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Abstract A theoretical framework for the description of the interaction between diffusion,
mechanics, and degradation in elastic solids is developed. To avoid complications that ob-
scure the essential features of these interactions, we work within a one-dimensional setting.
A particular specialization of the general theory is selected and a numerical implementa-
tion based on the finite-element method, a backward Euler time-stepping scheming, and
an operator-splitting algorithm is described. An application involving the time-independent
end-loading of a notched cylindrical bar is used to illustrate the ability of the theory to de-
scribe some essential features of solute-assisted degradation.
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1 Introduction

In 1878, in his famous memoir “On the Equilibrium of Heterogeneous Substances,”
Gibbs [1] introduced the idea of a solid that contains fluid components, whereby a fluid
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can enter into, move independently through, and distort the solid, which otherwise behaves
elastically. As indicated by Li et al. [2], a concrete example of this kind of body is provided
by an interstitial solid solution at a sufficiently low temperature, with host and interstitial
species playing the role of solid and fluids, respectively. Additional examples can be found
in the fields of geology, polymer science, and metallurgy, as Larché & Cahn [3–5] note.

In this work, we consider solids that contain one fluid component, henceforth referred to
as the solute, and extend the idea of Gibbs by including solute-assisted degradation of the
solid. This undesirable effect, which may culminate in premature crack initiation and propa-
gation until failure, appears, for instance, in the context of the moisture-induced degradation
in polymers (see Weitsman [6]) and the hydrogen-induced degradation in metals (see Glan-
gloff [7]). Specifically, within an one-dimensional, small strain, and isothermal setting, the
purpose of this work is twofold:

• to use modern continuum mechanics to develop a framework for the description of the
interaction of solute diffusion, deformation, and degradation in elastic solids;

• to specialize the general framework to obtain a simple set of governing equations which
demonstrate that the general framework is capable of capturing some of the most essential
features of solute-assisted degradation.

Following Fried & Gurtin [8], we introduce balance laws, a free-energy imbalance that
represents the second law of thermodynamics, and constitutive equations. This is carried
out as follows. First, we consider as basic the balances of mass for the solid and the solute,
and the balances of forces conjugate to the selected independent kinematical fields, namely
solid displacement, solid degradation, which is a measure of the degree of degradation,
solute flow, and solute density. We then introduce a free-energy imbalance that accounts for
energy inflow due to both the power expended by all external forces and the solute supply.
The term associated with the solute supply requires the introduction of a chemical poten-
tial. We next introduce a thermodynamically consistent constitutive theory based upon the
following of assumptions: the solid strain admits an additive decomposition into elastic and
solute-induced parts, with the solute-induced strain rate being proportional to the solute-
density rate; the dissipation is due solely to degradation and diffusion; the set of constitu-
tive variables includes elastic strain, degradation, degradation gradient, and solute density.
The requirement of thermodynamic consistency implies that the constitutive equations are
defined in terms of response functions for the free-energy density, degradation viscosity,
friction-like resistance to degradation growth, and solute mobility.

The governing equations of the framework are obtained by merging the aforementioned
ingredients. Specifically, the equations for the degradation and the solute flux follow from
the corresponding conjugate force balances, whereas the equation for the chemical potential
follows from the solute-density-conjugate force balance. These equations can be expressed
as follows: (a) the degradation rate is proportional to the positive part of the sum of the
negative of the variational derivative of the free-energy density with respect to the degrada-
tion, minus the friction-like resistance, plus a contribution due to external agencies, where
the coefficient of proportionality is related to the degradation viscosity; (b) the solute flux
is proportional to the sum of the chemical potential gradient, where the coefficient of pro-
portionality is related to the solute mobility, plus a contribution due to external agencies; (c)
the chemical potential is given by the sum of the derivative of the free-energy density with
respect to the solute density, plus a term proportional to the solid stress, plus a term due
to external agencies. From the observation that the free-energy density, degradation viscos-
ity, friction-like degradation resistance, and solute mobility can depend on degradation and
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solute density, we reach the conclusion that solute-degradation interactions can be imple-
mented through two distinct routes: a one-way route in which the solute affects the degra-
dation viscosity and/or friction resistance, and the degradation affects the solute mobility;
a two-way route in which a solute-degradation interaction term on the free-energy density
gives rise simultaneously to solute-assisted degradation and degradation-assisted diffusion.
On the other hand, solute-induced strain gives rise to stress-assisted diffusion. This theoret-
ical framework can also accommodate weakly non-local degradation theories through the
dependence of the free-energy density on the degradation gradient.

