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Abstract--In the present work, asymptotic methods are used to derive new expressions for the law of the 
wall, for tiae law of the wake and for the skin-friction and the Stanton number equations, for compressible 
turbulent boundary layers with heat and mass transfer. The results are compared with previous theories 
and experiments showing good agreement. The two parameters in the law of the wall, the angular coefficient 
and the linear coefficient of the straight part of the velocity and the temperature profiles plotted in 
appropriate logarithmic coordinates, are shown to vary with Math number. Only the second of these 
parameters, the linear coefficient of the straight line, is shown to vary with the injection rate. No dependence 
of these parameters on Eckert number, E could be assessed. Also, it emerges from the present analysis that 
the dissil:ation effects become important only when E = 0(u~-~), u~ = non-dimensional friction velocity. 

1. INTRODUCTION 

The development of high-speed flight vehicles and 
their components has motivated researchers to 
advance correlations with which engineers can predict 
the likely values of important flow parameters such as 
the skin-friction and the transfer of heat at the wall. 
These correlations are basically derived through three 
types of  approach: the parametric approach, where 
non-dimensional groups are used to seek empirical 
correlations of the experimental data;  the trans- 
formation approach, where a mathematical trans- 
formation is sought which reduces the complex system 
of partial differential equations which governs the 
motion of  a compressible flow into a simpler system, 
such as the system of equations for an incompressible 
flow; and the clirect approach, where analytical 
expressions for the mean flow parameters are obtained 
after appropriate assumptions are made about the 
turbulence terms. The parametric and transformation 
approaches always face the difficult problem of cor- 
rectly chosing the position in the boundary layer 
where the characteristic flow parameters should be 
defined and, in the latter case, what the right trans- 
formation parameters should be. The direct approach, 
on the other hand, presents the difficulty of  having to 
choose a turbulence closure model simple enough to 
provide analytical solutions, but of  wide enough val- 
idity to cover the cases of  practical interest. Of course, 
this compromise is hard to be achieved and, so far, 
only a few analytical solutions are found in literature 
for selected flow conditions. 

The purpose of  this work is to extend to com- 
pressible flow a recently advanced formulation [1] for 
the thermal turbulent boundary layer over a porous 

surface which comprises new expressions for the law 
of  the wall, for the law of the wake and for the Stanton 
number equation. The present approach uses asymp- 
totic techniques, so that the flow region is divided into 
distinct parts where dominant effects can be used to 
derive simplified sets of equations. The resulting equa- 
tions for the near wall region are readily integrated, 
yielding analytical solutions for the main flow par- 
ameters. From these solutions, the influence of  the 
dissipation terms and of the injection velocity is dearly 
seen. For  the solid surface case, it is shown that the 
dissipation contributes to the leading order solution 
with a bilogarithmic term. For  flows with tran- 
spiration, however, the dissipation also contributes 
with a trilogarithmic higher order correction. Also, it 
emerges from the analysis that the dissipation effects 
become important only when E = 0(u~- i), E = Eckert 
number, u~ = non-dimensional friction velocity. 

The near wall solutions are extended to the defect 
region by adding Coles' function [2] to their log- 
arithmic term. With arguments similar to those of ref. 
[1], a Stanton number equation then follows immedi- 
ately. All predictions are compared with the exper- 
imental data of Danberg [3], Squire [4], Jeromin [5] 
and Mabey et al. [6]. Both parameters in the law of  
the wall are shown to vary with Mach number, 
whereas only one of  them, the linear coefficient of  the 
straight part of the velocity and temperature profiles, 
is shown to vary with the injection rate. No depen- 
dence of  these parameters on Eckert number could be 
determined here due to the scatter in the experimental 
data. 

