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An analytical integral transformation of the thermal wave propagation problem in a finite slab is obtained
through the generalized integral transform technique (GITT). The use of the GITT approach in the analysis of
the hyperbolic heat conduction equation leads to a coupled system of second order ordinary differential
equations in the time variable. The resulting transformed ODE system is then numerically solved by Gear's
method for stiff initial value problems. Numerical results are presented for the local and average
temperatures with different Biot numbers and dimensionless thermal relaxation times, permitting a critical
evaluation of the technique performance. A comparison is also performed with previously reported results in
the literature for special cases and with those produced through the application of the Laplace transform
method (LTM), and the finite volume-Gear method (FVGM).

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Hyperbolic heat conduction is found in several engineering
applications related to ultra-rapid time varying heat sources or
contacts, such as with laser and microwave sources with extremely
short duration or very high frequency, and more recently in
association with nano-scale heat transfer in dispersed phase systems
of nanoparticles.

The classical theory of heat conduction based on Fourier's law is
not adequate to describe the physical mechanism of heat propagation
for such situations, since the classical constitutive relation leads to
paradoxical results in problems dealingwith high rates of temperature
changes. To overcome this limitation, Vernotte [1] and Cattaneo [2],
based on the concept of heat transmission by waves, independently
introduced an improvement of Fourier's law to describe problems
involving high rates of temperature change, heat flow in an extremely
short period of time or very low temperatures near absolute zero.
Afterwards, a number of research contributions have been dedicated
to the study of problems involving hyperbolic heat conduction [3–19].

More recently, Duhamel [19] provided a thorough review on the
subject and proposed a finite integral transform pair for hyperbolic
heat conduction problems in heterogeneous media. In this same
context andwith a complementary scope, the goal of the present work
is to propose a more flexible analytical solution for the thermal wave
propagation problem in a finite slab through the generalized integral
transform technique (GITT) [20–28] with a local-instantaneous

filtering strategy [29,30]. The use of this integral transform approach
in solving the hyperbolic heat conduction equation leads to a coupled
system of second order ordinary differential equations in the time
variable, which is then handled by the related algebraic eigenvalue
problem or numerically solved by Gear's method for stiff initial value
problems, such as available in subroutine DIVPAG of the IMSL Library
[31]. Numerical results are here presented for the local and average
temperatures with different values of the governing parameters, i.e.,
Biot numbers and dimensionless thermal relaxation times, allowing
for a critical evaluation of the eigenfunction expansions behavior. A
comparison with previously reported results for special cases is also
performed. Finally, a couple of alternative approaches are applied to
the same problem formulation for comparison purposes, namely a
solution developed via the Laplace transform method (LTM) with
numerical inversion, as well as a method of lines variation based on
application of the finite volume method in the spatial coordinate and
Gear's method in the time variable (FVGM).

2. Mathematical formulation

The classical theory of heat conduction based on the constitutive
Fourier's law relates the heat flux density vector q(x,t) to the
temperature gradient ∇T(x,t), while assuming that heat propagates
with an infinite speed within the conducting medium, in accordance
with:

q x; tð Þ = − krT x; tð Þ ð1Þ

A modified form of Eq. (1) was independently and originally
presented by Vernotte [1] and Cattaneo [2], for the case when the
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time scale of the local temperature variation is very small, and by
considering a finite speed of wave propagation, resulting in:

q x; t + trð Þ = − krT x; tð Þ ð2Þ

where tr, the so-called thermal relaxation time, is a thermodynamic
property of the material where heat conduction occurs. However, the
local character of the heat conduction theory is restored by a
truncation of Eq. (2) to a first order expansion in tr [1,2,12], namely:

q x; tð Þ + tr
Aq x; tð Þ

At
= − krT x; tð Þ ð3Þ

The energy equation in terms of the heat flux is then written as

ρcp
AT x; tð Þ

At
= − r:q x; tð Þ + g x; tð Þ ð4Þ

One then combines Eq. (3) with the energy Eq. (4) and, assuming
constant physical properties, recovers the hyperbolic heat conduction
equation:

tr
A
2T x; tð Þ
At2

+
AT x; tð Þ

At
= αr2T x; tð Þ + g x; tð Þ

ρcp
+

tr
ρcp

Ag x; tð Þ
At

ð5Þ

Eq. (5) models the temperature distribution for heat propagation
in solids with a finite speed ν=(α/tr)1/2, where α is the thermal
diffusivity.

