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We perform, with the help of cloud computing resources, extensive Langevin simulations which provide
compelling evidence in favor of a general Markovian framework for unbiased three-dimensional polymer
translocation. Our statistical analysis consists of careful evaluations of (i) two-point correlation functions
of the translocation coordinate and (ii) the empirical probabilities of complete polymer translocation
(taken as a function of the initial number of monomers on a given side of the membrane). We find good
agreement with predictions derived from the Markov chain approach recently addressed in the literature
by the present authors.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The phenomenon of polymer translocation through membrane
pores has been the subject of a flury of research activity in recent
years [1], a fact related to its relevance to the understanding and
development of important biotechnological processes, like DNA se-
quencing, gene therapy and cytoplasmic drug delivery in living
cells [2–5]. Computer simulations have been playing a dominant
role in most of the expressive literature of polymer transloca-
tion, which may be, roughly, classified into the topical issues of
(i) translocation driven by chemical potential gradients [3,6–10],
(ii) translocation driven by external forces [10–13], and (iii) unbi-
ased translocation [9,10,15,16]. One is usually interested to com-
pute (and, eventually, to model) the scaling exponents of the
power laws which are found to relate the average translocation
time τ to the polymer size N .

Unbiased translocation, where the diffusion of a polymer
through a membrane pore occurs uniquely as the consequence
of thermal fluctuations, is by far the most studied case and it is
also our focus in this Letter. Chuang, Kantor and Kardar (CKK) [17]
have introduced a successful description of unbiased homopoly-
mer translocation from the simple assumption that the polymer’s
evolution does not take it far from its equilibrium states. The es-
sential physical picture is that unbiased translocation is ultimately
due to the diffusion of the polymer center of mass. The translo-
cation time is, thus, assumed to scale precisely in the same way
as the Rouse relaxation time [18], so that τ ∼ N1+2ν , where ν
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is the well-known Flory exponent (ν � 0.588 in three dimen-
sions).

Since the scaling behavior τ ∼ N1+2ν departs from the one
of usual Brownian diffusion, τ ∝ N2, it has been eventually sug-
gested [19,20] that unbiased polymer translocation could not be
modeled as a Markovian process – in other words, memory ef-
fects should be taken into account as an essential ingredient in any
kinematical description of polymer translocation. However, it is of
crucial importance to note that particular values of the transloca-
tion exponent are not sufficient per se to rule out the Markovian
nature of polymer translocation. A Markov chain approach can
be put forward which actually leads to the CKK translocation ex-
ponent and to a closed analytical expression for the probability
of complete polymer translocation that stands in good agreement
with results obtained from Langevin simulations [21].

Our central aim in this work is to subject the Markovian hy-
pothesis of unbiased polymer translocation to a more stringent
test. In essential words, we have considered statistical ensem-
bles of three-dimensional polymer translocation realizations, taken
from Langevin simulations, with sizes considerably larger than the
ones presently found in the literature. Our statistical data sets
have been produced within the Grid Initiatives for e-Science vir-
tual communities in Europe and Latin America (GISELA), a cloud
computing framework supported by several academic institutions.

This Letter is organized as follows. In Section 2, we discuss the
Langevin dynamics of translocating three-dimensional polymers,
which are modeled as bead-spring chains of Lennard-Jones par-
ticles with the finite-extension nonlinear elastic (FENE) potential.
As a starting point, our simulations are validated from evaluations
of the mean translocation time, which is verified to be compatible
with the CKK scaling prediction [17]. We, then, compute two-point
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correlators of the translocation coordinate and, from them, the
memory time of monomer translocation events. The polymer diffu-
sion through the membrane pore is noted to be free of anomalies
for times larger than the memory time scale, clearly suggesting
that unbiased polymer translocation is essentially Markovian. Once
we have found, actually, that small monomer clusters are corre-
lated during translocation, we take this information into account
in Section 3 to compare, with good agreement, the empirical prob-
abilities of complete translocation for polymers of various sizes to
the theoretical probabilities obtained from the Markov chain ap-
proach of Ref. [21]. In Section 4, we summarize our results and
point out directions of further research.

