JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 122, 70 87 {1987)

Application of the Boundary-Value Technique
to Singular Perturbation Problems at
High Reynolds Numbers

R. Y. QassiM

Escola de Engenharia and Coordenacdo dos Programas de Pas-graduagio em Engenharia,
Universidade Federal do Rio de Janeiro, C.P. 68.503,
Rio de Janeiro, Brazil

AND
A. P. SiLva FrEIRE

Coordenagio dos Programas de Pos-graduagdo em Engenharia,
Universidade Federal do Rio de Janeiro, Brazil;
presently at the Department of Engineering,
University of Cambridge, Cambridge, CB3 9EU, Englund

Submitted by G.-C. Rotu
Received July 31, 1983

The boundary-value technique, advanced by Roberts for the solution of singular
pertubation problems of ordinary differential equations where the small parameter
multiples the highest derivative, is extended to the solution of the Navier—Stokes
equation at high Reynolds numbers. Three standard flows—uniform flow past a
plate, flow with a linearly adverse external velocity, and shear {low past a flat
plate—have been chosen as test problems with a view io evaluating some of the
features of the boundary-value technique, particularly in comparison with coef-
ficient matching techniques as examplified by the methed of matcher asymptotic
expanstons. " 1987 Academic Press. Inc.

1. INTRODUCTION

Singular perturbation problems pervade fluid mechanics in a variety of
forms and contexts. In flow Reynolds number flow the singularity arises
due to the fact that inertial effects are small but not negligible far away
from the body, and in boundary layer flows at high Reynolds numbers, the
perturbation is singuiar due to the fact that viscous effects can be neglected
everywhere except within a thin layer next to the body. A number of
techniques have been developed and applied to singular perturbation
problems in general and in fluid mechanics in particular, see [1, 2, 3]. The
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common feature of those techniques is that the flow is divided into two
regions, called inner and outer, in each of which an asymptotic expansion
is determined, and these two expansions are combined to obtain a
uniformly valid solution, the precess of combining the pair of expansions
being performed through matching of their corresponding coefficients, Two
aspects stand out in those so-called coefficient matching techniques
(CMT): selecting the appropriate asymptotic expansions for the specific
problems under consideration and matching the expansions once they have
been determined. The choice of the appropriate asympotic expansions is far
from straightforward as it involves a good measure of experience, insight,
and intuition. Further, the matching of the expansions through their coef-
ficients involves a numbers of conceptual difficulties.

With a view to avoiding these difficulties altogether, Roberts [4] has
presented a method, which he denotes the boundary value technique
(BVT), for the solution of singuiar perturbation problems of ordinary dif-
ferential equations, where the small perturbation parameter multiplies the
highest derivative. In the boundary-value techmique, the interval over
which the problem is formulated is divided into two intervals, inner and
outer, in each of which a solution is obtained by analytical, numerical, or
asymptotic methods. The outer solution, corresponding to the outer inter-
val, constitutes the terminal condition for the inner solution which is valid
in the inner region. The inner problem is then solved iteratively for various
values of the terminal point of the inner interval until the successive
iterations of the solutions are close to each other within the desired degree
of accuracy. Herein ligs the principal difference between the coefficient
matching techniques on the one hand the boundary-value technique on the
other. The adjoining of the outer and the inner solutions in the BVT is
carried out at a peint In the domain of the problem, this point being found
iteratively, while in the CMT the inner and the outer expansions are
matched asymprotically.