One particular specialization of the general theory is singled out for detailed study. This
specialization is based on the following constitutive assumptions: the free-energy density
is given as the sum of a degradation-dependent strain energy, a degradation gradient en-
ergy, and an entropic contribution due to the mixing of a dilute ideal interstitial solid so-
lution; the degradation viscosity and the solute mobility are constant; frictional resistance
is a non-increasing function of the solute content. In this theory, diffusion is driven by the
gradients of solute concentration and solid stress. Furthermore, the equation for the degrada-
tion is rate-dependent and weakly non-local. We develop a numerical scheme based on the
finite-element method, a backward Euler time-stepping scheme, and on a operator-splitting
algorithm to solve the weak forms of displacement, degradation, and diffusion equations.
An example is given to illustrate the use of the theory for the description of solute-assisted
degradation of a cylindrical notched bar.

The present development is similar to that used by Fried & Sellers [9], where the solute
density and solute flow are considered as independent kinematical descriptors. In particular,
the use of the solute density as an independent degree of freedom was inspired by Gurtin [10]
(see also Podio-Guidugli [11]). The treatment of degradation given here proceeds along the
lines given by the authors in Duda & Souza [12], which is similar to that provided by Costa
Mattos & Sampaio [13] and Frémond & Nedjar [14] (see also Nedjar [15]), in that degra-
dation is viewed as an independent kinematical process. A preliminary version of this work
was presented by the authors in Duda et al. [16]. In a complementary development, Buon-
santi, Fosdick and Royer-Carfagni [17] have considered the chemomechanical equilibrium
of an elastic bar in contact with a chemically aggressive environment.

The remainder of this paper is organized as follows. The theoretical framework is devel-
oped in Sect. 2. A particular specialization of the framework is presented in Sect. 3. The
numerical model of this specialization in Sect. 4. An illustrative example is presented in
Sect. 5. Finally, some concluding remarks are provided in Sect. 6.

2 Theoretical Framework

2.1 Preliminaries

Let � be an one-dimensional body identified with the fixed interval 0 ≤ x ≤ L. Let f be
a smooth function of x and t . Choose fx and ḟ to denote the partial derivatives of f with
respect to x and t , respectively.

We suppose that � consists of two components, one of which is conserved and acts as
a network through which the other moves independently with velocity vR . For definiteness
we refer to these components as the solid and solute, respectively. We denote the mass
densities, measured per unit length, of the solid and solute by ρS and ρ, respectively. The
solid is allowed to undergo deformation and degradation, which are described by the fields
u of displacement and d of degradation (or damage). The degradation d ranges between
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zero (pristine material) and unity (completely damaged material), and may be interpreted as
representing the fraction of broken atomic bonds. For later reference, we define the strain ε

and the composition (or concentration) c through the relations:

ε = ux, c = ρ

ρS

. (1)

The body � can be thought as representing a three-dimensional bar with cross sectional
area A, in which ρ∗

S and ρ∗, the counterparts of ρS and ρ, are given by:

ρ∗
S = ρS

A
, ρ∗ = ρ

A
. (2)

2.2 Basic Laws

Since the solid is conserved, mass balance results in ρ̇S = 0. Therefore, we assume hence-
forth that ρS is given. On the other hand, the mass balance for the solute takes the form of a
local field equation:

ρ̇ = −Jx + h, (3)

where J := ρvR is the solute flux, and h represents a given external supply of the solute.
We consider that u, d , ρ, and J are independent kinematical descriptors and for this

reason introduce four independent force systems. We suppose that these force systems are
collectively specified by the contact interactions t+ and t−, and by the internal and external
body forces si and se . At a point x ∈ �, t± represents the action of the part P ± on the
part P ∓, which are obtained by splitting � in two, at the point x, i.e., P + = (x,L) and
P − = (0, x). Further, t−(0) and t+(L) represent the contact actions exerted on � by its
exterior.

