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I. INTRODUCTTION

Since IQBQﬁwny paﬁers have been published reporting the development of
new_téchniques for balénéing line production systems; all of them oriented towaxd
_ solﬁing the classical formulation of the assembly 1ine balancing problem, due to
Salveson. Most.of these ﬁapers r?port good results in applying these techniques to
_ hypdﬁhetical and industrial 1ine_galancing problems. However, since the classical
lformnlation does not distinguish among problem solutions — in terms of workload
distribution - all efficient algorithms in fact, tend to overload the first stations
in ofder to reduce search effort, looking forminimization the npmber of - work
stations'at the Iine; The solution formed are thus typically unbalanced: first
ééatious overloaded aﬁd' final ones idle. The first portion of the paper describes
the assembly line balancing problem. This is followed by a criticism to thé classical
formulation and then our proposed formﬁ;ation. In the third portion we present scme
results on the A% class of algorithms felevant to our case. This is followed by a
'descriptioﬁ of fhe proposed algorithm, the design of the experiments, some experi~ .

mental results and the conclusions.
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II. THE ASSEMBLY ' LINE BALANCING PROBLEM

Given a decision to use line production, ménagement must first
decide on the work that is te be done by an ascembly line. This work 1s
then broken down into a set of "work elements", each with a "work element
time". Requirements are specified that some work elements must "precede"
others. These requirements must be mutually'coasistént; as fully sPeéified
by the partial ordering assgmpgion in the-matﬁematical formulation to follow
A "station" is a subset of the set of work elements. A "production line" is
an assignment of the work elements to a sequence of stations with each ele-
ment assigned.to precisely one station, such that,if one work element must
precede another, then either it is assignéd to an earlier station in the
sequence or both work elements are assigned to the same station. .The lengtkt
of the production lime is the number of stations, and its "eyele time" is
the maximum of the sums of work element times for work elements assigned to

each station.
The following are two intimately related optimization problems:

1. Given a "required cycle time", to find a production line of
minimum length, subject to its cycle time not exceeding the

required cycle time.

Ii. Given a "required line length", te find a production tine with -
' minimum'cydle time, subject to its 1line length not exceeding

the required line length.

Mathematically, the preceding can. be condensed as follows:
Let be given a finite nonempty set of work elements { ,2 partial ordering
defined on  § (precedence relationships), a real valued function t(x3¥> 0

for x in @ (work element times). A station is a subset of Q. A poduction
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line is a partition of  into stations, N{R) = (Si, S25 «v.. SN), such
that if x4y and x is in Si while y is in S., then 1£j. The length'of

. 3
tnis producticn line ile(Sl, Bgs vee s SN) = N and its cycle time is:

O' = Max {T(Si)}
i .

wheare

T(s;) = I {t(x) l x € 5.}

i

'is'fhe work content of station Si.

Problem I. given 6 » Max {t(x) | »x £ Q}, to find a
production line, T(R)= (S), S2, ...> SN) for
which N is a minimum, subject to 5' < 8

 ProblemIl. Given an integer No » 0, to find a production
' “line I(Q) = (Sl, 82, s ey SN)’ foxr Which‘_e’

is a minimum subject to N &€ Ny

n
good

_ Most line balancing techniques are designed to obtain
approximations"” to solutiomns for problém I; that is, to find a prbduction
* line of nearly minimum lenght. However, the application of these techni-
ques to problem II is a more suitable way to compare them, This is
acomplished by applying them directly to problem I, with various required
‘ecycle times, and seeking a2 "nearly" minimum cycle time“subject to -2
required line 1ength.' Problem IY solutions constitute the more critical
1in§ balancing results because the better techniques produce Problem II |
.solutions with smaller cycle times than do the pobrer techniques., If no
attempt were made.to'obtain preblem I1 sclutions, many of the techni@ues

would produce jdentical results for the large number of required cycle

times that are not the mnearly minimum cycle times.
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Idle time is the amount of time that resources are not
utilized for each unit of product to be reproduced by a productiocn line.

The expressicn for idle time is:

U _oi=N .
IT = NG - Zi_) T(5.);

The optimal solution of either problem I or problem II also
minimizes idle time for specified éycle times.and line lengths. .In the
above equation for idle time} any reduction in the line length N for
specified cyecle time © decreases idle time. Similarly, idle time is
decreased by any redu;tion in the cycle time O for specified line length

N.