In addition to the above-mentioned advantages of avoiding altogether
the far from simple problem of the choice of asymptotic expansion and the
intricate question of matching the inner and the outer expansions, in
general there are a number of significant computational differences
associated with the BVT in relation to the CMT. In the first place, once the
original problem is divided into its inner and outer parts, one is faced with
the task of solving this pair of problems in the BVT and a sequence of
problem pairs (zero-order, first-order, ¢tc.} in the CMT. Generally, less
computational effort would be involved in the former than in the latter
situation, although it should not be forgotten that the BVT involves an
iterative scheme and that the problem pair arising in the BVT is normally
more complex than the problem pairs corresponding to the various orders
in the CMT. A very important advantage that is obtained with the BVT
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compared with the CMT arises when dealing with problems involving
infinite intervals. In the BVT, one has to solve the outer problem as an
initial-value problem and the inner problem as a multi-point boundary-
value problem over a finite interval. This is in contrast to the situation that
arises in the CMT, where the outer problems are initial-value but the inner
problems are multi-point boundary-value over an infinite interval. Clearly,
it is simpler mathematically and computationally to deal with multi-point
boundary-value problems in finite rather than in infinite domains.

The objective of this paper is to extend the application of the BVT to
some singular pertubations of the Navier-Stokes equations, In order to
evaluate the results, we have selected flows for which solutions have been
obtained by classical boundary layer theory and CMT. In Section 2, we
give a general description of the BVT as applied to singular perturbation
problems of partial differential equations. This is done since Roberts [4]
presented the technique in the context of ordinary differential equations.
Two boundary layer-type flows are determined in Section 3, using the
BVT, and the results are compared with the established solutions of
Blassius and Howarth [ 5] for uniform flow past a flat plate and flow with
a linearly adverse external velocity, respectively. In Section4, a hybrid
method, invoiving the BVT and the technique of asymptotic expansions, is
utilized to determine shear flow past a flat plate. This problem is also
solved by use of the BVT alone and results are compared with the solutions
of Murray [6). This is done with a view to demonstrating the potential of
the BVT in so far as its couplability with other methods and suggestions
are presented with respect to the extension of the BVT to more complex
flows and to deal with other types of singularities in fluid mechanics.

2. DESCRIPTION OF THE BOUNDARY-VALUE METHOD FOR
SINGULAR PERTURBATION PROBLEMS

Consider a partial differential equation of the form
f{g’ ":! }"’"" ﬂ’ “.t’ lu"l""" #.\’X’ IL‘.\'}‘ "") = 0’ (I)

where the small parameter ¢ multiplies a term containing one of the highest
derivatives, in x say. We seek a solution to Eq. (1) satisfying m boundary
conditions in x, the validity of this solution being for small values of the
parameter £.

Letting ¢ -+ 0 results in a lowering of the order of the equation, and we
obtain the so-called outer equation

fO{xv Foevs By Hiy #y"“? Hixxs .u‘.vcys-'-)
= }1{1}) J& X Yo i pig, ) =0, (2}
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Clearly, Eq.(2) can only be expected to satisfy m—n boundary con-
ditions in x. Solving Eq. (2) subject to those m-n boundary conditions con-
stitutes the outer problem.

Returning now to Eq. (1), we define a new independent variable t by the
transformation

T=—— (3)

where g is an arbitrary scale [unction to be selected. Using Eq. (3), we may
rewrite Eq. (1) as

JAE Ty Yooy s Hos Jysens Pogy fopyen) =0 (4)

this being the so-called inner equation. Equation (4) is then to be solved
subject to m boundary conditions in x, n of these being given by

ua(xf! y!"'] = ul.(rfs y!"')a

0 ; (5)
1xs Yoo ) = pi(ts ¥,),
where
Xy
Tp=— 6
! (g) (6)

and x,is an arbitrary value of x. Clearly, t,is a function of the independent
variables y,... . Solving Eq. (4) subject to the m-r boundary conditions and
to Eq. (5) constitutes the inner problem.

The overall solution procedure then consists of the following steps:

(i) Solution of the outer problem.
(1) Solution of the inner problem for arbitrary z,.
(iii) Solution of the inner problem for shghtly different <.

(iv) Verification of the proximity of successive iteration for the
solution of the problem.