For a given part D = (x1, x2) ⊂ �, we define the total force F, and the power expended
for all external forces We by the relations:

F(D) := t−(x1) + t+(x2) +
∫

D
(se(x) − si (x))dx, (4)

and

We(D,v) := t−(x1) · v(x1) + t+(x2) · v(x2) +
∫

D
se · v dx, (5)

where time-dependence was omitted for simplicity and v := (u̇, ḋ, ρ̇, J ) is the list of gen-
eralized velocity field. We remark that J is a rate-type variable. Here, bold-faced letters
represent four-tuples of quantities related to the fields u, d , ρ, and J . The list fx is formed
by the spatial derivatives of the components of f. For two lists h and g, h · g denotes the sum
of the pairwise products of their components.

The aforementioned force systems are supposed to be balanced, i.e.,

F(D) = 0 (6)

for any part D ⊂ �. This implies that

S := t+ = −t−, Sx − si + se = 0, (7)
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with the understanding that above equations hold componentwise. Therefore, defining the
four-tuples: S = (N,�,�,�), si = (bi,πi, γ i, λi), and se = (be,πe, γ e, λe), we arrive at
the following set of force balances, along with the corresponding field and traction condi-
tions:

• displacement-conjugate force balance

Nx − bi + be = 0, N = −N0, N = NL, (8)

where N , be and bi are the displacement-conjugate stress, external body-force, and inter-
nal body-force, respectively. N0 and NL are the tractions at the boundary of �;

• degradation-conjugate force balance

�x − πi + πe = 0, � = −�0, � = �L, (9)

where �, πe and πi are the degradation-conjugate stress, external body-force, and inter-
nal body-force, respectively, whereas �0 and �L are the tractions at the boundary of �;

• solute-density-conjugate force balance

�x − γ i + γ e = 0, � = −�0, � = �L, (10)

where �, γ e and γ i are the solute-density-conjugate stress, external body-force, and in-
ternal body-force, respectively, whereas �0 and �L are the tractions at the boundary of �;

• flux-conjugate force balance

�x − λi + λe = 0, � = −�0, � = �L, (11)

where �, λe and λi are the flux-conjugate stress, external body-force, and internal body-
force, respectively, whereas �0 and �L are the tractions at the boundary of �.

It also follows from (7) that the external power We can be written as:

We(D;v) =
∫

D
(S · vx + si · v)dx =: Wi (D;v), (12)

where Wi is defined as the internal power.
From now on, we assume that the displacement-conjugate internal body-force bi van-

ishes, which can be justified on the grounds that the internal power is invariant with respect
to arbitrary translations.

We also consider as basic a mechanical version of the second law of thermodynam-
ics, namely the free-energy imbalance. It asserts that, for each part D ⊂ �, its free-energy
changes at a rate bounded from above by the power expended by the external forces on the
realizable velocity v, plus the energy exchange due to solute supply (see Fried & Gurtin [8]):

d

dt

∫
D

ψdx ≤ We(D;v) +
∫

D
μhdx, (13)

where ψ is the free-energy density and μ is the chemical potential. Using (12), this version
localizes into the dissipation inequality:

ψ̇ ≤ Nε̇ + �ḋx + πiḋ + �ρ̇x + γ iρ̇ + �Jx + λiJ + μh. (14)
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2.3 Constitutive Theory

The first constitutive assumption adopted is the additive decomposition of the strain ε,

ε = εe + εs, (15)

into its elastic εe and solute induced εs parts, where:

εs = η(c − c0), (16)

with η being a positive parameter and c0 being a reference concentration. It follows that the
dissipation inequality (14) can be written as:

ψ̇ ≤ Nε̇e + �ḋx + πiḋ + �ρ̇x +
(

γ i + μ + η

ρS

N

)
ρ̇ + (� + μ)Jx + λiJ. (17)

Guided by the inequality (17), we consider constitutive equations of the form:

ψ = ψ̂(e,n), N = N̂(e,n), � = �̂(e,n), πi = π̂ i(e,n), � = �̂(e,n),

γ i + μ + η

ρS

N = γ̂ (e,n), � + μ = �̂(e,n), λi = λ̂i (e,n),

(18)
where (e,n) represent the equilibrium and non-equilibrium, or dissipative, constitutive vari-
ables. Since we aim for a weakly non-local elastodegradation theory that accounts for com-
positional effects and diffusion, we assume that:

e = (εe, d, ρ, dx), n = (J, ḋ). (19)

We assume that degradation occurs under specific circumstances, defined in terms of
a loading criterion, to be specified later. To account for this, we also assume that of all
response functions presented in (18), π̂ i is the only one that is not defined at ḋ = 0. In this
case, the internal microforce πi is not given by a constitutive equation but it is determined
by the degradation-conjugate force-balance. For convenience, we assume henceforth that
degradation is irreversible, i.e., ḋ ≥ 0.

Following the Coleman-Noll [18] procedure, we require that the constitutive responses
must be such that the dissipation inequality (17) holds for all constitutive processes, i.e, for
all fields (u, d,ρ, J,ψ,μ,N,�,πi,�, γ i,�,λi) satisfying the constitutive assumptions.
Thereby, using standard arguments, we conclude that:

1. the constitutive function ψ̂ is independent of the non-equilibrium variables ḋ and J , i.e.,
ψ̂(e,n) = ψ̂(e);

2. the equilibrium relations

N̂ = ∂ψ̂

∂εe

, �̂ = ∂ψ̂

∂dx

, �̂ ≡ 0, γ̂ = ∂ψ̂

∂ρ
, �̂ ≡ 0 (20)

hold;
3. the internal dissipation inequality

π̂d (e,n)ḋ + λ̂i (e,n)J ≥ 0 (21)

must hold for all choices of (e,n).
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In (21), π̂d is the dissipative part of the internal microforce response, i.e.,

π̂d = π̂ i − ∂ψ̂

∂d
. (22)

Therefore, the constitutive response of a material of the type under consideration is charac-
terized by the functions ψ̂ , π̂d , and λ̂i . The first of these is independent of ḋ and J , whereas
the second and third must comply with (21).

Now we assume that degradation and diffusion are uncoupled dissipative processes, i.e.,

π̂d (e,n) = π̂d (e, ḋ) and λ̂i (e,n) = λ̂i(e, J ), (23)

which implies that each of the terms on the left-hand side of (21) must be non-negative:

π̂d (e, ḋ)ḋ ≥ 0, λ̂i(e, J )J ≥ 0. (24)

Granted sufficient smoothness, and since π̂d is not defined at ḋ = 0, it can be shown that the
previous inequalities imply the following representations for π̂d and λ̂i :

π̂d (e, ḋ) = π̂1(e) + π̂2(e, ḋ)ḋ, λ̂i(e, J ) = λ̂(e, J )J, (25)

with π̂d ≥ 0, π̂1 ≥ 0, and λ̂ ≥ 0. The functions π̂1 and π̂2 are called friction-like degradation-
resistance and degradation-viscosity, respectively, whereas the function λ̂ is related to the
solute mobility. Hereafter, we assume that π̂2 > 0 and λ̂ > 0.

Now we consider a situation under which degradation occurs. From (9)1, (20)2, (22)
and (25)1, and from the positiveness of π̂2, it follows that, when ḋ > 0, the inequality

−δdψ̂(e) − π̂1(e) + πe > 0 (26)

must hold, where δdψ̂ is the variational derivative of the free-energy response with respect
to d :

δdψ̂ := ∂ψ̂

∂d
− ∂

∂x

(
∂ψ̂

∂dx

)
. (27)

From now on, we assume that the condition (26) is also sufficient for degradation to occur,
thereby representing our choice for the loading condition.

We suppose that degradation manifests itself through a reduction in the capacity of the
material to store elastic energy. Therefore, henceforth we assume that the free-energy den-
sity contains an interaction term between degradation and elastic strain representing the
elastic energy, and that this term is a decreasing function of the degree of degradation. This
interaction term describes the reduction in the load bearing capability of the solid produced
by degradation. It also dictates how degradation is driven by elastic strain.