2. Langevin simulations

In our three-dimensional Langevin simulations, the excluded-
volume and van der Waals interactions between beads (monomers
and membrane atoms) separated by a distance r are modeled
through a repulsive Lennard-Jones (LJ) potential with cutoff at
length 21/6σ , where σ is the bead diameter:

ULJ(r) =
{
4ε[(σ/r)12 − (σ/r)6] + ε, if r � 21/6σ ,

0, if r > 21/6σ .
(1)

Besides the LJ potential, consecutive monomers are subject to the
Finite-Extension Nonlinear Elastic (FENE) potential,

UF (r) = −1

2
kR2

0 ln
[
1− (r/R0)

2]. (2)

From the above definition, it is clear that the FENE potential does
not allow the distance between consecutive monomers to become
larger than R0.

We have studied polymers with sizes up to 300 monomers,
which translocate through a pore created by the remotion of a sin-
gle atom at the center of an 80 × 80 monoatomic square lattice
membrane. Polymers ends are completely free. Translocation is dy-
namically described by the following Langevin equations,

m
d2�ri
dt

= −
∑
j �=i

�∇ri

[
ULJ(ri j) + UF (ri j)

] − ξ
d�ri
dt

+ �Fi(t), (3)

where ri j = |�ri − �r j |, ξ is the dissipative constant and �Fi(t) is
a Gaussian stochastic force which acts on the monomer with la-
bel i, completely defined from the expectation values

〈�Fi(t)〉 = 0,〈[
n̂ · �Fi(t)

][
n̂′ · �F j

(
t′
)]〉 = 2n̂ · n̂′kB T ξδi jδ

(
t − t′

)
. (4)

Above, n̂ and n̂′ are arbitrary unit vectors, and kB and T are the
Boltzmann constant and the temperature, respectively. By means
of a suitable regularization of the stochastic force, we have imple-
mented a fourth-order Runge–Kutta scheme for the numerical sim-
ulation of the Langevin Equations (3). Our simulation parameters
are: ε = 1.0, σ = 1.0 (σ is also identified with the membrane lat-
tice parameter), ξ = 0.7, k = 7ε/σ 2, R0 = 2σ , kB T = 1.2ε . The sim-
ulation time step is taken to be 3 × 10−3tLJ, where tLJ ≡

√
mσ 2/ε

is the usual Lennard-Jones time scale. In the most general case, the
initial configuration of the polymer has n monomers on the trans-
side of the membrane and N − n on the cis-side. Translocation is
allowed to start only after an initial stage of thermal equilibrium
is reached for the whole polymer.

As a preliminary validation step, we have checked if the translo-
cation samples produced from the Langevin simulations would
lead, in fact, to mean translocation times that scale with the poly-
mer size as expected on the grounds of the CKK phenomenological

Fig. 1. The mean translocation time as a function of polymer size for unbiased
translocation. We find the translocation exponent α = 2.17 ± 0.06, which is com-
patible with the CKK prediction, α = 1+2ν , with ν = 0.588 (numerical value of the
three-dimensional Flory exponent).

theory, i.e., τ ∼ Nα with α = 1 + 2ν . The polymers are initially
prepared to be in thermal equilibrium with an equal number of
monomers on both sides of the membrane. Mean translocation
times have been obtained from averages taken over ensembles
of 70 complete translocation processes for each given polymer size.
The mean translocation time as a function of the polymer size is
shown in Fig. 1, which in fact indicates a reasonable agreement
with the CKK scaling exponent. Being confident on the Langevin
simulational scheme, we are now ready to move to the study of
more subtle aspects of polymer translocation.

2.1. Correlation effects

An important issue addressed in studies of polymer transloca-
tion refers to the role of correlations between monomer translo-
cation events. As we show below, relying upon clear numerical
evidence, such correlations are short-ranged in time, a fact that
paves the way for a Markovian description of unbiased transloca-
tion.

