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Abstract

Purpose – The purpose of this paper is to provide an analysis of two-dimensional laminar flow in the
entrance region of wavy wall ducts as obtained from the solution of the steady Navier-Stokes
equations for incompressible flow.

Design/methodology/approach – The study is undertaken by application of the generalized
integral transform technique in the solution of the steady Navier-Stokes equations for incompressible
flow. The streamfunction-only formulation is adopted, and a general filtering solution that adapts
to the irregular contour is proposed to enhance the convergence behavior of the eigenfunction
expansion.

Findings – A few representative cases are considered more closely in order to report some numerical
results illustrating the eigenfunction expansions convergence behavior. The product friction
factor-Reynolds number is also computed and compared against results from discrete methods
available in the literature for different Reynolds numbers and amplitudes of the wavy channel.

Research limitations/implications – The proposed methodology is fairly general in the analysis
of different channel profiles, though the reported results are limited to the wavy channel configuration.
Future work should also extend the analysis to geometries represented in the cylindrical coordinates
with longitudinally variable radius.

Practical implications – The error-controlled converged results provide reliable benchmark results
for the validation of numerical results from computational codes that address the solution of the
Navier-Stokes equations in irregular geometries.

Originality/value – Although the hybrid methodology is already known in the literature, the results
here presented are original and further challenges application of the integral transform method in the
solution of the Navier-Stokes equations.
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Nomenclature
a * ¼ Amplitude of the wavy boundary
b ¼ Half the distance between the walls

at the duct inlet
c ¼ Parameter of scale compression
F(x, y) ¼ Filtering function
k1, k2 ¼ Streamfunction values at the duct

walls
n ¼ Unit normal vector
Ni ¼ Norm
NTV ¼ Expansion truncation order
p ¼ Dimensionless pressure field
Q ¼ Dimensionless mass flux
Re ¼ Reynolds number
u ¼ Dimensionless longitudinal velocity

component
v ¼ Dimensionless transversal velocity

component
x ¼ Dimensionless longitudinal

coordinate
xout ¼ Value of the longitudinal coordinate

at the duct outlet

y ¼ Dimensionless transversal
coordinate

y1, y2 ¼ Boundaries geometric profiles
Yi ¼ Eigenfunctions

Greek letters
a ¼ Dimensionless duct amplitude
bi ¼ x-independent eigenvalues
h ¼ Transformed longitudinal

coordinate
j ¼ Transformed transversal coordinate
t ¼ Compressed longitudinal coordinate
f ¼ Filtered potential
�fi ¼ Transformed potentials
c ¼ Streamfunction
v ¼ Vorticity

Subscripts and superscripts
_ ¼ Integral transformed quantities
i, j, k ¼ Expansions indices

1. Introduction
Fluid flow within irregularly shaped ducts is found in several industrial applications
related, for instance, to the flow of liquids in chemical processing plants; air flow in
cooling, heating and ventilation units; and cooling of electronic equipment. In these
applications, there is the need of evaluating certain physical parameters for proper
thermal-hydraulic design, such as friction factors and heat-transfer coefficients. Channels
with corrugated surfaces are, for example, employed in compact heat exchangers (Kays
and London, 1984) for heat-transfer enhancement. Most theoretical studies performed on
the fluid dynamics and thermal phenomena occurring in corrugated wall ducts consider
corrugations having a periodical pattern which are described by simple functions
such as rectangular, triangular or sinusoidal relations. A few experimental and
theoretical studies are available in the literature on the thermohydraulics of such wavy
wall ducts (Goldstein and Sparrow, 1977; Asako et al., 1988; Sunden and Trollheden, 1989;
Xiao et al., 1989; Wang and Chen, 2002). Wall corrugation may also be employed aimed at
promoting early transition of laminar to turbulent flows, sometimes responsible for the
enhancement of heat transfer in practical applications (Cabal et al., 2001; Balaras, 2004;
Dalal and Das, 2007; Marchioli et al., 2007). More recently, a few works have addressed the
interest in investigating channel corrugations at the micro-scale, either for liquid or
gaseous flows (Vasudevaiah and Balamurugan, 2001; Chen and Cho, 2007; Castellões
and Cotta, 2008).