2.4 Governing Equations

The governing equations for the fields u, d , μ, J , and ρ are obtained through the combina-
tion of the aforementioned basic balances and constitutive theory. The corresponding field
equations are:
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• the equation for the displacement u is obtained from the force balance (8)1, the constitu-
tive equation (20)1, and (15), and (16):

Nx + be = 0, N = ∂ψ̂(e)

∂εe

, εe = ux − η(c − c0); (28)

• the equation for the degradation d is obtained from the force balance (9)1, the constitutive
equations (20)2, (22), and (25)1, and the condition (26):

π̂2(e, ḋ)ḋ = 〈−δdψ̂(e) − π̂1(e) + πe〉, (29)

where 〈 〉 is the McCauley bracket, i.e., 〈a〉 = max(a,0);
• the equation for the chemical potential μ is obtained from the force balance (10)1, and

the constitutive equations (18)6 and (20)3,4:

μ = ∂ψ̂(e)

∂ρ
− η

ρS

N − γ e, (30)

with N given by (20)1;
• the equation for the solute flux J is obtained from the flux-conjugate force balance (11)1

and the constitutive equations (18)6, (20)3,4, and (25)2:

J = 1

λ̂(e, J )
(−μx + λe) , (31)

with μ given by (30);
• the equation for the solute ρ is obtained from the solute mass balance (3):

ρ̇ = −Jx + h, (32)

with J given by (31).

The treatment of boundary conditions (at ends x = 0 and x = L) is standard. For a field
equation that comes from a force balance, boundary conditions involve the prescription of
the corresponding kinematical field or traction condition. In particular: the equation for μ

does not involve boundary conditions since, by (20)3, � = 0; a boundary condition asso-
ciated with the equation for J involves the prescription of either J or μ, since, by (18)7

and (20)3, μ = −�. On the other hand, a boundary condition for the solute mass equation
involves the prescription of either ρ or J .

We finalize this section with the following remarks:

• From (29), solute-enhanced degradation can be accounted for by appropriately prescrib-
ing π̂1, π̂2, and ψ̂ . In the latter case, the free-energy density must contain an interaction
term between degradation and solute density;

• From (30) it follows that the chemical potential may depend on, among other things, the
solute density, elastic strain, and degradation via the free-energy response. In addition,
the second term in (30) can be rewritten as ησ/ρ∗

S , where σ := N/A is the standard stress
and ρ∗

S is the solid density per unit volume;
• It follows that (31) provides a generalization of Fick’s law since the solute flux may be

driven by the solute density, elastic strain, degradation, and stress gradients. In addition,
the solute mobility may depend on elastic strain and degradation;
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• The prescription of μ implies the prescription of ρ, and vice versa. As Larché & Cahn
([4, 5]) note, when chemical equilibrium prevails at the boundary a constant value for the
chemical potential must be prescribed. This does not mean a constant value for ρ, since
by (30) the chemical potential may involve not only ρ but also stress, elastic strain, and
degradation.

3 Special Theory

We now present a special theory for the interaction between mechanics, diffusion and degra-
dation. This theory is based on simple choices for the free-energy density and dissipative
responses as described below.

We assume that the free-energy ψ̂ , per unit length of the bar, is given by:

1

A
ψ̂(e) = E

2
(1 − d)2ε2

e + wd2 + κ

2
dx

2 + kBTρ∗
Sc(ln c − 1), (33)

where E is the Young modulus, w and κ are positive parameters, kB is the Boltzmann
constant, and T is the temperature. The first and last terms on the right-hand side of (33)
represent, respectively, the elastic-energy density and the classical entropic contribution to
the free-energy density of a dilute ideal interstitial solid solution. Notice that the elastic
energy favors the local state d = 1, the second term on the right-hand side favors the local
state d = 0, and the third term penalizes rapid spatial variation and smears out the transition
zone in which d varies between 0 and 1. Aside from the effect of the solute, this choice
for the free-energy density appears in the context of the variational approximation of brittle
fracture given by Ambrosio & Tortorelli [19] (see also Braides [20]).

As for the dissipative responses, we assume that:

π̂1 = 2(1 − d)ŵc(c)A, π̂2 = βA, λ̂ = 1

Mρ
, (34)

where ŵ is a non-increasing function of c, and β and M are positive parameters determining
the kinetics of degradation and the mobility of the solute, respectively.

