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RESUMO

CONTROLE DESCENTRALIZADO DO FLUXO DE INFORMACOES NA
CAMADA DE APLICACAO

Daniel Vega Simoes

Mar¢o/2013

Orientador: Henrique Cukierman

Curso: Engenharia de Computacao e Informacgao

Os automoveis e seus sistemas embarcados evoluiram de forma significativa nas
ultimas décadas e oferecem hoje em dia uma vasta gama de opgdes de integragdo a seus
usuarios, particularmente com seus dispositivos eletronicos. No entanto, os fabricantes
de automoveis precisam lidar com os problemas de seguranca que surgem a partir dessa
integracdo e que podem causar vazamento de dados privados. Os sistemas automotivos
embarcados atuais contém varios métodos de controle de acesso usados para aumentar
os aspectos da seguranca da comunicacdo, mas eles ndo consideram a propagacao dos
dados entre os componentes da rede interna e os aparelhos eletronicos integrados.

Esse trabalho aborda o problema de protecio de dados sensiveis em um
ambiente automotivo aplicando as nog¢des de Controle Descentralizado do Fluxo de
Informacgdes (Decentralized Information Flow Control — DIFC). Essas nog¢des sao
usadas em um protdtipo baseado em um cendrio realista € na nova arquitetura [P do
automodvel. O protdtipo serve como uma prova de conceito e ¢ avaliado tanto do ponto
de vista do desempenho como da seguranga. Esse trabalho permite aos fabricantes de
automodveis considerarem as nogdes do DIFC para a integragdo futura entre os

dispositivos eletronicos e os sistemas automotivos embarcados.

Palavras-Chave: Controle Descentralizado do Fluxo de Informacdes, DIFC,

Sistemas Embarcados, Dispositivos Eletronicos, CE-Devices.



ABSTRACT

DECENTRALIZED INFORMATION FLOW CONTROL AT APPLICATION LEVEL

Daniel Vega Simoes

March/2013

Advisor: Henrique Cukierman

Course: Computer and Information Engineering

Vehicles and their embedded systems have evolved significantly in the last
decades and offer users a wide range of integration options nowadays, specially with
their CE-Devices. However, vehicle manufacturers have to cope with the security issues
that arise from this integration and that can lead to private information leakage. Current
automotive embedded systems include several access control methods to enhance the
security aspects of the communication, but do not consider the propagation of the
information between the components of the internal network and the integrated CE-
Devices.

This work tackles the issue of protecting sensitive data in an automotive
environment by applying the concepts of Decentralized Information Flow Control
(DIFC). These concepts are used in a prototype based on a realistic scenario and on the
new vehicle IP-based architecture. The prototype serves as a proof of concept and is
evaluated from both the performance and the security points of view. This work allows
vehicle manufacturers to consider DIFC concepts for future integration of CE-Devices

and vehicle embedded systems.

Keywords: Decentralized Information Flow Control, Embedded Systems, CE-

Devices.
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PREFACIO

Este trabalho representa o Projeto Final de Graduag¢do do aluno Daniel Vega
Simdes no contexto do curso de Engenharia de Computacdo e Informacdo da
Universidade Federal do Rio de Janeiro - UFRJ. O Projeto Final foi realizado junto a
empresa BMW Forschung und Technik, em Munique, na Alemanha, tendo em vista os
beneficios e as regras do programa de Duplo Diploma Académico entre a Universidade
Federal do Rio de Janeiro ¢ a Ecole Nationale de Télécommunications - Télécom
ParisTech.

Esse trabalho descreve as motivagdes, a pesquisa bibliografica, o trabalho
realizado e os resultados obtidos de forma sucinta e serve como referéncia ao trabalho

completo, que deve ser anexado de forma definitiva no Anexo A.
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CAN
CE-Device
DIFC

DL-Manager
ECU

GPS

IFC

IP

LIN

MOST

SEIS

SQL
SSL
TCP
TLS
VM

SIGLAS

Controller Area Network (Rede da area de controle)

Consumer Electronic Device (Dispositivo Eletronico de Consumo)
Decentralized Information Flow Control (Controle Descentralizado do
Fluxo de Informagoes)

Driving Log Manager (Controlador dos registros de direcao)
Electronic Control Unit (Unidade de Controle Eletronica)

Global Positioning System (Sistema de Posicionamento Global)
Information Flow Control (Controle do Fluxo de Informagdes)
Internet Protocol (Protocolo da Internet)

Local Interconnect Network (Rede de interconexao local)

Media Oriented System Transport (Transporte do sistema orientado a
midias)

Security in Embedded IP-based Systems (Seguranca em Sistemas
Embarcados baseados no IP)

Structured Query Language (Linguagem estruturada de interrogativas)
Secure Sockets Layer (Camada de soquetes segura)

Transmission Control Protocol (Protocolo de controle de transmissdo)
Transport Layer Security (Seguranga da camada de transporte)

Virtual Machine (Maquina virtual)
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Introducao

1.1. Contextualizacao

Os automoveis e os sistemas que os compdem mostraram uma mudancga rapida
de paradigma nas ultimas décadas. Apds o surgimento dos carros no inicio do século
XX, compostos principalmente por partes puramente mecanicas, o paradigma se
manteve estavel por varias décadas. No entanto, com a evolugdo da engenharia
eletronica e de telecomunicagdes, os veiculos rapidamente adaptaram seus sistemas
internos, de forma a melhorar a acurdcia e o tempo de resposta dos elementos
mecanicos. Hoje em dia, um unico veiculo pode possuir mais de 70 unidades de
controle eletronicas (Electronic Control Units — ECUs), que atuam como controladores
e medidores do desempenho e da seguranga oferecida ao motorista e aos passageiros.

Os sistemas de comunicagao internos a um veiculo evoluiram de forma rapida,
com foco em desempenho, seguranca e robustez. Exemplos desses sistemas sdo LIN,
CAN, MOST e FlexRay. No entanto, eles ndo proveem seguranca na comunicacio e
ataques sdo possiveis, como mostrados em [5, 12, 22]. Esses ataques podem ser
extremamente perigosos em varios aspectos, como a seguranca da informacdo e
privacidade dos usudrios ou até mesmo seguranga fisica destes.

Ao mesmo tempo, novas tecnologias estdo sendo inseridas no ambiente
automotivo, integrando o sistema veicular a uma gama de outros dispositivos de
comunicagdo. Essa integragdo, caso feita de forma irresponsavel, pode acarretar em

prejuizos econdmicos e risco de violagdo da seguranca ou privacidade.

1.2. Objetivo

Tendo em vista os aspectos apresentados anteriormente, o Projeto SEIS
(Sicherheit in Engebetteten IP-basierten Systemen - Seguranca em Sistemas
Embarcados baseados no IP) [9] tem por objetivo remodelar e propor uma nova
arquitetura nos sistemas embarcados, de forma a acatar as rapidas mudancas e integra-

los a nova era de comunicacdo sem perder o foco da seguranga de dados, informagdes,
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privacidade e comunicagdo. Esse projeto foi iniciado em 2009 e conta com diversos
grupos das industrias automobilistica e de eletronicos alemaes, além de laboratdrios e
universidades.

A principal caracteristica do projeto ¢ a utilizagdo do protocolo IP (Internet
Protocol), ja usado mundialmente, dentro dos ambientes automotivos, implantando-o
tanto para comunicacdes internas, entre ECUs, e externas, com redes como 3G e LTE.
Com isso, o projeto propde um sistema homogéneo e compativel com as tecnologias
atuais, simplificando o modelo do sistema embarcado, pois ndo ha mais a necessidades
de tradutores de comunicacdo externa e interna ao sistema embarcado. No entanto, a
implantacdo do IP traz consigo os desafios de seguranga, que se potencializam ao
interagir com componentes utilizados para manter a seguranca dos motoristas e
passageiros. Nesse cendrio, tanto a proposta quanto a implementagdo do novo sistema
automobilistico deve ser idealizada com as premissas da seguranga em sistemas de
comunicagao.

A integragdo segura dos dispositivos eletronicos (Consumer Electronic Devices -
CE-Devices) ¢ uma tarefa dificil, pois deve levar em conta a heterogeneidade desses
dispositivos, assim como suas restricdes. Além disso, o ciclo de vida de um dispositivo
eletronico ¢ significativamente menor do que o de um veiculo, caracterizando um
cenario no qual um sistema automotivo deve se conectar com varios dispositivos de

VArios usuarios.

1.3. Contribuicao

A principal contribuicdo desse trabalho para o projeto SEIS e a comunidade
académica de seguranca em sistemas embarcados ¢ uma implementagdo para a
integracdo segura entre dispositivos eletronicos e sistemas automotivos. O foco dessa
implementagdo ¢ a protecao de dados confidenciais através do Controle Descentralizado
do Fluxo de Informagdes (Descentralized Information Flow Control - DIFC) trocadas
entre as partes, utilizando os conceitos publicados na comunidade académica. Um caso
de uso especifico ¢ utilizado para demonstrar a importancia do controle do fluxo de
informagdes e extrair os requisitos de seguranca associados. A proposta ¢ implementada

e, finalmente, avaliada na pratica em termos de desempenho e seguranca.



1.3.1. Caso de Uso

O caso de uso especificado nesse trabalho trata de um componente localizado no
interior do veiculo e responsavel por controlar o armazenamento, 0s acessos, as
modificacdes e a remog¢ao dos dados de acordo com as politicas de controle de fluxo de
informagdes especificadas.

Armazenamento O armazenamento consiste em persistir informagdes do
veiculo, coletadas enquanto um motorista se utiliza do carro. Essas
informagdes sdo coletadas, propagadas através da rede interna e
armazenadas num componente de armazenamento persistente, assim como
informagdes para controle de acesso e origem.

Acesso O acesso a informagdes armazenadas no veiculo depende de quem esta
requisitando o acesso e qual tipo de informacao esta sendo requisitada. Para
avaliar se a requisi¢do ¢ valida e se o requisitante tem o direito de acessar a
informagdo, ¢ necessdrio estabelecer um componente capaz de filtrar e
rotular requisi¢des externas (Proxy) e utilizar esses rotulos como
comparagdo para as informacdes associadas ao dado requisitado. Existem
dois tipos de controle de acesso, a saber: o direito a informagdo em si e o
direito de propagar essa informacao para um ambiente externo e inseguro.

Modificacdo A modificagio de informagdes armazenadas no veiculo se
caracteriza como um acesso, uma manipulagdo e um novo armazenamento.
Por esse motivo, as premissas de modificagdo seguem as de acesso e
armazenamento. Um detalhe importante ¢ que a informagdo modificada ndo
necessariamente possui as mesmas propriedades da informagao original.

Remocao A remog¢do de uma informag¢do armazenada no veiculo depende
estritamente do acesso e modificagdo de suas propriedades. Mais
especificamente, ¢ necessdrio que o requisitante possua o direito de

modificar essa informacgao a ponto de remové-la.

Um caso de uso que possui essas quatro propriedades € o caso de uma empresa
de aluguel de carros, que oferece veiculos equipados com esse sistema. Para ilustrar a
integracao com dispositivos eletrdnicos, o sistema oferece acesso tanto para dispositivos
da empresa, para avaliagdo e cobranga, quanto para o motorista, para controle e
acompanhamento. Enquanto um motorista utiliza o veiculo, dados do carro provenientes

das ECUs e associados a esse motorista sdo armazenados no componente de
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armazenamento persistente com os respectivos rotulos. Dados privados do motorista,
como GPS, sdo acessiveis apenas pelo motorista, enquanto que dados do veiculo, como
nivel de dleo e quilometragem, sdo acessados pela empresa. O sistema deve ser capaz
de diferenciar quem esta requisitando qual informagao, de forma a controlar o acesso.

Ao final do periodo de aluguel, a empresa pode oferecer um desconto baseado
no tipo de pavimento em que o carro rodou: mais barato para asfalto, mais caro para
estradas de terra. Para isso, € necessario que tanto a localizagdo (privada ao motorista) e
os pregos (privados a empresa) sejam utilizados no calculo. Esse ¢ um caso de
desconfianca mutua e ambas as partes podem delegar a responsabilidade ao veiculo, que
tem acesso as informagdes, mas ndo precisa divulga-las. O resultado final, no entanto,
pode ser divulgado, pois ndo contém nem informacgdes da localizacdo do motorista nem
dos pregos vigentes e diferenciados. No entanto, o resultado final ainda pode ser
restringido para leitura apenas pelo motorista em questdio e pela empresa,
impossibilitando uma futura releitura por outro motorista.

Por fim, a empresa pode querer reiniciar o veiculo ao seu estado original. Caso
ela tenha permissdo de delecao de todos os dados, ela pode assim fazé-lo, sem, no
entanto, ter acesso de leitura.

Esse caso de uso serve como ilustragdo para os requisitos de confidencialidade
dos dados trocados entre duas partes que nao depositam confianca entre si. Esse
trabalho trata principalmente desses casos de confidencialidade, assim como alguns

casos de integridade dos dados armazenados.

1.4. Estrutura do documento

O resto do documento estd estruturado da seguinte forma: no capitulo 2,
apresentamos uma pesquisa bibliografica sobre o tema Controle do Fluxo de
Informagdes; no capitulo 3, mostramos sucintamente a implementacdo realizada e a
aplicagdo dos conceitos; no capitulo 4, avaliamos a implementacdo do ponto de vista do
desempenho e da seguranca; e, finalmente, no capitulo 5, apresentamos uma conclusio

e uma sequéncia de possiveis trabalhos futuros.



Controle do Fluxo de Informacoes

Nesta se¢do, fazemos uma andlise bibliografica sucinta no topico principal desse
trabalho, Controle do Fluxo de Informagdes, avaliando os diferentes tipos e definindo os
conceitos basicos para as outras se¢des. O estudo bibliografico completo se encontra no

trabalho original, em inglés, anexado ao final desse documento.

2.1. Introducao

A protecao da privacidade dos dados ¢ um topico de intensa pesquisa devido a
quantidade crescente de dados sendo transmitidos pela rede e manipulados por
entidades ndo confidveis. Enquanto que métodos de seguranca como firewalls e
criptografia previnem que os dados sejam acessados de forma ndo autorizada, eles nao
garantem que esses dados ndo sejam propagados de forma indevida depois de
acessados. Por exemplo, a criptografia permite que dados sejam trocados por meio de
um canal ndo seguro, mas ndo garante a confidencialidade desses dados apos
decriptogratados no lado receptor.

