
REAL TIME COLOR PROJECTION FOR 3D MODELS

Bruno Ferraz de Melo

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Ricardo Guerra Marroquim

Rio de Janeiro

Março de 2017

REAL TIME COLOR PROJECTION FOR 3D MODELS

Bruno Ferraz de Melo

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE

SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Ricardo Guerra Marroquim, D.Sc.

Prof. Claudio Esperança, Ph.D.

Prof. Leandro Augusto Frata Fernandes, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

MARÇO DE 2017

Melo, Bruno Ferraz de

Real time color projection for 3d models/Bruno Ferraz

de Melo. – Rio de Janeiro: UFRJ/COPPE, 2017.

XV, 54 p.: il.; 29, 7cm.

Orientador: Ricardo Guerra Marroquim

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2017.

Referências Bibliográficas: p. 53 – 54.

1. Real time texturing. I. Marroquim, Ricardo Guerra.

II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia de Sistemas e Computação. III.

T́ıtulo.

iii

Dedico à minha famı́lia

iv

Agradecimentos

Em primeiro lugar gostaria de agradecer ao VCG por ceder os datasets utilizados e

ao Museu Histórico Nacional por ceder a urna que foi escaneada e fotografada para

geração de um novo dataset.

Agradeço também à Glória por todo incentivo e companhia nas noites insones

para que conseguisse focar adequadamente.

À Susan, meu agradecimento por seu incentivo e por sua paciência. Além disso,

desculpas por tê-la imposto a necessidade da paciência.

Ao Anderson, à Silvia e ao Pablo, obrigado pelas ideias de projeto e discussões

desde muito antes de ingressar no mestrado.

Para a Monica, Cristina, Caito, Aline, Chris e Paola, um agradecimento especial

pois, por meio de exemplos cotidianos, conseguiram mudar minha visão a respeito

do mundo acadêmico e me fizeram acreditar que esse pode ser um ambiente real de

troca e construção de conhecimento.

Minha gratidão a todos do LCG, não só por terem conseguido construir esse raro

ambiente mas também por confirmarem essa minha nova expectativa. Além disso,

por terem me aceitado e ajudado apesar de todas as minhas dificuldades, afinal, esse

mestrado não teria sido posśıvel sem as seguintes ajudas:

- Do Luiz Santos e do Flavio que me orientaram nos primeiros passos com Python

e me introduziram ao mundo do linux.

- Das dicas de C++ do Leo, do Felipe e do Marcelo.

- Do Vinicius e do Luiz Maurilio em visão computacional

- No suporte do Bernardo com instalações e formatações.

- Na inestimável ajuda do Lucas, Tarsus, Nilton e Andrea para me integrar ao

grupo.

- Do Pedro e Daniel, a quem costumeiramente recorria nos momentos de deses-

pero. Que me ensinaram muito e me ajudaram em quase todos os trabalhos ao longo

dos 3 anos.

- Da Lurdes que diariamente preparava o café sem o qual não teria me mantido

acordado.

Agradecimentos especiais:

v

- Aos cuidados do professor Esperança de, por incontáveis vezes, mudar a abor-

dagem do conteúdo, simplificando até que esse se fizesse claro independente do tempo

e do trabalho que fosse necessário.

- Aos cuidados do professor Marroquim em me ajudar não só na adaptação no

ińıcio do curso mas também na adequação do escopo das minhas ideias ás minhas

capacidades, orientando e cobrando de forma muito eficaz, buscando sempre me

direcionar apesar das minhas dificuldades e constantes atrasos.

Por fim, gostaria de agradecer aos professores que promovem a manutenção do

ambiente do LCG sempre se mostrando soĺıcitos e presentes. Por me ensinarem

muito mais que computação gráfica ao me mostrar que atenção ás necessidades in-

dividuais dos alunos pode ser o diferencial para o entendimento de qualquer contedo.

Prática essa que passei a utilizar em sala de aula.

Correndo o risco de parecer redundante, sou muito grato pela oportunidade que

recebi, pela atenção no decorrer do peŕıodo e pela ajuda no desenvolvimento das

qualificações que me faltaram ao longo do caminho. Admiro muito o trabalho de

todos, não só pela qualidade e habilidade técnica, mas principalmente, por jamais

se descuidarem do lado humano do processo. Algo raro hoje em dia.

Obrigado.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

PROJEÇÃO DE CORES PARA MODELOS 3D EM TEMPO REAL

Bruno Ferraz de Melo

Março/2017

Orientador: Ricardo Guerra Marroquim

Programa: Engenharia de Sistemas e Computação

Essa dissertação apresenta uma solução para visualizar, em tempo real, datasets

compostos por um modelo 3D e um conjunto de fotos calibradas. Nossa solução

seleciona, projeta e compõe as fotografias em função da posição e da direção da

câmera de forma a maximizar a percepção de detalhes e, ao mesmo tempo, atingir

taxas interativas de visualização. O método funciona como um gerador dinâmico de

texturas, onde para cada novo ponto de vista a melhor combinação das fotos é bus-

cada. A principal vantagem da nossa abordagem é tentar preservar as informações

originais das fotos da melhor forma posśıvel. Além disso, os resultados do método

proposto foi comparado com o tradicional texture mapping. Revelando, assim, mais

precisão e menos artefatos para datasets extensos com câmeras distribúıdas não

uniformemente.

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

REAL TIME COLOR PROJECTION FOR 3D MODELS

Bruno Ferraz de Melo

March/2017

Advisor: Ricardo Guerra Marroquim

Department: Systems Engineering and Computer Science

In this work, we present a solution for interactive visualization of virtual objects

composed of a 3D model and a set of calibrated photographies. Our approach selects,

projects and blends the photos based on a few criteria in order to improve perception

of details while maintaining an interactive performance. It works as a dynamic

texture map generator, where for each new view position and direction the best

combination of the photos is sought. The main advantage of our technique is that

it tries to preserve the original photo information as best as possible. Furthermore,

the proposed method were compared with a popular texture mapping technique.

Our method produced less artifacts in general, and was able to handle better large

and non uniform datasets.