For  a boundary layer with zero pressure gradient 
along an adiabatic wall, the concepts of  eddy 

2507 



2508 A.P. SILVA FREIRE et al. 

NOMENCLATURE 

A, B, D parameters in laws of the wall 
Cr skin friction coefficient 
C o specific heat at constant pressure 
E Eekert number = U ~ / C p ( T ~  - T , )  

F injection rate = p,Vw/po~ Uo~ 

h enthalpy 
h~ = (h-hw)/(h~-h.) 
h~ friction enthalpy 
km Von Karman's  constant in velocity 

profile 
kt Von Karman's  constant in enthalpy 

profile 
M Mach number 
P pressure 
Pro, Pt Velocity and enthalpy wake profiles 
Pr Prandtl number 
q heat flux 
R Reynolds number 
S t  Stanton number 
T Temperature 
u, v velocity components in X and Y 

direction 
us friction velocity 
W Coles' universal function 
X, Y Cartesian coordinates 

inner variable = (YuO/v. 

Greek symbols 
6 boundary layer thickness 
A enthalpy thickness 
0 momentum thickness 
2 bulk viscosity 
p dynamic viscosity 
v kinetic viscosity 
p density 
z shear stress 
~bm, ~bt, q~e see equations (31)-(33). 

Superscript 
' turbulent fluctuation. 

Subscript 
a parameter in definition of A and 

of B 
m velocity 
t temperature 
w wall condition 
oo external flow condition 
1 correction of order us 
2 correction of order v,. 

coefficients of friction and of heat transfer can be used 
to extend the Crocco relation [7] to turbulent flow and 
to derive an algebraic relationship between velocity 
and temperature. Introduction of the mixing-length 
theory in the flow region where the turbulent stresses 
are dominant, together with the Crocco equation, 
results in a logarithmic solution for the velocity 
profile, the so-called Van Driest transformation [8]. 
Extension of this solution to the defect region can 
immediately be obtained by adding Coles' function to 
the logarithmic term as shown by Maise and Mac- 
Donald [9]. The Crocco and the Van Driest equations 
seem to render the compressible boundary layer prob- 
lem completely solved. In fact, a skin-friction equation 
can be derived from the defect region extended Van 
Driest equation, and Stanton number values can be 
determined from some Reynolds analogy factor con- 
stant. If, however, some simple effects such as transfer 
of heat at the wall, pressure gradients and tran- 
spiration are considered, the degree of complexity 
increases to a level where the above results do not hold 
anymore and exact solutions are difficult to obtain. 

Most of the studies on compressible turbulent 
boundary layers with transpiration were made by 
Squire and his students at Cambridge University [4, 
5, 10-18]. These studies favour the direct approach, 
producing an expression for the law of the wall by 
straightforward application of the mixing-length 
theory. Unfortunately, the resulting expression [10] is 
cast in the form of an elliptic integral which cannot 

be integrated exactly to yield a skin-friction equation. 
To circumvent this difficulty, an analysis is carried 
out in ref. [18] where Van Driest's transformation is 
applied directly to the expressions derived in ref. [17], 
so that a skin-friction equation can be derived from 
a simpler set of equations. The resulting expression 
provides reasonable overall predictions of the skin- 
friction but poor predictions of the velocity profile for 
high injection rates. Another purpose of the present 
work is to obtain better results than those of ref. [18]. 

All the above mentioned studies for transpired flows 
deal with adiabatic conditions and hence no Stanton 
number equations are derived. Squire [14] extended 
some of the relationships between temperature and 
velocity in turbulent boundary layers to flows over 
porous surfaces. His analysis aims at investigating 
for which conditions the hypotheses that lead to the 
Crocco relation break down, so that heat transfer 
predictions are made through Reynolds analogy con- 
stants. 

