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The boundary-value technique, advanced by Roberts for the solution of singular 
pertubation problems of ordinary differential equations where the small parameter 
multiples the highest derivative, is extended to the solution of the Navier-Stokes 
equation at high Reynolds numbers. Three standard flows-uniform flow past a 
plate, flow with a linearly adverse external velocity, and shear flow past a flat 
plate-have been chosen as test problems with a view to evaluating some of the 
features of the boundary-value technique, particularly in comparison with coef- 
ficient matching techniques as examplilied by the method of matcher asymptotic 
expansions. (” 19X7 Academic Press, Inc 

1. INTRODUCTION 

Singular perturbation problems pervade fluid mechanics in a variety of 
forms and contexts. In flow Reynolds number flow the singularity arises 
due to the fact that inertial effects are small but not negligible far away 
from the body, and in boundary layer flows at high Reynolds numbers, the 
perturbation is singular due to the fact that viscous effects can be neglected 
everywhere except within a thin layer next to the body. A number of 
techniques have been developed and applied to singular perturbation 
problems in general and in fluid mechanics in particular, see Cl, 2, 33. The 
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common feature of those techniques is that the flow is divided into two 
regions, called inner and outer, in each of which an asymptotic expansion 
is determined, and these two expansions are combined to obtain a 
uniformly valid solution, the precess of combining the pair of expansions 
being performed through matching of their corresponding coefficients. Two 
aspects stand out in those so-called coefficient matching techniques 
(CMT): selecting the appropriate asymptotic expansions for the specific 
problems under consideration and matching the expansions once they have 
been determined. The choice of the appropriate asympotic expansions is far 
from straightforward as it involves a good measure of experience, insight, 
and intuition. Further, the matching of the expansions through their coef- 
ficients involves a numbers of conceptual difftculties. 

With a view to avoiding these difficulties altogether, Roberts [4] has 
presented a method, which he denotes the boundary value technique 
(BVT), for the solution of singular perturbation problems of ordinary dif- 
ferential equations, where the small perturbation parameter multiplies the 
highest derivative. In the boundary-value technique, the interval over 
which the problem is formulated is divided into two intervals, inner and 
outer, in each of which a solution is obtained by analytical, numerical, or 
asymptotic methods. The outer solution, corresponding to the outer inter- 
val, constitutes the terminal condition for the inner solution which is valid 
in the inner region. The inner problem is then solved iteratively for various 
values of the terminal point of the inner interval until the successive 
iterations of the solutions are close to each other within the desired degree 
of accuracy. Herein lies the principal difference between the coefficient 
matching techniques on the one hand the boundary-value technique on the 
other. The adjoining of the outer and the inner solutions in the BVT is 
carried out at a point in the domain of the problem, this point being found 
iteratively, while in the CMT the inner and the outer expansions are 
matched asymptotically. 

In addition to the above-mentioned advantages of avoiding altogether 
the far from simple problem of the choice of asymptotic expansion and the 
intricate question of matching the inner and the outer expansions, in 
general there are a number of significant computational differences 
associated with the BVT in relation to the CMT. In the first place, once the 
original problem is divided into its inner and outer parts, one is faced with 
the task of solving this pair of problems in the BVT and a sequence of 
problem pairs (zero-order, first-order, etc.) in the CMT. Generally, less 
computational effort would be involved in the former than in the latter 
situation, although it should not be forgotten that the BVT involves an 
iterative scheme and that the problem pair arising in the BVT is normally 
more complex than the problem pairs corresponding to the various orders 
in the CMT. A very important advantage that is obtained with the BVT 



compared with the CMT arises when dealing with problems involving 
infinite intervals. In the BVT, one has to solve the outer problem as an 
initial-value problem and the inner problem as a multi-point boundary- 
value problem over a,finite interval. This is in contrast to the situation that 
arises in the CMT, where the outer problems are initial-value but the inner 
problems are multi-point boundary-value over an infinite interval. Clearly, 
it is simpler mathematically and computationally to deal with multi-point 
boundary-value problems in finite rather than in infinite domains. 