viii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1

2 Related Works 3

2.1 Masked Photo Blending: Mapping Dense Photographic Dataset on

High-Resolution 3D Models . 10

2.2 PhotoCloud: Interactive Remote Exploration of Joint 2D and 3D

Datasets . 14

3 Method 16

3.1 Pre-Processing . 18

3.1.1 Depth Map . 18

3.1.2 Pixel Weights . 18

3.1.3 Texture Coordinates . 18

3.2 Render Time Processing . 19

3.2.1 Camera Weights . 19

3.2.2 Weighted Average During Renderization 19

4 Implementation 21

4.1 Photo Data Structure . 23

4.1.1 Border Mask . 23

4.2 Geometry Data Structure . 24

4.2.1 Computing Texture Coordinates 24

4.2.2 Alternative Data Structure . 25

4.3 Real Time Weight Computation . 25

4.4 Discarding Cameras . 26

4.5 Discarding Triangles . 27

4.6 Normalizing Field-Of-Views . 29

4.7 Multi-Pass Render . 32

ix

5 Results 34

5.1 Cameras Per Pass . 40

5.2 Photo Set Reduction . 46

6 Conclusion 51

Bibliography 53

x

List of Figures

2.1 Example of a semi-automatic occlusion free generated image. Images

extracted from ORTIN e REMONDINO [1]. 4

2.2 Visibility test proposed by the authors. By analyzing the triangles

projections, it is possible to know if there is occlusion (left), or not

(right), since intersection on the projection plane only occurs where

there is occlusion. Images extracted from PREVITALI et al. [2]. . . . 4

2.3 Color and brightness correction to remove seams. Texture model

without correction (left) and with correction (right). Images ex-

tracted from PREVITALI et al. [2]. 5

2.4 Comparing results using only the best camera (left), a simple aver-

age (middle), and the proposed multiband strategy (right). Images

extracted from BAUMBERG [3]. 6

2.5 Images extracted from BERNARDINI et al. [4]. 7

2.6 Texture produced without the minimization strategy (left), and with

the proposed strategy (right). Images extracted from LEMPITSKY

e IVANOV [5]. 8

2.7 Images extracted from GOLDLUECKE e CREMERS [6]. 8

2.8 Input 3d geometry (left) and the result of the automatic colorization

method (right). Images extracted from OISHI et al. [7]. 9

2.9 A vertex is visible from multiple cameras and the projected pixel color

may vary between them. The method tries to solve this ambiguity

by generating one single texture map. 10

2.10 Angle Mask: computed as the dot product between normalized view

direction and surface normal vectors. Black regions have zero angle

weight, and white regions have maximum angle weight. 11

2.11 Depth Mask: objects far from camera are less sampled than near

ones (top); a depth mask is created to represent the distance to the

camera, where closer vertices have higher weights (bottom). 12

2.12 From left to right: angle mask, depth mask, border mask, and final

fused mask. Images extracted from CALLIERI et al. [8]. 13

xi

2.13 Result of a 3d model texture mapped with the Masked Photo Blend-

ing approach. Images extracted from CALLIERI et al. [8]. 13

2.14 A resulting view of the PhotoCloud system. The framelets in blue

around the 3d model depict the position of the front facing photos,

and the navigation bar below. Only the central image is projected to

the 3d model. Image extracted from BRIVIO et al. [9]. 15

3.1 Method overview, from top to bottom: the input is the 3D geometry

and a set of registered photos; for each photo a depth map, masks, and

texture coordinates are computed in a pre-processing stage; during

visualization camera weights are computed and an weighted average

calculated for each fragment; the output is a colored 3d model. 17

3.2 Visual illustration of Equation 3.1. For camera k and texel (u, v)

final pixel weight Ωk(u, v) is combined with camera weights Θk and

multiplied by color Tk(u, v). 20

4.1 Implementation overview: in gray are the stages where implementa-

tion details are discussed in this chapter. 22

4.2 Diagram of the Photo data structure. Camera matrices are 4×4; pixel

weights, photo and depth map are textures with the same resolution

as the original photo; camera weights are scalar values. 23

4.3 Geometry data structure. For a camera where a vertice is not visible

from its texture coordinates are set as (−1,−1). 24

4.4 Transform Feedback is a rendering pipeline shortcut that allows skip-

ping the rasterization and subsequent steps, and writing directly to

a vertex attribute array. 25

4.5 Real time weight fused mask, where the RGB channels are respec-

tively: depth, angle and border weights. 26

4.6 Cameras with angles above an empiric threshold are discarded. Cur-

rent view direction is drawn in black. 27

4.7 . 28

4.8 The top four images show the view from a camera with fixed position

and direction, but varying the field of view. Note how narrower FOV

are similar to approaching the camera to the model, while wider FOVs

are similar to placing the camera farther away. In the bottom row

an example of two cameras with same view direction but different

positions to compensate different FOVs. 30

xii

4.9 A detail view of the lower part of the statue, note how the texture

is sharper since a close-up camera has received more weight after

normalization. The red non-normalized camera from the left image,

after normalization, is very near to the current view position, thus

increasing its weight. 31

4.10 A multi-pass approach is used since GPUs impose a hard limit on

the number of available textures units. For each pass at most k

textures are allocated from the list of non-discarded cameras. Inside

the shaders the result from the current pass is accumulated with the

one from the previous pass, and written to a FBO texture. For the

last pass the weighted average is finalized and Phong illumination

applied. 33

5.1 A general view of the cameras positions for each dataset. The FOV

is normalized for all cameras. 35

5.2 In the left image the weights for a camera far away are frozen and the

camera is positioned close to the model, to illustrate the difference

from using the real weights for that same position (right image). . . . 36

5.3 In a close-up view, weights are given for the photos taken from near

the object or with zoom. Note, however, that the left side of the face

was better sampled than the right, causing some artifacts on the right

side. 36

5.4 Some exemplary views of the Biancone dataset. 37

5.5 Some exemplary views of the Duomo dataset. 37

5.6 Traditional texture mapping (left) and our proposed method (right).

Note how our method produces a much sharper visualization since

only a few images have significant weight for the view position. 37

5.7 Traditional texture mapping (left) and proposed method (right).

Note the sharper numbers at the base of the urn with our method. . . 38

5.8 Traditional texture mapping (left) and proposed method (right) . . . 38

5.9 Traditional texture mapping(left) and proposed method (right). Illu-

mination variations are better handled with our method, since oblique

cameras receive very low weights. Note that artifacts are visible near

borders in traditional texture mapping 38

5.10 Traditional texture mapping (left) and proposed method (right). In

this case texture mapping produced a sharper image, since only one

photo was used for this part of the final texture, thus avoiding blurring

artifacts from small misalignments. 39

5.11 Biancone dataset. 41

xiii

5.12 Duomo dataset. 42

5.13 Saint dataset. 43

5.14 Urn high resolution dataset. Note that the dataset only has 10 photos,

so it is possible to render everything in one pass. 44

5.15 Urn low resolution dataset. Note that the dataset only has 10 photos,

so it is possible to render everything in one pass. 45

5.16 Biancone model reducing the total number of photos in the dataset. . 47

5.17 Duomo model reducing the total number of photos in the dataset. . . 48

5.18 Biancone model, average timings per pass when reducing the number

of photos in the dataset. 49

5.19 Duomo model, average timings per pass when reducing the number

of photos in the dataset. 50

xiv

List of Tables

5.1 Computer Specifications . 34

5.2 Datasets: Biancone and Duomo datasets were generously made avail-

able by the Visual Computing Group (CNR-Pisa); Urn and Saint

datasets were scanned and photographed by the LCG group from

UFRJ. The Urn is a piece from the National Historical museum’s

collection, while the Saint is from a personal item from the author’s

family. 34

5.3 Number of photos that results in best performance for each dataset. . 40

xv

Chapter 1

Introduction

During the yet brief history of computer graphics, photo-realism has always been

one of its holy grails. Despite the impossibility to recreate all physical aspects and

conditions in a virtual environment, physically based renders are capable of achieving

a very convincing representation of the real world in many situations. Nevertheless,

in a real-time scenario, shortcuts to approximate the visual appearance have been

proposed in a myriad of different manners. Among these, one of the most popular

methods is texture mapping, the central issue discussed in this work. In spite of the

multitude of texture mapping techniques and applications, in this work we will limit

our scope to texture maps created from a real physical object, that is, generated

from a set of photographs of the object.