Several comments are now in order. The crux of the boundary value
technique lies in the determination of the terminal boundary condition for
the inner solution. This is achieved by an iterative process, in which an
arbitrary point 1, is chosen as the point where the inner solution ends and
the outer solution begins. In more physical terms, T, may be interpreted as
the thickness of the boundary layer region arising in the singular per-
tubation problem.
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3. APPLICATION OF THE BOUNDARY-VALUE METHOD
T0 Viscous FLuip Frow

In order to evaluate the applicability of the boundary-value method to
the Navier--Stokes equations, we have chosen two problems mvolving fows
of a boundary layer nature and whose solutions via classical boundary
layer theory have been obtained with some precision. These are uniform
flow past a semi-infinite flat plate and flow with a lincarly adverse external
velocity. We consider these problems in turmn.

(a) UNIFORM FLow PAST A SEMI-INFINITE FLAT PLATE. Consider steady
uniform two-dimensional incompressible viscous fluid flow past a semi-
infinite plate. Using rectangular Cartesian coordinates with origin at the
leading edge of the piate, the x—and y—coordinate axes parallel and per-
pendicular to the plate, respectively, the vorticity transfer equation may be
written in terms of the stream function ¥ as

ql_r iy + 'P_r q:l.\'.\'.\' - lp,\' W_\‘yy - l‘U b d

Xy x4 oxxy

= E’{ W\'_q Y + 2 W\'ry_\‘ + ?m']'r)* (7)

where ¢ is the inverse of the Reynolds numbers; ie., e=1/R=v/UL We
seek a solution to Eq. (7) for small ¢ subject to the no-penetration and
no-slip boundary conditions at the plate; ie.,

y=0, x>0 ¥ =¥ =0, (8)

and to the uniform parallel flow boundary conditions faraway from the
plate; i.e,

¥ o, x>0, ¥, =0, ¥, =L {9)
The outer fiow equation, obtained by setting £ =0, in Eq. {7), is given by
'{l_r Wx_r_v + W_V ')Ux.\'.r - W:( lP‘yyy - lP‘x 'Pxxy = O’ ( 10)

whose solution is required to satisfy the no-penetration boundary condition
at the plate; ie.,

p=0, x>0, ¥ =0, {(11)
or equivalently and without any loss of generality
y:O, x>0, =0 (]2)

The outer flow is also required to satisfy the uniform flow boundary con-
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ditions at infinity, given by Eq. (9). We note that as the outer Eq. (10) is of
third-order and the equation of motion (7) is of fourth-order, the former
can satisfy only three of the four boundary conditions given by Egs. (8)
and (9). Based on physical considerations, the no-slip boundary condition
at the plate, given by Eq. (8), is abandoned in the outer flow problem. The
solution of Eq. (10) subject to boundary conditions (9) and (12) is uniform
flow; i.e.,

=y (13)

In order to obtain the inner flow equation, we adopt the following
variable {ransformations

Y
oot (14)

P(x, y)=A(e) x(x, 7), {15)

where A(g} is a yet to be determined function of & The function 4(e) is
determined in the same manner as in the CMT; ie,

Alg)=¢?=R7'2, (16)
and then Eq. (7) may be written as

XeXowe — XX + E[Xt Yxex — Xx X.\m]
= Yger + 25%11 oot szxrx,r& (17)

this being the inner flow equation, which is to be solved subject to the
boundary conditions

1=0, x>0;x.,=%z.=0 (18)
T=1, x>0 %.=0, x,=1, (19)

which are obtained by transforming the boundary conditions (8) and (9),
respectively.

As a first approximation, in the limit as ¢ tends to zero, or equivalently
when R tends to infinity, Eq. (17) becomes.