The numerical simulation of flows in irregularly shaped channels by the
conventional discrete approaches requires sufficiently fine meshes and considerable
computational effort so as to capture the detailed aspects of the fluid flow that
influence the wall friction. On the other hand, a number of hybrid numerical-analytical
approaches were progressively developed and presented in the open literature,
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advocated as less expensive and at least as companion tools for the more popular
and, in general, more straightforward discrete numerical methods. Eigenfunction
expansion-type approaches were among such extended analytical tools that to a
considerable extent were also able to profit from the concurrent development of
symbolic computation platforms (Wolfram, 1999). Within this class of approaches, the
integral transform method was gradually expanded in its applicability, under the label
of the generalized integral transform technique (GITT) (Cotta, 1993, 1994, 1998; Cotta
and Mikhailov, 1997, 2006; Santos et al., 2001; Cotta et al., 2005), and extensively
employed in heat/mass transfer and fluid flow problems. For instance, under either
the boundary-layer or full Navier-Stokes formulations, a number of contributions
have advanced this method towards the error-controlled solution of internal flow and
convective heat-transfer problems (Pérez Guerrero and Cotta, 1992, 1995, 1996;
Carvalho et al., 1993; Machado and Cotta, 1995; Figueira da Silva and Cotta, 1996, 1998;
Lima et al., 1997, 2007; Quaresma and Cotta, 1997; Cotta and Pimentel, 1998; Pereira
et al., 1998; Machado and Cotta, 1999; Pérez Guerrero et al., 2000; Naveira et al., 2007;
Paz et al., 2007). Both the primitive variables and streamfunction (or vector-scalar
potentials for three-dimensional flows) formulations were adopted in such developments,
with some preference to the streamfunction form, due to the elimination of the
pressure field and automatic satisfaction of the continuity equation. In the case of the
streamfunction-only formulation, the appropriate eigenfunction expansion for the velocity
problem is in general proposed based on a fourth-order eigenvalue problem related to the
analytical solution of the linear biharmonic equation for vanishing Reynolds number. In
the context of computational solutions with automatically controlled accuracy, the GITT
(Wolfram, 1999; Cotta, 1993, 1994; Cotta and Mikhailov, 1997; Cotta, 1998; Santos et al.,
2001; Cotta et al., 2005; Cotta and Mikhailov, 2006), with its automatic global error control
capability, appears as a reliable path for obtaining benchmark results, allowing for a
more definitive critical evaluation of previously published numerical results of classical
test problems. The GITT has already been utilized to find hybrid analytical-
numerical solutions for laminar flow development inside parallel-plates channels
(Carvalho et al., 1993; Machado and Cotta, 1995; Pérez Guerrero and Cotta, 1995; Figueira
da Silva and Cotta, 1996; Lima et al., 2007), by using both the primitive variables and
streamfunction-only formulations, in either the Navier-Stokes or boundary-layer
formulations. Extending such efforts, the present work is motivated by the application
of the GITT in the solution of hydrodynamic developing flow in a wavy wall duct. Thus, a
Navier-Stokes-based formulation for two-dimensional laminar incompressible flow in
irregularly shaped channels is adopted, in terms of the streamfunction only such as that
one originally proposed and solved by integral transforms in (Pérez Guerrero et al., 2000).
Here, the streamfunction is split up in two parts, where one of them represents a generic
filtering solution, which adapts to the irregular boundary of the duct. The aim of the
filtering solution is to offer a convergence enhancement effect on the eigenfunction
expansion for the streamfunction, by utilizing an analytical filter that changes along the
flow development. A wavy wall duct is then more closely studied and computations for
the streamfunction, vorticity and velocity fields are performed, as well as for the product
of the friction factor-Reynolds number, for different values of the governing parameters of
the flow, such as the Reynolds number and the amplitude of the wavy surface, extending
the scope and preliminary assessment of this problem as first presented in (Silva et al.,
2007). Finally, a set of reference results are systematically presented and employed
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to covalidate previously reported results (Wang and Chen, 2002) obtained by discrete
numerical methods.