For illustration of the proposed approach, we here consider a test
case of hyperbolic heat conduction in a slab of thickness L, initially at
the uniform temperature T0, subject to a prescribed heat flux at the
boundary x=0 and exchanging heat by convection at x=L with a heat
transfer coefficient, h, and a fluid with a constant temperature, T∞.
Assuming constant thermophysical properties, k and α, and no
internal heat generation, the unsteady one-dimensional formulation
for this problem in dimensionless form is then written as:

Aθ
Aτ

+ τr
A
2θ

Aτ2
=

A
2θ

Aη2
; 0 b η b 1; τ N 0 ð6aÞ

θ η;0ð Þ = 1;
Aθ η;0ð Þ

Aτ
= 0; 0 V η V 1 ð6b; cÞ

Aθ 0; τð Þ
Aη

= − F τð Þ; Aθ 1; τð Þ
Aη

+ Biθ 1; τð Þ + Biτr
Aθ 1; τð Þ

Aτ
= 0; τ N 0

ð6d; eÞ

where the various dimensionless groups are given by:

θ η; τð Þ = T x;tð Þ − T∞
T0 − T∞

; η =
x
L
; τ =

αt
L2

; Bi =
hL
k
; τr =

αtr
L2

;

Q τð Þ = Lq0 tð Þ
k T0 − T∞ð Þ

ð7Þ

and the function F(τ) in the boundary source term of Eq. (6d) becomes

F τð Þ = Q τð Þ + τrQ V τð Þ ð8Þ

The following analysis can be performed for any type of wave
pulses, but square and triangular pulses were here chosen to illustrate
the solution behavior, which are described by the following functions
(Fig. 1), respectively:

Q τð Þ =
0;
1;
0;

for 0 V τ b 1
for 1 V τ V 2
for τ N 2

; Q τð Þ =
0;
τ + τr − 1;
0;

for 0 V τ b 1
for 1 V τ V 2
for τ N 2

8<
:

8<
: ð9a;bÞ

3. Solution methodology

The first step in application of the generalized integral transform
technique (GITT) is the proposition of a filtering solution,which reduces
the adverse effects on convergence rates due to the boundary source
terms. The employed procedure is the adoption of a local-instantaneous
analytical filter [29,30], here applied to chosen stages in time of the
original potential as:

θ η; τð Þ = θf ;k η; τð Þ + θp;k η; τð Þ; τk− 1 b τ b τk ð10Þ

Fig. 1. Wave pulses for Q(τ) (square pulse, solid line, and triangular pulse, dashed line).

Nomenclature

Bi Biot number
cp specific heat
F(τ) defined by Eq. (8)
h heat transfer coefficient
k thermal conductivity
L slab thickness
N truncation order in the expansions
Ni normalization integral
q heat flux vector
q0(t) thermal wave pulse
Q(τ) dimensionless thermal wave pulse
t time variable
T temperature field
To, T∞ initial and fluid temperatures, respectively
tr relaxation time
x spatial coordinate

Greek symbols
α thermal diffusivity
η dimensionless spatial coordinate
μi eigenvalues
ψi(η) eigenfunctions
ρ density
τ dimensionless time variable
τr dimensionless relaxation time
θ dimensionless temperature field
θav(τ) dimensionless average temperature
θk,i(τ) transformed potentials

