
0017-9310/88%3.00+0.00 
0 1988 Pergamon Press plc 

An asymptotic solution for transpired 
incompressible turbulent boundary layers 

ATILA I’. SILVA-FREIRE 

Engineering Department, Cambridge University, T~mpington Street, Cambridge CB2 lPZ, U.K. 

(Received I May 1987 and inJinalform 30 Seprember 1987) 

Abstract-In this work perturbation techniques are used to study the equations of mean motion for 
transpired incompressible turbulent boundary layers. One of the features of this approach is the use of 
multiple scales. Indeed, the solution of this problem requires the use of three distinct scales associated with 
the three flow regions : the inviscid region, the defect layer and the wall layer. In the construction of the 
wall and defect solutions, a new law of the wake is determined by comparison of these two solutions in an 
interval of common domain of validity. The matching conditions also yield a skin-friction equation for 
transpired turbulent boundary layers. The velocity profiles obtained from the law of the wake expression, 
and the values of the skin-friction coefficient predicted by the skin-friction equation for flows with both 

injection and suction of fluid, are compared with experimental data showing good agreement. 

I. INTRODUCTION 

THERE is considerable interest in the properties of 
turbulent boundary layers flowing over porous sur- 
faces with injection or suction of flow through the 
surface. Indeed, several works have been presented in 
the literature which analyse both the theoretical and 
the experimental aspects of the problem of transpired 
turbulent boundary layers. Much of the theoretical 
studies on this topic have concentrated on obtaining 
expressions for the law of the wall and the law of the 
wake. These laws have normally been derived using 
the mixing-length theory of Prandtl together with the 
assumption that there is a region near the wall in 
which only inertia and turbulent terms are important 
in the x-momentum equation. This procedure, 
however, poses the difficulty of not providing proper 
boundary conditions to evaluate the parameters in the 
resulting expressions. Such parameters must then be 
determined with the aid of supplementary experi- 
mental data. Unfortunately, the general lack of agree- 
ment between the various sets of data makes such 
determination very difficult to accomplish. This is par- 
ticularly true if one considers that those parameters 
depend critically on the assumed value of the skin- 
friction coefficient, and that most of the skin-fiction 
values presented in the literature have been obtained 
with the use of some form of the momentum-integral 
equation, which tends to be very inaccurate. 

The aim of the present work is to apply perturbation 
methods to the problem of transpired turbulent 
boundary layers, and show how bilogarithmi~ laws 
can be obtained for the wall and defect layers through 
this method. An important result of this approach is 
the derivation of a skin-friction equation for trans- 
pired turbulent boundary layers. The great advan- 
tage of the skin-friction equation over the momentum- 
integral equation for predictions of skin-friction 

coefficients, is that it is much less sensitive to small 
changes in injection velocity and in Reynolds number, 
and so it gives much more reliable results. To the 
author’s knowledge this is the first derivation of such 
an equation. The additional relationship provided by 
this equation is here used to determine the various 
parameters in the law of the wake. The results are 
then cross checked comparing the defect iayer solution 
with experimental data. The present formulation is 
shown to provide good predictions for flows with both 
injection and suction of fluid. 

Singular perturbation techniques are required here 
since our problem is characterized by the necessity of 
working with multiple scales. The reason for this is 
that, as we shall see, turbulent and viscous forces are 
significant only in well-defined regions of the flow, the 
defect and the wall layers. The disturbances caused 
on the main flow by the blown or sucked fluid are on 
the other hand si~ificant throughout the defect and 
wall layers and hence are accounted for by regular 
perturbation methods. 

The procedure which leads to the derivation of the 
small singular parameters, E and i, is standard in tur- 
bulent boundary layer theory [ 1,2] and we anticipate 
that for the transpired case these parameters are the 
same as for the unblown case. Hence the defect layer 
is scaled by 6 = d, where E( = u, /u, = Jz/puH ) is the 
non-dimensional friction velocity and 1 the inviscid 
length scale, whereas the wall layer is scaled by 
(F = 61 = v/u,. The boundary conditions at the wall 
define the small regular parameter, S = D,/u,. 