2. Problem formulation and solution methodology
We consider two-dimensional steady laminar flow of an incompressible Newtonian fluid
in the inlet region of a duct of irregular geometry. Figure 1 shows the schematic
representation of the considered internal flow problem, which is not required to be
symmetrical with respect to the longitudinal axis in the proposed approach and associated
algorithm. The flow is governed by the continuity and Navier-Stokes equations, and the
following dimensionless variables are here employed:

x ¼
x*

b
; y ¼

y*

b
; y1ðxÞ ¼

y*1 ðx* Þ

b
; y2ðxÞ ¼

y*2 ðx* Þ

b
;

u ¼
u*

u0
; v ¼

v*

u0
; p ¼

p*

ru2
0

; Re ¼
bu0

n

ð1a-hÞ

where b represents half the distance between the walls at the duct inlet.
Adopting the streamfunction-only formulation (Pérez Guerrero et al., 2000), the

problem is then written in dimensionless form as:

L1½c;c� ¼ L2½c� ð2aÞ

the operators L1[f, g] and L2[f] are defined as:

L1 f; g
� �

¼
›f

›y

›3g

›x3
þ

›3g

›x›y2

� �
2

›f

›x

›3g

›x2›y
þ

›3g

›y3

� �
ð2bÞ

L2½f� ¼
1

Re

›4f

›x4
þ 2

›4f

›x2›y2
þ

›4f

›y4

� �
ð2cÞ

and the boundary conditions are associated with no-slip and impermeability at the duct
walls:

cðx;2y1ðxÞÞ ¼ k1;
›cðx;2y1ðxÞÞ

›n
¼ 0 ð3a; bÞ

cðx; y2ðxÞÞ ¼ k2;
›cðx; y2ðxÞÞ

›n
¼ 0 ð4a; bÞ

Figure 1.
Definition of the general
irregular geometry for the
problem and coordinates
system

y*

n

y2
* (x*)

y1
* (x*)

x*
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where n, k1 and k2 represent, respectively, the unit normal vector in the outward
direction of the duct wall and the streamfunction values at the walls. The constant Q
represents the volumetric flow rate per unit of length and is determined as (Pérez
Guerrero et al., 2000):

cð0; y2Þ ¼ k2 ¼ Q þ k1 ð5Þ

In the above equations, the definition of streamfunction was employed according to:

uðx; yÞ ¼
›cðx; yÞ

›y
; vðx; yÞ ¼ 2

›cðx; yÞ

›x
ð6a; bÞ

These definitions allow automatic satisfaction of the continuity equation and eliminate
the pressure field from the problem formulation (equation (2a)).

In the solution of equation (2a) by using the GITT approach, it is convenient to define
a filter in order to homogenize the boundary conditions in the y direction, which later
will be the coordinate chosen for construction of the eigenvalue problem. Therefore, the
general filtering function is defined from:

cðx; yÞ ¼ fðx; yÞ þ Fðx; yÞ ð7Þ

wheref(x, y) represents the unknown potential to be determined, and F(x, y) is the filter,
which at this point is only required to have the same values of c(x, y) at the duct walls.
The function F(x, y) is thus not necessarily a particular solution of c(x, y). Therefore,
introducing equation (7) into equation (2a), results:

L1½f;f� þ L1½f;F� þ L1½F;f� þ L1½F;F� ¼ L2½f� þ L2½F� ð8Þ

with the filtered boundary conditions:

fðx;2y1Þ ¼ k1 2 Fðx;2y1Þ;
›fðx;2y1Þ

›n
¼ 0 ð9a; bÞ

fðx; y2Þ ¼ k2 2 Fðx; y2Þ;
›fðx; y2Þ

›n
¼ 0 ð10a; bÞ

The filtering function can be built, for instance, by constructing at any cross-section
along the duct a fully developed velocity profile, which follows the irregularity of the
duct. In order to more easily obtain this filter, a relationship between the original
coordinates system (y, x) and a new transformed system (h, x) is given as:

h ¼ y 2 y3ðxÞ; y0ðxÞ ¼
1

2
½y1ðxÞ þ y2ðxÞ�; y3ðxÞ ¼

1

2
½y2ðxÞ2 y1ðxÞ� ð11a-cÞ

or in terms of the original coordinates:

Fðx; yÞ ¼
3

4
Q

y 2 y3

y0

� �
2

1

3

y 2 y3

y0

� �3
" #

þ
Q

2
þ k1 ð12Þ

where y3 represents the distance between the axes y and h, while y belongs to the
interval [2y1(x), y2(x)] and h [ [2y0(x), y0(x)]. On the other hand, a fixed domain
permits a more straightforward visualization of both this filtering solution and the
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eigenvalue problem to be proposed, in terms of a new transversal coordinate, j.
Therefore, the domain j [ [21, 1] is defined from:

j ¼
h

y0
¼

y 2 y3

y0
ð13Þ

Thus, the filter can be rewritten in the form:

FðjÞ ¼
3

4
j2

j 3

3

� �
þ

Q

2
þ k1 ð14Þ

Now, in light of the homogeneous characteristics of the boundary conditions in the
transversal direction, it is more appropriate to choose this coordinate for proposing the
eigenfunction expansion, to be employed in the process of integral transformation. By
considering the relation given by equation (13), the auxiliary fourth-order eigenvalue
problem is taken as:

d4YiðjÞ

dj4
¼ ðmiy0Þ

4YiðjÞ ; b4
i YiðjÞ ð15aÞ

Yið21Þ ¼ 0;
dYið21Þ

dj
¼ 0; Yið1Þ ¼ 0;

dYið1Þ

dj
¼ 0 ð15b-eÞ

Problem (15) is analytically solved, to furnish:

YiðjÞ ¼

cosðbijÞ

cosðbiÞ
2

coshðbijÞ

coshðbiÞ
; i ¼ 1; 3; 5; . . .

sinðbijÞ

sinðbiÞ
2

sinhðbijÞ

sinhðbiÞ
; i ¼ 2; 4; 6; . . .

8>>><
>>>:

ð16Þ

where the x-independent eigenvaluebi is defined as,bi ¼ miðxÞy0ðxÞ, and computed from
the transcendental equations as follows:

tanhðbiÞ ¼
2tanðbiÞ; i ¼ 1; 3; 5; . . .

tanðbiÞ; i ¼ 2; 4; 6; . . .

(
ð17Þ

Also, the eigenfunctions satisfy the following orthogonality property:

Z y2

2y1

YiYjdy ¼
0; for i – j

NiðxÞ ¼ 2y0ðxÞ; for i ¼ j

(
ð18a; bÞ

where Ni(x) is the normalization integral and the index i in equation (18b) can thus be
dropped.

The eigenvalue problem defined by equation (15) allows for the definition of the
following integral transform pair:

�fiðxÞ ¼
1

NðxÞ

Z y2

2y1

Yiðx; yÞfðx; yÞdy; transform ð19Þ
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fðx; yÞ ¼
X1
i¼1

Yiðx; yÞ �fiðxÞ; inverse ð20Þ

We can now accomplish the integral transformation of the original partial differential
system given by equations (8)-(10). For this purpose, equation (8) is multiplied by Yi and
is then integrated over the domain [2y1(x), y2(x)] in y. After that, the inverse formula
given by equation (20) is employed, resulting after some manipulations in the following
coupled ordinary differential system for the calculation of the transformed potentials �fi:

�f
ðivÞ
i ¼ 2m4

i
�fi þ

Li

N
þ

Re

N

X1
j¼1

X1
k¼1

Aijk
�fj
�fk þ Bijk

�fj
�f

‘
k þ Cijk

�fj
�f00

k þ Dijk
�fj
�f000

k

n

þEijk
�f0

j
�fk þ Fijk

�f0
j
�f0

k þ Gijk
�f0

j
�f00

k

o
þ

1

N

X1
j¼1

Hij
�fj þ Iij

�f0
j þ Jij

�f00
j þ Kij

�f000
j

n o
ð21Þ

The outflow boundary conditions are here chosen from two possibilities. In the first one,
the duct is considered to be finite (truncated duct), and the following boundary
conditions are employed:

vðxout; yÞ ¼ 0;
›vðxout; yÞ

›x
¼ 0 ð22a; bÞ

where v is the vorticity.
The second possibility considers that the duct is infinite. Therefore, when x ! 1,

the outflow boundary conditions are those of a fully developed flow in a parallel-plates
channel, which are given by:

uð1; yÞ ¼
3

2
ð1 2 y2Þ; vð1; yÞ ¼ 0 ð23a; bÞ

The boundary conditions given by equations (22) and (23), after introducing the
definition of the streamfunction (equation (6)) and the general filtering function given by
equation (7), are rewritten as:

. For a truncated duct:

›fðxout; yÞ

›x
þ

›Fðxout; yÞ

›x
¼ 0 ð24aÞ

›3fðxout; yÞ

›x3
þ

›3fðxout; yÞ

›x›y2
þ

›3Fðxout; yÞ

›x3
þ

›3Fðxout; yÞ

›x›y2
¼ 0 ð24bÞ

. For an infinite duct:

fð1; yÞ ¼ 0 ð25aÞ

›fð1; yÞ

›x
¼ 0 ð25bÞ

Integral
transforms

solution

225



Now, the integral transformation process of equations (24) and (25) is similar to
that of obtaining equation (21), i.e. the equations are multiplied by Yi and then
integrated over the domain [2y1(x), y2(x)] in y. After that, the inverse formula
given by equation (20) is employed, yielding:

. For a truncated duct:

�fið0Þ ¼ 0;
d �fið0Þ

dx
¼ 0 ð26a; bÞ

d �fiðxoutÞ

dx
¼ 2

1

NðxoutÞ
Mi þ

X1
j¼1

Nij
�fjðxoutÞ

" #
ð26cÞ

d3 �fiðxoutÞ

dx3
¼ 2

1

NðxoutÞ
Oi þ

X1
j¼1

Pij
�fjðxoutÞ þ Qij

d �fjðxoutÞ

dx
þ Rij

d2 �fjðxoutÞ

dx2

� �( )

ð26dÞ

. For an infinite duct:

�fið0Þ ¼ 0;
d �fið0Þ

dx
¼ 0; �fið1Þ ¼ 0;

d �fið1Þ

dx
¼ 0 ð27a-dÞ

The coefficients that depend on x are calculated from:

Aijk ¼

Z y2

2y1

Yi
›Yj

›y

›3Yk

›x3
þ

›3Yk

›x›y2

� �
2

›Yj

›x

›3Yk

›x2›y
þ

›3Yk

›y3

� �� �
dy ð28aÞ

Bijk ¼

Z y2

2y1

Yi
›Yj

›y
3
›2Yk

›x2
þ

›2Yk

›y2

� �
2 2

›Yj

›x

›2Yk

›x›y

� �
dy ð28bÞ

Cijk ¼

Z y2

2y1

Yi 3
›Yj

›y

›Yk

›x
2

›Yj

›x

›Yk

›y

� �
dy ð28cÞ

Dijk ¼

Z y2

2y1

Yi
›Yj

›y
Ykdy; Eijk ¼ 2

Z y2

2y1

YiYj
›3Yk

›x2›y
þ

›3Yk

›y3

� �
dy ð28d; eÞ

Fijk ¼ 22

Z y2

2y1

YiYj
›2Yk

›x›y
dy; Gijk ¼ 2

Z y2

2y1

YiYj
›Yk

›y
dy ð28f; gÞ

Hij ¼ aijRe 2 bij; Iij ¼ cijRe 2 dij; Jij ¼ eijRe 2 fij;