The objective of this paper is to extend the application of the BVT to 
some singular pertubations of the Navier-Stokes equations. In order to 
evaluate the results, we have selected flows for which solutions have been 
obtained by classical boundary layer theory and CMT. In Section 2, we 
give a general description of the BVT as applied to singular perturbation 
problems of partial differential equations. This is done since Roberts [4] 
presented the technique in the context of ordinary differential equations. 
Two boundary layer-type flows are determined in Section 3, using the 
BVT, and the results are compared with the established solutions of 
Blassius and Howarth [S] for uniform flow past a flat plate and flow with 
a linearly adverse external velocity, respectively. In Section 4, a hybrid 
method, involving the BVT and the technique of asymptotic expansions, is 
utilized to determine shear flow past a flat plate. This problem is also 
solved by use of the BVT alone and results are compared with the solutions 
of Murray [6]. This is done with a view to demonstrating the potential of 
the BVT in so far as its couplability with other methods and suggestions 
are presented with respect to the extension of the BVT to more complex 
flows and to deal with other types of singularities in fluid mechanics. 

2. DESCRIPTION OF THE BOUNDARY-VALUE METHOD FOR 
SINGULAR PERTURBATION PROBLEMS 

Consider a partial differential equation of the form 

,f(E, -x, I’>-, PL, pr> pL, ,“., Px,, &,v,...) = 0, (1) 

where the small parameter E multiplies a term containing one of the highest 
derivatives, in x say. We seek a solution to Eq. (1) satisfying m boundary 
conditions in x, the validity of this solution being for small values of the 
parameter E. 

Letting F --f 0 results in a lowering of the order of the equation, and we 
obtain the so-called outer equation 

Jot? YY> K PL,, PL,,.-, Pry, P,,,,...) 

= lim f(s, 
c-0’ 

x, y ,..., p, p.,, pv ,...) = 0. (2) 
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Clearly, Eq. (2) can only be expected to satisfy m - n boundary con- 
ditions in x. Solving Eq. (2) subject to those m-n boundary conditions con- 
stitutes the outer problem. 

Returning now to Eq. (l), we define a new independent variable o by the 
transformation 

X 

7=go’ 
(3) 

where g is an arbitrary scale function to be selected. Using Eq. (3) we may 
rewrite Eq. (1) as 

.fitE, 7, Y,..., CL, PT, PLv,..., PL,T, PT.* ,...) = O (4) 

this being the so-called inner equation. Equation (4) is then to be solved 
subject to m boundary conditions in x, n of these being given by 

PObf, Y,...) = $bf, yv.. 17 

pO(x,, Y,...) = &f, Y,...), 

where 

xi v=g(E)1 

(5) 

(6) 

and x, is an arbitrary value of x. Clearly, r/-is a function of the independent 
variables y,... . Solving Eq. (4) subject to the m-n boundary conditions and 
to Eq. (5) constitutes the inner problem. 

The overall solution procedure then consists of the following steps: 

(i) Solution of the outer problem. 

(ii) Solution of the inner problem for arbitrary 7,. 

(iii) Solution of the inner problem for slightly different rf 

(iv) Verification of the proximity of successive iteration for the 
solution of the problem. 

Several comments are now in order. The crux of the boundary value 
technique lies in the determination of the terminal boundary condition for 
the inner solution. This is achieved by an iterative process, in which an 
arbitrary point 7,. is chosen as the point where the inner solution ends and 
the outer solution begins. In more physical terms, tf may be interpreted as 
the thickness of the boundary layer region arising in the singular per- 
tubation problem. 
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3. APPLICATION OF THE BOUNDARY-VALUE METHOD 
TO VISCOUS FLIJD FLOW 

In order to evaluate the applicability of the boundary-value method to 
the NavierStokes equations, we have chosen two problems involving flows 
of a boundary layer nature and whose solutions via classical boundary 
layer theory have been obtained with some precision. These are uniform 
flow past a semi-infinite flat plate and flow with a linearly adverse external 
velocity. We consider these problems in turn. 