O Controle do Fluxo de Informacgdes (/nformation Flow Control - IFC) ataca
esse problema analisando o fluxo das informag¢des dentro do sistema, atribuindo niveis
de seguranca a dados e entidades que os manipulam. O modelo basico consiste em dois
niveis, Baixo (B) e Alto (A), que representam, respectivamente, a informagao
disponivel publicamente e a informagdo secreta. Tanto a confidencialidade quanto a
integridade sdo garantidas a partir do controle do fluxo de informagdes entre um nivel e
outro. No caso da confidencialidade, o dado ndo pode seguir o fluxo de A para B, ou
seja, uma informacdo secreta ndo pode se tornar publicamente disponivel a partir de
manipulagdo ou sistemas de computagdo. De forma inversa, a integridade do dado ¢
mantida desde que ndo siga o fluxo de B para A. O conceito global ¢ que dados so
podem seguir fluxos em que fiquem mais restritos, formando um modelo de

comparagdes entre dados e entidades [6].



No entanto, devido ao fluxo sempre mais restritivo, ¢ necessario definir
privilégios, chamados de desclassificacdo e endosso, para permitir que dados sejam

divulgados e se tornem uteis [15, 17].

2.2. TiposdeIFC

O Controle de Fluxo de Informagdes ¢ um conceito antigo, pesquisado e

refinado desde os anos 70, e possui diversos tipos diferentes.

2.2.1 IFC estitico e dinamico

O IFC estatico ¢ responsavel por determinar e analisar todos os possiveis fluxos
de informacdo durante a compilacdo de um programa. Para isso, ¢ necessario
estabelecer diretrizes de programacdo e anotacdes, além de um compilador especial,
capaz de determinar os possiveis fluxos, analisar as violagdes das politicas de
confidencialidade e integridade e produzir um resultado para o programador. Exemplos
como JFlow [16] implementam o IFC estatico e garantem o controle do fluxo de
informagdes, apesar de necessitarem do codigo fonte a priori, o que caracteriza um
cenario ndo realistico.

Por outro lado, o IFC dindmico acontece durante a execucdo do programa,
aplicando rétulos as estruturas de dados e canais de entrada e saida do sistema. Podendo
ser aplicados nos niveis de aplicagdo, sistemas operacionais ou ambos, 0s sistemas que
implementam o IFC dinamico garantem um controle mais flexivel e adaptado aos
cendrios reais de desconfianga mutua, além da possibilidade de externalizar a
programacdo do aplicativo, mas sofrem no desempenho e podem acarretar em
problemas sérios em sistemas direcionados ao desempenho. Exemplos de IFC dinamico

sdo encontrados nos sistemas Asbestos [7], HiStar [24], Flume [13] ¢ Laminar [20].

2.2.2 TFC concentrado e distribuido

Um IFC concentrado acontece quando os fluxos que devem ser controlados sdo
entre usuarios ou processos de uma Unica maquina fisica, sem o trafego por canais de
comunicagdo. Apesar de ainda existirem, esses sistemas nao sdo mais predominantes e
ndo sdo o foco desse trabalho. Um exemplo de IFC concentrado ¢ TaintDroid [8].

J&4 o IFC distribuido acontece, como o proprio nome ja sugere, em um sistema
distribuido, que depende da comunicagdo em um canal externo, frequentemente

inseguro. Apesar de diversos mecanismos ja protegerem os dados enquanto estes estdo



em transito, ou seja, no canal de comunicagdo, o IFC distribuido visa proteger os dados

apos eles terem sido recebidos com sucesso, como no DStar [25].

2.2.3 TIFC centralizado e descentralizado

A distingdo entre IFC centralizado e descentralizado depende unicamente de
como as politicas do controle de fluxo estdo distribuidas. Caso estejam centralizadas em
uma unica entidade, que ¢ reconhecida e aceita como autoridade por todas as outras
entidades, denominamos esse sistema de IFC centralizado. Esse tipo de IFC ajuda a
manter o controle das defini¢gdes das politicas em um unico lugar, facilitando a
manuten¢do ou modificagdo destas. No entanto, ndo proveem uma forma de resolver o
cenario de desconfianca mutua, pois todas as entidades devem depositar a confianga na
autoridade central.

O modelo descentralizado (Decentralized Information Flow Control - DIFC) ¢
caracterizado pela defini¢do local das politicas de controle de fluxo de informagdes.
Nesse cenario, o cumprimento das restrigdes de fluxo ¢ feito por cada entidade
localmente, independente das outras entidades. Apesar de mais complexo, o DIFC se
mostra mais genérico e realista, principalmente nos cenarios de desconfianga mutua. No
entanto, todas as entidades precisam concordar nos mecanismos € nos rotulos a serem
utilizados para que o sistema funcione corretamente.

Os exemplos anteriores Asbestos [7], TaintDroid [8] e JFlow [16] se enquadram
no modelo centralizado, enquanto que Flume [13], Jif [18], Laminar [20], HiStar [24] e

DStar [25] correspondem ao modelo descentralizado.

2.3 Conceitos

Neste capitulo, sdo definidos os conceitos relevantes para as outras sec¢des, tendo
em vista a revisdo bibliografica apresentada na secdo anterior. A implementagdo se
enquadra em um sistema IFC descentralizado e dindmico no nivel de aplicagdo,
implantados em um ambiente automotivo simulado composto por varias entidades. O
sistema operacional, o middleware utilizado e a parte da aplicacdo responsavel pelo
controle de fluxo sdo considerados confidveis. O objetivo ¢ controlar a propagacao da
informacdo pelo sistema se utilizando de rétulos nos dados e nas entidades que os

manipulam, a semelhanga do projeto DEFCon [15].



Rotulo (L)

Conjunto de Confidencialidade (S) Conjunto de Integridade (I)

car, user ecu

Tabela 1. Exemplo de um rdétulo.

O primeiro conceito importante € o conceito de rotulos de seguranca, que sao
aplicados aos dados de acordo com as entidades que os manipulam. Como mostrados na
Tabela 1, os rotulos sdo divididos em um conjunto de confidencialidade (S) e um
conjunto de integridade (I). Cada conjunto ¢ composto de etiquetas, que representam
uma politica de confidencialidade (em S) ou uma politica de integridade (em I). As
etiquetas de confidencialidade determinam quem pode acessar o dado rotulado,
enquanto que as etiquetas de integridade identificam quem produziu ou modificou o
dado e sdo, portanto, responsaveis pela integridade do dado. Rétulos sdo propagados
pelo sistema e todas as entidades participantes devem ser capazes de entendé-los e
utiliza-los para controlar o fluxo de informagdes.

O segundo conceito importante ¢ o conceito da execugdo do controle de fluxo de
informagdes, ou seja, as primitivas matematicas que regem o controle. Definimos por €
a relacdo "pode haver fluxo para". Dessa forma, o conjunto de confidencialidade do
dado deve ser um subconjunto do conjunto de confidencialidade da entidade, ou
Sdado € Sentidade, para que possa haver o fluxo desse dado para essa entidade. Isso
garante que um dado com um conjunto mais restritivo de confidencialidade, ou mais
secreto, ndo possa fluir para uma entidade que nao possua no minimo o mesmo conjunto
de confidencialidade.

J4 a integridade funciona de forma oposta. O conjunto de integridade do dado
precisa ser um superconjunto do conjunto de integridade da entidade, ou [;44, 2
Iontidade> para que possa haver o fluxo desse dado para essa entidade. Isso garante que
o nivel de integridade do dado precisa ser no minimo igual ao da entidade para a qual o
dado esta indo.

Ambas as propriedades caracterizam o modelo Bell-LaPadula de controle de
fluxo de informagdes [2] e podem ser resumidas abaixo:

Laadao = Lentidade

se e somente se

2

Sdado c Sentidade e Idado Ientidadea

onde Lagao = {Sdado'ldado}el'entidade = {Sentidade'lentidade}



Com esse modelo, uma vez que uma etiqueta de confidencialidade tenha sido
inserida em um dado, ndo havera fluxo desse dado para nenhuma entidade que ndo
possua no minimo o mesmo nivel de confidencialidade, ou seja, as etiquetas de
confidencialidade persistem, a menos que um privilégio seja exercido. Por outro lado,
etiquetas de integridade sdo frageis e sdo destruidas com qualquer manipulagdo sobre o
dado rotulado.

Os ultimos conceitos aqui apresentados sdo os privilégios de desclassificacdo e
endosso. O privilégio de desclassificagio permite remover uma etiqueta de
confidencialidade e, portanto, reduzir o nivel de confidencialidade do dado rotulado.
Isso habilita fluxos a entidades que ndo possuiam o mesmo nivel de confidencialidade.
Da mesma forma, o privilégio de endosso permite incluir uma nova etiqueta de
integridade, ou seja, garantir a integridade de um determinado dado rotulado. Ambos os
privilégios reduzem o nivel de seguranca do rotulo e, consequentemente, do dado

rotulado e devem ser aplicados apenas por entidades que possuem autoridade para tal.



Implementacao
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Figura 1. Arquitetura geral do protétipo.

A arquitetura do sistema implementado pode ser vista na Figura 1, extraida do
trabalho original, em inglés. Ela ¢ dividida entre a regido interna ao veiculo e a regido
externa, ambas conectadas unicamente por um componente de tradugdo e controle,
chamado Proxy. A seguir, detalhamos cada um dos componentes representados:

DL-Manager Esse componente ¢ o servidor e recebe requisi¢des de todas as

outras entidades. E o inico componente com acesso ao banco de dados, no
qual dados rotulados estdo armazenados de forma persistente. Em nosso
prototipo, esse componente também ¢ responsavel pela execucdo do
controle de fluxo de informagdes.

Banco de dados O banco de dados € o inico componente que armazena dados

de forma persistente. Contém apenas dados rotulados e sé recebe

requisicdes e comandos a partir do DL-Manager.
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Unidade de Controle Eletronica (ECU) O componente ECU representa todas
as unidades de controle eletronicas que existem dentro de um veiculo hoje
em dia. Ele produz dados relativos ao veiculo e associados aos motoristas.

Maquina Virtual (VM) A maquina virtual executa aplicativos ndo confiaveis
em um ambiente protegido, como detalhado em [14]. Isso permite que
entidades externas executem programas na rede interna para manipulacao de
dados que ndo podem ser propagados para a rede externa ao veiculo.

Dispositivo Eletronico (CE-Device) O dispositivo eletronico externo ao veiculo
¢ considerado ndo confidvel e se comunica com a rede interna apenas
através do componente Proxy. Suas requisicdes sdo monitoradas e

controladas de acordo com o fluxo de dados.

Todos os componentes sdo executados em cima do middleware Etch [1], que
inicialmente foi langado pela Apache Foundation como um arcabouco de servigos de
redes multiplataforma e independente da linguagem e do protocolo de transporte, mas
foi customizado pela BMW para as suas necessidades [3]. Esse middleware ¢
responsavel por padronizar a comunicagdo e os servicos de rede, permitindo que o
programador foque nas funcionalidades. No nosso prototipo, Etch executa com Java e
todos os servicos de rede foram definidos e customizados para o nosso caso de uso
especifico.

J& o componente Proxy [4] se impde como um separador de dominios: rede
interna do veiculo e rede externa ao veiculo. Foi desenvolvido inteiramente por colegas
da BMW Forschung und Technik e atua como um mediador da comunicagdo entre o
carro ¢ o mundo exterior, monitorando todos os pacotes, em ambas as direcdes, e
determinando seu nivel de confianga e seguranca, além da origem, através de
certificados SSL/TLS. No nosso caso, o Proxy ¢ responsavel por determinar a origem da
requisicdo e o nivel de seguranga e rotular a entidade externa. Esse rotulo ¢ entdo
propagado para a rede interna ao veiculo, junto com a requisi¢do, permitindo a decisdo
de processar ou ndo a requisicao por parte do DL-Manager. No caminho contrario, o
DL-Manager pode determinar um nivel minimo de seguranga para um determinado
dado ser propagado e o Proxy pode filtrar os pacotes que seguiriam para a rede externa

de acordo com as informagdes coletadas do cliente conectado.
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A implementacdo segue o caso de uso mencionado anteriormente da empresa de
aluguel de carros e foi inteiramente programada em Java. O fluxo principal do sistema ¢é
apresentado a seguir:

1° Passo A empresa aluga um carro para um novo motorista/usuario. Esse carro

possui o sistema DIFC implementado, assim como o banco de dados e o
Proxy.

2° Passo O motorista, ao utilizar o veiculo, associa seu dispositivo eletrénico e o

sistema determina esse usuario como o motorista atual.

3° Passo A medida que o veiculo ¢ utilizado, a(s) ECU(s) produz(em) dados

sobre o carro regularmente e envia(m) ao DL-Manager, que ¢ responsavel
por armazenar de forma persistente no banco de dados, junto com o rétulo
que melhor se adequa a esses dados, de acordo com a politica de controle de
fluxo de informagdes. No nosso caso, alguns dados sdo privados ao
motorista, alguns ao carro (e, consequentemente, a empresa) ¢ alguns a
ambos.

4° Passo Ainda em posse do veiculo, o motorista pode querer acessar os dados

armazenados relativos a si. O DL-Manager ¢ responsavel por tratar essa
requisicdo e retornar apenas os dados acessiveis pelo motorista, executando
o controle de fluxo de informagdes de acordo com as politicas previamente
estabelecidas.

5° Passo Apos o fim do periodo de aluguel, tanto o motorista quanto a empresa

podem querer acessar as informagdes armazenadas. O DL-Manager,
novamente, deve distinguir e garantir que apenas dados relativos ao
requerente sao retornados.

6° Passo Para calcular o preco final do aluguel, a empresa gostaria de oferecer

um prego diferenciado caso o carro tenha rodado em estradas de asfalto ou
de terra. Para isso, € necessario acessar informagdes de localizagdo, privadas
ao motorista, ¢ informagdes de prego, privadas a empresa. O célculo,
portanto, deve ser realizado dentro do veiculo, para que nenhuma
informagdo chegue a rede externa. Um aplicativo ¢ executado dentro do
ambiente protegido (Maquina Virtual) e calcula o prego final. Esse preco
final pode, ap6s o DL-Manager exercer privilégios de desclassificagdo, ser

divulgado tanto para o motorista quanto para a empresa.
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7° Passo Esse passo ¢ opcional ¢ ilustra a possibilidade da empresa apagar todos
os dados armazenados, de todos 0os motoristas, sem ter acesso a eles. Essa

remocao acontece dentro do veiculo e ndo € propagada a rede externa.

Apesar de existirem diversos fluxos alternativos, o fluxo principal oferece uma
boa ilustracao dos requisitos de seguranca e privacidade do sistema. Apds um estudo e
avaliagdo do modelo do banco de dados a ser utilizado, que podem ser vistos na versao
integral do trabalho, em inglés, assim como o codigo SQL utilizado para a construgao
do banco, explicitamos a seguir a execucao do controle de fluxo de informacdo em

detalhes.