On one hand, textures provide a compact and powerful appearance represen-

tation of a real object. On the other hand, since it does not model the complete

underlying reflectance behaviors, it is a limited representation of how light interacts

with each point on the object’s surface. The texture also imposes a bound in how

much detail can be represented. Quoting LEMPITSKY e IVANOV [5]: “... a tex-

ture map is an important component of a geometric model, and the texture quality

and resolution have a key impact on the model realism.”. Effects such as pixela-

tion when surpassing the resolution limit of the texture are practically unavoidable

without limiting other aspects of the visualization system.

This work touches a similar, but different aspect of this resolution bound. The

main idea revolves around the fact that when compressing the information of a set

of photographs into a single texture, which is nothing more than an image itself,

information loss in inevitable. As an alternative visualization paradigm, methods

have been proposed to navigate directly within the photo set, and are able to profit

from the full resolution of the photos by only displaying one at a time overlaid over

the 3D model. The drawback in this case is that the feeling of a virtual replica is

lost.

We propose an approach that tries to bring together the best of these two worlds:

1

create the texture representation in real-time using the most appropriate photos of

the dataset for any given view direction and position in space.

Briefly, we first pre-compute weights for each pixel of each photo using previous

image blending approaches for generating textures. Then, during the interactive

visualization, we blend the images using the pre-computed pixel weights and view

dependent camera weights, where the latter gives the overall contribution of each

photo to generate a texture representation given a view position and direction.

The main goal is to preserve as best as possible the original resolution of the

photos. The intuition behind this approach is that when inspecting the model in a

detailed manner, close up photos should be prioritized, while when navigating from

farther away, the high-resolution details will not be visible, so a set of photos with

a more general view should be used. Note that when generating a single texture

from a set with photos taken from a wide range of distances, some level of detail

information is lost when blending the pixels.

This work is divided in the following manner: in Chapter 2 we describe the most

relevant related works; Chapter 3 describes the proposed method while Chapter 4

reports implementations details. Results and discussions are presented in Chapter 5,

and Chapter 6 concludes this dissertation.

2

Chapter 2

Related Works

This section first reviews some closely related works in a more general sense. Then,

describes in more detail two works that most inspired ours.

ORTIN e REMONDINO [1] proposed a method to deal with undesired occlusions

when texturing 3d models based on a set of pictures. It is not rare to find moving

or static objects occluding the central theme, such as moving pedestrians. They

begin by proposing a solution for façades, and exploiting the fact that they can

often be locally approximated by planar facets. In this case, homographies between

pairs of adjacent images are enough to generate a new virtual texture. Due to the

redundancy in the data, and the difference in parallax movement between the planar

face and the impostors, a median filter is used to remove the occluders. Although

this approach is limited to planar features, it can be extended to general scenes

and complex 3d objects by considering that it is composed of small roughly planar

manifold patches. Moreover, this paper offers a good survey on issues that can affect

the photo-realism of textured 3d virtual models, as well as advices and references

on how to solve them. Figure 2.1 shows a result of the proposed method [1].

PREVITALI et al. [2] describe an approach to reduce human intervention for

texture mapping while obtaining an accurate and photo-realistic result. They fo-

cus on two different problems: occluded areas, and sharp radiometric transitions

between images due to different illumination conditions. To solve the first issue

they perform a visibility analysis by projecting the triangles and testing for inter-

sections in image space. If two triangles intersect, the closest one to the camera is

the occluder, and the farthest is the occluded. The visibility test is exemplified in

Figure 2.2. Since this is a costly procedure, they employ a series of extra steps to

reduce complexity, such as view frustum, back-face, and triangle distance culling.

Once the visibility is computed, they pick the best texture for each triangle by as-

signing scores based on two parameters: the image resolution in object space; and

the camera view direction.

3

(a) Three reference images from different points of view with occlusion.

(b) A close-up view of one reference image (left), and the occlusion free generated
image (right).

Figure 2.1: Example of a semi-automatic occlusion free generated image. Images
extracted from ORTIN e REMONDINO [1].

Figure 2.2: Visibility test proposed by the authors. By analyzing the triangles
projections, it is possible to know if there is occlusion (left), or not (right), since
intersection on the projection plane only occurs where there is occlusion. Images
extracted from PREVITALI et al. [2].

In addition to the visibility test, they also propose a method to minimize illumi-

nation variation between adjacent triangles, since they may be mapped to different

textures. The color / brightness correction is performed on L ∗ a ∗ b color space,

rather than traditional RGB, since the L component better approximates the human

perception of lightness and allows for a more accurate contrast adjustment, while

the a and b components are used for color balance. The user chooses a reference

image, and a common feature point is used to pointwise estimate color and bright-

ness differences. These samples are used to compose brightness variation functions

4

between a given image and the reference one, and to interpolate over the rest of the

image. Figure 2.3 illustrates the color/brightness correction method.

Figure 2.3: Color and brightness correction to remove seams. Texture model without
correction (left) and with correction (right). Images extracted from PREVITALI
et al. [2].

BAUMBERG [3] developed a system that builds a seamless texture map from

an arbitrary surface topology obtained from a real object and a sparse set of photos

and their respective camera parameters. The texture “splining” in 3d technique

starts by rendering a gray scale weight image for each camera, in order to compose

a weighted function. The shades of gray represent each triangle’s ratio between the

area of the projected triangle and the surface area of the triangle.

The raw gray image is Gaussian blurred and zero clamped in order to smooth

the transitions, while the internal silhouette is extracted with black edges and white

background and then feathered in order to mask the blurred image. This guar-

antees a continuous weight function without sharp transitions. Furthermore, Burt

and Adelson’s multiresolution spline [10] for blending two images is extended to 3d

surfaces. The original images are split into low and high frequency bands and sepa-

rately projected to a texture map representation along with the respective weights,

and blended using pixel-wise operations. The low band images are blended using

an weighted average while the high band images are blended with a nonlinear filter.

The bands are finally combined generating the final texture. Figure 2.4 illustrates

their results and a comparison with simpler methods.

BERNARDINI et al. [4] propose an acquisition method that combines geometric

and texture information to achieve a more accurate registration. Correspondences

from the range images are used to align the geometric scans into a single mesh. Each

scan is divided into patches, where each patch is assigned a single range image.

The final texture is generated by combining data from multiple range images.

5

Figure 2.4: Comparing results using only the best camera (left), a simple av-
erage (middle), and the proposed multiband strategy (right). Images extracted
from BAUMBERG [3].

The weights are based on a combination of two maps: the first contains the ratio

between the cosine of the angle between the surface normal and the camera direction

and the square distance to the camera; and the second is a photometric confidence

value. More specifically, the second map assigns a high weight to pixels where

the surface normal can be recovered from the photometric data, and a low weight

otherwise. Both maps are smoothed to avoid discontinuities, and multiplied and

rescaled to generate a single weight map in range [0, 255]. Since scans overlap,

patches from different scans will also overlap. To blend the information into a

single texture map, the final texel color is computed as the weighted average of the

corresponding pixels from each overlapping scan, and a smooth transition between

patches and scans is achieved. Figure 2.5 illustrates some results for this method.