In solving our problem we approximate the solu- 
tions in the two inner layers by suitable asymptotic 
expansions and use a rational approach to construct 
sets of governing equations for each of these layers. 
Afzal [3] studied this problem, however, he did not 
treat E and 5 as independent parameters and hence he 
obtained an incomplete set of equations and solutions. 
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NOMENCLATURE 

A, B, C, D parameters in the law of the wall d wall layer thickness 

and law of the wake & dimensionless friction velocity 

a parameter in Stevenson’s law of the wall E dimensionless injection velocity 

Cr skin-friction coefficient 0 wall layer small parameter 

d parameter in unblown law of the wall /*>v viscosity, kinematic viscosity 

K Von Karman’s constant e momentum thickness 

I characteristic reference length n Cole’s profile parameter 

P pressure fi profile parameter of wake component due 

R Reynolds number to transpiration 

L L> T,, Reynolds stress tensor P density 

components r Reynolds stress tensor components in 

u, friction velocity defect region 
CJ, V mean velocity components * universal function in Stevenson’s law of 

u’, v’ velocity fluctuations the wake. 

x parameter in Stevenson’s law of the wake 

Y>P normal coordinates in defect and inner Superscript 

regions wall layer quantity. 

w(y) Cole’s wake function. 
Subscripts 

Greek symbols cc external flow conditions 

6 boundary layer thickness W conditions at the wall. 

In particular, he was unable to derive expressions for 
the law of the wall and law of the wake similar to 

those obtained by Simpson [4], Stevenson [5, 61 and 
McQuaid [7]. The solutions obtained for adjacent 
layers in the present study are then shown to match 
in overlap domains so providing a smooth solution 
for the entire flow region. The main feature of the 
expression proposed for the defect region is the intro- 
duction of an additional term in the wake function 
due to the blown or sucked fluid. 

2. THE EQUATIONS OF MEAN MOTION 

To study the equations of mean motion we follow 

Mellor’s [l] procedure and assume that all com- 
ponents of the Reynolds stress tensor are of the same 
order ; i.e. the axial and normal velocity fluctuations 
are of the same order. Now, considering that all 
lengths are non-dimensionalized by a typical body 
dimension, I, velocities by a characteristic velocity, 
u,, kinematic pressure (pressure/density) by ~2, 
density by p and viscosity by p, the non-dimensional 
governing equations of mean motion for steady two- 
dimensional turbulent flow over flat surfaces can be 
written as 

x (T,+~~)+~(T,+~~(V+iB)) (3) 

where TX,,, T,, and T, are the dimensionless Reynolds 
stress components and the small parameters E, 1 and 

2: are defined by 

1 e=U,=_ zw 
u, ucc J( > P' 

&U”, 
U'X 

&2i: = $[ = f. (4) 
m 

All the symbols in equations (l)-(3) have their 
classical meaning. The normal velocity, V, has been 
non-dimensionalized according to 

v-v* 
v=p. (5) 

u, 

Here lower case variables denote dimensional 
quantities. The normal velocity at the wall is given by 
v* = v,@(x), where v, is a dimensional constant and 
P(X) (= O(1)) is a non-dimensional function. Due 
to transformation (5) the solution of the system of 
equations (l)-(3) is required to satisfy the no-slip and 
no-permeability conditions at the wall, that is 

U(X, 0) = V(X, 0) = 0. (6) 

Upstream the flow has to agree with some pre- 
viously prescribed velocity profile. 

It is of interest to note that parameters E and 2 define 
a singular perturbation problem whereas parameter 5 
defines a regular perturbation problem. Indeed both 
small parameters E and i multiply one of the highest 
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derivative terms in the momentum equation. As this 
term is the laminar stress term one can easily see that 
as E, 8 -+ 0 the no-slip condition cannot be satisfied by 
the solution of the resulting system of equations. Thus 
small parameters E and B characterize a singular per- 
turbation problem and determine the length scales of 
the two inner regions, the defect layer and the wall 
layer. Hence, as mentioned in the introduction, the 
problem of turbulent boundary layers is characterized 
by three distinct scales, an inviscid scale, 1, related to 
the external flow, an outer scale, 6 (= sl), related to 
the defect layer, and an inner scale, 8 (= v/u, = id) 
related to the wall layer. 