3.1. Armazenamento

O armazenamento apenas acontece quando um motorista estd conectado ao DL-
Manager através do componente Proxy. O dispositivo eletronico do usudrio oferece um
certificado que prove sua identidade, do qual o Proxy extrai as informagdes de origem e
a seguranca da conexdo, rotulando a entidade externa com um nivel de seguranca. Esse
rétulo ¢ passado para a rede interna, junto com a requisicdo ao DL-Manager, que
confere a existéncia de tal usuario e suas informagdes.

Enquanto o veiculo ¢ utilizado, diversas ECUs produzem diversos tipos de
dados, que sdo enviados, através da rede interna, ao DL-Manager. Este, por sua vez,
determina de acordo com as politicas de confidencialidade o rétulo de cada tipo de
dado, antes de armazena-lo no banco de dados. Dados privados ao motorista sdo
armazenados com rotulo L,ororista = LmMotorista. private; ecu}, dados privados a
empresa com rotulo L., = {empresa.private; ecu} e dados que pertencem a
ambos sdo armazenados com rétulo

Lampos = {motorista.public,empresa.public; ecu}.

3.2. Acesso

Ao tentar acessar um dado, o sistema DIFC, através do DL-Manager, tem um
papel crucial na manutencdo da confidencialidade dos dados. Como explicado

anteriormente, um acesso externo possui um rotulo estabelecido pelo Proxy que
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identifica o requerente externo e, com isso, 0 DL-Manager pode determinar se o dado

em questao pode fluir para o requerente ou nao, de acordo com:

Ldado < Lclienter ou

Sdado c Scliente .

Nesse trabalho, o foco foi dado em confidencialidade e a integridade foi deixada
como trabalho futuro. O algoritmo completo pode ser visto no trabalho original em

anexo, em inglés.

3.3. Manipulacao

Considerando o caso no qual dados privados ndo podem fluir para a rede
externa, como no caso do céalculo do preco final diferenciado na empresa de aluguel de
carros, estabelecemos um ambiente seguro em cima do hipervisor Xen [23] e cada
maquina virtual ¢ rotulada pelo DL-Manager de acordo com os dados que manipula.
Dessa forma, uma maquina virtual ¢ criada com o intuito de manipular dados
especificos e ndo tem acesso a outros dados, pois seu réotulo ¢ definitivo e mantido no
DL-Manager. A reutilizagdo de maquina virtual ndo ¢ permitida para prevenir
vazamento de dados.

Havendo uma requisi¢do de manipulagdo, o DL-Manager ¢ responsavel por
encontrar a maquina virtual associada aos roétulos dos dados que devem ser
manipulados. Essa maquina virtual, por sua vez, executa um programa desenvolvido
externamente, que acessa os dados de forma parecida com a explicada na subsecdo
anterior, mas baseada nos rétulos da maquina virtual e ndo nos rotulos do Proxy. Ao
final da execucdo, a maquina virtual retorna um resultado, que possui 0 mesmo rotulo.
O DL-Manager ¢ responsavel por analisar esse resultado e, ndo violando as politicas de

privacidade, desclassifica-lo, antes de envia-lo para a rede externa.

3.4. Remocao

A remogao de dados acontece de forma similar ao acesso dos dados, mas sem o
retorno ao requerente original. O DL-Manager deve verificar que o requerente possui

nivel de seguranca suficiente para acessar e remover os dados antes de fazé-lo.
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Avaliacao

A implementacdo foi avaliada de acordo com o desempenho e a seguranga.
Neste capitulo, apresentamos o ambiente de avaliacdo e os principais resultados. A
avaliacdo completa pode ser vista no trabalho original em anexo.

O ambiente de avaliagdo era composto por computadores 2x Intel Core 2 Duo e
sistema operacional Linux/Ubuntu 10.04.1 ou Linux/Fedora 16. O banco de dados foi
implementado utilizando o MySQL 5.1.41 [19] e as configuragdes de rede incluiam
uma rede cabeada Ethernet Gigabit entre todos os computadores. Na camada de rede, o
IP foi executado entre o Dispositivo Eletronico e o Proxy, enquanto que a comunicagao
interna foi executada em cima do IPSec [10]. Por fim, a comunicagdo na rede externa ao
veiculo também possuia uma camada SSL/TLS com autenticacdo bilateral.

A avaliacdo de desempenho foi realizada através de requisi¢des do Dispositivo
Eletronico para a Maquina Virtual, passando pelo Proxy e pelo DL-Manager. Note que
essa avaliacdo ndo incluiu nenhum acesso ao banco de dados nem aplica¢dao do controle
de fluxo de informacgdes. Os resultados dessa avaliagdo, em comparacdo com a

avaliagdo realizada em [14], sdo:

Tempo (nanoseg.) | Vazao (req./seg.)
Conexao insegura 20,262 98,707
SSL/TLS + IPSec 96,569 20,711

Tabela 2. Resultados de desempenho geral.

Esse resultado mostra que o desempenho ¢ bem inferior, devido principalmente
a conexao SSL/TLS. Por esse motivo, a avaliagdo do desempenho do sistema DIFC foi
realizada sem SSL/TLS para permitir a percep¢do da diferenca entre um sistema sem
controle de fluxo de informagdes e um sistema que executa esse controle.

A avaliacdo do sistema DIFC foi realizada através de requisi¢des na rede interna
do veiculo ao DL-Manager, que acessa o banco de dados para coletar os dados

requisitados, aplica o controle de fluxo de informagdes de acordo com as politicas de
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confidencialidade para determinar se os dados podem fluir para o requerente e retorna,

ou ndo, esses dados. Mostramos no grafico da Figura 2 as médias de 12.000 requisicdes.

1300 ¥ T T T T . T
IFC Performance Experiment —+—
A No IFC Experiment —s«—
1250 P Y _
'\.I X%
5 1200 F 4 N\ j
5 [
S T
iy T
E 1150 + e 3 7
T P
8 ..‘,:z;__':_:,i_:_‘ .
- B
a 1100 } |
= "'-, .".
[®)] B A
> Y T
o© Y N R
£ 1050 t o
~—
‘k\\\
1000 ¢
950 1 1 1 1 1 1 1
0 2 - 6 8 10 12 14 16

Data Entries

Figura 2. Comparacio de desempenho do DIFC.

Esse resultado, depois de tratado e normalizado em retas do tipo f(x) = B +
Ax, mostra que a inser¢do do sistema DIFC reduziu o desempenho em algo entre 1,16%
e 2,68%. No entanto, esse resultado tende a piorar com o aumento de resultados do
banco de dados. Isso provavelmente se deve ao algoritmo de acesso ao banco de dados.
Em termos de seguranga, o protdtipo obteve sucesso ao garantir a
confidencialidade de acordo com os requisitos mencionados no inicio desse trabalho.
Para ilustrar essa afirmagdo, consideremos os seguintes casos:
Dispositivo do motorista malicioso No caso de um dispositivo do motorista
malicioso que se conecta ao veiculo, mas nao possui a habilidade de fraudar
um certificado SSL/TLS, o componente Proxy o rotula da forma correta e o
DL-Manager, ao acessar os dados, impedird que estes sigam para o

requerente malicioso.
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Dispositivo da empresa malicioso O dispositivo da empresa possui mais
privilégios do que o dispositivo do motorista, como a remog¢ao de todos os
dados, mas as requisi¢des sdo tratadas da mesma forma. O DL-Manager
consegue restringir o fluxo de dados rotulados para o requerente malicioso.

Maquina virtual maliciosa A maquina virtual sempre tem um propdsito e um
rétulo associado. Por esse motivo, uma maquina virtual maliciosa nao
consegue acessar os dados de outro motorista a ndo ser aquele designado
para essa maquina. Além disso, a maquina virtual se encontra em um

ambiente protegido, baseado nos conceitos de virtualizacao.
E importante ressaltar que os certificados SSL/TLS sdo cruciais no sistema

apresentado. Caso eles ndo sejam confidveis ou sejam suscetiveis a erros ou fraudes,

todo o sistema DIFC pode estar comprometido.
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Conclusao e Trabalhos Futuros

Esse trabalho tratou do problema da prote¢do de confidencialidade de fluxos de
dados em um ambiente automotivo. Para isso, utilizou e aplicou os conceitos de
Controle Descentralizado de Fluxo de Informagdes em um protdtipo, que serviu como
prova de conceito.

O prototipo simulou um ambiente automotivo composto de rede interna e rede
externa, conectadas entre si por um Proxy. Dispositivos eletronicos localizados na rede
externa fizeram requisi¢des a rede interna e um componente, DL-Manager, foi
responsavel por aplicar o controle de fluxo de dados baseado nos rotulos inseridos pelo
Proxy. Os dados ficaram armazenados, junto com os respectivos rotulos, em um banco
de dados na rede interna.

Essa prova de conceito oferece uma forma de controlar a integragdo entre
dispositivos eletronicos e os veiculos no futuro. No entanto, o desempenho observado
mostra que muito trabalho ainda precisa ser feito para ser implantado num ambiente
direcionado ao desempenho, como ¢ a industria automotiva.

Como trabalhos futuros, oferecemos as seguintes sugestdes:

Politicas de integridade Esse sistema DIFC focou principalmente nas politicas

de confidencialidade. No entanto, politicas de integridade ofereceriam ainda
mais uma fonte de sabedoria na tomada de decisdo do sistema DIFC e
aumentaria o nivel de seguranca.

Algoritmos de banco de dados A otimizacdo dos algoritmos de acesso e
armazenamento do/ao banco de dados utilizados nesse trabalho foge do
escopo, permitindo uma melhoria no futuro tendo em vista a melhora do
desempenho global do sistema.

Escala O sistema apresentado ndo escala para grandes quantidades de dados,
devido a restricdes do middleware utilizado. Isso poderia ser melhorado,
permitindo uma serializacdo de dados mais eficiente.

Implantacdo em um veiculo real Para a compreensao global do sistema e suas

propriedades, ele ainda deve ser implantado e testado em um veiculo real.
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Anexo A

Encontra-se a seguir, em anexo, o projeto original, em inglés, como apresentado
e aprovado na obtengdo do grau de Ingénieur na FEcole Nationale de
Télécommunications / Télécom ParisTech, durante o programa de duplo diploma

realizado entre Set/2010 e Set/2012.
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Abstract

Vehicles and their embedded systems have evolved significantly in the last
decades and offer users a wide range of integration options nowadays, spe-
cially with their CE-Devices. However, vehicle manufacturers have to cope
with the security issues that arise from this integration and that can lead to
private information leakage. Current automotive embedded systems include
several access control methods to enhance the security aspects of the com-
munication, but do not consider the propagation of the information between
the components of the internal network and the integrated CE-Devices.

This thesis tackles the issue of protecting sensitive data in an automotive
environment by applying the concepts of Decentralized Information Flow
Control (DIFC). These concepts are used in a prototype based on a realistic
scenario and on the new vehicle IP-based architecture. The prototype serves
as a proof of concept and is evaluated from both the performance and the
security points of view. This work allows vehicle manufacturers to consider
DIFC concepts for future integration of CE-Devices and vehicle embedded
systems.



Résumé

Les voitures et ses systemes embarqués ont évolué de forme significative dans
les dernieres années et offrent actuellement une vaste gamme d’options aux
usagers, particulierement avec leurs appareils électroniques. Cependant, les
constructeurs automobiles doivent faire face aux problemes de sécurité qui
surviennent a partir de cette intégration et qui peuvent entamer des fuites
d’informations privées. Les systémes automobiles embarqués actuels com-
prennent plusieurs méthodes de controle d’acces pour renforcer les aspects
de la sécurité de la communication, mais ils ne considerent pas de propa-
gation de données entre les composants du réseaux interne et les appareils
électroniques integrés.

Cette these aborde le probleme de protéger les données sensibles dans
le milieu automobile en appliquant les notions du Controle Décentralisé du
Flux d’Informations (Decentralized Information Flow Control (DIFC)). Ces
notions sont utilisées dans un prototype basé sur un scénario realistique et
sur la nouvelle architecture IP de la voiture. Le prototype sert comme une
preuve de concept et il est évalué des points de vue de la performance et de
la sécurité. Ce travail permet les constructeurs automobiles a considérer les
notions du DIFC pour 'intégration future entre les appareils électroniques
et les systemes automobiles embarqués.



Kurzfassung

Fahrzeuge und deren eingebettete Systeme haben sich in den letzten Jahrzehn-
ten signifikant weiterentwickelt und bieten den Nutzern heutzutage eine grofie
Vielfalt an Integrationsmoglichkeiten inbesondere durch den Einsatz elektro-
nischer Endgerite. Fahrzeughersteller miissen sich nun jedoch Sicherheit-
sproblemen stellen, die durch diese Integration entstehen und die zum Ver-
lust privater Informationen fithren konnen. Obwohl aktuelle, eingebettete
Fahrzeugsysteme zahlreiche Methoden der Zugriffskontrolle zur Verstéarkung
der Kommunikationssicherheit beinhalten, beriicksichtigen sie nicht die In-
formationsweitergabe zwischen den einzelnen Komponenten des fahrzeugin-
ternen Netzwerks und den integrierten, elektronischen Endgeraten.

Diese Diplomarbeit geht auf die Frage des Schutzes sensibler Daten durch
die Anwendung der Konzepte der dezentralen Informationsflusskontrole (De-
centralized Information Flow Control (DIFC)) ein. Diese Konzepte werden
in einem Prototyp, der auf einem realistischen Szenario und der neuen IP Ar-
chitekture basiert, angewandt. Der Prototyp dient als eine Bestétigung des
Konzepts und wird sowohl aus dem Blickwinkel der Performanz als auch der
Sicherheit evaluiert. Diese Arbeit erlaubt Automobilherstellern diese DIFC-
Konzepte bei der Integration von elektronischen Endgeraten und eingebet-
teten Fahrzeugsystemen zukiinftig zu berticksichtigen.



Resumo

Os automoveis e seus sistemas embarcados evoluiram de forma significativa
nas ultimas décadas e oferecem hoje em dia uma vasta gama de opcoes de
integracao a seus usudrios, particularmente com seus aparelhos eletronicos.
No entanto, os fabricantes de automdveis precisam lidar com os problemas
de seguranga que surgem a partir dessa integracao e que podem causar vaza-
mento de dados privados. Os sistemas automobilisticos embarcados atuais
contém varios métodos de controle de acesso usados para aumentar os as-
pectos da seguranca da comunicagao, mas eles nao consideram a propagacao
dos dados entre os componentes da rede interna e os aparelhos eletronicos
integrados.