LEMPITSKY e IVANOV [5] propose a mosaicing approach for creating a texture

map from multiple photos. Their goal is not only to separate the geometry into

patches, where each one is assigned the best image, but to create the patches in

such a way that the transition between them is as less visible as possible. In a

first step their approach creates the mosaic using a Markov Random Field energy

minimization strategy, to enforce that two adjacent patches are as similar as possible

at their common border. As a subsequent step they perform seam leveling, since not

all transitions generated from the optimization method are completely unnoticeable.

A result of their method is depicted in Figure 2.6.

In a similar manner, GOLDLUECKE e CREMERS [6] proposed an energy min-

imization strategy to generate superresolution texture maps from multiple images.

The authors focus on solving the following problem: on one hand, using few images

a sharp texture is achieved but with visible seam, on the other hand, using many

6

(a) A reference image (left) and the reconstructed texture
model (right).

(b) A close-up view of the reconstructed model without the image-based regis-
tration (left), and with the image-based registration (right).

Figure 2.5: Images extracted from BERNARDINI et al. [4].

images do not create visible seams but usually blurs the final result. The main in-

novation is the solution for superresolution on curved surfaces, that deblurs results

from blending multiple images, thus achieving a sharper result even when using a

large set of photos. A resulting texture model can be seen in Figure 2.7.

OISHI et al. [7] exploit the by-product from laser scanners, the reflectance image.

This is a measure of the reflected laser intensity at each pixel of the range image.

The main idea is to first colorize the reflectance images using the photos, and then

transfer this color information to the model. Their method is based on creating small

patches on both the reflective image and the photos, and finding correspondences

between them. Color information is then assigned to the center of each patch of the

reflective image and spread to fully color the image, as illustrated in Figure 2.8.

7

Figure 2.6: Texture produced without the minimization strategy (left), and with
the proposed strategy (right). Images extracted from LEMPITSKY e IVANOV [5].

(a) A reference image (left) and the reconstructed texture model (right).

(b) A close-up view of a single input image (left), and the resulting superresolution
texture (right).

Figure 2.7: Images extracted from GOLDLUECKE e CREMERS [6].

8

Figure 2.8: Input 3d geometry (left) and the result of the automatic colorization
method (right). Images extracted from OISHI et al. [7].

9

2.1 Masked Photo Blending: Mapping Dense

Photographic Dataset on High-Resolution 3D

Models

CALLIERI et al. [8] proposed a multivariate blending function that operates in

image space by mixing data from multiple images, called Masked Photo Blending.

Weights are attributed per pixel in order to maximize the contribution regarding

geometric, topological, and colorimetric criteria. In a first step, a depth map is

computed from each calibrated camera. It is then used to solve occlusions and

detect which vertices are visible from each camera in order to compute texture

coordinates for the visible ones.

Figure 2.9: A vertex is visible from multiple cameras and the projected pixel color
may vary between them. The method tries to solve this ambiguity by generating
one single texture map.

Since it is not unusual that a vertex is visible from multiple cameras (see Fig-

ure 2.9), choosing a single source or computing a naive average might result in

artifacts such as blurring, ghosting, seams or discontinuities. The approach tries to

deal with these issues by computing weight masks for each image in order to prior-

itize reliable information. More specifically, three pixel masks are proposed: angle,

depth, and border.

Angle Mask: This criterion takes into account the angle between the camera

view direction and the surface normal for each pixel. Following the idea of Lamber-

tian illumination, the weight achieves maximum value when the view direction is

coincident with the surface normal, as illustrated in Figure 2.10. The angle weight

is defined as the cosine between the two normalized vectors, and is in range [0, 1].

10

Figure 2.10: Angle Mask: computed as the dot product between normalized view
direction and surface normal vectors. Black regions have zero angle weight, and
white regions have maximum angle weight.

Depth Mask: This weight approximates the surface sampling rate during the

image acquisition, that is, it is possible to encode more information when the surface

is near the camera. The mask is computed from the depth map and the weight

decreases quadratic in regards to the distance of the surface (see Figure 2.11). This

mask is normalized in range [0, 1].

Border Mask: This mask deals with discontinuities on the depth map, since

the texture could have artifacts due to abrupt lighting differences between cameras.

Thus, this mask evaluates how far pixels are from borders in the depth map.

Final Mask: The final mask for each image is computed by multiplying its

angle, depth and border masks. Hence, the final weight is only as high as the lowest

weight between the three masks. For instance, if a pixel has zero weight for any

of the three masks, its final weight is zero independently of the other two weights.

This is particularly important to remove outliers.

The three masks are exemplified in Figure 2.12. Finally, once the final mask

is computed, a point on the 3d surface, or a texel on the final texture, is assigned

a color by averaging the projected pixels weighted by their final mask values. A

resulting textured model is illustrated in Figure 2.13.

This approach can be easily extended with other quality image estimators de-

pending on the application. For example, in the paper, the authors propose two

other criteria: Stencil mask and Focus mask. The first one could be used to remove

any unwanted object, such as occluders. The second one could be used to assign

more weight to areas on focus, as opposed to those far from the depth of field of the

camera.

11

Figure 2.11: Depth Mask: objects far from camera are less sampled than near ones
(top); a depth mask is created to represent the distance to the camera, where closer
vertices have higher weights (bottom).

12

Figure 2.12: From left to right: angle mask, depth mask, border mask, and final
fused mask. Images extracted from CALLIERI et al. [8].

Figure 2.13: Result of a 3d model texture mapped with the Masked Photo Blending
approach. Images extracted from CALLIERI et al. [8].

13

2.2 PhotoCloud: Interactive Remote Exploration

of Joint 2D and 3D Datasets

As examples of a visualization system that works by navigating through a set of

photos, as opposed to texturing 3d models, we can cite Photo Tourism by SNAVELY

et al. [11] and PhotoCloud by BRIVIO et al. [9]. In this section we describe the

latter and more recent work, PhotoCloud. Their goal is to propose a real-time

client-server system in order to explore large datasets comprising of 3d models and

registered photographs. The 3d model can be acquired using scanner, for example, or

extracted directly from the photos. In fact, one of the advantages of the method is its

flexibility in regards to the 3d geometry. The system actually uses a multiresolution

representation of the geometric data, to improve performance using level-of-detail

strategies.

The central idea of the approach is to create an integrated navigation system,

using framelets to represent images from the datasets, and a navigation bar to order

the photos based on their relation to the current view point. Only one photo is

exhibited at a time, that is, the photo with highest weight, so no sophisticated

blending is necessary. The weight criterion to choose the best image is based on

the distance of each image to the virtual camera, and the angle between their view

directions. They also create a smooth transition between images when moving the

viewpoint to avoid abrupt jumps in the navigation, but never blend two images for

more than a few milliseconds for viewing purposes. Another interesting approach

employed is to add a sky-dome to create smooth transition for incomplete 3d models,

objects that are not present in the 3d model (such as background objects or the sky),

or to mask misalignments. Figure 2.14 illustrates the PhotoCloud system in motion.

14

Figure 2.14: A resulting view of the PhotoCloud system. The framelets in blue
around the 3d model depict the position of the front facing photos, and the nav-
igation bar below. Only the central image is projected to the 3d model. Image
extracted from BRIVIO et al. [9].