Now, perhaps due to its lesser compiexitj Problem I has been
rather extensively studied while Problem II has lain neglected. 1In order
to fully appreciate the consequences of this "state of affairs" let us

review the elassical formulation of Problem E, due to Salveson:

_ _ ‘Given a set of tasks {, a partial ordering < defined on £
{technological precedence relations), a meapping £:Q+R" {execution times)
'a constant ©>0 (maximum allowable ecycle time for the line), the classical
assembly-Iline balancing problem is defined as the problem of finding a
collection H(Q)=(Sl, Sys canes SN) of subsets of § satisfying the five

following conditions:

ii) 1, § e {1, 2, «.., N}, i # § > 5,85 = ¢

( (i), (1ii) imply that N{Q) partitions Q)

{[f=N

iii) T(si) L {t(xj) | X, € 5.} g0, i=1,2,...,¥
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 iv) x<y, X € Si’ y € Sj + 1£J

v) Idle time, defined as

N
1

]

IiT = L (6 - T ('Sj')),

il

Guds s

is mininized.

(Note that (v) is equivalernt to requiring minimization of N,

since .IT=NO~-T%, where T#®=} ﬂ;x |.x e P

Many algorithms have been prbposed to solve this problem;
some {as for instance Gutjzhr-Nemkauser's) use D&namic Programming and
other sssociated techniques to £ind an optimal solution, while others use
ad~hoc heuristics to find a solutlon of these, the sole method that coul
be modified to guarantee optlmallty of the solution is Nevins' We can
7.rough1y subsume the present situation thus: the solutions produced by
heuristic methods are not guaranteed optimal (with the above mentioned
‘exception), while the methods based on systematic search are too ineffi-

-cient to use in medium to large-scale problems.
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III. CRITICISM OF THE CLASSICAL FORMULATION

 0bserve that according to the classical formulation any
solution of Problem I:‘is as good as any other; élthough in prin-
ciple we-coﬁ1d'choo5e among them using Problem XL as vardstick, in
practice no algorithm in the literature provi&es a way of doing this
other than by generatingﬁall solutions. The situation is worsened
by the fact that efficient algorithms (such as Nevins'’) tend to eli-
. minate 211 but a small subset of solutions from consideration. There-
foré, the best we could do would be to compare two or three solutions
and choose one of them without the slightest guarantee that a much

better one (in the sense of Problem II) could be found.

Thus, in many solutions produced the cycle time of the
assembly line will be near or equal to the maximum allowable cycle
time, even though a solution may exist with significantly reduced

cycle time,

This same fact could be observed from another viewpoint:
if the cyele time is far from optimal this means that the workload
is'very unevenly distributed among stations — while some are over-

loaded, others remain idle a good part of the time,

"This situation is clearly undesirable from all points of
view: the bottleneck in the overloaded stations hampexrs efficiency
znd avoidable inequality among workloads is beth uajust and disruptive

of work relations.

These are not purely academic considerations: since the
classical formulation does not distinguish among solutions, all ef-
ficient algorithms in fact tend to overload the first stations in
ofder'to reduce search effort. The solutions found are thus ty-—

pically unbalanced: first stations overloaded, and final ones idle.
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Small wonder that in practice most assembly lines are balanced using

manual or semi-manual procedures.

: 1t seems to us, therefore, that a reformulation 60f the
assembly line balancing problém is needed in order to eliminate this
difficulty. According to the preceding discussion, the real problen

to be solved is:

“1') Given € (maximum allowable cycle time), find a soclution

to problem”I that has minimum cyele time,

11') Given N (Maximum allowable number of stations), find =
sotution to problem II that has minimum number of sta-

tions.

More formally, let H(2) be any line balancing; i.e., H(Q}
satisfies ' .

1) T@=(s,, S,

g Sgr eeees SN); SiC.Q, i=l,2,3,....,N;

ii) For all, je{1,2,....,N}, i#j +.Sif‘Sj.= o

iii) For all x,yel, x<j,'xesi,jy855, + 1&g 3

and let Np=N, O =max {T(S,) | i=1,2,...., N}

n It

be the number of statioms and cycle time of the line respectively.
f A@)={m() | (), (i), (iii)}, the pioblem (I') is then:

IV) Given O, find M*(R) having_Nnkz N#*, GP*= g%,

B

< H=%}

e*=min{0; | m¢) e A, Ny

where

¥r=min{Np | @) e a@), Oy < 01



'ahd.problem (IL') is:

V) Given N, find [(8) having Nﬁ = N, Gﬁ‘= B,

< 8}

¥ = min {NH_I.ﬂ(Q) e A, &y
where :
(8 = min {o] | T() ¢ A{Q), NH 3 N}

These two problems are related in a very intimate way. To see thié,
let us denote N*(0) and 0*%(0) - the length and the cycle time of the
solutions to problem (I') given @, and N(N), B theificountér_'

parts in problem (II') given N.. We can enounce:
Lemma 13
Let

$#(0,0)={1(2) | 1(2e AQ), Xy

=N*(0),04 = 0%(0)}
be the set ofssqlutions to (17). Thenjl R

5%(0,0) © A%*(0,9),

where
a0, ={I(Q) | T@) € A@), Op € O, Ny < NE(@)}
Proof:

The result comes at once from the definitior of N¥%(®), keeping in mind

that 0%(0) € ©.

We can aﬁalogoﬁély'prove'

. Lemma 2@

 Let .

'§(N;ﬂ)='{ﬁ(9) [_H(Q)' e  A(Q), NH=§(N), eH;Q(N)} 
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be ﬁhe set of solution$ to (II'). Then
l’é(mr,ﬁ) -l _K(N,Sé)-,
where
g(n,m:{n(ﬂ) | Q) é_ A, N € N, oy SG(N.)}.

and now we can enounce and prove the following proposition:

Proposition 1:

. 1) Given 9, | $%(0,2)=5 (N*(0) ,M)

i1) Given N, 5(N,®)=5*@),Q)

Proof (i):

we have.

E@0),=1@ | 1@ e AQ@), ¥ < X¥@),

B, € B(N*(0))}
Now, substituing N*{(0) for N in the definition of M), comes @(N*(@))=G%(G).

Therefore
.Ia:m{=(e)~,sz>={n-(ﬂ) 1 I@ &A@, o € 0%(0), N € NH(E))
i (0(0) ,§a> =fs='=(e,m'
?ré@.]emma 2,.we_may'wfite

S*(), < $%(6,0).
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But thi§;gives.
S ) ¥5(0)
.and,.using the definition of:g(N,Q); we have%
§(m%(@),9>=s*(e;g)_.
The second item is'proveq in exactly the same way, interchangiﬁg

problems (If)'aﬁd (11%), as well as lemma 1 for lemma 2. This

completes the proof.

" Corollary 1l:

i) giveﬁ O, there exist Ng= N#*(@), B = B%(8)
subject to N(Ng) = No = ¥*(Bo), BN)}=0,=8%(0;) »

and the pair (No,0¢) is not altered if we replace O

by any 6' e [ 60,6 ].

ii) given N, there .exist  Ng=R(N), 0, =B ()
subject to N(Ng)=Ng=N#(0,), B(No)=0,=0%(0s),
and the pair (Ng,0p) is not altered if we replace N

by anj N' € [ Np,N ].

Proofs

immediate from propoesition 1.
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Corollary 2:

Fof e?éry pair (N,@j such that N>N#*(0)>N(N) or, equivalently,

e>B(N)>0*(8), we have S*(0,R)=3(N,R).
Proqf:

the equivalence comes at once from the definitions of pre-

blems (I') and (II'). We have thus

R(N)<w*®(Q)<N

0% (8)<B (N)<O

and from corollary 1, comes:
étﬂ)=é(N*<e))=e*(e)=@*(§(ﬁ$5
'ﬁ(m)=ﬁ(x*(e))=N*(@)=N*(@(N))

substituting in the definitions of S*(0,Q) and S(N,Q) the

conclusion comes at once,

Q.E.D.

In other words, every solution of problem (I') given O is

also a solution to problgm (I1') given an appropriate value of W.

This formulation is thus very attractive; nevertheless,
these problems seem operationally hafder to solve than either problenm

1(1) or (II), as they are in fact combinations of both.
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We propose to do this by adding to the classiecal formulatic

of problem (I) a restriction relative to the distribution of workloads

among the statiouns.

In more precise terms, let us note as 5 the set of assign-
ments satisfying the conditions (i) to (v) of problem (I), i.e.,  the

set of optimal solutions to the classical problem,

Let us now assume given a convex incrxeasing funcion

+ t, .. . "
R >+ R ; we may now define, for each admissible assignment I{H} =

~
(X3

S#; Sy senes SR)’ the disequilibrium in the sense of 2(.) as

o

-
i

1

i=

D(R,M)=2]

(O - T(Si))
Note that D(L,H)> N(O-T*#/N); if 2(.)-ishstriCt1y convex, w
shall have equality if, and only if, T(Si) = T*/N for all i. An importan

case 15-2(.)=(.)m, m > 1; We shall then note D(2,M) as Dm(H).