XeXwre = XxXove = Krrees (20)

subject to boundary conditions (18) and (19).
Using the similarity transformation

x(x, Ty =x"21(m), (21)
nlx,t)=x"1, {22)
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Eq. {20) becomes

FI7 1 +2f =0, (23)

and the boundary conditions (18) and (19) become respectively,
n=0, f=7"=0, (24}
n=nn, f=npf'=1 (25)

We note that Eq. (23) is the derivative of the Blassius equation of classical
boundary layer theory. Furthermore, three of the boundary conditions (28)
and (29) are derivatives of the corresponding boundary conditions of the
Blassius problems, the exception being (25), which cannot be prefixed in
the Blassius problem as it is of third order. In fact, from the Bilassius
solution, we have

="y S=n,~8
where [5],
£ =1.7208.

This difference is due to the fact in the BYT as applied to this problem,
the displacement effsct is not taken into account as opposed to the solution
obtained by matched asymptotic expansions (MAE). The two-point boun-
dary-value problem given by (23)}-(25) has been solved by orthogonal
collocation for increasing values of #,, and convergence is obtained at
n,=250. The function f is shown in Tablel, along with the Howarth
solution of the Blassius problem [5]. Tt is seen that agreement is quite
satisfactory, with a maximum percentage difference of 8 % between the two
solutions.

(b) FLow WiITH A LINEARLY ADVERSE EXTERNAL VELOCITY. Consider
the corresponding case to (a) when the fluid velocity profile faraway from
the flat plate is given by

U=U,=Ax, (26)

where U/, and A are constants. Foliowing the procedure shown in case (a}),
the equation of motion is given by (7), subject to the boundary conditions
(8) and

V= w0, x>0, ¥ . =0, ¥ =1-ax, (27)

where a= A4/U,. As in case (a), the outer flow equation is given by (10),



77

THE BOUNDARY-VALUE METHOD IN FLUID FLOW

wT 50t 00000'T 6T6LTTI 9TTOTV'| SILFS9TI 6SLSE0'] T11996°T1 0000001 SLIGS6El  OFI

T sie 00000'1 6T6LT11 £SLOTO'T LETHEYT 0849€0 ( 1000£671 1 0000061 BLIGRGTI  OF1

¥IT ST 000001 6T6LT01 LEPIZOL £SI£1901 REBLEDT 6T6T6801 0000001 CTAT YT A YA

177 9€¢ 000001 6T6LT6 9ITT0'1 I1SET65°6 660’1 £POPS6 000000'T SLI6BEOL  O1I

67T  05¢E 00000'1 6T6LTS 12622071 $798965'8 1680001 315£19'8 0000001 RLIGBE 6 001
65T 99 00000°1 620LT L BIGEZO'T 00PSES'L 8RLTYO'T RISILLL LS0TTO'L 8L1686'8 0’6
VT §9% 00000 1 £26LT9 TSLPTOT L91TS9 6199101 S9ZLTLG CLE9PO'T 9L6PS6L 08
65T OIF 766660 9T6LT'S SP8STOl RYLSEP'S 1£5050°1 9E9RLY'S 69LELO] LP6E6R'D oL
oLt ebY 868660 YO6LT Y 916570°1 L6969y ZILYSO'] 761979 LLIOTN oFS108°S 09
€I 6P SST6610 6TERTE sssTTo'l £6LEFEE Z9L90'] 910495°€ 6ISTSI'I 6060L9'F 0’
16€ 8§ 765560 9LS0E'T 9687660 TS0EEP'T Z8TIPO'T 1L§L08°T €T6LGI'T SHISEH'E ov
506 €29 SO9PR'0 7896€°1 L9L880 098681 0£SLT6D ¥95R15°7 EOZRG1'T LI068TT ot
€9 889 LL6TS0 £0059°0 9756990 YTLP690 7507890 08101L0 SRE0E0°T BLG6VST'T 0T
STL LTL 6LETED L8591°0 L9550 STILLID £5079€0 Y6LTRID 6098090 £3ISTE0 01
00 00 00 00 00 40 00 00 00 00 00
Sn f% faewe) g fesly s (I (i), f (s (5 0y b
STUSSE[] 057 001 01 4

o) = (X)) 21e]d 1e[d ® 1584 MO|] WIOJu()