(a) UNIFORM FLOW PAST A SEMI-INFINITE FLAT PLATE. Consider steady 
uniform two-dimensional incompressible viscous fluid flow past a semi- 
infinite plate. Using rectangular Cartesian coordinates with origin at the 
leading edge of the plate, the x-and y--coordinate axes parallel and per- 
pendicular to the plate, respectively, the vorticity transfer equation may be 
written in terms of the stream function Y as 

YL.Y’,,, + y, yn- y/,y,.,,.- y’,yw 
=e(YU,,,,.+2Y,.,,.+ y ,‘,‘,,. ). (7) 

where E is the inverse of the Reynolds numbers; i.e., E = 1/R = v/UL. We 
seek a solution to Eq. (7) for small s’, subject to the no-penetration and 
no-slip boundary conditions at the plate; i.e., 

I’ = 0, x>o; Y,= Y, =o, (8) 

and to the uniform parallel flow boundary conditions faraway from the 
plate; i.e., 

I’+“, x>o; Yy=O, YL.=l. (9) 

The outer flow equation, obtained by setting E = 0, in Eq. (7), is given by 

y.,. yy,,.,. + yvl ‘YYY, - y’, yvv, - Y.Y yxrj, = 0, (10) 

whose solution is required to satisfy the no-penetration boundary condition 
at the plate; i.e., 

y = 0, x>o, Y’,=O, (11) 

or equivalently and without any loss of generality 

Y = 0, x>o, Y=O. (12) 

The outer flow is also required to satisfy the uniform flow boundary con- 
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ditions at infinity, given by Eq. (9). We note that as the outer Eq. (10) is of 
third-order and the equation of motion (7) is of fourth-order, the former 
can satisfy only three of the four boundary conditions given by Eqs. (8) 
and (9). Based on physical considerations, the no-slip boundary condition 
at the plate, given by Eq. (8), is abandoned in the outer flow problem. The 
solution of Eq. (10) subject to boundary conditions (9) and (12) is uniform 
flow; i.e., 

!P=y. (13) 

In order to obtain the inner flow equation, we adopt the following 
variable transformations 

Y 
5=d(E)) 

(14) 

vx, Y) = d(E) x(x, z), (15) 

where d(s) is a yet to be determined function of E. The function d(e) is 
determined in the same manner as in the CMT; i.e., 

A(&)=& - 112 _ R-l/2 , (16) 

and then Eq. (7) may be written as 

xrx.x,, -X\-Xr~,+&CX,X,,,--X,X,,,l 

= XT,,, + 2-2 ‘ix Xm + E2X r.r.x.li> (17) 

this being the inner flow equation, which is to be solved subject to the 
boundary conditions 

z =o, x > 0; x.y = x* = 0, (18) 

5 = Tf, x>o; x,=0, XT= 1, (19) 

which are obtained by transforming the boundary conditions (8) and (9) 
respectively. 

As a first approximation, in the limit as E tends to zero, or equivalently 
when R tends to infinity, Eq. (17) becomes. 

XrXrrr = XxXrrr = Xrrrr, 

subject to boundary conditions (18) and (19). 
Using the similarity transformation 

x(x, r) = x”‘f(rlh 

r/(x,z) = x”27, 

(20) 

(21) 

(22) 



Eq. (20) becomes 

f’.f’” +.l”” + 2.f”’ = 0, 

and the boundary conditions ( 18) and (19) become respectively, 

(23) 

‘1 =o, ,f = f’ = 0, (24) 

‘1 =v/, .f=rlpf’= 1. (25) 

We note that Eq. (23) is the derivative of the Blassius equation of classical 
boundary layer theory. Furthermore, three of the boundary conditions (28) 
and (29) are derivatives of the corresponding boundary conditions of the 
Blassius problems, the exception being (25), which cannot be prefixed in 
the Blassius problem as it is of third order. In fact, from the Blassius 
solution, we have 

where [S], 

b = 1.7208. 

This difference is due to the fact in the BVT as applied to this problem, 
the displacement effect is not taken into account as opposed to the solution 
obtained by matched asymptotic expansions (MAE). The two-point boun- 
dary-value problem given by (23)-(25) has been solved by orthogonal 
collocation for increasing values of qf, and convergence is obtained at 
yll= 250. The function f is shown in Table I, along with the Howarth 
solution of the Blassius problem [S]. It is seen that agreement is quite 
satisfactory, with a maximum percentage difference of 8 % between the two 
solutions. 