A

We Shall_then say that a solution to the assembly-line

balancing problem is optimal in the sense of & (or L—optimal) if T(Q

satisfies Salveson's conditions (i) to (v), and aiso
(vi) D(L,II} = miﬁ{D(l,H') | () e 8} = ﬁ*(i)

in other words, if T(R) € § and D(L,I) = D*(L).

-

It is easy to see that, if 2{.) = (.) (linear disequilibrimu
we obtain Salveson's formulation and that, for 2(.) = (.)m'with large
m, we get problem (I'). BResides, every f£-optimal solution is also -
optimal for the classical problen.

7 Note also that, if £(.) is strictly convex, an %-eoptimal
solution tends to have an approximately uniform distribution of work-
loads, even for fairly smooth £(.); for instance, quadratic disequili-~

5 : . .
brium {2(.)=(.) ) gives almost uniform solutionms.
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IV, SOME RESULTS ON THE A* CLASS  ALGORITHM

The algorithm that.wé propose is based on the theory of.héuriStic
search formélized by Ha?t et al., i.e., the theory of the A* algorithm.” This
is in faet intimately related to branch-and-Bound algérithms, and thefé has
beén some argument over Wﬁether they are not, in a way, equivalent. Without
entering the ﬁerit of this discussion, we shall only note that Hart et al.
have obtained stronger results (the "optimality" theorem) than classical
braﬁchﬂand—BOpnd theory. It ;o happens, as we shall see,-that for the‘fefqg
" mulated Classical Assembly Line Balancing Problem all of Hart's optimality

conditions are fulfilled; before going on, however, we shall present the

theoretical results most pertinent to our case.

IV.1 - Problem Grapﬁs

Let us aséume that we can formulate a prﬁblem in tﬁe following
way: we know a finite set S.of initial states, can recognize a set T of-
desi;ed.states (terminal states), and aiépose of_é (finite) set T of opera-
tions on states; thét is, if x is a state of the problem and Xel' is a valid
.'opefation 53 X, Ehen xx=(y,¢) ﬁhere y is a state of the problem and c is the.

cost of applying X to X..

 Under these conditions, the graph(weighted and directed}Gs==(S,F),
- defined by
o i) S is contained in the set of nodes of G noted V(GS).

-

11)nie V(GS), vel', and Xy = (nj, cij) -+ nj. 8 V(GS) and Cij is the

.cost of the arc n.n. ,
13

is called graph generated by S and [, in the case (ii) above nj 1s called

. successor of ni.' Solving a problem may then be viewed as partially exploring Gs'
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1V.2 - Admissibility

We shall only cbnside? graphs with aréﬂcosts superior to some

' positive number § (if Gs is finite, this condition may be relaxed; we gﬁall-
requifé only that there be no circuit with negative cost), and we shall
refer to. them as ngréphs. We shall further assume that costs are'additive,'

is a successor of n., is a path

i.e., if 'Yé(no, Uiy revs nk), where D1

from nO Fo o,

oy Lok '
}t will h;ve a!__(‘fostrkY (nO,.nk) = Zi=1 cifl,i . We note
-k(ng, nk) for the minimum cost among zll paths from n, to . Some particu

lar notations are also useful:
if n is a pode of G, we write

g(n) =min" k(s,n) ; h(n) =min k{n,t) ; h(S)=min h(s)
' seS _ - teT _ sgS

the minimum cost of a path from S to T constrained to go through a node n is

notéd f(n) =lg(n) + h(n).

‘A solution to the problem is a path from $ to T. It is said to be preferred
if its cost is £{S8). A search algorithm is said to be admissible i1f, for
every 8—graph having a finite solution, it can guarantee finding a preferred

solution in a finite number of steps.

IV.é - Heuristic Seafch.The‘A* Algofithm

We shall také “"heuristic search" #q meén the use of additional in
formation about the problem to help guide the search. A good discussion of
this may be found in Nilsson (1971). For oﬁ; present purpose we need only assume
that_fof ever& node n, already visited of successor to a visited nede, we can
cglculate a "merit functioﬁ" Z(n), which may depend_on external information as

‘'well as on the status of the search.
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. For every node we store

i) State description
1i) Flag ¥=0 {(open) or 1 (closed)
111) Value of T |

iv) PointerP to its "best" predecessor -

{the meaning of F and P will be made clear below)

1

A% Algorithm’

1._?or all s in 8, éalculate and store T(s) and do F(s)=0, P(s)=nil;

2. Choose the open node nm having best merit. Resolve ties in any way you like,

but always in favor of nodes in T, if there is no open node, exit with failure

3. If neT do F(n)=1 and stop. The solution is cbtained following the pointers

backwards.