Kij ¼ gijRe 2 hij; Li ¼ iiRe 2 ji
ð28h-lÞ

Mi ¼

Z y2

2y1

Yi
›F

›x
dy; Nij ¼

Z y2

2y1

Yi
›Yj

›x
dy ð28m; nÞ
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Oi ¼

Z y2

2y1

Yi
›3F

›x3
þ

›3F

›x›y2

� �
dy; Pij ¼

Z y2

2y1

Yi
›3Yj

›x3
þ

›3Yj

›x›y2

� �
dy ð28o; pÞ

Qij ¼

Z y2

2y1

Yi 3
›2Yj

›x2
þ

›2Yj

›y2

� �
dy; Rij ¼ 3

Z y2

2y1

Yi
›Yj

›x
dy ð28q; rÞ

aij ¼

Z y2

2y1

Yi
›Yj

›y

›3F

›x3
þ

›3F

›x›y2

� �
2

›Yj

›x

›3F

›x2›y
þ

›3F

›y3

� ��

þ
›3Yj

›x3
þ

›3Yj

›x›y2

� �
›F

›y
2

›3Yj

›x2›y
þ

›3Yj

›y3

� �
›F

›x

�
dy

ð29aÞ

bij ¼

Z y2

2y1

Yi
›4Yj

›x4
þ 2

›4Yj

›x2›y2

� �
dy ð29bÞ

cij ¼

Z y2

2y1

Yi Yj 2
›3F

›x2›y
2

›3F

›y3

� �
þ 3

›2Yj

›x2
þ

›2Yj

›y2

� �
›F

›y
2 2

›2Yj

›x›y

›F

›x

� �
dy ð29cÞ

dij ¼ 4

Z y2

2y1

Yi
›3Yj

›x3
þ

›3Yj

›x›y2

� �
dy; eij ¼

Z y2

2y1

Yi 3
›Yj

›x

›F

›y
2

›Yj

›y

›F

›x

� �
dy ð29d; eÞ

fij ¼ 2

Z y2

2y1

Yi 3
›2Yj

›x2
þ

›2Yj

›y2

� �
dy; gij ¼

Z y2

2y1

YiYj
›F

›y
dy;

hij ¼ 4

Z y2

2y1

Yi
›Yj

›x
dy

ð29f-hÞ

ii ¼

Z y2

2y1

Yi
›F

›y

›3F

›x3
þ

›F

›y

›3F

›x›y2
2

›F

›x

›3F

›x2›y
2

›F

›x

›3F

›y3

� �
dy;

ji ¼

Z y2

2y1

Yi
›4F

›x4
þ 2

›4F

›x2›y2

� �
dy

ð29i; jÞ

For computational purposes, it is necessary to truncate the infinite expansions in a
sufficiently large number of terms so as to achieve the user prescribed relative error
target for obtaining the original potentials, in this case the streamfunction values,
where NTV is here the order of truncation of the infinite series. Also, in order to solve
the transformed ODE system, efficient numerical algorithms for boundary value
problems are to be employed, such as the subroutine DBVPFD from the IMSL Library
(1991), which offers an automatic adaptive scheme for local error control of the
numerical results for the transformed potentials. It is then necessary to rewrite the
transformed ODE system as a first order one, by introducing the following dependent
variables:
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xi ¼ �fi;
dxi

dx
¼ xNTVþi ¼

d �fi

dx
;

dxNTVþi

dx
¼ x2 NTVþi ¼

d2 �fi

dx2
;

dx2 NTVþi

dx
¼ x3 NTVþi ¼

d3 �fi

dx3
;

dx3 NTVþi

dx
¼

d4 �fi

dx4

ð30a-eÞ

Therefore, by making use of equations (30), the transformed system can be rewritten as:

dxi

dt
¼

xNTVþi

ðdt=dxÞ
;

dxNTVþi

dt
¼

x2 NTVþi

ðdt=dxÞ
;

dx2 NTVþi

dt
¼

x3 NTVþi

ðdt=dxÞ
ð31a-cÞ

dx3 NTVþi

dt
¼

2m4
i xi þ

Li

N þ Re
N

PNTV
j¼1

PNTV
k¼1 ½Aijkxjxk þ BijkxjxNTVþk

þCijkxjx2 NTVþk þ Dijkxjx3 NTVþk þ EijkxNTVþjxk

þFijkxNTVþjxNTVþk þ GijkxNTVþjx2 NTVþk�

þ 1
N

PNTV
j¼1 ½Hijxj þ IijxNTVþj þ Jijx2 NTVþj þ Kijx3 NTVþj�

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðdt=dxÞ
;

for i ¼ 1; 2; . . . ;NTV

ð31dÞ

with t ¼ 1 2 e 2 cx, 0 # t # 1, and c being a parameter of scale compression for the case
of an infinite duct.