Subscripts and superscripts
i, j, k order from eigenvalue problem
_ integral transformed quantities
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The quasi-steady filter problem formulation is chosen in implicit
form as:

A
2θf ;k
Aη2

= 0; 0 b η b 1; τk− 1 b τ b τk ð11aÞ

Aθf ;k 0; τð Þ
Aη

= − F τð Þ Aθf ;k 1; τð Þ
Aη

+ Biθf ;k 1; τð Þ = γk− 1 ð11b; cÞ

where the boundary condition transient term that appears in the filter
is written as

γ τð Þ = − Biτr
Aθ 1; τð Þ

Aτ
; γk− 1 = γ τk− 1ð Þ ð12a;bÞ

The solution of Eq. (11) is readily obtained as

θf ;k η; τð Þ = F τð Þ 1 − ηð Þ + F τð Þ + γk− 1½ �= Bi ð13Þ

The resulting problem formulation for the filtered potential, θp,k(η,
τ), is thus given by:

Aθp;k
Aτ

+ τr
A
2θp;k
Aτ2

=
A
2θp;k
Aη2

+ Gk η; τð Þ; 0 b η b 1; τk− 1 b τ b τk ð14aÞ

θp;k η; τk− 1ð Þ = 1 − θf ;k; for k¼ 1
θp;k− 1 + θf ;k− 1 − θf ;k; for k N 1 ; 0 V η V 1

�
ð14b; cÞ

Aθp;k η; τk− 1ð Þ
Aτ

=

Aθf ;k
Aτ

; for k¼ 1
Aθp;k−1
Aτ

+
Aθf ;k− 1

Aτ
−

Aθf ;k
Aτ

; for k N 1
; 0 V η V 1

8><
>:

ð14d; eÞ

Aθp;k 0; τð Þ
Aη

= 0;
Aθp;k 1; τð Þ

Aη
+ Biθp;k 1; τð Þ = Δγk ð14f ; gÞ

where,

Gk η; τð Þ = −
Aθf ;k
Aτ

+ τr
A
2θf ;k
Aτ2

" #
= − F V τð Þ + τrFW τð Þ½ � 1 + 1= Bi − ηð Þ;

Δγk = γ τð Þ − γk− 1 ð15a;bÞ

An analytical integral transformation of the problem defined by
Eqs. (14a–g) is now developed by using the ideas in the generalized
integral transform technique (GITT), as described in [20–28]. Follow-

ing the basic steps in this integral transform approach, an appropriate
eigenvalue problem must be chosen, here taken as:

d2ψi ηð Þ
dη2

+ μ2
i ψi ηð Þ = 0 ð16aÞ

dψi 0ð Þ
dη

= 0;
dψi 1ð Þ
dη

+ Biψi 1ð Þ = 0 ð16b; cÞ

Eq. (16) above are readily solved, to yield the eigenfunctions,
transcendental equation for the computation of eigenvalues, ortho-
gonality property and norms, as follows:

ψi ηð Þ = cos μ iηð Þ; Bi = μ i tan μ ið Þ; ð17a;bÞ
Z 1

0
ψi ηð Þψj ηð Þdη = 0; i ≠ j

Ni; i = j
; Ni =

Z 1

0
ψ2
i ηð Þdη =

μ2
i + Bi2 + Bi
2 μ2

i + Bi2
� �

(

ð17c;dÞ
Also, the eigenvalue problem defined by Eq. (16) allows for a

definition of the following integral transform pair:

θk;i τð Þ =
Z 1

0
ψ̃i ηð Þθp;k η; τð Þdη; transform;

θp;k η; τð Þ =
X∞
i=1

ψ̃i ηð Þθ
k;i

τð Þ; inverse ð18a;bÞ

where, ψ̃(η)=ψi(η)/Ni
1/2 are the normalized eigenfunctions.