3. ASYMPTOTIC ANALYSIS 

The main focus of this work is on the two inner 
layers. For this reason, the inviscid layer, despite being 
a necessary part of the total boundary layer problem, 
is not considered here. The task of obtaining the pro- 
per dependence of the asymptotic expansions on the 
two singular parameters is standard and hence is 
omitted here. Also, it is assumed that the asymptotic 
expansions can be expanded in integer powers of the 
regular parameter B. 

3.1. Defect layer 
For this region we write 

24 = u,ltX,Y)+&u,,(X,Y)+~u,,(X,y) 

+SU~~(X,~)+E~U~~(X,~)+~~~ (7a) 

0 = &{~,,(~,Y)+E~2,(~,Y)+~~,*(~,Y) 

+EB~*Z(X,Y)+E’~~,(X,Y)+...) (7b) 

P =P,,(~,Y)+~P*,(~,Y)+~~,,(~,Y) 

+&~~P22(X,Y)+E2Pjl(X,Y)f... (74 

tij = &22,,,(X,Y)+EiiZij2Z(X,Y) 

+~Zs,,3(X,Y)+E3Zii4,(X,Y)+... (7d) 

where y (= Y/s) is the stretched normal coordinate 
for the defect layer. 

Note that instead of assuming that the Reynolds 
stress tensor is given by expression (7d) we could 
alternatively have assumed that the fluctuations, u’ 
and o’, have the form 

u’= EU;,(X,y)+~U’*z(X,Y)+... @a) 

u’= EU;,(X,y)+~u’,*(X,y)+... (gb) 

and hence expression (7d) would follow auto- 
matically. 

The form of expansion (7d) can be arrived at using 
Prandtl’s mixing-length theory together th the 
assumption that the mixing length is proportional to 
the distance of the wall and expansion (7a). Also an 
analysis of the equations for the wall layer reveals the 
form of expansion (7d). 

Substituting equations (7a)-(7d) into the equations 

of motion and grouping terms of the same order of 
magnitude, one can show that the first corrections to 
the undisturbed pressure profile are of order a2 and 
2’. It can also be shown that the Reynolds stress 
contributions appear in all equations of order higher 
than unity. 

For a uniform oncoming stream condition, the 
lowest order equations together with the matching 
conditions for the inviscid and defect layers give 

u,,b-3Y) =Pl,(x,Yl = 1. 

3.2. Wall layer 

@a, b) 

For this region we write 

li = &z&i(X,~)+~ri,,(X,$) 

+e2a3,(x,8)+s2a,,(x,p)+... (lOa) 

u” = &a{&e,,(x,B)+~t;,,(x,g) 

+&“a,,(X,p)+s2G,3(X,P)+...} (lob) 

b ‘lil,(X9))+&2,(~~.8 

+~~,,(X,g)+&21^131(X,~)).*. (1Oc) 

?, = E*iij~,(X,9)+&a3,Z,(x,9) 

+Z2?,,,(X,J)+... (10d) 

where B (= Y/8) is the stretched normal coordinate 
for the wall layer. 

The several order equations for this layer are : 

to O(E) 

to O(E) 

(114 

(1 lb) 

(114 

to 0(&E) 

ic,2.r+B,2i; = 0 

z,,,,. = r;ii,,; 
Y 

l&2, = 0; 

VW 

WW 

U2c) 

622, +B229 = 0 (134 

* 1 
Ul29,, + %,,. = %li Wb) 

” 

*  ̂

P2*; = TYYYY22i* (134 

In order to obtain a solution for equation (11 b) we 
assume that asp -+ co the laminar stress term becomes 
negligible. With this hypothesis and the Reynolds 
stress related to the mean velocity by standard mixing- 
length theory equations (11 b) and (12b) can be solved. 
The mixing length is assumed to be proportional to 
the distance of the wall. For constant injection, P = 1, 
the general solutions of equations (11 b) and (12b) are 
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where & = I J4K2 and A^, c and d are parameters to 
be determined. 