4. Otherwise do F(n)=l and generaté'all successors to n; for each such m calculate
: f@). Ifm is 2 new node EE.if the new value of T{m) is better than the old

one, do P(ﬂoﬁn; F(m)¥O and store T(m)..

5. Go to 2.

In this algorithm, ¥(n) is usually an estimate of f(n)=g{n}+h(n). An
iﬁportant special case is F(n)=g(n) + A (n), where Z(n) is the least cost, found
so far, of a path from 8 to n;'ﬁ(n) is an estimate of h{n). We must then store

| both g andlﬁ, and do the test in step 4 on.§.

In this case we have the following theorems:

"~ Theorem 3.1 _(ngt et al.):

If Fm)=g@@) + R(n), and hi(n) € h(n) for all nodes in GS, then A* is
_admissible. Furthermore, only nodes having £(n) £ £(s) are closed. This result

is immediately extensible to fimite graphs with non-negative arc—costs.
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1f, besides fi(n) < h(n) for all n in G, the estimates also satisfy
“h{(m) - B(n) € %(m,n) for all m,n in G ("comsistency'), the following results

are true:

© P.3.1. If R ois consistent, A% only closes a node when_an optimal path to it has

been found (Hart)

P.3.2. 1If ﬁ is consistent, and the sequence of nodes closed by A% is (hl, eeey T )

1<J > ?(n )‘if(n Yo (Hart)

IV.4 = Optimalify

Let us introduce another.concept: we éhall say thaﬁ an admissine aigorithm

Ay is no more informed.than another admissible algorithm A; if the iﬁformation eacl

of them dlsposes of allows 1ower bound estimates of h{n) for all n (reSpectlgely no|
Bi1(n) and h2 () ) such that ﬁ1(n) <ﬁ2(n) h{n) Ffor all n. We have then Hart et

al's "Optimality Theorem":

Theorem 3.2.

Assume that A® uses a consistent fi, and let A be any admissible algorithm

no more informed than A¥. Then

(1) TIf the seguence of nodes closed by A* till stopping is (nl,}..,nR) and Ec is
the number of ties in step 2 with T(n)=£(s) (critical ties), calling N, the number

R - Ec

. of nodes closed by A we have &’

(ii) There is a tie - breaking rute for A* such that every node closed by A% will

also be closed by A. (Hart)
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V. RESOLUTION OF THE REFORMULATED C.A.L.B.P.

Initially, we definé the problem grapht .

STATES: -~ A state X=(X;, X2, -.., X.) of the CALB? is a sequence of

N°.

subsets from Q, satisfying

(i) Xifixj=¢ for i#j and X;#¢ for all.i

(ii) T(xi)‘é I tlx) €0 for all i

xeX,
i
(iii) for all x,y € R and x<y * (XEXi, YEXj, i>1i)

N =N
or(ys{ﬂ*U;=1 L))

" We convenme that the empty list is an state

SUCCESSORS: A state Y=(¥3, Yas se-> Ym) is called successor of the

state X=(Xy, Xp.e.0.; XN) 'if,.and only if:

(1) M=N+1

. = =. .<~‘
{(i1) Yi Xl for 1 &N

The transition cost CXY is defined as

_ny=£(9-T(Y )

N+1

Note that ny is always nonnegative.

INITIAL STATE:

The initial state s is the empty sequence (a

without elements)

sSequence
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TERMINAL STATE: A state is called terminal if it is a partition of @; And it is

called preferred if the number of components of that partition is
minimum,
The problem is then reduced to findiﬁg a minimum cost path between s
and the set of preferred states. Note that‘Gs has the following properties‘[23:
P.4.1 - GS is an anti-symmetric tree. Thus, ‘there exists just one path
from s to any state n (whence gZ(n)=g(n)}, and at most one path

from state n to any other state m.