For the sake of simplicity, we do not consider the fields πe , λe , γ e , and h. With the
aforementioned assumptions, (28)–(32) become:

⎧⎪⎨
⎪⎩

Nx + be = 0,

βAḋ = 〈�x − π〉,
ρ∗

SAċ = −Jx,

(35)

where:

σ = N

A
= E(1 − d)2εe, εe = ux − η(c − cr),

π = 2wAd − A(1 − d)(Eεe
2 − 2ŵc), � = κAdx, (36)

J = −Dρ∗
S

kBT
Acμx, μ = kBT ln c − η

ρ∗
S

σ, D = MkBT ,

where D is the diffusion coefficient. Notice that, from (36)1,3, solute diffusion is driven by
the stress gradients, which implies that, since η > 0, stress-assisted diffusion favors solute
migration from lower to higher stressed locations.
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The set of equations (35) provide the governing equations for the fields u, d , and c,
which must be supplemented by initial conditions on d and c, and, at each boundary point,
prescriptions for u or N , d or �, and c or J .

4 Numerical Model

Now we briefly describe the steps involved in the construction of the numerical model,
which is based on the finite-element method, a backward Euler time-stepping scheme, and
an operator-splitting algorithm.

The governing equations written in their weak forms are:

∫ L

0
(Nvx − bev)dx + N0v(0) − NLv(L) = 0,

∫ L

0
(Jϕx − Aρ∗

S ċϕ)dx + J0ϕ(0) − JLϕ(L) = 0, (37)

∫ L

0
(�αx + (βAḋ + π)α)dx + �0α(0) − �Lα(L) = 0, ḋ ≥ 0,

where v, ϕ, and α represent arbitrary test functions and N , �, π , and J are as given in (36).
The test functions are assumed to belong to appropriate function spaces and to vanish at a
boundary point where essential boundary conditions are prescribed. As in Nedjar [15], the
condition ḋ ≥ 0 is imposed at the outset in (37)3.

Approximations for the fields u, c, d , v, ϕ, and α are obtained via the finite-element
method using the same underlying mesh. After inserting these approximations into (37), we
arrive at the following semi-discrete systems of equations:

Fu(u, c,d) = 0,

Fc(u, c, ċ,d) = 0, (38)

Fd(u, c,d, ḋ) = 0,

where u, c, and d are vectors containing the unknown nodal values for u, c, and d . The
functions Fu, Fc , and Fd , viewed as vector valued, have the same dimensions of u, c, and d,
respectively. The temporal discretization of this set of equations is carried out by using the
implicit Euler scheme. This results in the following set of equations for each time instant tk :

Fu(uk, ck,dk) = 0,

Fc(uk, ck, ċk,dk) = 0, (39)

Fd(uk, ck,dk, ḋk) = 0,

where, for a time dependent function f , we consider the following approximation:

ḟ k = f k − f k−1

tk − tk−1
, where f k = f (tk), ḟ

k = ḟ (tk). (40)

The computational problem is to determine uk , ck , and dk given ck−1 and dk−1. This is
solved by using a staggered scheme comprising the following steps:
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(i) assume ck−1 and dk−1 as trial solutions for ck and dk ;
(ii) obtain the trial solution for uk by solving (40)1;

(iii) update the trial solution for ck by solving (40)2;
(iv) update the trial solution for dk by solving (40)3;
(v) if convergence is attained, update uk , ck , and dk using their trials, otherwise, go to

Step (ii) repeating the subsequent steps.

5 Example

Tensile notched specimens play a prominent role in experimental investigations of hydrogen-
assisted cracking of metals. This is a major concern in regard to high-strength alloys appli-
cations (see Glangloff [7]). A notched specimen under tensile loading undergoes a non-
uniform stress distribution that promotes hydrogen diffusion towards the notch. This may
result in premature crack initiation and propagation until failure if a high enough level of
hydrogen accumulation is achieved. These considerations motivate the following illustrative
example.