An important feature of expression (14b) is that no 
relationship has been imposed between parameters 2, 
e and 8. Substitution of expressions (14a) and (14b) 
into expression (lOa) gives the expression for the vel- 
ocity profiie in the wall layer, that is 

Expressions similar to equation (15) have been 
derived by several authors? who usually based their 
predictions on the same set of hypotheses. Here we 
review one of these approaches to illustrate the differ- 
ences between our analysis and those carried out in 
previous works. 

The usual approximation is to assume that there is 
a region near the wall where convection terms can be 
neglected and the shear stress is given by mixing length 
theory. Thus the equations of motion can be written 
as 

This equation integrated twice with the condition 
z = z, at y = 0, gives 

$ny+d= ;(v,U+U:)“2 (17) 

where d is a parameter of integration. 
The dificulty with equation (17) is that it does not 

reduce to the no-blowing law of the wall as v, --) 0. 
This difficulty was rectified by Stevenson 1.51 in the 
following way. First he re-wrote equation (17) as 

(181 

Next he added the term 2u,/vW to both sides of equa- 
tion (18) to obtain 

i:{($+ l>‘l’- lj=+ln$+ (d-EL). (19) 

Then reasoning that the term (a--L&/V,) varies 
very little with injection or suction he obtained an 
expression which can be written as 

t For details see, e.g. ref. [5]. 

where A = (d-2u,/v,) is the constant for the 
unblown case. 

Expression (20) is the classical law of the wall for 
transpired turbulent boundary layers. Note that 
expressions (15) and (20) have the same general form. 
However, a basic difference between these two equa- 
tions is that equation (1.5) results from the solutions of 
two distinct equations whereas equation (20) results 
from the solution of equation (16) only. Thus one of 
the consequences of the asymptotic analysis is that it 
does not impose a priori any relationship between the 
parameters multiplying the logarithmic, bilogarithmi~ 
and independent terms in the law of the wall. There- 
fore, any such relationship should be determined 
experimentally. The previous theories on the other 
hand tie up all the coeflicients in the law of the wall. 
Furthermore, they normahy assume that these par- 
ameters are independent of the injection or suction 
rate and hence can be obtained from the unblown 
case. This latter hypothesis does not seem to hold 
since the results of recent research have suggested that 
parameter A decreases with increasing injection rate. 
In any event expressions with the form of equations 
(15) and (20) normally give a fair agreement with the 
experimental data. 

Having obtained an expression for the solution in 
the wall layer, we now shift our attention to the defect 
layer. To have an indication of the form of the velocity 
profile in the defect layer we re-write expression (I 5) 
in outer variables and obtain 

ti=& ( flny+~ln$+A 
) [ 

i-S &ln2y 

+(&ln~+~)lny+4~~ln2~+~ln~+ri]. 

Now, if there is to be an overlap region between the 
inner and outer layers, the defect expression as y -+ 0 
has to agree with equation (21) at any pointy in this 
domain. This can be accomplished by an expression 
with the form shown below 

u= If& ( klny - :[2--w(y)] 
) 

i-2 
( 

Bln”y+Clny - :[2--w(y)] + I,. (22) 
) 

where z is Cole’s profile parameter, w(y) is Cole’s 
wake function, ii the profile parameter of the wake 
component due to the transpiration, and B, C the 
parameters to be determined. 

If only matching arguments are considered, B and 
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C can in general be any function of y having the form C = A/ZK (25) 
illustrated by function F 

and 

F(Y) = const F, (Y) + E;(Y) li = A=/4. (26) 
where 

As a logical extension to the law of the wall Steven- 

limF,(y) = 1, asy-+O son [6] proposed the following expression for the de- 

limF,(y) =O, asy+O. 
fect layer : 

The conditions to be satistied at the edge of the 
turbulent boundary layer are 

2~[(l+~~2-(1+~~z] 

limB(y)ln’y = 0, asy-r 1 = - $npfS(I)-W) (27) 
limC(3~)ln~y = 0, asy+ 1. 