15

Chapter 3

Method

Our method aims at rendering in real time a geometric model with a set of associated

photos, and applying static weights per pixel as well as dynamic weights per photo

to generate color information on-the-fly. The idea is to not only attribute more

weight to good pixels from each photo, but also decide in render time which are the

best photos to use given a new viewpoint. Since a vertex may receive information

from multiple photos, we compute a weighted average to determine the final color

of each screen fragment related to each vertex and use a bilinear interpolation on

texture coordinates to achieve the final color between vertices.

The weighted average has two main components: distance and angle weights

for each camera computed for each new viewpoint; and precomputed depth, angle

and border weights for each pixel of each photo, as in the work Masked Photo

Blending [8] previously described in Section 2.1.

In this chapter we describe the method in a general framework, while in the

next chapter implementation details are given. We start by pre-computing the pixel

weights for each photo, as well as computing texture coordinates for each vertex

for each photo, as will be described in Section 3.1. Whenever the viewpoint or

direction changes, camera weights are recomputed (Section 3.2.1), and the model is

rendered by interpolating the texture coordinates for every photo for each vertex,

and computing the average weight for each interpolated fragment, as explained in

Section 3.2.2. Figure 3.1 illustrates an overview of the main steps of our method.

16

Figure 3.1: Method overview, from top to bottom: the input is the 3D geometry
and a set of registered photos; for each photo a depth map, masks, and texture
coordinates are computed in a pre-processing stage; during visualization camera
weights are computed and an weighted average calculated for each fragment; the
output is a colored 3d model.

17

3.1 Pre-Processing

During a pre-processing stage, we compute the following information: a depth map

for each photo, pixels weights, and texture coordinates for each vertex. These three

steps are better described next.

3.1.1 Depth Map

The depth map computation is straightforward, we render the model one time for

every photo using its associated camera, and write to a new buffer the depth in-

formation of each pixel. We actually generate two depth maps, one with and the

other without normalizing the depths in range [0, 1], that will be used in different

moments of the subsequent steps of the pre-processing stage.

3.1.2 Pixel Weights

To compute the weight of each pixel from each photo, we follow Callieri et al. [8]

method with a few modifications. The depth mask and the angle mask are computed

in the same way as the paper, while our implementation of the border mask will be

described in the next Section 4.1.1.

Finally, we create one final texture for each photo, where the RGB channels

contain the depth, angle, and border mask weights, respectively. Differently from

the original method, we do not fuse the masks as a single value in order to visualize

the effect of each mask individually in real time. But the fuse step could be trivially

added to our method as well.

3.1.3 Texture Coordinates

In the original Masked Photo Blending method, a final texture is produced as the

result. In our method, everything is dynamic, and the “final” texture is computed

for each new viewpoint during a visualization session. Since we are introducing

camera weights, the final weight of each pixel is modified in real time, so we cannot

pre-compute a weighted color for each vertex. Thus, we need to know for each vertex

its texture coordinates with respect to each photo to be retrieved in render time.

Note, however, that a vertex is usually seen from only a subset of the photos, so it

may not have an associated texture coordinate for every single one.

We again render the model for each camera, and compute the texture coordinates

for each visible vertex. To determine if a vertex is visible we compare its projected

depth with the unnormalized depth map for the current camera. If the vertex is

visible, its texture coordinates for the current photo are stored as its normalized

screen coordinates.

18

3.2 Render Time Processing

3.2.1 Camera Weights

For each camera we compute the distance and the angle weights. The first weight is

simply the distance from the current viewpoint and the camera position, while the

second weight is the angle between the view direction and the camera’s view axis.

Both weights are normalized in the range [0, 1].

The reason behind these weights is very intuitive. The camera distance weight

gives more priority to cameras near the viewpoint, while the camera angle weight

gives more priority to cameras with the same direction as the view direction.

A non-linear weight can also be employed, to increase the weight of cameras

nearby or with very close directions. So the normalized weights can be transformed

using a non-linear function, such as an exponential factor.

3.2.2 Weighted Average During Renderization

During render time, for each new viewpoint we recompute the camera weights. We

then follow the usual graphics pipeline to render the model. Each vertex is rendered

with all its associated texture coordinates. At this point, we only render triangles

whose three vertices have texture coordinates for at least one photo. The valid

triangles are then interpolated generating fragments. Each fragment may receive

texture coordinates for different photos. For each one we retrieve the texel color and

its associate weights using bilinear interpolation, and multiply it by the camera’s

weight. Then, we average all texels modulated by their respective camera weights

to compute the final fragment color. The final weighted average is given by:

C(x,y) =

∑N−1
k=0 Tk(τk(x, y)) ∗ Ωk(τk(x, y)) ∗ Θk∑N−1

k=0 Ωk(τk(x, y)) ∗ Θk

(3.1)

where τk(x, y) is the interpolated texture coordinates (u, v) at fragment (x, y)

for texture k, Tk(u, v) is the color of texture Tk at position (u, v), Ωk(u, v) is the

multiplied depth, angle and border weights for pixel (u, v) in texture k, Θk are the

multiplied distance and angle weights for camera k, and N is the number of valid

textures projecting to fragment (x, y). Figure 3.2 illustrate the above concepts.

19

Figure 3.2: Visual illustration of Equation 3.1. For camera k and texel (u, v) final
pixel weight Ωk(u, v) is combined with camera weights Θk and multiplied by color
Tk(u, v).

20

Chapter 4

Implementation

In this chapter we describe the relevant implementation details of our method de-

scribed in Chapter 3. In addition, we discuss alternatives to some steps that were

tested but discarded in the final version.

Briefly, we start by registering each photo in regards to the 3D model and pre-

processing the pixel weights (Section 4.1), and computing texture coordinates (Sec-

tion 4.2). We then describe some implementation details about the real time render,

such as the fusion of the masks in Section 4.3, camera and triangles discard criteria

in Section 4.4 and Section 4.5, respectively, multi-pass approach in Section 4.7, and

a field-of-view normalization strategy for the cameras in Section 4.6. In Figure 4.1

we highlight in which stage the implementation details are discussed in this chapter.

21

Figure 4.1: Implementation overview: in gray are the stages where implementation
details are discussed in this chapter.

22

4.1 Photo Data Structure

Each photo in the dataset has the following information in our data structure:

• image texture: contains the original photo;

• depth maps: one texture with the normalized and another with the non-

normalized depth map;

• pixel weights texture: contains the depth, angle and border weights for

each pixel

• camera weights: distance and angle weights for the camera that are dynam-

ically updated in regards to the viewpoint;

• camera matrices: intrinsic (FOV, pixel size, image size) and extrinsic (rota-

tion and translation in world coordinates).

Figure 4.2 illustrates the contents of a photo in our data structure.

Figure 4.2: Diagram of the Photo data structure. Camera matrices are 4 × 4; pixel
weights, photo and depth map are textures with the same resolution as the original
photo; camera weights are scalar values.

4.1.1 Border Mask

As previously described, the depth and angle masks are computed as in the original

work [8], using one render pass for each one. The border mask, however, cannot be

23

computed in a single pass, since the computation of a distance field is necessary in

addition to the border extraction step.

In the original paper, a Sobel filter is used to extract the borders. We tested with

different kernel sizes for the Sobel and Laplacian filters. We had slightly distinct

results for each dataset using different filters and parameters, but at the end we

decided to use the Sobel filter with a 3 × 3 kernel size as default value that worked

well for all examples.

