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Abstract

The characteristics of the turbulent boundary layer near a separation point are studied here. The emphasis is on

providing analytical expressions for the velocity and temperature near-wall solutions which are also valid in the region

of reverse flow. These expressions can then be used as boundary conditions in numerical schemes that use two-equation

differential models. The paper proposes a new expression for the description of the near-wall characteristic length. The

temperature profiles near the wall are described by a newly proposed expression that reduces to a logarithmic profile in

the attached region, and assumes a minus half power law profile at the separation point. � 2002 Elsevier Science Ltd.

All rights reserved.

1. Introduction

The correct characterisation of a turbulent flow in the

vicinity of a separation point and in the following re-

circulation region is a problem of considerable techno-

logical interest. A major difficulty in the analysis of the

velocity and temperature fields near a separation point

results from the vanishing of the shear stresses at the

wall. This makes the classical asymptotic structure of

the turbulent boundary layer not valid anymore since

the main scaling parameters are reduced to zero. The

clear implication is that alternative theories that resort

to alternative scaling parameters have to be developed.

Important examples are the works of Melnik [1], of

Durbin and Belcher [2] and of Gersten [3]. All these

works, however, are restricted to analyses of the velocity

field only.

In a previous work, Cruz and Silva Freire [4] pro-

posed a new asymptotic structure for the flow near a

separation point, for both, the velocity and the tem-

perature fields. In this work, a new scaling procedure

was developed which resulted in a changeable asymp-

totic structure for the boundary layer, different from

those of other authors, but consistent with the exper-

imental data. The flow structure was determined

through the single limit concept of Kaplun [5] together

with his Ansatz about domains of validity. The theory,

in particular, led to a new expression for the velocity law

of the wall and to a skin-friction equation that were

supposed to hold up to the separation point and in the

reverse flow region. Also, new expressions were pro-

posed for the temperature law of the wall and for the

Stanton number equation. All theoretical results were

validated with the data of Vogel [6].

The purpose of the present work is to show how the

theory of Cruz and Silva Freire [4] can be improved so

as to furnish more reliable expressions for the velocity

and temperature laws of the wall. In relation to the

original paper, the following modifications are intro-

duced here: (1) a new formulation for the reference

velocity, uR, (2) a new expression for the velocity law of

the wall, and (3) a new expression for the temperature

law of the wall. The new reference velocity is specified

through the total shear stress, as opposed to the pre-

vious one which had to be evaluated from an alge-

braic transcendental equation. The single expression
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advanced here for the velocity law of the wall re-

places the three expressions of Cruz and Silva Freire [4,

Eqs. (25)–(27)]; this expression is supposed to hold in

the whole fluid region. The temperature law of the wall

is written with the help of reasonably sophisticated

expressions for its angular and linear coefficients; these

are a function of the turbulent Prandlt number, the

pressure gradient, the reference velocity and the shear

stress at the wall.

The main consequence of all these modifications is

that much better results are found for the prediction of

Stanton number near the separation point. This was a

particular concern of the present authors when this work

started.

Thus, the new formulation includes an alternative

expression for the description of the near-wall charac-

teristic length which holds also in the reverse flow re-

gion. The temperature field near the wall is described by

a single expression that reduces to the logarithmic profile

in the attached region, and assumes a minus half power

law profile at the separation point. In the separated re-

gion the logarithmic profile is recovered.

The present formulation was thought as being very

convenient for the implementation in turbulence models

that resort to wall functions for the specification of wall

boundary conditions (see [4,7,8]). In fact, the use of

near-wall analytical solutions as boundary conditions in

a numerical computation of the flow field is a practical

means of avoiding all the complexities of the sublayer

region.

Normally, flows which include separated regions are

considered too complex for the specification of analyti-

cal local equilibrium boundary conditions. The practice

then is to extend any specific turbulence model to the

wall so that the viscous effects can be correctly captured.

This gives origin to the low Reynolds number models

[9]. Another approach that dispenses a particular treat-

ment of the wall conditions is the second moment

closure of Launder and Shima [10].

The present work has, therefore, striven in refining

the classical law of the wall so that analytical near-wall

solutions can still be used as boundary conditions in

separated flows. The two proposed laws of the wall for

the temperature and the velocity profiles will be applied

to a j–e turbulence model. The governing equations

are discretised using a finite volume formulation cou-

pled with an hybrid scheme for the treatment of the

convective and diffusive terms simultaneously. The set

of finite difference equations is solved using a very

robust and intensively validated version of Teach El-

liptic Axi-symmetrical Characteristics Heuristically

(TEACH-2E) code which incorporates the SIMPLE

algorithm specific for pressure velocity handling in

incompressible flow. The test case adopted is the

backward facing step experiments of Vogel [6]. A

comparison with the classical formulation shows a

great improvement in the calculation of the Stanton

number.