I HTdVL



78 QASSIM AND SILVA FREIRE

which is required to satisfy boundary condition (12) and the far flow boun-
dary condition faraway {rom the plate, given by (27). The outer flow
solution is given by

¥=(1—-ax) (28)

The inner flow problem is formulated in a manner analogous to case (a},
and the resulting problem in the imit as ¢ tends to zero can then be written

a8
Ao Xxre =™ XxXore = Xazoes (20)
=0, x.\fEXr:(}! (18)
T=1 Xx= —aty, y.=1—ax. (29)

Utilizing the similarity transformation

x0Ty = X fyln) ~ (8%) £(m) + (8x*) o) — + - }, (30)

T)C_Uz

nlx, )= T (31)
oy
x(x)—UO, (32)

in Eq. (22), and separating the terms of the same order in x, we obtain for
the two lowest order equations, respectively

Jold + fofg"+ 7 =0, (33)
—fof LS+ 3+ fi+ fofi+ [ =0 (34)
The corresponding boundary conditions are given by

’1=O= fU=f£)=0’ (35)

n=1, f0=2’?af(’)=2a (36}

=0,  fi=f1=0, (37)

|
n=n,  fi=g . Simg (38)

It is worth noting that (33) and (34) are derivatives of the Howarth
lowest order pair of equations, respectively. These, being of third-order,
cannot satisfy a priori all four boundary conditions (37) and (38). In fact,
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(38) is not prefixed in the Howarth sclution, but rather is given from the
solution as

n=ns fi=g 0344 (39)

This difference, as in the Blassius problem, is due to the fact that in the
BVT solution, the displacement effect is neglected, while this is not the case
in the MAE solution. The problem, given by (33), (35), and (36) and the
problem given by (34), (37), and (38) have been solved by orthogonal
collocation for decreasing values of #,, convergence being obtained at
=250 and n,=40, respectively. The function f,, is shown in Table II,
along with the solutions of Howarth.

4. APPLICATION OF A HYBRID BOUNDARY-VALUE-COEFFICIENT
MaTtcHING METHOD TO Viscous FLuib FrLow

In order to demonstrate the flexibility and the versatility of the BVT in
the solution of fluid flow problems, we consider the classical problem of
shear flow past a flat plate. Solutions have been obtained for this problem
through the use of matched asymptotic expansions by Murray [6], and we
solve this problem in two ways: first by application of the BVT on its own,
and then by the joint application of the BVT along with matched
asymptotic expansions.

Consider steady two-dimensional incompressible viscous fluid flow past a
flat plate, where the fluid is in linear shear faraway from the plate. In rec-
tangular Cartesian coordinates, the vorticity transfer equation is (7), which
we wish to solve for small ¢, subject to the boundary conditions (8) at the
plate, and to linear shear flow faraway; ie.,

3 — 00, x>0, 7. =0, ¥, =1+wyp {40)

As seen in Section 3, the outer flow equation is given by (10), which we
now wish to solve subject to the boundary conditions at the plate given by
(12), while the boundary condition (40} has to be satisfied faraway from
the plate. The outer flow solution can then be immediately written as

2

‘P:y+w02y . (41)

The inner flow equation, as shown in Section 3, is given by (17), which
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we wish to solve subject to the boundary conditions (18) at the plate, and

faraway from the plate, we have
T=Tg x>0 5,.=0, y,=14+wyy.
Using the expansion

1=x"+ex',

(42)

(43)

in Eq. (17) and in boundary conditions (18) and (42), we obtain for y°

XX e = XK = Koeees
=0, I=xi=0,
T=1p =1 =0,
and for y', we have
Ko ee XX~ X L e Hoee X = Kdeeos
=0, x=x.=0,
T=1,  yl=wet, xl=0.
Applying the transformations
1°=x"*f{n),
' =dwoxgly),

the problems given by (44)-(45) and (47)-(49) become respectively
fn: +flfﬂ + ffm = 01
n = 0’ fz f’ = 0’
’T=’?fsf=2??,fi=2,
and
giu +gifrr +fgm + 2fmg = 0,
” = 0, g = g’ = 0,
n=n, g=4n% g =n.