Analyzing the ODE system given by equations (31), we observe that the integral
coefficients depend on the axial position x. This would imply in a high-computational
cost if the coefficients would require error-controlled numerical integrations, once they
need to be continuously reevaluated along the solution procedure for the ordinary
differential equations system. However, all of them could be analytically determined
through symbolic computation (Wolfram, 1999). Also, the computational procedure is
organized in such a way that the x-independent portions of each coefficient are
calculated only once, before entering the boundary-value problem solver, and stored.
Along the ODE system integration, they are then recalled and multiplied by the
functions that take into account the dependence of the irregular domain as the
differential system is being numerically solved.

3. Results and discussion
We analyze the wavy wall duct whose geometry was considered in Wang and Chen
(2002) and is shown schematically in Figure 2. The functions that describe this
symmetric geometry in dimensionless terms are given as:

y1ðxÞ ¼ 1 þ fðxÞ; y2ðxÞ ¼ 1 þ fðxÞ; fðxÞ ¼ a sin½pðx 2 3Þ� ð32a-cÞ

wherea ¼ a*/b is the dimensionless amplitude of the wavy surface, and the value of the
axial coordinate at the duct outlet xout was taken as xout ¼ 20. In the present analysis, the
interval used for the axial coordinate x was 3 # x # 15, which corresponds to six
complete sinusoidal waves.
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Tables I-III show the convergence of the streamfunction values along the line y ¼ 0.5
for Re ¼ 100 and a ¼ 0.3, Re ¼ 300 and a ¼ 0.2 and Re ¼ 500 and a ¼ 0.1,
respectively, for the two cases of outflow boundary conditions (here named truncated
duct and infinite duct, respectively). For the case of Re ¼ 100 and a ¼ 0.3, it is observed
that full convergence to four significant digits is achieved with NTV ¼ 18, while for the
case Re ¼ 500 and a ¼ 0.1, similar convergence is reached only with NTV ¼ 22.
In Table II, the results obtained with NTV ¼ 22 and 26 have remained unaffected, and
the same happens in Table III, though this is not evident from the previous column for
NTV ¼ 18. The algorithm is organized so that numerical computation automatically
ceases once the requested precision is achieved. In general, the results for the two cases
of outflow boundary conditions analyzed are in perfect agreement, with a slight
difference for axial positions near the duct outlet (x ¼ 20), which in terms of relative
deviation is always below 0.5 percent for the fully converged results (NTV ¼ 22). This
is justified by the fact that for the infinite duct, the fully developed region is not imposed
and is reached at axial positions a little further away.

Figures 3(a)-(d) show a comparison of the present results for the product fRe with
those numerically obtained by Wang and Chen (2002) at different axial positions along
the channel, for the cases Re ¼ 100 and a ¼ 0.2, Re ¼ 300 and a ¼ 0.2, Re ¼ 500 and
a ¼ 0.1 and Re ¼ 500 and a ¼ 0.2, respectively. Wang and Chen (2002) employed a
coordinate transformation and the spline alternating-direction implicit method, an
improved version of the cubic spline collocation method. One can see an excellent
agreement among the four sets of results, obtained via two quite different solution
methodologies, offering a fairly reliable co-validation report. Also, it can be verified how
importantly the Reynolds number influences the product fRe, i.e. higher peaks are found
for increasing Reynolds numbers and fixed duct geometry, indicating the evidently
expected higher viscous effects in the flow. In both cases, the GITT results for the
product fRe are already converged to the graph scale. In tabular form, a convergence
rate of at least two significant digits for fRe is observed in most cases. The computation
of the friction factor involves derivatives of the velocity field, which present a slower
convergence behavior than the original expanded potentials. Also, one can notice
negative values for the product fRe in some positions, which indicate the presence of
recirculation zones. In addition, Figure 4 shows the convergence behavior of the product
fRe for the most severe case of Re ¼ 500 and a ¼ 0.3, with different truncations orders
NTV ¼ 13, 15, 17 and 19, in order to demonstrate the graphical convergence behavior
of such results. This case brings a combination of the highest Reynolds number and
duct amplitude considered in the present work; nevertheless, an excellent graphical