After border extraction, it is necessary to compute the closest distance from each

non-border pixel to a border pixel. In order to accelerate this step, even if this is

still pre-processing, we implemented the Jump Flooding algorithm [12] to compute

the distance field in parallel using the GPU.

4.2 Geometry Data Structure

For each vertex we need to know its texture coordinates for each image. We store

all texture coordinates as vertex attributes. Note, however, that some vertices may

not have valid texture coordinates for all images, since it may not be visible from

some cameras. These invalid coordinates are tagged with values (−1,−1). In total

we have n vertex attribute arrays with m texture coordinates each one, where n is

the number of photos and m is the number of vertices. Figure 4.3 illustrates the

geometry data structure.

Figure 4.3: Geometry data structure. For a camera where a vertice is not visible
from its texture coordinates are set as (−1,−1).

4.2.1 Computing Texture Coordinates

There are a few strategies to compute texture coordinates. We follow a simple pro-

jection strategy, where the model is rendered using the camera matrices of each

photo, and registering the projected position for each vertex as its texture coordi-

nates for the current image. Texture coordinates are normalized in the range [0, 1].

24

Since we are not really interested in rendering the model, but just in projecting

the vertices, we use OpenGL’s Transform Feedback feature to write to the vertex

attributes during the vertex shader stage, and discarding the rasterization step (see

Figure 4.4). However, we have to deal with occlusion issues since we do not know

which vertices are in fact visible at this point. We solve this by simply checking

the projection position against the pre-computed depth map to discard occluded

vertices.

Figure 4.4: Transform Feedback is a rendering pipeline shortcut that allows skipping
the rasterization and subsequent steps, and writing directly to a vertex attribute
array.

4.2.2 Alternative Data Structure

We have also tested our method with an alternative way to store texture coordinates.

Instead of creating vertex attribute arrays, we generate a single buffer (OpenGL’s

Shader Storage Buffer), that can be accessed from any shader stage. This is a single

buffer that contains all texture coordinates for all textures. With this implementa-

tion we also load the textures using OpenGL’s Texture Arrays, instead of separate

single textures, thus removing the bound on the maximum number of texture slots,

and possibly loading more images per pass. In practice, we observed an inferior

performance, as will be illustrated in Chapter 5. Moreover, Texture Arrays has a

limitation that all textures must have the same resolution. Even though that is true

for all tested datasets, we would like to keep the method as generic as possible.

4.3 Real Time Weight Computation

In order to visualize the effect of each mask individually in real time, differently

from the original method, we do not fuse the masks as a single value. So, we create

one final texture for each photo, where the RGB channels contain the depth, angle,

and border mask weights, respectively. Therefore, the proposed fusion only happens

25

during the final rendering at the fragment level. In this step we also fuse the pixel

weights with the camera weights, as depicted in Figure 4.5.

As with the pixel weights, we also do not pre-multiply the camera weights, so we

can enable or disable each individual weight in real time to observe its influence.

Figure 4.5: Real time weight fused mask, where the RGB channels are respectively:
depth, angle and border weights.

4.4 Discarding Cameras

As mentioned in Section 3.2.1, it is possible to employ a non-linear decay on the

dynamic weights to have an improvement on image detail. Therefore, while a few

cameras have a gain in their participation in the fragment final color, others may

have their relative contribution significantly reduced.

Furthermore, we also discard cameras using a maximum angle heuristic. If the

view angle and camera normal are more than a given angle apart, we consider that

they are in opposite directions and consequently can not share visual information.

For our tests, we used a very conservative threshold of 150o. Figure 4.6 illustrates

this concept. We assemble a vector of indices indicating which cameras are valid,

and pass it to the shader to avoid unnecessary texture accesses.

26

Figure 4.6: Cameras with angles above an empiric threshold are discarded. Current
view direction is drawn in black.

4.5 Discarding Triangles

In render time, we check for each triangle in the Geometry Shader stage if for each

texture its three texture coordinates are valid. This is a simple check since we flagged

invalid texture coordinates as (−1,−1). During the fragment stage, we only use in

our weighted average textures whose all three coordinates are valid. This process is

illustrated in Figure 4.7.

27

(a) For a given photo, some triangles might not have valid texture coordinates for all three
vertices.

(b) These triangles are discarded during the weighted average procedure. In this case,
vertex D does not have a valid texture coordinate, so the triangle CBD is discarded,
while the triangle ABC has all three vertices with texture coordinates, so it is used.

(c) Biancone Dataset rendered without (left) and with (right) invalid texture coordinates
test.

Figure 4.7

28

4.6 Normalizing Field-Of-Views

Considering a dataset where all photos have the same FOV, a good metric for the

distance weight is the euclidean distance between the current viewpoint and the

camera centers.

When cameras have different FOVs, however, the apparent distance from the

camera to the model may be different for two cameras with same centers. For

example, a camera with a wide FOV may seem farther away than a camera with

a narrow FOV, even though both are located in the same position in space. Thus,

when the viewpoint is close to model, we would like to receive more contribution

from the camera with narrow FOV, for example.

To deal with this issue, we fix a common FOV value for all cameras. Each one

is then translated along its view direction so that the projection is maintained with

the new FOV. Figure 4.8 exemplifies the above concept, while Figure 4.9 illustrates

the normalization with a real example.

Since all our models are normalized and centralized, we check the width of the

view cone for each camera at the world space origin, i.e. the point (0, 0, 0). Given

the original FOV f of the camera, and the distance d from the camera to the origin,

the width is computed as:

w = 2d tan(f/2). (4.1)

Then new distance given a target FOV f ′, is computed as:

d′ =
w

2 tan(f ′/2)
, (4.2)

and finally, the new center for the camera is:

c′ = d′
c

d
. (4.3)

29

Figure 4.8: The top four images show the view from a camera with fixed position
and direction, but varying the field of view. Note how narrower FOV are similar to
approaching the camera to the model, while wider FOVs are similar to placing the
camera farther away. In the bottom row an example of two cameras with same view
direction but different positions to compensate different FOVs.

30

(a) The red box shows a region where the color projection was improved after normalizing
the FOV for all cameras. On the right are shown the cameras in respect to the model.

(b) non-normalized (left), normalized (right)

Figure 4.9: A detail view of the lower part of the statue, note how the texture is
sharper since a close-up camera has received more weight after normalization. The
red non-normalized camera from the left image, after normalization, is very near to
the current view position, thus increasing its weight.

31

4.7 Multi-Pass Render

When dealing with datasets with a large number of photos, we have to optimize the

number of textures being processed in each render pass. Many GPUs impose a hard

limit on this number, and rendering the maximum possible number of textures in

each pass may not be the most efficient approach.

We thus employ a multi-pass strategy, where a fixed maximum number of tex-

tures is used in each pass. At the end of each pass we store the numerator and

denominator of Equation 3.1, and pass it to next pass. These values are accumu-

lated after each pass, and the division occurs only during the final one.

In practice, each render pass writes to a framebuffer texture, where the RGB

channels are the accumulated pixel colors multiplied by the pixel and camera weights,

and the α channel stores the accumulated weights. The final pass renders the result

directly to the screen buffer. The multi-pass scheme is illustrated in Figure 4.10.

