled as a continuous stochastic process. More precisely, we write down a Langevin evolution
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equation for S(t), which is a simple generalization of the one underlying the Black–Scholes model [7,8]:

dS
dt

= µ(t)S + σ(t)η(t)S. (2.1)

Above,µ(t) and σ(t) are the time-dependent interest rate and the volatility of the index S. The stochasticity of the financial
time series comes from the gaussian white noise process η(t) appearing in Eq. (2.1), which satisfies

⟨η(t)⟩ = 0,

⟨η(t)η(t ′)⟩ = δ(t − t ′). (2.2)

Observe that bothµ(t) and σ(t)may be regarded as stochastic processes as well, with fluctuations correlated on time scales
which are much larger than the correlation time of S(t).

Working within the Itô prescription, Eq. (2.1) can be readily rewritten as

dx
dt

= σ(t)η(t), (2.3)

where

S(t) = S exp
 t

0
dt ′µ̃(t ′)+ x(t)− x(0)


, (2.4)

with

µ̃(t) ≡ µ(t)−
1
2
σ(t)2. (2.5)

Above, S ≡ S(0) is just the spot price of the index. We are interested, now, in evaluating the premium of a European option
which is negotiated with strike price E and expiration time T . Similarly to what is done in the Black–Scholes treatment,
where µ(t) and σ(t) are constant, the option premium V (for, say, call options) can be obtained by computation of the
statistical average

V = exp[−rT ]⟨(S(T )− E)Θ(S(T )− E)⟩, (2.6)

where µ(t) is replaced by r , the risk-free interest rate, in the definition of S(T ) provided by Eqs. (2.4) and (2.5).
For stochastic processes {xn} defined in discrete time, with time step ϵ, like real financial time series, Eq. (2.3) can be

replaced by the finite difference equation

1
ϵ
(xn+1 − xn) = σnηn, (2.7)

where

ηn ≡
ξn
√
ϵ

(2.8)

and ξn = ±1 is an arbitrary element of a discrete gaussian stochastic process, defined by ⟨ηn⟩ = 0 and ⟨ηnηm⟩ = δnm. From
(2.7), we get, immediately,

σ 2
n =

1
ϵ
(xn+1 − xn)2 ≡

1
ϵ
(δxn)2 (2.9)

and, therefore,

1
2

 T

0
dtσ(t)2 ≃

1
2

N−1
n=0

(δxn)2, (2.10)

where the time instants are given by tn = nϵ, with T = Nϵ.
Substituting, now, (2.4) and (2.5) (with µ(t) replaced by r) in (2.6), we get

S(T ) = S exp


rT + x(T )− x(0)−

1
2

N−1
n=0

(δxn)2


= S exp


rT +

N−1
n=0


δxn −

1
2
(δxn)2


. (2.11)

It is important to note that δxn, which appears in the above expressions, is, from Eq. (2.4), nothing more than an element of
the detrended log-return series, i.e.,

δxn = ln[S(tn+1)/S(tn)] − ϵµ̃(tn), (2.12)

where ⟨δx⟩ = 0, due to Eq. (2.3).
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Table 1
Call option premiums taken from the market (MKT) are listed together with the EOP evaluations performed with the original (OP) and wavelet-filtered
(OP) series. The market data were recorded on 02dec05, 06dec05, 09dec05, 19dec05, 03dec06, and 12dec06; spot prices are indicated by S; the respective
g-factors (and putative volatilities, see Section 2) are g = 0.81 (σ ∗

= 6.1%), g = 0.91 (σ ∗
= 6.9%), g = 0.94 (σ ∗

= 7.1%), g = 0.78 (σ ∗
= 5.9%),

g = 0.83 (σ ∗
= 6.3%), and g = 0.78 (σ ∗

= 5.9%). The risk-free interest rate is r = 4.5%. The three first dates in December refer to options which expired
on 16dec05. For the other three dates, the expiration date is 20jan06. Themean volatilities measured between 02dec05 and 09dec05 and between 19dec05
and 12jan06were σ = 8.0% and σ = 6.1%, respectively. The brackets in some of the OP evaluations indicate option premiumswhich are probably affected
by poor sampling of the underlying financial series.