To perform the integral transformation, Eq. (14a) and the initial
conditions (14b,c) should first be multiplied by the normalized
eigenfunction, ψ̃(η), and then integrated over the domain [0,1] in the η
direction. After employing the inverse formula (18b), and the boundary
conditions, Eqs. (14f,g), the following coupled transformed system of
second order ordinary differential equations in time is obtained:

d2θk;i τð Þ
dτ2

+
1
τr

dθk;i τð Þ
dτ

+
μ2
i

τr
θ
k;i

τð Þ = Gk;i τð Þ; τk−1 b τ b τk ð19aÞ

θk;i τk−1ð Þ = f i;
dθk;i τk−1ð Þ

dτ
= gi ð19b; cÞ

where

Gk;i τð Þ = 1
τr
½Z 1

0
Gk η; τð Þ ψ̃i ηð Þdη + ψ̃i 1ð ÞΔγk�;

f i =

R 1
0 1 − θf ;k
� �

ψ̃i ηð Þdη; for k = 1R 1
0 θp;k−1 + θf ;k− 1 − θf ;k
� �

ψ̃i ηð Þdη; for k N 1

8<
: ð20a–cÞ

gi =

R 1
0

Aθf ;k
Aτ

ψ̃i ηð Þdη; for k = 1R 1
0

Aθp;k−1
Aτ

+
Aθf ;k− 1

Aτ
−

Aθf ;k
Aτ

� �
ψ̃i ηð Þdη; for k N 1

8>><
>>: ð20d; eÞ

The coupling of the transformed potentials is evident in the term
Ḡk,i(τ), more specifically in the boundary transient term that appears in

Table 1
Comparison of the average temperature for Q(τ)=0 and τr=10−5 against the exact solution for Q(τ)=0 and τr=0

τ θav(τ)a θav(τ)b θav(τ)c θav(τ)d θav(τ)e

Bi=0.1
0.01 0.9990 0.9990 0.9990 0.9990 0.9990
0.10 0.9902 0.9902 0.9902 0.9902 0.9902
1.00 0.9076 0.9076 0.9076 0.9075 0.9076

Bi=1
0.01 0.9907 0.9907 0.9908 0.9902 0.9907
0.10 0.9196 0.9196 0.9197 0.9157 0.9196
1.00 0.4704 0.4704 0.4705 0.4680 0.4704

a–GITT approach, b–LTM, c–FVGM, d–CIEA–lumped formulation [17], e–exact solution (τr=0).
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Δγk. The truncatedversionof system (19) canbenumerically solvedwith
theuse of initial valueproblemsolverswith automatic error control, such
as in subroutine DIVPAG from the IMSL Library [31]. After the system
(19a) is solved for the transformed potentials θ̄k,i(τ), the temperature
field is recovered through the inverse formula (18b) and Eq. (13).

Eq. (21a) defines the average potential θav(τ), which after
introducing both the inverse formula given by Eq. (18b) and Eq. (13),
results in Eq. (21b) below:

θav τð Þ =
Z 1

0
θ η; τð Þdη; θav τð Þ = F τð Þh1;i + F τð Þ + γk−1½ � h2;i

Bi
+
X∞

i=1

h2;iθi τð Þ

ð21a;bÞ

h1;i =
Z 1

0
1 − ηð Þ ψ̃i ηð Þdη; h2;i =

Z 1

0
ψ̃i ηð Þdη ð21c;dÞ

4. Results and discussion

Numerical results were computed with different values of Biot
number, Bi, dimensionless relaxation time, τr, and the two different
functional forms for the wave pulse (square and triangular), Q(τ), at
the boundary η=0. In the GITT solution, the transformed ordinary
differential system given by Eq.(19) was verified with the analytical
symbolic solution and numerically solved through subroutine DIVPAG
of the IMSL Library [31] with a prescribed relative error target of 10−6

in all computational runs.
The numerical code was also validated with comparisons against