2. EQUATIONS OF MEAN MOTION AND 
ASYMPTOTIC HYPOTHESES 

The set of equations which describe the two-dimen- 
sional motion of a fluid along a fiat plate is : 
(a) continuity equation 

~.---(p/,/j) = 0 j =  1,2 ( l )  uxj 



Velocity and temperature distributions 2509 

(b) momentum equation 

O~j (pUiUj):=- O~j ..[_ Z - -7 - -7-  

(c) energy equation 

Op ,~p" 
[phud = s 4  + 

O i l  Oh 
"~'Xjj [R-P r ~Xj 

where 

(2) 

-~7 E OUj 
push,J+ (3) 

au, raui 

and U = u+u' .  
The above equations must be complemented by an 

additional thermodynamic relation, say, the equation 
of state. The symbols x, u, p, p and h have their 
classical meaning; 2 is the bulk viscosity, /~ the 
dynamic viscosity and 6ij the Kronecker delta. All 
these quantities are non-dimensionalized by the exter- 
nal flow conditions. The bars and the lower cases are 
used to indicate time-averaged quantities. The dashes 
indicate turbulent fluctuation. R is the Reynolds 
number, Pr is the: Prandtl number and E is the Eckert 
number. A summation is understood for repeated 
indices. The normal velocity u2, here also denoted v, 
has been non-dimensionalized according to 

V - V ~  
v = - -  (4) 

U~ 

The structure of the boundary layer can be deter- 
mined from the previous set of equations if the order 
of magnitude of the turbulent terms is estimated and 
asymptotic techniques are used. For  Eckert number 
of order unity and flow over a solid surface, the analy- 
sis of ref. [ 19] shows that the classical two-deck struc- 
ture of the boundary layer holds for compressible 
flows despite some matching difficulties which occur 
with the density profiles. In this analysis the order of 
magnitude of the turbulent terms is estimated based 
on the measurements of Kistler [20], of Kistler and 
Chen [21] and of Morkovin [22]. These works show 
that the turbulent fluctuations can be scaled as 

0 ( u ' )  = 0 ( v ' )  = 0 ( p ' )  = 0(u3 

where 

u ~  x/ k p w /  

In addition, based on the measurements for the 
incompressible case (see [1]), we consider here that 

0(h') = 0(h,) 

where 

h~ = q* St 
(pcp(aT)u ,U~)  u~ 

Actually, the relation 0(h') = 0(h,) can be derived 
from the definition of Stanton (St) number and the 
assumption that there is a region near the wall where 
3(v'h')/Oy = O. 

3. ASYMPTOTIC ANALYSIS 

The turbulent boundary layer preserves its two- 
layered structure even when normal injection of  fluid 
at the wall and transfer of heat are considered [17, 19, 
23, 24]. These effects, in fact, only contribute with 
higher order corrections to the classical solutions. 
Thus, it is licit for us to carry out here an analysis in 
the same terms as those of refs. [17, 24]. 

In this section we apply the matched asymptotic 
expansion method to the problem under study to show 
how approximate solutions for the defect and wall 
layers can be obtained. Since most of the analysis 
concerning the obtaining of the asymptotic expan- 
sions is conventional, only a few comments about it 
will be made here. 

3.1. Wall layer 
To find a solution for the near wall turbulent region, 

we assume that the asymptotic expansions for the flow 
parameters can be written as 

u = u~u, (x ,y )  +vwu2(x,y)  (5) 

v = (u~ R) - ' [u~ v , ( x , y )+v ,  vE(x,y)] (6) 

p = p , ( x , y ) + u ~ p = ( x , y ) + v . p , ( x , y )  (7) 

hc = h l ( x , y )+h~hz (x , y )+vwh3(x , y )  (8) 

p = pj ( x , y ) + u . p 2 ( x , y ) + v w p 3 ( x , y )  (9) 

with 

h 
ho - - -  ( 1 0 )  

ho~-hw 

y = inner variable = YuJv. 

An asymptotic expansion for the viscosity is derived 
by expanding It in a Taylor series around h~, i.e. 