Esta tese aborda o problema de protecao de dados sensiveis em um ambi-
ente automotivo aplicando as nogoes de Controle Descentralizado do Fluxo de
Informagoes (Decentralized Information Flow Control (DIFC)). Essas nogoes
sao usadas em um prototipo baseado em um cendario realista e na nova ar-
quitetura IP do automével. O prototipo serve como uma prova de conceito
e é avaliado tanto do ponto de vista da performance como da seguranca.
Esse trabalho permite aos fabricantes de automéveis considerar as nogoes do
DIFC para a integracao futura entre os aparelhos eletronicos e os sistemas
automobilisticos embarcados.
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Introduction

Since the beginning of car manufacturing, vehicles and their embedded sys-
tems have changed very fast. A few decades ago, a vehicle was composed
mainly of mechanical parts, interacting by means of mechanical controllers.
However, as electronic systems evolved, they were quickly adopted by vehi-
cle manufacturers, increasing accuracy and response time of the mechanical
parts. Nowadays, vehicles can contain over 70 electronic control units (ECUs)
providing performance and safety to their drivers, as shown in Figure 1.1.

Figure 1.1: ECUs in a modern vehicle.

Throughout the years, a complex communication system was developed
in order to allow information exchange between ECUs and it is composed of
several networks and buses, such as LIN, CAN, MOST and FlexRay. The cur-
rent automotive embedded system is focused mainly on performance, safety
and robustness regarding the driver experience, but neglects information se-
curity, as shown in [23]. Attacks performed by [6, 13] show that vehicles are
highly vulnerable and its misuse can lead to hazardous situations.

Simultaneously, new technologies find their way into drivers’ everyday life,
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such as smartphones. These new technologies allow drivers to integrate sev-
eral devices to a vehicle and, therefore, the vehicular communication system
need a full make-over to consider external communication and information
security. The SEIS project aims to tackle this issue by rethinking the onboard
communication infrastructure in the future vehicles.

1.1 The SEIS Project

The SEIS Project (Sicherheit in Engebetteten IP-basierten Systemen - Se-
curity in Embedded TP-based Systems) [10] was launched in 2009 by the
German Federal Ministry of Education and Research in the context of the
Information and Technology 2020 (IKT2020) research program. The twelve
partners from the German automotive industry are Alcatel-Lucent Deutsch-
land AG, Audi AG, Audi Electronics Venture GmbH, BMW AG, BMW
Forschung und Technik GmbH, Continental Automotive GmbH, Daimler AG,
EADS Deutschland GmbH, Elektrobit Automotive GmbH, Infineon Tech-
nologies AG, Robert Bosch GmbH and Volkswagen AG, along with six lab-
oratories, namely Technical University of Chemnitz, University of Erlangen-
Nuremberg, Technical University of Munich, University of Karlsruhe, Fraun-
hofer Institute for Communication Systems (ESK) and Fraunhofer Institute
for Secure Information Technology (SIT). BMW Group Research and Tech-
nology leads the system/software part and coordinates the SEIS Project.

The goal of the SEIS Project is to develop an integrated security IP-
based solution for both internal and external vehicle communication. The
deployment of IP as the standard communication protocol between ECUs,
as well as communication with the outside world, allows for a completely
homogeneous system and simplifies the current embedded system model.
Removing gateways between the different vehicle buses and networks reduces
translation overhead and management costs. Furthermore, IP will allow the
vehicle to be integrated with any other devices in a global network, such as
the driver’s smartphone.

However, deploying IP into an embedded system brings all the security
issues associated to this protocol, with increased hazardous potential due to
the existence of life-threatening components, such as the vehicle braking sys-
tem. Having that in mind, the SEIS Project seeks also a secure deployment
of the new automotive architecture.

The current situation of the SEIS Project includes an experimental vehi-
cle with a full IP-based system on it. Several standard components from PC
or embedded systems were installed to allow testing and measurements. Like-
wise, vehicle controllers and multimedia content providers were integrated to
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this experimental environment.

1.2 CE-Devices Integration

In the past three decades, Consumer Electronic Devices (CE-Devices) have
become more popular and ubiquitous in everyday life. They have evolved
from simple devices to complex systems capable of calling, playing audio and
video, recording and my other functions. CE-Devices have a major role in
the everyday life and become more integrated with systems that before were
completely separated. In the near future, CE-Devices can be used to open
a vehicle in a keyless fashion. Even stronger integration can be found in
devices which are connected to the vehicle and exchange data with it, for
example the Apple iPod Out, an interface developed by Apple Inc. [2] and
fully supported in BMW vehicles to allow integration between Apple devices
and the infotainment system of the car [12].

However, integrating CE-Devices and vehicles is not an easy task, be-
cause with these devices come several restrictions, such as battery life, data
exchange limit and information security. Since devices have a shorter life
span than vehicles, a user may need to integrate several devices to the same
vehicle. Furthermore, one single vehicle may be associated at a given point in
time to several different drivers and their own personal devices. Therefore,
the vehicle could hold data belonging to different users and, among each
of those, different devices, which form a scenario of potential information
leakage.

Allowing any device to integrate the vehicle may lead to serious secu-
rity breaches, some of which might violate driver’s privacy and some which
might threaten the life of the occupants of the vehicle. For that reason, ve-
hicle manufacturers must do an analysis of potential risks before integrating
these devices to vehicles they produce, in order to safely and securely allow
the exchange between these devices and the vehicle. By carefully designing
secured systems, it is possible to protect the user’s and the vehicle manu-
facturer’s privacy and comfort without compromising the vehicle safety and
performance.

1.3 Challenges

The integration between CE-Devices and vehicles produces several advan-
tages, such as entertainment (audio, video, games...) integration and cus-
tomization, since usually a CE-Device belongs to one individual, whilst the
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vehicle might be shared by several individuals, for example in a family car
or vehicles belonging to a fleet. However, vehicles must be prepared against
attacks that before were mainly applied to CE-Devices. While a malfunc-
tioning application might crash a mobile device internal system, the same
application might cause a fatal accident when connected to or executed in-
side a vehicle.

Current vehicles have several compartmentalized networks and their com-
munication is made possible by gateways that translate the communication
from one network to the next. Although this optimizes the purpose of each
network, it does not integrate well with external networks. Vehicles designed
by the SEIS Project, with IP-based systems, need no translation between net-
works. Since all components have an IP identification, it is easier to integrate
all the networks, including the external devices. However, information and
system security must be present to avoid CE-Devices attacks. Even though
many attacks exist, we give focus to those related to information security,
such as:

Impersonation By impersonating an user in a CE-Device, the attacker
may gain unauthorized access to the vehicle internal network. With
this access, the attacker might execute a malicious code and modify
the vehicle’s behavior, greatly endangering the passengers’ life.

Information security The vehicle holds sensitive data related to its driver,
the manufacturer and the vehicle itself. If this information is leaked
by means of a malicious code or listening to traffic between the CE-
Device and the vehicle, this affects both the driver’s privacy and the
manufacturer’s reputation.

While data theft and impersonation can be reduced by means of some
mechanisms, like two-way SSL/TLS authentication, it does not prevent data
from being forwarded once its access is granted. The vehicle embedded sys-
tem is distributed and each component has different security requirements.
In some cases, a particular set of data belongs to more than one user or
entity who has access to the car. These entities might not trust each other,
posing the challenge of how to access and deliver this data. Even though
two different drivers might trust the vehicle to hold and manipulate their
common data, they might not want the other driver to retrieve it from the
vehicle to his own device. Therefore, the main challenges associated to this
thesis consist of integrating a full IP-based automotive distributed system
with external devices regarding the information exchange and storage and
privacy requirements from both communicating parties.
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1.4 Contribution

Having in mind the security aspects of integrating vehicles and CE-Devices,
this thesis has the purpose of designing a security solution for this integration,
focusing on information security. Drivers willing to customize their driving
experience by exchanging data or storing private data in the vehicle need
a secure way of doing so. We intend to tackle this problem by controlling
the information flow, in order to avoid protected data from being released
or propagating to unauthorized parties. In our vehicle environment, data
concerning the driver or the vehicle should remain private to those, allowing
access from authorized devices and rejecting access from unauthorized ones.

For that purpose, we designed a use case in which information flow con-
trol is important and extracted the security requirements. At the end of
the project, these requirements need to be fulfilled in a fully operational
prototype to provide evaluation and assessment.

1.4.1 Driving Log

The Driving Log use case consists of a storage component inside the vehi-
cle and its controlling software. Its main functions are to control storage,
accesses, modification and removal of data to/from the storage component,
based on its information flow control policies.

Storage Whenever a driver is making use of the vehicle, several ECUs are
constantly sending information to the controlling software through the
vehicle’s internal network, which saves it in the storage component.
When stored, this information keeps metadata in order to control its
origin and accessing rights. The information is associated to the current
driver and the ECU that produced the data.

Access Accessing the stored data is a critical action, as it depends on who
is accessing it and what data is being requested. For that reason,
whenever a CE-Device, external to the vehicle network, requests data,
the request is considered as untrusted and therefore must go through
security checks. The Proxy component, presented more carefully in
Section 4.1.2, separates the internal and the external network and is
capable of monitoring and filtering the packets going in or out of the
vehicle. It can determine and propagate the security level of the exter-
nal connection to the request, which helps The Driving Log controlling
software to decide if the requested data can be retrieved by the appli-
cation or device requesting it. If this is the case, it states the minimum
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security requirements for releasing this data to the external network
and the Proxy determines if the response is forwarded or not.

Modification Modifying data can be seen as an application who accesses
data, performs one or more operations with it and modifies its prop-
erties. In order to retrieve the data, the controlling software will de-
termine if the requester has access to this data. After manipulating
the data, releasing it to the external network needs further security
evaluation. According to its own policies, the controlling component
can determine whether this information can be released and, if so, with
which security requirements.

Removal Deleting data from the storage component requires accessing ver-
ification and deleting or modifying rights. The controlling component
can determine this by the information about who requested the removal
of this data.

To illustrate this use case, we can think of a Car Rental Company, whose
vehicles are equipped with the Driving Log system. It offers access to CE-
Devices owned by the company and applications running on each driver’s
CE-Device. When a driver makes use of the vehicle, his device connects
to the vehicle, setting the current driver. Whilst the vehicle is driven by
this driver, all data collected from the ECUs will be associated to him and
stored in the storage component. To access the stored data, it is necessary
to identify which information is sensitive to the driver’s privacy and may
not be released to the company device. For example, while the company
should have access to oil and water level of its vehicles, it may not request
information related to the places where the driver has been, i.e. GPS data.
It is important that the controlling software is aware of this difference and
is able to identify who is requesting the data. In case the driver wants to
retrieve his own data, the Driving Log system should return only data related
to this driver and not private to the vehicle or the company. Likewise, in
case the company wants to retrieve information about the vehicle, it may not
receive private information related to the driver.

To illustrate data modification, we can assume the driver has driven
through several kinds of road types and the company would like to offer
a better price for the rental in case the vehicle was often on highways and
not so often on unpaved roads. For the price evaluation, the company can
set up a price calculator that takes as input the odometer and road types (or
GPS data) and returns the final price. However, since road type (or GPS
data) is sensitive to the driver’s privacy, this information may not be released
to the company. Likewise, the price value for each road type might be private
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to the company and should not be released to the driver. This characterizes
a scenario of mutual distrust and, for that reason, an application must be
placed inside the vehicle to be able to retrieve both data sets, manipulate it
and transform it enough to make it possible to release both to the company
and the driver. In our example, an application would calculate the final price
based on the driver’s road types and the company’s price policy. The final
price is a compilation of private data and may only be released to either
company or the concerned driver.

Finally, in case the company wants to reset the vehicle to its original
state, it may be allowed to erase stored data, without being able to read it.
That way, the driver’s privacy is not violated. On the other hand, a driver
cannot erase its own data and prevent the company from calculating the final
price.

This thesis focuses primarily on the confidentiality requirement, prevent-
ing sensitive information to flow from authorized parties to unauthorized
parties by controlling its access rights. Furthermore, data integrity is also
partially covered by this thesis, preventing an unauthorized entity from mod-
ifying data.

1.5 Outline

The rest of the document is structured as follows: in Chapter 2, the related
work concerning Information Flow Control (IFC) and Decentralized IFC are
presented; in Chapter 3, the concepts relevant to this thesis are defined and
explained and they are important for the implementation of the system in
Chapter 4, which brings also an introduction to the vehicle architecture and
the Etch middleware used in this thesis; Chapter 5 contains the details of the
security and performance evaluation tests, along with their results; finally,
conclusion and future work are discussed in Chapter 6.
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Information Flow Control

In this chapter, we perform a bibliography review on the Information Flow
Control topic.

2.1 Introduction

Protection for privacy of data is nowadays a major research topic, as more
and more data is transmitted over networks and manipulated by untrusted
entities. Securing all this data requires computing systems to handle several
different methods to limit the information disclosure. Methods like firewalls
and cryptography prevent information to be released to unauthorized parties,
but do not provide guarantees about the propagation of this information
once it is released. For example, cryptography provides a way to exchange
data privately through a non-secure channel, but does not guarantee the
confidentiality of the data once it is decrypted on the receiving side.

This problem becomes even more complex when the system produces an
output based on two or more sensitive inputs. As an illustration to this
problem, we can think of a trader application, which relies on its clients’
private data and its own trading policies. The inputs to the system are
composed of both the clients’ and the trading company’s private data. The
application computes a trade between two or more clients and produces an
output about this trade, which needs to be released to all clients involved in
the trade and the trading company itself. However, releasing the result of a
trade might have significant business meanings to competing companies and
even contain details of the trading policies belonging to the trading company.
Any leak of private data might result in major reputation or financial issues,
both to clients and the trading company. Note that traditional access control
methods or cryptography does not help in this case.

Information Flow Control (IFC) tackles the problem by analyzing the flow
of information throughout the system, assigning security levels to data and
entities who manipulate it. The basic model consists of two levels, L (low)
and H (high), representing, respectively, publicly available information and
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secret information. Confidentiality and integrity are ensured by controlling
the flow of information between these levels. In the case of confidentiality,
information is not allowed to flow from H to L, or in other words, secret
information is not allowed to become publicly available by computation. On
the other hand, integrity is ensured by restricting flows from L to H. The
general idea is that publicly available information is allowed to flow through
low levels of confidentiality or up to higher levels, while high level of con-
fidentiality cannot flow down to lower levels. More generally, the security
levels can be viewed as a lattice with information flowing only upwards in
the lattice [7].

Nonetheless, if information always becomes more and more restricted
throughout the system, it will rarely output useful information that can be
read by other entities. For that reason, privileges can be exercised in order to
change the security level of the data or an entity. Privileges can be defined
in several ways [16, 18], but follow the idea of trusted entities which can
declassify or endorse data to, respectively, decrease the confidentiality level
or increase the integrity level.

Information flow control may enforce information flow policies by means
of static or dynamic methods. Furthermore, it can be applied to a system
with a single host or a network. Regarding the policies, they can depend
on one single central authority or scattered among all processes or hosts
involved through which the data flows. In the next few sections, we present
the different kinds of IFC and its advantages and disadvantages.