Of course this opens a wide range of possibilities to 
where 1(1 is a universal function. 

be considered. The simplest of these possibilities is to 
This expression has been tested by the above author 

take D and C as being independent of y. Then the 
showing good agreement with his experimental 

matching principle applied to equations (21) and (22) 
results. To allow a direct compa~son between 

requires that 
expressions (22) and (27) we re-write expression (27) 
as 

(23a) u= l+E-_:(l+X)~~~lnp-~~~(l+Xf”~ 

and 

1 =E 

1 6 ^ 
C=~~lngefC (23b) (28) 

where 

> 

x = u,u, /u; (2% 

and 

(234 
II/’ = 11/(l) --i&J). 

From ref. [6] it can be shown that 

(30) 

Equation (23~) is an extension of the well-known 
turbulent skin-friction equation [l] to the case with 
transpiration. Its complete definition depends now on 
the determination of parameters A^, c, fi and iz. it is 
a parameter which is considered independent of x 
and y. 

The main feature of equation (22) is the intro- 
duction of a universal function in the transpired com- 
ponent of the mean velocity profile with a profile 
parameter, it, distinct from 7~. This function is here 
assumed to be identical to Cole’s wake function. 

One of the features of the analysis carried out so 
far is that no proper boundary conditions are avail- 
able for evaluating the constants in the proposed 
expressions. Consequently these parameters have to 
be determined through conditions supplemented by 
experimental works. 

4. THE LAW OF THE WAKE FOR 

INCOMPRESSIBLE TTBL 

Assuming that Stevenson’s law of the wall for- 
mulation provides good theoretical predictions, it fol- 
lows from equations (15) and (20) that 

A?=A (24) 

(1 +X)“2 = 1 + 2 %ln$ + z+(l). (31) 
7. T 

The coefficients of the bilogarithmic terms in 
expression (22) and in equation (28) agree exactly. 
Substitution of equation (31) into equation (28) 
shows that the coefficients of the logarithmic terms 
also agree since 

A comparison between the independent terms 
shows that here we have replaced the term 

in Stevenson’s expression by the simpler term 
ii[2 - w(y)]/K where % is a function of u,. 

Our expression for the defect layer for incom- 
pressible transpired turbulent boundary layers then 
reads 
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U=l+& 
( 

$n_r - %[2--w(y)] + i: 
> [ 

&ln’y 

+ ( &In;+& ln,r-2[2-w(y)] . > 1 (34) 

5. THE DETERMINATION OF A AND ii 

Various investigators have presented results which 
suggest that A varies with transpiration. Indeed, it is 
now a well-accepted fact that strong injection rates 
reduce the value of A. Thus the idea of a non-constant 
A is plausible and will be investigated in this section. 

From a full consideration of the accuracy and re- 

peatability of 200 measured boundary layer develop- 
ments with transpiration, Squire [S] recommends 
as basic test cases the flows with zero pressure gradient 
and constant injection as measured by Andersen [9]. 
These experimental results will then be used to deter- 
mine parameters A and ii. 

The experimental flow conditions to be considered 
are summarized in Table 1. 

Since no conclusion has been reached yet as to 
which parameters should be used to account for the 
variation of A and if so, in which way these parameters 
should be non-dimensionalized, we assumed here for 

gain of simplicity that A is a function of E only. There- 
fore, any dependence of A on the momentum thick- 
ness, 8, and on Cr, has been neglected throughout this 

work. 
In order to study the dependence of A on the value 

of the injection rate, Andersen’s experimental points 
were plotted in the form 4 vs log9, where jj = Yu,/v, 
u+ = U/u,, a+ = VW/u, and I#J has been defined in Fig. 
1. Hence if the obtained profiles are fitted by straight 
lines, the slopes determine the values of Kwhereas the 
level of the curves determine the values of A. The 
results are shown in Fig. 1 and Table 2. 

So, from Fig. 1, it can be seen that (1) K does 
not change with different injection rates and its value 
seems to be 0.41, (2) A does change with distinct 
injection rates varying from 4.80 to 0.65. 

The experimental results plotted as A vs F: and fitted 
by a straight line determine, as shown in Fig. 3, the 
following expression : 

A = 5.0-5121. (35) 

Expression (35) has to be regarded with some 
caution because A depends critically on the measured 
values of C, and therefore a small error in C, would 

Table 1. Experimental flow conditions 

FI z u, [ft SC’] 

1 0.0 31.0 
2 0.00102 31.0 
3 0.00200 31.0 
4 0.00375 31.0 
5 0.00800 31.0 

log cy, 
FIG. 1. Variation of 4 with Yu,/v according to Andersen: 

.,F=l;A,F=2; x,F=3;0,F=4;+,F=5. 