. . . .  au (h , ) .  Ou(h~), 
It = U t t t , ) + G ~ t t 2 + V w ~ n 3 .  (11) 

Introduction of expressions (5)-(11) into the equa- 
tions of mean motion together with an eddy vis- 
cosity/mixing-length hypothesis for the turbulent 
terms, and collection of the coefficients of  various 
powers, gives the equations for the successive approxi- 
mations. The resulting equations are, except for the 
differences arising from the transpiration terms, the 
same as those obtained by Afzal (see ref. [19]). The 
approximate equations are : 

a 0 
~xx (p' u,) + ~yy (p, v]) = 0 (12) 
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ay t f  )+ ay// 0 (13) 

OP--AL = 0 (14) 
ay 

a2hl 
- 0  (15) ay 2 

7- -11  
p, = Y ~pth,  (16) 

a-~ (plU2)'-[- (OlV2) = 0 (17) 

au2 a ( .~ ~fauA~ ' '= 'y  ) (18) 

aP---A-2 = 0 (19) 
ay 

a f aul ahz~ _ -2 2(aul"l z 
ay tPik~kty2 -- -~y -~y )+L'u,p,Xmy t-~Y ) 

(.(h,) ah 4 
+~yt  Pr ay ] = 0  (20) 

~ - 1 1  
P 2 =  7 E(Plh2+h'p2) (21) 

c~P----Z = 0 (22) 
ay 

ah2 a 2['aUl ah3 au2 ah2]_l_ P' ay -- ~y plkrnkty {~yy ~y Jr- ~ am j 

e..k y au, + ah ) (23) 
-~y ay ~y \ "-~r ay f 

Equations (14)-(16) together with the matching 
conditions for the defect layer (ref. [19]) show that the 
leading order pressure, temperature and density terms 
are constant across the wall layer. Hence we have 

Pl = -  1 p~ = PwlPo~ h~ = h~l(h~-hw). 

(24)-(26) 

In order to find a solution for equations (13), (20) 
and (23) in the fully turbulent region we neglect the 
influence of the viscous and conduction terms. As a 
result, the solution of equations (13) and (18) become 

ul = ~mlny+A (27) 

U 2 = ~ l n y + A  (28) 

where, in principle, km and A are allowed to vary with 
Eckert number, and the injection rate. 

The solution of the second order temperature equa- 
tion, equation (6i), is 

~t Eu 3 1 Pry. (29) h2 = lnPry+Bq St kmkt in2 

The third order temperature solution, h3, is given 
by 

kt2 +2)h~+ [~ h3 = ~ (kin a 
Eu 3 1 ~ 3 

22 / in Pry 
3St kt kmJ 

Eu~12 t u] (30) 

where, hB = ( l /k t ) lnPry+B,  and parameters kt and 
B are, in general, a function of E and F. 

Equations (29) and (30) are derived here for the 
first time. Their substitution into equation (8) gives 
the thermal version of the law of the wall for com- 
pressible turbulent boundary layers with transfer of 
heat and of mass. Some authors [25-27] have carried 
out analyses of the wall region using Taylor series 
expansions. They, however, arrive at expressions 
which hold only for the viscous-conductive region and 
hence are very different from equations (29) and (30). 

The asymptotic results of equations (27-30) are 
leading order results in the sense that they have been 
obtained with the leading order terms of the density 
and temperature solutions (equations (25) and (26)). 
Thus, no influence of P2 and of h2 on the velocity 
profiles was derived here. The reason for this is the 
great analytical difficulty involved in solving the 
higher order equations. These equations are coupled 
and the resulting complex system of partial differential 
equations that has to be solved hampers any attempt 
at obtaining closed analytical solution. The impli- 
cation is that, similarly to other analyses that use the 
direct approach, the present formulation has to resort 
to experimental data to assess the right dependence 
on E and F of the parameters in equations (27)-(30). 
Here, following the recommendation of Fernholtz and 
Finley [29], we have used the data of Mabey et al. [6] 
to do this. Despite, this apparent limitation of the 
formulation, we stress this is the only way in which 
analytical solutions can be obtained which account 
for such flow effects as compressibility, transpiration 
and transfer of heat. 