When a given dynamical system is claimed to evolve in time
as a Markovian stochastic process, it is of course tacitly assumed
that the states of the system have been picked up in time inter-
vals which are larger than some time scale associated to memory
effects. In the polymer translocation context, it is convenient to de-
fine the dynamical state by the integer number s(t), the “translo-
cation coordinate”, that represents the number of monomers that
have crossed the membrane to one of its sides, up to time t
(which, by the way, is also treated as a discrete variable, since we
measure it in units of the Lennard-Jones time scale). The memory
time scale can be defined, in principle, from the decaying profile
of the normalized two-point correlation function

G(Δ) = lim
M,T→∞

∑M
i=1

∑T
t=0 si(t)si(t + Δ)∑M

i=1
∑T

t=0[si(t)]2
, (5)

where si(t) denotes the i-th sample taken from the ensemble of
translocation coordinate time series. We have evaluated the right-
hand side of (5) for polymers composed of N = 300 monomers,
in an ensemble of M = 1000 samples, with time bound T =
1.5 × 104. The initial polymer configurations are in thermal equi-
librium with 150 monomers on each side of the membrane. As it
is depicted in Fig. 2, the two-point correlation function (5) fol-
lows, to very good approximation, the simple exponential law
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Fig. 2. The dashed line is the empirical evaluation of G(Δ) as given by the truncated
version of Eq. (5) with finite M and T . The solid line is the excellent fit provided by
exp(−Δ/9300).

Fig. 3. Plot of the variance of the translocation coordinate as function of time for
N = 300. A linear regime effectively holds for t � 8 × 103, after an initial pe-
riod of nonlinear transient behavior. The transition line is defined by the condition√〈[s(t)]2〉 = 6. Statistical averaging is performed in an ensemble of 104 indepen-
dent polymer translocation realizations.

G(Δ) = exp(−cΔ), with decaying time parameter 1/c = 9.3 × 103.
In concrete terms, this result means that after around 9.3 × 103

Langevin iterations, translocation looses memory of the past states.
It is interesting, having in mind Markov modeling, to find the typi-
cal size of correlated monomer clusters that translocate within the
memory time scale. As we discuss below, this can be achieved
from an analysis of the diffusive behavior of polymer transloca-
tion.

2.2. The normal diffusive regime of unbiased translocation

Still considering polymers of size N = 300 in three dimen-
sions, the variance of the translocation coordinate, that is, 〈[s(t)]2〉,
is plotted in Fig. 3. Averages are now taken over ensembles of 104

samples. It is clear from that picture that for times larger than
the memory time scale, 〈[s(t)]2〉 is essentially a linear function of
time or, in equivalent words, monomers diffuse in a normal way
through the membrane pore.

It is important to emphasize that our data provides a strong
objection to the previously predicted anomalous scaling 〈[s(t)]2〉 ∼

t
2

1+2ν [17], which must be viewed now as a misleading result
derived within the CKK theory of the mean translocation time.
We refer the reader to Ref. [21] for a detailed discussion on this
issue. Fig. 3 also indicates that around the memory time scale
t = 9.3 × 103 we have

√〈[s(t)]2〉 � 6.5, which means that the
correlated monomer clusters are composed of approximately six
monomers (we choose to round the size of the monomer clusters
to six and not to seven, once we observe that the crossover to
the linear regime in Fig. 3 takes place a little before the memory
time scale set by the two-point correlation function (5)). The size
of such correlated monomer clusters is a crucial ingredient in the
Markov chain approach to polymer translocation: if the original
polymer is replaced by a “monomer-clustered” polymer (whose
size is the original size divided by the size of correlated monomer
clusters), then the translocation of monomer clusters, rather than
individual monomers, is assumed to generate a truly Markovian
stochastic process.