We consider the problem of solving (35)–(36) for u, d , and c with the following ini-
tial and boundary conditions: d(x,0) = 0 and c(x,0) = c0, with c0 constant; J (0, t) =
J (L, t) = 0, u(0, t) = 0, and N(L, t) = P . The initial conditions mean that at the outset,
the bar is pristine and contains a uniform solute concentration, whereas the boundary con-
ditions mean that the bar is impermeable, and has one end fixed and the other end subjected
to a fixed load P . We also take be = 0 and �(0, t) = �(L, t) = 0, which, by (36)2, are
equivalent to take homogeneous Neumann boundary conditions for d . The bar has a circular
cross section with radius given by:

r =
{

r0 −
√

r2
n − (L

2 − x)2, |x − L
2 | < rn,

r0, otherwise,
(41)

as a result of presence of a circular notch of radius rn located on its central portion, where
r0 is constant.

We now discuss some general features of the problem just defined. Initially, we observe
that, since be = 0, we can replace (35)1 by the statement that N = σA is spatially constant.
Then, from the boundary condition N(L, t) = P , it follows that:

σ(x, t) = P

A(x)
, (42)

which shows that σ is time-independent and given in terms of the applied load P and cross-
sectional area A. In addition, the impermeability condition implies that:

∫ L

0
cdx = c0L, (43)

which means that the solute content is conserved. Notice also that the governing equation
for c, which is obtained by combining (35)3, (36)3, and (36)4, can be written as:

Aċ = D(A(cx − γ cσx))x, (44)
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where γ = η/ρ∗
SkBT . This implies that, for the problem under consideration, the field c can

be obtained independently from u and d . In particular, the steady-state solution cs of (44) is
given by:

cs = Keγσ , (45)

where, by (43),

K = c0L

(∫ L

0
eγσ dx

)−1

. (46)

We seek to establish a condition under which degradation occurs. This condition should
involve the applied load P , the initial concentration c0, and various geometrical and con-
stitutive properties of the bar. In addition, we present a numerical example describing the
solute-assisted degradation of the bar up to the instant of fracture.

5.1 A Condition for Degradation

We first consider the existence of particular solutions of (35)–(36) for which d is constant
and equal to zero. In this case, it follows that (35)2 reduces to the inequality:

E

2
ε2
e ≤ ŵc(c). (47)

From this inequality we conclude that d remains equal to zero provided that the elastic
energy density Eε2

e /2 is below a critical threshold defined by ŵc . Using (36)1, we can rewrite
(47) as:

σ ≤
√

2Eŵc(c) := σ̂c(c), (48)

which shows that d remains equal to zero provided that the stress σ is below a critical
threshold defined by the critical stress σ̂c(c).

Now, we evaluate the inequality (48) at x = L/2 and use (42) to yield:

P ≤ σ̂c(c
∗(t))π(r0 − rn)

2, (49)

where c∗(t) := c(L/2, t). Since ŵc is a non-increasing function of c and c∗ attains its maxi-
mum for a steady-state solution of (44), it follows from (49) that:

P ≤ σ̂c(cmax)π(r0 − rn)
2, (50)

where cmax = cs(L/2) and cs is a steady-state solution of (44) given by (45).
We may therefore conclude that if d = 0 identically satisfies (35)–(36), it follows that

the inequality (50) holds. The opposite statement gives a necessary condition under which
degradation occurs. Therefore, degradation occurs if

P > σ̂c(cmax)π(r0 − rn)
2, (51)

where cmax = cs(L/2) and cs given by (45).
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Table 1 Parameters
L 0.1 m

r0/L 9.0 × 10−2

rn/L 2.5 × 10−2

E 200.0 GPa

ρ∗
S

1.28 × 1029 Fe/m3

η 0.0937 Fe/H

D 1.0 × 10−8 m2/s

c0 5.5 × 10−6 H/Fe

kBT 4.14 × 10−21 J/H

c̄ 8.31 × 10−6 H/Fe

ŵc(0) 10 MPa

w̄c(c̄) 1.6 MPa

β/ŵc(0) {102,103} s

w/ŵc(0) {0,1}

5.2 Numerical Solution

We now employ the numerical formulation presented before to obtain an approximate solu-
tion for (35)–(36), with the boundary and initial conditions presented at the beginning of this
section. The solution describes the entire degradation process undergone by the bar until it
fractures in the middle.