3.2. Defect layer 
To find a solution for the defect region we should 

use the same procedure as above. Specification of a 
simple algebraic turbulence model for this part of the 
flow which describes realistically the physics of the 
phenomenon and allows analytical solutions to be 
obtained is, however, very difficult. We then follow 
Coles' approach and extend equations (5) and (8) to 
the defect layer simply by considering an additional 
universal function, the Coles' function. To this end 
we re-write solutions (5) and (8) as 
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Table 1. Experimental flow conditions 
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No. of profiles 
Autl~ or M F x  10 3 Tw/T~ considered 

Mabey et aL [6] 2.5-4.5 0.0 Adiabatic conditions 28 
Squire [4] 1.8-3.6 0.0-3.6 Adiabatic conditions 60 
Danberg [3] 6.5 0.0-2.5 3.86-7.65 49 

_,+,/(,-+,+ 
dPt = Uw = ~ l n P r y +  B 

h+ 

with 

(32) 

Eu~ [ Eup 
2kmkt In 2 Pry+vw 6Stkmk~ ln3 Pry 

__[~t...l._..~L]u2_,~._Eu'~kmV!j22 6,++ ,:t-+]u+l. 
Equations (31) and (32) are the law of the wall 

expressions for transpired flows. The laws of the wake 
can then be cast as 

and 

1 y 
~t =i~t In Pry+B+Pt  W ( ~ )  (35) 

where I4: denotes Coles' universal function and Pm 
and Pt are in ge:aeral a function of M and F. By 
the present approach, the compressibility effects are 
hoped to be fully .accounted for by parameters kin, kt, 
A, B, Pm and Pt- Similar analyses carried out for flows 
over solid surface's at adiabatic conditions by Winter 
and Gaudet [28] and by Mabey et al. [6], show that this 
is indeed a good assumption, leading to very accurate 
expressions for the velocity profile and for the skin- 
friction. 

Expressions for the skin-friction and the Stanton 
number are readily obtained if (Y, u) = (6~,, U~) and 
(Y, t) = (~t, T+) zre substituted into equations (34) 
and (35), respectively. This yields a transcedental 
equation which must be solved for the determination 
of ut, and an algebraic expression which determines 
St. 

4. RESULTS 

Very few work,,; are available in literature which 
present the combined effects of transpiration and of 
transfer of  heat in compressible flows. Indeed, most 
of the experiments on transpired flow have been per- 
formed in adiabatic flow conditions. One work that 

seems to conform to our conditions, and presents vel- 
ocity and temperature profiles in fair detail, is the 
work of Danberg [3]. Even so, some severe dis- 
crepancies in his data [29] mean that they must be 
considered with reserve. In particular, the values of Cf 
and of St must be seen as an approximation since 
they are evaluated from the limiting gradients of the 
profiles. 

The present formulation is expected to improve the 
results of ref. [18] for transpired flows along adiabatic 
walls, if only appropriate functional dependences of 
k~ and A on Mach number are determined. The analy- 
sis of the experiments will then include the data of 
Squire [4] as well as the basic test data of  Mabey et 
al. [6]. The test conditions are shown in Table 1. 
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Fig. 1. Typical velocity profiles for transpired flows. Data 
from Squire [4]. 
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Fig. 2. Variation of km with Mach number, 31 profiles of 
refs. [4,6] considered. 
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Fig. 3. Variation of A with M; 31 profiles of refs. [4,6] 
considered. 
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Fig. 4. Variation of Pm with Ro. Data from Danberg [3]. 