2. Velocity law of the wall

Because the main concern of this work is to provide

the means for a good numerical simulation of the flow

near a separation point, the analytical results will be

presented in a simplified fashion. For a complete de-

scription of the asymptotic solution of the problem, the

reader is referred to Cruz and Silva Freire [4].

Nomenclature

A parameter in thermal law of the wall

AJ linear coefficient of thermal law of the wall

Cf skin friction coefficient

cp specific heat at constant pressure

Cl constant in j–e model (¼ 0.09)

E parameter in law of the wall (¼ 9.8)

L characteristic length

Pr Prandtl number

Prt turbulent Prandtl number

P pressure

Q heat flux

R Reynolds number

St Stanton number

T temperature

u longitudinal velocity component

us friction velocity

uR reference velocity

x; y flow Cartesian coordinates

Greek symbols

, von Karman’s constant

(¼ 0.4)

j turbulent kinetic energy

l viscosity

m kinematic viscosity

q density

s shear stress

e kinetic energy dissipation

Subscripts

R reference parameter

p first grid point

t temperature

w conditions at wall

1 external flow conditions
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Following a procedure somewhat similar to the one

derived by Cruz and Silva Freire [4], the law of the wall

for a separating flow can be written as

u ¼ sw
j sw j

2

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sw
q
þ 1

q
dPw
dx

y

s
þ sw
j sw j

us

,
ln

y
Lc

� �
; ð1Þ

where

Lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sw
q

� �2
þ 2 m

q
dPw
dx uR

r
� sw

q

1
q
dPw
dx

ð2Þ

and all symbols have their classical meaning; , is the von

K�aarm�aan constant (¼ 0.4), us is the friction velocity, and

uRð¼
ffiffiffiffiffiffiffiffi
s=q

p
; s ¼ total shear stressÞ is a reference vel-

ocity (which will be fully defined in the following

through Eqs. (6) and (7)).

Eq. (1) is a generalisation of the classical law of the

wall and replaces the three expressions advanced in [4,

Eqs. (25)–(27)]. Eq. (2) is an expression for the near-

wall region characteristic length, which is assumed to

be valid in the attached and in the reverse flow regions.

Far away from the separation point, where the shear

stress is positive and yðdPw=dxÞ � sw, Eq. (1) reduces
to

u ¼ 2

,
us þ

us

,
ln

y
Lc

� �
; Lc ¼ m=us; ð3Þ

that is, to the classical law of the wall.

Close to the separation point where sw ¼ 0, Eq. (1)

reduces to

u ¼ 2

,

ffiffiffiffiffiffiffiffiffiffiffiffi
y
q
dPw
dx

s
; ð4Þ

an equation similar to Stratford’s equation (see

[11]).

In the reverse flow region where yðdPw=dxÞ 	 sw, Eq.
(1) can be written as

u ¼ � 2

,
us �

us

,
ln

y
Lc

� �
; Lc ¼ 2

sw
dPw=dx

				
				: ð5Þ

Some comments seem now in order. The form of Eq. (1)

was entirely inspired by Eqs. (25)–(27) and (36) of Cruz

and Silva Freire [4]. In fact, the equations remain the

same but for a major simplification achieved by chang-

ing the arguments of the logarithmic terms by y=Lc. The
reference length Lc defined by Eq. (2) is not new; in Cruz
and Silva Freire [4] it had been previously introduced

through Eq. (36). The generalisation provided by Eq.

(1), however, implied that the friction velocity, us, used

in the definition of Lc had to be replaced by the reference
velocity uR. Finally, note that the characteristic length in
the reverse flow region is different from the classical

characteristic length given by Eq. (3). Eq. (5) is in

agreement with Simpson et al. [12] which suggested that

a characteristic length for the backflow region should be

directly proportional to the absolute value of the wall-

shear stress.

We will now describe how the wall-shear stress can be

evaluated from the above equations and through the use

of a j–e model.
A clear difficulty with the implementation of Eq.