the exact integral transform solution for the classical heat conduction

problem (τr=0) and with the approximate formulation obtained
with the coupled integral equations approach (CIEA) [32], employing
the improved lumped-differential formulation represented by the
formulae H1,1/H1,1[17]. Thus, the present results for the average
temperature were compared with those from reference [17], for the
situation Q(τ)=0 and τr=10−5. One may observe in Table 1 the
excellent agreement between the results of the present GITT approach
with the exact solution for Q(τ)=0 and τr=0 for both Biot numbers
considered, Bi=0.1 and 1.0, as well as with the results from a Laplace
transform method with numerical inversion (LTM) and the method of
lines variant employing finite volumes for the spatial discretization
and Gear's method for the time integration (FVGM). However, when
Biot number is increased, the lumped-differential formulation H1,1/
H1,1 given by Reis et al. [17] looses adherence with respect to the other
fully local formulations of the hyperbolic heat conduction problem.

Tables 2–5 illustrate the convergence behavior of the eigenfunction
expansions in the GITT solution for the two types of wave pulses
adopted, as well as the comparison with the results generated with
the LTM and FVGM approaches. Tables 2 and 3 show results for the
square wave pulse with Bi=0.1 and 1, respectively, and with
dimensionless relaxation times τr=10−2 and 1. The dimensionless
times adopted in such analysis are within the range of the thermal
perturbation (see Fig. 1) and the dimensionless positions were chosen
closer to the boundaries, since it is expected that such representative
values are the most relevant ones for the convergence behavior
analysis. The results of GITT reach convergence to five significant
digits at different rates, for instance, in the case Bi=0.1 and τr=10−2,
N=20 terms are needed to achieve the referred convergence to five
digits, while for Bi=0.1 and τr=1, Bi=1 and τr=10−2, and Bi=1 and

Table 2
Convergence behavior and comparison of the local temperature for a square wave pulse at different dimensionless times and positions (Bi=0.1 and τr=10−2 and 1)

Q(τ) = square wave pulse; Bi=0.1 and τr=10−2

θ

N 20 40 60 80 100 LTM FVGM

τ=1.2 and η=0.1 1.3096 1.3096 1.3096 1.3096 1.3096 1.3102 1.3096
τ=1.2 and η=0.9 0.92196 0.92196 0.92196 0.92196 0.92196 0.92240 0.92197
τ=1.8 and η=0.1 1.8715 1.8715 1.8715 1.8715 1.8715 1.8716 1.8715
τ=1.8 and η=0.9 1.4185 1.4185 1.4185 1.4185 1.4185 1.4156 1.4185

Q(τ) = square wave pulse; Bi=0.1 and τr=1

θ

N 60 80 100 120 140 LTM FVGM

τ=1.2 and η=0.1 1.0715 1.0714 1.0714 1.0714 1.0714 1.0713 1.0717
τ=1.2 and η=0.9 0.92667 0.92664 0.92663 0.92662 0.92662 0.92643 0.92658
τ=1.8 and η=0.1 1.4935 1.4935 1.4935 1.4935 1.4934 1.4954 1.4934
τ=1.8 and η=0.9 0.89907 0.89905 0.89904 0.89903 0.89903 0.89750 0.89901

Table 3
Convergence behavior and comparison of the local temperature for a square wave pulse at different dimensionless times and positions (Bi=1 and τr=10−2 and 1)

Q(τ)= square wave pulse; Bi=1 and τr=10−2

θ

N 20 40 60 80 100 LTM FVGM

τ=1.2 and η=0.1 0.86638 0.86639 0.86640 0.86640 0.86640 0.86706 0.86641
τ=1.2 and η=0.9 0.37887 0.37889 0.37889 0.37889 0.37889 0.37971 0.37890
τ=1.8 and η=0.1 1.2456 1.2456 1.2456 1.2456 1.2456 1.2455 1.2456
τ=1.8 and η=0.9 0.62947 0.62948 0.62948 0.62948 0.62948 0.62778 0.62949