A comparison between the measurements and equa- 
tion (5) is made in Fig. 1. Following the trends pre- 
viously observed by Squire and by Mabey et al., km 
shows an appreciable dependence on Mach number 
(Fig. 2), being apparently invariant with an injection 
rate. For  the lowest Mach number, km assumes the 
value of 0.43, increasing significantly until reaching 
the value 0.6 for M = 6.5. The value of kin = 0.6 found 
for the data of Danberg is about 10% lower than the 
theoretical value given by the correlation of Winter 
and Gaudet [28]. Contrary to the work of Mabey et 
al., A is found to vary with M. It is a fact that the 
slope of the straight-line portion of the logarithmic 
curve is independent of Cr, whereas A depends criti- 
cally on Cf. This certainly introduces some uncertainty 
into the analysis of the data;  particularly knowing 
that the values of Cf obtained by Danberg are only 
approximate. Figure 3, however, gives clear indication 
that A increases with M, assuming a value of 9.0 
for Danberg's condition. A dependence of A on the 
injection rate is also apparent from the data. This is 
in accordance with previous observations for incom- 
pressible and compressible flows. It is now generally 
recognized in literature [12] that A decreases with the 
increase in the injection rate. Here we found that the 
procedure introduced by Simpson [30] applied to com- 
pressible flow accounts well for this dependence. Thus, 
we write 

where 

u. (36) 

1 
ua=~mlnU~+Auo Au0 = 9.0. (37) 

The behaviour of the wake profile is more difficult 
to assess due to its sensitivity to the line fitting of the 
logarithmic part of the profile. Squire [11], however, 
has shown that for flows along solid surfaces, Maise 
and McDonald's  formulation yields a value of Pm 
which is virtually independent of M, but varies with 

Ro. Our present formulation seems to follow this 
trend, as indicated by Fig. 4, which was compiled 
using Danberg's data. This figure yields a value of  
1.75 for Pro, which is lower than the value commonly 
found in literature for incompressible flow, 2.5. 

Values of  skin-friction obtained with the present 
formulation are compared in Fig. 5 with the data 
provided by Fig. 3 of ref. [10] and the results of  ref. 
[18]. The better agreement of  the present theory is 
noticeable. 

The analysis of  the temperature data was much 
more difficult to carry out than the previous analysis 
of the velocity data, since the influence of the Eckert 
number also had to be accounted for and the scatter 
in the data of  Danberg was:appreciable. Typical tem- 
perature profiles, plotted under appropriate coor- 
dinates defined by equation (31), are shown in Figs. 6 
and 7. The linear, logarithmic and wake regions of 
the flow come out nicely in these figures, giving an 
indication that the present formulation is consistent. 
Since the data of Danberg were given for a single 
value of M, 6.5, no dependence of parameters kt, B, 
D and Pt on M could be assessed. Parameter k t showed 
no dependence on F, assuming a value of 0.60. 

Parameter B was assumed to have the same quali- 
tative behaviour of parameter A, so that we write 

i i i ¢ 

o 2 

~ x  x~ x 

~ )  ~ x  x 

C 1  

' ' o ' o '  O 1 0  0 1 0  2 3 4 0  

F x 10 3 
Fig. 5. Skin-friction results for transpired/tow. O,  exper- 

i m e n t s ; - ,  present a p p r o a c h ; - - - ,  Silva Freire [18]. 
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Fig. 6. Typical temperature profiles for unblown flow. Data 
from Danberg [3]. 
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Fig. 7. Typical temperature profiles for transpired flow. Data 
from Danberg [3]. 

where 

B vw \ ' ~ ,  h~ kt h~ (38) 

1 
ha = ~- lnha+B0 B0 = 11.0. (39) 

~ t  

The implication o f  expressions (36, 37) to (38, 39) 
is that both parameters, A and B, were theoretically 
determined through the linear and logarithmic solu- 
tions patching point. 

The wake profile, Pt, showed wide variation with F 
ranging from 0.5 to 6.0. Here we assumed Pt to be 
constant and equal to 2. 