Strike price MKT OP OP MKT OP OP MKT OP OP

02dec05 (S = 5528.1) 06dec05 (S = 5538.8) 09dec05 (S = 5517.4)

5125 410.5 412.67 413.00 X X X X X X
5225 312 312.79 313.12 324 321.87 322.25 298 297.51 297.74
5325 214.5 213.94 214.19 225.5 222.87 223.15 199 197.72 197.87
5425 122.5 121.93 122.17 131.5 129.48 129.65 103.5 102.35 102.20
5525 50 48.61 48.55 53.5 53.52 53.41 29.5 29.72 29.15
5625 13 13.01 13.00 12.5 14.97 14.90 3.5 4.79 4.65
5725 2.5 [0.60] 0.60 2 1.66 1.65 0.5 0.35 0.29
5825 0.5 [0.0] 0.0 X X X X X X

19dec05 (S = 5539.8) 03jan06 (S = 5681.5) 12jan06 (S = 5735.1)

5225 329.5 332.38 333.05 X X X X X X
5325 234.5 237.49 237.64 368.5 368.36 368.84 414 414.96 415.12
5425 148 149.46 150.09 271 268.86 269.30 314 315.02 315.18
5525 76 77.75 77.97 177 176.67 174.97 215 215.09 215.25
5625 28.5 30.91 31.09 93 91.20 91.40 119 116.81 116.81
5725 8 [5.18] 5.09 34.5 34.40 34.44 40 34.72 34.38
5825 2.5 [0.60] 0.54 9 8.41 8.39 5.5 4.51 4.36
5925 0.5 [0.0] 0.0 2 [0.19] 0.18 0.5 0.20 0.16
6025 X X X 0.5 [0.0] 0.0 X X X

We are now ready to summarize EOP in the following four steps.
(i) A large period (> two years) of reasonably statistically stationary high-frequency (minute-by-minute) log-return

series of the underlying asset is ‘‘purified’’ by the removal of outlier events (typically, log-return fluctuations which are
larger than 10 standard deviations) and of the mean one-week asset interest rate (detrending). The resulting series is a
stochastic process {δyn}.

(ii) Since the historical volatility σ =


⟨(δyn)2⟩ is in general different from the volatility of the financial series during the
option lifetime T , we introduce a correction factor g to define the stochastic process {δxn = gδyn}, which yields a putative
volatilityσ ∗

= gσ for that period [9]. The g-factor is the only adjustable parameter in EOP,which accounts for the distinction
between the past and future behaviors of the financial index S(t).

(iii) An ensemble E of samples, each of length T = Nϵ (ϵ = 1 min), is defined from one-hour translations of the initial
sequence {δx0, δx1, . . . , δxN−1}. In other words,

E =


m,∆

{δxm∆, δx1+m∆, . . . , δxN−1+m∆}, (2.13)

wherem ∈ N and∆ = 60.
(iv) Option premiums are computed from (2.6), (2.11) and (2.12), with statistical averages taken over the ensemble E ,

defined in (2.13). We note, furthermore, that the optimal value for the g-factor is found through the least squares method,
devised for the comparison between the market and modeled option premiums.

A good agreement has been attained between themarket and EOP values in a detailed study of FTSE100 index options [6].
The comparison data are reported in the MKT and OP columns of Table 1.

The performance of EOP would benefit greatly from the use of synthetic financial series which would enlarge the
ensemble of samples E . Thus, one may wonder, having modeling aims in mind, about what the relevant statistical facts
hidden in the financial time series are. The essential question we address is, accordingly, whether the financial series should
be decomposed into relevant and irrelevant contributions, as far as option pricing is concerned. In the next section, we recall
some ideas on wavelet-filtering, which have been crucial in the investigation of this issue.