Figure 2.
Geometric and flow

characteristics of the wavy
wall duct analyzed

fully developed
flow

2b
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Figure 3.
Comparison of GITT

results for the product fRe
for different values of the

Reynolds number and
dimensionless duct
amplitude, against

numerical results of spline
alternating-direction

implicit method of Wang
and Chen (2002)
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convergence of fRe is also verified for this situation. Figure 5(a)-(c) shows the product
fRe for different values of the Reynolds number, respectively, Re ¼ 100, 300 and 500,
and varying the dimensionless duct amplitude for each set of curves, so as to illustrate
the effect of the duct geometry. Clearly, the fRe peaks are markedly affected by the
increase in the amplitude of the sinusoidal oscillation on the boundary geometry, with
the growing recirculation flow patterns, as will be more evident from the contour plots
for the streamfunction in what follows.

As for the product fRe, Figure 6 shows the convergence behavior for the evolution of
the axial component velocity at the duct centerline, u(x,0), for the more severe case of
Re ¼ 500 and a ¼ 0.3, and again a reasonable graphical convergence rate is achieved
for this parameter. Then, Figure 7(a)-(c) shows the evolution of the axial component
velocity at the duct centerline for different values of the dimensionless duct amplitude in
each set of curves for Re ¼ 100, 300 and 500, respectively. As the Reynolds number and
the duct amplitude increase, it is observed higher distortions in the longitudinal velocity
component evolutions, demonstrating the increased perturbation on the core flow
around the channel centerline. With the increase on the channel walls sinusoidal
amplitude, the flow is noticeably accelerated in average terms along the centerline
within this development region, as a direct result of the effective flow path periodic
constriction.

Finally, Figures 8(a)-(c)-10(a)-(c) show the isolines patterns of the streamfunction for
all three values of Reynolds numbers and duct wall sinusoidal amplitudes here
considered. The marked influence of the combined increase on Reynolds number and
channel amplitude is clearly observable in the appearance of stronger recirculation

Figure 4.
Convergence behavior
of the distribution of the
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Figure 5.
Profiles of the product fRe
for different values of the

Reynolds number and
dimensionless duct

amplitude
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zones internally to the “cavities” formed by the wavy walls. Specifically, the case of
Re ¼ 500 and a ¼ 0.3 shows the strongest recirculation zone, even at the duct outlet,
demonstrating the influence pointed out above.

4. Conclusions
The GITT has been demonstrated in the hybrid numerical-analytical solution of
laminar flow problems within channels with wavy walls. The case of a wavy walls duct
has been more closely considered in light of its importance in heat-transfer enhancement
applications. A steady two-dimensional formulation based on the Navier-Stokes
equations and on the streamfunction definition is adopted. Employing a simple
coordinate transformation, a straightforward filtering solution is then obtained, offering a
relevant convergence enhancement effect in the eigenfunction expansion for the
streamfunction.

The convergence behavior of the proposed eigenfunction expansion is illustrated,
and numerical results for the friction factor are critically compared with previously
obtained numerical results from discrete approaches, with good agreement. A few
additional results are also presented and employed in the interpretation of some
physical aspects in this flow problem.

The proposed hybrid approach is fairly general and opens up several possibilities of
analysis, including the search of optimized heat-transfer surfaces forms under
prescribed pressure drop requirements. Since the hybrid solution is fully analytical in
the transversal direction, integrals and derivatives at any cross-section can be readily
derived without further numerical involvement. The approach can also be quite
interesting in the analysis of periodic fully developed situations.

Figure 6.
Convergence behavior of
the evolution of the axial
component velocity at the
duct centerline for
Re ¼ 500 and a ¼ 0.3
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Figure 7.
Evolution of the axial

component velocity at the
duct centerline for

different values of the
Reynolds number and

dimensionless duct
amplitude
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Figure 8.
Streamline patterns along
the duct length for
different dimensionless
duct amplitude and
Re ¼ 100
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Figure 9.
Streamline patterns along

the duct length for
different dimensionless

duct amplitude and
Re ¼ 300
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Figure 10.
Streamline patterns along
the duct length for
different dimensionless
duct amplitude and
Re ¼ 500
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