The values of  Stanton number obtained from equa- 
tion (35) are shown in Table 2 for some selected flow 
conditions. The theoretical values are normally higher 
than the experimental values by a margin of  10--30%. 

This is acceptable since the error found in literature 
for skin friction and for Stanton number  data on 
transpired compressible turbulent boundary layer 
flows normally range, even for the lowest injection 
rates, from 20 to 50%. Please note that the present 
results were obtained using Cf values as quoted by 
Danberg which, as mentioned before, are only 
approximate. A complete comparison of  the results 
provided by equation (35) with the data of  Danberg 
is shown in Fig. 8 where 43 profiles are considered. 

5. CONCLUSION 

The present work has derived new expressions for 
the law of  the wall and for the law of the wake, for both 
the velocity and the temperature fields in compressible 
transpired flows. F rom these, simple algebraic 
expressions follow for prediction of  the skin-friction 

Table 2. Stanton number predictions 

Injection St × 104 St × 1 0  4 

Run rate x 104 T,,,/T~ Ro Theoretical Experimental 

5 9.2 4.1 3206 21.66 22.94 
6 9.1 4.1 4028 18.76 22.29 
7 8.9 4.3 4698 18.99 20.05 
8 9.2 4.2 5288 19.53 17.38 

12 24.9 3.9 6517 9.76 10.21 
13 24.5 3.6 8156 8.54 6.63 
14 24.9 3.8 8450 9.15 8.45 
15 25.8 3.7 10166 9.15 6.49 
20 0.0 4.4 3296 48.00 34.96 
21 0.0 4.1 3891 34.46 28.81 
22 0.0 5.5 1619 65.09 44.52 
23 0.0 5.1 1853 46.29 40.82 
26 8.9 5.2 2994 27.31 35.13 
27 8.9 5.5 3448 28.76 31.33 
28 8.4 5.7 4554 30.13 29.61 
29 8.8 5.3 5281 26.55 26.11 
43 8.7 7.7 4541 52.79 94.25 
44 16.2 7.7 6365 44.21 45.58 
45 24.4 7.6 8928 26.35 23.74 
49 7.2 7.0 8753 31.20 37.71 
50 10.1 6.9 11737 31.35 29.26 
51 0.0 4.7 3841 22.60 27.37 
52 0.0 4.7 4557 25.63 26.83 
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Fig. 8. Stanton number predictions, x,  Present approach ; 
• , Danberg [3]. 

coefficient and of  the Stanton number. Al though 
obtained with a constant density hypothesis for the 
near wall region (which result f rom the asymptotic 
analysis), the above expressions correlate fairly well 
with the experimental data. Only the results for the 
temperature field must be seen with caution since they 
are based on the data of  Danberg which present large 
scatter. This scatter is attributed to the lack of  accurate 
skin-friction data, and to the low Reynolds numbers 
of  the experiments, which cast severe doubts as to 
whether the flow is fully turbulent. The former diffi- 
culty could apparently be circumvented if, for exam- 
ple, skin-friction equations were taken from refs. [18, 
28] to produce reliable results for the unblown and 
blown data, respectively. However,  most of  the data 
in literature suggest that the additive constants in the 
laws of  the wall increase with Eckert  number,  which 
makes the use of  the equations in [18, 28] uncertain 
since they have been developed for adiabatic flow 
conditions only. Of  course, with the latter difficulty 
there is not  much we can do except consider the higher 
Reynolds number data. Considering all these aspects, 
we decided here to make a critical analysis of  the data 
of  Danberg,  using for the derivation of  the above 
equations only those we judged to be consistent. The 
present formulation is the only one that can be found 
in literature which furnishes a complete set of  closed 
analytical solutions for this type of  problem. The 
authors are confident that this formulat ion retains 
most of  the important  features of  the problem, and 
think that a better tuning of  the parameters, as more 
reliable data become available, will greatly improve 
the results. 
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