3. Wavelet-Filtering and EOP

Log-return fluctuations are constantly affected by avalanches of market orders which have to dowith speculative trends,
and are clearly time-localized events. These features render the financial time series suggestively adequate for wavelet
analysis.

Since there is no requirement of continuity for the log-return time series, we have chosen, due to ease of handling, to
work with Haar wavelets [10]. In the same way as for any other discrete wavelet basis, the Haar wavelets are labelled by
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Fig. 1. Monolog plots of the histograms of the log-return fluctuations for both the original signal (empty circles) and the wavelet-filtered series (filled
circles) taken for time horizons of (a) 100 min, (b) 300 min, and (c) 600 min. We call attention to the non-gaussian profiles of these distributions.

two integer indices 1 ≤ j ≤ J and 0 ≤ k ≤ 2j
− 1 and are given by

ψjk(t) = ψ00(2jt − k), (3.1)

where

ψ00(t) =


1 for 0 ≤ t <

1
2

−1 for
1
2

≤ t < 1
(3.2)

is the function known as the ‘‘mother wavelet’’. Observe that the above basis functions are defined in the domain 0 ≤ t < 1.
The detrended log-return series {δx0, δx1, . . . , δxN−1} of length N = 2J+1 and zero mean [11] can always be expanded

in wavelet modes as

δxi =

J
j=0

2j−1
k=0

cjkψjk(i/N). (3.3)

Low-pass wavelet-filtering can be straightforwardly implemented from the expansion (3.3) by retaining the modes which
have the scale index j < j⋆, where j⋆ is an arbitrarily fixed threshold. We have taken (following the prescriptions given in
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step (i) of EOP, as discussed in Section 2) a financial time series of 241,664min (around two years of data) for the the FTSE100
index, ending on 17November 2005. The series is partitioned into 59 subseries, each of length 4096 (corresponding to J = 11
and about two weeks of market activity), which are then wavelet-filtered with threshold parameter j⋆ = 4 (compression
rate of 99.6%).

Since wavelets with j > 0 have zero mean, we expect that the histograms of the log-returns
N−1

n=0 δxi will not be much
affected for time horizons T = Nϵ > 4096/2j⋆

= 256 min. This is actually verified in Fig. 1. Therefore, on the grounds of
Eq. (2.11), it is clear that option prices can be alternatively estimated through the use of the low-pass wavelet filtered series
within EOP for time horizons which are larger than one trading day (T = 510 min).

In Table 1, we report the computed premiums for call options based on the FTSE100 index with expiration times ranging
froma fewdays to onemonth, inDecember 2005 and January 2006. The agreement between the original andwavelet-filtered
option premium evaluations is significant. It is important to recall, as already indicated in Ref. [6], that the Black–Scholes
framework is unable to yield good estimates of the market option premiums listed in Table 1.

4. Conclusions

We have found, taking the FTSE100 index as a case study, that its high frequency (minute-by-minute) time series can
be highly compressed for the purpose of option pricing. The original and low-pass wavelet-filtered series have remarkably
similar performanceswithin EOP, even for a compression rate of 99.6%,whichmeans that only 967out of the original 241,664
wavelet components have been selected through the wavelet-filtering procedure. The retained wavelet coefficients have a
scale index j smaller than the fixed threshold j⋆ = 4 and are associated to log-return fluctuations defined on time scales
larger than a few hours. It turns out, thus, that one is entitled to use the filtered time series to precify FTSE100 options with
expiration times which are larger than just one trading day, where the log-returns are still clearly non-gaussian random
variables. A promising approach to option pricing, deserving of further investigation, is to address the problem of series
synthetization from the analysis of the statistical properties of the compressed wavelet-filtered financial indices directly
in wavelet space, in a spirit similar to what is done in the context of artificial multrifractal series [12]. It is likely that EOP
would, then, be considerably improved from the use of much larger synthetic statistical ensembles.
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