(b) FLOW WITH A LINEARLY ADVERSE EXTERNAL VELOCITY, Consider 
the corresponding case to (a) when the fluid velocity profile faraway from 
the flat plate is given by 

U= U,= Ax, (26) 

where U, and A are constants. Following the procedure shown in case (a), 
the equation of motion is given by (7), subject to the boundary conditions 
(8) and 

Y-+~, x>o; y/,=0, !P,,= 1 --ax, (27) 

where a = A/U,. As in case (a), the outer flow equation is given by (lo), 
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which is required to satisfy boundary condition (12) and the far flow boun- 
dary condition faraway from the plate, given by (27). The outer flow 
solution is given by 

Y= (1 -ax) J’. (28) 

The inner flow problem is formulated in a manner analogous to case (a), 
and the resulting problem in the limit as E tends to zero can then be written 
as 

XrLrr - X.rXrrr = xirrr, (20) 

t = 0, x.r = XT = 0, (18) 

T = T,, xr = -ar,, x7 = 1 -ax. (29) 

Utilizing the similarity transformation 

X(-~,t)=x”“{f,(r?)-(8x)f,(ul)+(8x*).f*(r)- + ... 1, (30) 
~ l/2 

q(x, g=y, (31) 

x*(x)=$ 
0 (32) 

in Eq. (22), and separating the terms of the same order in x, we obtain for 
the two lowest order equations, respectively 

.f&fo"+fofd"+f'"=O, (33) 

-fofi”+f{fb” + 3fd” + j; +fof? +f;"=o. (34) 

The corresponding boundary conditions are given by 

rl =o, .fo=fb =o, (35) 

9 = v/2 fo = %fb=Z (36) 

rl =Q fl =f; =o, (37) 

It is worth noting that (33) and (34) are derivatives of the Howarth 
lowest order pair of equations, respectively. These, being of third-order, 
cannot satisfy a priori all four boundary conditions (37) and (38). In fact, 
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(38) is not prefixed in the Howarth solution, but rather is given from the 
solution as 

‘I = II,: .f, =; + 0.3444. (39) 

This difference, as in the Blassius problem, is due to the fact that in the 
BVT solution, the displacement effect is neglected, while this is not the case 
in the MAE solution. The problem, given by (33) (35), and (36) and the 
problem given by (34), (37), and (38) have been solved by orthogonal 
collocation for decreasing values of qr, convergence being obtained at 
g, = 250 and ql-=40, respectively. The function f,, is shown in Table II, 
along with the solutions of Howarth. 

4. APPLICATION OF A HYBRID BOUNDARY-VALUE-COEFFICIENT 
MATCHING METHOD TO VISCOUS FLUID FLOW 

In order to demonstrate the flexibility and the versatility of the BVT in 
the solution of fluid flow problems, we consider the classical problem of 
shear flow past a flat plate. Solutions have been obtained for this problem 
through the use of matched asymptotic expansions by Murray [6], and we 
solve this problem in two ways: first by application of the BVT on its own, 
and then by the joint application of the BVT along with matched 
asymptotic expansions. 

Consider steady two-dimensional incompressible viscous lluid flow past a 
flat plate, where the fluid is in linear shear faraway from the plate. In rec- 
tangular Cartesian coordinates, the vorticity transfer equation is (7), which 
we wish to solve for small E, subject to the boundary conditions (8) at the 
plate, and to linear shear flow faraway; i.e., 

y-‘=J, x>o; YJ,=o, !ty,= 1 +u’o,r. (40) 

As seen in Section 3, the outer flow equation is given by (lo), which we 
now wish to solve subject to the boundary conditions at the plate given by 
(12), while the boundary condition (40) has to be satisfied faraway from 
the plate. The outer flow solution can then be immediately written as 

I=y+*. (41) 

The inner flow equation, as shown in Section 3, is given by (17), which 
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we wish to solve subject to the boundary conditions (18) at the plate, and 
faraway from the plate, we have 

t = Tf, x>o; x,=0, XT= 1 +woy. (42) 

Using the expansion 

X=X0+&X’, (43) 

in Eq. (17) and in boundary conditions (18) and (42), we obtain for x0 

x:x”,,, - x”, x:7, = XL ) (44) 

z = 0, X:=X”,=% (45) 

z = t/, x:= 1, x”,=o, (46) 

and for x ‘, we have 

x:x.:,, + i&J’ -xOxL - xR,xt, = XL (47) 

z = 0, x; = xt, = 0, (48) 

2=5 1’ xf=wot, x:=0. (49) 