2.2 Static and Dynamic IFC

Static IFC is responsible for determining and analyzing all possible infor-
mation flows during the program compilation. This requires special pro-
gramming languages or extended annotations to traditional programming
languages, as well as a special compiler, capable of determining all possible
information flows. With the data flow map, the compiler can then enforce
previously defined data flow policies and produce a feedback to the program-
mer. Depending on the violation, the compiler might be able to fix it, ignore
it or abort the compilation.

Languages designed specifically for static information flow control, such
as JFlow [17], face the problem of determining implicit data flows. Usually,
this kind of flow happens when the computation of a variable depends on
another variable. Figure 2.1, extracted from [17], shows a simple example
where it is possible to know the value of the secret variable b by looking at
the public variable z, even though z has only been assigned constant values.
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int{public} x;
boolean{secret} b;

int x = 0;

if (b) {
x =1;
}

Figure 2.1: Implicit flow example.

The advantages of this technique include the ability to reject invalid pro-
grams even before they are executed, as well as avoiding extra overheads
during execution time. Once the compiler determines a program does not
violate any data flow policies, it can be executed without further dynamic
checks. However, defining all data flows statically is not always feasible and,
therefore, it is difficult to guarantee information security based only on the
compiler. If a program has a variable that needs dynamic label assignment,
the compiler might not be ready to cope with this assignment and either re-
ject the program or, in the worst case, accept it, which could lead to dynamic
security breaches. Furthermore, code annotations greatly impacts the code
development phase and sometimes source codes are not available, preventing
static analysis to take place.

On the other hand, Dynamic IFC happens during execution time, la-
beling data structures and input/output channels depending on which data
flows through them. It has three different approaches: at application level,
operating system level or a mix of both.

The dynamic IFC at the application level labels variables dynamically
in the programming language or in the memory and enforces each new as-
signment or variable manipulation on real time [9]. However, this introduces
an execution overhead that can affect performance-oriented systems. Fur-
thermore, it must rely on the system underneath, because it depends on
the operating system to write and read from the memory and, therefore, a
compromised operating system would be able to affect and mislead the IFC
system.

The second dynamic IFC approach concerns the dynamic enforcement
under the operating system, in order to avoid the need to trust the OS.
When IFC is enforced at the operating system level, the OS itself is modified
to enforce the information flow policies. Resources are tainted according to

Master Thesis - Daniel Vega Simoes



2.3 Single-host and Distributed IFC 11

the policies and access to them restrained by security checks. For instance,
if an application receives data from the network, there is a security check to
determine if the application is allowed to receive untrusted data. Likewise,
when an application sends data to the network output, there is a security
check to determine whether sending this data out violates the information
security policies. However, tainting operating system resources does not
allow for fine-grained data flow enforcement. Examples of operating systems
modified to support IFC are Asbestos [8], HiStar [25] and Flume [14].

Since both approaches can happen at the same time, the last possible
approach is situated between the application and the operating system level
and it tries to merge the best of the two other approaches by labeling both
the operating system resources and the fine-grained data. An example of this
is Laminar [21], which dynamically labels data structures in the Java Virtual
Machine (JVM).

Dynamic IFC has the advantage of considering runtime environments and
dynamic variables, unlike static IFC. For that reason, it is capable of protect-
ing the privacy of data regardless of how the application was implemented
or how the data is handled. This allows for applications to be written by
external developers, completely unaware of the information flow control sys-
tem. Thus, they do not need to worry about inserting annotations into the
code or using a special compiler. Furthermore, in comparison to static IFC,
developers need not release the source code in order to have the program’s
data flow analyzed by the IFC system. However, the disadvantages of dy-
namic [FC include an increased overhead during execution time. In the case
of dynamic IFC at the operating system level, modifications to the operating
system kernel are required and this can also be complex and costly.

2.3 Single-host and Distributed IFC

An information flow control based on a single host means that the flow poli-
cies must be enforced when different processes or users are exchanging data
in the same machine. This is useful when systems have several environments,
some of which are manipulated by untrusted users or execute untrusted ap-
plications. In TaintDroid [9], we can see an example of a dynamic IFC system
enforcing secure information flows through the communication between dif-
ferent applications in an Android environment.

Although single-host systems are still numerous nowadays, they do not
account for all data exchange systems, as more and more distributed systems
become available. In a distributed system, several entities need to exchange
data through a common channel, most frequently an unsecured network chan-
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nel. As mentioned in the previous sections, there are several ways to protect
the exchange of data through the network, but an IFC system is capable of
protecting the data after it has arrived to the receiving side. Therefore, a
distributed IFC system follows a set of data flow policies to control the flows
between several entities, like in DStar [26].

Note that, like static and dynamic IFC, they are also not mutually exclu-
dent and systems can enforce both kinds at the same time. The set of data
flow policies can determine flows within a single host and when exchanging
data through the network. The system can cope with this by controlling the
operating system’s processes communication and network calls, for example.

2.4 Centralized and Decentralized IFC

Centralized and decentralized IFC depend only where the data flow policies
are defined. In a centralized IFC system, policies are defined by a single
entity and the whole system needs to recognize and trust the authority and
correctness of this entity in order to enforce them. This does not concern
the number of hosts in the system, since a single-host IFC system can have
a centralized policy definition, in the same host or in another host, or a
decentralized one, scattered throughout many authority entities.

The centralized IFC model provides a way to define all data flow policies
in one single place and, therefore, make it easier to maintain or modify them.
The policies need to be available for all systems enforcing an information flow
control. However, some systems fall into cases where there is a mutual dis-
trust between entities and a common authoritative entity holding all the data
flow policies might not be feasible. For cases like this, the decentralized IFC
model fits better. Although more complex, it allows each entity to define
its own set of policies and enforcement and the whole system is composed of
several smaller IFC systems. Back to the trader’s example, the trading appli-
cation may be reticent to store its trading policies in a centralized authority
along with its users, so each entity can have its own policies and enforces
them separately, with no need to share them among the other entities.

In the Decentralized IFC (DIFC) model, each entity enforces its own
policy while sharing data. For that reason, processes sharing data in a single
host or hosts communicating in a network will have their own set of policies
and will enforce independently of the others. It is important to note, however,
that even though each entity enforces its own different set of policies, the
system as a whole must agree on the information flow control mechanisms
and labels definition to avoid compatibility issues.

Several different approaches have been reviewed. The previously pre-
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sented Asbestos [8], TaintDroid [9] and JFlow [17] apply the centralized IFC
model. For the DIFC model, Jif [19] accounts for a programming level and
static approach, where Meyers and Liskov adapt the decentralized model to
the Java programming language. HiStar [25] applies the the DIFC model
at the operating system level and DStar [26] extends the DIFC model to a
fully connected network, implementing a web server as a proof of concept.
Finally, DEFCon [16] implements a mixed static and dynamic DIFC system
in an event processing system, with focus on information security and perfor-
mance in a financial data processing scenario. Furthermore, Laminar [21] and
Flume [14], mentioned in the previous section, also tackles the decentralized
IFC issues.

Master Thesis - Daniel Vega Simoes



Concepts

In this chapter, we define the concepts that are relevant to this thesis, based
on the bibliography review presented in the previous chapter. The thesis
consists of the implementation of a dynamic decentralized IFC system at the
application level in a simulated automotive environment composed by several
hosts. Our trusting base includes the operating system, the middleware
above it and the part of the application which enforces the IFC. The goal is
to protect the flow of information throughout the system by labeling both
the data and the entities who access and manipulate it.

The approach closest to ours is DEFCon [16], in which flows of events are
controlled in a high performance event processing system. Each event has a
set of labels, which is evaluated throughout the system whenever events are
processed. Even though the ideal deployment of this thesis would also occur
in a performance-driven environment, i.e. the automotive environment, the
focus of this thesis is on the information flow control aspects rather than
improving performance.

To achieve that, entities and messages are tainted with security labels that
designate the security level of that entity or message. Likewise, data is also
contaminated with labels, which characterize how this data can be accessed
by entities or encapsulated into messages. Labels are previously defined
and all labels in the system must follow the standard definition to avoid
compatibility issues. Furthermore, the evaluation of these labels according
to the information flow policies occur in specific entities of the system and
these entities are trusted by all the other entities who do not enforce the
information flow.

In the next two sections, security labels are detailed, as well as how they
can be evaluated.

3.1 Security Labels

In the decentralized information flow control model, data is monitored and
enforced through the use of security labels. When labels are applied to a
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| Label (L) |
Confidentiality Set (5) | Integrity Set (/)
car, user ecu

Figure 3.2: An example of a label.

‘ Label (Ly) ‘
Confidentiality Set (S) | Integrity Set (1)
car.private, user.public ecu

Figure 3.3: Remodeled label example.

piece of data, they compose the set of policies that restrict the flow of this
data. Labels are composed of a pair of confidentiality set S and integrity
set I, similar to labels defined in [16]. Each set is in turn composed of tags,
which represent an indivisible policy concerning confidentiality, placed in S,
or integrity, placed in I.

We can use the label L; = {(car,user);(ecu)} depicted in Figure 3.2
to exemplify the labeling system. A piece of data associated to this label
has confidentiality set S = (car,user) and integrity set I = (ecu). While
confidentiality tags determine who is allowed to access this data, integrity
tags define who produced that data or modified it for the last time. In the
case of the label Lq, entities car and user can access the data associated to
it and entity ecu produced this data.

Tags reflect directly the policies of the DIFC system and they must agree
in all systems that enforce these policies. For example, if a piece of data is
labeled with L, all entities enforcing policy rules must be able to understand
what tags car, user and ecu mean to avoid compatibility issues in the system.

In our system, tags can also have an ending, which defines the public
availability of the data. For example, the previous label L; can have more
specific tags by adding .private or .public to the end of a tag. The redefined
label Lo, depicted in Figure 3.3, when attached to a piece of data, shows
that this data is private to the entity car and public to the entity user. This
difference is important when the IFC system enforces its policies. Note that
when a label contains a tag with no ending specifying the public availability,
like ecu in Figure 3.3, it is considered by the system that it contains both
ecu.public and ecu.private.
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3.2 Information Flow Enforcement

Labels form a lattice, allowing for comparison and enforcement of how and
where the labeled data flow. Data labeled with confidentiality set Sg.:, can
flow to a component with confidentiality set Scom, if and only if Syata € Scomp,
where C denotes the relation “can flow to” [26]. Therefore, the confidentiality
set of the component needs to be a superset of confidentiality set of the data.
This means that data labeled with a higher confidentiality set will not be able
to flow into an entity with a lower confidentiality set, characterizing the “no
read-up” property. In a practical example, if a file belonging to a general is
classified as top secret (high confidentiality level), a lieutenant with clearance
for confidential files only (low confidentiality level), but no top secret files,
cannot see the file.

Integrity, however, works the other way around. The integrity set of
the data needs to be a superset of the integrity set of the component, or
Liata 2 Icomp. In other words, this indicates that the integrity level of the
data needs to be higher or equal to the integrity level of the component. This
property is called “no write-down”, which states that an entity at a given
security level must not write to any data at a lower integrity level.

Both properties “no read-up” and “no write-down” together form the
Bell-LaPadula model for enforcing access control and information flow con-
trol [3]. If both relations hold, then this data can flow to this component.
Generalizing the flowing relationship to labels, we have:

Ldata j Lcomp
if and only if

Sdata - Scomp and Idata 2 Icomp7

where Ldata - {Sdata> Idata} and Lcomp - {Scomp> Icamp}

With this lattice, once a confidentiality tag has been inserted in a label,
data protected by that label cannot flow to components that do not have
at least the same tag, unless privilege is exercised. That means that confi-
dentiality tags are “sticky” and, once they are inserted and no privilege is
exercised, they will be carried out throughout the system. Integrity tags are
“fragile” and will be destroyed by manipulation over the labeled data.

To illustrate the enforcement of the information flow, consider a compu-
tation over two sets of data labeled Lg = {Saq1, 151} and Lgo = {Su, s},
respectively, where Sy = (car), In = (ecu) and Sy = (user), Ip = (ecu).
Both are given as input to a computing unit labeled Leomp = {Secomps Leomp }»
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where Scomp = (car,user) and I om, = (), as depicted in Figure 3.1. When
these two sets of data are given to the computing unit, there is an information
flow policy enforcement. Since

Sa1 = (car) C (car,user) = Scomyp, and
Idl - (BCU) 2 () - Icomp
the first data set can flow to the component. Analogically, the comparisons

Saz = (user) C (car,user) = Scomp, and

Iy = (ecu) 2 () = Leomp

allow the second data set also to flow to the component.

Note that the computing component is allowed to access both data sets,
but the owners of each data set, namely car and user, would not be able to
access each other’s data. This scenario shows a mutual distrust between the
owners of each data set.

After the computation, the output will have all confidentiality tags from
the inputs, while the integrity set will be composed only of the integrity tag
of the component. Hence, Ly, = {(car,user);()}. The output data has no
integrity tags, because it was manipulated by an untrusted unit. However, it
still holds both confidentiality tags, since it was computed from confidential
data. Further computations will only increase the confidentiality level of the
data and it will only be accessed by super privileged entities. In order to
release this data in a lower confidentiality level so other units can access it,
the computing unit might be granted a declassification privilege.

3.3 Privileges

From the previous example, we were able to see that output data sets will
always have a higher confidentiality level than those of the input data sets.
This, however, is not a realistic model, because data becomes increasingly
restrictive to the point where no entity is able to access it anymore. To fix
this problem, privileges are introduced in order to declassify or endorse data.

Declassification is the ability of reducing the confidentiality level of the
labeled data. An entity with declassification privileges is able to release the
data to entities that were previously not able to access it. Still referring
to the previous example, if the computing unit is granted the privilege of
declassification by the car entity, it will be able to change the output data
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La = {(car); (ecw)}
Data Set 1 Lcomp = {(car, user); ()}
Ld1 = Lcomp
- Computing Unit
sz j Lcomp
La = {(user); (ecu)}

Data Set 2 l
Lo = {(car,user); ()} Lou = {(user); (ent)}
declassify(car)
Output > Output
endorse(ent)

Figure 3.1: Information Flow example. Two data sets with different labels
are used as input to a computing unit. Information flow control is applied
to propagate and enforce labels through computation.

label to L,,: = {(user); ()}, that is, it can remove the tag car from the output
data and, therefore, declassify it to a lower confidentiality level. By doing
this, the entity user is henceforth able to access the output data set.

Endorsement is the ability to raise the integrity level of the labeled data
by trusting the integrity of it. In our previous example, if an entity ent
completely trusts the data that is produced by the computing unit, it can
give the endorsement privilege to it. By doing this, it allows the computing
unit to include the tag ent in the output data label, which becomes L,,; =
{(car,user); (ent)}. This increases the security level of this data, because an
entity who accepts data only trusted by the entity ent can now receive the
output data.