P.4.2 - If we associate N; (minimum length of a solution passing through

X) to each state X=(X;, Xz,...,XN), and if Y=(Y:, Yz""’YN) is

such that
Ny, "™V x,  and g€,
. i : 1
i=L i=1

then N§=N§ and £(X) € £(Y). In this case, we say that Y is

dominated by X,

_ In this way, we define for all state X=(X1, X2, «.., XN)

i ¢ @ - m.ace - T,
N(x) - N
Where . ¥

and ' %
" e e [BoE
. e

Observe that the estimatives N(x) and R(x) have the following
prcpeities [2]
i) R(x) < N*(x) for all x.
ii) Y & I'(x) + R(@y) > A(x)
1ii) R(x) < h(x) for all x
iv) Y e T(x) +~ (y) + ny > h(x) (consistency)
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VI. THE A ALGORITHM =

%
CALBP

The.Algorithm for the CALBP is thereforelas followéf
Fo? each state X = (31; ..;., XN), we store;
(1) deséription'of X
(ii) g(x), N(X), T(x)'_
(iii)'ﬁ(x), ﬁ(x),,?(x).
(iv)'pdigﬁer P(X) to its prgdecessor

(v) FlagF(X) = 0 (open) or 1 (closed)

1, Initialization: let s be the-empty list; store s and do

F(5)<0, g(s)+0, N(s)<0, T(s)+o,'P<s>_*-a;

. X - T . -
Compute N(s) <« 31 B(s) « EB(s) <« H(s). 2 (0O - ) JH
| . _ - : N(s)
let ¥ + N(s).
.2. Selection: Among a2ll open nodes Y having N(Y) = E, choose an X with
 minimum T(X), resolving ries in favor of nodes with B(X) = N(X)} and

arbitrarily otherwise; if there are no open nodes exit with failure.

3.'E(X) < 1. If R(X) = N(X) exit with success (The solution is obtained

foliowing the pointers). Else generate I'X.



. For every Y €'} evaluate T(Y
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), C <+ 2(0_— T(YN+1)); _do

N+1 XY

CN(YY  W(X)+1, g(Y) + g(X)+ny; CT(Y) + T(X)+T(YN+1); let

ANY*meizziil_]% “and do R(Y) + N(Y)+ANY,
o |

R(oang.e (- TRy, T(D)<g (V) +R(¥), P(YI*X;

AW,

Now test for dominances: if there exists an open node Z that do

minates Y, do not store Y; else store Y, do F(Y)«0 and eliminate

any noded dominated by Y; take next element in I'X and repeat (4)

until exhausted.

Update N + min {R(X) | F(X) = 0};

. Return to 2

Observe that the restriction to nodes having ﬁ(X)'= ﬁ, in step (2),
guarantees we wWill stop at a desired sgate,hsincé H(X) < N*(X).
Besides,,the selution will—mipimize disequilibrium: - (else let ﬁf and
%f be the length and disequilibrium of the solution reached; if this

" is not optimal there is an open node X having NE(X) = N, and f(X)<ff

£

which waé not selected; this is impossible since N(X) EN*={X) and
B(X) € h{X) for all X). |

On the other hand, notice that both ANy(<N*(Y) - N(Y)) aad R(Y)

satisfy the consistency assumption (from properties (ii) and (iv))}.

This allows the conclusion that this algorithm is Hart-optimal £for

the reformulated CALBP among all admissible algorithms using no more

information than:

(i) cycle time O

(ii) T* = Zﬂ{tx [ xeQ}
(?ii)_For.every state X = (Kl;...-, X
i.i.i.a. N(x)=N (number of statiomns in x)

i.i.i.b, T(Xi)=2{txlx.€ Xi}, i=1,2,...,N
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VII. THE EXPERIMENTS e

The efficiency of a search algorithm oriented towaxds soiving'the
CALBP depends.strongly on the structure of the precedence graph, as well as on the
?roblém cycle timé. In order to account for these factors and test more rigorously
the proposals gontained in tﬁis work two different kinds of expérimeﬁts, i.e.,
precedence graphs, were selected, to wit

a) networks extracted from the literature and

b) networks generated through pseudo-randem methods.

 The networks extracted from thé 1iteratur¢ represénf well;known |
problems,lcérrying the name of the researchers who designed them for the purpose
of testing thelferformahce_of the algorithms proposed by them in certain pathological
_céses. Aﬁong the ﬁetworks taken from the iiterature stand out.Jackon's 11 element

network, Gutjahr and Nemhauser's 10 element network and Tonge's 21 element network.

The networks generated through. pseudo-random mechanisms were included

in order to obtain experimental results also for nem-pathological cases.

The principal parameters of each network were generated as follows:
the number of elements from a uniform distribution, the task times from another

uniform law, and the successors to each task from repeated Bernoulli urns.