32

Figure 4.10: A multi-pass approach is used since GPUs impose a hard limit on the
number of available textures units. For each pass at most k textures are allocated
from the list of non-discarded cameras. Inside the shaders the result from the current
pass is accumulated with the one from the previous pass, and written to a FBO
texture. For the last pass the weighted average is finalized and Phong illumination
applied.

33

Chapter 5

Results

We have performed tests with a few datasets varying many parameters, to better

analyze the proposed method. A description of the computer used details is given

in Table 5.1. A description of the datasets is given in Table 5.2. Note that the only

difference between Urn High and Low is the images resolution.

Processor Intel(R) Core(TM) i7-3770
CPU 3.40GHz
Cores 4
Mem 16 GB
GPU GeForce GTX 660/PCIe/SSE2
OpenGl 4.4.0 NVIDIA 340.101

Table 5.1: Computer Specifications

Name #verts #photos width height
Biancone 375923 40 1728 1152
Duomo 644888 50 1936 1296
Saint 892263 25 1162 778
Urn High 911883 10 3872 2592
Urn Low 911883 10 968 648

Table 5.2: Datasets: Biancone and Duomo datasets were generously made available
by the Visual Computing Group (CNR-Pisa); Urn and Saint datasets were scanned
and photographed by the LCG group from UFRJ. The Urn is a piece from the
National Historical museum’s collection, while the Saint is from a personal item
from the author’s family.

In Figure 5.1 a general view of the cameras positions is given for each dataset.

Some illustrative images of the datasets are shown in Figures 5.2, 5.3, 5.4, and

5.5. For all screen-shots a mini-view is shown on the top-right corner depicting all

cameras in the dataset, and with a color-map representing the weights, where the

green channel is the distance weight and the red channel is the angle weight. The

34

more saturated the color, the higher the weight. Yellow cameras, for example, have

high distance and angle weights. Figures 5.6, 5.7, 5.8, 5.9, and 5.10 show some

comparisons with the texture maps produced by the method of CALLIERI et al.

[8].

Figure 5.1: A general view of the cameras positions for each dataset. The FOV is
normalized for all cameras.

In the following sections we show statistics for the datasets varying some param-

eters. For all experiments, we show results in two versions, using vertex attributes

and using storage buffer. Timings were taken using a predetermined camera path

in order to replicate the experiments changing only the parameters.

35

Figure 5.2: In the left image the weights for a camera far away are frozen and the
camera is positioned close to the model, to illustrate the difference from using the
real weights for that same position (right image).

Figure 5.3: In a close-up view, weights are given for the photos taken from near
the object or with zoom. Note, however, that the left side of the face was better
sampled than the right, causing some artifacts on the right side.

36

Figure 5.4: Some exemplary views of the Biancone dataset.

Figure 5.5: Some exemplary views of the Duomo dataset.

Figure 5.6: Traditional texture mapping (left) and our proposed method (right).
Note how our method produces a much sharper visualization since only a few images
have significant weight for the view position.

37

Figure 5.7: Traditional texture mapping (left) and proposed method (right). Note
the sharper numbers at the base of the urn with our method.

Figure 5.8: Traditional texture mapping (left) and proposed method (right)

Figure 5.9: Traditional texture mapping(left) and proposed method (right). Illumi-
nation variations are better handled with our method, since oblique cameras receive
very low weights. Note that artifacts are visible near borders in traditional texture
mapping

38

Figure 5.10: Traditional texture mapping (left) and proposed method (right). In
this case texture mapping produced a sharper image, since only one photo was
used for this part of the final texture, thus avoiding blurring artifacts from small
misalignments.

39

5.1 Cameras Per Pass

In this section we show the results when varying the maximum number of photos for

each render pass. A summary of the optimal parameters are specified in Table 5.3.

Name best #photos best #passes Fig.
Biancone 4 10 5.11
Duomo 4 13 5.12
Saint 4 7 5.13
Urn High 4 3 5.14
Urn Low 4 3 5.15

Table 5.3: Number of photos that results in best performance for each dataset.

As can be noted from the figures, for all datasets, the best performance was

achieved when rendering four images per pass. This result is achieved regardless of

the total number of passes. For example, for the Biancone it is achieved with 10

passes, while for the Urn it is achieved with 3 passes. This observation holds for

both implementations, using vertex attributes or storage buffers.

One possible explanation for this optimal number of images per pass may be

exposed in terms of balancing the data transfer load in the GPU. Four images

probably results in the best balance between texture fetches and local operations

that do not depend on memory access.

40

(a) Varying number of maximum photos per render pass.

(b) Varying number of passes.

Figure 5.11: Biancone dataset.

41

(a) Varying number of maximum photos per render pass.

(b) Varying number of passes.

Figure 5.12: Duomo dataset.

42

(a) Varying number of maximum photos per render pass.

(b) Varying number of passes.

Figure 5.13: Saint dataset.

43

(a) Varying number of maximum photos per render pass.

(b) Varying number of passes.

Figure 5.14: Urn high resolution dataset. Note that the dataset only has 10 photos,
so it is possible to render everything in one pass.

44

(a) Varying number of maximum photos per render pass.

(b) Varying number of passes.

Figure 5.15: Urn low resolution dataset. Note that the dataset only has 10 photos,
so it is possible to render everything in one pass.

45

5.2 Photo Set Reduction

The next experiments were realized by reducing the total number of photos in each

dataset. This allows to observe the behavior of having less photos without changing

the geometry, particularly the number of vertices. We show total timings results

for the Biancone dataset in Figure 5.16 and for the Duomo dataset in Figure 5.17,

since they had the largest set of photos. In Figures 5.18 and 5.19 average timings

per pass are illustrated.

We can observe a practically linear behavior in regards to the total number of

photos, and the average time to complete each pass does not vary significantly in

regards to the total number of necessary passes. Note that the maximum variation

when analyzing the average timings was around 15ms, which is much less than the

variations when varying the number of cameras per pass as discussed previously in

Section 5.1. This was the expected behavior since only the total number of passes

is changing between the original and the reduced sets.

46

(a) Maximum two cameras per pass.

(b) Maximum ten cameras per pass.

Figure 5.16: Biancone model reducing the total number of photos in the dataset.

47

(a) Maximum two cameras per pass.

(b) Maximum ten cameras per pass.

Figure 5.17: Duomo model reducing the total number of photos in the dataset.

48

(a) Maximum two cameras per pass.

(b) Maximum ten cameras per pass.

Figure 5.18: Biancone model, average timings per pass when reducing the number
of photos in the dataset.

49

(a) Maximum two cameras per pass.

(b) Maximum ten cameras per pass.

Figure 5.19: Duomo model, average timings per pass when reducing the number of
photos in the dataset.

50

Chapter 6

Conclusion

Realistic virtual representations of 3d objects is a common goal in many areas. A

popular way to represent reflectance, or color, information for 3d models is through

textures. However, when generating a texture from a set of photos, the loss of

information may be significant in some cases.

In this dissertation, we propose a real-time rendering system that aims at using

at its maximum the original resolution of the photos. We join ideas from texture

generation methods and real-time visualization techniques to achieve our goal. Our

method blends precomputed and view dependent weights to prioritize the best pixels

of a photo, and the best photos given a view position and direction. To deal with

large datasets we propose a multi-pass rendering strategy.