Applying the transformations 

x0 = x’%rl), (50) 

x’ = 4woxdrlh (51) 

qq, (52) 

the problems given by (44)-(45) and (47)-(49) become respectively 

f”’ + f’f” + ff”’ = 0, (53) 

?j=o, f=f’=O, (54) 

v=vf,f=2rl,f'=2, (55) 

and 

g'"+g'f" +fg"'+ 2f”‘g=O, (56) 

tj = 0, g = g’ = 0, (57) 

ul = r/3 g = $I’, g’ = II. (58) 

The problem given by (53)-(55) is equivalent to (23t(25) and its 
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solution is shown in Table I, and the problem given by (55)-(57) has been 
solved by orthogonal collocation and the results are displayed in Table III. 

The above solution results from the direct application of the BVT to the 
problem of linear shear flow past a flat plate. With a view to evaluating the 
versatility of the BVT, we utilize this method jointly with that of matched 
asymptotic expansions (MAE) to solve this problem in an alternative 
manner. For this purpose, we introduce the asymptotic expansions for the 
inner and the outer stream functions. 

Y(x,y) = (x,y) + &‘ciqx,y) + “. ) (59) 

X(x,T)=E”‘X”(x,T)+EX’(X,T)+ .” (601 

Substituting Eq. (59) in the outer flow Eq. (IO), and equating the coef- 
ficients of the various powers in E to zero, we obtain for the zero-order 
outer equation 

VP= wo, (61) 

where 

)$, = )p + E’P1.l?’ + .  .  ) (62) 

subject to the boundary conditions 

4’ =o, x> 0, P=o, (63) 

p+~, x>o, Y$+1+w,y. (64) 

The solution of Eq. (61) subject to boundary conditions (63) and (64) is 
given by 

p=,+$. (65) 

Substitution of Eq. (65) in the inner flow Eq. (17) and equating the 
coeffkients of the resulting power expansion in to zero, we have for the 
first-order inner equation 

Since Eq. (66) constitutes an exact differential, we have 

(67) 
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where p,(x) is an arbitrary function of .Y. Using the Matching Principle, we 
have 

x:(x> w)= 1, 

LJ,(x)=O. 

From boundary condition (8), we obtain 

x:(x, 0) =x:(x, 0) = 0. 

Utilizing the transformation 

x’(x, T) = x”2f(ij), 

xli2 
q=Tp, 

(68) 

(69) 

(70) 

(71) 

(72) 

we obtain from Eq. (67) 

ff” +f”’ = 0, (73) 

and from boundary conditions (68) and (70), respectively 

tl=o, f=f'=O, (74) 

v = vl/, f'=2 (75) 

Returning to the outer flow Eq. (lo), the first-order external equation 
may be written as 

v2!P =o, (76) 

subject to the boundary conditions 

y = 0, x<o; Y’=O, (77) 

y = 0, x > 0; YJ’ = +x1f2, (78) 

y-+a, x>o, Y”=o. (79) 

The boundary condition (78) is obtained by the Matching Principle. The 
solution of (76) subject to (77)(79) is given by 

!P’ = -p Re dx. (80) 

The first-order inner equation may be written as 

XPXL + x:x:, - XOsXf,,XOrrrX1 = XL. (81) 
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Since Eq. (8 1) is an exact differential, we have 

x9xX + xx, - xx, - xx = xi,, +P*(x), 
where p2(x) is an arbitrary function of x. Matching yields 

x; (4 cc) = ‘SWIJ, 

p2(x)=wox;(x, ++wx. 

From the boundary condition (8) we have 

x:(x, 0) = x.f. (x, 0) = 0. 