For large scale problem it is often necessary to prune the search
tree in order to lessen the storage needed to solve a problem. . With the purpose of
testing the sensitivity of the algorithm with respect to pruning we limited the number

of successors per node to three, these being selected,'after their generation, in
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increasing order of deviation —_tgat we define aé the absolute value of the difference
between the workload assigned to the last station and the average workload T*/N -

in order to select nﬁdes leading to more uniform distribution of idle timé. This
pruning critérium revealed an out-standing property: in no case the pruning'affectéd
the solutions arrived at; this ﬁas true also for the Névins algorithm, which we

. . . .
selecied for compaglson with the A CALBP"

From the many heurlstlc algorithms proposed for the CALBP (before thlS.
date) the only one that employs, in a way, the concepts of ordered search is Nevins.
In his paper Nevins reports a series of experiments for comparing his algorithm.with
thérmain.existing methods at the time (1972), showing his method to be more efficient
than any of tﬁe others; for this reason we selected it alone for the purpose of
comparison.. It is worth observing that we used for Nevins the same pruning criterium

as in the.A“CALBP to maintain comparability.
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VIII. PERFORMANCE INDEXES

Toevaluate the quality of solutions obtaired we designed several
performance indexes. The first is the quadratic disequilibriym D, () as defined

in {§2) , generated by the solution X found; here

—— _ ’ _ j=ﬁ 5- _ -— 2 V— - —_ ° — -
D - D2 (H) _Ej___l (@ T (Xj)) » X = (XI’ Xz.,""' XN)

Since D > N (0 - T*/W)2 = D% and as 2(.) = (.)? is strictly convex,
equality occurs if and only if T(Ej} = T%[ﬁ for all j. We may thus consider D — D¥
(or D/D* - 1) as an index of the additional‘disequilibrium introduced by X over the

lower bound D*..

A second index 1is the difference between the number of statioms of .

— — : ) . +
the solution X, found, denoted by N, ané the theoretical lower bound N: = rf*/é] .
Through this index we may evaluate the performence of algorithms in problems (prece—

dence graphs) for which the lower bound is not attainable.

Tﬁe numhe? of géneratéd'noées G refers to ail nodes analysed by the
algorithm as possible candidats.for expansion, and not to those effectively stored;
.since we effect a dominance test as described in {(P.42 ), the nodes dominated by some
cther node are deieted._ The number.of nodes effectively stored by the end of the
search is denoted by G'. The difference G - G' is thus an index és selectivity for

the dominance criterion.

The number of closed nodes T gives an approximate measure of the
effort expended to find the solution. We did not consider computer time as a per—
formance criterium, since it reflects longely the programmer's ability and machine

characteristics, thus making comparison between two algorithms difficult.



IX. RESULTS
AR .
CALBP i . . NEVINS

PROBL %! ¥ * o) At =
EM 8 N_Ct N D D G G T D G e? T
g 7 718 12 .5 i} 20 149 52 %7 22 88 37 lz2s
JACKSON 9 | B 6 10,7 I | 123} 47 ¢ 28 26 195 46 29
3 10} 514 5 3,2 & 49 29 9 10 43 17 8
(11 elements) 11} 51 5 16 .2 19 57 36 9 ‘51 22 29 6
1| n|4 25 .0 28 54 38 & 42 2y 23 I
151 4 | & 49 .3 50 81 L2 & 125 31 32 %
19} 3] 3 40 .3 ]| 41 60 %7 4 101 as 31 3
21| 3] 3} 96.3 97 64 L8 e 289 37 | 37 3
22| 3| 3 §133.3 ||13% 70 50 4 328 39 39 3
287:2 | 2 0.0 1 L5 45 2 0 %2 4 2
. 6 4 718 | 12.5 | 20 72 | 3% | 32 20 | ‘w7 i 29 123
GUTJAHR & 7 6! 7 17 .3 23 57 32 | 21 29 38 27 15
: 8 5515 0.8 L 21 20 6 b 27 11 8
NEMHAUSER 9 | sis g8 || 23 33 | 27 7 37 20 | 20 5
o ey 107 4|3 28.8 32 45 | 31 9 .56 48 25 11

‘72
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X. ANALYSIS OF RESULTS

The following observations were verified both in experiments with punning

and without it; therefore we shall not discriminate between them.