Q(τ) = square wave pulse; Bi=1 and τr=1

θ

N 60 80 100 120 140 LTM FVGM

τ=1.2 and η=0.1 0.97771 0.97771 0.97771 0.97771 0.97771 0.97766 0.97828
τ=1.2 and η=0.9 0.63790 0.63781 0.63776 0.63772 0.63769 0.63738 0.63753
τ=1.8 and η=0.1 1.1833 1.1834 1.1834 1.1835 1.1835 1.1856 1.1835
τ=1.8 and η=0.9 0.52784 0.52779 0.52776 0.52774 0.52773 0.52590 0.52764
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τr=1, the convergence was attained, respectively, with 80≤N≤100,
60≤N≤80 and 80≤N≤100. Tables 2 and 3 also bring a comparison
with the LTM and FVGM approaches, and onemay notice the excellent
agreement among the three sets of results, obtained through fully
independent approaches. In general, the GITT and FVMG results are in
agreement to four significant digits, while with those of the LTM
approach an agreement to three significant digits can be verified. The
same observations as above can be extended to Tables 4 and 5 for the
case of a triangular wave pulse. It is important to mention that the
results of the LTM approach were obtained with a tolerance of 10−5 in
the subroutine DINLAP for numerical inversion of the Laplace
transform, IMSL Library [27], while those of the FVGM approach
were produced with a mesh of M=125 points in the spatial variable
discretization.

Figs. 2 and 3 show the time evolution of the temperature
distribution for Bi=0.1 and 1 and τr=1×10−2 and 1 at the dimension-
less times τ=0.3, 0.9, 1.5, 2.1, 2.7 and 3.0. From these figures, one may
analyze the influence of the Biot number and relaxation time in the
thermal wave pulses propagation in the conductive medium. For such
square and triangular thermal wave pulses at the boundary η=0, the
effect of the waves thermal propagation is more clearly noticeable.
Initially, until the instant τ=1, there is no thermal excitation at η=0,
which occurs in the interval 1≤τ≤2. After the beginning of the heat
source excitation, it is observed that the thermal wave propagation in
themedium results in a more significant temperature raise for smaller
Biot numbers. In the case of Bi=0.1 and τr=1×10−2, for times τ=0.3
and 0.9 when there is no thermal excitation at η=0, the temperature
gradient in themedium is still small due the fairly low convection heat
exchange rate at η=1. In the time instant τ=1.5, when the thermal
wave pulse is already occurring for a 0.5 dimensionless time interval,

dimensionless temperature rises above unity and, due to the small τr
value (i.e., high speed of thermal wave propagation in the medium),
the thermal wave rapidly increases temperature over the whole
region. Still for Bi=0.1, but for τ≥2.1, it can be observed that the
thermal waves propagation ends up in an approximately uniform
temperature field, due to the low dissipation at η=1.

In the case of Bi=0.1 and τr=1 the trends above described are
essentially similar but with a slower behavior in time, due to the
milder speed of the thermal wave propagation when the relaxation
time is smaller. In contrast, more pronounced temperature gradients
are then observed. In the case of Bi=1 and τr=1×10−2, the convective
dissipation at η=1 is more significant, consequently the temperatures
at η=1 may be lower than at η=0. However, for Bi=1 and τr=1, the
thermal waves will reach the position η=1 at longer times, conse-
quently the temperatures will increase until the thermal waves stop
reaching this position. Therefore, for the case of larger Biot number, a
similar hyperbolic behavior for both forms of heat pulse has been
observed. However, the effect of the energy dissipation at η=1
becomes more important and competes with the excitation source at
η=0. As expected, the hyperbolic nature becomes more evident for
increasing relaxation time, and the temperature distribution further
deviates from the classical Fourier modeling behavior.