Table 2. Values of A according to Andersen 

I K A 

0.0 0.41 4.80 
0.00102 0.41 4.34 
0.00200 0.41 3.80 
0.00375 0.41 2.65 
0.00800 0.41 0.65 

A 

2- 

z I IO3 

FIG. 2. Variation of A with 1. 

produce different values of A and consequently a 
different expression for its variation. It is however 
very difficult to propose a universal and definitive 
expression for A due to the general lack of agreement 
between the various sets of data available in the litera- 
ture. Thus it should be noted that most of the inves- 
tigators obtained their skin-friction values from some 
form of momentum equation which tends to be inac- 
curate, especially for high injection rates. Indeed, 
Dahm and Kendall [lo] point out that values of Cr 
obtained from the two-dimensional momentum inte- 
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14 - 

+FI=Z 
b9_+_de+Y- - - 

F IO- FI=3 

6- 

::__ 

FI=5 

IO' 104 

% 

FIG. 3. Variation of E with E and R. 

FIG. 4. Mean values oft against E. 

gral equation depend strongly both on the accuracy of 
the knowledge of the momentum thickness variation 
with the fluid flow distance from the leading edge 
(dejdx) and on the accuracy of the blowing rate 
(F = pwVw/p,U,). They show that at a blowing rate 
of 0.005 at R, = 106, an uncertainty of f 1% in both 
dtl/dx and VW/U, yields an uncertainty of +_32% 
in C/2. In view of these remarks and the fact that 
Andersen made redundant measurements to check his 
results we assume in this work that expression (35) 
describes reasonably well the variation of A. 

Parameter it will be determined using equation 
(23~) and the experimental data of Andersen. 

From equation (23~) it follows : 

I=& fl”$fA+g 
( > 

&ln2$+&n$+~+% . 
-> 

(36) 

With values of 6, u,, VW and U, obtained from the 
work of Andersen, equation (36) can be solved to 

determine i?. Values of it obtained through this process 
are presented in Fig. 3 for several injection rates and 
values of Ro. The results of Andersen suggest that ii 
is invariant with respect to R, and tends to decrease 
with increasing injection. 

One of the inadequacies of the experimental results 
in Fig. 3 is that they cover a very low R,range and 
under these circumstances one cannot be completely 
sure of the value of ii in equilibrium conditions. In 
this work we follow the trend suggested by Andersen’s 
data and assume that it is independent of R, and 
decreases with increasing injection rate. The curves 
for the same injection rate are then approximated by 
the intermittent lines as shown in Fig. 3. These mean 
values plotted against i and fitted by a straight line 
determine, as shown in Fig. 4, the following 
expression : 

?c = -1.95lnF;-3.1. (37) 

Predictions of C, using equations (36) and (37) are 
shown in Fig. 5. As expected, the agreement for weak 
and moderate injection rates is very good. Typical 
velocity profiles obtained using equation (34) are 
shown in Fig. 6. Again the agreement here is very 
good. It is important to note that the velocity profiles 
have been obtained with values of it determined to 
satisfy the skin-friction equation and that for this 
reason there was a priori no guarantee that the defect 
layer solution would also give good predictions. 

6. ANALYSIS OF THE SUCTION RESULTS 

Several investigators have studied the problem of 
incompressible turbulent boundary layers with uni- 
form suction. These experiments are particularly valu- 
able for testing theories for transpired turbulent 
boundary layers since, in contrast to the blowing case, 
skin-friction coefficients can be determined very 
accurately using the two-dimensional momentum 
equation. In order to test equation (23~) for the exper- 

"MT 31:5-H 
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IO' IO. 

59 

FIG. 5. Comparison of results for various injection rates and R. : 0, equation (36) ; x , Andersen’s results. 