X.1 - with'Respectho The Ma%hémé%icai Rggogﬁﬁlation,f:f.

i) D (A% ) <D (NevinsS in all experiments (often remarkably smaller);

CALRF

thus A% consistently generates assembly lines that are wmore

CALBP

~efficiently balanced, which comes from usiﬁg a more selective objective
function. This difference tends to grow for large cyéle times. .The
explanation lies in that in this case the number of solutions having
minimal idle time increases greatly and Nevins' criterium tends to prefer
solutions having idle time concentrated in the last work statioms. |
11} N (A*CALBP) =N (¥evins) in all experiments; both methods obtaiﬁed solutions
having minimum number of statioms (that is to say, minimum idle time); Thus
A*CALBP finds solutions that are both optimal in the traditional sense

and most efficiently balanced.

X.2 - With Respect To The.Search'

Ci)y G(Ax® ' } > G(¥evins). ‘The totzal number of nodes generated by A%

CALBP CALBP

was slightly larger than that by Nevins. This is due mainly to the

different dgminance criterion used; thus Nevins' algorithm eliminates
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" all nodes that lead to an idle time to that of some node already stored

(compare .the G' for both algorithms). This greater selectivity is attained
at the cost of the quality of the solution, as we saw. Even in the most

unfavorable cases, nevertheless, G(A*CALBP) < 2G (Nevins); the selectivity

of ‘the heuristics uged by the A*

CALBP longely,qompensates its wegker domi-.

nance criterion.

In what concerns the num?ér of nodes closed we may repeat the observations

s

above. Pruming', although it did not affect the quality of solutions for-

all experiments, did reduce both storage needs and numbar of closed nodss:

for the larger problems.
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XI. CONCLUSIONS

XI.1 - With Respect To The Problem Reformulation.

The objective function proposed was shown to be an optimizing modification

for the solution of the CALBP in the sence of discriminating, among all solutions

with minimum idle time, those having minimum dispersion of workload among stations

(in other words, the best balanced solutions)

ii) Since the reformulation demands minimum idle time (or, equivalently, minimun

number of stations), and solutions having least disequilibrium tend to have least

real cycle' time 97, A*CALBP is the only algorithm in the litterature that attempts

to solve simultaneously problems (I) and (II).

XI.2 -.With R * i
ith Respect To The A CALEP Algorithm

i) A*® CALBP is optimal (in Hart's sense) for solving the reformulated classical

assembly line balancing problem among all admissible algorithms using no more in-

formation than the following.
i.1) Cycle time O
i.2) T* = Z{t_ [x e @}

i.3) for each state X (Xl, X2, versy XN)

1.3.1. N(X) = N (number of stations in X)
i.3.2, T(X,) = I {.tx| x € X}, i=1,2, ..., N
ii) A*CALBP represents a class of algorithms oriented towards solving the CALBP,

among which is 2 modification of Nevins' algorithm ~ corresponding. to linear dise-
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quilibrium ( idle time) as the objective function. For each objective function
we have a subclass of algorithms whose members are distinguished one from the

other according to the way in which they resolve ties.

iii) The pruning, effected according to the criteria exposed in this paper,

did not affect at all the optimality of solutions obtained through the

A This criterium thus seems reliable enough to use in large scale problems.

* ,
CALBP



3.

-29 -

REFERENCES

ARAGJO,J.,L., "Evaluating and Acelerating Heuristic Search: A Proposal', Technical
Report NQ 1.74, Department of Systems Engineering, Universidade Federal do Rio de

© Janeiro, January 1974.

GARCTA, J. A., "Uma Nova Formglagﬁo do Problema Classico de Balanceamento de  Li-
nhas de Montagem e Sua Solugao Otima e Eficiente", D.Sc. Dissertation, Programa
de Engenharia de Produgao, Universidade Federal do Rio de Janeiro, June 1875.

GUTJABR,A.L., AND, NEMHAVSER,G.L., "An Algorithm for the Line Balancing Problem™ ,

. - Management Science, Vol.ll, (November 1964).

© Vol.2, W93 (April 1956).

 HART,P., NILSSON,N.J., RAPHAEL,B., "A Formal Basis for The Heuristic Determimation

of Minimal Costs Paths", IEE TSC, Vol.l, SSC-4, N? 2(1968), p. 100-107.

JACKSON,J.R., "Computing Procedure for Line Balancing Problems",Management Science,

NEVINS,A.J., "Assembly Line Balanc1ng Using Best ‘Bud Search" Management  Science,
Vol.18, N99 {(May 1972).

-SALVESON,M.E., "The Assembly Line Balancing Problem", Journal of Industrlal Engl—
‘neering, Vol.6, n°3 (May~June 1955)