(47)
(48)
(49)

(53)
(54)
(55)

(36)
(57)
(38)

The problem given by (53)}(55) is equivalent to (23)}(25) and its
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solutton is shown in Table I, and the problem given by (55)-(57) has been
solved by erthogonal coliocation and the results are displayed in Table I11.

The above solution results from the direct application of the BVT to the
problem of linear shear flow past a flat plate. With a view to evaluating the
versatility of the BVT, we utilize this method jointly with that of matched
asymptotic expansions (MAE) to solve this problem In an alternative
manner. For this purpose, we introduce the asymptotic expansions for the
inner and the outer stream functions.

Pix,p)=(x,y)+&¥ x,p 4 -, (59)

I(X,T}=8"'2XO(~Y,T)+5XI(-’CJ)+ (60)

Substituting Eq. (39) in the outer flow Eq. (10), and equating the coef-
ficients of the various powers in & to zero, we obtain for the zero-order
outer equation

VI =y, (61)

wherc

w=wl4e" w4 - | (62)

subject to the boundary conditions
y=0, x>0, ¥°=0, (63)
y— a0, x>0, ¥) > 1+ wyy. (64)

The solution of Eq. {61) subject to boundary conditions (63) and (64) is
given by

, .2
tpﬂ=y+%-y—. (65)

Substitution of Eq. (65} in the inner flow Eq.(17) and equating the
coefficients of the resuiting power expansion in 1o zere, we have for the
first-order inner equation

x;xlz_x:{x:rrletrr‘ (66)

Since Eq. (66) constitutes an exact differential, we have

AiH— XeXae = Kiee T 21(X) (67)
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where p,(x) is an arbitrary function of x. Using the Matching Principle, we
have

Yo (x, 0)=1, (68)
2ilx)=0. (69)

From boundary condition (8), we obtain
21(x, 0) = (x, 0)=0. (70)

Utilizing the transformation

1'(x, 1) =x"f(y), (71)
n= %:—2 T {72)
we obtain from Eq. (67)
S+ =0, (73)
and from boundary conditions (68) and (70), respectively
n=0, f=f'=0, (74)
n=n, f'=2 (75)

Returning to the outer flow Eq.(10), the first-order external equation
may be written as

Vil =y, (76)

subject to the boundary conditions

y=0, x<0, ¥ =0, (77)
y=0, x>0; ¥ = —px'"? (78)
¥y — o0, x>0 ¥'=0. (79

The boundary condition (78) is obtained by the Matching Principle. The
solution of (76) subject to (77)}-(79) is given by

¥'= —BRe. . /x+y (80)
The first-order inner equation may be written as

Ao b F A XS — AV et = K e (81)
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Since Eq. (81) is an exact differential, we have
X 2oee + X X = X8 ae — XX = Xpre + P2l X), (82)
where p,(x) is an arbitrary function of x. Matching yields
¥olx, 00) = 1wy, (33)
Palx) = worl(x, 0) =2 p~"7x. (84)
From the boundary condition (8), we have
Xi(x,0)=yx,(x,0)=0. (85)

Using the transformation

(1) =x%f(n), (86)
1'(x, 1) =4woxg(n), (87)
x4
Eq. {82) becomes
g+ fg"—fg+2f"g= P, (89)
and from boundary conditions (83) and (85), we have
n=0, g=g'=0, (90)
n=1, g=1,. 1)