The parameters adopted in the simulations are given in Table 1. The mechanochemical
parameters are typical for Fe–H system. The value of c0 corresponds to a electrochemical
charging of hydrogen during thirty five hours in a 0.1 N NaOH solution at a current den-
sity of 0.3 Ampere/m2, as described in Wang et al. [22]. The remaining mechanochemical
parameters can be found in Sofronis [21]. As for the constitutive quantities related to degra-
dation, we consider that ŵc decreases linearly in the interval [0, c̄] and remains equals to
ŵ(c̄) otherwise. The selected values for c̄, ŵc(0), and wc(c̄) correspond to a decreasing of
the tensile fracture stress of a specimen from 2000 MPa when uncharged to 800 MPa when
charged with a hydrogen content of 0.15 ppm. Aside from the assumed shape of ŵc , these
data resemble the experimental data obtained by Wang et al. [22]. The value for κ corre-
sponds to the choice of the length scale

√
κ/wc(0) ≈ 0.3 mm. The values of β and w were

chosen for illustrative purposes. The applied load is chosen to be of the form

P

π(r0 − rn)2
= 0.95σ̂c(c0). (52)

The results are described in what follows.
First, we use (42) to obtain the stress distribution depicted in Fig. 1. If degradation

were not considered, the stress concentration would trigger solute migration for the highly
stressed region, which in this case occurs in a neighborhood of the notch centered at the mid-
point x = L/2 along the axis of the bar, until achievement of the steady-state, as indicate in
Fig. 2. The steady-state solution cs corresponds to the instant t∞c .

When degradation is allowed, the solute accumulates until the time t = tF , which is de-
fined by the condition d(L/2, tF ) = 1 and is interpreted as time to failure. However, initially
the solute accumulates without any degradation until t = tI in which:

P

π(r0 − rn)2
= σ̂c(c

∗(tI )). (53)
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Fig. 1 Stress distribution
normalized by σ̂c(c0) obtained
through (42)

Fig. 2 Solute distribution at the
instants t1

c < t2
c < t∞c , where t∞c

corresponds to the steady-state

Fig. 3 Evolution of solute
concentration and degradation at
x = L

2 . The solid lines represent
the degradation evolution for two
distinct values of β . The dashed
line represents the evolution of
(c − 1) normalized by its
maximum value

Subsequently to tI , degradation commences and propagates until failure occurs. These facts
are illustrated in Figs. 3 and 4, in which the solid lines represent the evolution of the degrada-
tion field at x = L/2, whereas the dashed line represents the evolution of (c−1) normalized
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Fig. 4 Evolution of solute
concentration and degradation at
x = L

2 . The solid lines represent
the degradation evolution for two
distinct values of w. The dashed
line represents the evolution of
(c − 1) normalized by its
maximum value

Fig. 5 Degradation distribution
at the instants t1

d
< t2

d
< tF ,

where tF is the instant at which
failure occurs

by its maximum value, also evaluated at x = L/2. Figures 3 and 4 also indicate that the time
to failure tF increases with both β and w. Figure 5 depicts the degradation distribution at the
instants: t1

d < t2
d < tF , where tF is the instant at which failure occurs. Notice that degradation

is confined to a small central region.

6 Conclusions

In this paper we presented a one-dimensional theoretical framework for the description of
the interaction between solute diffusion and degradation in elastic solids. The solid-solute
system was kinematically described by the following independent fields: solid displace-
ment, solid degradation, solute density, and solute flow. Then four force balances, one for
each independent kinematical descriptor, which along with the mass balances for the solid
and solute, form the set of balance equations of the theory. A thermodynamically compati-
ble set of constitutive equations was developed, the main assumptions of which are: strain
decomposes additively into elastic and solute-induced parts; degradation and diffusion are
the only source of dissipation. A simplified theory was selected and illustrated through an
analysis carried out for a notched bar. In particular, a numerical example showed how inter-
action between mechanics, diffusion, and degradation work together leading to the breakage
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of the bar. The numerical model was based on the finite-element method, a backward Euler
time-stepping scheme, and an operator-splitting algorithm.
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