We have analyzed our method with different real datasets varying in object scale

and number of photos. Through our experiments we have found optimal parameters

for the number of photos per pass, and noticed a linear relation between the render

time and the number of photos in the dataset.

Albeit the encouraging results, there is still much room for improvement. Our

system is very conservative in discarding an entire photo, since we do not have

coverage information, i.e., discarding a photo with low weight may also discard the

only photo that covers a part of the mesh, and thus leaving the 3d object partially

untextured. In fact, an approach to include minimum coverage information may

drastically reduce the number of required photos in a give moment. In addition, a

minimum coverage strategy it may also discard photos that have low weights and

may be only causing blurring artifacts during the computed average.

Most blurring artifacts come from misalignments during the image-to-geometry

registration phase. We have not covered this stage in our work, receiving as input to

our system the already calibrated and registered photos. Nevertheless, some means

to treat, at least partially, the misalignment problem would greatly improve the

results. A method such as the one proposed by DELLEPIANE et al. [13] to correct

misalignments using precomputed optical-flow may be incorporated at the cost of

51

passing extra textures along the images, since the flow between each overlapping

pair of photos must be computed.

Another natural direction for future work is to employ methods to correct bright-

ness variations between images. In our datasets all photos were taken during a single

session, but if illumination variations can be handled, more generic datasets could

be used. For example, a set of photos from the web taken from different cameras

at varying illumination scenarios, such as those used in the Photo Tourism system

proposed by [11].

52

Bibliography

[1] ORTIN, D., REMONDINO, F. “Occlusion-free Image Generation for Realistic

Texture Mapping”. In: editor (Ed.), International Archives of Photogram-

metry, Remote Sensing and Spatial Information Sciences, v. XXXVI,

2005.

[2] PREVITALI, M., BARAZZETTI, L., SCAIONI, M. “An automated and accu-

rate procedure for texture mapping from images”. In: Proceedings of the

2012 18th International Conference on Virtual Systems and Multimedia,

VSMM 2012: Virtual Systems in the Information Society, pp. 591–594,

2012. ISBN: 9781467325653. doi: 10.1109/VSMM.2012.6365984.

[3] BAUMBERG, A. “Blending Images for Texturing 3D Mod-

els.” Bmvc, pp. 404–413, 2002. doi: 10.5244/C.16.38.

Dispońıvel em: <http://pdf.aminer.org/000/067/136/

blending{_}images{_}for{_}texturing{_}d{_}models.pdf>.

[4] BERNARDINI, F., MARTIN, I. M., RUSHMEIER, H. “High-Quality Texture

Synthesis from Multiple Scans”, IEEE Transactions on Visualization and

Computer Graphics, v. 7, n. 4, pp. 318–332, 2001.

[5] LEMPITSKY, V., IVANOV, D. “Seamless mosaicing of image-based texture

maps”. In: Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2007. ISBN: 1424411807. doi:

10.1109/CVPR.2007.383078.

[6] GOLDLUECKE, B., CREMERS, D. “Superresolution texture maps for multi-

view reconstruction”. In: Proceedings of the IEEE International Confer-

ence on Computer Vision, pp. 1677–1684, 2009. ISBN: 9781424444205.

doi: 10.1109/ICCV.2009.5459378.

[7] OISHI, S., KURAZUME, R., IWASHITA, Y., et al. “Colorization of 3D geo-

metric model utilizing laser reflectivity”. In: Proceedings - IEEE Inter-

national Conference on Robotics and Automation, pp. 2319–2326, 2013.

ISBN: 9781467356411. doi: 10.1109/ICRA.2013.6630891.

53

http://pdf.aminer.org/000/067/136/blending{_}images{_}for{_}texturing{_}d{_}models.pdf
http://pdf.aminer.org/000/067/136/blending{_}images{_}for{_}texturing{_}d{_}models.pdf

[8] CALLIERI, M., CIGNONI, P., CORSINI, M., et al. “Masked photo blend-

ing: Mapping dense photographic data set on high-resolution sampled 3D

models”, Computers and Graphics (Pergamon), v. 32, n. 4, pp. 464–473,

2008. ISSN: 00978493. doi: 10.1016/j.cag.2008.05.004.

[9] BRIVIO, P., BENEDETTI, L., TARINI, M., et al. “PhotoCloud: Interactive

remote exploration of joint 2D and 3D datasets”, IEEE Computer Graph-

ics and Applications, v. 33, n. 2, pp. 86–97, 2013. ISSN: 02721716. doi:

10.1109/MCG.2012.92.

[10] BURT, P. J., ADELSON, E. H. “A Multiresolution Spline with Application

to Image Mosaics”, ACM Trans. Graph., v. 2, n. 4, pp. 217–236, out.

1983. ISSN: 0730-0301. doi: 10.1145/245.247. Dispońıvel em: <http:

//doi.acm.org/10.1145/245.247>.

[11] SNAVELY, N., SEITZ, S. M., SZELISKI, R. “Photo tourism”, ACM Trans-

actions on Graphics, v. 25, n. 3, pp. 835, 2006. ISSN: 07300301. doi:

10.1145/1141911.1141964.

[12] RONG, G., TAN, T.-S. “Utilizing Jump Flooding in Image-based Soft Shad-

ows”, Building, pp. 173–180, 2006. doi: 10.1145/1180495.1180531.

Dispońıvel em: <http://doi.acm.org/10.1145/1180495.

1180531{%}5Cnhttp://dl.acm.org/ft{_}gateway.cfm?id=

1180531{&}type=pdf>.

[13] DELLEPIANE, M., MARROQUIM, R., CALLIERI, M., et al. “Flow-based

local optimization for image-to-geometry projection”, IEEE Transactions

on Visualization and Computer Graphics, v. 18, n. 3, pp. 463–474, 2012.

ISSN: 10772626. doi: 10.1109/TVCG.2011.75.

54

http://doi.acm.org/10.1145/245.247
http://doi.acm.org/10.1145/245.247
http://doi.acm.org/10.1145/1180495.1180531{%}5Cnhttp://dl.acm.org/ft{_}gateway.cfm?id=1180531{&}type=pdf
http://doi.acm.org/10.1145/1180495.1180531{%}5Cnhttp://dl.acm.org/ft{_}gateway.cfm?id=1180531{&}type=pdf
http://doi.acm.org/10.1145/1180495.1180531{%}5Cnhttp://dl.acm.org/ft{_}gateway.cfm?id=1180531{&}type=pdf

	List of Figures
	List of Tables
	Introduction
	Related Works
	Masked Photo Blending: Mapping Dense Photographic Dataset on High-Resolution 3D Models
	PhotoCloud: Interactive Remote Exploration of Joint 2D and 3D Datasets

	Method
	Pre-Processing
	Depth Map
	Pixel Weights
	Texture Coordinates

	Render Time Processing
	Camera Weights
	Weighted Average During Renderization

	Implementation
	Photo Data Structure
	Border Mask

	Geometry Data Structure
	Computing Texture Coordinates
	Alternative Data Structure

	Real Time Weight Computation
	Discarding Cameras
	Discarding Triangles
	Normalizing Field-Of-Views
	Multi-Pass Render

	Results
	Cameras Per Pass
	Photo Set Reduction

	Conclusion
	Bibliography