The probiem given by Eq. (89) subject to boundary conditions (90) and
(91) is identical to the one fomulated and solved by Murray [6]. These
results are also shown in Table Il for the purpose of comparison. It is
readily observed from Table ITI that the differences between the solution
obtained directly from the BVT and that based on the BVYT-MAE hybrid
method or equivalently that of Murray, are significant, particularly if com-
pared with our corresponding situation in the two former flow problems.
Apart from the fact that the ordinary differential equations are different for
the different problems under consideration and the consequent possible
solution behaviour, we believe there are some important differences in the
application of the BVT and the BVT-MAE method to this problem. Essen-
tially, in the BVT, we have account for the external vorticity only, while in
the BVT-MAE account has been taken of both the external vorticity and
the displacement effect.
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5. CoNCLUDING REMARKS

The boundary-value technique, formulated and applied to singular per-
turbation problems of ordinary differential equations, has been extended to
the solution of the Navier-Stokes equations for three standard high
Reynolds number flows. These flows have been selected as solutions for
they have been already obtained with confidence by classical boundary
layer theory and the techmique of matched asymptotic expansions, and
hence can serve as an adequate test for the accuracy of the boundary value
technique. In the following, we summarize our findings.

(1) The simplicity of the BVT, demonstrated by Roberts for
ordinary differential equations, is shown to be valid for partial differential
equations as well. Thus, the question of which asymptotic expansion to use
which is inherent in all CMT’s, simply does not arise in the BVT. However,
in the transformation of variables, the scaie function has still to be chosen a
priori based on additional physico-mathematical arguments. This point is
not touched upon by Roberts.

(it} The flexibility of the BVT in that it can be used in a hybrid
fashion with another technique, shown by Roberts for ordinary differential
equations, 15 demonstrated in the problem of shear flow past a flat plate,
On the other hand, when coupled to other techniques, the advantage of
simplicity inherent in the BVT may be lost. This is demonstrated when the
BVT is used in combination with the method of matched asymptotic
expansions in the solution of the shear flow problem. Roberts does not
appear to have recognized this limitation when applying the BVT in
conjunction with other methods.

(iii) The fact that in the BVT the inner and the outer solutions are
matched at a specific and definite location means that the question of the
matching principle just does not arise. This advantage is shown in the three
flows which have been determined by use if the BVT alone. Furthermore,
the specific location at which the matching is performed provides a direct
and precise measure of the boundary layer thickness.

(iv) From the analytical and the computational points of view,
there is a substantial advantage in utilizing the BVT in that the inner {flow
is determined from the solution of a two-point boundary-value problem
over a finite domain. This is in contrast to the CMT, for example the
method of matched asymptotic expansions, where the inner flow 15 posed
as a two-point boundary-value problem over an infinite domain. This
feature is clearly demonstrated in the three flows considered, and this
advantage should heid in general for flows in infinite regions.
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(v) The mathematical question of convergence of the BVT remains
open as noted by Roberts. Barring the settling of this question, we believe
it necessary to extend the present investigation to more complex flows than
those studied in the present work, albeit maintaining the approach of
selecting flows for which reliable solutions have been obtained by CMT’s
and other established methods. In the way of examples, we mention low
Eckman number, rotating flows, corner boundary layers, and trailing edge
flows.

{vi) The criterion which Roberts utilized to terminate the iteration,
which has also been used in the present work, depends on the matching of
the inner and outer flow variables only and nothing is said about the
derivatives. Clearly, better matching should be obtained if a more complete
criterion 1s envisaged, involving the first few derivatives, up to the order of
the equation say, as well as the flow variables themselves.

{vil) When applied to partial differential equations, the joining of
the inner and the outer solutions is performed along a curve or surface as
the case may be, due to the increase in dimensicnality of the problem as
compared to the case of ordinary differential equations.

(viil) As advanced by Roberts, the BVT is applicable oniy to singular
perturbation problems of the type where the small parameter multiplies the
highest derivative. Then there is clearly room for extending the method to
other types of singularities, particularly if we wish to apply the method to
low Reynolds numbers flows amongst others.

{ix) As Roberts has stated, the question of which boundary con-
dition to drop in the outer flow problem still has to be based on physical
arguments as is the case in coefficient matching methods.
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