These two privileges are used when it is necessary to decrease the confi-
dentiality level or increase the confidentiality level of a certain labeled data.
A concrete use case for this need is when data has been modified at the point
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where it is not secret anymore, i.e. the computation over it does not allow to
retrieve its original secret. In that case, an entity can give the computation
unit the privileges to declassify its data after computation and, furthermore,
it can endorse the data that is produced by the computation unit. Our pre-
vious example in Figure 3.1 shows a sketch of this use case in the last step
performed by the computing unit, which applies the declassification privilege
given by the car entity and removed the car tag. Furthermore, it also applied
the endorsement privilege given by the ent entity and the output data has
its integrity now trusted by ent.

The privileges are included as part of the information flow policies and
define which entities are allowed to declassify or endorse which data, in a
way that the system has a correct and functional flow.
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Implementation

In this chapter, we will present the prototype that was developed and imple-
mentation details concerning the decentralized information flow control at
application level.

4.1 Prototype Overview

The prototype architecture is illustrated in Figure 4.1. It is composed of a
section representing the internal network of the vehicle and a section formed
by every entity external to it. The internal network contains the vehicle
electronic units (Electronic Controlling Units - ECUs), which provide some
of the functionalities found in current vehicles, such as GPS and gas moni-
tor. The external network represent the devices used by either the driver or
the passengers and exchange data with the vehicle. Both sections are inter-
connected by a proxy unit, which mediate and control data that flow from
one section to the other. It is important to highlight that the Proxy is the
only channel through which data can flow from the internal to the external
network and vice-versa.

In our prototype, the internal network contains four main components,
which are the Driving Log Manager, the Database, the ECU and the Virtual
Machine. On the other hand, the CE-Device is located in the external net-
work and is completely untrusted. It exchanges data with the Driving Log
Manager through the Proxy.

DL-Manager The Driving Log Manager component acts as a server and
receives requests from all other entities. It is the only component which
has access to the Database, where labeled data is stored. Its main
functions are to receive requests, perform actions in the Database and
enforce data flow security.

Database The Database is the only component which stores data in a per-
sistent way. It contains only labeled data and the only entity allowed
to connect to it is the DL-Manager.
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Figure 4.1: Prototype overview.

ECU The ECU component simulates a ECU inside the vehicle internal net-
work and produces different kinds of data, which may be then associ-
ated to different entities. It is considered a trusted component, since
it is in the internal network and does not exchange any data with un-
trusted entities.

VM The Virtual Machine executes untrusted applications in a protected
environment, as detailed in [15]. This allows for a customization from
external entities to run applications and manipulate protected data
inside the vehicle. However, its inputs and outputs are monitored and
controlled by the DL-Manager regarding the data flow.

CE-Device The mobile device external to the vehicle is considered un-
trusted and communicates with the internal network through the Proxy.
Its requests are also monitored and controlled regarding the data flow.

Every component application, internal or external, runs on top of the Etch
middleware. This middleware is responsible for building network services for
communication between any pair of applications and carrying out the labels
throughout the system. In the following sections, we will present a short
introduction to the Etch middleware and the Proxy and how they are used
during a regular execution.
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4.1.1 Etch Middleware

The Etch middleware is a project of the Apache Foundation and is defined as
a cross-platform, language- and transport-independent framework for build-
ing and consuming network services [1]. The Etch toolset comes with a
network description language and a compiler and it fully supports currently
C, C# and Java programming languages and TCP and UDP transport layer
protocols. It is an on-going project which aims to simplify the definition of
small, focused services.

Etch middleware is used by BMW Forschung und Technik as a commu-
nication solution for an IP-based automotive system. It has been intensively
used and customized for BMW needs, in order to add automotive-specific and
security features [4, 22]. It runs between the Application and the Transport
layers of the OSI model and it provides a simple way for an application to
communicate with a remote machine by means of previously defined network
services. It is respomnsible for binding to the used programming language,
encapsulating the message in packets to the desired transport and network
protocols and handle the delivery on the receiving side. By trusting Etch
middleware, the developer can focus on the application development and
functionalities rather than on network communication.

The network description language defines the service between every client-
server pair and contains the methods that are allowed to be called, and
therefore the messages to be exchanged, as well as the direction.

In Figure 4.2, we can see the definition of the service DrivingLog and
methods requestData, requestPrice, calculatePrice and logIn. The message
direction is limited with the annotation @Direction(Server||Client||Both).
When this network service is defined, the Etch compiler produces a basic
code in the targeted binding programming language with basic functionali-
ties of message exchanging. The developer then customizes the source code
to add the desired features at the application level.

In our prototype, the Etch middleware was used and bound to the Java
programming language. All network services were defined and customized to
our needs.

4.1.2 Proxy

The Proxy component stands between and separates two domains: inter-
nal vehicle network and external network. It was previously developed by
colleagues from BMW Group Forschung und Technik in Java and acts as a
mediator of the communication between the car and the external world [5].

The Proxy is capable of monitoring every packet going into the vehicle in
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module com.bmw.proxy.drivinglog
/ *%
* Driving Log service version of Driving Log Manager.
*/
service Drivinglog
{
@irection( Server )
Map requestData(string driverName)
throws OperationException, SecurityException
@irection( Server )
float requestPrice(string driverName)
throws OperationException
@irection( Client ) @AsyncReceiver( FREE )
float calculatePrice(string driverName)
throws OperationException
@Direction( Server )
void logIn(string username, string password)
throws OperationException, SecurityException
i

Figure 4.2: Etch service sample.

order to determine its origin and security level. It uses a two-way SSL/TLS
certificate to identify the origin of the request and also evaluates the security
level of the connection based on the connection type, encryption level and
other security aspects. With this information, it can filter the packet by
either allowing it to go through or rejecting it for some reason, e.g. not
enough security level.

Likewise, packets going out of the vehicle are analyzed to find out their
destination and required security level. The Proxy can retrieve the desired
security level from packets coming from the internal vehicle network and
evaluate if the connection to the outside entity is secure enough for the packet
to be forwarded.

The main function of the Proxy component is then to filter packets that
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go through it. For example, if a connection between a device in the external
network and the Proxy does not hold the security level defined by an outgoing
packet, the Proxy does not forward it.

In this project, the Proxy was modified by Alexandre Bouard in order to
label incoming connections based on the certificate information. Since it runs
on top of the Etch middleware, it can propagate the label of the inbound con-
nection or request to the internal network by means of the middleware data
structure. The internal components, such as the DL-Manager, are therefore
able to retrieve from the middleware the origins of each request. On an
outbound connection, the Proxy can retrieve the required security level for
the response from the Etch middleware data structure and determine if this
response will be forwarded to the external client or not.

4.1.3 Data Flows

In this thesis, we identified three most important data flows between the
prototype components. Depending on the type of flow, the Proxy may or
not may be present. We present in this section each of the flows and the
implemented flows are explained in the next section.

4.1.3.1 Internal Flow

An internal flow is a data exchange between components in the internal
domain. For example, the data exchange between ECU and DL-Manager is
an internal flow.

Internal Output Flow An internal output flow is a data flow going out of
a component. It is composed of the output from the computation of a
component. An example of this flow is the output data released by the

ECU.

Internal Input Flow An internal input flow is a flow of data going in a
component. It characterizes the input of data that will be used by that
component. An example of this flow is when the DL-Manager receives
an input of data coming from the ECU.

4.1.3.2 External Flow

An external flow is a data exchange between the vehicle and any external
device. Since it is a multi-domain communication, the Proxy filters the com-
munication accordingly.
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External Output Flow An external output flow is a data flow from the
vehicle to an external device. An example of this kind of flow is an
external device retrieving some data from the vehicle through the DL-
Manager. It is a crucial flow regarding information flow control princi-
ples, since sensitive data from the vehicle may be sent to an untrusted
entity in the external network.

External Input Flow An external input flow is a data flow from an exter-
nal device to the vehicle. It works the same way as the output flow,
however in the opposite direction. This flow also crosses the internal
and the external domains border and is monitored and filtered by the
Proxy. An example is an external device storing data in the database
controlled by the DL-Manager.

4.2 Driving Log Implementation

The system was completely developed in Java, having as base the code gen-
erated by the Etch middleware when compiled with the Java binding. The
DL-Manager is a server and receives connections from the CE-Device, the
ECU, and the Virtual Machine, following the client-server paradigm.

According to our use case, there are two kinds of CE-Devices, one be-
longing to the driver/user and another to a company that rents vehicles,
referenced to as the rental company. The first one simulates the function-
alities a driver would have by associating his device to the vehicle, such as
logging in to the vehicle and retrieving his own data. The second one sim-
ulates the functionalities a company needs when renting its cars, such as
retrieving vehicle data and calculating the final rental price.

The ideal execution of the system follows these steps:

Step 1 The rental company delivers a car to a new driver/user. This car
has the DIFC system ready, as well as the Database and the Proxy
components.

Step 2 The driver gets into the vehicle in order to use it and associates his
device to it, either automatically or manually. In our prototype, this
association is fulfilled by the use of the function logln, called by the
CE-Device and executed by the DL-Manager. When a driver logs in,
the DL-Manager sets this driver as the current driver.

Step 3 While the car is in use, the ECU produces data regularly and sends
it to the DL-Manager. The function storelnformation is called by the
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ECU and executed by the DL-Manager and it stores the freshly pro-
duced data into the Database component. Note that this data is asso-
ciated to the current driver, set in the previous step, and also with the
vehicle itself. Some data belongs to the driver only, some to the vehicle
only and some to both. If the car is in use and no driver is set as the
current driver, the produced data is dropped by the DL-Manager.

Step 4 Still with the car in use, the driver can retrieve his own data, that is,
the data that is associated to him in the database. The DL-Manager
retrieves this data from the database, enforces the IFC policies and
returns the data to the driver’s CE-Device, according to the data labels.
Note that the driver can only retrieve the data that belongs to him
and not to the vehicle. The data flow enforcement is better detailed in
section 4.2.2.

Step 5 After the car is returned to the rental company, both the driver and
the company can use their own CE-Devices to retrieve data belonging
to each of them. While the driver would get personal data, such as
location and speed, the company would get data concerning the vehicle,
such as gas level and mileage. The DL-Manager also enforces the IFC
policies during this step.

Step 6 At this point, the rental company would like to calculate the final
price related to the car rental. Since this company charges a different
price depending on how the vehicle was used, the final price depends on
both personal driver data and vehicle data. This calculation is done by
an application inserted in a protected environment inside the vehicle,
called Virtual Machine. It executes an untrusted code which takes
as input sensitive stored information from both entities and produces
as output only the final price based on the company’s price policies.
This protected environment was projected and implemented by Esko
Mattila [15] and is also labeled by the DL-Manager to keep track of the
confidentiality and integrity issues associated to this operation.

Step 7 Since the price is calculated and the rental period is over, the last
step is optional. The rental company may desire to delete all data
associated to the driver. It is allowed to do so, since it owns the car,
but it is not allowed to retrieve the data.

There are several alternative execution paths for the system. However,
this execution allows for a good evaluation concerning the security and the
DIFC system. In the next sections, we will give focus to the database imple-
mentation and the information flow policies enforcement.
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4.2.1 Database Model

Since all stored data is associated to a label, the database must also be
label-aware. Two different models were developed and implemented using
MySQL [20] to identify the best option in terms of performance and security.
The next subsections present both database models and their advantages and
disadvantages, as well as the performance comparison and the final selection.

4.2.1.1 First Model

Profiles Info

Integer id (PK) Integer id (PK)

String name Float coordX

String username Float coordY

String password Integer odometer
Integer speed
String roadType
Integer waterLevel
Integer oilLevel
Integer gaslLevel
Timestamp  timestamp
String secrecyTag
String integrityTag

Figure 4.3: First database model.

The first database model, represented in Figure 4.3, consists of two ta-
bles: Profiles and Info. The Profile table holds authentication data and its
fields are id, name, username and password. Its entries contain each pro-
file that connects to DL-Manager, such as every driver, company, VM client
and ECU. The Info table, on the other hand, holds every data stored in the
database and its fields are id, coordX, coordY, odometer, speed, roadType, wa-
terLevel, oilLevel, gasLevel, timestamp, secrecyTag and integrityTag. Every
field is optional, with the exception of the id field, which is an autoincrement
primary key. Each entry contains some or all values and secrecyTag and
integrity Tag compose the label associated to that data. In each of the tag
fields, values separated by commas define the entities of the confidentiality
and the integrity sets.
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The simplified database entry shown in Figure 4.4 represents data that
sets values for odometer, roadType and timestamp. As it is possible to see
from the secrecyTag and integrityTag fields, this piece of data is tagged as
public data of entities daniel and car and was produced by the entity ecu.

id | coordX | coordY | odometer | speed | roadType timestamp secrecyTag integrityTag
3| NULL | NULL 24030 NULL | Highway | ™" | 2012-07-10 13:50:28 | daniel.public, car.public ecu

Figure 4.4: Database entry sample.

This model is very simple and defines no relationship between the tables.
Henceforth, the secrecyTag and the integrityTag fields in the Info table are
not constrained by a foreign key from the Profiles table, leaving those two
fields open to any string, which can lead to dangerous data mishandling.
However, they can be expanded to as many entities as desired without cre-
ating new entries.

4.2.1.2 Second Model

To overcome the unconstrained secrecyTag and integrityTag fields problem,
another model was designed and implemented. This model consists of four
tables, namely Profiles, Info, SecrecyTag and IntegrityTag, represented in
Figure 4.5. Profiles and Info are very similar to the same tables in the
first database model. However, they are now related to each other and the
other two tables implement the relationship between them. SecrecyTag and
IntegrityTag are junction tables, also called cross-reference tables. Their
main function is to avoid the many-to-many relationship between Profiles
and Info tables, which happen because one entity in the Profiles table can
be associated to several entries in the Info table and one single entry in the
Info table can also be associated to different entities from the Profiles table.

The only difference between the Profiles and Info tables from the old
model to the new model is that the Info table no longer has the secrecyTag
and integrityTag fields. The association between one entry of the Info table
to a confidentiality and integrity label is done through the SecrecyTag and
IntegrityTag tables, which are both composed by the fields id, info_id and
profile. To understand this association, consider a piece of data with id
number 4 in the Info table and associated to the profile daniel, which has id
12 in the Profiles table. The SecrecyTag entry would then include its own
1d, the field info_id set to 4 and the field profile set to 12.

Although this model is more complicated because of the relationships
between the tables, it constrains the possible values of association between
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Profiles
1 1

Integer id (PK)

String name

String username

String password

n n
SecrecyTag IntegrityTag
Integer id (PK) Integer id (PK)
Integer info_id (FK-Info.id) Integer info_id (FK-Info.id)
Integer profile (FK-Profiles.id) Integer profile (FK-Profiles.id)
n n
Info
Integer id (PK)
Float coordX
1 Float coordY 1

Integer odometer

Integer speed

String roadType

Integer waterLevel

Integer oilLevel

Integer gasLevel

Timestamp  timestamp

Figure 4.5: Second database model.

an entity and a piece of data. However, in order to associate a piece of a
data to a new profile, a new entry in both SecrecyTag and IntegrityTag tables
must be created, greatly enlarging the size of these tables.