Y/8 

t 

J 

FI =5 

Reti 6300 

FI=4 

I?@” 6600 

FI=3 

R,” 3900 

FI=2 

Re - 3900 

FIG. 6. Velocity profile correlation : x , experimental data ; 0, equation (34) ; + , equation (28). 
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Y/S 
FS=2 

FS=3 

FS=8 

FIG. 7. Velocity profile correlation : x , experimental data ; 0, equation (34) ; +, equation (28). 

imental data for sucked flow, we have chosen the good. Note that the results for sucked flow have been 
works of Simpson et al. [ 1 l] and Favre et al. [ 121 since obtained using the expression derived for blown flow 
both groups studied zero-pressure gradient flow for and the numerical values of the constants have not 

several different suction rates. A basic difference 
between these two works, however, lies on the fact 
that Simpson et al. applied suction from the leading 

Table 3. Suction results 

edge of the test surface whereas Favre et al. applied & E 
suction after a long stretch of solid surface. Thus the Investigators FS f Theor. Exp. & 
layer obtained by Simpson et al. for high suction rates 
was very thin closely approximating the asymptotic Simpson et al. I -0.00115 0.0474 0.0469 31010 

state. The experimental conditions considered here 
2 -0.00117 0.0483 0.0482 24070 
3 -0.00231 0.0554 0.0532 22620 

and the values of E predicted by equation (23~) are 4 -0.00242 0.0576 0.0558 12840 
shown in Table 3. Since now the normal velocity at 5 -0.00462 0.0770 0.0663 1526 
the wall has a negative value we have used the absolute Favre et al. 6 -0.00119 0.0493 0.0469 18 570 
value of L? in equation (37). 7 -0.00252 0.0573 0.0534 17730 

8 -0.00516 0.0730 0.0663 15960 
As can be seen, the theoretical predictions are very 
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been adjusted in any way. The discrepancy found for 
the predicted value of E for Simpson et al.‘s highest 
suction data are to be expected, since in these con- 
ditions the turbulent fluctuations in the boundary 
layer are completely removed, resulting in a laminar 
layer in an asymptotic state. In these conditions the 
assumptions which led to the derivation of equation 
(23~) do not hold. 

The theoretical and experimental velocity profiles 
obtained are presented in Fig. 7. Again the agreement 
is very good. The results obtained by Stevenson’s 
defect expression (equation (28)) have not been pre- 
sented for Favre et aZ.‘s highest suction rate because 
for this condition B assumes the value - 1.174 and 
therefore the operation (1 + B)“’ cannot be carried 
out. Thus Stevenson’s expression does not provide 
any predictions for E = -0.00516. 

7. FINAL REMARKS 

Perturbation techniques have been used in this 
work in order to obtain solutions for the two inner 
regions associated with the boundary layer. We have 
shown how these equations lead to a bilogarithmic 
expression for the law of the wall and how this law 
can be extended to the defect layer. The present for- 
mulation also determines an equation for the skin- 
friction coefficient which has been successfully tested 
against experimental data. Another attractive feature 
of this analysis is that the incompressible results can 
be extended for compressible flow by means of a Van 
Driest transformation ; thus providing a defect law 
and a skin-friction equation for transpired com- 
pressible turbulent boundary layers. An investigation 
of the results of such a procedure has been carried out 
by this author for several Mach numbers and injection 
rates and will be published shortly. 
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SOLUTION ASYMPTOTIQUE POUR DES COUCHES LIMITES TURBULENTES 
INCOMPRESSIBLES DE TRANSPIRATION 

R&urn-n utilise des techniques de perturbation pour etudier les equations du mouvement moyen pour 
des couches limites turbulentes transpirees. Une des originalites de cette approche est l’utilisation d’bchelles 
multiples. La solution necessite trois Bchelles distinctes assocites a trois regions d’bcoulement : la region 
non visqueuse, la couche intermediaire et la couche paribtale. Dans la construction des solutions de paroi 
et intermediaire, une nouvelle loi du sillage est diterminee par comparaison de ces deux solutions dans un 
intervalle du domaine commun de validite. On obtient une equation de frottement pa&al pour les couches 
limites turbulentes de transpiration. Les profils de vitesse obtenus a partir de la loi de sillage, et les 
valeurs du coefficient de frottement dans le cas des Ccoulements avec injection et suction sont compares 

favorablement aux don&es experimentales. 
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ASYMPTOTISCHE L&SUNG FUR INKOMPRESSIBLE TURBULENTE STROMUNGS- 
GRENZSCHICHTEN 