5. Conclusions

Hyperbolic heat conduction in a finite slab, subjected to boundary
conditions of prescribed heat flux and convection heat transfer, has
been analyzed by employing the generalized integral transform
technique (GITT). The proposed approach offers reliable results for
the temperature field, as demonstrated in the range of Biot numbers

Table 5
Convergence behavior and comparison of the local temperature for a triangular wave pulse at different dimensionless times and positions (Bi=1 and τr=10−2 and 1)

Q(τ) = riangular wave pulse; Bi=1 and τr=10−2

θ

N 20 40 60 80 100 LTM FVGM

τ=1.2 and η=0.1 0.51320 0.51322 0.51322 0.51323 0.51323 0.52350 0.51324
τ=1.2 and η=0.9 0.33468 0.33469 0.33470 0.33470 0.33470 0.34416 0.33471
τ=1.8 and η=0.1 0.77353 0.77354 0.77355 0.77355 0.77355 0.77243 0.77356
τ=1.8 and η=0.9 0.36362 0.36363 0.36363 0.36363 0.36363 0.36958 0.36364

Q(τ) = triangular wave pulse; Bi=1 and τr=1

θ

N 60 80 100 120 140 LTM FVGM

τ=1.2 and η=0.1 0.98239 0.98239 0.98239 0.98239 0.98239 0.98236 0.98296
τ=1.2 and η=0.9 0.63790 0.63781 0.63776 0.63772 0.63769 0.63717 0.63753
τ=1.8 and η=0.1 1.3930 1.3930 1.3931 1.3931 1.3931 1.3933 1.3932
τ=1.8 and η=0.9 0.52784 0.52779 0.52776 0.52774 0.52773 0.52707 0.52764

Table 4
Convergence behavior and comparison of the local temperature for a triangular wave pulse at different dimensionless times and positions (Bi=0.1 and τr=10−2 and 1)

Q(τ) = triangular wave pulse; Bi=0.1 and τr=10−2

θ

N 20 40 60 80 100 LTM FVGM

τ=1.2 and η=0.1 0.95641 0.95641 0.95641 0.95641 0.95641 0.95610 0.95641
τ=1.2 and η=0.9 0.87310 0.87310 0.87310 0.87310 0.87310 0.87317 0.87310
τ=1.8 and η=0.1 1.3445 1.3445 1.3445 1.3445 1.3445 1.3446 1.3445
τ=1.8 and η=0.9 1.0210 1.0210 1.0210 1.0210 1.0210 1.0227 1.0210

Q(τ) = triangular wave pulse; Bi=0.1 and τr=1

θ

N 60 80 100 120 140 LTM FVGM

τ=1.2 and η=0.1 1.0762 1.0761 1.0761 1.0761 1.0761 1.0761 1.0764
τ=1.2 and η=0.9 0.92667 0.92664 0.92663 0.92662 0.92662 0.92621 0.92658
τ=1.8 and η=0.1 1.7031 1.7031 1.7031 1.7031 1.7031 1.7032 1.7031
τ=1.8 and η=0.9 0.89907 0.89905 0.89904 0.89903 0.89903 0.89863 0.89901
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Fig. 3. Evolution of the temperature field for a triangular wave pulse at different
dimensionless times and positions: (a) Bi=0.1 and τr=10−2; (b) Bi=0.1 and τr=1;
(c) Bi=1 and τr=10−2; (d) Bi=1 and τr=1.

Fig. 2. Evolution of the temperature field for a square wave pulse at different
dimensionless times and positions: (a) Bi=0.1 and τr=10−2; (b) Bi=0.1 and τr=1;
(c) Bi=1 and τr=10−2; (d) Bi=1 and τr=1.
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and dimensionless relaxation times analyzed, with good agreement
against the results of two alternative and independent approaches
based on the Laplace transform with numerical inversion (LTM) and
on the method of lines with finite volumes and Gear's algorithm
(FVGM). Results for the temperature distributions were produced for
square and triangular wave pulses, illustrating the major features of
hyperbolic heat transfer as a function of the two governing
parameters, Biot number and dimensionless relaxation time.
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