4.2.1.3 Comparison and Selection

The comparison between the two database models was done by calculating
the time it takes to retrieve data belonging to at least two profiles. The
company client asked for user data. Since the company is requesting it, it can
access both private or public company data. However, only publicly available
user data should be returned. Therefore, the DL.-Manager needed to return
only data with labels user.public and company.public or company.private.

The algorithm to retrieve this data from the first database model is very
simple.

Step 1 The DL-Manager builds a caller list L.y composed by the company
tags company.public and company.private and the public data that it
is requesting, user.public.
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Step 2 The DL-Manager searches for every entry that contains user.public
in the secrecyTag field of the Info table. For each entry, the secrecyTag
is retrieved and composes the data secrecy labels Lgay,.

Step 3 Finally, it checks if all tags in Lgu, are in Leger. If this is the
case, this entry is returned. This guarantees that only entries with
both user.public and either company.public, company.private or both
are retrieved by doing only small lists and string comparisons.

The algorithm to retrieve this data from the second database model is
more complicated due to the relationship between Info and Profiles.

Step 1 The DL-Manager retrieves from the Profile table the id associated
to the user whose data is being requested.

Step 2 The DL-Manager retrieves from the SecrecyTag table all entries
from Info that are associated to this user, i.e. all entries in which
SecrecyTag.profile = id. For each entry, the DL-Manager retrieves
the SecrecyTag.infoid field.

Step 3 For each info_id retrieved in Step 2, the DL-Manager searches a
second time in the SecrecyTag table for other entries with the same
value, meaning that this entry is associated to other profiles. If it is the
case where this data is associated to another profile, the DL-Manager
looks up in the Profiles table to which entity it is associated. In case
it is company.public or company.private, the entry can be retrieved. If
not, this entry may not be returned.

Both algorithms were executed during the tests and their time of execu-
tion measured. Each test includes 6 time measurements, each composed of
2000 requests. Since the middleware has a limitation of packets up to 16
Kilobytes, the tests were performed to return from 0 to 16 entries. The full
description of the scenario where these tests were performed can be found in
section 5.1.2.

The results presented in Figure 4.6 show that the first database model
has a better retrieving efficiency. The reason for that can be explained by
the simpler algorithm and the low number of entries. A better algorithm for
the second model could improve its efficiency, but it was not the scope of this
thesis.

Having in mind the difference between the database models, the first
model was chosen for its simplicity and performance. The rest of this thesis
considers operations performed with the model represented in Figure 4.3.
The SQL Code to create the database and populate the Profiles table can be
found in the Appendix A.
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Figure 4.6: Database models comparison.

4.2.2 Security Enforcement at the Application Level

The DL-Manager component is responsible for enforcing the data flow poli-
cies. In this section, we explain how this enforcement is done for each of the
four functions defined in section 1.4.1, namely storage, access, manipulation
and removal of data.

4.2.2.1 Storage

In order to store data, a driver must be using the vehicle, simulated by the
logIn function. The Driver CE-Device connects to the proxy unit and offers a
certificate to prove its identity. The proxy extracts identification information
from the certificate and uses the middleware to taint this connection’s origin
and security level. The request is then forwarded to the DL-Manager, which
executes the logln function. The parameters contain the username and the
password of the driver who wishes to log in. These parameters are used to
authenticate the driver by means of the registered profiles in the database ta-
ble Profiles. If the profile exists and the password matches, the DL-Manager
retrieves from the middleware the origin to make sure the driver is who he
claims to be, before setting the active driver. Finally, the DL-Manager sets
the middleware label of the response and returns a successful login response.
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The Proxy is able to read this tag and determine if the security level of the
connection with the driver is strong enough to forward the response.

With the vehicle in use and the active driver set, the ECU periodically
produces data. Our ECU produced each time a list of all possible data,
namely the coordinates coordX and coordY, odometer, speed, roadType, wa-
terLevel, oilLevel, gasLevel and the current timestamp. According to the
policies defined in the DL-Manager, coordX, coordY and speed are private
driver data, while waterLevel, oilLevel and gasLevel are private company (ve-
hicle) data. Finally, odometer and roadType are considered as public data
belonging both to the driver and the vehicle.

Whenever DL-Manager receives a set of data from the ECU, it consults
its policies and divides the data accordingly. It stores the private driver data
with label Lgyiver = {activeDriver.private; ecu}, where activeDriver is the
current driver using the vehicle. Likewise, private vehicle data is stored with
label Lyepicie = {company.private; ecu}. Note that the label for vehicle data
is company, because according to the policies, every data belonging to the ve-
hicle belongs to the company as well. Finally, data belonging to both entities
are stored with label Ly, = {active Driver.public, company.public; ecu}.The
field timestamp is repeated in all three storage entries.

4.2.2.2 Access

The DIFC system plays an important role regarding the data protection when
data is retrieved from the database. In our system, two kinds of accessing
data were considered: from an external device and from the virtual machine.
In this section, we explain how accessing data from an external device works.
The access from the virtual machine is considered in the next section, during
data manipulation.

Like in the logIn function explained in the Storage section, when a device
connects to the Proxy, it offers a certificate to prove its identity. The Proxy
forms a label based on the certificate and the connection security configura-
tion and inserts it into the middleware layer. Upon data request from the
device, the Proxy forwards both the request and the label to the DL-Manager
component, which can then process the request and retrieve the label from
the middleware.

The requested data is retrieved from the database, along with its associ-
ated label. For every retrieved entry, the DL-Manager will verify if the data
flow policy holds and the data can flow to this client regarding its confiden-
tiality level, that is

Ldata = Lclienty or
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Sdata C Sclient .

If it is the case where both expressions holds true, the DL-Manager will
add this entry to the returned data set. Finally, this set is returned and
the middleware security label is now reset to a new value, so that the Proxy
can determine if the result data can flow to the client, having in mind the
connected device and the connection security level. Since in our system only
the confidentiality policies were carefully defined, the integrity flow verifi-
cation was not completely done at this stage and left for future work. It
is important to remind that the middleware has a 16 Kilobytes packet size
limit, which constrains our resulting data to 16 entries. The algorithm is the
same used to perform the database evaluation for the first database model
in Section 4.2.1.3. The full algorithm implemented in Java can be found in
the function requestData in the Appendix B.

4.2.2.3 Modification

In order to handle and modify data, there are some extra requirements.
Considering an application that modifies driver’s sensitive data, we argue
that this application must run within the vehicle in the interest of the data
protection, that is, the sensitive data must not leave the internal network.
However, running a third-party application inside the vehicle can also lead to
dangerous consequences, since the developer might not be known or trusted.
Therefore, we set up a secure environment using the Xen Hypervisor [24] and
each virtual machine running on top of it has an associated label. Both the
virtual machine identification and the label associated to it are stored at the
DL-Manager at the middleware level.

A virtual machine is created with the purpose of executing a specific
untrusted code and, therefore, its labels do not change over time. Whenever
a new virtual machine is created and registered at the DL-Manager, the label
for this machine is set according to the operations it will perform. Once set,
this label will determine which data can flow to this machine and the labels
of the data sent as output until the machine is destroyed. Virtual machine
reuse by another entity is not allowed to avoid data leakage.

Upon a request from an external device for some kind of data modifica-
tion, the same first steps mentioned for Storage and Access are followed. The
request is tainted by the Proxy and forwarded to the DL-Manager, which in
turn retrieves the label from the middleware to find out who is requesting
it. With that information, the DL-Manager can find the virtual machine
associated to the requesting entity and forward the request to handle data.
The virtual machine will then request the actual data from DL-Manager to
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modify and the decision of accessing this data is similar to the one explained
in the Access section, based on the requested data label and the virtual ma-
chine label. After executing the untrusted code, the virtual machine returns
an output back to DL-Manager, which labels this data with the same virtual
machine labels. The Proxy can retrieve this label and decide if the response
will be forwarded to the client or not.

The example use case is PriceApp, an application that calculates the
final price to be paid by the driver to the rental company by accessing both
driver’s and company’s data. The PriceApp belongs to the company and
therefore is labeled with confidentiality set S,,, = (company, driver.public).
That means it can access any data labeled with company tag and also public
data belonging to the driver. When the company requests the price, the DL-
Manager forwards it to the virtual machine. If another external device tries
to use this virtual machine, the request is not forwarded, since the request
and the virtual machine labels do not match.

The PriceApp then requests data to calculate the price. This data con-
sists of the fields roadType and odometer, which belong both to the driver
and the company. The DL-Manager verifies from which virtual machine
this request is coming from and enforces the data flow to make sure the
PriceApp is only retrieving data with confidentiality level lower or equal to
Sym = (company, driver.public). After receiving the requested data, the
PriceApp calculates the final price and returns it to the DL-Manager. By
this time, the DL-Manager would set the response label to the same labels
of the virtual machine, i.e. L, = {company,driver.public;vm_priceapp}.
This means that only an entity with confidentiality set higher or equal to
Sym = (company, driver.public) would receive this data. However, the com-
pany does not have such confidentiality level. In order for the company to
receive back the response, the DL-Manager must declassify the data by re-
moving the driver.public tag. It can do it because it is a public data and
the user gave the vehicle the privilege to release this data, according to the
policies. Therefore, the final label set in the middleware for the response is
Lym = {company; vm_priceapp} and the proxy will forward this response to
the company device.

4.2.2.4 Removal

Removing data works similarly to accessing data. Even though no data is
sent back in response to a device, the DL-Manager must check the label of
the request and compare to the policies in order to know if that entry can be
removed or not. According to the policies defined by us for this system, only
the company device can request data removal. Therefore, upon connection
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and request, the Proxy will label the connection and forward the request
to the DL-Manager. The DL-Manager is able to retrieve this label and
determine who is requesting. In case it is an entity allowed to remove data,
as the company in our prototype, it will retrieve data from the database.
For each data entry, the DL-Manager will decide based on the data label
if that entry can be deleted by the requesting entity. If it is the case, the
DL-Manager temporarily declassifies the data by removing its confidentiality
levels and allowing the company to remove it, since, after declassification,
Ldata = Lcompany-

Note that the company is allowed to remove all driver’s private entries
at once, but is not allowed to retrieve it or access it. This would reflect the
real scenario where a company would like to reset the vehicle and remove all
previously recorded data, after the end of a rental period, for example. For
that reason, the company device is able to remove either all entries associated
to a driver either its own entries, i.e. the data of the car, such as odometer,
gasLevel and so on.
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Evaluation

The system was systematically evaluated and results were drawn to mea-
sure the overhead introduced by the DIFC enforcement at the Application
level. In this chapter, we present the environment that was set up to evalu-
ate the system and discuss the results from both performance and security
perspective.

5.1 Environment and Methodology

Three computers were used for the evaluation, simulating the CE-Device/ECU,
the Proxy component and the DL-Manager.

CE-Device/ECU 2x Intel Core 2 Duo E8400 @3.00 GHz with 3 GB mem-
ory running Linux/Ubuntu 10.04.1.

Proxy 2x Intel Core 2 6400 @2.13 GHz with 2 GB memory running Linux/Fedora
16.

DL-Manager 2x Intel Core 2 Duo E8400 @3.00 GHz with 6 GB memory
running Linux/Fedora 16 and Xen Hypervisor 4.1.2. Virtual machines
are also Linux/Fedora 16.

The database was implemented with MySQL 5.1.41 on the Ubuntu com-
puter and accessed via network by the DL-Manager.

The network settings included an wired Gigabit Ethernet between all
computers. Above it, the IP protocol runs between CE-Device and Proxy,
while Proxy-DL-Manager and DL-Manager-Virtual Machine are IPSec [11]
connections. Furthermore, between CE-Device and Proxy, there is also an
SSL/TLS [11] layer at the Application level with two-way authentication.

This evaluation scenario reflects the system in a real environment. While
the connection between an external entity and the proxy unit happens over
IP and SSL/TLS, the vehicle’s internal communication doesn’t require SSL
and was chosen to be IPSec, according to the SEIS Project, for improved
security.
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5.1.1 Global System Evaluation

The overall system evaluation was performed by means of requests from the
CE-Device to the virtual machine. The request flows through the SSL/TLS
and IP connection to the Proxy and then is forwarded over the IPSec connec-
tion to the DL-Manager. In turn, the DL-Manager finds the suitable virtual
machine and sends a request to it also over IPSec, which simply returns any
number, i.e. it does not compute any output. The number is returned from
the DL-Manager through the Proxy back to the CE-Device. Note that this
evaluation does not include any database requests or DIFC enforcement, but
simply evaluates the whole system architecture in terms of performance.

The requests were executed in chunks of 2000 and the Java nanoTime
method, provided by the System class, was used to gather timing data. The
time for 2000 full calls was measured 6 times and the average was calculated.
The reference to compare this result to is composed of plain connections,
where no SSL and no IPSec are deployed, and obtained from [15].

5.1.2 DIFC Enforcement at Application Level Evalua-
tion

While the overall system evaluation gives an idea of the full system per-
formance, the DIFC enforcement is not measured. For that reason, we also
evaluated the application level enforcement through requests to the database,
reading data labels and enforcing the information flow policies. The previous
scenario configuration is not suitable for this evaluation, since the Proxy and
the SSL connection introduce too much overhead and mask the request tim-
ing measurements. Furthermore, to guarantee no variations due to virtual
machine accessing, the Xen Hypervisor was also removed from this evalua-
tion.

The scenario consists of direct requests from a client to the DL-Manager
over an IP connection. This client is considered a trusted one, for example
an ECU internal to the vehicle, which inserts its own label into the middle-
ware. The DL-Manager is capable of accessing this label and retrieve who
is requesting the data, i.e. the label of the incoming request. This substi-
tutes the function the Proxy component would do in the ideal scenario. The
DL-Manager then accesses the database and retrieves the requested data. It
enforces the information flow by comparing the request and the data labels
to determine which data is allowed to be returned to the client, before setting
up the labels of the response.

This test follows the previously methodology and is executed 6 times in
chunks of 2000 requests, giving a total request number of 12000. This is
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executed for each number of retrieved database entries, from 0 to 16. The
16 entries limit is due to the 16 Kilobytes limit of the Etch middleware. The
mean is calculated for the 6 calculated times of each entry.

5.2 Results

In this section, we present the results of both evaluation scenarios described in
the previous section. While the overall system evaluation gives an idea of the
system performance, the DIFC Enforcement evaluation shows the overhead
introduced by each data enforcement.

5.2.1 Global System Performance

In Table 5.4, it is possible to see the comparison between the system with
simple requests to the virtual machine and the system enhanced with network
security, including SSL/TLS and IPSec. The later one is over 4 times slower
than the former, however most of this overhead comes from the SSL/TLS
encryption and connection establishment, as shown in [15].