(1) as a boundary condition in a numerical code is

that the wall-shear stress cannot be obtained in an

explicit form. The numerical solution of Eq. (1) for

the wall-shear stress is not a stable process which can

therefore affect code robustness. To avoid these

problems a linearisation procedure for Eq. (1) was

developed.

The total shear stress can be evaluated from

sp ¼ C1=2
l qjp þ l

ou
oy

				
				
p

ð6Þ

where the subscript p denotes the first grid point.

The reference velocity uR can then be directly deter-

mined from

uR ¼
ffiffiffiffiffi
sp
q

r
: ð7Þ

Eq. (6) was obtained from a momentum balance in the

near-wall region; it is similar to a relation usually em-

ployed by other authors to relate the wall-shear stress to

the turbulent kinetic energy in a j–e formulation (see,

e.g., [13]), the only difference here is the inclusion of the

viscous term to improve calculations when the first node

near the wall is located at a distance shorter than

y=Lc 6 30:
This equation can be used as a first estimate for the

wall-shear stress if we consider

swo ¼
upC1=4

m s1=2p q1=2,

ln Ey ðsp=qÞ1=2
m

� � : ð8Þ

with E ¼ 9:8.
In order to maintain code stability, the pressure

gradient at the wall was obtained using Eqs. (6) and (8)

to furnish the following equation:

dPw
dx

¼ sp � swo
yp

: ð9Þ

This equation was obtained directly from the inner layer

approximated equations; it represents the balance of

forces in that layer.

Next, the characteristic length can be calculated

from

Lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
swo
q

� �2
þ 2 m

q
dPw
dx uR

r
� swo

q

1
q
dPw
dx

: ð10Þ
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Finally, the wall-shear stress is calculated from

sw ¼
ups1=2p q1=2,

2

ffiffiffiffiffiffiffiffiffiffi
sp
swo

			 			r
þ ln

yp
Lc

� � : ð11Þ

Using some production–dissipation equilibrium as-

sumptions and Eq. (1) the kinetic energy dissipation and

the production terms can be cast, respectively, as fol-

lows:

e ¼ C1=2
l jp

ðsp=qÞ1=2

,y

 
þ

1
q
dPw
dx

,ðsp=qÞ1=2

!
; ð12Þ

Production ¼
C1=2

l jpq

y
2ðsp=qÞ1=2

,

 

þ jðswo=qÞj1=2

,
ln

y
Lc

� �!
: ð13Þ

3. Temperature law of the wall

An asymptotic theory for the thermal boundary layer

near a separation point is also described in some detail

in [4]. Because the temperature profiles can be written in

terms of reference parameters already determined for the

velocity profiles, the three Eqs. (28)–(30) of Cruz and

Silva Freire [4] can be re-written here in a simplified

form. Thus, the temperature law of the law can be cast

as

Tw � T
Qw

¼ Prt
,tqcpus

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sw=q þ 1

q
dPw
dx y

q
�

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sw=q þ 1

q
dPw
dx y

q
þ

ffiffiffiffiffiffiffiffiffiffi
sw=q

p þ Cq;

ð14Þ

where

Cq ¼
Prt

,tqcpuR
ln

4Eu3R
m dPw

dx

		 		þ AJ ; ð15Þ

AJ ¼ 1:11Prt

ffiffiffi
A
,

r
Pr
Prt

�
� 1

�
Pr
Prt

� �0:25

; ð16Þ

A ¼ 26
sw=qj j1=2

uR
; Prt ¼ 0:9; ð17Þ

and all symbols have their classical meaning.

To improve the performance of Eq. (14) its linear

coefficient was replaced by a more sophisticated equa-

tion. Cq was basically developed so that Eq. (14) re-

duces to the classical law of the wall far away for a

separation point. Eq. (16) was first proposed by

Launder and Spalding [12]. Eq. (17) has been modified

from the original formulation (A ¼ 26) in order to

perform better in the separated flow region. In [4] the

predicted values of St were well below the experimental

values so that Eqs. (15)–(17) had to be introduced to

rectify that.

4. Results

The results found with the present formulation will

now be compared with the standard j–e model and the

data of Vogel [6] for the backward facing step flow. The

flow conditions of Vogel are shown in Table 1.

The governing equations are discretised using a fi-

nite volume formulation coupled with an hybrid

scheme for the treatment of the convective and diffusive

terms simultaneously. The set of finite difference

equations is solved using a very robust and intensively

validated version of TEACH-2E code which incorpo-

rates the SIMPLE algorithm specific for pressure ve-

locity handling in incompressible flow. The grid had

146
102 points. The computational domain is shown

in Fig. 1.