3. Evidence of Markovian behavior

The fundamental hypothesis of the Markov chain approach to
unbiased translocation is that monomers translocate in an un-
correlated way with probabilities pn and qn for cis → trans and
trans → cis transitions, respectively (recall that n, as defined in
Section 2, is the number of monomers on the trans-side of the
membrane). Following Ref. [21], one puts forward the transition
probabilities

pn = c

(N − n)δ+2ν−1
,

qn = c

nδ+2ν−1
, (6)

where 0 < c < 1 is an arbitrary constant and δ is a scaling ex-
ponent associated to finite-size corrections to the CKK scaling re-
lations (it would follow, for instance, that τ ∼ Nδ+2ν for fixed δ

and large enough N). It is also possible, from the definitions (6)
and using exact results for general Markov chains [22], to find
the probability P (N,n) of complete trans → cis polymer translo-
cation,

P (N,n) =
1+ ∑n−1

i=1

∏i
j=1

q j
p j

1+ ∑N−1
i=1

∏i
j=1

q j
p j

. (7)

We have tested the analytical prediction given by Eq. (7) for poly-
mers of various sizes. As it is shown in Fig. 4, the comparison
between the empirical and analytical probabilities is very sat-
isfactory. The empirical probabilities have been evaluated from
ensembles of 70 complete polymer translocation realizations.
To understand Fig. 4, note that the parameter N to be substi-
tuted in (6) is not the original polymer size anymore. In (6),
N is now taken as the effective size of the monomer-clustered
polymer (in our particular case, as suggested by the results of
Section 2, it is just the original polymer size divided by 6).
Therefore, for a given value n of the initial number of trans-
monomers, a solid circle is plotted in Fig. 4, with coordinates
(n, P (N/6,n/6)) where P (N/6,n/6) is the probability of complete
polymer translocation evaluated within the Markov chain approach
for a polymer which contains N/6 monomers (N/6 is conven-
tionally rounded, if necessary to the smallest integer greater than
N/6).

4. Conclusions

We have provided consistent statistical data which essentially
settles down the issue on whether unbiased polymer transloca-
tion is Markovian or not – it turns out that unbiased polymer
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Fig. 4. The empirical (open circles) and analytical (solid circles) probabilities (both denoted here by P (N,n)) of cis → trans complete translocations are compared. The variable
n stands for the initial number of monomers in the trans-side of the membrane. The analytical probabilities are computed from (6) and (7) with δ = 0.88 and ν = 0.588
for N = 60,70,90,100. The error bars in the empirical probabilities follow from elementary statistical considerations and are given by

√
P (N,n)(1 − P (N,n))/70. They just

indicate the standard deviation associated to the observation of events with probability P (N,n) in a sample of 70 outcomes.

translocation, under the conditions addressed in this work, can be
very confidently described as a Markovian stochastic process. This
conclusion is supported from three clear pieces of evidence: (i)
the two-point correlation function (5) indicates that individual
monomer translocation events are correlated within a finite mem-
ory time scale which is much smaller than the mean complete
translocation time; (ii) the variance of the translocation coordi-
nate depends linearly on time for times which are larger than the
memory time scale; and (iii) empirical probabilities of complete
translocation finely match the analytical ones predicted from the
Markov chain approach of Ref. [21] (it is worth of mentioning that
(ii) can be also derived within the same formalism).

An interesting point, motivated by our results, is whether the
original approach of polymer translocation addressed by Muthuku-
mar [23], which is also Markovian (but failed to give the correct
expression for the mean translocation time), can be somehow im-
proved taking into account the present findings. In concrete terms,
it is not difficult to define a specific free-energy profile for the
translocating polymer that would lead to the individual monomer
translocation probabilities (6). A challenging problem which we are
currently investigating is whether such effective free-energy pro-
file is just an artifact that can be used to reproduce the stochastic

evolution of the translocating polymer, or is actually the physical
thermodynamical potential derived from standard equilibrium sta-
tistical mechanics considerations.

As a final remark, we call attention to recent works where
memory effects are found to be relevant in the translocation pro-
cess, due to the excitation of collective modes along the polymer
chain [11,13,14]. Non-Markovian behavior is likely to be related
in such studies to further model ingredients like external forc-
ing, pore thickness, and hydrodynamic interactions between the
polymer and the solvent (which indicates that a description of
translocation in terms of the Zimm polymer model would be in
order). An interesting problem deserved for future research, is to
understand how the crossover from Markovian to non-Markovian
behavior takes place, as one progressively adds those additional
factors to the minimal scenario discussed here (unbiased translo-
cation, thin membrane limit, and the absence of hydrodynamic
interactions).
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