Time (nanosec) | Throughput (calls/sec)
Plain connection 20.262 98.707
SSL/TLS + IPSec 96.569 20.711

Table 5.4: Overall system performance results.

This is an important result, because this big overhead is considered for
the evaluation of the IFC enforcement. When SSL/TLS is integrated to the
DIFC evaluation, it masks the DIFC overhead and it is not possible to clearly
compare it and determine its performance. For this reason, we adapted
the evaluation of the IFC enforcement performance to a more suitable one,
without the SSL/TLS security layer, which allowed us to see the overhead
introduced by the DIFC system.

5.2.2 DIFC Enforcement at Application Level

In this section, we present the results concerning the Decentralized Informa-
tion Flow Control enforcement at the Application level, considered from the
point of view of performance and security requirements.
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Figure 5.1: DIFC experiment comparison.

5.2.2.1 Performance

The DIFC Enforcement results are shown in Figure 5.1. It shows the average
number of calls per second for each number of data entries retrieved from
the database. While the first line shows the experiment values having the
data flow policies enforced, the second line shows the reference, i.e. when
no security enforcement is applied and entries from the database are simply
returned.

It is possible to see that the best fit for this experiment is a line in the
form of f(z) = B+ Axz. The graph presented in Figure 5.2 shows the best
line fit for both the IFC experiment (B = 1220.53, A = —13.8401) and the
reference values (B = 1234.93, A = —13.0188).

The first observation drawn from this result is that the experiment has a
linear decrease compared to the number of entries. This is an expected result,
since each entry retrieved from the database increases the overall execution
time and, therefore, decreases the throughput of calls per second.

The second observation relates the experiment and the reference through-
put averages. By comparing both line fits in Figure 5.2, we can see that the
overhead introduced by the IFC system is between 1.16% and 2.68% for up
to 16 entries. However, since both lines are not parallel, this overhead tends
to increase when more entries are added to the evaluation, compromising the
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Figure 5.2: DIFC line fit comparison.

scalability property of the system.

This result shows that DIFC enforcement at the application level follows
a linear decrease compared to the number of entries, when handling few
data entries. Furthermore, it shows that the overhead for low number of
entries lies below 3%. If applied to large data sets, it will linearly decrease
its performance and might not be suitable for a large automotive system.
However, the algorithm can also be further optimized to handle large data
sets more efficiently.

5.2.2.2 Security

In terms of security, the prototype successfully fulfilled the confidentiality re-
quirements introduced by the thesis. To illustrate this, consider the following
attack cases:

Malicious Driver Device In case a malicious driver connects to the ve-
hicle, but does not have the ability to spoof an SSL/TLS certificate,
the Proxy will insert this driver’s information into the middleware tag.
Whenever this device tries to retrieve data, the DL-Manager will re-
trieve the tag inserted by the Proxy and retrieve the desired data.
However, if it tries to access company data, another driver’s data or
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any data to which it does not have the right label, the DL-Manager
will prevent the data to flow back to the malicious driver device.

Malicious Company Device The company device is allowed to perform
more actions than the driver device, such as to delete data, but requests
from both the company and the driver are treated the same way. Like
in the malicious driver device case, the company is also not allowed
to retrieve any driver’s private data, as long as it can not spoof the
SSL/TLS certificate. The DL-Manager would prevent unauthorized
data to flow back to the malicious company device.

Malicious Virtual Machine In the case of the Virtual Machine, it always
has a purpose and is associated to an entity, which makes use of it.
If the VM belongs to the company and its purpose is to manipulate
some driver’s data, the DL-Manager will not let any other driver’s
data (public or private) flow to this machine. In the same way, every
output will be associated to the company and the driver whose data
was manipulated. According to the declassification privileges, it will
be accessible by the company, the driver or both. By defining the
declassification privileges, it is possible to prevent unauthorized data
or manipulated data to flow to one of these parties.

It is important to note the importance of the SSL/TLS certificate for our
system to manage external devices properly. If the SSL/TLS certificate is
not trustworthy, the information flow might be compromised. Likewise, the
Proxy component, which handles the SSL/TLS certificates, must also not
be compromised, since its malfunction would lead to a wrong interpretation
of the requester. Finally, we assume that the components in the internal
network (ECUs) are also trusted and each one has an identification. Com-
promised components, specially DL-Manager, which enforces the information
flow, would greatly impact the designed system.
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Conclusion

This thesis aimed to tackle the problem of protecting flows of data in an
automotive environment. It made use of the concepts of Decentralized Infor-
mation Flow Control to implement a prototype, which served as a proof of
concept.

The prototype simulated an automotive environment composed of exter-
nal and internal networks, connected by a Proxy device. The external domain
contained a computer simulating the external CE-Device, which connected
to the vehicle’s internal network through the Proxy in order to request data.
The internal network was composed of a computer with the request manager
(DL-Manager), a computer simulating an Electronic Controlling Unit (ECU)
and a database. The DL-Manager also consisted of a Xen Hypervisor envi-
ronment to create and execute virtual machines, which executed untrusted
third-party applications that manipulated sensitive data.

The goal of this thesis was to control the data flow between every com-
ponent in the system at the application layer. For this, the stored data was
labeled when inserted in the database, as well as the requests and responses
for this data. The DL-Manager was responsible for enforcing the policies of
data flow and setting up the response labels for the Proxy to be able to deter-
mine if the connection to the external device is strong enough to receive the
data. Furthermore, the underlying Etch middleware controlled the exchange
of messages and abstracted the network programming from the application
developers.

6.1 Achievements

Future CE-Device and vehicle integration will demand a way of controlling
the exchange of information. For this scenario, DIFC becomes important
and this thesis successfully applied its concepts to the vehicle environment.
Furthermore, the implemented prototype served as a proof of concept. How-
ever, the performance results show that the system has still to be improved
to be deployed in a real vehicle.

42



6.2 Future Work 43

Personally, during this project I had the chance to know how automo-
tive systems work to this day and how they are going to be in a couple of
years. | had the chance to work in a great multicultural work environment
and improve social and technical skills, which include database modeling,
installation, configuration and manipulation, Java programming, services in
the Etch middleware and LaTeX.

6.2 Future Work

The future work related to this thesis are related to system improvement,
scaling or deployment.

Integrity Policies The system considers primarily confidentiality issues in
its policies, with some important integrity control. However, integrity
policies could be improved to be fully considered throughout the in-
formation flow and, therefore, increase the system’s security level by
enforcing writing rights.

Database Algorithms The algorithms to retrieve and store data are not
optimal, since the author is not an experienced developer and the fo-
cus of the thesis is not on performance issues. A better algorithm
or database model would enhance the system performance and safety,
allowing a real deployment on a vehicle.

Scaling The system as it is does not scale to a large set of data, because
of the Etch restriction of 16 Kilobytes for a packet size. This could
be enhanced, either by increasing the size or serializing the data to be
sent. Furthermore, the system could also consider larger environments,
with several ECUs and devices connected at the same time to the DL-
Manager and accessing the database.

Vehicle Deployment To fully comprehend the system and its properties
on a real scenario, it could be deployed to a real vehicle and tested with
a real use case.
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Database SQL Code

The SQL code used to create the database that was used in this thesis.

Database Creation

mysql> CREATE DATABASE drivinglog_sec;
mysql> GRANT ALL ON drivinglog_sec.*
TO dlmanager@’%’
IDENTIFIED BY ’bmwetch’;
mysql> FLUSH privileges;
mysql> USE drivinglog_sec;
mysql> CREATE TABLE Profiles (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(50),
username VARCHAR(50),
password VARCHAR (40)
)
mysql> CREATE TABLE Info(
id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
coordX FLOAT,
coordY FLOAT,
odometer INT,
speed INT,
roadType VARCHAR(50),
waterLevel INT,
oilLevel INT,
gasLevel INT,
timestamp TIMESTAMP DEFAULT NOW(Q),
secrecyTag VARCHAR(100),
integrityTag VARCHAR(100)
)
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Appendix A - Database SQL Code 49

Database Profiles

mysql>
mysql>
mysql>

mysql>

INSERT
VALUES
INSERT
VALUES
INSERT
VALUES
INSERT
VALUES

INTO Profiles(name, username)

(’Default’,

’default’);

INTO Profiles(name, username, password)
(’Rental Company’, ’company’, SHA(’company’));
INTO Profiles(name, username, password)
(’Car’, ’car’, SHA(’car’));

INTO Profiles(name, username, password)

(’Daniel’,

’daniel’, SHA(’daniel’));
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Driving Log Server

This code is part of the server’s code and includes retrieving the label from
the Proxy, retrieving data from the database, enforcing the information flow
and returning the data.

public class ImplDrivinglogServer extends BaseDrivinglogServer
{
private static String activeDriver = null;
private static Resources res;
private SecurityEnvironment secInstance;
private Connection con;
private String VM_IP;
public ImplDrivinglLogServer( RemoteDrivinglLogClient client,
Resources res,
Connection con,
String vm_ip )

{
// Initialization of the variables
this.client = client;
this.res = res;
this.con = con;
this.VM_IP = vm_ip;
try {
// secInstance contains security information from Proxy
Resources proxyRes =
(SecurityEnvironment) client.getResources();
secInstance =
proxyRes.get (SecurityEnvironment.SECURITY_ENVIRONMENT)
} catch (Exception e) {
X
i
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private String getCallerSecrecy()

{
// Retrieve the confidentiality set from the caller
// from the Proxy
return secInstance.getCurrentTag().get_difc_secrecy();

3

private String getCallerIntegrity()
{
// Retrieve the integrity set from the caller
// from the Proxy
return secInstance.getCurrentTag().get_difc_integrity();

3

private void prepareProxylLabel(String secrecySet,
String integritySet)
{
// This function prepares the security environment
// for the Proxy
String[] IFC = new String[2];
IFC[0]=secrecySet;
IFC[1]=integritySet;
client.getResources() .put ("SECURITY_ENVIRONMENT.IFC",IFC);

@0verride
public Map requestData(String driverName)
throws OperationException, SecurityException
{
// Retrieve label of who’s requesting data
String callerSecrecy = getCallerSecrecy();
String callerIntegrity = getCallerIntegrity();
// Retrieve all tags
ArrayList callerSecrecylList =
new ArrayList(Arrays.asList(callerSecrecy.split(",")));
ArrayList callerIntegrityList =
new ArrayList(Arrays.asList(callerIntegrity.split(",")))
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String currentlLabel = "";
// Apply some modifications to the tags, such as
// replace ’company’ by ’car’ and extend tags with
// .public and .private
for (int i=0; i<callerSecrecylist.size(); i++) {
currentLabel = (String) callerSecrecyList.get(i);
if (currentLabel.matches("(7i) “company.*")) {
// Applying policy that car data belongs to company
currentLabel=currentLabel.replaceAll("company", "car"
callerSecrecylList.set(i, currentLabel);
}
if (!(currentLabel.matches("(?71i).*\\..*x"))) {
// Extending the tags with .public and .private
// for the cases where it’s not specified
callerSecrecyList.set(i, currentLabel+".public");
callerSecrecyList.add(i+1, currentLabel+".private");

// Tmp variables init
PreparedStatement pst = null;

Map data = new HashMap();

List ids = new LinkedList();

List coordXs = new LinkedList();
List coordYs = new LinkedList();
List odometers = new LinkedList();
List speeds = new LinkedList();

List roadTypes = new LinkedList();
List waterLevels = new LinkedList();
List oilLevels = new LinkedList();
List gasLevels = new LinkedList();
List timestamps = new LinkedList();
Integer id = O;

Float coordX 0.0f;

Float coordY 0.0f;

Integer odometer = O;

Integer speed = 0;
String roadType =
Integer waterLevel = O;

nn.
b
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Integer oillLevel = O;

Integer gasLevel = 0;
java.sql.Timestamp timestamp = null;
String secrecyTag = "";

String integrityTag = "";

ArrayList secrecyTaglist = null;
ArraylList integrityTagList = null;

try {

if (driverName.equals("company")) {
// Requesting company data means requesting car data
driverName = driverName.replaceAll("company", "car");

// Retrieve all data from DB
// associated to driverName in any way
pst = con.prepareStatement (
"SELECT * FROM Info WHERE secrecyTag LIKE 7;");
pst.setString(1l, "¥%"+driverName+"%");
ResultSet queryResult = pst.executeQuery();

// This counter limits the returned list to 16 entries
// to overcome size limit of Packetizer (Etch)
int count = O;

while (queryResult.next())
{

// Break rule

if (count > 15) break;

// Retrieve the entry

id = queryResult.getInt(1);

coordX = queryResult.getFloat(2);
coordY = queryResult.getFloat(3);
odometer = queryResult.getInt(4);
speed = queryResult.getInt(5);
roadType = queryResult.getString(6) ;
waterLevel = queryResult.getInt(7);
oilLevel = queryResult.getInt(8);
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gasLevel = queryResult.getInt(9);
timestamp = queryResult.getTimestamp(10);
secrecyTag = queryResult.getString(11);
integrityTag = queryResult.getString(12);
secrecyTaglist =
new Arraylist(Arrays.asList(secrecyTag.split(",")));
integrityTaglist =
new ArrayList(Arrays.asList(integrityTag.split(",")));

// For each retrieved entry, check if the secrecy labels
// are ’lower or equal’ than the caller’s secrecy labels
if (callerSecrecyList.containsAll(secrecyTaglList)

&& integrityTagList.containsAll(callerIntegrityList)){

// This means that the data secrecy labels are

// a subset of the caller secrecy labels and that

// the caller integrity labels are a subset

// of the data integrity labels.

// For that reason, data is allowed to flow

// from the database to the caller

// Add to list to be retrieved
ids.add (id);

coordXs.add (coordX) ;
coordYs.add (coordY) ;
odometers.add(odometer) ;
speeds.add(speed) ;
roadTypes.add(roadType) ;
waterLevels.add(waterLevel) ;
oilLevels.add(oilLevel);
gasLevels.add(gasLevel);
timestamps.add(timestamp.toString());
count++;
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// After retrieving data and enforcing the flow,
// format return data to the HashMap structure
data.put("ids",ids);
data.put("coordXs", coordXs);
data.put("coord¥s", coordY¥s);
data.put("odometers", odometers);
data.put("speeds", speeds);
data.put("roadTypes", roadTypes);
data.put("waterLevels", waterLevels);
data.put("oilLevels", oilLevels);
data.put("gasLevels", gasLevels);
data.put("timestamps", timestamps);
} catch (SQLException sqle) {

System.out.println(

"Error while retrieving data from the database.");
throw new OperationException(

"Error with the database on the server side.");

// Prepare the label for the Proxy
prepareProxyLabel (callerSecrecy, callerIntegrity);

return data;

3
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