Zusammenfassung-In der vorliegenden Arbeit wurde ein Verfahren der Storungsansatze dazu benutzt, 
die Gleichungen der mittleren Bewegung in inkompressiblen turbulenten Stromungs-Grenzschichten zu 
untersuchen. Eines der Merkmale dieser Nlherungsmethode ist der Einsatz von unterschiedlichen Ma& 
stabsfaktoren, niimlich jeweils einer in den drei Striimungs-Bereichen : nicht-viskoser Kernbereich, gestorte 
Schicht und Wandschicht. Der Aufbau der Lijsung fiir die Wand- und die gestiirte Schicht ftihrte durch 
Vergleich dieser beiden Lijsungen in einem Abschnitt von beiderseitiger Gtiltigkeit zu einer neuen Gesetz- 
miil3igkeit filr die Wirbelstromung. Die SchlieB-Bedingungen ergeben such eine Gleichung filr die Ober- 
flachenreibung in turbulenten Stromungs-Grenzschichten. Die Geschwindigkeitsprofile, die man aus der 
Gesetzmlgigkeit filr die Wirbelstromung erhllt, und die Werte des Oberfllchenreibungskoeffizienten, die 
mit der Gleichung fiir die Oberfllchenreibung der Striimungen in Fhissigkeiten mit Einspritzung und 
Absaugung ermittelt wurden wurden bei guter Ubereinstimmung mit experimentellen Daten verglichen. 

ACAMHTOTH9ECKOE PEIBEHHE JIJDI HEC3KMMAEMbIX TYPIGYJIEHTHLIX 
HOI-PAHH=IHbIX CJIOEB HA HPOHHIIAEMOH HOBEPXHOCTH 

,dEIIOTarmPMeTOnOM B03MyueHdi HccnenonaHbI ypaeHeHHn cpeaHer0 galrxeHwi ~q_nn HeC;BEHMaebfbIX 

Typ6yneHTHbIX IIOrpaHH'IHbIX CJlOeB Ha IlpOHHIJaeMOfi IlOBepXHOCTH. Omoii "3 OCO6e.HHOCTeii M.FTOna 

nBJtneTCn MHOrOMaCIUTa6HOCTb. B SacTHOCTH, A.lXJl pellIeHE%n AaHHOii 3aa'lH HCnO,‘b30BUHCb TpH 

Macmra6airnn apex XapaKTepHbIx o6nacreiiTeueH~n:Hesnsxoro TeqeHHn, Cnonc ~e~KTOhI c~opocm H 

lIpHCTeHHOr0 CJlOn. npH IlOCTpOeHHH FIUeHHii AJIn IIpHCTeHHOti 30Hbl W o6nac’ra n+KTa CKOpOCTH 

HaiiseH HOB~I~ 3aKoH cnena nyTeh4 cpanaemn pelueHzizt B npoMeqro-iHoE o6nacra ss~h4oneiicreHn. 

YCJlOBHn CpalUHBaHHn peUleHHti TaKXCe yJlOBJIeTBOpSUOT H ypaBHeHHIO lIOBepXHOCTHOr0 TpeHHn &WI 

paCCMalpHBaeMOr0 IIOl-paHHqHOrO CJIOR C OTCOCOM. ~pOBe&leHO CpaBHeHHe C 3KCllepHMeHTaJlbHbIMH 

ztaHHbIbni npo@ineii CKOPOCTH, pasxwiTaHHbD( c ygeTor4 nonyreHHor0 3aKoHa Qnn cnena, H KO*- 

4HlUieHTa noBepxHoCTHoro TpeIiHJl, paccsHTaHHor0 H3 ypaBHeHHn noeepwoCTHor0 Tpemn mn 

norpaaaqaoro cnon co enyso~w OTCOCOM.II~JI~Y~H~ xopoureecosn~eHHepacwrHblx~ 3KcnepsiMeH- 

TaJIbHbIXPe3yJlbTaTOB. 