(82) 

(83) 

(84) 

(85) 

Using the transformation 

x0(x, 7) = x1’2f(s), WI 

x1(4 7) = 4woxg(rl), (87) 
-y mT 

ul= 2 ’ (88) 

Eq. (82) becomes 

g”’ + fg” - f’g’ + 2f ‘,p z -fl, (89) 

and from boundary conditions (83) and (85) we have 

‘? = 0, g=g’=O, (90) 

? = VJ/, g’ = 11. (91) 

The problem given by Eq. (89) subject to boundary conditions (90) and 
(91) is identical to the one fomulated and solved by Murray [6]. These 
results are also shown in Table III for the purpose of comparison. It is 
readily observed from Table III that the differences between the solution 
obtained directly from the BVT and that based on the BVT-MAE hybrid 
method or equivalently that of Murray, are significant, particularly if com- 
pared with our corresponding situation in the two former flow problems. 
Apart from the fact that the ordinary differential equations are different for 
the different problems under consideration and the consequent possible 
solution behaviour, we believe there are some important differences in the 
application of the BVT and the BVT-MAE method to this problem. Essen- 
tially, in the BVT, we have account for the external vorticity only, while in 
the BVT-MAE account has been taken of both the external vorticity and 
the displacement effect. 
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5. CONCLUDING REMARKS 

The boundary-value technique, formulated and applied to singular per- 
turbation problems of ordinary differential equations, has been extended to 
the solution of the Navier-Stokes equations for three standard high 
Reynolds number flows. These flows have been selected as solutions for 
they have been already obtained with confidence by classical boundary 
layer theory and the technique of matched asymptotic expansions, and 
hence can serve as an adequate test for the accuracy of the boundary value 
technique. In the following, we summarize our findings. 

(i) The simplicity of the BVT, demonstrated by Roberts for 
ordinary differential equations, is shown to be valid for partial differential 
equations as well. Thus, the question of which asymptotic expansion to use 
which is inherent in all CMT’s, simply does not arise in the BVT. However, 
in the transformation of variables, the scale function has still to be chosen a 
priori based on additional physico-mathematical arguments. This point is 
not touched upon by Roberts. 

(ii) The flexibility of the BVT in that it can be used in a hybrid 
fashion with another technique, shown by Roberts for ordinary differential 
equations, is demonstrated in the problem of shear flow past a flat plate. 
On the other hand, when coupled to other techniques, the advantage of 
simplicity inherent in the BVT may be lost. This is demonstrated when the 
BVT is used in combination with the method of matched asymptotic 
expansions in the solution of the shear flow problem. Roberts does not 
appear to have recognized this limitation when applying the BVT in 
conjunction with other methods. 

(iii) The fact that in the BVT the inner and the outer solutions are 
matched at a specific and definite location means that the question of the 
matching principle just does not arise. This advantage is shown in the three 
flows which have been determined by use if the BVT alone. Furthermore, 
the specific location at which the matching is performed provides a direct 
and precise measure of the boundary layer thickness. 

(iv) From the analytical and the computational points of view, 
there is a substantial advantage in utilizing the BVT in that the inner flow 
is determined from the solution of a two-point boundary-value problem 
over a finite domain. This is in contrast to the CMT, for example the 
method of matched asymptotic expansions, where the inner flow is posed 
as a two-point boundary-value problem over an infinite domain. This 
feature is clearly demonstrated in the three flows considered, and this 
advantage should hold in general for flows in infinite regions. 
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(v) The mathematical question of convergence of the BVT remains 
open as noted by Roberts. Barring the settling of this question, we believe 
it necessary to extend the present investigation to more complex flows than 
those studied in the present work, albeit maintaining the approach of 
selecting flows for which reliable solutions have been obtained by CMT’s 
and other established methods. In the way of examples, we mention low 
Eckman number, rotating flows, corner boundary layers, and trailing edge 
flows. 

(vi) The criterion which Roberts utilized to terminate the iteration, 
which has also been used in the present work, depends on the matching of 
the inner and outer flow variables only and nothing is said about the 
derivatives. Clearly, better matching should be obtained if a more complete 
criterion is envisaged, involving the first few derivatives, up to the order of 
the equation say, as well as the flow variables themselves. 

(vii) When applied to partial differential equations, the joining of 
the inner and the outer solutions is performed along a curve or surface as 
the case may be, due to the increase in dimensionality of the problem as 
compared to the case of ordinary differential equations. 

(viii) As advanced by Roberts, the BVT is applicable only to singular 
perturbation problems of the type where the small parameter multiplies the 
highest derivative. Then there is clearly room for extending the method to 
other types of singularities, particularly if we wish to apply the method to 
low Reynolds numbers flows amongst others. 

(ix) As Roberts has stated, the question of which boundary con- 
dition to drop in the outer flow problem still has to be based on physical 
arguments as is the case in coefficient matching methods. 
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