To perform the calculations the limit of the viscous

region was taken as yþ ¼ 5. For flows subjected to a zero

pressure gradient, one normally considers this region to

be defined by yþ ¼ 11. For the present experimental

conditions, however, we found yþ ¼ 5 to be the appro-

priate value. Please note that we have taken the data

from Vogel’s doctoral thesis which are different from the

data presented in [14]. The result is that the curves and

experimental points to be shown here do not coincide

with the corresponding ones in [4].

The next figures show the results for the computed

velocity and temperature profiles, for several stations

(see Figs. 2–4). All figures present three curves: one

with the experimental data of Vogel [6], one with the

present computations, and a final one with computa-

tions made with the standard j–e model. The velocity

Table 1

The experimental data of Vogel [6]

Author U (m/s) R Qw ðW=m2Þ
Vogel [6] 11.3 28,000 270

Fig. 1. Flow domain.
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profiles show that the present formulation only alters

the results for the very near-wall region. Indeed, for

most of the velocity profile, both numerical app-

proaches give very close data. Through the velocity

profiles, the position of the point of flow reattachment

can also be estimated. Here, our solution starts to de-

part from the classical j–e solution. The results are

shown in Table 2.

For the temperature profiles, the differences between

the present approach and the results given by the clas-

sical j–e model are significant at the wall. This can be

clearly seen from Figs. 5–9; note in particular that the

first grid point presents very different values for both

numerical predictions. Eq. (14) clearly provides results

which are much closer to the experimental data than the

Fig. 2. Velocity profiles, X=H ¼ 3:21: (+), data of Vogel [6];

(}), present work; (I), standard j–e model.

Fig. 3. Velocity profiles, X=H ¼ 4:53: (+), data of Vogel [6];

(}), present work; (I), standard j–e model.

Fig. 4. Velocity profiles, X=H ¼ 5:84: (+), data of Vogel [6];

(}), present work; (I), standard j–e model.

Table 2

Prediction of flow reattachment point

Reattachment point X=H

Experiments 6.6

Present work 6.0

Standard j–e model 5.5

Fig. 5. Temperature profiles, X=H ¼ 0:37: (+), data of Vogel

[6]; (}), present work; (I), standard j–e model.

D.O.A. Cruz, A.P. Silva Freire / International Journal of Heat and Mass Transfer 45 (2002) 1459–1465 1463



standard formulation and which will result in a much

better prediction of the Stanton number. This fact is,

indeed, directly connected with the estimation of Stan-

ton number (see Fig. 10).

Results for the skin-friction coefficient and the

Stanton number are shown next. The improvement in

the predictions, thanks to the use of the new formula-

tions for the law of the wall proposed here, is remark-

able in the flow separation region. It is important to note

that these results were obtained with no additional

computational cost or loss of code robustness, in com-

parison with the original code which used the standard

j–e model.

5. Conclusion

The present work had a very distinct goal at its be-

ginning, to provide an alternative method for the cal-

culation of flows subjected to separation. Specially, we

wanted to improve the calculation methods for the skin-

friction coefficient and the Stanton number which were

developed in the past to use the law of the wall.

Apparently, the goal has been achieved with the

specification of expressions (1) and (14). These expres-

sions were shown to stand very well against the data of

Vogel [6], giving very good results for the velocity and

Fig. 6. Temperature profiles, X=H ¼ 1:68: (+), data of Vogel

[6]; (}), present work; (I), standard j–e model.

Fig. 7. Temperature profiles, X=H ¼ 3:00: (+), data of Vogel

[6]; (}), present work; (I), standard j–e model.

Fig. 8. Temperature profiles, X=H ¼ 4:32: (+), data of Vogel

[6]; (}), present work; (I), standard j–e model.

Fig. 9. Skin-friction results: (+), data of Vogel [6]; (}), present
work; (I), standard (j–e) model.
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temperature fields and the skin-friction coefficient and

the Stanton number. We have chosen the data of Vogel

[6] as our reference data for they represent the most

detailed account of the problem we have so far en-

countered. Through his thesis we had access to a com-

plete set of tabulated data which could be used in detail

for validation of the present approach.

Of course, a limitation of the present simulation is its

inability to capture any unsteadiness occurring in the

flow. As such the location of the re-attachment point is

fixed, so is the location of the point of zero Cf and

maximum St.
Presently, the authors are subjecting those expres-

sions to further scrutiny. This will be reported in another

occasion.
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